xref: /titanic_50/usr/src/uts/common/fs/hsfs/hsfs_vnops.c (revision 24db46411fd54f70c35b94bb952eb7ba040e43b4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Vnode operations for the High Sierra filesystem
30  */
31 
32 #include <sys/types.h>
33 #include <sys/t_lock.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/systm.h>
37 #include <sys/sysmacros.h>
38 #include <sys/resource.h>
39 #include <sys/signal.h>
40 #include <sys/cred.h>
41 #include <sys/user.h>
42 #include <sys/buf.h>
43 #include <sys/vfs.h>
44 #include <sys/vfs_opreg.h>
45 #include <sys/stat.h>
46 #include <sys/vnode.h>
47 #include <sys/mode.h>
48 #include <sys/proc.h>
49 #include <sys/disp.h>
50 #include <sys/file.h>
51 #include <sys/fcntl.h>
52 #include <sys/flock.h>
53 #include <sys/kmem.h>
54 #include <sys/uio.h>
55 #include <sys/conf.h>
56 #include <sys/errno.h>
57 #include <sys/mman.h>
58 #include <sys/pathname.h>
59 #include <sys/debug.h>
60 #include <sys/vmsystm.h>
61 #include <sys/cmn_err.h>
62 #include <sys/fbuf.h>
63 #include <sys/dirent.h>
64 #include <sys/errno.h>
65 
66 #include <vm/hat.h>
67 #include <vm/page.h>
68 #include <vm/pvn.h>
69 #include <vm/as.h>
70 #include <vm/seg.h>
71 #include <vm/seg_map.h>
72 #include <vm/seg_kmem.h>
73 #include <vm/seg_vn.h>
74 #include <vm/rm.h>
75 #include <vm/page.h>
76 #include <sys/swap.h>
77 
78 #include <sys/fs/hsfs_spec.h>
79 #include <sys/fs/hsfs_node.h>
80 #include <sys/fs/hsfs_impl.h>
81 #include <sys/fs/hsfs_susp.h>
82 #include <sys/fs/hsfs_rrip.h>
83 
84 #include <fs/fs_subr.h>
85 
86 /* ARGSUSED */
87 static int
88 hsfs_fsync(vnode_t *cp, int syncflag, cred_t *cred)
89 {
90 	return (0);
91 }
92 
93 
94 /*ARGSUSED*/
95 static int
96 hsfs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cred,
97 	struct caller_context *ct)
98 {
99 	caddr_t base;
100 	offset_t diff;
101 	int error;
102 	struct hsnode *hp;
103 	uint_t filesize;
104 
105 	hp = VTOH(vp);
106 	/*
107 	 * if vp is of type VDIR, make sure dirent
108 	 * is filled up with all info (because of ptbl)
109 	 */
110 	if (vp->v_type == VDIR) {
111 		if (hp->hs_dirent.ext_size == 0)
112 			hs_filldirent(vp, &hp->hs_dirent);
113 	}
114 	filesize = hp->hs_dirent.ext_size;
115 
116 	/* Sanity checks. */
117 	if (uiop->uio_resid == 0 ||		/* No data wanted. */
118 	    uiop->uio_loffset > HS_MAXFILEOFF ||	/* Offset too big. */
119 	    uiop->uio_loffset >= filesize)	/* Past EOF. */
120 		return (0);
121 
122 	do {
123 		/*
124 		 * We want to ask for only the "right" amount of data.
125 		 * In this case that means:-
126 		 *
127 		 * We can't get data from beyond our EOF. If asked,
128 		 * we will give a short read.
129 		 *
130 		 * segmap_getmapflt returns buffers of MAXBSIZE bytes.
131 		 * These buffers are always MAXBSIZE aligned.
132 		 * If our starting offset is not MAXBSIZE aligned,
133 		 * we can only ask for less than MAXBSIZE bytes.
134 		 *
135 		 * If our requested offset and length are such that
136 		 * they belong in different MAXBSIZE aligned slots
137 		 * then we'll be making more than one call on
138 		 * segmap_getmapflt.
139 		 *
140 		 * This diagram shows the variables we use and their
141 		 * relationships.
142 		 *
143 		 * |<-----MAXBSIZE----->|
144 		 * +--------------------------...+
145 		 * |.....mapon->|<--n-->|....*...|EOF
146 		 * +--------------------------...+
147 		 * uio_loffset->|
148 		 * uio_resid....|<---------->|
149 		 * diff.........|<-------------->|
150 		 *
151 		 * So, in this case our offset is not aligned
152 		 * and our request takes us outside of the
153 		 * MAXBSIZE window. We will break this up into
154 		 * two segmap_getmapflt calls.
155 		 */
156 		size_t nbytes;
157 		offset_t mapon;
158 		size_t n;
159 		uint_t flags;
160 
161 		mapon = uiop->uio_loffset & MAXBOFFSET;
162 		diff = filesize - uiop->uio_loffset;
163 		nbytes = (size_t)MIN(MAXBSIZE - mapon, uiop->uio_resid);
164 		n = MIN(diff, nbytes);
165 		if (n <= 0) {
166 			/* EOF or request satisfied. */
167 			return (0);
168 		}
169 
170 		base = segmap_getmapflt(segkmap, vp,
171 		    (u_offset_t)uiop->uio_loffset, n, 1, S_READ);
172 
173 		error = uiomove(base + mapon, n, UIO_READ, uiop);
174 
175 		if (error == 0) {
176 			/*
177 			 * if read a whole block, or read to eof,
178 			 *  won't need this buffer again soon.
179 			 */
180 			if (n + mapon == MAXBSIZE ||
181 			    uiop->uio_loffset == filesize)
182 				flags = SM_DONTNEED;
183 			else
184 				flags = 0;
185 			error = segmap_release(segkmap, base, flags);
186 		} else
187 			(void) segmap_release(segkmap, base, 0);
188 	} while (error == 0 && uiop->uio_resid > 0);
189 
190 	return (error);
191 }
192 
193 /*ARGSUSED2*/
194 static int
195 hsfs_getattr(
196 	struct vnode *vp,
197 	struct vattr *vap,
198 	int flags,
199 	struct cred *cred)
200 {
201 	struct hsnode *hp;
202 	struct vfs *vfsp;
203 	struct hsfs *fsp;
204 
205 	hp = VTOH(vp);
206 	fsp = VFS_TO_HSFS(vp->v_vfsp);
207 	vfsp = vp->v_vfsp;
208 
209 	if ((hp->hs_dirent.ext_size == 0) && (vp->v_type == VDIR)) {
210 		hs_filldirent(vp, &hp->hs_dirent);
211 	}
212 	vap->va_type = IFTOVT(hp->hs_dirent.mode);
213 	vap->va_mode = hp->hs_dirent.mode;
214 	vap->va_uid = hp->hs_dirent.uid;
215 	vap->va_gid = hp->hs_dirent.gid;
216 
217 	vap->va_fsid = vfsp->vfs_dev;
218 	vap->va_nodeid = (ino64_t)hp->hs_nodeid;
219 	vap->va_nlink = hp->hs_dirent.nlink;
220 	vap->va_size =	(offset_t)hp->hs_dirent.ext_size;
221 
222 	vap->va_atime.tv_sec = hp->hs_dirent.adate.tv_sec;
223 	vap->va_atime.tv_nsec = hp->hs_dirent.adate.tv_usec*1000;
224 	vap->va_mtime.tv_sec = hp->hs_dirent.mdate.tv_sec;
225 	vap->va_mtime.tv_nsec = hp->hs_dirent.mdate.tv_usec*1000;
226 	vap->va_ctime.tv_sec = hp->hs_dirent.cdate.tv_sec;
227 	vap->va_ctime.tv_nsec = hp->hs_dirent.cdate.tv_usec*1000;
228 	if (vp->v_type == VCHR || vp->v_type == VBLK)
229 		vap->va_rdev = hp->hs_dirent.r_dev;
230 	else
231 		vap->va_rdev = 0;
232 	vap->va_blksize = vfsp->vfs_bsize;
233 	/* no. of blocks = no. of data blocks + no. of xar blocks */
234 	vap->va_nblocks = (fsblkcnt64_t)howmany(vap->va_size + (u_longlong_t)
235 	    (hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift), DEV_BSIZE);
236 	vap->va_seq = hp->hs_seq;
237 	return (0);
238 }
239 
240 /*ARGSUSED*/
241 static int
242 hsfs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cred)
243 {
244 	struct hsnode *hp;
245 
246 	if (vp->v_type != VLNK)
247 		return (EINVAL);
248 
249 	hp = VTOH(vp);
250 
251 	if (hp->hs_dirent.sym_link == (char *)NULL)
252 		return (ENOENT);
253 
254 	return (uiomove(hp->hs_dirent.sym_link,
255 	    (size_t)MIN(hp->hs_dirent.ext_size,
256 	    uiop->uio_resid), UIO_READ, uiop));
257 }
258 
259 /*ARGSUSED*/
260 static void
261 hsfs_inactive(struct vnode *vp, struct cred *cred)
262 {
263 	struct hsnode *hp;
264 	struct hsfs *fsp;
265 
266 	int nopage;
267 
268 	hp = VTOH(vp);
269 	fsp = VFS_TO_HSFS(vp->v_vfsp);
270 	/*
271 	 * Note: acquiring and holding v_lock for quite a while
272 	 * here serializes on the vnode; this is unfortunate, but
273 	 * likely not to overly impact performance, as the underlying
274 	 * device (CDROM drive) is quite slow.
275 	 */
276 	rw_enter(&fsp->hsfs_hash_lock, RW_WRITER);
277 	mutex_enter(&hp->hs_contents_lock);
278 	mutex_enter(&vp->v_lock);
279 
280 	if (vp->v_count < 1) {
281 		panic("hsfs_inactive: v_count < 1");
282 		/*NOTREACHED*/
283 	}
284 
285 	if (vp->v_count > 1 || (hp->hs_flags & HREF) == 0) {
286 		vp->v_count--;	/* release hold from vn_rele */
287 		mutex_exit(&vp->v_lock);
288 		mutex_exit(&hp->hs_contents_lock);
289 		rw_exit(&fsp->hsfs_hash_lock);
290 		return;
291 	}
292 	vp->v_count--;	/* release hold from vn_rele */
293 	if (vp->v_count == 0) {
294 		/*
295 		 * Free the hsnode.
296 		 * If there are no pages associated with the
297 		 * hsnode, give it back to the kmem_cache,
298 		 * else put at the end of this file system's
299 		 * internal free list.
300 		 */
301 		nopage = !vn_has_cached_data(vp);
302 		hp->hs_flags = 0;
303 		/*
304 		 * exit these locks now, since hs_freenode may
305 		 * kmem_free the hsnode and embedded vnode
306 		 */
307 		mutex_exit(&vp->v_lock);
308 		mutex_exit(&hp->hs_contents_lock);
309 		hs_freenode(vp, fsp, nopage);
310 	} else {
311 		mutex_exit(&vp->v_lock);
312 		mutex_exit(&hp->hs_contents_lock);
313 	}
314 	rw_exit(&fsp->hsfs_hash_lock);
315 }
316 
317 
318 /*ARGSUSED*/
319 static int
320 hsfs_lookup(
321 	struct vnode *dvp,
322 	char *nm,
323 	struct vnode **vpp,
324 	struct pathname *pnp,
325 	int flags,
326 	struct vnode *rdir,
327 	struct cred *cred)
328 {
329 	int error;
330 	int namelen = (int)strlen(nm);
331 
332 	if (*nm == '\0') {
333 		VN_HOLD(dvp);
334 		*vpp = dvp;
335 		return (0);
336 	}
337 
338 	/*
339 	 * If we're looking for ourself, life is simple.
340 	 */
341 	if (namelen == 1 && *nm == '.') {
342 		if (error = hs_access(dvp, (mode_t)VEXEC, cred))
343 			return (error);
344 		VN_HOLD(dvp);
345 		*vpp = dvp;
346 		return (0);
347 	}
348 
349 	return (hs_dirlook(dvp, nm, namelen, vpp, cred));
350 }
351 
352 
353 /*ARGSUSED*/
354 static int
355 hsfs_readdir(
356 	struct vnode	*vp,
357 	struct uio	*uiop,
358 	struct cred	*cred,
359 	int		*eofp)
360 {
361 	struct hsnode	*dhp;
362 	struct hsfs	*fsp;
363 	struct hs_direntry hd;
364 	struct dirent64	*nd;
365 	int		error;
366 	uint_t		offset;		/* real offset in directory */
367 	uint_t		dirsiz;		/* real size of directory */
368 	uchar_t		*blkp;
369 	int		hdlen;		/* length of hs directory entry */
370 	long		ndlen;		/* length of dirent entry */
371 	int		bytes_wanted;
372 	size_t		bufsize;	/* size of dirent buffer */
373 	char		*outbuf;	/* ptr to dirent buffer */
374 	char		*dname;
375 	int		dnamelen;
376 	size_t		dname_size;
377 	struct fbuf	*fbp;
378 	uint_t		last_offset;	/* last index into current dir block */
379 	ulong_t		dir_lbn;	/* lbn of directory */
380 	ino64_t		dirino;	/* temporary storage before storing in dirent */
381 	off_t		diroff;
382 
383 	dhp = VTOH(vp);
384 	fsp = VFS_TO_HSFS(vp->v_vfsp);
385 	if (dhp->hs_dirent.ext_size == 0)
386 		hs_filldirent(vp, &dhp->hs_dirent);
387 	dirsiz = dhp->hs_dirent.ext_size;
388 	dir_lbn = dhp->hs_dirent.ext_lbn;
389 	if (uiop->uio_loffset >= dirsiz) {	/* at or beyond EOF */
390 		if (eofp)
391 			*eofp = 1;
392 		return (0);
393 	}
394 	ASSERT(uiop->uio_loffset <= HS_MAXFILEOFF);
395 	offset = uiop->uio_loffset;
396 
397 	dname_size = fsp->hsfs_namemax + 1;	/* 1 for the ending NUL */
398 	dname = kmem_alloc(dname_size, KM_SLEEP);
399 	bufsize = uiop->uio_resid + sizeof (struct dirent64);
400 
401 	outbuf = kmem_alloc(bufsize, KM_SLEEP);
402 	nd = (struct dirent64 *)outbuf;
403 
404 	while (offset < dirsiz) {
405 		bytes_wanted = MIN(MAXBSIZE, dirsiz - (offset & MAXBMASK));
406 
407 		error = fbread(vp, (offset_t)(offset & MAXBMASK),
408 			(unsigned int)bytes_wanted, S_READ, &fbp);
409 		if (error)
410 			goto done;
411 
412 		blkp = (uchar_t *)fbp->fb_addr;
413 		last_offset = (offset & MAXBMASK) + fbp->fb_count;
414 
415 #define	rel_offset(offset) ((offset) & MAXBOFFSET)	/* index into blkp */
416 
417 		while (offset < last_offset) {
418 			/*
419 			 * Very similar validation code is found in
420 			 * process_dirblock(), hsfs_node.c.
421 			 * For an explanation, see there.
422 			 * It may make sense for the future to
423 			 * "consolidate" the code in hs_parsedir(),
424 			 * process_dirblock() and hsfs_readdir() into
425 			 * a single utility function.
426 			 */
427 			hdlen = (int)((uchar_t)
428 				HDE_DIR_LEN(&blkp[rel_offset(offset)]));
429 			if (hdlen < HDE_ROOT_DIR_REC_SIZE ||
430 			    offset + hdlen > last_offset) {
431 				/*
432 				 * advance to next sector boundary
433 				 */
434 				offset = roundup(offset + 1, HS_SECTOR_SIZE);
435 				if (hdlen)
436 					hs_log_bogus_disk_warning(fsp,
437 					    HSFS_ERR_TRAILING_JUNK, 0);
438 
439 				continue;
440 			}
441 
442 			bzero(&hd, sizeof (hd));
443 
444 			/*
445 			 * Just ignore invalid directory entries.
446 			 * XXX - maybe hs_parsedir() will detect EXISTENCE bit
447 			 */
448 			if (!hs_parsedir(fsp, &blkp[rel_offset(offset)],
449 				&hd, dname, &dnamelen,
450 					last_offset - rel_offset(offset))) {
451 				/*
452 				 * Determine if there is enough room
453 				 */
454 				ndlen = (long)DIRENT64_RECLEN((dnamelen));
455 
456 				if ((ndlen + ((char *)nd - outbuf)) >
457 				    uiop->uio_resid) {
458 					fbrelse(fbp, S_READ);
459 					goto done; /* output buffer full */
460 				}
461 
462 				diroff = offset + hdlen;
463 				/*
464 				 * Generate nodeid.
465 				 * If a directory, nodeid points to the
466 				 * canonical dirent describing the directory:
467 				 * the dirent of the "." entry for the
468 				 * directory, which is pointed to by all
469 				 * dirents for that directory.
470 				 * Otherwise, nodeid points to dirent of file.
471 				 */
472 				if (hd.type == VDIR) {
473 					dirino = (ino64_t)
474 					    MAKE_NODEID(hd.ext_lbn, 0,
475 					    vp->v_vfsp);
476 				} else {
477 					struct hs_volume *hvp;
478 					offset_t lbn, off;
479 
480 					/*
481 					 * Normalize lbn and off
482 					 */
483 					hvp = &fsp->hsfs_vol;
484 					lbn = dir_lbn +
485 					    (offset >> hvp->lbn_shift);
486 					off = offset & hvp->lbn_maxoffset;
487 					dirino = (ino64_t)MAKE_NODEID(lbn,
488 					    off, vp->v_vfsp);
489 				}
490 
491 
492 				/* strncpy(9f) will zero uninitialized bytes */
493 
494 				ASSERT(strlen(dname) + 1 <=
495 				    DIRENT64_NAMELEN(ndlen));
496 				(void) strncpy(nd->d_name, dname,
497 				    DIRENT64_NAMELEN(ndlen));
498 				nd->d_reclen = (ushort_t)ndlen;
499 				nd->d_off = (offset_t)diroff;
500 				nd->d_ino = dirino;
501 				nd = (struct dirent64 *)((char *)nd + ndlen);
502 
503 				/*
504 				 * free up space allocated for symlink
505 				 */
506 				if (hd.sym_link != (char *)NULL) {
507 					kmem_free(hd.sym_link,
508 					    (size_t)(hd.ext_size+1));
509 					hd.sym_link = (char *)NULL;
510 				}
511 			}
512 			offset += hdlen;
513 		}
514 		fbrelse(fbp, S_READ);
515 	}
516 
517 	/*
518 	 * Got here for one of the following reasons:
519 	 *	1) outbuf is full (error == 0)
520 	 *	2) end of directory reached (error == 0)
521 	 *	3) error reading directory sector (error != 0)
522 	 *	4) directory entry crosses sector boundary (error == 0)
523 	 *
524 	 * If any directory entries have been copied, don't report
525 	 * case 4.  Instead, return the valid directory entries.
526 	 *
527 	 * If no entries have been copied, report the error.
528 	 * If case 4, this will be indistiguishable from EOF.
529 	 */
530 done:
531 	ndlen = ((char *)nd - outbuf);
532 	if (ndlen != 0) {
533 		error = uiomove(outbuf, (size_t)ndlen, UIO_READ, uiop);
534 		uiop->uio_loffset = offset;
535 	}
536 	kmem_free(dname, dname_size);
537 	kmem_free(outbuf, bufsize);
538 	if (eofp && error == 0)
539 		*eofp = (uiop->uio_loffset >= dirsiz);
540 	return (error);
541 }
542 
543 static int
544 hsfs_fid(struct vnode *vp, struct fid *fidp)
545 {
546 	struct hsnode *hp;
547 	struct hsfid *fid;
548 
549 	if (fidp->fid_len < (sizeof (*fid) - sizeof (fid->hf_len))) {
550 		fidp->fid_len = sizeof (*fid) - sizeof (fid->hf_len);
551 		return (ENOSPC);
552 	}
553 
554 	fid = (struct hsfid *)fidp;
555 	fid->hf_len = sizeof (*fid) - sizeof (fid->hf_len);
556 	hp = VTOH(vp);
557 	mutex_enter(&hp->hs_contents_lock);
558 	fid->hf_dir_lbn = hp->hs_dir_lbn;
559 	fid->hf_dir_off = (ushort_t)hp->hs_dir_off;
560 	mutex_exit(&hp->hs_contents_lock);
561 	return (0);
562 }
563 
564 /*ARGSUSED*/
565 static int
566 hsfs_open(struct vnode **vpp, int flag, struct cred *cred)
567 {
568 	return (0);
569 }
570 
571 /*ARGSUSED*/
572 static int
573 hsfs_close(
574 	struct vnode *vp,
575 	int flag,
576 	int count,
577 	offset_t offset,
578 	struct cred *cred)
579 {
580 	(void) cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
581 	cleanshares(vp, ttoproc(curthread)->p_pid);
582 	return (0);
583 }
584 
585 /*ARGSUSED2*/
586 static int
587 hsfs_access(struct vnode *vp, int mode, int flags, cred_t *cred)
588 {
589 	return (hs_access(vp, (mode_t)mode, cred));
590 }
591 
592 /*
593  * the seek time of a CD-ROM is very slow, and data transfer
594  * rate is even worse (max. 150K per sec).  The design
595  * decision is to reduce access to cd-rom as much as possible,
596  * and to transfer a sizable block (read-ahead) of data at a time.
597  * UFS style of read ahead one block at a time is not appropriate,
598  * and is not supported
599  */
600 
601 /*
602  * KLUSTSIZE should be a multiple of PAGESIZE and <= MAXPHYS.
603  */
604 #define	KLUSTSIZE	(56 * 1024)
605 /* we don't support read ahead */
606 int hsfs_lostpage;	/* no. of times we lost original page */
607 
608 /*
609  * Used to prevent biodone() from releasing buf resources that
610  * we didn't allocate in quite the usual way.
611  */
612 /*ARGSUSED*/
613 int
614 hsfs_iodone(struct buf *bp)
615 {
616 	sema_v(&bp->b_io);
617 	return (0);
618 }
619 
620 /*
621  * Each file may have a different interleaving on disk.  This makes
622  * things somewhat interesting.  The gist is that there are some
623  * number of contiguous data sectors, followed by some other number
624  * of contiguous skip sectors.  The sum of those two sets of sectors
625  * defines the interleave size.  Unfortunately, it means that we generally
626  * can't simply read N sectors starting at a given offset to satisfy
627  * any given request.
628  *
629  * What we do is get the relevant memory pages via pvn_read_kluster(),
630  * then stride through the interleaves, setting up a buf for each
631  * sector that needs to be brought in.  Instead of kmem_alloc'ing
632  * space for the sectors, though, we just point at the appropriate
633  * spot in the relevant page for each of them.  This saves us a bunch
634  * of copying.
635  */
636 /*ARGSUSED*/
637 static int
638 hsfs_getapage(
639 	struct vnode *vp,
640 	u_offset_t off,
641 	size_t len,
642 	uint_t *protp,
643 	struct page *pl[],
644 	size_t plsz,
645 	struct seg *seg,
646 	caddr_t addr,
647 	enum seg_rw rw,
648 	struct cred *cred)
649 {
650 	struct hsnode *hp;
651 	struct hsfs *fsp;
652 	int	err;
653 	struct buf *bufs;
654 	caddr_t *vas;
655 	caddr_t va;
656 	struct page *pp, *searchp, *lastp;
657 	page_t	*pagefound;
658 	offset_t	bof;
659 	struct vnode *devvp;
660 	ulong_t	byte_offset;
661 	size_t	io_len_tmp;
662 	uint_t	io_off, io_len;
663 	uint_t	xlen;
664 	uint_t	filsiz;
665 	uint_t	secsize;
666 	uint_t	bufcnt;
667 	uint_t	bufsused;
668 	uint_t	count;
669 	uint_t	io_end;
670 	uint_t	which_chunk_lbn;
671 	uint_t	offset_lbn;
672 	uint_t	offset_extra;
673 	offset_t	offset_bytes;
674 	uint_t	remaining_bytes;
675 	uint_t	extension;
676 	int	remainder;	/* must be signed */
677 	int	chunk_lbn_count;
678 	int	chunk_data_bytes;
679 	int	xarsiz;
680 	diskaddr_t driver_block;
681 	u_offset_t io_off_tmp;
682 
683 	/*
684 	 * We don't support asynchronous operation at the moment, so
685 	 * just pretend we did it.  If the pages are ever actually
686 	 * needed, they'll get brought in then.
687 	 */
688 	if (pl == NULL)
689 		return (0);
690 
691 	hp = VTOH(vp);
692 	fsp = VFS_TO_HSFS(vp->v_vfsp);
693 	devvp = fsp->hsfs_devvp;
694 	secsize = fsp->hsfs_vol.lbn_size;  /* bytes per logical block */
695 
696 	/* file data size */
697 	filsiz = hp->hs_dirent.ext_size;
698 
699 	/* disk addr for start of file */
700 	bof = LBN_TO_BYTE((offset_t)hp->hs_dirent.ext_lbn, vp->v_vfsp);
701 
702 	/* xarsiz byte must be skipped for data */
703 	xarsiz = hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift;
704 
705 	/* how many logical blocks in an interleave (data+skip) */
706 	chunk_lbn_count = hp->hs_dirent.intlf_sz + hp->hs_dirent.intlf_sk;
707 
708 	if (chunk_lbn_count == 0) {
709 		chunk_lbn_count = 1;
710 	}
711 
712 	/*
713 	 * Convert interleaving size into bytes.  The zero case
714 	 * (no interleaving) optimization is handled as a side-
715 	 * effect of the read-ahead logic.
716 	 */
717 	if (hp->hs_dirent.intlf_sz == 0) {
718 		chunk_data_bytes = LBN_TO_BYTE(1, vp->v_vfsp);
719 	} else {
720 		chunk_data_bytes = LBN_TO_BYTE(hp->hs_dirent.intlf_sz,
721 			vp->v_vfsp);
722 	}
723 
724 reread:
725 	err = 0;
726 	pagefound = 0;
727 
728 	/*
729 	 * Do some read-ahead.  This mostly saves us a bit of
730 	 * system cpu time more than anything else when doing
731 	 * sequential reads.  At some point, could do the
732 	 * read-ahead asynchronously which might gain us something
733 	 * on wall time, but it seems unlikely....
734 	 *
735 	 * We do the easy case here, which is to read through
736 	 * the end of the chunk, minus whatever's at the end that
737 	 * won't exactly fill a page.
738 	 */
739 	which_chunk_lbn = (off + len) / chunk_data_bytes;
740 	extension = ((which_chunk_lbn + 1) * chunk_data_bytes) - off;
741 	extension -= (extension % PAGESIZE);
742 	if (extension != 0 && extension < filsiz - off) {
743 		len = extension;
744 	} else {
745 		len = PAGESIZE;
746 	}
747 	/*
748 	 * Some cd writers don't write sectors that aren't used.  Also,
749 	 * there's no point in reading sectors we'll never look at.  So,
750 	 * if we're asked to go beyond the end of a file, truncate to the
751 	 * length of that file.
752 	 *
753 	 * Additionally, this behaviour is required by section 6.4.5 of
754 	 * ISO 9660:1988(E).
755 	 */
756 	if (len > (filsiz - off)) {
757 		len = filsiz - off;
758 	}
759 
760 	/* A little paranoia. */
761 	ASSERT(len > 0);
762 
763 	/*
764 	 * After all that, make sure we're asking for things in units
765 	 * that bdev_strategy() will understand (see bug 4202551).
766 	 */
767 	len = roundup(len, DEV_BSIZE);
768 
769 	pp = NULL;
770 again:
771 	/* search for page in buffer */
772 	if ((pagefound = page_exists(vp, off)) == 0) {
773 		/*
774 		 * Need to really do disk IO to get the page.
775 		 */
776 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp,
777 		    &io_len_tmp, off, len, 0);
778 
779 		if (pp == NULL)
780 			goto again;
781 
782 		io_off = (uint_t)io_off_tmp;
783 		io_len = (uint_t)io_len_tmp;
784 
785 		/* check for truncation */
786 		/*
787 		 * xxx Clean up and return EIO instead?
788 		 * xxx Ought to go to u_offset_t for everything, but we
789 		 * xxx call lots of things that want uint_t arguments.
790 		 */
791 		ASSERT(io_off == io_off_tmp);
792 
793 		/*
794 		 * get enough buffers for worst-case scenario
795 		 * (i.e., no coalescing possible).
796 		 */
797 		bufcnt = (len + secsize - 1) / secsize;
798 		bufs = kmem_zalloc(bufcnt * sizeof (struct buf), KM_SLEEP);
799 		vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP);
800 		for (count = 0; count < bufcnt; count++) {
801 			bufs[count].b_edev = devvp->v_rdev;
802 			bufs[count].b_dev = cmpdev(devvp->v_rdev);
803 			bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ;
804 			bufs[count].b_iodone = hsfs_iodone;
805 			bufs[count].b_vp = vp;
806 			bufs[count].b_file = vp;
807 			sema_init(&bufs[count].b_io, 0, NULL,
808 			    SEMA_DEFAULT, NULL);
809 			sema_init(&bufs[count].b_sem, 0, NULL,
810 			    SEMA_DEFAULT, NULL);
811 		}
812 
813 		/*
814 		 * If our filesize is not an integer multiple of PAGESIZE,
815 		 * we zero that part of the last page that's between EOF and
816 		 * the PAGESIZE boundary.
817 		 */
818 		xlen = io_len & PAGEOFFSET;
819 		if (xlen != 0)
820 			pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
821 
822 		va = NULL;
823 		lastp = NULL;
824 		searchp = pp;
825 		io_end = io_off + io_len;
826 		for (count = 0, byte_offset = io_off;
827 			byte_offset < io_end;
828 			count++) {
829 			ASSERT(count < bufcnt);
830 
831 			/* Compute disk address for interleaving. */
832 
833 			/* considered without skips */
834 			which_chunk_lbn = byte_offset / chunk_data_bytes;
835 
836 			/* factor in skips */
837 			offset_lbn = which_chunk_lbn * chunk_lbn_count;
838 
839 			/* convert to physical byte offset for lbn */
840 			offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp);
841 
842 			/* don't forget offset into lbn */
843 			offset_extra = byte_offset % chunk_data_bytes;
844 
845 			/* get virtual block number for driver */
846 			driver_block = lbtodb(bof + xarsiz
847 				+ offset_bytes + offset_extra);
848 
849 			if (lastp != searchp) {
850 				/* this branch taken first time through loop */
851 				va = vas[count]
852 					= ppmapin(searchp, PROT_WRITE,
853 						(caddr_t)-1);
854 				/* ppmapin() guarantees not to return NULL */
855 			} else {
856 				vas[count] = NULL;
857 			}
858 
859 			bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE;
860 			bufs[count].b_offset =
861 			    (offset_t)(byte_offset - io_off + off);
862 
863 			/*
864 			 * We specifically use the b_lblkno member here
865 			 * as even in the 32 bit world driver_block can
866 			 * get very large in line with the ISO9660 spec.
867 			 */
868 
869 			bufs[count].b_lblkno = driver_block;
870 
871 			remaining_bytes = ((which_chunk_lbn + 1)
872 				* chunk_data_bytes)
873 				- byte_offset;
874 
875 			/*
876 			 * remaining_bytes can't be zero, as we derived
877 			 * which_chunk_lbn directly from byte_offset.
878 			 */
879 			if ((remaining_bytes + byte_offset) < (off + len)) {
880 				/* coalesce-read the rest of the chunk */
881 				bufs[count].b_bcount = remaining_bytes;
882 			} else {
883 				/* get the final bits */
884 				bufs[count].b_bcount = off + len - byte_offset;
885 			}
886 
887 			/*
888 			 * It would be nice to do multiple pages'
889 			 * worth at once here when the opportunity
890 			 * arises, as that has been shown to improve
891 			 * our wall time.  However, to do that
892 			 * requires that we use the pageio subsystem,
893 			 * which doesn't mix well with what we're
894 			 * already using here.  We can't use pageio
895 			 * all the time, because that subsystem
896 			 * assumes that a page is stored in N
897 			 * contiguous blocks on the device.
898 			 * Interleaving violates that assumption.
899 			 */
900 
901 			remainder = PAGESIZE - (byte_offset % PAGESIZE);
902 			if (bufs[count].b_bcount > remainder) {
903 				bufs[count].b_bcount = remainder;
904 			}
905 
906 			bufs[count].b_bufsize = bufs[count].b_bcount;
907 			if (((offset_t)byte_offset + bufs[count].b_bcount) >
908 				HS_MAXFILEOFF) {
909 				break;
910 			}
911 			byte_offset += bufs[count].b_bcount;
912 
913 			(void) bdev_strategy(&bufs[count]);
914 
915 			lwp_stat_update(LWP_STAT_INBLK, 1);
916 			lastp = searchp;
917 			if ((remainder - bufs[count].b_bcount) < 1) {
918 				searchp = searchp->p_next;
919 			}
920 		}
921 
922 		bufsused = count;
923 		/* Now wait for everything to come in */
924 		for (count = 0; count < bufsused; count++) {
925 			if (err == 0) {
926 				err = biowait(&bufs[count]);
927 			} else
928 				(void) biowait(&bufs[count]);
929 		}
930 
931 		/* Don't leak resources */
932 		for (count = 0; count < bufcnt; count++) {
933 			sema_destroy(&bufs[count].b_io);
934 			sema_destroy(&bufs[count].b_sem);
935 			if (count < bufsused && vas[count] != NULL) {
936 				ppmapout(vas[count]);
937 			}
938 		}
939 
940 		kmem_free(vas, bufcnt * sizeof (caddr_t));
941 		kmem_free(bufs, bufcnt * sizeof (struct buf));
942 	}
943 
944 	if (err) {
945 		pvn_read_done(pp, B_ERROR);
946 		return (err);
947 	}
948 
949 	/*
950 	 * Lock the requested page, and the one after it if possible.
951 	 * Don't bother if our caller hasn't given us a place to stash
952 	 * the page pointers, since otherwise we'd lock pages that would
953 	 * never get unlocked.
954 	 */
955 	if (pagefound) {
956 		int index;
957 		ulong_t soff;
958 
959 		/*
960 		 * Make sure it's in memory before we say it's here.
961 		 */
962 		if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) {
963 			hsfs_lostpage++;
964 			goto reread;
965 		}
966 
967 		pl[0] = pp;
968 		index = 1;
969 
970 		/*
971 		 * Try to lock the next page, if it exists, without
972 		 * blocking.
973 		 */
974 		plsz -= PAGESIZE;
975 		/* LINTED (plsz is unsigned) */
976 		for (soff = off + PAGESIZE; plsz > 0;
977 		    soff += PAGESIZE, plsz -= PAGESIZE) {
978 			pp = page_lookup_nowait(vp, (u_offset_t)soff,
979 					SE_SHARED);
980 			if (pp == NULL)
981 				break;
982 			pl[index++] = pp;
983 		}
984 		pl[index] = NULL;
985 		return (0);
986 	}
987 
988 	if (pp != NULL) {
989 		pvn_plist_init(pp, pl, plsz, off, io_len, rw);
990 	}
991 
992 	return (err);
993 }
994 
995 static int
996 hsfs_getpage(
997 	struct vnode *vp,
998 	offset_t off,
999 	size_t len,
1000 	uint_t *protp,
1001 	struct page *pl[],
1002 	size_t plsz,
1003 	struct seg *seg,
1004 	caddr_t addr,
1005 	enum seg_rw rw,
1006 	struct cred *cred)
1007 {
1008 	int err;
1009 	uint_t filsiz;
1010 	struct hsnode *hp = VTOH(vp);
1011 
1012 	/* does not support write */
1013 	if (rw == S_WRITE) {
1014 		panic("write attempt on READ ONLY HSFS");
1015 		/*NOTREACHED*/
1016 	}
1017 
1018 	if (vp->v_flag & VNOMAP) {
1019 		return (ENOSYS);
1020 	}
1021 
1022 	ASSERT(off <= HS_MAXFILEOFF);
1023 
1024 	/*
1025 	 * Determine file data size for EOF check.
1026 	 */
1027 	filsiz = hp->hs_dirent.ext_size;
1028 	if ((off + len) > (offset_t)(filsiz + PAGEOFFSET) && seg != segkmap)
1029 		return (EFAULT);	/* beyond EOF */
1030 
1031 	if (protp != NULL)
1032 		*protp = PROT_ALL;
1033 
1034 	if (len <= PAGESIZE)
1035 		err = hsfs_getapage(vp, (u_offset_t)off, len, protp, pl, plsz,
1036 		    seg, addr, rw, cred);
1037 	else
1038 		err = pvn_getpages(hsfs_getapage, vp, off, len, protp,
1039 		    pl, plsz, seg, addr, rw, cred);
1040 
1041 	return (err);
1042 }
1043 
1044 
1045 
1046 /*
1047  * This function should never be called. We need to have it to pass
1048  * it as an argument to other functions.
1049  */
1050 /*ARGSUSED*/
1051 int
1052 hsfs_putapage(
1053 	vnode_t		*vp,
1054 	page_t		*pp,
1055 	u_offset_t	*offp,
1056 	size_t		*lenp,
1057 	int		flags,
1058 	cred_t		*cr)
1059 {
1060 	/* should never happen - just destroy it */
1061 	cmn_err(CE_NOTE, "hsfs_putapage: dirty HSFS page");
1062 	pvn_write_done(pp, B_ERROR | B_WRITE | B_INVAL | B_FORCE | flags);
1063 	return (0);
1064 }
1065 
1066 
1067 /*
1068  * The only flags we support are B_INVAL, B_FREE and B_DONTNEED.
1069  * B_INVAL is set by:
1070  *
1071  *	1) the MC_SYNC command of memcntl(2) to support the MS_INVALIDATE flag.
1072  *	2) the MC_ADVISE command of memcntl(2) with the MADV_DONTNEED advice
1073  *	   which translates to an MC_SYNC with the MS_INVALIDATE flag.
1074  *
1075  * The B_FREE (as well as the B_DONTNEED) flag is set when the
1076  * MADV_SEQUENTIAL advice has been used. VOP_PUTPAGE is invoked
1077  * from SEGVN to release pages behind a pagefault.
1078  */
1079 /*ARGSUSED*/
1080 static int
1081 hsfs_putpage(
1082 	struct vnode	*vp,
1083 	offset_t	off,
1084 	size_t		len,
1085 	int		flags,
1086 	struct cred	*cr)
1087 {
1088 	int error = 0;
1089 
1090 	if (vp->v_count == 0) {
1091 		panic("hsfs_putpage: bad v_count");
1092 		/*NOTREACHED*/
1093 	}
1094 
1095 	if (vp->v_flag & VNOMAP)
1096 		return (ENOSYS);
1097 
1098 	ASSERT(off <= HS_MAXFILEOFF);
1099 
1100 	if (!vn_has_cached_data(vp))	/* no pages mapped */
1101 		return (0);
1102 
1103 	if (len == 0)		/* from 'off' to EOF */
1104 		error = pvn_vplist_dirty(vp, off,
1105 					hsfs_putapage, flags, cr);
1106 	else {
1107 		offset_t end_off = off + len;
1108 		offset_t file_size = VTOH(vp)->hs_dirent.ext_size;
1109 		offset_t io_off;
1110 
1111 		file_size = (file_size + PAGESIZE - 1) & PAGEMASK;
1112 		if (end_off > file_size)
1113 			end_off = file_size;
1114 
1115 		for (io_off = off; io_off < end_off; io_off += PAGESIZE) {
1116 			page_t *pp;
1117 
1118 			/*
1119 			 * We insist on getting the page only if we are
1120 			 * about to invalidate, free or write it and
1121 			 * the B_ASYNC flag is not set.
1122 			 */
1123 			if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
1124 				pp = page_lookup(vp, io_off,
1125 					(flags & (B_INVAL | B_FREE)) ?
1126 					    SE_EXCL : SE_SHARED);
1127 			} else {
1128 				pp = page_lookup_nowait(vp, io_off,
1129 					(flags & B_FREE) ? SE_EXCL : SE_SHARED);
1130 			}
1131 
1132 			if (pp == NULL)
1133 				continue;
1134 			/*
1135 			 * Normally pvn_getdirty() should return 0, which
1136 			 * impies that it has done the job for us.
1137 			 * The shouldn't-happen scenario is when it returns 1.
1138 			 * This means that the page has been modified and
1139 			 * needs to be put back.
1140 			 * Since we can't write on a CD, we fake a failed
1141 			 * I/O and force pvn_write_done() to destroy the page.
1142 			 */
1143 			if (pvn_getdirty(pp, flags) == 1) {
1144 				cmn_err(CE_NOTE,
1145 					"hsfs_putpage: dirty HSFS page");
1146 				pvn_write_done(pp, flags |
1147 				    B_ERROR | B_WRITE | B_INVAL | B_FORCE);
1148 			}
1149 		}
1150 	}
1151 	return (error);
1152 }
1153 
1154 
1155 /*ARGSUSED*/
1156 static int
1157 hsfs_map(
1158 	struct vnode *vp,
1159 	offset_t off,
1160 	struct as *as,
1161 	caddr_t *addrp,
1162 	size_t len,
1163 	uchar_t prot,
1164 	uchar_t maxprot,
1165 	uint_t flags,
1166 	struct cred *cred)
1167 {
1168 	struct segvn_crargs vn_a;
1169 	int error;
1170 
1171 	/* VFS_RECORD(vp->v_vfsp, VS_MAP, VS_CALL); */
1172 
1173 	if (vp->v_flag & VNOMAP)
1174 		return (ENOSYS);
1175 
1176 	if (off > HS_MAXFILEOFF || off < 0 ||
1177 	    (off + len) < 0 || (off + len) > HS_MAXFILEOFF)
1178 		return (ENXIO);
1179 
1180 	if (vp->v_type != VREG) {
1181 		return (ENODEV);
1182 	}
1183 
1184 	/*
1185 	 * If file is being locked, disallow mapping.
1186 	 */
1187 	if (vn_has_mandatory_locks(vp, VTOH(vp)->hs_dirent.mode))
1188 		return (EAGAIN);
1189 
1190 	as_rangelock(as);
1191 
1192 	if ((flags & MAP_FIXED) == 0) {
1193 		map_addr(addrp, len, off, 1, flags);
1194 		if (*addrp == NULL) {
1195 			as_rangeunlock(as);
1196 			return (ENOMEM);
1197 		}
1198 	} else {
1199 		/*
1200 		 * User specified address - blow away any previous mappings
1201 		 */
1202 		(void) as_unmap(as, *addrp, len);
1203 	}
1204 
1205 	vn_a.vp = vp;
1206 	vn_a.offset = off;
1207 	vn_a.type = flags & MAP_TYPE;
1208 	vn_a.prot = prot;
1209 	vn_a.maxprot = maxprot;
1210 	vn_a.flags = flags & ~MAP_TYPE;
1211 	vn_a.cred = cred;
1212 	vn_a.amp = NULL;
1213 	vn_a.szc = 0;
1214 	vn_a.lgrp_mem_policy_flags = 0;
1215 
1216 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
1217 	as_rangeunlock(as);
1218 	return (error);
1219 }
1220 
1221 /* ARGSUSED */
1222 static int
1223 hsfs_addmap(
1224 	struct vnode *vp,
1225 	offset_t off,
1226 	struct as *as,
1227 	caddr_t addr,
1228 	size_t len,
1229 	uchar_t prot,
1230 	uchar_t maxprot,
1231 	uint_t flags,
1232 	struct cred *cr)
1233 {
1234 	struct hsnode *hp;
1235 
1236 	if (vp->v_flag & VNOMAP)
1237 		return (ENOSYS);
1238 
1239 	hp = VTOH(vp);
1240 	mutex_enter(&hp->hs_contents_lock);
1241 	hp->hs_mapcnt += btopr(len);
1242 	mutex_exit(&hp->hs_contents_lock);
1243 	return (0);
1244 }
1245 
1246 /*ARGSUSED*/
1247 static int
1248 hsfs_delmap(
1249 	struct vnode *vp,
1250 	offset_t off,
1251 	struct as *as,
1252 	caddr_t addr,
1253 	size_t len,
1254 	uint_t prot,
1255 	uint_t maxprot,
1256 	uint_t flags,
1257 	struct cred *cr)
1258 {
1259 	struct hsnode *hp;
1260 
1261 	if (vp->v_flag & VNOMAP)
1262 		return (ENOSYS);
1263 
1264 	hp = VTOH(vp);
1265 	mutex_enter(&hp->hs_contents_lock);
1266 	hp->hs_mapcnt -= btopr(len);	/* Count released mappings */
1267 	ASSERT(hp->hs_mapcnt >= 0);
1268 	mutex_exit(&hp->hs_contents_lock);
1269 	return (0);
1270 }
1271 
1272 /* ARGSUSED */
1273 static int
1274 hsfs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp)
1275 {
1276 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
1277 }
1278 
1279 /* ARGSUSED */
1280 static int
1281 hsfs_frlock(
1282 	struct vnode *vp,
1283 	int cmd,
1284 	struct flock64 *bfp,
1285 	int flag,
1286 	offset_t offset,
1287 	struct flk_callback *flk_cbp,
1288 	cred_t *cr)
1289 {
1290 	struct hsnode *hp = VTOH(vp);
1291 
1292 	/*
1293 	 * If the file is being mapped, disallow fs_frlock.
1294 	 * We are not holding the hs_contents_lock while checking
1295 	 * hs_mapcnt because the current locking strategy drops all
1296 	 * locks before calling fs_frlock.
1297 	 * So, hs_mapcnt could change before we enter fs_frlock making
1298 	 * it meaningless to have held hs_contents_lock in the first place.
1299 	 */
1300 	if (hp->hs_mapcnt > 0 && MANDLOCK(vp, hp->hs_dirent.mode))
1301 		return (EAGAIN);
1302 
1303 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr));
1304 }
1305 
1306 /* ARGSUSED */
1307 static int
1308 hsfs_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr)
1309 {
1310 	struct hsfs	*fsp;
1311 
1312 	int		error = 0;
1313 
1314 	switch (cmd) {
1315 
1316 	case _PC_NAME_MAX:
1317 		fsp = VFS_TO_HSFS(vp->v_vfsp);
1318 		*valp = fsp->hsfs_namemax;
1319 		break;
1320 
1321 	case _PC_FILESIZEBITS:
1322 		*valp = 33;	/* Without multi extent support: 4 GB - 2k */
1323 		break;
1324 
1325 	default:
1326 		error = fs_pathconf(vp, cmd, valp, cr);
1327 	}
1328 
1329 	return (error);
1330 }
1331 
1332 
1333 
1334 const fs_operation_def_t hsfs_vnodeops_template[] = {
1335 	VOPNAME_OPEN,		{ .vop_open = hsfs_open },
1336 	VOPNAME_CLOSE,		{ .vop_close = hsfs_close },
1337 	VOPNAME_READ,		{ .vop_read = hsfs_read },
1338 	VOPNAME_GETATTR,	{ .vop_getattr = hsfs_getattr },
1339 	VOPNAME_ACCESS,		{ .vop_access = hsfs_access },
1340 	VOPNAME_LOOKUP,		{ .vop_lookup = hsfs_lookup },
1341 	VOPNAME_READDIR,	{ .vop_readdir = hsfs_readdir },
1342 	VOPNAME_READLINK,	{ .vop_readlink = hsfs_readlink },
1343 	VOPNAME_FSYNC,		{ .vop_fsync = hsfs_fsync },
1344 	VOPNAME_INACTIVE,	{ .vop_inactive = hsfs_inactive },
1345 	VOPNAME_FID,		{ .vop_fid = hsfs_fid },
1346 	VOPNAME_SEEK,		{ .vop_seek = hsfs_seek },
1347 	VOPNAME_FRLOCK,		{ .vop_frlock = hsfs_frlock },
1348 	VOPNAME_GETPAGE,	{ .vop_getpage = hsfs_getpage },
1349 	VOPNAME_PUTPAGE,	{ .vop_putpage = hsfs_putpage },
1350 	VOPNAME_MAP,		{ .vop_map = hsfs_map },
1351 	VOPNAME_ADDMAP,		{ .vop_addmap = hsfs_addmap },
1352 	VOPNAME_DELMAP,		{ .vop_delmap = hsfs_delmap },
1353 	VOPNAME_PATHCONF,	{ .vop_pathconf = hsfs_pathconf },
1354 	NULL,			NULL
1355 };
1356 
1357 struct vnodeops *hsfs_vnodeops;
1358