1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved. 25 */ 26 27 #include <sys/param.h> 28 #include <sys/errno.h> 29 #include <sys/vfs.h> 30 #include <sys/vnode.h> 31 #include <sys/cred.h> 32 #include <sys/cmn_err.h> 33 #include <sys/systm.h> 34 #include <sys/kmem.h> 35 #include <sys/pathname.h> 36 #include <sys/utsname.h> 37 #include <sys/debug.h> 38 #include <sys/door.h> 39 #include <sys/sdt.h> 40 #include <sys/thread.h> 41 #include <sys/avl.h> 42 43 #include <rpc/types.h> 44 #include <rpc/auth.h> 45 #include <rpc/clnt.h> 46 47 #include <nfs/nfs.h> 48 #include <nfs/export.h> 49 #include <nfs/nfs_clnt.h> 50 #include <nfs/auth.h> 51 52 static struct kmem_cache *exi_cache_handle; 53 static void exi_cache_reclaim(void *); 54 static void exi_cache_trim(struct exportinfo *exi); 55 56 extern pri_t minclsyspri; 57 58 volatile uint_t nfsauth_cache_hit; 59 volatile uint_t nfsauth_cache_miss; 60 volatile uint_t nfsauth_cache_refresh; 61 volatile uint_t nfsauth_cache_reclaim; 62 63 /* 64 * The lifetime of an auth cache entry: 65 * ------------------------------------ 66 * 67 * An auth cache entry is created with both the auth_time 68 * and auth_freshness times set to the current time. 69 * 70 * Upon every client access which results in a hit, the 71 * auth_time will be updated. 72 * 73 * If a client access determines that the auth_freshness 74 * indicates that the entry is STALE, then it will be 75 * refreshed. Note that this will explicitly reset 76 * auth_time. 77 * 78 * When the REFRESH successfully occurs, then the 79 * auth_freshness is updated. 80 * 81 * There are two ways for an entry to leave the cache: 82 * 83 * 1) Purged by an action on the export (remove or changed) 84 * 2) Memory backpressure from the kernel (check against NFSAUTH_CACHE_TRIM) 85 * 86 * For 2) we check the timeout value against auth_time. 87 */ 88 89 /* 90 * Number of seconds until we mark for refresh an auth cache entry. 91 */ 92 #define NFSAUTH_CACHE_REFRESH 600 93 94 /* 95 * Number of idle seconds until we yield to backpressure 96 * to trim a cache entry. 97 */ 98 #define NFSAUTH_CACHE_TRIM 3600 99 100 /* 101 * While we could encapuslate the exi_list inside the 102 * exi structure, we can't do that for the auth_list. 103 * So, to keep things looking clean, we keep them both 104 * in these external lists. 105 */ 106 typedef struct refreshq_exi_node { 107 struct exportinfo *ren_exi; 108 list_t ren_authlist; 109 list_node_t ren_node; 110 } refreshq_exi_node_t; 111 112 typedef struct refreshq_auth_node { 113 struct auth_cache *ran_auth; 114 char *ran_netid; 115 list_node_t ran_node; 116 } refreshq_auth_node_t; 117 118 /* 119 * Used to manipulate things on the refreshq_queue. 120 * Note that the refresh thread will effectively 121 * pop a node off of the queue, at which point it 122 * will no longer need to hold the mutex. 123 */ 124 static kmutex_t refreshq_lock; 125 static list_t refreshq_queue; 126 static kcondvar_t refreshq_cv; 127 128 /* 129 * If there is ever a problem with loading the 130 * module, then nfsauth_fini() needs to be called 131 * to remove state. In that event, since the 132 * refreshq thread has been started, they need to 133 * work together to get rid of state. 134 */ 135 typedef enum nfsauth_refreshq_thread_state { 136 REFRESHQ_THREAD_RUNNING, 137 REFRESHQ_THREAD_FINI_REQ, 138 REFRESHQ_THREAD_HALTED 139 } nfsauth_refreshq_thread_state_t; 140 141 nfsauth_refreshq_thread_state_t 142 refreshq_thread_state = REFRESHQ_THREAD_HALTED; 143 144 static void nfsauth_free_node(struct auth_cache *); 145 static void nfsauth_refresh_thread(void); 146 147 static int nfsauth_cache_compar(const void *, const void *); 148 149 /* 150 * mountd is a server-side only daemon. This will need to be 151 * revisited if the NFS server is ever made zones-aware. 152 */ 153 kmutex_t mountd_lock; 154 door_handle_t mountd_dh; 155 156 void 157 mountd_args(uint_t did) 158 { 159 mutex_enter(&mountd_lock); 160 if (mountd_dh != NULL) 161 door_ki_rele(mountd_dh); 162 mountd_dh = door_ki_lookup(did); 163 mutex_exit(&mountd_lock); 164 } 165 166 void 167 nfsauth_init(void) 168 { 169 /* 170 * mountd can be restarted by smf(5). We need to make sure 171 * the updated door handle will safely make it to mountd_dh 172 */ 173 mutex_init(&mountd_lock, NULL, MUTEX_DEFAULT, NULL); 174 175 mutex_init(&refreshq_lock, NULL, MUTEX_DEFAULT, NULL); 176 list_create(&refreshq_queue, sizeof (refreshq_exi_node_t), 177 offsetof(refreshq_exi_node_t, ren_node)); 178 179 cv_init(&refreshq_cv, NULL, CV_DEFAULT, NULL); 180 181 /* 182 * Allocate nfsauth cache handle 183 */ 184 exi_cache_handle = kmem_cache_create("exi_cache_handle", 185 sizeof (struct auth_cache), 0, NULL, NULL, 186 exi_cache_reclaim, NULL, NULL, 0); 187 188 refreshq_thread_state = REFRESHQ_THREAD_RUNNING; 189 (void) zthread_create(NULL, 0, nfsauth_refresh_thread, 190 NULL, 0, minclsyspri); 191 } 192 193 /* 194 * Finalization routine for nfsauth. It is important to call this routine 195 * before destroying the exported_lock. 196 */ 197 void 198 nfsauth_fini(void) 199 { 200 refreshq_exi_node_t *ren; 201 202 /* 203 * Prevent the nfsauth_refresh_thread from getting new 204 * work. 205 */ 206 mutex_enter(&refreshq_lock); 207 if (refreshq_thread_state != REFRESHQ_THREAD_HALTED) { 208 refreshq_thread_state = REFRESHQ_THREAD_FINI_REQ; 209 cv_broadcast(&refreshq_cv); 210 211 /* 212 * Also, wait for nfsauth_refresh_thread() to exit. 213 */ 214 while (refreshq_thread_state != REFRESHQ_THREAD_HALTED) { 215 cv_wait(&refreshq_cv, &refreshq_lock); 216 } 217 } 218 mutex_exit(&refreshq_lock); 219 220 /* 221 * Walk the exi_list and in turn, walk the auth_lists and free all 222 * lists. In addition, free INVALID auth_cache entries. 223 */ 224 while ((ren = list_remove_head(&refreshq_queue))) { 225 refreshq_auth_node_t *ran; 226 227 while ((ran = list_remove_head(&ren->ren_authlist)) != NULL) { 228 struct auth_cache *p = ran->ran_auth; 229 if (p->auth_state == NFS_AUTH_INVALID) 230 nfsauth_free_node(p); 231 strfree(ran->ran_netid); 232 kmem_free(ran, sizeof (refreshq_auth_node_t)); 233 } 234 235 list_destroy(&ren->ren_authlist); 236 exi_rele(ren->ren_exi); 237 kmem_free(ren, sizeof (refreshq_exi_node_t)); 238 } 239 list_destroy(&refreshq_queue); 240 241 cv_destroy(&refreshq_cv); 242 mutex_destroy(&refreshq_lock); 243 244 mutex_destroy(&mountd_lock); 245 246 /* 247 * Deallocate nfsauth cache handle 248 */ 249 kmem_cache_destroy(exi_cache_handle); 250 } 251 252 /* 253 * Convert the address in a netbuf to 254 * a hash index for the auth_cache table. 255 */ 256 static int 257 hash(struct netbuf *a) 258 { 259 int i, h = 0; 260 261 for (i = 0; i < a->len; i++) 262 h ^= a->buf[i]; 263 264 return (h & (AUTH_TABLESIZE - 1)); 265 } 266 267 /* 268 * Mask out the components of an 269 * address that do not identify 270 * a host. For socket addresses the 271 * masking gets rid of the port number. 272 */ 273 static void 274 addrmask(struct netbuf *addr, struct netbuf *mask) 275 { 276 int i; 277 278 for (i = 0; i < addr->len; i++) 279 addr->buf[i] &= mask->buf[i]; 280 } 281 282 /* 283 * nfsauth4_access is used for NFS V4 auth checking. Besides doing 284 * the common nfsauth_access(), it will check if the client can 285 * have a limited access to this vnode even if the security flavor 286 * used does not meet the policy. 287 */ 288 int 289 nfsauth4_access(struct exportinfo *exi, vnode_t *vp, struct svc_req *req, 290 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids) 291 { 292 int access; 293 294 rw_enter(&exported_lock, RW_READER); 295 access = nfsauth_access(exi, req, cr, uid, gid, ngids, gids); 296 rw_exit(&exported_lock); 297 298 /* 299 * There are cases that the server needs to allow the client 300 * to have a limited view. 301 * 302 * e.g. 303 * /export is shared as "sec=sys,rw=dfs-test-4,sec=krb5,rw" 304 * /export/home is shared as "sec=sys,rw" 305 * 306 * When the client mounts /export with sec=sys, the client 307 * would get a limited view with RO access on /export to see 308 * "home" only because the client is allowed to access 309 * /export/home with auth_sys. 310 */ 311 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) { 312 /* 313 * Allow ro permission with LIMITED view if there is a 314 * sub-dir exported under vp. 315 */ 316 if (has_visible(exi, vp)) 317 return (NFSAUTH_LIMITED); 318 } 319 320 return (access); 321 } 322 323 static void 324 sys_log(const char *msg) 325 { 326 static time_t tstamp = 0; 327 time_t now; 328 329 /* 330 * msg is shown (at most) once per minute 331 */ 332 now = gethrestime_sec(); 333 if ((tstamp + 60) < now) { 334 tstamp = now; 335 cmn_err(CE_WARN, msg); 336 } 337 } 338 339 /* 340 * Callup to the mountd to get access information in the kernel. 341 */ 342 static bool_t 343 nfsauth_retrieve(struct exportinfo *exi, char *req_netid, int flavor, 344 struct netbuf *addr, int *access, uid_t clnt_uid, gid_t clnt_gid, 345 uint_t clnt_gids_cnt, const gid_t *clnt_gids, uid_t *srv_uid, 346 gid_t *srv_gid, uint_t *srv_gids_cnt, gid_t **srv_gids) 347 { 348 varg_t varg = {0}; 349 nfsauth_res_t res = {0}; 350 XDR xdrs; 351 size_t absz; 352 caddr_t abuf; 353 int last = 0; 354 door_arg_t da; 355 door_info_t di; 356 door_handle_t dh; 357 uint_t ntries = 0; 358 359 /* 360 * No entry in the cache for this client/flavor 361 * so we need to call the nfsauth service in the 362 * mount daemon. 363 */ 364 365 varg.vers = V_PROTO; 366 varg.arg_u.arg.cmd = NFSAUTH_ACCESS; 367 varg.arg_u.arg.areq.req_client.n_len = addr->len; 368 varg.arg_u.arg.areq.req_client.n_bytes = addr->buf; 369 varg.arg_u.arg.areq.req_netid = req_netid; 370 varg.arg_u.arg.areq.req_path = exi->exi_export.ex_path; 371 varg.arg_u.arg.areq.req_flavor = flavor; 372 varg.arg_u.arg.areq.req_clnt_uid = clnt_uid; 373 varg.arg_u.arg.areq.req_clnt_gid = clnt_gid; 374 varg.arg_u.arg.areq.req_clnt_gids.len = clnt_gids_cnt; 375 varg.arg_u.arg.areq.req_clnt_gids.val = (gid_t *)clnt_gids; 376 377 DTRACE_PROBE1(nfsserv__func__nfsauth__varg, varg_t *, &varg); 378 379 /* 380 * Setup the XDR stream for encoding the arguments. Notice that 381 * in addition to the args having variable fields (req_netid and 382 * req_path), the argument data structure is itself versioned, 383 * so we need to make sure we can size the arguments buffer 384 * appropriately to encode all the args. If we can't get sizing 385 * info _or_ properly encode the arguments, there's really no 386 * point in continuting, so we fail the request. 387 */ 388 if ((absz = xdr_sizeof(xdr_varg, &varg)) == 0) { 389 *access = NFSAUTH_DENIED; 390 return (FALSE); 391 } 392 393 abuf = (caddr_t)kmem_alloc(absz, KM_SLEEP); 394 xdrmem_create(&xdrs, abuf, absz, XDR_ENCODE); 395 if (!xdr_varg(&xdrs, &varg)) { 396 XDR_DESTROY(&xdrs); 397 goto fail; 398 } 399 XDR_DESTROY(&xdrs); 400 401 /* 402 * Prepare the door arguments 403 * 404 * We don't know the size of the message the daemon 405 * will pass back to us. By setting rbuf to NULL, 406 * we force the door code to allocate a buf of the 407 * appropriate size. We must set rsize > 0, however, 408 * else the door code acts as if no response was 409 * expected and doesn't pass the data to us. 410 */ 411 da.data_ptr = (char *)abuf; 412 da.data_size = absz; 413 da.desc_ptr = NULL; 414 da.desc_num = 0; 415 da.rbuf = NULL; 416 da.rsize = 1; 417 418 retry: 419 mutex_enter(&mountd_lock); 420 dh = mountd_dh; 421 if (dh != NULL) 422 door_ki_hold(dh); 423 mutex_exit(&mountd_lock); 424 425 if (dh == NULL) { 426 /* 427 * The rendezvous point has not been established yet! 428 * This could mean that either mountd(1m) has not yet 429 * been started or that _this_ routine nuked the door 430 * handle after receiving an EINTR for a REVOKED door. 431 * 432 * Returning NFSAUTH_DROP will cause the NFS client 433 * to retransmit the request, so let's try to be more 434 * rescillient and attempt for ntries before we bail. 435 */ 436 if (++ntries % NFSAUTH_DR_TRYCNT) { 437 delay(hz); 438 goto retry; 439 } 440 441 kmem_free(abuf, absz); 442 443 sys_log("nfsauth: mountd has not established door"); 444 *access = NFSAUTH_DROP; 445 return (FALSE); 446 } 447 448 ntries = 0; 449 450 /* 451 * Now that we've got what we need, place the call. 452 */ 453 switch (door_ki_upcall_limited(dh, &da, NULL, SIZE_MAX, 0)) { 454 case 0: /* Success */ 455 door_ki_rele(dh); 456 457 if (da.data_ptr == NULL && da.data_size == 0) { 458 /* 459 * The door_return that contained the data 460 * failed! We're here because of the 2nd 461 * door_return (w/o data) such that we can 462 * get control of the thread (and exit 463 * gracefully). 464 */ 465 DTRACE_PROBE1(nfsserv__func__nfsauth__door__nil, 466 door_arg_t *, &da); 467 goto fail; 468 } 469 470 break; 471 472 case EAGAIN: 473 /* 474 * Server out of resources; back off for a bit 475 */ 476 door_ki_rele(dh); 477 delay(hz); 478 goto retry; 479 /* NOTREACHED */ 480 481 case EINTR: 482 if (!door_ki_info(dh, &di)) { 483 door_ki_rele(dh); 484 485 if (di.di_attributes & DOOR_REVOKED) { 486 /* 487 * The server barfed and revoked 488 * the (existing) door on us; we 489 * want to wait to give smf(5) a 490 * chance to restart mountd(1m) 491 * and establish a new door handle. 492 */ 493 mutex_enter(&mountd_lock); 494 if (dh == mountd_dh) { 495 door_ki_rele(mountd_dh); 496 mountd_dh = NULL; 497 } 498 mutex_exit(&mountd_lock); 499 delay(hz); 500 goto retry; 501 } 502 /* 503 * If the door was _not_ revoked on us, 504 * then more than likely we took an INTR, 505 * so we need to fail the operation. 506 */ 507 goto fail; 508 } 509 /* 510 * The only failure that can occur from getting 511 * the door info is EINVAL, so we let the code 512 * below handle it. 513 */ 514 /* FALLTHROUGH */ 515 516 case EBADF: 517 case EINVAL: 518 default: 519 /* 520 * If we have a stale door handle, give smf a last 521 * chance to start it by sleeping for a little bit. 522 * If we're still hosed, we'll fail the call. 523 * 524 * Since we're going to reacquire the door handle 525 * upon the retry, we opt to sleep for a bit and 526 * _not_ to clear mountd_dh. If mountd restarted 527 * and was able to set mountd_dh, we should see 528 * the new instance; if not, we won't get caught 529 * up in the retry/DELAY loop. 530 */ 531 door_ki_rele(dh); 532 if (!last) { 533 delay(hz); 534 last++; 535 goto retry; 536 } 537 sys_log("nfsauth: stale mountd door handle"); 538 goto fail; 539 } 540 541 ASSERT(da.rbuf != NULL); 542 543 /* 544 * No door errors encountered; setup the XDR stream for decoding 545 * the results. If we fail to decode the results, we've got no 546 * other recourse than to fail the request. 547 */ 548 xdrmem_create(&xdrs, da.rbuf, da.rsize, XDR_DECODE); 549 if (!xdr_nfsauth_res(&xdrs, &res)) { 550 xdr_free(xdr_nfsauth_res, (char *)&res); 551 XDR_DESTROY(&xdrs); 552 kmem_free(da.rbuf, da.rsize); 553 goto fail; 554 } 555 XDR_DESTROY(&xdrs); 556 kmem_free(da.rbuf, da.rsize); 557 558 DTRACE_PROBE1(nfsserv__func__nfsauth__results, nfsauth_res_t *, &res); 559 switch (res.stat) { 560 case NFSAUTH_DR_OKAY: 561 *access = res.ares.auth_perm; 562 *srv_uid = res.ares.auth_srv_uid; 563 *srv_gid = res.ares.auth_srv_gid; 564 *srv_gids_cnt = res.ares.auth_srv_gids.len; 565 *srv_gids = kmem_alloc(*srv_gids_cnt * sizeof (gid_t), 566 KM_SLEEP); 567 bcopy(res.ares.auth_srv_gids.val, *srv_gids, 568 *srv_gids_cnt * sizeof (gid_t)); 569 break; 570 571 case NFSAUTH_DR_EFAIL: 572 case NFSAUTH_DR_DECERR: 573 case NFSAUTH_DR_BADCMD: 574 default: 575 xdr_free(xdr_nfsauth_res, (char *)&res); 576 fail: 577 *access = NFSAUTH_DENIED; 578 kmem_free(abuf, absz); 579 return (FALSE); 580 /* NOTREACHED */ 581 } 582 583 xdr_free(xdr_nfsauth_res, (char *)&res); 584 kmem_free(abuf, absz); 585 586 return (TRUE); 587 } 588 589 static void 590 nfsauth_refresh_thread(void) 591 { 592 refreshq_exi_node_t *ren; 593 refreshq_auth_node_t *ran; 594 595 struct exportinfo *exi; 596 597 int access; 598 bool_t retrieval; 599 600 callb_cpr_t cprinfo; 601 602 CALLB_CPR_INIT(&cprinfo, &refreshq_lock, callb_generic_cpr, 603 "nfsauth_refresh"); 604 605 for (;;) { 606 mutex_enter(&refreshq_lock); 607 if (refreshq_thread_state != REFRESHQ_THREAD_RUNNING) { 608 /* Keep the hold on the lock! */ 609 break; 610 } 611 612 ren = list_remove_head(&refreshq_queue); 613 if (ren == NULL) { 614 CALLB_CPR_SAFE_BEGIN(&cprinfo); 615 cv_wait(&refreshq_cv, &refreshq_lock); 616 CALLB_CPR_SAFE_END(&cprinfo, &refreshq_lock); 617 mutex_exit(&refreshq_lock); 618 continue; 619 } 620 mutex_exit(&refreshq_lock); 621 622 exi = ren->ren_exi; 623 ASSERT(exi != NULL); 624 625 /* 626 * Since the ren was removed from the refreshq_queue above, 627 * this is the only thread aware about the ren existence, so we 628 * have the exclusive ownership of it and we do not need to 629 * protect it by any lock. 630 */ 631 while ((ran = list_remove_head(&ren->ren_authlist))) { 632 uid_t uid; 633 gid_t gid; 634 uint_t ngids; 635 gid_t *gids; 636 struct auth_cache *p = ran->ran_auth; 637 char *netid = ran->ran_netid; 638 639 ASSERT(p != NULL); 640 ASSERT(netid != NULL); 641 642 kmem_free(ran, sizeof (refreshq_auth_node_t)); 643 644 mutex_enter(&p->auth_lock); 645 646 /* 647 * Once the entry goes INVALID, it can not change 648 * state. 649 * 650 * No need to refresh entries also in a case we are 651 * just shutting down. 652 * 653 * In general, there is no need to hold the 654 * refreshq_lock to test the refreshq_thread_state. We 655 * do hold it at other places because there is some 656 * related thread synchronization (or some other tasks) 657 * close to the refreshq_thread_state check. 658 * 659 * The check for the refreshq_thread_state value here 660 * is purely advisory to allow the faster 661 * nfsauth_refresh_thread() shutdown. In a case we 662 * will miss such advisory, nothing catastrophic 663 * happens: we will just spin longer here before the 664 * shutdown. 665 */ 666 if (p->auth_state == NFS_AUTH_INVALID || 667 refreshq_thread_state != REFRESHQ_THREAD_RUNNING) { 668 mutex_exit(&p->auth_lock); 669 670 if (p->auth_state == NFS_AUTH_INVALID) 671 nfsauth_free_node(p); 672 673 strfree(netid); 674 675 continue; 676 } 677 678 /* 679 * Make sure the state is valid. Note that once we 680 * change the state to NFS_AUTH_REFRESHING, no other 681 * thread will be able to work on this entry. 682 */ 683 ASSERT(p->auth_state == NFS_AUTH_STALE); 684 685 p->auth_state = NFS_AUTH_REFRESHING; 686 mutex_exit(&p->auth_lock); 687 688 DTRACE_PROBE2(nfsauth__debug__cache__refresh, 689 struct exportinfo *, exi, 690 struct auth_cache *, p); 691 692 /* 693 * The first caching of the access rights 694 * is done with the netid pulled out of the 695 * request from the client. All subsequent 696 * users of the cache may or may not have 697 * the same netid. It doesn't matter. So 698 * when we refresh, we simply use the netid 699 * of the request which triggered the 700 * refresh attempt. 701 */ 702 retrieval = nfsauth_retrieve(exi, netid, 703 p->auth_flavor, &p->auth_clnt->authc_addr, &access, 704 p->auth_clnt_uid, p->auth_clnt_gid, 705 p->auth_clnt_ngids, p->auth_clnt_gids, &uid, &gid, 706 &ngids, &gids); 707 708 /* 709 * This can only be set in one other place 710 * and the state has to be NFS_AUTH_FRESH. 711 */ 712 strfree(netid); 713 714 mutex_enter(&p->auth_lock); 715 if (p->auth_state == NFS_AUTH_INVALID) { 716 mutex_exit(&p->auth_lock); 717 nfsauth_free_node(p); 718 if (retrieval == TRUE) 719 kmem_free(gids, ngids * sizeof (gid_t)); 720 } else { 721 /* 722 * If we got an error, do not reset the 723 * time. This will cause the next access 724 * check for the client to reschedule this 725 * node. 726 */ 727 if (retrieval == TRUE) { 728 p->auth_access = access; 729 730 p->auth_srv_uid = uid; 731 p->auth_srv_gid = gid; 732 kmem_free(p->auth_srv_gids, 733 p->auth_srv_ngids * sizeof (gid_t)); 734 p->auth_srv_ngids = ngids; 735 p->auth_srv_gids = gids; 736 737 p->auth_freshness = gethrestime_sec(); 738 } 739 p->auth_state = NFS_AUTH_FRESH; 740 741 cv_broadcast(&p->auth_cv); 742 mutex_exit(&p->auth_lock); 743 } 744 } 745 746 list_destroy(&ren->ren_authlist); 747 exi_rele(ren->ren_exi); 748 kmem_free(ren, sizeof (refreshq_exi_node_t)); 749 } 750 751 refreshq_thread_state = REFRESHQ_THREAD_HALTED; 752 cv_broadcast(&refreshq_cv); 753 CALLB_CPR_EXIT(&cprinfo); 754 zthread_exit(); 755 } 756 757 int 758 nfsauth_cache_clnt_compar(const void *v1, const void *v2) 759 { 760 int c; 761 762 const struct auth_cache_clnt *a1 = (const struct auth_cache_clnt *)v1; 763 const struct auth_cache_clnt *a2 = (const struct auth_cache_clnt *)v2; 764 765 if (a1->authc_addr.len < a2->authc_addr.len) 766 return (-1); 767 if (a1->authc_addr.len > a2->authc_addr.len) 768 return (1); 769 770 c = memcmp(a1->authc_addr.buf, a2->authc_addr.buf, a1->authc_addr.len); 771 if (c < 0) 772 return (-1); 773 if (c > 0) 774 return (1); 775 776 return (0); 777 } 778 779 static int 780 nfsauth_cache_compar(const void *v1, const void *v2) 781 { 782 const struct auth_cache *a1 = (const struct auth_cache *)v1; 783 const struct auth_cache *a2 = (const struct auth_cache *)v2; 784 785 if (a1->auth_flavor < a2->auth_flavor) 786 return (-1); 787 if (a1->auth_flavor > a2->auth_flavor) 788 return (1); 789 790 if (a1->auth_clnt_uid < a2->auth_clnt_uid) 791 return (-1); 792 if (a1->auth_clnt_uid > a2->auth_clnt_uid) 793 return (1); 794 795 if (a1->auth_clnt_gid < a2->auth_clnt_gid) 796 return (-1); 797 if (a1->auth_clnt_gid > a2->auth_clnt_gid) 798 return (1); 799 800 return (0); 801 } 802 803 /* 804 * Get the access information from the cache or callup to the mountd 805 * to get and cache the access information in the kernel. 806 */ 807 static int 808 nfsauth_cache_get(struct exportinfo *exi, struct svc_req *req, int flavor, 809 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids) 810 { 811 struct netbuf *taddrmask; 812 struct netbuf addr; /* temporary copy of client's address */ 813 const struct netbuf *claddr; 814 avl_tree_t *tree; 815 struct auth_cache ac; /* used as a template for avl_find() */ 816 struct auth_cache_clnt *c; 817 struct auth_cache_clnt acc; /* used as a template for avl_find() */ 818 struct auth_cache *p = NULL; 819 int access; 820 821 uid_t tmpuid; 822 gid_t tmpgid; 823 uint_t tmpngids; 824 gid_t *tmpgids; 825 826 avl_index_t where; /* used for avl_find()/avl_insert() */ 827 828 ASSERT(cr != NULL); 829 830 /* 831 * Now check whether this client already 832 * has an entry for this flavor in the cache 833 * for this export. 834 * Get the caller's address, mask off the 835 * parts of the address that do not identify 836 * the host (port number, etc), and then hash 837 * it to find the chain of cache entries. 838 */ 839 840 claddr = svc_getrpccaller(req->rq_xprt); 841 addr = *claddr; 842 addr.buf = kmem_alloc(addr.maxlen, KM_SLEEP); 843 bcopy(claddr->buf, addr.buf, claddr->len); 844 845 SVC_GETADDRMASK(req->rq_xprt, SVC_TATTR_ADDRMASK, (void **)&taddrmask); 846 ASSERT(taddrmask != NULL); 847 addrmask(&addr, taddrmask); 848 849 ac.auth_flavor = flavor; 850 ac.auth_clnt_uid = crgetuid(cr); 851 ac.auth_clnt_gid = crgetgid(cr); 852 853 acc.authc_addr = addr; 854 855 tree = exi->exi_cache[hash(&addr)]; 856 857 rw_enter(&exi->exi_cache_lock, RW_READER); 858 c = (struct auth_cache_clnt *)avl_find(tree, &acc, NULL); 859 860 if (c == NULL) { 861 struct auth_cache_clnt *nc; 862 863 rw_exit(&exi->exi_cache_lock); 864 865 nc = kmem_alloc(sizeof (*nc), KM_NOSLEEP | KM_NORMALPRI); 866 if (nc == NULL) 867 goto retrieve; 868 869 /* 870 * Initialize the new auth_cache_clnt 871 */ 872 nc->authc_addr = addr; 873 nc->authc_addr.buf = kmem_alloc(addr.maxlen, 874 KM_NOSLEEP | KM_NORMALPRI); 875 if (addr.maxlen != 0 && nc->authc_addr.buf == NULL) { 876 kmem_free(nc, sizeof (*nc)); 877 goto retrieve; 878 } 879 bcopy(addr.buf, nc->authc_addr.buf, addr.len); 880 rw_init(&nc->authc_lock, NULL, RW_DEFAULT, NULL); 881 avl_create(&nc->authc_tree, nfsauth_cache_compar, 882 sizeof (struct auth_cache), 883 offsetof(struct auth_cache, auth_link)); 884 885 rw_enter(&exi->exi_cache_lock, RW_WRITER); 886 c = (struct auth_cache_clnt *)avl_find(tree, &acc, &where); 887 if (c == NULL) { 888 avl_insert(tree, nc, where); 889 rw_downgrade(&exi->exi_cache_lock); 890 c = nc; 891 } else { 892 rw_downgrade(&exi->exi_cache_lock); 893 894 avl_destroy(&nc->authc_tree); 895 rw_destroy(&nc->authc_lock); 896 kmem_free(nc->authc_addr.buf, nc->authc_addr.maxlen); 897 kmem_free(nc, sizeof (*nc)); 898 } 899 } 900 901 ASSERT(c != NULL); 902 903 rw_enter(&c->authc_lock, RW_READER); 904 p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, NULL); 905 906 if (p == NULL) { 907 struct auth_cache *np; 908 909 rw_exit(&c->authc_lock); 910 911 np = kmem_cache_alloc(exi_cache_handle, 912 KM_NOSLEEP | KM_NORMALPRI); 913 if (np == NULL) { 914 rw_exit(&exi->exi_cache_lock); 915 goto retrieve; 916 } 917 918 /* 919 * Initialize the new auth_cache 920 */ 921 np->auth_clnt = c; 922 np->auth_flavor = flavor; 923 np->auth_clnt_uid = crgetuid(cr); 924 np->auth_clnt_gid = crgetgid(cr); 925 np->auth_clnt_ngids = 0; 926 np->auth_clnt_gids = NULL; 927 np->auth_srv_ngids = 0; 928 np->auth_srv_gids = NULL; 929 np->auth_time = np->auth_freshness = gethrestime_sec(); 930 np->auth_state = NFS_AUTH_NEW; 931 mutex_init(&np->auth_lock, NULL, MUTEX_DEFAULT, NULL); 932 cv_init(&np->auth_cv, NULL, CV_DEFAULT, NULL); 933 934 rw_enter(&c->authc_lock, RW_WRITER); 935 rw_exit(&exi->exi_cache_lock); 936 937 p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, &where); 938 if (p == NULL) { 939 avl_insert(&c->authc_tree, np, where); 940 rw_downgrade(&c->authc_lock); 941 p = np; 942 } else { 943 rw_downgrade(&c->authc_lock); 944 945 cv_destroy(&np->auth_cv); 946 mutex_destroy(&np->auth_lock); 947 kmem_cache_free(exi_cache_handle, np); 948 } 949 } else { 950 rw_exit(&exi->exi_cache_lock); 951 } 952 953 mutex_enter(&p->auth_lock); 954 rw_exit(&c->authc_lock); 955 956 wait: 957 /* 958 * If the entry is in the WAITING state then some other thread is just 959 * retrieving the required info. The entry was either NEW, or the list 960 * of client's supplemental groups is going to be changed (either by 961 * this thread, or by some other thread). We need to wait until the 962 * nfsauth_retrieve() is done. 963 */ 964 while (p->auth_state == NFS_AUTH_WAITING) 965 cv_wait(&p->auth_cv, &p->auth_lock); 966 967 /* 968 * Here the entry cannot be in WAITING or INVALID state. 969 */ 970 ASSERT(p->auth_state != NFS_AUTH_WAITING); 971 ASSERT(p->auth_state != NFS_AUTH_INVALID); 972 973 /* 974 * In a case the client's list of supplemental groups changed (or, the 975 * list is not initialized yet) we need to (re)allocate it and make 976 * sure the auth_cache entry is (re)retrieved. 977 */ 978 if (p->auth_clnt_ngids != crgetngroups(cr) || 979 bcmp(p->auth_clnt_gids, crgetgroups(cr), 980 p->auth_clnt_ngids * sizeof (gid_t)) != 0) { 981 982 /* 983 * If the refresh thread is just working on this entry then 984 * wait for it so we do not modify the list of supplemental 985 * groups in the middle of its processing. 986 */ 987 if (p->auth_state == NFS_AUTH_REFRESHING) { 988 p->auth_state = NFS_AUTH_WAITING; 989 goto wait; 990 } 991 992 /* 993 * We won't modify (and use) the STALE entries here since they 994 * are already in the refreshq_queue list. Such entries will 995 * be updated later. 996 */ 997 if (p->auth_state == NFS_AUTH_STALE) { 998 mutex_exit(&p->auth_lock); 999 1000 p = NULL; 1001 1002 goto retrieve; 1003 } 1004 1005 p->auth_state = NFS_AUTH_NEW; 1006 1007 /* 1008 * If the number of supplemental groups differ, we need to 1009 * reallocate first. 1010 */ 1011 if (p->auth_clnt_ngids != crgetngroups(cr)) { 1012 kmem_free(p->auth_clnt_gids, 1013 p->auth_clnt_ngids * sizeof (gid_t)); 1014 1015 p->auth_clnt_ngids = crgetngroups(cr); 1016 p->auth_clnt_gids = kmem_alloc( 1017 p->auth_clnt_ngids * sizeof (gid_t), 1018 KM_NOSLEEP | KM_NORMALPRI); 1019 1020 /* 1021 * If we failed to preallocate the memory for 1022 * supplemental groups, we won't cache the retrieved 1023 * data. 1024 */ 1025 if (p->auth_clnt_ngids != 0 && 1026 p->auth_clnt_gids == NULL) { 1027 p->auth_clnt_ngids = 0; 1028 mutex_exit(&p->auth_lock); 1029 1030 p = NULL; 1031 1032 goto retrieve; 1033 } 1034 } 1035 1036 /* 1037 * Fill the client's supplemental groups. 1038 */ 1039 bcopy(crgetgroups(cr), p->auth_clnt_gids, 1040 p->auth_clnt_ngids * sizeof (gid_t)); 1041 } 1042 1043 /* 1044 * If the cache entry is not valid yet, we need to retrieve the 1045 * info ourselves. 1046 */ 1047 if (p->auth_state == NFS_AUTH_NEW) { 1048 bool_t res; 1049 /* 1050 * NFS_AUTH_NEW is the default output auth_state value in a 1051 * case we failed somewhere below. 1052 */ 1053 auth_state_t state = NFS_AUTH_NEW; 1054 1055 p->auth_state = NFS_AUTH_WAITING; 1056 mutex_exit(&p->auth_lock); 1057 kmem_free(addr.buf, addr.maxlen); 1058 addr = p->auth_clnt->authc_addr; 1059 1060 atomic_inc_uint(&nfsauth_cache_miss); 1061 1062 res = nfsauth_retrieve(exi, svc_getnetid(req->rq_xprt), flavor, 1063 &addr, &access, crgetuid(cr), crgetgid(cr), 1064 crgetngroups(cr), crgetgroups(cr), &tmpuid, &tmpgid, 1065 &tmpngids, &tmpgids); 1066 1067 p->auth_access = access; 1068 p->auth_time = p->auth_freshness = gethrestime_sec(); 1069 1070 if (res == TRUE) { 1071 if (uid != NULL) 1072 *uid = tmpuid; 1073 if (gid != NULL) 1074 *gid = tmpgid; 1075 if (ngids != NULL && gids != NULL) { 1076 *ngids = tmpngids; 1077 *gids = tmpgids; 1078 1079 /* 1080 * We need a copy of gids for the 1081 * auth_cache entry 1082 */ 1083 tmpgids = kmem_alloc(tmpngids * sizeof (gid_t), 1084 KM_NOSLEEP | KM_NORMALPRI); 1085 if (tmpgids != NULL) 1086 bcopy(*gids, tmpgids, 1087 tmpngids * sizeof (gid_t)); 1088 } 1089 1090 if (tmpgids != NULL || tmpngids == 0) { 1091 p->auth_srv_uid = tmpuid; 1092 p->auth_srv_gid = tmpgid; 1093 p->auth_srv_ngids = tmpngids; 1094 p->auth_srv_gids = tmpgids; 1095 1096 state = NFS_AUTH_FRESH; 1097 } 1098 } 1099 1100 /* 1101 * Set the auth_state and notify waiters. 1102 */ 1103 mutex_enter(&p->auth_lock); 1104 p->auth_state = state; 1105 cv_broadcast(&p->auth_cv); 1106 mutex_exit(&p->auth_lock); 1107 } else { 1108 uint_t nach; 1109 time_t refresh; 1110 1111 refresh = gethrestime_sec() - p->auth_freshness; 1112 1113 p->auth_time = gethrestime_sec(); 1114 1115 if (uid != NULL) 1116 *uid = p->auth_srv_uid; 1117 if (gid != NULL) 1118 *gid = p->auth_srv_gid; 1119 if (ngids != NULL && gids != NULL) { 1120 *ngids = p->auth_srv_ngids; 1121 *gids = kmem_alloc(*ngids * sizeof (gid_t), KM_SLEEP); 1122 bcopy(p->auth_srv_gids, *gids, *ngids * sizeof (gid_t)); 1123 } 1124 1125 access = p->auth_access; 1126 1127 if ((refresh > NFSAUTH_CACHE_REFRESH) && 1128 p->auth_state == NFS_AUTH_FRESH) { 1129 refreshq_auth_node_t *ran; 1130 uint_t nacr; 1131 1132 p->auth_state = NFS_AUTH_STALE; 1133 mutex_exit(&p->auth_lock); 1134 1135 nacr = atomic_inc_uint_nv(&nfsauth_cache_refresh); 1136 DTRACE_PROBE3(nfsauth__debug__cache__stale, 1137 struct exportinfo *, exi, 1138 struct auth_cache *, p, 1139 uint_t, nacr); 1140 1141 ran = kmem_alloc(sizeof (refreshq_auth_node_t), 1142 KM_SLEEP); 1143 ran->ran_auth = p; 1144 ran->ran_netid = strdup(svc_getnetid(req->rq_xprt)); 1145 1146 mutex_enter(&refreshq_lock); 1147 /* 1148 * We should not add a work queue 1149 * item if the thread is not 1150 * accepting them. 1151 */ 1152 if (refreshq_thread_state == REFRESHQ_THREAD_RUNNING) { 1153 refreshq_exi_node_t *ren; 1154 1155 /* 1156 * Is there an existing exi_list? 1157 */ 1158 for (ren = list_head(&refreshq_queue); 1159 ren != NULL; 1160 ren = list_next(&refreshq_queue, ren)) { 1161 if (ren->ren_exi == exi) { 1162 list_insert_tail( 1163 &ren->ren_authlist, ran); 1164 break; 1165 } 1166 } 1167 1168 if (ren == NULL) { 1169 ren = kmem_alloc( 1170 sizeof (refreshq_exi_node_t), 1171 KM_SLEEP); 1172 1173 exi_hold(exi); 1174 ren->ren_exi = exi; 1175 1176 list_create(&ren->ren_authlist, 1177 sizeof (refreshq_auth_node_t), 1178 offsetof(refreshq_auth_node_t, 1179 ran_node)); 1180 1181 list_insert_tail(&ren->ren_authlist, 1182 ran); 1183 list_insert_tail(&refreshq_queue, ren); 1184 } 1185 1186 cv_broadcast(&refreshq_cv); 1187 } else { 1188 strfree(ran->ran_netid); 1189 kmem_free(ran, sizeof (refreshq_auth_node_t)); 1190 } 1191 1192 mutex_exit(&refreshq_lock); 1193 } else { 1194 mutex_exit(&p->auth_lock); 1195 } 1196 1197 nach = atomic_inc_uint_nv(&nfsauth_cache_hit); 1198 DTRACE_PROBE2(nfsauth__debug__cache__hit, 1199 uint_t, nach, 1200 time_t, refresh); 1201 1202 kmem_free(addr.buf, addr.maxlen); 1203 } 1204 1205 return (access); 1206 1207 retrieve: 1208 /* 1209 * Retrieve the required data without caching. 1210 */ 1211 1212 ASSERT(p == NULL); 1213 1214 atomic_inc_uint(&nfsauth_cache_miss); 1215 1216 if (nfsauth_retrieve(exi, svc_getnetid(req->rq_xprt), flavor, &addr, 1217 &access, crgetuid(cr), crgetgid(cr), crgetngroups(cr), 1218 crgetgroups(cr), &tmpuid, &tmpgid, &tmpngids, &tmpgids)) { 1219 if (uid != NULL) 1220 *uid = tmpuid; 1221 if (gid != NULL) 1222 *gid = tmpgid; 1223 if (ngids != NULL && gids != NULL) { 1224 *ngids = tmpngids; 1225 *gids = tmpgids; 1226 } else { 1227 kmem_free(tmpgids, tmpngids * sizeof (gid_t)); 1228 } 1229 } 1230 1231 kmem_free(addr.buf, addr.maxlen); 1232 1233 return (access); 1234 } 1235 1236 /* 1237 * Check if the requesting client has access to the filesystem with 1238 * a given nfs flavor number which is an explicitly shared flavor. 1239 */ 1240 int 1241 nfsauth4_secinfo_access(struct exportinfo *exi, struct svc_req *req, 1242 int flavor, int perm, cred_t *cr) 1243 { 1244 int access; 1245 1246 if (! (perm & M_4SEC_EXPORTED)) { 1247 return (NFSAUTH_DENIED); 1248 } 1249 1250 /* 1251 * Optimize if there are no lists 1252 */ 1253 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0) { 1254 perm &= ~M_4SEC_EXPORTED; 1255 if (perm == M_RO) 1256 return (NFSAUTH_RO); 1257 if (perm == M_RW) 1258 return (NFSAUTH_RW); 1259 } 1260 1261 access = nfsauth_cache_get(exi, req, flavor, cr, NULL, NULL, NULL, 1262 NULL); 1263 1264 return (access); 1265 } 1266 1267 int 1268 nfsauth_access(struct exportinfo *exi, struct svc_req *req, cred_t *cr, 1269 uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids) 1270 { 1271 int access, mapaccess; 1272 struct secinfo *sp; 1273 int i, flavor, perm; 1274 int authnone_entry = -1; 1275 1276 /* 1277 * By default root is mapped to anonymous user. 1278 * This might get overriden later in nfsauth_cache_get(). 1279 */ 1280 if (crgetuid(cr) == 0) { 1281 if (uid != NULL) 1282 *uid = exi->exi_export.ex_anon; 1283 if (gid != NULL) 1284 *gid = exi->exi_export.ex_anon; 1285 } else { 1286 if (uid != NULL) 1287 *uid = crgetuid(cr); 1288 if (gid != NULL) 1289 *gid = crgetgid(cr); 1290 } 1291 1292 if (ngids != NULL) 1293 *ngids = 0; 1294 if (gids != NULL) 1295 *gids = NULL; 1296 1297 /* 1298 * Get the nfs flavor number from xprt. 1299 */ 1300 flavor = (int)(uintptr_t)req->rq_xprt->xp_cookie; 1301 1302 /* 1303 * First check the access restrictions on the filesystem. If 1304 * there are no lists associated with this flavor then there's no 1305 * need to make an expensive call to the nfsauth service or to 1306 * cache anything. 1307 */ 1308 1309 sp = exi->exi_export.ex_secinfo; 1310 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 1311 if (flavor != sp[i].s_secinfo.sc_nfsnum) { 1312 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) 1313 authnone_entry = i; 1314 continue; 1315 } 1316 break; 1317 } 1318 1319 mapaccess = 0; 1320 1321 if (i >= exi->exi_export.ex_seccnt) { 1322 /* 1323 * Flavor not found, but use AUTH_NONE if it exists 1324 */ 1325 if (authnone_entry == -1) 1326 return (NFSAUTH_DENIED); 1327 flavor = AUTH_NONE; 1328 mapaccess = NFSAUTH_MAPNONE; 1329 i = authnone_entry; 1330 } 1331 1332 /* 1333 * If the flavor is in the ex_secinfo list, but not an explicitly 1334 * shared flavor by the user, it is a result of the nfsv4 server 1335 * namespace setup. We will grant an RO permission similar for 1336 * a pseudo node except that this node is a shared one. 1337 * 1338 * e.g. flavor in (flavor) indicates that it is not explictly 1339 * shared by the user: 1340 * 1341 * / (sys, krb5) 1342 * | 1343 * export #share -o sec=sys (krb5) 1344 * | 1345 * secure #share -o sec=krb5 1346 * 1347 * In this case, when a krb5 request coming in to access 1348 * /export, RO permission is granted. 1349 */ 1350 if (!(sp[i].s_flags & M_4SEC_EXPORTED)) 1351 return (mapaccess | NFSAUTH_RO); 1352 1353 /* 1354 * Optimize if there are no lists. 1355 * We cannot optimize for AUTH_SYS with NGRPS (16) supplemental groups. 1356 */ 1357 perm = sp[i].s_flags; 1358 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0 && (ngroups_max <= NGRPS || 1359 flavor != AUTH_SYS || crgetngroups(cr) < NGRPS)) { 1360 perm &= ~M_4SEC_EXPORTED; 1361 if (perm == M_RO) 1362 return (mapaccess | NFSAUTH_RO); 1363 if (perm == M_RW) 1364 return (mapaccess | NFSAUTH_RW); 1365 } 1366 1367 access = nfsauth_cache_get(exi, req, flavor, cr, uid, gid, ngids, gids); 1368 1369 /* 1370 * For both NFSAUTH_DENIED and NFSAUTH_WRONGSEC we do not care about 1371 * the supplemental groups. 1372 */ 1373 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) { 1374 if (ngids != NULL && gids != NULL) { 1375 kmem_free(*gids, *ngids * sizeof (gid_t)); 1376 *ngids = 0; 1377 *gids = NULL; 1378 } 1379 } 1380 1381 /* 1382 * Client's security flavor doesn't match with "ro" or 1383 * "rw" list. Try again using AUTH_NONE if present. 1384 */ 1385 if ((access & NFSAUTH_WRONGSEC) && (flavor != AUTH_NONE)) { 1386 /* 1387 * Have we already encountered AUTH_NONE ? 1388 */ 1389 if (authnone_entry != -1) { 1390 mapaccess = NFSAUTH_MAPNONE; 1391 access = nfsauth_cache_get(exi, req, AUTH_NONE, cr, 1392 NULL, NULL, NULL, NULL); 1393 } else { 1394 /* 1395 * Check for AUTH_NONE presence. 1396 */ 1397 for (; i < exi->exi_export.ex_seccnt; i++) { 1398 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) { 1399 mapaccess = NFSAUTH_MAPNONE; 1400 access = nfsauth_cache_get(exi, req, 1401 AUTH_NONE, cr, NULL, NULL, NULL, 1402 NULL); 1403 break; 1404 } 1405 } 1406 } 1407 } 1408 1409 if (access & NFSAUTH_DENIED) 1410 access = NFSAUTH_DENIED; 1411 1412 return (access | mapaccess); 1413 } 1414 1415 static void 1416 nfsauth_free_clnt_node(struct auth_cache_clnt *p) 1417 { 1418 void *cookie = NULL; 1419 struct auth_cache *node; 1420 1421 while ((node = avl_destroy_nodes(&p->authc_tree, &cookie)) != NULL) 1422 nfsauth_free_node(node); 1423 avl_destroy(&p->authc_tree); 1424 1425 kmem_free(p->authc_addr.buf, p->authc_addr.maxlen); 1426 rw_destroy(&p->authc_lock); 1427 1428 kmem_free(p, sizeof (*p)); 1429 } 1430 1431 static void 1432 nfsauth_free_node(struct auth_cache *p) 1433 { 1434 kmem_free(p->auth_clnt_gids, p->auth_clnt_ngids * sizeof (gid_t)); 1435 kmem_free(p->auth_srv_gids, p->auth_srv_ngids * sizeof (gid_t)); 1436 mutex_destroy(&p->auth_lock); 1437 cv_destroy(&p->auth_cv); 1438 kmem_cache_free(exi_cache_handle, p); 1439 } 1440 1441 /* 1442 * Free the nfsauth cache for a given export 1443 */ 1444 void 1445 nfsauth_cache_free(struct exportinfo *exi) 1446 { 1447 int i; 1448 1449 /* 1450 * The only way we got here was with an exi_rele, which means that no 1451 * auth cache entry is being refreshed. 1452 */ 1453 1454 for (i = 0; i < AUTH_TABLESIZE; i++) { 1455 avl_tree_t *tree = exi->exi_cache[i]; 1456 void *cookie = NULL; 1457 struct auth_cache_clnt *node; 1458 1459 while ((node = avl_destroy_nodes(tree, &cookie)) != NULL) 1460 nfsauth_free_clnt_node(node); 1461 } 1462 } 1463 1464 /* 1465 * Called by the kernel memory allocator when 1466 * memory is low. Free unused cache entries. 1467 * If that's not enough, the VM system will 1468 * call again for some more. 1469 */ 1470 /*ARGSUSED*/ 1471 void 1472 exi_cache_reclaim(void *cdrarg) 1473 { 1474 int i; 1475 struct exportinfo *exi; 1476 1477 rw_enter(&exported_lock, RW_READER); 1478 1479 for (i = 0; i < EXPTABLESIZE; i++) { 1480 for (exi = exptable[i]; exi; exi = exi->fid_hash.next) { 1481 exi_cache_trim(exi); 1482 } 1483 } 1484 1485 rw_exit(&exported_lock); 1486 1487 atomic_inc_uint(&nfsauth_cache_reclaim); 1488 } 1489 1490 void 1491 exi_cache_trim(struct exportinfo *exi) 1492 { 1493 struct auth_cache_clnt *c; 1494 struct auth_cache_clnt *nextc; 1495 struct auth_cache *p; 1496 struct auth_cache *next; 1497 int i; 1498 time_t stale_time; 1499 avl_tree_t *tree; 1500 1501 for (i = 0; i < AUTH_TABLESIZE; i++) { 1502 1503 tree = exi->exi_cache[i]; 1504 stale_time = gethrestime_sec() - NFSAUTH_CACHE_TRIM; 1505 1506 rw_enter(&exi->exi_cache_lock, RW_READER); 1507 1508 /* 1509 * Free entries that have not been 1510 * used for NFSAUTH_CACHE_TRIM seconds. 1511 */ 1512 for (c = avl_first(tree); c != NULL; c = AVL_NEXT(tree, c)) { 1513 rw_enter(&c->authc_lock, RW_WRITER); 1514 for (p = avl_first(&c->authc_tree); p != NULL; 1515 p = next) { 1516 next = AVL_NEXT(&c->authc_tree, p); 1517 1518 ASSERT(p->auth_state != NFS_AUTH_INVALID); 1519 1520 mutex_enter(&p->auth_lock); 1521 1522 /* 1523 * We won't trim recently used and/or WAITING 1524 * entries. 1525 */ 1526 if (p->auth_time > stale_time || 1527 p->auth_state == NFS_AUTH_WAITING) { 1528 mutex_exit(&p->auth_lock); 1529 continue; 1530 } 1531 1532 DTRACE_PROBE1(nfsauth__debug__trim__state, 1533 auth_state_t, p->auth_state); 1534 1535 /* 1536 * STALE and REFRESHING entries needs to be 1537 * marked INVALID only because they are 1538 * referenced by some other structures or 1539 * threads. They will be freed later. 1540 */ 1541 if (p->auth_state == NFS_AUTH_STALE || 1542 p->auth_state == NFS_AUTH_REFRESHING) { 1543 p->auth_state = NFS_AUTH_INVALID; 1544 mutex_exit(&p->auth_lock); 1545 1546 avl_remove(&c->authc_tree, p); 1547 } else { 1548 mutex_exit(&p->auth_lock); 1549 1550 avl_remove(&c->authc_tree, p); 1551 nfsauth_free_node(p); 1552 } 1553 } 1554 rw_exit(&c->authc_lock); 1555 } 1556 1557 if (rw_tryupgrade(&exi->exi_cache_lock) == 0) { 1558 rw_exit(&exi->exi_cache_lock); 1559 rw_enter(&exi->exi_cache_lock, RW_WRITER); 1560 } 1561 1562 for (c = avl_first(tree); c != NULL; c = nextc) { 1563 nextc = AVL_NEXT(tree, c); 1564 1565 if (avl_is_empty(&c->authc_tree) == B_FALSE) 1566 continue; 1567 1568 avl_remove(tree, c); 1569 1570 nfsauth_free_clnt_node(c); 1571 } 1572 1573 rw_exit(&exi->exi_cache_lock); 1574 } 1575 } 1576