xref: /titanic_50/usr/src/uts/common/exec/elf/elf.c (revision 4eab410fb63816fe2c0ad0fd18b4c948613f6616)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 /*
29  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
30  */
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/thread.h>
35 #include <sys/sysmacros.h>
36 #include <sys/signal.h>
37 #include <sys/cred.h>
38 #include <sys/user.h>
39 #include <sys/errno.h>
40 #include <sys/vnode.h>
41 #include <sys/mman.h>
42 #include <sys/kmem.h>
43 #include <sys/proc.h>
44 #include <sys/pathname.h>
45 #include <sys/cmn_err.h>
46 #include <sys/systm.h>
47 #include <sys/elf.h>
48 #include <sys/vmsystm.h>
49 #include <sys/debug.h>
50 #include <sys/auxv.h>
51 #include <sys/exec.h>
52 #include <sys/prsystm.h>
53 #include <vm/as.h>
54 #include <vm/rm.h>
55 #include <vm/seg.h>
56 #include <vm/seg_vn.h>
57 #include <sys/modctl.h>
58 #include <sys/systeminfo.h>
59 #include <sys/vmparam.h>
60 #include <sys/machelf.h>
61 #include <sys/shm_impl.h>
62 #include <sys/archsystm.h>
63 #include <sys/fasttrap.h>
64 #include <sys/brand.h>
65 #include "elf_impl.h"
66 #include <sys/sdt.h>
67 #include <sys/siginfo.h>
68 
69 extern int at_flags;
70 
71 #define	ORIGIN_STR	"ORIGIN"
72 #define	ORIGIN_STR_SIZE	6
73 
74 static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *);
75 static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *,
76     ssize_t *);
77 static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *,
78     ssize_t *, caddr_t *, ssize_t *);
79 static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *);
80 static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t,
81     Phdr **, Phdr **, Phdr **, Phdr **, Phdr *,
82     caddr_t *, caddr_t *, intptr_t *, intptr_t *, size_t, long *, size_t *);
83 
84 typedef enum {
85 	STR_CTF,
86 	STR_SYMTAB,
87 	STR_DYNSYM,
88 	STR_STRTAB,
89 	STR_DYNSTR,
90 	STR_SHSTRTAB,
91 	STR_NUM
92 } shstrtype_t;
93 
94 static const char *shstrtab_data[] = {
95 	".SUNW_ctf",
96 	".symtab",
97 	".dynsym",
98 	".strtab",
99 	".dynstr",
100 	".shstrtab"
101 };
102 
103 typedef struct shstrtab {
104 	int	sst_ndx[STR_NUM];
105 	int	sst_cur;
106 } shstrtab_t;
107 
108 static void
109 shstrtab_init(shstrtab_t *s)
110 {
111 	bzero(&s->sst_ndx, sizeof (s->sst_ndx));
112 	s->sst_cur = 1;
113 }
114 
115 static int
116 shstrtab_ndx(shstrtab_t *s, shstrtype_t type)
117 {
118 	int ret;
119 
120 	if ((ret = s->sst_ndx[type]) != 0)
121 		return (ret);
122 
123 	ret = s->sst_ndx[type] = s->sst_cur;
124 	s->sst_cur += strlen(shstrtab_data[type]) + 1;
125 
126 	return (ret);
127 }
128 
129 static size_t
130 shstrtab_size(const shstrtab_t *s)
131 {
132 	return (s->sst_cur);
133 }
134 
135 static void
136 shstrtab_dump(const shstrtab_t *s, char *buf)
137 {
138 	int i, ndx;
139 
140 	*buf = '\0';
141 	for (i = 0; i < STR_NUM; i++) {
142 		if ((ndx = s->sst_ndx[i]) != 0)
143 			(void) strcpy(buf + ndx, shstrtab_data[i]);
144 	}
145 }
146 
147 static int
148 dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base)
149 {
150 	ASSERT(phdrp->p_type == PT_SUNWDTRACE);
151 
152 	/*
153 	 * See the comment in fasttrap.h for information on how to safely
154 	 * update this program header.
155 	 */
156 	if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE ||
157 	    (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X))
158 		return (-1);
159 
160 	args->thrptr = phdrp->p_vaddr + base;
161 
162 	return (0);
163 }
164 
165 /*
166  * Map in the executable pointed to by vp. Returns 0 on success.
167  */
168 int
169 mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr,
170     intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase,
171     caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap)
172 {
173 	size_t		len;
174 	struct vattr	vat;
175 	caddr_t		phdrbase = NULL;
176 	ssize_t		phdrsize;
177 	int		nshdrs, shstrndx, nphdrs;
178 	int		error = 0;
179 	Phdr		*uphdr = NULL;
180 	Phdr		*junk = NULL;
181 	Phdr		*dynphdr = NULL;
182 	Phdr		*dtrphdr = NULL;
183 	uintptr_t	lddata;
184 	long		execsz;
185 	intptr_t	minaddr;
186 
187 	if (lddatap != NULL)
188 		*lddatap = NULL;
189 
190 	if (error = execpermissions(vp, &vat, args)) {
191 		uprintf("%s: Cannot execute %s\n", exec_file, args->pathname);
192 		return (error);
193 	}
194 
195 	if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx,
196 	    &nphdrs)) != 0 ||
197 	    (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase,
198 	    &phdrsize)) != 0) {
199 		uprintf("%s: Cannot read %s\n", exec_file, args->pathname);
200 		return (error);
201 	}
202 
203 	if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) {
204 		uprintf("%s: Nothing to load in %s", exec_file, args->pathname);
205 		kmem_free(phdrbase, phdrsize);
206 		return (ENOEXEC);
207 	}
208 	if (lddatap != NULL)
209 		*lddatap = lddata;
210 
211 	if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr,
212 	    &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr,
213 	    len, &execsz, brksize)) {
214 		uprintf("%s: Cannot map %s\n", exec_file, args->pathname);
215 		kmem_free(phdrbase, phdrsize);
216 		return (error);
217 	}
218 
219 	/*
220 	 * Inform our caller if the executable needs an interpreter.
221 	 */
222 	*interp = (dynphdr == NULL) ? 0 : 1;
223 
224 	/*
225 	 * If this is a statically linked executable, voffset should indicate
226 	 * the address of the executable itself (it normally holds the address
227 	 * of the interpreter).
228 	 */
229 	if (ehdr->e_type == ET_EXEC && *interp == 0)
230 		*voffset = minaddr;
231 
232 	if (uphdr != NULL) {
233 		*uphdr_vaddr = uphdr->p_vaddr;
234 	} else {
235 		*uphdr_vaddr = (Addr)-1;
236 	}
237 
238 	kmem_free(phdrbase, phdrsize);
239 	return (error);
240 }
241 
242 /*ARGSUSED*/
243 int
244 elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap,
245     int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred,
246     int brand_action)
247 {
248 	caddr_t		phdrbase = NULL;
249 	caddr_t 	bssbase = 0;
250 	caddr_t 	brkbase = 0;
251 	size_t		brksize = 0;
252 	ssize_t		dlnsize;
253 	aux_entry_t	*aux;
254 	int		error;
255 	ssize_t		resid;
256 	int		fd = -1;
257 	intptr_t	voffset;
258 	Phdr		*dyphdr = NULL;
259 	Phdr		*stphdr = NULL;
260 	Phdr		*uphdr = NULL;
261 	Phdr		*junk = NULL;
262 	size_t		len;
263 	ssize_t		phdrsize;
264 	int		postfixsize = 0;
265 	int		i, hsize;
266 	Phdr		*phdrp;
267 	Phdr		*dataphdrp = NULL;
268 	Phdr		*dtrphdr;
269 	Phdr		*capphdr = NULL;
270 	Cap		*cap = NULL;
271 	ssize_t		capsize;
272 	int		hasu = 0;
273 	int		hasauxv = 0;
274 	int		hasdy = 0;
275 	int		branded = 0;
276 
277 	struct proc *p = ttoproc(curthread);
278 	struct user *up = PTOU(p);
279 	struct bigwad {
280 		Ehdr	ehdr;
281 		aux_entry_t	elfargs[__KERN_NAUXV_IMPL];
282 		char		dl_name[MAXPATHLEN];
283 		char		pathbuf[MAXPATHLEN];
284 		struct vattr	vattr;
285 		struct execenv	exenv;
286 	} *bigwad;	/* kmem_alloc this behemoth so we don't blow stack */
287 	Ehdr		*ehdrp;
288 	int		nshdrs, shstrndx, nphdrs;
289 	char		*dlnp;
290 	char		*pathbufp;
291 	rlim64_t	limit;
292 	rlim64_t	roundlimit;
293 
294 	ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64);
295 
296 	bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP);
297 	ehdrp = &bigwad->ehdr;
298 	dlnp = bigwad->dl_name;
299 	pathbufp = bigwad->pathbuf;
300 
301 	/*
302 	 * Obtain ELF and program header information.
303 	 */
304 	if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx,
305 	    &nphdrs)) != 0 ||
306 	    (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase,
307 	    &phdrsize)) != 0)
308 		goto out;
309 
310 	/*
311 	 * Prevent executing an ELF file that has no entry point.
312 	 */
313 	if (ehdrp->e_entry == 0) {
314 		uprintf("%s: Bad entry point\n", exec_file);
315 		goto bad;
316 	}
317 
318 	/*
319 	 * Put data model that we're exec-ing to into the args passed to
320 	 * exec_args(), so it will know what it is copying to on new stack.
321 	 * Now that we know whether we are exec-ing a 32-bit or 64-bit
322 	 * executable, we can set execsz with the appropriate NCARGS.
323 	 */
324 #ifdef	_LP64
325 	if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) {
326 		args->to_model = DATAMODEL_ILP32;
327 		*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1);
328 	} else {
329 		args->to_model = DATAMODEL_LP64;
330 		args->stk_prot &= ~PROT_EXEC;
331 #if defined(__i386) || defined(__amd64)
332 		args->dat_prot &= ~PROT_EXEC;
333 #endif
334 		*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1);
335 	}
336 #else	/* _LP64 */
337 	args->to_model = DATAMODEL_ILP32;
338 	*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1);
339 #endif	/* _LP64 */
340 
341 	/*
342 	 * We delay invoking the brand callback until we've figured out
343 	 * what kind of elf binary we're trying to run, 32-bit or 64-bit.
344 	 * We do this because now the brand library can just check
345 	 * args->to_model to see if the target is 32-bit or 64-bit without
346 	 * having do duplicate all the code above.
347 	 */
348 	if ((level < 2) &&
349 	    (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) {
350 		error = BROP(p)->b_elfexec(vp, uap, args,
351 		    idatap, level + 1, execsz, setid, exec_file, cred,
352 		    brand_action);
353 		goto out;
354 	}
355 
356 	/*
357 	 * Determine aux size now so that stack can be built
358 	 * in one shot (except actual copyout of aux image),
359 	 * determine any non-default stack protections,
360 	 * and still have this code be machine independent.
361 	 */
362 	hsize = ehdrp->e_phentsize;
363 	phdrp = (Phdr *)phdrbase;
364 	for (i = nphdrs; i > 0; i--) {
365 		switch (phdrp->p_type) {
366 		case PT_INTERP:
367 			hasauxv = hasdy = 1;
368 			break;
369 		case PT_PHDR:
370 			hasu = 1;
371 			break;
372 		case PT_SUNWSTACK:
373 			args->stk_prot = PROT_USER;
374 			if (phdrp->p_flags & PF_R)
375 				args->stk_prot |= PROT_READ;
376 			if (phdrp->p_flags & PF_W)
377 				args->stk_prot |= PROT_WRITE;
378 			if (phdrp->p_flags & PF_X)
379 				args->stk_prot |= PROT_EXEC;
380 			break;
381 		case PT_LOAD:
382 			dataphdrp = phdrp;
383 			break;
384 		case PT_SUNWCAP:
385 			capphdr = phdrp;
386 			break;
387 		}
388 		phdrp = (Phdr *)((caddr_t)phdrp + hsize);
389 	}
390 
391 	if (ehdrp->e_type != ET_EXEC) {
392 		dataphdrp = NULL;
393 		hasauxv = 1;
394 	}
395 
396 	/* Copy BSS permissions to args->dat_prot */
397 	if (dataphdrp != NULL) {
398 		args->dat_prot = PROT_USER;
399 		if (dataphdrp->p_flags & PF_R)
400 			args->dat_prot |= PROT_READ;
401 		if (dataphdrp->p_flags & PF_W)
402 			args->dat_prot |= PROT_WRITE;
403 		if (dataphdrp->p_flags & PF_X)
404 			args->dat_prot |= PROT_EXEC;
405 	}
406 
407 	/*
408 	 * If a auxvector will be required - reserve the space for
409 	 * it now.  This may be increased by exec_args if there are
410 	 * ISA-specific types (included in __KERN_NAUXV_IMPL).
411 	 */
412 	if (hasauxv) {
413 		/*
414 		 * If a AUX vector is being built - the base AUX
415 		 * entries are:
416 		 *
417 		 *	AT_BASE
418 		 *	AT_FLAGS
419 		 *	AT_PAGESZ
420 		 *	AT_SUN_AUXFLAGS
421 		 *	AT_SUN_HWCAP
422 		 *	AT_SUN_HWCAP2
423 		 *	AT_SUN_PLATFORM (added in stk_copyout)
424 		 *	AT_SUN_EXECNAME (added in stk_copyout)
425 		 *	AT_NULL
426 		 *
427 		 * total == 9
428 		 */
429 		if (hasdy && hasu) {
430 			/*
431 			 * Has PT_INTERP & PT_PHDR - the auxvectors that
432 			 * will be built are:
433 			 *
434 			 *	AT_PHDR
435 			 *	AT_PHENT
436 			 *	AT_PHNUM
437 			 *	AT_ENTRY
438 			 *	AT_LDDATA
439 			 *
440 			 * total = 5
441 			 */
442 			args->auxsize = (9 + 5) * sizeof (aux_entry_t);
443 		} else if (hasdy) {
444 			/*
445 			 * Has PT_INTERP but no PT_PHDR
446 			 *
447 			 *	AT_EXECFD
448 			 *	AT_LDDATA
449 			 *
450 			 * total = 2
451 			 */
452 			args->auxsize = (9 + 2) * sizeof (aux_entry_t);
453 		} else {
454 			args->auxsize = 9 * sizeof (aux_entry_t);
455 		}
456 	} else {
457 		args->auxsize = 0;
458 	}
459 
460 	/*
461 	 * If this binary is using an emulator, we need to add an
462 	 * AT_SUN_EMULATOR aux entry.
463 	 */
464 	if (args->emulator != NULL)
465 		args->auxsize += sizeof (aux_entry_t);
466 
467 	if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) {
468 		branded = 1;
469 		/*
470 		 * We will be adding 4 entries to the aux vectors.  One for
471 		 * the the brandname and 3 for the brand specific aux vectors.
472 		 */
473 		args->auxsize += 4 * sizeof (aux_entry_t);
474 	}
475 
476 	/* Hardware/Software capabilities */
477 	if (capphdr != NULL &&
478 	    (capsize = capphdr->p_filesz) > 0 &&
479 	    capsize <= 16 * sizeof (*cap)) {
480 		int ncaps = capsize / sizeof (*cap);
481 		Cap *cp;
482 
483 		cap = kmem_alloc(capsize, KM_SLEEP);
484 		if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)cap,
485 		    capsize, (offset_t)capphdr->p_offset,
486 		    UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
487 			uprintf("%s: Cannot read capabilities section\n",
488 			    exec_file);
489 			goto out;
490 		}
491 		for (cp = cap; cp < cap + ncaps; cp++) {
492 			if (cp->c_tag == CA_SUNW_SF_1 &&
493 			    (cp->c_un.c_val & SF1_SUNW_ADDR32)) {
494 				if (args->to_model == DATAMODEL_LP64)
495 					args->addr32 = 1;
496 				break;
497 			}
498 		}
499 	}
500 
501 	aux = bigwad->elfargs;
502 	/*
503 	 * Move args to the user's stack.
504 	 * This can fill in the AT_SUN_PLATFORM and AT_SUN_EXECNAME aux entries.
505 	 */
506 	if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) {
507 		if (error == -1) {
508 			error = ENOEXEC;
509 			goto bad;
510 		}
511 		goto out;
512 	}
513 	/* we're single threaded after this point */
514 
515 	/*
516 	 * If this is an ET_DYN executable (shared object),
517 	 * determine its memory size so that mapelfexec() can load it.
518 	 */
519 	if (ehdrp->e_type == ET_DYN)
520 		len = elfsize(ehdrp, nphdrs, phdrbase, NULL);
521 	else
522 		len = 0;
523 
524 	dtrphdr = NULL;
525 
526 	if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &dyphdr,
527 	    &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL,
528 	    len, execsz, &brksize)) != 0)
529 		goto bad;
530 
531 	if (uphdr != NULL && dyphdr == NULL)
532 		goto bad;
533 
534 	if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) {
535 		uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file);
536 		goto bad;
537 	}
538 
539 	if (dyphdr != NULL) {
540 		size_t		len;
541 		uintptr_t	lddata;
542 		char		*p;
543 		struct vnode	*nvp;
544 
545 		dlnsize = dyphdr->p_filesz;
546 
547 		if (dlnsize > MAXPATHLEN || dlnsize <= 0)
548 			goto bad;
549 
550 		/*
551 		 * Read in "interpreter" pathname.
552 		 */
553 		if ((error = vn_rdwr(UIO_READ, vp, dlnp, dyphdr->p_filesz,
554 		    (offset_t)dyphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0,
555 		    CRED(), &resid)) != 0) {
556 			uprintf("%s: Cannot obtain interpreter pathname\n",
557 			    exec_file);
558 			goto bad;
559 		}
560 
561 		if (resid != 0 || dlnp[dlnsize - 1] != '\0')
562 			goto bad;
563 
564 		/*
565 		 * Search for '$ORIGIN' token in interpreter path.
566 		 * If found, expand it.
567 		 */
568 		for (p = dlnp; p = strchr(p, '$'); ) {
569 			uint_t	len, curlen;
570 			char	*_ptr;
571 
572 			if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE))
573 				continue;
574 
575 			curlen = 0;
576 			len = p - dlnp - 1;
577 			if (len) {
578 				bcopy(dlnp, pathbufp, len);
579 				curlen += len;
580 			}
581 			if (_ptr = strrchr(args->pathname, '/')) {
582 				len = _ptr - args->pathname;
583 				if ((curlen + len) > MAXPATHLEN)
584 					break;
585 
586 				bcopy(args->pathname, &pathbufp[curlen], len);
587 				curlen += len;
588 			} else {
589 				/*
590 				 * executable is a basename found in the
591 				 * current directory.  So - just substitue
592 				 * '.' for ORIGIN.
593 				 */
594 				pathbufp[curlen] = '.';
595 				curlen++;
596 			}
597 			p += ORIGIN_STR_SIZE;
598 			len = strlen(p);
599 
600 			if ((curlen + len) > MAXPATHLEN)
601 				break;
602 			bcopy(p, &pathbufp[curlen], len);
603 			curlen += len;
604 			pathbufp[curlen++] = '\0';
605 			bcopy(pathbufp, dlnp, curlen);
606 		}
607 
608 		/*
609 		 * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1
610 		 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1).
611 		 * Just in case /usr is not mounted, change it now.
612 		 */
613 		if (strcmp(dlnp, USR_LIB_RTLD) == 0)
614 			dlnp += 4;
615 		error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp);
616 		if (error && dlnp != bigwad->dl_name) {
617 			/* new kernel, old user-level */
618 			error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW,
619 			    NULLVPP, &nvp);
620 		}
621 		if (error) {
622 			uprintf("%s: Cannot find %s\n", exec_file, dlnp);
623 			goto bad;
624 		}
625 
626 		/*
627 		 * Setup the "aux" vector.
628 		 */
629 		if (uphdr) {
630 			if (ehdrp->e_type == ET_DYN) {
631 				/* don't use the first page */
632 				bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE;
633 				bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE;
634 			} else {
635 				bigwad->exenv.ex_bssbase = bssbase;
636 				bigwad->exenv.ex_brkbase = brkbase;
637 			}
638 			bigwad->exenv.ex_brksize = brksize;
639 			bigwad->exenv.ex_magic = elfmagic;
640 			bigwad->exenv.ex_vp = vp;
641 			setexecenv(&bigwad->exenv);
642 
643 			ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset)
644 			ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize)
645 			ADDAUX(aux, AT_PHNUM, nphdrs)
646 			ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset)
647 		} else {
648 			if ((error = execopen(&vp, &fd)) != 0) {
649 				VN_RELE(nvp);
650 				goto bad;
651 			}
652 
653 			ADDAUX(aux, AT_EXECFD, fd)
654 		}
655 
656 		if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) {
657 			VN_RELE(nvp);
658 			uprintf("%s: Cannot execute %s\n", exec_file, dlnp);
659 			goto bad;
660 		}
661 
662 		/*
663 		 * Now obtain the ELF header along with the entire program
664 		 * header contained in "nvp".
665 		 */
666 		kmem_free(phdrbase, phdrsize);
667 		phdrbase = NULL;
668 		if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs,
669 		    &shstrndx, &nphdrs)) != 0 ||
670 		    (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase,
671 		    &phdrsize)) != 0) {
672 			VN_RELE(nvp);
673 			uprintf("%s: Cannot read %s\n", exec_file, dlnp);
674 			goto bad;
675 		}
676 
677 		/*
678 		 * Determine memory size of the "interpreter's" loadable
679 		 * sections.  This size is then used to obtain the virtual
680 		 * address of a hole, in the user's address space, large
681 		 * enough to map the "interpreter".
682 		 */
683 		if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) {
684 			VN_RELE(nvp);
685 			uprintf("%s: Nothing to load in %s\n", exec_file, dlnp);
686 			goto bad;
687 		}
688 
689 		dtrphdr = NULL;
690 
691 		error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk,
692 		    &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len,
693 		    execsz, NULL);
694 		if (error || junk != NULL) {
695 			VN_RELE(nvp);
696 			uprintf("%s: Cannot map %s\n", exec_file, dlnp);
697 			goto bad;
698 		}
699 
700 		/*
701 		 * We use the DTrace program header to initialize the
702 		 * architecture-specific user per-LWP location. The dtrace
703 		 * fasttrap provider requires ready access to per-LWP scratch
704 		 * space. We assume that there is only one such program header
705 		 * in the interpreter.
706 		 */
707 		if (dtrphdr != NULL &&
708 		    dtrace_safe_phdr(dtrphdr, args, voffset) != 0) {
709 			VN_RELE(nvp);
710 			uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp);
711 			goto bad;
712 		}
713 
714 		VN_RELE(nvp);
715 		ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata)
716 	}
717 
718 	if (hasauxv) {
719 		int auxf = AF_SUN_HWCAPVERIFY;
720 		/*
721 		 * Note: AT_SUN_PLATFORM and AT_SUN_EXECNAME were filled in via
722 		 * exec_args()
723 		 */
724 		ADDAUX(aux, AT_BASE, voffset)
725 		ADDAUX(aux, AT_FLAGS, at_flags)
726 		ADDAUX(aux, AT_PAGESZ, PAGESIZE)
727 		/*
728 		 * Linker flags. (security)
729 		 * p_flag not yet set at this time.
730 		 * We rely on gexec() to provide us with the information.
731 		 * If the application is set-uid but this is not reflected
732 		 * in a mismatch between real/effective uids/gids, then
733 		 * don't treat this as a set-uid exec.  So we care about
734 		 * the EXECSETID_UGIDS flag but not the ...SETID flag.
735 		 */
736 		if ((setid &= ~EXECSETID_SETID) != 0)
737 			auxf |= AF_SUN_SETUGID;
738 
739 		/*
740 		 * If we're running a native process from within a branded
741 		 * zone under pfexec then we clear the AF_SUN_SETUGID flag so
742 		 * that the native ld.so.1 is able to link with the native
743 		 * libraries instead of using the brand libraries that are
744 		 * installed in the zone.  We only do this for processes
745 		 * which we trust because we see they are already running
746 		 * under pfexec (where uid != euid).  This prevents a
747 		 * malicious user within the zone from crafting a wrapper to
748 		 * run native suid commands with unsecure libraries interposed.
749 		 */
750 		if ((brand_action == EBA_NATIVE) && (PROC_IS_BRANDED(p) &&
751 		    (setid &= ~EXECSETID_SETID) != 0))
752 			auxf &= ~AF_SUN_SETUGID;
753 
754 		/*
755 		 * Record the user addr of the auxflags aux vector entry
756 		 * since brands may optionally want to manipulate this field.
757 		 */
758 		args->auxp_auxflags =
759 		    (char *)((char *)args->stackend +
760 		    ((char *)&aux->a_type -
761 		    (char *)bigwad->elfargs));
762 		ADDAUX(aux, AT_SUN_AUXFLAGS, auxf);
763 		/*
764 		 * Hardware capability flag word (performance hints)
765 		 * Used for choosing faster library routines.
766 		 * (Potentially different between 32-bit and 64-bit ABIs)
767 		 */
768 #if defined(_LP64)
769 		if (args->to_model == DATAMODEL_NATIVE) {
770 			ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap)
771 			ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2)
772 		} else {
773 			ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32)
774 			ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap32_2)
775 		}
776 #else
777 		ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap)
778 		ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2)
779 #endif
780 		if (branded) {
781 			/*
782 			 * Reserve space for the brand-private aux vectors,
783 			 * and record the user addr of that space.
784 			 */
785 			args->auxp_brand =
786 			    (char *)((char *)args->stackend +
787 			    ((char *)&aux->a_type -
788 			    (char *)bigwad->elfargs));
789 			ADDAUX(aux, AT_SUN_BRAND_AUX1, 0)
790 			ADDAUX(aux, AT_SUN_BRAND_AUX2, 0)
791 			ADDAUX(aux, AT_SUN_BRAND_AUX3, 0)
792 		}
793 
794 		ADDAUX(aux, AT_NULL, 0)
795 		postfixsize = (char *)aux - (char *)bigwad->elfargs;
796 
797 		/*
798 		 * We make assumptions above when we determine how many aux
799 		 * vector entries we will be adding. However, if we have an
800 		 * invalid elf file, it is possible that mapelfexec might
801 		 * behave differently (but not return an error), in which case
802 		 * the number of aux entries we actually add will be different.
803 		 * We detect that now and error out.
804 		 */
805 		if (postfixsize != args->auxsize) {
806 			DTRACE_PROBE2(elfexec_badaux, int, postfixsize,
807 			    int, args->auxsize);
808 			goto bad;
809 		}
810 		ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t));
811 	}
812 
813 	/*
814 	 * For the 64-bit kernel, the limit is big enough that rounding it up
815 	 * to a page can overflow the 64-bit limit, so we check for btopr()
816 	 * overflowing here by comparing it with the unrounded limit in pages.
817 	 * If it hasn't overflowed, compare the exec size with the rounded up
818 	 * limit in pages.  Otherwise, just compare with the unrounded limit.
819 	 */
820 	limit = btop(p->p_vmem_ctl);
821 	roundlimit = btopr(p->p_vmem_ctl);
822 	if ((roundlimit > limit && *execsz > roundlimit) ||
823 	    (roundlimit < limit && *execsz > limit)) {
824 		mutex_enter(&p->p_lock);
825 		(void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p,
826 		    RCA_SAFE);
827 		mutex_exit(&p->p_lock);
828 		error = ENOMEM;
829 		goto bad;
830 	}
831 
832 	bzero(up->u_auxv, sizeof (up->u_auxv));
833 	if (postfixsize) {
834 		int num_auxv;
835 
836 		/*
837 		 * Copy the aux vector to the user stack.
838 		 */
839 		error = execpoststack(args, bigwad->elfargs, postfixsize);
840 		if (error)
841 			goto bad;
842 
843 		/*
844 		 * Copy auxv to the process's user structure for use by /proc.
845 		 * If this is a branded process, the brand's exec routine will
846 		 * copy it's private entries to the user structure later. It
847 		 * relies on the fact that the blank entries are at the end.
848 		 */
849 		num_auxv = postfixsize / sizeof (aux_entry_t);
850 		ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t));
851 		aux = bigwad->elfargs;
852 		for (i = 0; i < num_auxv; i++) {
853 			up->u_auxv[i].a_type = aux[i].a_type;
854 			up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val;
855 		}
856 	}
857 
858 	/*
859 	 * Pass back the starting address so we can set the program counter.
860 	 */
861 	args->entry = (uintptr_t)(ehdrp->e_entry + voffset);
862 
863 	if (!uphdr) {
864 		if (ehdrp->e_type == ET_DYN) {
865 			/*
866 			 * If we are executing a shared library which doesn't
867 			 * have a interpreter (probably ld.so.1) then
868 			 * we don't set the brkbase now.  Instead we
869 			 * delay it's setting until the first call
870 			 * via grow.c::brk().  This permits ld.so.1 to
871 			 * initialize brkbase to the tail of the executable it
872 			 * loads (which is where it needs to be).
873 			 */
874 			bigwad->exenv.ex_brkbase = (caddr_t)0;
875 			bigwad->exenv.ex_bssbase = (caddr_t)0;
876 			bigwad->exenv.ex_brksize = 0;
877 		} else {
878 			bigwad->exenv.ex_brkbase = brkbase;
879 			bigwad->exenv.ex_bssbase = bssbase;
880 			bigwad->exenv.ex_brksize = brksize;
881 		}
882 		bigwad->exenv.ex_magic = elfmagic;
883 		bigwad->exenv.ex_vp = vp;
884 		setexecenv(&bigwad->exenv);
885 	}
886 
887 	ASSERT(error == 0);
888 	goto out;
889 
890 bad:
891 	if (fd != -1)		/* did we open the a.out yet */
892 		(void) execclose(fd);
893 
894 	psignal(p, SIGKILL);
895 
896 	if (error == 0)
897 		error = ENOEXEC;
898 out:
899 	if (phdrbase != NULL)
900 		kmem_free(phdrbase, phdrsize);
901 	if (cap != NULL)
902 		kmem_free(cap, capsize);
903 	kmem_free(bigwad, sizeof (struct bigwad));
904 	return (error);
905 }
906 
907 /*
908  * Compute the memory size requirement for the ELF file.
909  */
910 static size_t
911 elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata)
912 {
913 	size_t	len;
914 	Phdr	*phdrp = (Phdr *)phdrbase;
915 	int	hsize = ehdrp->e_phentsize;
916 	int	first = 1;
917 	int	dfirst = 1;	/* first data segment */
918 	uintptr_t loaddr = 0;
919 	uintptr_t hiaddr = 0;
920 	uintptr_t lo, hi;
921 	int	i;
922 
923 	for (i = nphdrs; i > 0; i--) {
924 		if (phdrp->p_type == PT_LOAD) {
925 			lo = phdrp->p_vaddr;
926 			hi = lo + phdrp->p_memsz;
927 			if (first) {
928 				loaddr = lo;
929 				hiaddr = hi;
930 				first = 0;
931 			} else {
932 				if (loaddr > lo)
933 					loaddr = lo;
934 				if (hiaddr < hi)
935 					hiaddr = hi;
936 			}
937 
938 			/*
939 			 * save the address of the first data segment
940 			 * of a object - used for the AT_SUNW_LDDATA
941 			 * aux entry.
942 			 */
943 			if ((lddata != NULL) && dfirst &&
944 			    (phdrp->p_flags & PF_W)) {
945 				*lddata = lo;
946 				dfirst = 0;
947 			}
948 		}
949 		phdrp = (Phdr *)((caddr_t)phdrp + hsize);
950 	}
951 
952 	len = hiaddr - (loaddr & PAGEMASK);
953 	len = roundup(len, PAGESIZE);
954 
955 	return (len);
956 }
957 
958 /*
959  * Read in the ELF header and program header table.
960  * SUSV3 requires:
961  *	ENOEXEC	File format is not recognized
962  *	EINVAL	Format recognized but execution not supported
963  */
964 static int
965 getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx,
966     int *nphdrs)
967 {
968 	int error;
969 	ssize_t resid;
970 
971 	/*
972 	 * We got here by the first two bytes in ident,
973 	 * now read the entire ELF header.
974 	 */
975 	if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr,
976 	    sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0,
977 	    (rlim64_t)0, credp, &resid)) != 0)
978 		return (error);
979 
980 	/*
981 	 * Since a separate version is compiled for handling 32-bit and
982 	 * 64-bit ELF executables on a 64-bit kernel, the 64-bit version
983 	 * doesn't need to be able to deal with 32-bit ELF files.
984 	 */
985 	if (resid != 0 ||
986 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
987 	    ehdr->e_ident[EI_MAG3] != ELFMAG3)
988 		return (ENOEXEC);
989 
990 	if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) ||
991 #if defined(_ILP32) || defined(_ELF32_COMPAT)
992 	    ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
993 #else
994 	    ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
995 #endif
996 	    !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine,
997 	    ehdr->e_flags))
998 		return (EINVAL);
999 
1000 	*nshdrs = ehdr->e_shnum;
1001 	*shstrndx = ehdr->e_shstrndx;
1002 	*nphdrs = ehdr->e_phnum;
1003 
1004 	/*
1005 	 * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need
1006 	 * to read in the section header at index zero to acces the true
1007 	 * values for those fields.
1008 	 */
1009 	if ((*nshdrs == 0 && ehdr->e_shoff != 0) ||
1010 	    *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) {
1011 		Shdr shdr;
1012 
1013 		if (ehdr->e_shoff == 0)
1014 			return (EINVAL);
1015 
1016 		if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr,
1017 		    sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0,
1018 		    (rlim64_t)0, credp, &resid)) != 0)
1019 			return (error);
1020 
1021 		if (*nshdrs == 0)
1022 			*nshdrs = shdr.sh_size;
1023 		if (*shstrndx == SHN_XINDEX)
1024 			*shstrndx = shdr.sh_link;
1025 		if (*nphdrs == PN_XNUM && shdr.sh_info != 0)
1026 			*nphdrs = shdr.sh_info;
1027 	}
1028 
1029 	return (0);
1030 }
1031 
1032 #ifdef _ELF32_COMPAT
1033 extern size_t elf_nphdr_max;
1034 #else
1035 size_t elf_nphdr_max = 1000;
1036 #endif
1037 
1038 static int
1039 getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs,
1040     caddr_t *phbasep, ssize_t *phsizep)
1041 {
1042 	ssize_t resid, minsize;
1043 	int err;
1044 
1045 	/*
1046 	 * Since we're going to be using e_phentsize to iterate down the
1047 	 * array of program headers, it must be 8-byte aligned or else
1048 	 * a we might cause a misaligned access. We use all members through
1049 	 * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so
1050 	 * e_phentsize must be at least large enough to include those
1051 	 * members.
1052 	 */
1053 #if !defined(_LP64) || defined(_ELF32_COMPAT)
1054 	minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags);
1055 #else
1056 	minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz);
1057 #endif
1058 	if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3))
1059 		return (EINVAL);
1060 
1061 	*phsizep = nphdrs * ehdr->e_phentsize;
1062 
1063 	if (*phsizep > sizeof (Phdr) * elf_nphdr_max) {
1064 		if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL)
1065 			return (ENOMEM);
1066 	} else {
1067 		*phbasep = kmem_alloc(*phsizep, KM_SLEEP);
1068 	}
1069 
1070 	if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep,
1071 	    (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0,
1072 	    credp, &resid)) != 0) {
1073 		kmem_free(*phbasep, *phsizep);
1074 		*phbasep = NULL;
1075 		return (err);
1076 	}
1077 
1078 	return (0);
1079 }
1080 
1081 #ifdef _ELF32_COMPAT
1082 extern size_t elf_nshdr_max;
1083 extern size_t elf_shstrtab_max;
1084 #else
1085 size_t elf_nshdr_max = 10000;
1086 size_t elf_shstrtab_max = 100 * 1024;
1087 #endif
1088 
1089 
1090 static int
1091 getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr,
1092     int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep,
1093     char **shstrbasep, ssize_t *shstrsizep)
1094 {
1095 	ssize_t resid, minsize;
1096 	int err;
1097 	Shdr *shdr;
1098 
1099 	/*
1100 	 * Since we're going to be using e_shentsize to iterate down the
1101 	 * array of section headers, it must be 8-byte aligned or else
1102 	 * a we might cause a misaligned access. We use all members through
1103 	 * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize
1104 	 * must be at least large enough to include that member. The index
1105 	 * of the string table section must also be valid.
1106 	 */
1107 	minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize);
1108 	if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) ||
1109 	    shstrndx >= nshdrs)
1110 		return (EINVAL);
1111 
1112 	*shsizep = nshdrs * ehdr->e_shentsize;
1113 
1114 	if (*shsizep > sizeof (Shdr) * elf_nshdr_max) {
1115 		if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL)
1116 			return (ENOMEM);
1117 	} else {
1118 		*shbasep = kmem_alloc(*shsizep, KM_SLEEP);
1119 	}
1120 
1121 	if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep,
1122 	    (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0,
1123 	    credp, &resid)) != 0) {
1124 		kmem_free(*shbasep, *shsizep);
1125 		return (err);
1126 	}
1127 
1128 	/*
1129 	 * Pull the section string table out of the vnode; fail if the size
1130 	 * is zero.
1131 	 */
1132 	shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize);
1133 	if ((*shstrsizep = shdr->sh_size) == 0) {
1134 		kmem_free(*shbasep, *shsizep);
1135 		return (EINVAL);
1136 	}
1137 
1138 	if (*shstrsizep > elf_shstrtab_max) {
1139 		if ((*shstrbasep = kmem_alloc(*shstrsizep,
1140 		    KM_NOSLEEP)) == NULL) {
1141 			kmem_free(*shbasep, *shsizep);
1142 			return (ENOMEM);
1143 		}
1144 	} else {
1145 		*shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP);
1146 	}
1147 
1148 	if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep,
1149 	    (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0,
1150 	    credp, &resid)) != 0) {
1151 		kmem_free(*shbasep, *shsizep);
1152 		kmem_free(*shstrbasep, *shstrsizep);
1153 		return (err);
1154 	}
1155 
1156 	/*
1157 	 * Make sure the strtab is null-terminated to make sure we
1158 	 * don't run off the end of the table.
1159 	 */
1160 	(*shstrbasep)[*shstrsizep - 1] = '\0';
1161 
1162 	return (0);
1163 }
1164 
1165 static int
1166 mapelfexec(
1167 	vnode_t *vp,
1168 	Ehdr *ehdr,
1169 	int nphdrs,
1170 	caddr_t phdrbase,
1171 	Phdr **uphdr,
1172 	Phdr **dyphdr,
1173 	Phdr **stphdr,
1174 	Phdr **dtphdr,
1175 	Phdr *dataphdrp,
1176 	caddr_t *bssbase,
1177 	caddr_t *brkbase,
1178 	intptr_t *voffset,
1179 	intptr_t *minaddr,
1180 	size_t len,
1181 	long *execsz,
1182 	size_t *brksize)
1183 {
1184 	Phdr *phdr;
1185 	int i, prot, error;
1186 	caddr_t addr = NULL;
1187 	size_t zfodsz;
1188 	int ptload = 0;
1189 	int page;
1190 	off_t offset;
1191 	int hsize = ehdr->e_phentsize;
1192 	caddr_t mintmp = (caddr_t)-1;
1193 	extern int use_brk_lpg;
1194 
1195 	if (ehdr->e_type == ET_DYN) {
1196 		/*
1197 		 * Obtain the virtual address of a hole in the
1198 		 * address space to map the "interpreter".
1199 		 */
1200 		map_addr(&addr, len, (offset_t)0, 1, 0);
1201 		if (addr == NULL)
1202 			return (ENOMEM);
1203 		*voffset = (intptr_t)addr;
1204 
1205 		/*
1206 		 * Calculate the minimum vaddr so it can be subtracted out.
1207 		 * According to the ELF specification, since PT_LOAD sections
1208 		 * must be sorted by increasing p_vaddr values, this is
1209 		 * guaranteed to be the first PT_LOAD section.
1210 		 */
1211 		phdr = (Phdr *)phdrbase;
1212 		for (i = nphdrs; i > 0; i--) {
1213 			if (phdr->p_type == PT_LOAD) {
1214 				*voffset -= (uintptr_t)phdr->p_vaddr;
1215 				break;
1216 			}
1217 			phdr = (Phdr *)((caddr_t)phdr + hsize);
1218 		}
1219 
1220 	} else {
1221 		*voffset = 0;
1222 	}
1223 	phdr = (Phdr *)phdrbase;
1224 	for (i = nphdrs; i > 0; i--) {
1225 		switch (phdr->p_type) {
1226 		case PT_LOAD:
1227 			if ((*dyphdr != NULL) && (*uphdr == NULL))
1228 				return (0);
1229 
1230 			ptload = 1;
1231 			prot = PROT_USER;
1232 			if (phdr->p_flags & PF_R)
1233 				prot |= PROT_READ;
1234 			if (phdr->p_flags & PF_W)
1235 				prot |= PROT_WRITE;
1236 			if (phdr->p_flags & PF_X)
1237 				prot |= PROT_EXEC;
1238 
1239 			addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset);
1240 
1241 			/*
1242 			 * Keep track of the segment with the lowest starting
1243 			 * address.
1244 			 */
1245 			if (addr < mintmp)
1246 				mintmp = addr;
1247 
1248 			zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz;
1249 
1250 			offset = phdr->p_offset;
1251 			if (((uintptr_t)offset & PAGEOFFSET) ==
1252 			    ((uintptr_t)addr & PAGEOFFSET) &&
1253 			    (!(vp->v_flag & VNOMAP))) {
1254 				page = 1;
1255 			} else {
1256 				page = 0;
1257 			}
1258 
1259 			/*
1260 			 * Set the heap pagesize for OOB when the bss size
1261 			 * is known and use_brk_lpg is not 0.
1262 			 */
1263 			if (brksize != NULL && use_brk_lpg &&
1264 			    zfodsz != 0 && phdr == dataphdrp &&
1265 			    (prot & PROT_WRITE)) {
1266 				size_t tlen = P2NPHASE((uintptr_t)addr +
1267 				    phdr->p_filesz, PAGESIZE);
1268 
1269 				if (zfodsz > tlen) {
1270 					curproc->p_brkpageszc =
1271 					    page_szc(map_pgsz(MAPPGSZ_HEAP,
1272 					    curproc, addr + phdr->p_filesz +
1273 					    tlen, zfodsz - tlen, 0));
1274 				}
1275 			}
1276 
1277 			if (curproc->p_brkpageszc != 0 && phdr == dataphdrp &&
1278 			    (prot & PROT_WRITE)) {
1279 				uint_t	szc = curproc->p_brkpageszc;
1280 				size_t pgsz = page_get_pagesize(szc);
1281 				caddr_t ebss = addr + phdr->p_memsz;
1282 				size_t extra_zfodsz;
1283 
1284 				ASSERT(pgsz > PAGESIZE);
1285 
1286 				extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz);
1287 
1288 				if (error = execmap(vp, addr, phdr->p_filesz,
1289 				    zfodsz + extra_zfodsz, phdr->p_offset,
1290 				    prot, page, szc))
1291 					goto bad;
1292 				if (brksize != NULL)
1293 					*brksize = extra_zfodsz;
1294 			} else {
1295 				if (error = execmap(vp, addr, phdr->p_filesz,
1296 				    zfodsz, phdr->p_offset, prot, page, 0))
1297 					goto bad;
1298 			}
1299 
1300 			if (bssbase != NULL && addr >= *bssbase &&
1301 			    phdr == dataphdrp) {
1302 				*bssbase = addr + phdr->p_filesz;
1303 			}
1304 			if (brkbase != NULL && addr >= *brkbase) {
1305 				*brkbase = addr + phdr->p_memsz;
1306 			}
1307 
1308 			*execsz += btopr(phdr->p_memsz);
1309 			break;
1310 
1311 		case PT_INTERP:
1312 			if (ptload)
1313 				goto bad;
1314 			*dyphdr = phdr;
1315 			break;
1316 
1317 		case PT_SHLIB:
1318 			*stphdr = phdr;
1319 			break;
1320 
1321 		case PT_PHDR:
1322 			if (ptload)
1323 				goto bad;
1324 			*uphdr = phdr;
1325 			break;
1326 
1327 		case PT_NULL:
1328 		case PT_DYNAMIC:
1329 		case PT_NOTE:
1330 			break;
1331 
1332 		case PT_SUNWDTRACE:
1333 			if (dtphdr != NULL)
1334 				*dtphdr = phdr;
1335 			break;
1336 
1337 		default:
1338 			break;
1339 		}
1340 		phdr = (Phdr *)((caddr_t)phdr + hsize);
1341 	}
1342 
1343 	if (minaddr != NULL) {
1344 		ASSERT(mintmp != (caddr_t)-1);
1345 		*minaddr = (intptr_t)mintmp;
1346 	}
1347 
1348 	return (0);
1349 bad:
1350 	if (error == 0)
1351 		error = EINVAL;
1352 	return (error);
1353 }
1354 
1355 int
1356 elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc,
1357     rlim64_t rlimit, cred_t *credp)
1358 {
1359 	Note note;
1360 	int error;
1361 
1362 	bzero(&note, sizeof (note));
1363 	bcopy("CORE", note.name, 4);
1364 	note.nhdr.n_type = type;
1365 	/*
1366 	 * The System V ABI states that n_namesz must be the length of the
1367 	 * string that follows the Nhdr structure including the terminating
1368 	 * null. The ABI also specifies that sufficient padding should be
1369 	 * included so that the description that follows the name string
1370 	 * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries
1371 	 * respectively. However, since this change was not made correctly
1372 	 * at the time of the 64-bit port, both 32- and 64-bit binaries
1373 	 * descriptions are only guaranteed to begin on a 4-byte boundary.
1374 	 */
1375 	note.nhdr.n_namesz = 5;
1376 	note.nhdr.n_descsz = roundup(descsz, sizeof (Word));
1377 
1378 	if (error = core_write(vp, UIO_SYSSPACE, *offsetp, &note,
1379 	    sizeof (note), rlimit, credp))
1380 		return (error);
1381 
1382 	*offsetp += sizeof (note);
1383 
1384 	if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc,
1385 	    note.nhdr.n_descsz, rlimit, credp))
1386 		return (error);
1387 
1388 	*offsetp += note.nhdr.n_descsz;
1389 	return (0);
1390 }
1391 
1392 /*
1393  * Copy the section data from one vnode to the section of another vnode.
1394  */
1395 static void
1396 copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset,
1397     void *buf, size_t size, cred_t *credp, rlim64_t rlimit)
1398 {
1399 	ssize_t resid;
1400 	size_t len, n = src->sh_size;
1401 	offset_t off = 0;
1402 
1403 	while (n != 0) {
1404 		len = MIN(size, n);
1405 		if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off,
1406 		    UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 ||
1407 		    resid >= len ||
1408 		    core_write(dst_vp, UIO_SYSSPACE, *doffset + off,
1409 		    buf, len - resid, rlimit, credp) != 0) {
1410 			dst->sh_size = 0;
1411 			dst->sh_offset = 0;
1412 			return;
1413 		}
1414 
1415 		ASSERT(n >= len - resid);
1416 
1417 		n -= len - resid;
1418 		off += len - resid;
1419 	}
1420 
1421 	*doffset += src->sh_size;
1422 }
1423 
1424 #ifdef _ELF32_COMPAT
1425 extern size_t elf_datasz_max;
1426 #else
1427 size_t elf_datasz_max = 1 * 1024 * 1024;
1428 #endif
1429 
1430 /*
1431  * This function processes mappings that correspond to load objects to
1432  * examine their respective sections for elfcore(). It's called once with
1433  * v set to NULL to count the number of sections that we're going to need
1434  * and then again with v set to some allocated buffer that we fill in with
1435  * all the section data.
1436  */
1437 static int
1438 process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp,
1439     Shdr *v, int nv, rlim64_t rlimit, Off *doffsetp, int *nshdrsp)
1440 {
1441 	vnode_t *lastvp = NULL;
1442 	struct seg *seg;
1443 	int i, j;
1444 	void *data = NULL;
1445 	size_t datasz = 0;
1446 	shstrtab_t shstrtab;
1447 	struct as *as = p->p_as;
1448 	int error = 0;
1449 
1450 	if (v != NULL)
1451 		shstrtab_init(&shstrtab);
1452 
1453 	i = 1;
1454 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1455 		uint_t prot;
1456 		vnode_t *mvp;
1457 		void *tmp = NULL;
1458 		caddr_t saddr = seg->s_base;
1459 		caddr_t naddr;
1460 		caddr_t eaddr;
1461 		size_t segsize;
1462 
1463 		Ehdr ehdr;
1464 		int nshdrs, shstrndx, nphdrs;
1465 		caddr_t shbase;
1466 		ssize_t shsize;
1467 		char *shstrbase;
1468 		ssize_t shstrsize;
1469 
1470 		Shdr *shdr;
1471 		const char *name;
1472 		size_t sz;
1473 		uintptr_t off;
1474 
1475 		int ctf_ndx = 0;
1476 		int symtab_ndx = 0;
1477 
1478 		/*
1479 		 * Since we're just looking for text segments of load
1480 		 * objects, we only care about the protection bits; we don't
1481 		 * care about the actual size of the segment so we use the
1482 		 * reserved size. If the segment's size is zero, there's
1483 		 * something fishy going on so we ignore this segment.
1484 		 */
1485 		if (seg->s_ops != &segvn_ops ||
1486 		    SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 ||
1487 		    mvp == lastvp || mvp == NULL || mvp->v_type != VREG ||
1488 		    (segsize = pr_getsegsize(seg, 1)) == 0)
1489 			continue;
1490 
1491 		eaddr = saddr + segsize;
1492 		prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr);
1493 		pr_getprot_done(&tmp);
1494 
1495 		/*
1496 		 * Skip this segment unless the protection bits look like
1497 		 * what we'd expect for a text segment.
1498 		 */
1499 		if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC)
1500 			continue;
1501 
1502 		if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx,
1503 		    &nphdrs) != 0 ||
1504 		    getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx,
1505 		    &shbase, &shsize, &shstrbase, &shstrsize) != 0)
1506 			continue;
1507 
1508 		off = ehdr.e_shentsize;
1509 		for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) {
1510 			Shdr *symtab = NULL, *strtab;
1511 
1512 			shdr = (Shdr *)(shbase + off);
1513 
1514 			if (shdr->sh_name >= shstrsize)
1515 				continue;
1516 
1517 			name = shstrbase + shdr->sh_name;
1518 
1519 			if (strcmp(name, shstrtab_data[STR_CTF]) == 0) {
1520 				if ((content & CC_CONTENT_CTF) == 0 ||
1521 				    ctf_ndx != 0)
1522 					continue;
1523 
1524 				if (shdr->sh_link > 0 &&
1525 				    shdr->sh_link < nshdrs) {
1526 					symtab = (Shdr *)(shbase +
1527 					    shdr->sh_link * ehdr.e_shentsize);
1528 				}
1529 
1530 				if (v != NULL && i < nv - 1) {
1531 					if (shdr->sh_size > datasz &&
1532 					    shdr->sh_size <= elf_datasz_max) {
1533 						if (data != NULL)
1534 							kmem_free(data, datasz);
1535 
1536 						datasz = shdr->sh_size;
1537 						data = kmem_alloc(datasz,
1538 						    KM_SLEEP);
1539 					}
1540 
1541 					v[i].sh_name = shstrtab_ndx(&shstrtab,
1542 					    STR_CTF);
1543 					v[i].sh_addr = (Addr)(uintptr_t)saddr;
1544 					v[i].sh_type = SHT_PROGBITS;
1545 					v[i].sh_addralign = 4;
1546 					*doffsetp = roundup(*doffsetp,
1547 					    v[i].sh_addralign);
1548 					v[i].sh_offset = *doffsetp;
1549 					v[i].sh_size = shdr->sh_size;
1550 					if (symtab == NULL)  {
1551 						v[i].sh_link = 0;
1552 					} else if (symtab->sh_type ==
1553 					    SHT_SYMTAB &&
1554 					    symtab_ndx != 0) {
1555 						v[i].sh_link =
1556 						    symtab_ndx;
1557 					} else {
1558 						v[i].sh_link = i + 1;
1559 					}
1560 
1561 					copy_scn(shdr, mvp, &v[i], vp,
1562 					    doffsetp, data, datasz, credp,
1563 					    rlimit);
1564 				}
1565 
1566 				ctf_ndx = i++;
1567 
1568 				/*
1569 				 * We've already dumped the symtab.
1570 				 */
1571 				if (symtab != NULL &&
1572 				    symtab->sh_type == SHT_SYMTAB &&
1573 				    symtab_ndx != 0)
1574 					continue;
1575 
1576 			} else if (strcmp(name,
1577 			    shstrtab_data[STR_SYMTAB]) == 0) {
1578 				if ((content & CC_CONTENT_SYMTAB) == 0 ||
1579 				    symtab != 0)
1580 					continue;
1581 
1582 				symtab = shdr;
1583 			}
1584 
1585 			if (symtab != NULL) {
1586 				if ((symtab->sh_type != SHT_DYNSYM &&
1587 				    symtab->sh_type != SHT_SYMTAB) ||
1588 				    symtab->sh_link == 0 ||
1589 				    symtab->sh_link >= nshdrs)
1590 					continue;
1591 
1592 				strtab = (Shdr *)(shbase +
1593 				    symtab->sh_link * ehdr.e_shentsize);
1594 
1595 				if (strtab->sh_type != SHT_STRTAB)
1596 					continue;
1597 
1598 				if (v != NULL && i < nv - 2) {
1599 					sz = MAX(symtab->sh_size,
1600 					    strtab->sh_size);
1601 					if (sz > datasz &&
1602 					    sz <= elf_datasz_max) {
1603 						if (data != NULL)
1604 							kmem_free(data, datasz);
1605 
1606 						datasz = sz;
1607 						data = kmem_alloc(datasz,
1608 						    KM_SLEEP);
1609 					}
1610 
1611 					if (symtab->sh_type == SHT_DYNSYM) {
1612 						v[i].sh_name = shstrtab_ndx(
1613 						    &shstrtab, STR_DYNSYM);
1614 						v[i + 1].sh_name = shstrtab_ndx(
1615 						    &shstrtab, STR_DYNSTR);
1616 					} else {
1617 						v[i].sh_name = shstrtab_ndx(
1618 						    &shstrtab, STR_SYMTAB);
1619 						v[i + 1].sh_name = shstrtab_ndx(
1620 						    &shstrtab, STR_STRTAB);
1621 					}
1622 
1623 					v[i].sh_type = symtab->sh_type;
1624 					v[i].sh_addr = symtab->sh_addr;
1625 					if (ehdr.e_type == ET_DYN ||
1626 					    v[i].sh_addr == 0)
1627 						v[i].sh_addr +=
1628 						    (Addr)(uintptr_t)saddr;
1629 					v[i].sh_addralign =
1630 					    symtab->sh_addralign;
1631 					*doffsetp = roundup(*doffsetp,
1632 					    v[i].sh_addralign);
1633 					v[i].sh_offset = *doffsetp;
1634 					v[i].sh_size = symtab->sh_size;
1635 					v[i].sh_link = i + 1;
1636 					v[i].sh_entsize = symtab->sh_entsize;
1637 					v[i].sh_info = symtab->sh_info;
1638 
1639 					copy_scn(symtab, mvp, &v[i], vp,
1640 					    doffsetp, data, datasz, credp,
1641 					    rlimit);
1642 
1643 					v[i + 1].sh_type = SHT_STRTAB;
1644 					v[i + 1].sh_flags = SHF_STRINGS;
1645 					v[i + 1].sh_addr = symtab->sh_addr;
1646 					if (ehdr.e_type == ET_DYN ||
1647 					    v[i + 1].sh_addr == 0)
1648 						v[i + 1].sh_addr +=
1649 						    (Addr)(uintptr_t)saddr;
1650 					v[i + 1].sh_addralign =
1651 					    strtab->sh_addralign;
1652 					*doffsetp = roundup(*doffsetp,
1653 					    v[i + 1].sh_addralign);
1654 					v[i + 1].sh_offset = *doffsetp;
1655 					v[i + 1].sh_size = strtab->sh_size;
1656 
1657 					copy_scn(strtab, mvp, &v[i + 1], vp,
1658 					    doffsetp, data, datasz, credp,
1659 					    rlimit);
1660 				}
1661 
1662 				if (symtab->sh_type == SHT_SYMTAB)
1663 					symtab_ndx = i;
1664 				i += 2;
1665 			}
1666 		}
1667 
1668 		kmem_free(shstrbase, shstrsize);
1669 		kmem_free(shbase, shsize);
1670 
1671 		lastvp = mvp;
1672 	}
1673 
1674 	if (v == NULL) {
1675 		if (i == 1)
1676 			*nshdrsp = 0;
1677 		else
1678 			*nshdrsp = i + 1;
1679 		goto done;
1680 	}
1681 
1682 	if (i != nv - 1) {
1683 		cmn_err(CE_WARN, "elfcore: core dump failed for "
1684 		    "process %d; address space is changing", p->p_pid);
1685 		error = EIO;
1686 		goto done;
1687 	}
1688 
1689 	v[i].sh_name = shstrtab_ndx(&shstrtab, STR_SHSTRTAB);
1690 	v[i].sh_size = shstrtab_size(&shstrtab);
1691 	v[i].sh_addralign = 1;
1692 	*doffsetp = roundup(*doffsetp, v[i].sh_addralign);
1693 	v[i].sh_offset = *doffsetp;
1694 	v[i].sh_flags = SHF_STRINGS;
1695 	v[i].sh_type = SHT_STRTAB;
1696 
1697 	if (v[i].sh_size > datasz) {
1698 		if (data != NULL)
1699 			kmem_free(data, datasz);
1700 
1701 		datasz = v[i].sh_size;
1702 		data = kmem_alloc(datasz,
1703 		    KM_SLEEP);
1704 	}
1705 
1706 	shstrtab_dump(&shstrtab, data);
1707 
1708 	if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp,
1709 	    data, v[i].sh_size, rlimit, credp)) != 0)
1710 		goto done;
1711 
1712 	*doffsetp += v[i].sh_size;
1713 
1714 done:
1715 	if (data != NULL)
1716 		kmem_free(data, datasz);
1717 
1718 	return (error);
1719 }
1720 
1721 int
1722 elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig,
1723     core_content_t content)
1724 {
1725 	offset_t poffset, soffset;
1726 	Off doffset;
1727 	int error, i, nphdrs, nshdrs;
1728 	int overflow = 0;
1729 	struct seg *seg;
1730 	struct as *as = p->p_as;
1731 	union {
1732 		Ehdr ehdr;
1733 		Phdr phdr[1];
1734 		Shdr shdr[1];
1735 	} *bigwad;
1736 	size_t bigsize;
1737 	size_t phdrsz, shdrsz;
1738 	Ehdr *ehdr;
1739 	Phdr *v;
1740 	caddr_t brkbase;
1741 	size_t brksize;
1742 	caddr_t stkbase;
1743 	size_t stksize;
1744 	int ntries = 0;
1745 	klwp_t *lwp = ttolwp(curthread);
1746 
1747 top:
1748 	/*
1749 	 * Make sure we have everything we need (registers, etc.).
1750 	 * All other lwps have already stopped and are in an orderly state.
1751 	 */
1752 	ASSERT(p == ttoproc(curthread));
1753 	prstop(0, 0);
1754 
1755 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1756 	nphdrs = prnsegs(as, 0) + 2;		/* two CORE note sections */
1757 
1758 	/*
1759 	 * Count the number of section headers we're going to need.
1760 	 */
1761 	nshdrs = 0;
1762 	if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB)) {
1763 		(void) process_scns(content, p, credp, NULL, NULL, NULL, 0,
1764 		    NULL, &nshdrs);
1765 	}
1766 	AS_LOCK_EXIT(as, &as->a_lock);
1767 
1768 	ASSERT(nshdrs == 0 || nshdrs > 1);
1769 
1770 	/*
1771 	 * The core file contents may required zero section headers, but if
1772 	 * we overflow the 16 bits allotted to the program header count in
1773 	 * the ELF header, we'll need that program header at index zero.
1774 	 */
1775 	if (nshdrs == 0 && nphdrs >= PN_XNUM)
1776 		nshdrs = 1;
1777 
1778 	phdrsz = nphdrs * sizeof (Phdr);
1779 	shdrsz = nshdrs * sizeof (Shdr);
1780 
1781 	bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz));
1782 	bigwad = kmem_alloc(bigsize, KM_SLEEP);
1783 
1784 	ehdr = &bigwad->ehdr;
1785 	bzero(ehdr, sizeof (*ehdr));
1786 
1787 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1788 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1789 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1790 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1791 	ehdr->e_ident[EI_CLASS] = ELFCLASS;
1792 	ehdr->e_type = ET_CORE;
1793 
1794 #if !defined(_LP64) || defined(_ELF32_COMPAT)
1795 
1796 #if defined(__sparc)
1797 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
1798 	ehdr->e_machine = EM_SPARC;
1799 #elif defined(__i386) || defined(__i386_COMPAT)
1800 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1801 	ehdr->e_machine = EM_386;
1802 #else
1803 #error "no recognized machine type is defined"
1804 #endif
1805 
1806 #else	/* !defined(_LP64) || defined(_ELF32_COMPAT) */
1807 
1808 #if defined(__sparc)
1809 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
1810 	ehdr->e_machine = EM_SPARCV9;
1811 #elif defined(__amd64)
1812 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1813 	ehdr->e_machine = EM_AMD64;
1814 #else
1815 #error "no recognized 64-bit machine type is defined"
1816 #endif
1817 
1818 #endif	/* !defined(_LP64) || defined(_ELF32_COMPAT) */
1819 
1820 	/*
1821 	 * If the count of program headers or section headers or the index
1822 	 * of the section string table can't fit in the mere 16 bits
1823 	 * shortsightedly allotted to them in the ELF header, we use the
1824 	 * extended formats and put the real values in the section header
1825 	 * as index 0.
1826 	 */
1827 	ehdr->e_version = EV_CURRENT;
1828 	ehdr->e_ehsize = sizeof (Ehdr);
1829 
1830 	if (nphdrs >= PN_XNUM)
1831 		ehdr->e_phnum = PN_XNUM;
1832 	else
1833 		ehdr->e_phnum = (unsigned short)nphdrs;
1834 
1835 	ehdr->e_phoff = sizeof (Ehdr);
1836 	ehdr->e_phentsize = sizeof (Phdr);
1837 
1838 	if (nshdrs > 0) {
1839 		if (nshdrs >= SHN_LORESERVE)
1840 			ehdr->e_shnum = 0;
1841 		else
1842 			ehdr->e_shnum = (unsigned short)nshdrs;
1843 
1844 		if (nshdrs - 1 >= SHN_LORESERVE)
1845 			ehdr->e_shstrndx = SHN_XINDEX;
1846 		else
1847 			ehdr->e_shstrndx = (unsigned short)(nshdrs - 1);
1848 
1849 		ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs;
1850 		ehdr->e_shentsize = sizeof (Shdr);
1851 	}
1852 
1853 	if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr,
1854 	    sizeof (Ehdr), rlimit, credp))
1855 		goto done;
1856 
1857 	poffset = sizeof (Ehdr);
1858 	soffset = sizeof (Ehdr) + phdrsz;
1859 	doffset = sizeof (Ehdr) + phdrsz + shdrsz;
1860 
1861 	v = &bigwad->phdr[0];
1862 	bzero(v, phdrsz);
1863 
1864 	setup_old_note_header(&v[0], p);
1865 	v[0].p_offset = doffset = roundup(doffset, sizeof (Word));
1866 	doffset += v[0].p_filesz;
1867 
1868 	setup_note_header(&v[1], p);
1869 	v[1].p_offset = doffset = roundup(doffset, sizeof (Word));
1870 	doffset += v[1].p_filesz;
1871 
1872 	mutex_enter(&p->p_lock);
1873 
1874 	brkbase = p->p_brkbase;
1875 	brksize = p->p_brksize;
1876 
1877 	stkbase = p->p_usrstack - p->p_stksize;
1878 	stksize = p->p_stksize;
1879 
1880 	mutex_exit(&p->p_lock);
1881 
1882 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1883 	i = 2;
1884 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1885 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1886 		caddr_t saddr, naddr;
1887 		void *tmp = NULL;
1888 		extern struct seg_ops segspt_shmops;
1889 
1890 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1891 			uint_t prot;
1892 			size_t size;
1893 			int type;
1894 			vnode_t *mvp;
1895 
1896 			prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1897 			prot &= PROT_READ | PROT_WRITE | PROT_EXEC;
1898 			if ((size = (size_t)(naddr - saddr)) == 0)
1899 				continue;
1900 			if (i == nphdrs) {
1901 				overflow++;
1902 				continue;
1903 			}
1904 			v[i].p_type = PT_LOAD;
1905 			v[i].p_vaddr = (Addr)(uintptr_t)saddr;
1906 			v[i].p_memsz = size;
1907 			if (prot & PROT_READ)
1908 				v[i].p_flags |= PF_R;
1909 			if (prot & PROT_WRITE)
1910 				v[i].p_flags |= PF_W;
1911 			if (prot & PROT_EXEC)
1912 				v[i].p_flags |= PF_X;
1913 
1914 			/*
1915 			 * Figure out which mappings to include in the core.
1916 			 */
1917 			type = SEGOP_GETTYPE(seg, saddr);
1918 
1919 			if (saddr == stkbase && size == stksize) {
1920 				if (!(content & CC_CONTENT_STACK))
1921 					goto exclude;
1922 
1923 			} else if (saddr == brkbase && size == brksize) {
1924 				if (!(content & CC_CONTENT_HEAP))
1925 					goto exclude;
1926 
1927 			} else if (seg->s_ops == &segspt_shmops) {
1928 				if (type & MAP_NORESERVE) {
1929 					if (!(content & CC_CONTENT_DISM))
1930 						goto exclude;
1931 				} else {
1932 					if (!(content & CC_CONTENT_ISM))
1933 						goto exclude;
1934 				}
1935 
1936 			} else if (seg->s_ops != &segvn_ops) {
1937 				goto exclude;
1938 
1939 			} else if (type & MAP_SHARED) {
1940 				if (shmgetid(p, saddr) != SHMID_NONE) {
1941 					if (!(content & CC_CONTENT_SHM))
1942 						goto exclude;
1943 
1944 				} else if (SEGOP_GETVP(seg, seg->s_base,
1945 				    &mvp) != 0 || mvp == NULL ||
1946 				    mvp->v_type != VREG) {
1947 					if (!(content & CC_CONTENT_SHANON))
1948 						goto exclude;
1949 
1950 				} else {
1951 					if (!(content & CC_CONTENT_SHFILE))
1952 						goto exclude;
1953 				}
1954 
1955 			} else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 ||
1956 			    mvp == NULL || mvp->v_type != VREG) {
1957 				if (!(content & CC_CONTENT_ANON))
1958 					goto exclude;
1959 
1960 			} else if (prot == (PROT_READ | PROT_EXEC)) {
1961 				if (!(content & CC_CONTENT_TEXT))
1962 					goto exclude;
1963 
1964 			} else if (prot == PROT_READ) {
1965 				if (!(content & CC_CONTENT_RODATA))
1966 					goto exclude;
1967 
1968 			} else {
1969 				if (!(content & CC_CONTENT_DATA))
1970 					goto exclude;
1971 			}
1972 
1973 			doffset = roundup(doffset, sizeof (Word));
1974 			v[i].p_offset = doffset;
1975 			v[i].p_filesz = size;
1976 			doffset += size;
1977 exclude:
1978 			i++;
1979 		}
1980 		ASSERT(tmp == NULL);
1981 	}
1982 	AS_LOCK_EXIT(as, &as->a_lock);
1983 
1984 	if (overflow || i != nphdrs) {
1985 		if (ntries++ == 0) {
1986 			kmem_free(bigwad, bigsize);
1987 			overflow = 0;
1988 			goto top;
1989 		}
1990 		cmn_err(CE_WARN, "elfcore: core dump failed for "
1991 		    "process %d; address space is changing", p->p_pid);
1992 		error = EIO;
1993 		goto done;
1994 	}
1995 
1996 	if ((error = core_write(vp, UIO_SYSSPACE, poffset,
1997 	    v, phdrsz, rlimit, credp)) != 0)
1998 		goto done;
1999 
2000 	if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit,
2001 	    credp)) != 0)
2002 		goto done;
2003 
2004 	if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit,
2005 	    credp, content)) != 0)
2006 		goto done;
2007 
2008 	for (i = 2; i < nphdrs; i++) {
2009 		prkillinfo_t killinfo;
2010 		sigqueue_t *sq;
2011 		int sig, j;
2012 
2013 		if (v[i].p_filesz == 0)
2014 			continue;
2015 
2016 		/*
2017 		 * If dumping out this segment fails, rather than failing
2018 		 * the core dump entirely, we reset the size of the mapping
2019 		 * to zero to indicate that the data is absent from the core
2020 		 * file and or in the PF_SUNW_FAILURE flag to differentiate
2021 		 * this from mappings that were excluded due to the core file
2022 		 * content settings.
2023 		 */
2024 		if ((error = core_seg(p, vp, v[i].p_offset,
2025 		    (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz,
2026 		    rlimit, credp)) == 0) {
2027 			continue;
2028 		}
2029 
2030 		if ((sig = lwp->lwp_cursig) == 0) {
2031 			/*
2032 			 * We failed due to something other than a signal.
2033 			 * Since the space reserved for the segment is now
2034 			 * unused, we stash the errno in the first four
2035 			 * bytes. This undocumented interface will let us
2036 			 * understand the nature of the failure.
2037 			 */
2038 			(void) core_write(vp, UIO_SYSSPACE, v[i].p_offset,
2039 			    &error, sizeof (error), rlimit, credp);
2040 
2041 			v[i].p_filesz = 0;
2042 			v[i].p_flags |= PF_SUNW_FAILURE;
2043 			if ((error = core_write(vp, UIO_SYSSPACE,
2044 			    poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]),
2045 			    rlimit, credp)) != 0)
2046 				goto done;
2047 
2048 			continue;
2049 		}
2050 
2051 		/*
2052 		 * We took a signal.  We want to abort the dump entirely, but
2053 		 * we also want to indicate what failed and why.  We therefore
2054 		 * use the space reserved for the first failing segment to
2055 		 * write our error (which, for purposes of compatability with
2056 		 * older core dump readers, we set to EINTR) followed by any
2057 		 * siginfo associated with the signal.
2058 		 */
2059 		bzero(&killinfo, sizeof (killinfo));
2060 		killinfo.prk_error = EINTR;
2061 
2062 		sq = sig == SIGKILL ? curproc->p_killsqp : lwp->lwp_curinfo;
2063 
2064 		if (sq != NULL) {
2065 			bcopy(&sq->sq_info, &killinfo.prk_info,
2066 			    sizeof (sq->sq_info));
2067 		} else {
2068 			killinfo.prk_info.si_signo = lwp->lwp_cursig;
2069 			killinfo.prk_info.si_code = SI_NOINFO;
2070 		}
2071 
2072 #if (defined(_SYSCALL32_IMPL) || defined(_LP64))
2073 		/*
2074 		 * If this is a 32-bit process, we need to translate from the
2075 		 * native siginfo to the 32-bit variant.  (Core readers must
2076 		 * always have the same data model as their target or must
2077 		 * be aware of -- and compensate for -- data model differences.)
2078 		 */
2079 		if (curproc->p_model == DATAMODEL_ILP32) {
2080 			siginfo32_t si32;
2081 
2082 			siginfo_kto32((k_siginfo_t *)&killinfo.prk_info, &si32);
2083 			bcopy(&si32, &killinfo.prk_info, sizeof (si32));
2084 		}
2085 #endif
2086 
2087 		(void) core_write(vp, UIO_SYSSPACE, v[i].p_offset,
2088 		    &killinfo, sizeof (killinfo), rlimit, credp);
2089 
2090 		/*
2091 		 * For the segment on which we took the signal, indicate that
2092 		 * its data now refers to a siginfo.
2093 		 */
2094 		v[i].p_filesz = 0;
2095 		v[i].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED |
2096 		    PF_SUNW_SIGINFO;
2097 
2098 		/*
2099 		 * And for every other segment, indicate that its absence
2100 		 * is due to a signal.
2101 		 */
2102 		for (j = i + 1; j < nphdrs; j++) {
2103 			v[j].p_filesz = 0;
2104 			v[j].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED;
2105 		}
2106 
2107 		/*
2108 		 * Finally, write out our modified program headers.
2109 		 */
2110 		if ((error = core_write(vp, UIO_SYSSPACE,
2111 		    poffset + sizeof (v[i]) * i, &v[i],
2112 		    sizeof (v[i]) * (nphdrs - i), rlimit, credp)) != 0)
2113 			goto done;
2114 
2115 		break;
2116 	}
2117 
2118 	if (nshdrs > 0) {
2119 		bzero(&bigwad->shdr[0], shdrsz);
2120 
2121 		if (nshdrs >= SHN_LORESERVE)
2122 			bigwad->shdr[0].sh_size = nshdrs;
2123 
2124 		if (nshdrs - 1 >= SHN_LORESERVE)
2125 			bigwad->shdr[0].sh_link = nshdrs - 1;
2126 
2127 		if (nphdrs >= PN_XNUM)
2128 			bigwad->shdr[0].sh_info = nphdrs;
2129 
2130 		if (nshdrs > 1) {
2131 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
2132 			if ((error = process_scns(content, p, credp, vp,
2133 			    &bigwad->shdr[0], nshdrs, rlimit, &doffset,
2134 			    NULL)) != 0) {
2135 				AS_LOCK_EXIT(as, &as->a_lock);
2136 				goto done;
2137 			}
2138 			AS_LOCK_EXIT(as, &as->a_lock);
2139 		}
2140 
2141 		if ((error = core_write(vp, UIO_SYSSPACE, soffset,
2142 		    &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0)
2143 			goto done;
2144 	}
2145 
2146 done:
2147 	kmem_free(bigwad, bigsize);
2148 	return (error);
2149 }
2150 
2151 #ifndef	_ELF32_COMPAT
2152 
2153 static struct execsw esw = {
2154 #ifdef	_LP64
2155 	elf64magicstr,
2156 #else	/* _LP64 */
2157 	elf32magicstr,
2158 #endif	/* _LP64 */
2159 	0,
2160 	5,
2161 	elfexec,
2162 	elfcore
2163 };
2164 
2165 static struct modlexec modlexec = {
2166 	&mod_execops, "exec module for elf", &esw
2167 };
2168 
2169 #ifdef	_LP64
2170 extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args,
2171 			intpdata_t *idatap, int level, long *execsz,
2172 			int setid, caddr_t exec_file, cred_t *cred,
2173 			int brand_action);
2174 extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp,
2175 			rlim64_t rlimit, int sig, core_content_t content);
2176 
2177 static struct execsw esw32 = {
2178 	elf32magicstr,
2179 	0,
2180 	5,
2181 	elf32exec,
2182 	elf32core
2183 };
2184 
2185 static struct modlexec modlexec32 = {
2186 	&mod_execops, "32-bit exec module for elf", &esw32
2187 };
2188 #endif	/* _LP64 */
2189 
2190 static struct modlinkage modlinkage = {
2191 	MODREV_1,
2192 	(void *)&modlexec,
2193 #ifdef	_LP64
2194 	(void *)&modlexec32,
2195 #endif	/* _LP64 */
2196 	NULL
2197 };
2198 
2199 int
2200 _init(void)
2201 {
2202 	return (mod_install(&modlinkage));
2203 }
2204 
2205 int
2206 _fini(void)
2207 {
2208 	return (mod_remove(&modlinkage));
2209 }
2210 
2211 int
2212 _info(struct modinfo *modinfop)
2213 {
2214 	return (mod_info(&modlinkage, modinfop));
2215 }
2216 
2217 #endif	/* !_ELF32_COMPAT */
2218