1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved. 25 */ 26 27 #include <sys/param.h> 28 #include <sys/errno.h> 29 #include <sys/vfs.h> 30 #include <sys/vnode.h> 31 #include <sys/cred.h> 32 #include <sys/cmn_err.h> 33 #include <sys/systm.h> 34 #include <sys/kmem.h> 35 #include <sys/pathname.h> 36 #include <sys/utsname.h> 37 #include <sys/debug.h> 38 #include <sys/door.h> 39 #include <sys/sdt.h> 40 #include <sys/thread.h> 41 #include <sys/avl.h> 42 43 #include <rpc/types.h> 44 #include <rpc/auth.h> 45 #include <rpc/clnt.h> 46 47 #include <nfs/nfs.h> 48 #include <nfs/export.h> 49 #include <nfs/nfs_clnt.h> 50 #include <nfs/auth.h> 51 52 static struct kmem_cache *exi_cache_handle; 53 static void exi_cache_reclaim(void *); 54 static void exi_cache_trim(struct exportinfo *exi); 55 56 extern pri_t minclsyspri; 57 58 volatile uint_t nfsauth_cache_hit; 59 volatile uint_t nfsauth_cache_miss; 60 volatile uint_t nfsauth_cache_refresh; 61 volatile uint_t nfsauth_cache_reclaim; 62 63 /* 64 * The lifetime of an auth cache entry: 65 * ------------------------------------ 66 * 67 * An auth cache entry is created with both the auth_time 68 * and auth_freshness times set to the current time. 69 * 70 * Upon every client access which results in a hit, the 71 * auth_time will be updated. 72 * 73 * If a client access determines that the auth_freshness 74 * indicates that the entry is STALE, then it will be 75 * refreshed. Note that this will explicitly reset 76 * auth_time. 77 * 78 * When the REFRESH successfully occurs, then the 79 * auth_freshness is updated. 80 * 81 * There are two ways for an entry to leave the cache: 82 * 83 * 1) Purged by an action on the export (remove or changed) 84 * 2) Memory backpressure from the kernel (check against NFSAUTH_CACHE_TRIM) 85 * 86 * For 2) we check the timeout value against auth_time. 87 */ 88 89 /* 90 * Number of seconds until we mark for refresh an auth cache entry. 91 */ 92 #define NFSAUTH_CACHE_REFRESH 600 93 94 /* 95 * Number of idle seconds until we yield to backpressure 96 * to trim a cache entry. 97 */ 98 #define NFSAUTH_CACHE_TRIM 3600 99 100 /* 101 * While we could encapuslate the exi_list inside the 102 * exi structure, we can't do that for the auth_list. 103 * So, to keep things looking clean, we keep them both 104 * in these external lists. 105 */ 106 typedef struct refreshq_exi_node { 107 struct exportinfo *ren_exi; 108 list_t ren_authlist; 109 list_node_t ren_node; 110 } refreshq_exi_node_t; 111 112 typedef struct refreshq_auth_node { 113 struct auth_cache *ran_auth; 114 char *ran_netid; 115 list_node_t ran_node; 116 } refreshq_auth_node_t; 117 118 /* 119 * Used to manipulate things on the refreshq_queue. 120 * Note that the refresh thread will effectively 121 * pop a node off of the queue, at which point it 122 * will no longer need to hold the mutex. 123 */ 124 static kmutex_t refreshq_lock; 125 static list_t refreshq_queue; 126 static kcondvar_t refreshq_cv; 127 128 /* 129 * If there is ever a problem with loading the 130 * module, then nfsauth_fini() needs to be called 131 * to remove state. In that event, since the 132 * refreshq thread has been started, they need to 133 * work together to get rid of state. 134 */ 135 typedef enum nfsauth_refreshq_thread_state { 136 REFRESHQ_THREAD_RUNNING, 137 REFRESHQ_THREAD_FINI_REQ, 138 REFRESHQ_THREAD_HALTED 139 } nfsauth_refreshq_thread_state_t; 140 141 nfsauth_refreshq_thread_state_t 142 refreshq_thread_state = REFRESHQ_THREAD_HALTED; 143 144 static void nfsauth_free_node(struct auth_cache *); 145 static void nfsauth_refresh_thread(void); 146 147 static int nfsauth_cache_compar(const void *, const void *); 148 149 /* 150 * mountd is a server-side only daemon. This will need to be 151 * revisited if the NFS server is ever made zones-aware. 152 */ 153 kmutex_t mountd_lock; 154 door_handle_t mountd_dh; 155 156 void 157 mountd_args(uint_t did) 158 { 159 mutex_enter(&mountd_lock); 160 if (mountd_dh != NULL) 161 door_ki_rele(mountd_dh); 162 mountd_dh = door_ki_lookup(did); 163 mutex_exit(&mountd_lock); 164 } 165 166 void 167 nfsauth_init(void) 168 { 169 /* 170 * mountd can be restarted by smf(5). We need to make sure 171 * the updated door handle will safely make it to mountd_dh 172 */ 173 mutex_init(&mountd_lock, NULL, MUTEX_DEFAULT, NULL); 174 175 mutex_init(&refreshq_lock, NULL, MUTEX_DEFAULT, NULL); 176 list_create(&refreshq_queue, sizeof (refreshq_exi_node_t), 177 offsetof(refreshq_exi_node_t, ren_node)); 178 179 cv_init(&refreshq_cv, NULL, CV_DEFAULT, NULL); 180 181 /* 182 * Allocate nfsauth cache handle 183 */ 184 exi_cache_handle = kmem_cache_create("exi_cache_handle", 185 sizeof (struct auth_cache), 0, NULL, NULL, 186 exi_cache_reclaim, NULL, NULL, 0); 187 188 refreshq_thread_state = REFRESHQ_THREAD_RUNNING; 189 (void) zthread_create(NULL, 0, nfsauth_refresh_thread, 190 NULL, 0, minclsyspri); 191 } 192 193 /* 194 * Finalization routine for nfsauth. It is important to call this routine 195 * before destroying the exported_lock. 196 */ 197 void 198 nfsauth_fini(void) 199 { 200 refreshq_exi_node_t *ren; 201 202 /* 203 * Prevent the nfsauth_refresh_thread from getting new 204 * work. 205 */ 206 mutex_enter(&refreshq_lock); 207 if (refreshq_thread_state != REFRESHQ_THREAD_HALTED) { 208 refreshq_thread_state = REFRESHQ_THREAD_FINI_REQ; 209 cv_broadcast(&refreshq_cv); 210 211 /* 212 * Also, wait for nfsauth_refresh_thread() to exit. 213 */ 214 while (refreshq_thread_state != REFRESHQ_THREAD_HALTED) { 215 cv_wait(&refreshq_cv, &refreshq_lock); 216 } 217 } 218 mutex_exit(&refreshq_lock); 219 220 /* 221 * Walk the exi_list and in turn, walk the auth_lists and free all 222 * lists. In addition, free INVALID auth_cache entries. 223 */ 224 while ((ren = list_remove_head(&refreshq_queue))) { 225 refreshq_auth_node_t *ran; 226 227 while ((ran = list_remove_head(&ren->ren_authlist)) != NULL) { 228 struct auth_cache *p = ran->ran_auth; 229 if (p->auth_state == NFS_AUTH_INVALID) 230 nfsauth_free_node(p); 231 strfree(ran->ran_netid); 232 kmem_free(ran, sizeof (refreshq_auth_node_t)); 233 } 234 235 list_destroy(&ren->ren_authlist); 236 exi_rele(ren->ren_exi); 237 kmem_free(ren, sizeof (refreshq_exi_node_t)); 238 } 239 list_destroy(&refreshq_queue); 240 241 cv_destroy(&refreshq_cv); 242 mutex_destroy(&refreshq_lock); 243 244 mutex_destroy(&mountd_lock); 245 246 /* 247 * Deallocate nfsauth cache handle 248 */ 249 kmem_cache_destroy(exi_cache_handle); 250 } 251 252 /* 253 * Convert the address in a netbuf to 254 * a hash index for the auth_cache table. 255 */ 256 static int 257 hash(struct netbuf *a) 258 { 259 int i, h = 0; 260 261 for (i = 0; i < a->len; i++) 262 h ^= a->buf[i]; 263 264 return (h & (AUTH_TABLESIZE - 1)); 265 } 266 267 /* 268 * Mask out the components of an 269 * address that do not identify 270 * a host. For socket addresses the 271 * masking gets rid of the port number. 272 */ 273 static void 274 addrmask(struct netbuf *addr, struct netbuf *mask) 275 { 276 int i; 277 278 for (i = 0; i < addr->len; i++) 279 addr->buf[i] &= mask->buf[i]; 280 } 281 282 /* 283 * nfsauth4_access is used for NFS V4 auth checking. Besides doing 284 * the common nfsauth_access(), it will check if the client can 285 * have a limited access to this vnode even if the security flavor 286 * used does not meet the policy. 287 */ 288 int 289 nfsauth4_access(struct exportinfo *exi, vnode_t *vp, struct svc_req *req, 290 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids) 291 { 292 int access; 293 294 access = nfsauth_access(exi, req, cr, uid, gid, ngids, gids); 295 296 /* 297 * There are cases that the server needs to allow the client 298 * to have a limited view. 299 * 300 * e.g. 301 * /export is shared as "sec=sys,rw=dfs-test-4,sec=krb5,rw" 302 * /export/home is shared as "sec=sys,rw" 303 * 304 * When the client mounts /export with sec=sys, the client 305 * would get a limited view with RO access on /export to see 306 * "home" only because the client is allowed to access 307 * /export/home with auth_sys. 308 */ 309 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) { 310 /* 311 * Allow ro permission with LIMITED view if there is a 312 * sub-dir exported under vp. 313 */ 314 if (has_visible(exi, vp)) 315 return (NFSAUTH_LIMITED); 316 } 317 318 return (access); 319 } 320 321 static void 322 sys_log(const char *msg) 323 { 324 static time_t tstamp = 0; 325 time_t now; 326 327 /* 328 * msg is shown (at most) once per minute 329 */ 330 now = gethrestime_sec(); 331 if ((tstamp + 60) < now) { 332 tstamp = now; 333 cmn_err(CE_WARN, msg); 334 } 335 } 336 337 /* 338 * Callup to the mountd to get access information in the kernel. 339 */ 340 static bool_t 341 nfsauth_retrieve(struct exportinfo *exi, char *req_netid, int flavor, 342 struct netbuf *addr, int *access, uid_t clnt_uid, gid_t clnt_gid, 343 uint_t clnt_gids_cnt, const gid_t *clnt_gids, uid_t *srv_uid, 344 gid_t *srv_gid, uint_t *srv_gids_cnt, gid_t **srv_gids) 345 { 346 varg_t varg = {0}; 347 nfsauth_res_t res = {0}; 348 XDR xdrs; 349 size_t absz; 350 caddr_t abuf; 351 int last = 0; 352 door_arg_t da; 353 door_info_t di; 354 door_handle_t dh; 355 uint_t ntries = 0; 356 357 /* 358 * No entry in the cache for this client/flavor 359 * so we need to call the nfsauth service in the 360 * mount daemon. 361 */ 362 363 varg.vers = V_PROTO; 364 varg.arg_u.arg.cmd = NFSAUTH_ACCESS; 365 varg.arg_u.arg.areq.req_client.n_len = addr->len; 366 varg.arg_u.arg.areq.req_client.n_bytes = addr->buf; 367 varg.arg_u.arg.areq.req_netid = req_netid; 368 varg.arg_u.arg.areq.req_path = exi->exi_export.ex_path; 369 varg.arg_u.arg.areq.req_flavor = flavor; 370 varg.arg_u.arg.areq.req_clnt_uid = clnt_uid; 371 varg.arg_u.arg.areq.req_clnt_gid = clnt_gid; 372 varg.arg_u.arg.areq.req_clnt_gids.len = clnt_gids_cnt; 373 varg.arg_u.arg.areq.req_clnt_gids.val = (gid_t *)clnt_gids; 374 375 DTRACE_PROBE1(nfsserv__func__nfsauth__varg, varg_t *, &varg); 376 377 /* 378 * Setup the XDR stream for encoding the arguments. Notice that 379 * in addition to the args having variable fields (req_netid and 380 * req_path), the argument data structure is itself versioned, 381 * so we need to make sure we can size the arguments buffer 382 * appropriately to encode all the args. If we can't get sizing 383 * info _or_ properly encode the arguments, there's really no 384 * point in continuting, so we fail the request. 385 */ 386 if ((absz = xdr_sizeof(xdr_varg, &varg)) == 0) { 387 *access = NFSAUTH_DENIED; 388 return (FALSE); 389 } 390 391 abuf = (caddr_t)kmem_alloc(absz, KM_SLEEP); 392 xdrmem_create(&xdrs, abuf, absz, XDR_ENCODE); 393 if (!xdr_varg(&xdrs, &varg)) { 394 XDR_DESTROY(&xdrs); 395 goto fail; 396 } 397 XDR_DESTROY(&xdrs); 398 399 /* 400 * Prepare the door arguments 401 * 402 * We don't know the size of the message the daemon 403 * will pass back to us. By setting rbuf to NULL, 404 * we force the door code to allocate a buf of the 405 * appropriate size. We must set rsize > 0, however, 406 * else the door code acts as if no response was 407 * expected and doesn't pass the data to us. 408 */ 409 da.data_ptr = (char *)abuf; 410 da.data_size = absz; 411 da.desc_ptr = NULL; 412 da.desc_num = 0; 413 da.rbuf = NULL; 414 da.rsize = 1; 415 416 retry: 417 mutex_enter(&mountd_lock); 418 dh = mountd_dh; 419 if (dh != NULL) 420 door_ki_hold(dh); 421 mutex_exit(&mountd_lock); 422 423 if (dh == NULL) { 424 /* 425 * The rendezvous point has not been established yet! 426 * This could mean that either mountd(1m) has not yet 427 * been started or that _this_ routine nuked the door 428 * handle after receiving an EINTR for a REVOKED door. 429 * 430 * Returning NFSAUTH_DROP will cause the NFS client 431 * to retransmit the request, so let's try to be more 432 * rescillient and attempt for ntries before we bail. 433 */ 434 if (++ntries % NFSAUTH_DR_TRYCNT) { 435 delay(hz); 436 goto retry; 437 } 438 439 kmem_free(abuf, absz); 440 441 sys_log("nfsauth: mountd has not established door"); 442 *access = NFSAUTH_DROP; 443 return (FALSE); 444 } 445 446 ntries = 0; 447 448 /* 449 * Now that we've got what we need, place the call. 450 */ 451 switch (door_ki_upcall_limited(dh, &da, NULL, SIZE_MAX, 0)) { 452 case 0: /* Success */ 453 door_ki_rele(dh); 454 455 if (da.data_ptr == NULL && da.data_size == 0) { 456 /* 457 * The door_return that contained the data 458 * failed! We're here because of the 2nd 459 * door_return (w/o data) such that we can 460 * get control of the thread (and exit 461 * gracefully). 462 */ 463 DTRACE_PROBE1(nfsserv__func__nfsauth__door__nil, 464 door_arg_t *, &da); 465 goto fail; 466 } 467 468 break; 469 470 case EAGAIN: 471 /* 472 * Server out of resources; back off for a bit 473 */ 474 door_ki_rele(dh); 475 delay(hz); 476 goto retry; 477 /* NOTREACHED */ 478 479 case EINTR: 480 if (!door_ki_info(dh, &di)) { 481 door_ki_rele(dh); 482 483 if (di.di_attributes & DOOR_REVOKED) { 484 /* 485 * The server barfed and revoked 486 * the (existing) door on us; we 487 * want to wait to give smf(5) a 488 * chance to restart mountd(1m) 489 * and establish a new door handle. 490 */ 491 mutex_enter(&mountd_lock); 492 if (dh == mountd_dh) { 493 door_ki_rele(mountd_dh); 494 mountd_dh = NULL; 495 } 496 mutex_exit(&mountd_lock); 497 delay(hz); 498 goto retry; 499 } 500 /* 501 * If the door was _not_ revoked on us, 502 * then more than likely we took an INTR, 503 * so we need to fail the operation. 504 */ 505 goto fail; 506 } 507 /* 508 * The only failure that can occur from getting 509 * the door info is EINVAL, so we let the code 510 * below handle it. 511 */ 512 /* FALLTHROUGH */ 513 514 case EBADF: 515 case EINVAL: 516 default: 517 /* 518 * If we have a stale door handle, give smf a last 519 * chance to start it by sleeping for a little bit. 520 * If we're still hosed, we'll fail the call. 521 * 522 * Since we're going to reacquire the door handle 523 * upon the retry, we opt to sleep for a bit and 524 * _not_ to clear mountd_dh. If mountd restarted 525 * and was able to set mountd_dh, we should see 526 * the new instance; if not, we won't get caught 527 * up in the retry/DELAY loop. 528 */ 529 door_ki_rele(dh); 530 if (!last) { 531 delay(hz); 532 last++; 533 goto retry; 534 } 535 sys_log("nfsauth: stale mountd door handle"); 536 goto fail; 537 } 538 539 ASSERT(da.rbuf != NULL); 540 541 /* 542 * No door errors encountered; setup the XDR stream for decoding 543 * the results. If we fail to decode the results, we've got no 544 * other recourse than to fail the request. 545 */ 546 xdrmem_create(&xdrs, da.rbuf, da.rsize, XDR_DECODE); 547 if (!xdr_nfsauth_res(&xdrs, &res)) { 548 xdr_free(xdr_nfsauth_res, (char *)&res); 549 XDR_DESTROY(&xdrs); 550 kmem_free(da.rbuf, da.rsize); 551 goto fail; 552 } 553 XDR_DESTROY(&xdrs); 554 kmem_free(da.rbuf, da.rsize); 555 556 DTRACE_PROBE1(nfsserv__func__nfsauth__results, nfsauth_res_t *, &res); 557 switch (res.stat) { 558 case NFSAUTH_DR_OKAY: 559 *access = res.ares.auth_perm; 560 *srv_uid = res.ares.auth_srv_uid; 561 *srv_gid = res.ares.auth_srv_gid; 562 *srv_gids_cnt = res.ares.auth_srv_gids.len; 563 *srv_gids = kmem_alloc(*srv_gids_cnt * sizeof (gid_t), 564 KM_SLEEP); 565 bcopy(res.ares.auth_srv_gids.val, *srv_gids, 566 *srv_gids_cnt * sizeof (gid_t)); 567 break; 568 569 case NFSAUTH_DR_EFAIL: 570 case NFSAUTH_DR_DECERR: 571 case NFSAUTH_DR_BADCMD: 572 default: 573 xdr_free(xdr_nfsauth_res, (char *)&res); 574 fail: 575 *access = NFSAUTH_DENIED; 576 kmem_free(abuf, absz); 577 return (FALSE); 578 /* NOTREACHED */ 579 } 580 581 xdr_free(xdr_nfsauth_res, (char *)&res); 582 kmem_free(abuf, absz); 583 584 return (TRUE); 585 } 586 587 static void 588 nfsauth_refresh_thread(void) 589 { 590 refreshq_exi_node_t *ren; 591 refreshq_auth_node_t *ran; 592 593 struct exportinfo *exi; 594 595 int access; 596 bool_t retrieval; 597 598 callb_cpr_t cprinfo; 599 600 CALLB_CPR_INIT(&cprinfo, &refreshq_lock, callb_generic_cpr, 601 "nfsauth_refresh"); 602 603 for (;;) { 604 mutex_enter(&refreshq_lock); 605 if (refreshq_thread_state != REFRESHQ_THREAD_RUNNING) { 606 /* Keep the hold on the lock! */ 607 break; 608 } 609 610 ren = list_remove_head(&refreshq_queue); 611 if (ren == NULL) { 612 CALLB_CPR_SAFE_BEGIN(&cprinfo); 613 cv_wait(&refreshq_cv, &refreshq_lock); 614 CALLB_CPR_SAFE_END(&cprinfo, &refreshq_lock); 615 mutex_exit(&refreshq_lock); 616 continue; 617 } 618 mutex_exit(&refreshq_lock); 619 620 exi = ren->ren_exi; 621 ASSERT(exi != NULL); 622 623 /* 624 * Since the ren was removed from the refreshq_queue above, 625 * this is the only thread aware about the ren existence, so we 626 * have the exclusive ownership of it and we do not need to 627 * protect it by any lock. 628 */ 629 while ((ran = list_remove_head(&ren->ren_authlist))) { 630 uid_t uid; 631 gid_t gid; 632 uint_t ngids; 633 gid_t *gids; 634 struct auth_cache *p = ran->ran_auth; 635 char *netid = ran->ran_netid; 636 637 ASSERT(p != NULL); 638 ASSERT(netid != NULL); 639 640 kmem_free(ran, sizeof (refreshq_auth_node_t)); 641 642 mutex_enter(&p->auth_lock); 643 644 /* 645 * Once the entry goes INVALID, it can not change 646 * state. 647 * 648 * No need to refresh entries also in a case we are 649 * just shutting down. 650 * 651 * In general, there is no need to hold the 652 * refreshq_lock to test the refreshq_thread_state. We 653 * do hold it at other places because there is some 654 * related thread synchronization (or some other tasks) 655 * close to the refreshq_thread_state check. 656 * 657 * The check for the refreshq_thread_state value here 658 * is purely advisory to allow the faster 659 * nfsauth_refresh_thread() shutdown. In a case we 660 * will miss such advisory, nothing catastrophic 661 * happens: we will just spin longer here before the 662 * shutdown. 663 */ 664 if (p->auth_state == NFS_AUTH_INVALID || 665 refreshq_thread_state != REFRESHQ_THREAD_RUNNING) { 666 mutex_exit(&p->auth_lock); 667 668 if (p->auth_state == NFS_AUTH_INVALID) 669 nfsauth_free_node(p); 670 671 strfree(netid); 672 673 continue; 674 } 675 676 /* 677 * Make sure the state is valid. Note that once we 678 * change the state to NFS_AUTH_REFRESHING, no other 679 * thread will be able to work on this entry. 680 */ 681 ASSERT(p->auth_state == NFS_AUTH_STALE); 682 683 p->auth_state = NFS_AUTH_REFRESHING; 684 mutex_exit(&p->auth_lock); 685 686 DTRACE_PROBE2(nfsauth__debug__cache__refresh, 687 struct exportinfo *, exi, 688 struct auth_cache *, p); 689 690 /* 691 * The first caching of the access rights 692 * is done with the netid pulled out of the 693 * request from the client. All subsequent 694 * users of the cache may or may not have 695 * the same netid. It doesn't matter. So 696 * when we refresh, we simply use the netid 697 * of the request which triggered the 698 * refresh attempt. 699 */ 700 retrieval = nfsauth_retrieve(exi, netid, 701 p->auth_flavor, &p->auth_clnt->authc_addr, &access, 702 p->auth_clnt_uid, p->auth_clnt_gid, 703 p->auth_clnt_ngids, p->auth_clnt_gids, &uid, &gid, 704 &ngids, &gids); 705 706 /* 707 * This can only be set in one other place 708 * and the state has to be NFS_AUTH_FRESH. 709 */ 710 strfree(netid); 711 712 mutex_enter(&p->auth_lock); 713 if (p->auth_state == NFS_AUTH_INVALID) { 714 mutex_exit(&p->auth_lock); 715 nfsauth_free_node(p); 716 if (retrieval == TRUE) 717 kmem_free(gids, ngids * sizeof (gid_t)); 718 } else { 719 /* 720 * If we got an error, do not reset the 721 * time. This will cause the next access 722 * check for the client to reschedule this 723 * node. 724 */ 725 if (retrieval == TRUE) { 726 p->auth_access = access; 727 728 p->auth_srv_uid = uid; 729 p->auth_srv_gid = gid; 730 kmem_free(p->auth_srv_gids, 731 p->auth_srv_ngids * sizeof (gid_t)); 732 p->auth_srv_ngids = ngids; 733 p->auth_srv_gids = gids; 734 735 p->auth_freshness = gethrestime_sec(); 736 } 737 p->auth_state = NFS_AUTH_FRESH; 738 739 cv_broadcast(&p->auth_cv); 740 mutex_exit(&p->auth_lock); 741 } 742 } 743 744 list_destroy(&ren->ren_authlist); 745 exi_rele(ren->ren_exi); 746 kmem_free(ren, sizeof (refreshq_exi_node_t)); 747 } 748 749 refreshq_thread_state = REFRESHQ_THREAD_HALTED; 750 cv_broadcast(&refreshq_cv); 751 CALLB_CPR_EXIT(&cprinfo); 752 zthread_exit(); 753 } 754 755 int 756 nfsauth_cache_clnt_compar(const void *v1, const void *v2) 757 { 758 int c; 759 760 const struct auth_cache_clnt *a1 = (const struct auth_cache_clnt *)v1; 761 const struct auth_cache_clnt *a2 = (const struct auth_cache_clnt *)v2; 762 763 if (a1->authc_addr.len < a2->authc_addr.len) 764 return (-1); 765 if (a1->authc_addr.len > a2->authc_addr.len) 766 return (1); 767 768 c = memcmp(a1->authc_addr.buf, a2->authc_addr.buf, a1->authc_addr.len); 769 if (c < 0) 770 return (-1); 771 if (c > 0) 772 return (1); 773 774 return (0); 775 } 776 777 static int 778 nfsauth_cache_compar(const void *v1, const void *v2) 779 { 780 const struct auth_cache *a1 = (const struct auth_cache *)v1; 781 const struct auth_cache *a2 = (const struct auth_cache *)v2; 782 783 if (a1->auth_flavor < a2->auth_flavor) 784 return (-1); 785 if (a1->auth_flavor > a2->auth_flavor) 786 return (1); 787 788 if (a1->auth_clnt_uid < a2->auth_clnt_uid) 789 return (-1); 790 if (a1->auth_clnt_uid > a2->auth_clnt_uid) 791 return (1); 792 793 if (a1->auth_clnt_gid < a2->auth_clnt_gid) 794 return (-1); 795 if (a1->auth_clnt_gid > a2->auth_clnt_gid) 796 return (1); 797 798 return (0); 799 } 800 801 /* 802 * Get the access information from the cache or callup to the mountd 803 * to get and cache the access information in the kernel. 804 */ 805 static int 806 nfsauth_cache_get(struct exportinfo *exi, struct svc_req *req, int flavor, 807 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids) 808 { 809 struct netbuf *taddrmask; 810 struct netbuf addr; /* temporary copy of client's address */ 811 const struct netbuf *claddr; 812 avl_tree_t *tree; 813 struct auth_cache ac; /* used as a template for avl_find() */ 814 struct auth_cache_clnt *c; 815 struct auth_cache_clnt acc; /* used as a template for avl_find() */ 816 struct auth_cache *p = NULL; 817 int access; 818 819 uid_t tmpuid; 820 gid_t tmpgid; 821 uint_t tmpngids; 822 gid_t *tmpgids; 823 824 avl_index_t where; /* used for avl_find()/avl_insert() */ 825 826 ASSERT(cr != NULL); 827 828 /* 829 * Now check whether this client already 830 * has an entry for this flavor in the cache 831 * for this export. 832 * Get the caller's address, mask off the 833 * parts of the address that do not identify 834 * the host (port number, etc), and then hash 835 * it to find the chain of cache entries. 836 */ 837 838 claddr = svc_getrpccaller(req->rq_xprt); 839 addr = *claddr; 840 addr.buf = kmem_alloc(addr.maxlen, KM_SLEEP); 841 bcopy(claddr->buf, addr.buf, claddr->len); 842 843 SVC_GETADDRMASK(req->rq_xprt, SVC_TATTR_ADDRMASK, (void **)&taddrmask); 844 ASSERT(taddrmask != NULL); 845 addrmask(&addr, taddrmask); 846 847 ac.auth_flavor = flavor; 848 ac.auth_clnt_uid = crgetuid(cr); 849 ac.auth_clnt_gid = crgetgid(cr); 850 851 acc.authc_addr = addr; 852 853 tree = exi->exi_cache[hash(&addr)]; 854 855 rw_enter(&exi->exi_cache_lock, RW_READER); 856 c = (struct auth_cache_clnt *)avl_find(tree, &acc, NULL); 857 858 if (c == NULL) { 859 struct auth_cache_clnt *nc; 860 861 rw_exit(&exi->exi_cache_lock); 862 863 nc = kmem_alloc(sizeof (*nc), KM_NOSLEEP | KM_NORMALPRI); 864 if (nc == NULL) 865 goto retrieve; 866 867 /* 868 * Initialize the new auth_cache_clnt 869 */ 870 nc->authc_addr = addr; 871 nc->authc_addr.buf = kmem_alloc(addr.maxlen, 872 KM_NOSLEEP | KM_NORMALPRI); 873 if (addr.maxlen != 0 && nc->authc_addr.buf == NULL) { 874 kmem_free(nc, sizeof (*nc)); 875 goto retrieve; 876 } 877 bcopy(addr.buf, nc->authc_addr.buf, addr.len); 878 rw_init(&nc->authc_lock, NULL, RW_DEFAULT, NULL); 879 avl_create(&nc->authc_tree, nfsauth_cache_compar, 880 sizeof (struct auth_cache), 881 offsetof(struct auth_cache, auth_link)); 882 883 rw_enter(&exi->exi_cache_lock, RW_WRITER); 884 c = (struct auth_cache_clnt *)avl_find(tree, &acc, &where); 885 if (c == NULL) { 886 avl_insert(tree, nc, where); 887 rw_downgrade(&exi->exi_cache_lock); 888 c = nc; 889 } else { 890 rw_downgrade(&exi->exi_cache_lock); 891 892 avl_destroy(&nc->authc_tree); 893 rw_destroy(&nc->authc_lock); 894 kmem_free(nc->authc_addr.buf, nc->authc_addr.maxlen); 895 kmem_free(nc, sizeof (*nc)); 896 } 897 } 898 899 ASSERT(c != NULL); 900 901 rw_enter(&c->authc_lock, RW_READER); 902 p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, NULL); 903 904 if (p == NULL) { 905 struct auth_cache *np; 906 907 rw_exit(&c->authc_lock); 908 909 np = kmem_cache_alloc(exi_cache_handle, 910 KM_NOSLEEP | KM_NORMALPRI); 911 if (np == NULL) { 912 rw_exit(&exi->exi_cache_lock); 913 goto retrieve; 914 } 915 916 /* 917 * Initialize the new auth_cache 918 */ 919 np->auth_clnt = c; 920 np->auth_flavor = flavor; 921 np->auth_clnt_uid = crgetuid(cr); 922 np->auth_clnt_gid = crgetgid(cr); 923 np->auth_clnt_ngids = 0; 924 np->auth_clnt_gids = NULL; 925 np->auth_srv_ngids = 0; 926 np->auth_srv_gids = NULL; 927 np->auth_time = np->auth_freshness = gethrestime_sec(); 928 np->auth_state = NFS_AUTH_NEW; 929 mutex_init(&np->auth_lock, NULL, MUTEX_DEFAULT, NULL); 930 cv_init(&np->auth_cv, NULL, CV_DEFAULT, NULL); 931 932 rw_enter(&c->authc_lock, RW_WRITER); 933 rw_exit(&exi->exi_cache_lock); 934 935 p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, &where); 936 if (p == NULL) { 937 avl_insert(&c->authc_tree, np, where); 938 rw_downgrade(&c->authc_lock); 939 p = np; 940 } else { 941 rw_downgrade(&c->authc_lock); 942 943 cv_destroy(&np->auth_cv); 944 mutex_destroy(&np->auth_lock); 945 kmem_cache_free(exi_cache_handle, np); 946 } 947 } else { 948 rw_exit(&exi->exi_cache_lock); 949 } 950 951 mutex_enter(&p->auth_lock); 952 rw_exit(&c->authc_lock); 953 954 wait: 955 /* 956 * If the entry is in the WAITING state then some other thread is just 957 * retrieving the required info. The entry was either NEW, or the list 958 * of client's supplemental groups is going to be changed (either by 959 * this thread, or by some other thread). We need to wait until the 960 * nfsauth_retrieve() is done. 961 */ 962 while (p->auth_state == NFS_AUTH_WAITING) 963 cv_wait(&p->auth_cv, &p->auth_lock); 964 965 /* 966 * Here the entry cannot be in WAITING or INVALID state. 967 */ 968 ASSERT(p->auth_state != NFS_AUTH_WAITING); 969 ASSERT(p->auth_state != NFS_AUTH_INVALID); 970 971 /* 972 * In a case the client's list of supplemental groups changed (or, the 973 * list is not initialized yet) we need to (re)allocate it and make 974 * sure the auth_cache entry is (re)retrieved. 975 */ 976 if (p->auth_clnt_ngids != crgetngroups(cr) || 977 bcmp(p->auth_clnt_gids, crgetgroups(cr), 978 p->auth_clnt_ngids * sizeof (gid_t)) != 0) { 979 980 /* 981 * If the refresh thread is just working on this entry then 982 * wait for it so we do not modify the list of supplemental 983 * groups in the middle of its processing. 984 */ 985 if (p->auth_state == NFS_AUTH_REFRESHING) { 986 p->auth_state = NFS_AUTH_WAITING; 987 goto wait; 988 } 989 990 /* 991 * We won't modify (and use) the STALE entries here since they 992 * are already in the refreshq_queue list. Such entries will 993 * be updated later. 994 */ 995 if (p->auth_state == NFS_AUTH_STALE) { 996 mutex_exit(&p->auth_lock); 997 998 p = NULL; 999 1000 goto retrieve; 1001 } 1002 1003 p->auth_state = NFS_AUTH_NEW; 1004 1005 /* 1006 * If the number of supplemental groups differ, we need to 1007 * reallocate first. 1008 */ 1009 if (p->auth_clnt_ngids != crgetngroups(cr)) { 1010 kmem_free(p->auth_clnt_gids, 1011 p->auth_clnt_ngids * sizeof (gid_t)); 1012 1013 p->auth_clnt_ngids = crgetngroups(cr); 1014 p->auth_clnt_gids = kmem_alloc( 1015 p->auth_clnt_ngids * sizeof (gid_t), 1016 KM_NOSLEEP | KM_NORMALPRI); 1017 1018 /* 1019 * If we failed to preallocate the memory for 1020 * supplemental groups, we won't cache the retrieved 1021 * data. 1022 */ 1023 if (p->auth_clnt_ngids != 0 && 1024 p->auth_clnt_gids == NULL) 1025 p->auth_clnt_ngids = 0; 1026 mutex_exit(&p->auth_lock); 1027 1028 p = NULL; 1029 1030 goto retrieve; 1031 } 1032 1033 /* 1034 * Fill the client's supplemental groups. 1035 */ 1036 bcopy(crgetgroups(cr), p->auth_clnt_gids, 1037 p->auth_clnt_ngids * sizeof (gid_t)); 1038 } 1039 1040 /* 1041 * If the cache entry is not valid yet, we need to retrieve the 1042 * info ourselves. 1043 */ 1044 if (p->auth_state == NFS_AUTH_NEW) { 1045 bool_t res; 1046 /* 1047 * NFS_AUTH_NEW is the default output auth_state value in a 1048 * case we failed somewhere below. 1049 */ 1050 auth_state_t state = NFS_AUTH_NEW; 1051 1052 p->auth_state = NFS_AUTH_WAITING; 1053 mutex_exit(&p->auth_lock); 1054 kmem_free(addr.buf, addr.maxlen); 1055 addr = p->auth_clnt->authc_addr; 1056 1057 atomic_inc_uint(&nfsauth_cache_miss); 1058 1059 res = nfsauth_retrieve(exi, svc_getnetid(req->rq_xprt), flavor, 1060 &addr, &access, crgetuid(cr), crgetgid(cr), 1061 crgetngroups(cr), crgetgroups(cr), &tmpuid, &tmpgid, 1062 &tmpngids, &tmpgids); 1063 1064 p->auth_access = access; 1065 p->auth_time = p->auth_freshness = gethrestime_sec(); 1066 1067 if (res == TRUE) { 1068 if (uid != NULL) 1069 *uid = tmpuid; 1070 if (gid != NULL) 1071 *gid = tmpgid; 1072 if (ngids != NULL && gids != NULL) { 1073 *ngids = tmpngids; 1074 *gids = tmpgids; 1075 1076 /* 1077 * We need a copy of gids for the 1078 * auth_cache entry 1079 */ 1080 tmpgids = kmem_alloc(tmpngids * sizeof (gid_t), 1081 KM_NOSLEEP | KM_NORMALPRI); 1082 if (tmpgids != NULL) 1083 bcopy(*gids, tmpgids, 1084 tmpngids * sizeof (gid_t)); 1085 } 1086 1087 if (tmpgids != NULL || tmpngids == 0) { 1088 p->auth_srv_uid = tmpuid; 1089 p->auth_srv_gid = tmpgid; 1090 p->auth_srv_ngids = tmpngids; 1091 p->auth_srv_gids = tmpgids; 1092 1093 state = NFS_AUTH_FRESH; 1094 } 1095 } 1096 1097 /* 1098 * Set the auth_state and notify waiters. 1099 */ 1100 mutex_enter(&p->auth_lock); 1101 p->auth_state = state; 1102 cv_broadcast(&p->auth_cv); 1103 mutex_exit(&p->auth_lock); 1104 } else { 1105 uint_t nach; 1106 time_t refresh; 1107 1108 refresh = gethrestime_sec() - p->auth_freshness; 1109 1110 p->auth_time = gethrestime_sec(); 1111 1112 if (uid != NULL) 1113 *uid = p->auth_srv_uid; 1114 if (gid != NULL) 1115 *gid = p->auth_srv_gid; 1116 if (ngids != NULL && gids != NULL) { 1117 *ngids = p->auth_srv_ngids; 1118 *gids = kmem_alloc(*ngids * sizeof (gid_t), KM_SLEEP); 1119 bcopy(p->auth_srv_gids, *gids, *ngids * sizeof (gid_t)); 1120 } 1121 1122 access = p->auth_access; 1123 1124 if ((refresh > NFSAUTH_CACHE_REFRESH) && 1125 p->auth_state == NFS_AUTH_FRESH) { 1126 refreshq_auth_node_t *ran; 1127 uint_t nacr; 1128 1129 p->auth_state = NFS_AUTH_STALE; 1130 mutex_exit(&p->auth_lock); 1131 1132 nacr = atomic_inc_uint_nv(&nfsauth_cache_refresh); 1133 DTRACE_PROBE3(nfsauth__debug__cache__stale, 1134 struct exportinfo *, exi, 1135 struct auth_cache *, p, 1136 uint_t, nacr); 1137 1138 ran = kmem_alloc(sizeof (refreshq_auth_node_t), 1139 KM_SLEEP); 1140 ran->ran_auth = p; 1141 ran->ran_netid = strdup(svc_getnetid(req->rq_xprt)); 1142 1143 mutex_enter(&refreshq_lock); 1144 /* 1145 * We should not add a work queue 1146 * item if the thread is not 1147 * accepting them. 1148 */ 1149 if (refreshq_thread_state == REFRESHQ_THREAD_RUNNING) { 1150 refreshq_exi_node_t *ren; 1151 1152 /* 1153 * Is there an existing exi_list? 1154 */ 1155 for (ren = list_head(&refreshq_queue); 1156 ren != NULL; 1157 ren = list_next(&refreshq_queue, ren)) { 1158 if (ren->ren_exi == exi) { 1159 list_insert_tail( 1160 &ren->ren_authlist, ran); 1161 break; 1162 } 1163 } 1164 1165 if (ren == NULL) { 1166 ren = kmem_alloc( 1167 sizeof (refreshq_exi_node_t), 1168 KM_SLEEP); 1169 1170 exi_hold(exi); 1171 ren->ren_exi = exi; 1172 1173 list_create(&ren->ren_authlist, 1174 sizeof (refreshq_auth_node_t), 1175 offsetof(refreshq_auth_node_t, 1176 ran_node)); 1177 1178 list_insert_tail(&ren->ren_authlist, 1179 ran); 1180 list_insert_tail(&refreshq_queue, ren); 1181 } 1182 1183 cv_broadcast(&refreshq_cv); 1184 } else { 1185 strfree(ran->ran_netid); 1186 kmem_free(ran, sizeof (refreshq_auth_node_t)); 1187 } 1188 1189 mutex_exit(&refreshq_lock); 1190 } else { 1191 mutex_exit(&p->auth_lock); 1192 } 1193 1194 nach = atomic_inc_uint_nv(&nfsauth_cache_hit); 1195 DTRACE_PROBE2(nfsauth__debug__cache__hit, 1196 uint_t, nach, 1197 time_t, refresh); 1198 1199 kmem_free(addr.buf, addr.maxlen); 1200 } 1201 1202 return (access); 1203 1204 retrieve: 1205 /* 1206 * Retrieve the required data without caching. 1207 */ 1208 1209 ASSERT(p == NULL); 1210 1211 atomic_inc_uint(&nfsauth_cache_miss); 1212 1213 if (nfsauth_retrieve(exi, svc_getnetid(req->rq_xprt), flavor, &addr, 1214 &access, crgetuid(cr), crgetgid(cr), crgetngroups(cr), 1215 crgetgroups(cr), &tmpuid, &tmpgid, &tmpngids, &tmpgids)) { 1216 if (uid != NULL) 1217 *uid = tmpuid; 1218 if (gid != NULL) 1219 *gid = tmpgid; 1220 if (ngids != NULL && gids != NULL) { 1221 *ngids = tmpngids; 1222 *gids = tmpgids; 1223 } else { 1224 kmem_free(tmpgids, tmpngids * sizeof (gid_t)); 1225 } 1226 } 1227 1228 kmem_free(addr.buf, addr.maxlen); 1229 1230 return (access); 1231 } 1232 1233 /* 1234 * Check if the requesting client has access to the filesystem with 1235 * a given nfs flavor number which is an explicitly shared flavor. 1236 */ 1237 int 1238 nfsauth4_secinfo_access(struct exportinfo *exi, struct svc_req *req, 1239 int flavor, int perm, cred_t *cr) 1240 { 1241 int access; 1242 1243 if (! (perm & M_4SEC_EXPORTED)) { 1244 return (NFSAUTH_DENIED); 1245 } 1246 1247 /* 1248 * Optimize if there are no lists 1249 */ 1250 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0) { 1251 perm &= ~M_4SEC_EXPORTED; 1252 if (perm == M_RO) 1253 return (NFSAUTH_RO); 1254 if (perm == M_RW) 1255 return (NFSAUTH_RW); 1256 } 1257 1258 access = nfsauth_cache_get(exi, req, flavor, cr, NULL, NULL, NULL, 1259 NULL); 1260 1261 return (access); 1262 } 1263 1264 int 1265 nfsauth_access(struct exportinfo *exi, struct svc_req *req, cred_t *cr, 1266 uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids) 1267 { 1268 int access, mapaccess; 1269 struct secinfo *sp; 1270 int i, flavor, perm; 1271 int authnone_entry = -1; 1272 1273 /* 1274 * By default root is mapped to anonymous user. 1275 * This might get overriden later in nfsauth_cache_get(). 1276 */ 1277 if (crgetuid(cr) == 0) { 1278 if (uid != NULL) 1279 *uid = exi->exi_export.ex_anon; 1280 if (gid != NULL) 1281 *gid = exi->exi_export.ex_anon; 1282 } else { 1283 if (uid != NULL) 1284 *uid = crgetuid(cr); 1285 if (gid != NULL) 1286 *gid = crgetgid(cr); 1287 } 1288 1289 if (ngids != NULL) 1290 *ngids = 0; 1291 if (gids != NULL) 1292 *gids = NULL; 1293 1294 /* 1295 * Get the nfs flavor number from xprt. 1296 */ 1297 flavor = (int)(uintptr_t)req->rq_xprt->xp_cookie; 1298 1299 /* 1300 * First check the access restrictions on the filesystem. If 1301 * there are no lists associated with this flavor then there's no 1302 * need to make an expensive call to the nfsauth service or to 1303 * cache anything. 1304 */ 1305 1306 sp = exi->exi_export.ex_secinfo; 1307 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 1308 if (flavor != sp[i].s_secinfo.sc_nfsnum) { 1309 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) 1310 authnone_entry = i; 1311 continue; 1312 } 1313 break; 1314 } 1315 1316 mapaccess = 0; 1317 1318 if (i >= exi->exi_export.ex_seccnt) { 1319 /* 1320 * Flavor not found, but use AUTH_NONE if it exists 1321 */ 1322 if (authnone_entry == -1) 1323 return (NFSAUTH_DENIED); 1324 flavor = AUTH_NONE; 1325 mapaccess = NFSAUTH_MAPNONE; 1326 i = authnone_entry; 1327 } 1328 1329 /* 1330 * If the flavor is in the ex_secinfo list, but not an explicitly 1331 * shared flavor by the user, it is a result of the nfsv4 server 1332 * namespace setup. We will grant an RO permission similar for 1333 * a pseudo node except that this node is a shared one. 1334 * 1335 * e.g. flavor in (flavor) indicates that it is not explictly 1336 * shared by the user: 1337 * 1338 * / (sys, krb5) 1339 * | 1340 * export #share -o sec=sys (krb5) 1341 * | 1342 * secure #share -o sec=krb5 1343 * 1344 * In this case, when a krb5 request coming in to access 1345 * /export, RO permission is granted. 1346 */ 1347 if (!(sp[i].s_flags & M_4SEC_EXPORTED)) 1348 return (mapaccess | NFSAUTH_RO); 1349 1350 /* 1351 * Optimize if there are no lists. 1352 * We cannot optimize for AUTH_SYS with NGRPS (16) supplemental groups. 1353 */ 1354 perm = sp[i].s_flags; 1355 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0 && (ngroups_max <= NGRPS || 1356 flavor != AUTH_SYS || crgetngroups(cr) < NGRPS)) { 1357 perm &= ~M_4SEC_EXPORTED; 1358 if (perm == M_RO) 1359 return (mapaccess | NFSAUTH_RO); 1360 if (perm == M_RW) 1361 return (mapaccess | NFSAUTH_RW); 1362 } 1363 1364 access = nfsauth_cache_get(exi, req, flavor, cr, uid, gid, ngids, gids); 1365 1366 /* 1367 * For both NFSAUTH_DENIED and NFSAUTH_WRONGSEC we do not care about 1368 * the supplemental groups. 1369 */ 1370 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) { 1371 if (ngids != NULL && gids != NULL) { 1372 kmem_free(*gids, *ngids * sizeof (gid_t)); 1373 *ngids = 0; 1374 *gids = NULL; 1375 } 1376 } 1377 1378 /* 1379 * Client's security flavor doesn't match with "ro" or 1380 * "rw" list. Try again using AUTH_NONE if present. 1381 */ 1382 if ((access & NFSAUTH_WRONGSEC) && (flavor != AUTH_NONE)) { 1383 /* 1384 * Have we already encountered AUTH_NONE ? 1385 */ 1386 if (authnone_entry != -1) { 1387 mapaccess = NFSAUTH_MAPNONE; 1388 access = nfsauth_cache_get(exi, req, AUTH_NONE, cr, 1389 NULL, NULL, NULL, NULL); 1390 } else { 1391 /* 1392 * Check for AUTH_NONE presence. 1393 */ 1394 for (; i < exi->exi_export.ex_seccnt; i++) { 1395 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) { 1396 mapaccess = NFSAUTH_MAPNONE; 1397 access = nfsauth_cache_get(exi, req, 1398 AUTH_NONE, cr, NULL, NULL, NULL, 1399 NULL); 1400 break; 1401 } 1402 } 1403 } 1404 } 1405 1406 if (access & NFSAUTH_DENIED) 1407 access = NFSAUTH_DENIED; 1408 1409 return (access | mapaccess); 1410 } 1411 1412 static void 1413 nfsauth_free_clnt_node(struct auth_cache_clnt *p) 1414 { 1415 void *cookie = NULL; 1416 struct auth_cache *node; 1417 1418 while ((node = avl_destroy_nodes(&p->authc_tree, &cookie)) != NULL) 1419 nfsauth_free_node(node); 1420 avl_destroy(&p->authc_tree); 1421 1422 kmem_free(p->authc_addr.buf, p->authc_addr.maxlen); 1423 rw_destroy(&p->authc_lock); 1424 1425 kmem_free(p, sizeof (*p)); 1426 } 1427 1428 static void 1429 nfsauth_free_node(struct auth_cache *p) 1430 { 1431 kmem_free(p->auth_clnt_gids, p->auth_clnt_ngids * sizeof (gid_t)); 1432 kmem_free(p->auth_srv_gids, p->auth_srv_ngids * sizeof (gid_t)); 1433 mutex_destroy(&p->auth_lock); 1434 cv_destroy(&p->auth_cv); 1435 kmem_cache_free(exi_cache_handle, p); 1436 } 1437 1438 /* 1439 * Free the nfsauth cache for a given export 1440 */ 1441 void 1442 nfsauth_cache_free(struct exportinfo *exi) 1443 { 1444 int i; 1445 1446 /* 1447 * The only way we got here was with an exi_rele, which means that no 1448 * auth cache entry is being refreshed. 1449 */ 1450 1451 for (i = 0; i < AUTH_TABLESIZE; i++) { 1452 avl_tree_t *tree = exi->exi_cache[i]; 1453 void *cookie = NULL; 1454 struct auth_cache_clnt *node; 1455 1456 while ((node = avl_destroy_nodes(tree, &cookie)) != NULL) 1457 nfsauth_free_clnt_node(node); 1458 } 1459 } 1460 1461 /* 1462 * Called by the kernel memory allocator when 1463 * memory is low. Free unused cache entries. 1464 * If that's not enough, the VM system will 1465 * call again for some more. 1466 */ 1467 /*ARGSUSED*/ 1468 void 1469 exi_cache_reclaim(void *cdrarg) 1470 { 1471 int i; 1472 struct exportinfo *exi; 1473 1474 rw_enter(&exported_lock, RW_READER); 1475 1476 for (i = 0; i < EXPTABLESIZE; i++) { 1477 for (exi = exptable[i]; exi; exi = exi->fid_hash.next) { 1478 exi_cache_trim(exi); 1479 } 1480 } 1481 1482 rw_exit(&exported_lock); 1483 1484 atomic_inc_uint(&nfsauth_cache_reclaim); 1485 } 1486 1487 void 1488 exi_cache_trim(struct exportinfo *exi) 1489 { 1490 struct auth_cache_clnt *c; 1491 struct auth_cache_clnt *nextc; 1492 struct auth_cache *p; 1493 struct auth_cache *next; 1494 int i; 1495 time_t stale_time; 1496 avl_tree_t *tree; 1497 1498 for (i = 0; i < AUTH_TABLESIZE; i++) { 1499 1500 tree = exi->exi_cache[i]; 1501 stale_time = gethrestime_sec() - NFSAUTH_CACHE_TRIM; 1502 1503 rw_enter(&exi->exi_cache_lock, RW_READER); 1504 1505 /* 1506 * Free entries that have not been 1507 * used for NFSAUTH_CACHE_TRIM seconds. 1508 */ 1509 for (c = avl_first(tree); c != NULL; c = AVL_NEXT(tree, c)) { 1510 rw_enter(&c->authc_lock, RW_WRITER); 1511 for (p = avl_first(&c->authc_tree); p != NULL; 1512 p = next) { 1513 next = AVL_NEXT(&c->authc_tree, p); 1514 1515 ASSERT(p->auth_state != NFS_AUTH_INVALID); 1516 1517 mutex_enter(&p->auth_lock); 1518 1519 /* 1520 * We won't trim recently used and/or WAITING 1521 * entries. 1522 */ 1523 if (p->auth_time > stale_time || 1524 p->auth_state == NFS_AUTH_WAITING) { 1525 mutex_exit(&p->auth_lock); 1526 continue; 1527 } 1528 1529 DTRACE_PROBE1(nfsauth__debug__trim__state, 1530 auth_state_t, p->auth_state); 1531 1532 /* 1533 * STALE and REFRESHING entries needs to be 1534 * marked INVALID only because they are 1535 * referenced by some other structures or 1536 * threads. They will be freed later. 1537 */ 1538 if (p->auth_state == NFS_AUTH_STALE || 1539 p->auth_state == NFS_AUTH_REFRESHING) { 1540 p->auth_state = NFS_AUTH_INVALID; 1541 mutex_exit(&p->auth_lock); 1542 1543 avl_remove(&c->authc_tree, p); 1544 } else { 1545 mutex_exit(&p->auth_lock); 1546 1547 avl_remove(&c->authc_tree, p); 1548 nfsauth_free_node(p); 1549 } 1550 } 1551 rw_exit(&c->authc_lock); 1552 } 1553 1554 if (rw_tryupgrade(&exi->exi_cache_lock) == 0) { 1555 rw_exit(&exi->exi_cache_lock); 1556 rw_enter(&exi->exi_cache_lock, RW_WRITER); 1557 } 1558 1559 for (c = avl_first(tree); c != NULL; c = nextc) { 1560 nextc = AVL_NEXT(tree, c); 1561 1562 if (avl_is_empty(&c->authc_tree) == B_FALSE) 1563 continue; 1564 1565 avl_remove(tree, c); 1566 1567 nfsauth_free_clnt_node(c); 1568 } 1569 1570 rw_exit(&exi->exi_cache_lock); 1571 } 1572 } 1573