xref: /titanic_50/usr/src/uts/common/disp/fx.c (revision eab227978ccdaa5a7cc9fd92ace768915dae3a2b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2013, Joyent, Inc. All rights reserved.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <sys/cred.h>
31 #include <sys/proc.h>
32 #include <sys/session.h>
33 #include <sys/strsubr.h>
34 #include <sys/user.h>
35 #include <sys/priocntl.h>
36 #include <sys/class.h>
37 #include <sys/disp.h>
38 #include <sys/procset.h>
39 #include <sys/debug.h>
40 #include <sys/kmem.h>
41 #include <sys/errno.h>
42 #include <sys/fx.h>
43 #include <sys/fxpriocntl.h>
44 #include <sys/cpuvar.h>
45 #include <sys/systm.h>
46 #include <sys/vtrace.h>
47 #include <sys/schedctl.h>
48 #include <sys/tnf_probe.h>
49 #include <sys/sunddi.h>
50 #include <sys/spl.h>
51 #include <sys/modctl.h>
52 #include <sys/policy.h>
53 #include <sys/sdt.h>
54 #include <sys/cpupart.h>
55 #include <sys/cpucaps.h>
56 
57 static pri_t fx_init(id_t, int, classfuncs_t **);
58 
59 static struct sclass csw = {
60 	"FX",
61 	fx_init,
62 	0
63 };
64 
65 static struct modlsched modlsched = {
66 	&mod_schedops, "Fixed priority sched class", &csw
67 };
68 
69 static struct modlinkage modlinkage = {
70 	MODREV_1, (void *)&modlsched, NULL
71 };
72 
73 
74 /*
75  * control flags (kparms->fx_cflags).
76  */
77 #define	FX_DOUPRILIM	0x01    /* change user priority limit */
78 #define	FX_DOUPRI	0x02    /* change user priority */
79 #define	FX_DOTQ		0x04    /* change FX time quantum */
80 
81 
82 #define	FXMAXUPRI 60		/* maximum user priority setting */
83 
84 #define	FX_MAX_UNPRIV_PRI	0	/* maximum unpriviledge priority */
85 
86 /*
87  * The fxproc_t structures that have a registered callback vector,
88  * are also kept in an array of circular doubly linked lists. A hash on
89  * the thread id (from ddi_get_kt_did()) is used to determine which list
90  * each of such fxproc structures should be placed. Each list has a dummy
91  * "head" which is never removed, so the list is never empty.
92  */
93 
94 #define	FX_CB_LISTS 16		/* number of lists, must be power of 2 */
95 #define	FX_CB_LIST_HASH(ktid)	((uint_t)ktid & (FX_CB_LISTS - 1))
96 
97 /* Insert fxproc into callback list */
98 #define	FX_CB_LIST_INSERT(fxpp)						\
99 {									\
100 	int index = FX_CB_LIST_HASH(fxpp->fx_ktid);			\
101 	kmutex_t *lockp = &fx_cb_list_lock[index];			\
102 	fxproc_t *headp = &fx_cb_plisthead[index];			\
103 	mutex_enter(lockp);						\
104 	fxpp->fx_cb_next = headp->fx_cb_next;				\
105 	fxpp->fx_cb_prev = headp;					\
106 	headp->fx_cb_next->fx_cb_prev = fxpp;				\
107 	headp->fx_cb_next = fxpp;					\
108 	mutex_exit(lockp);						\
109 }
110 
111 /*
112  * Remove thread from callback list.
113  */
114 #define	FX_CB_LIST_DELETE(fxpp)						\
115 {									\
116 	int index = FX_CB_LIST_HASH(fxpp->fx_ktid);			\
117 	kmutex_t *lockp = &fx_cb_list_lock[index];			\
118 	mutex_enter(lockp);						\
119 	fxpp->fx_cb_prev->fx_cb_next = fxpp->fx_cb_next;		\
120 	fxpp->fx_cb_next->fx_cb_prev = fxpp->fx_cb_prev;		\
121 	mutex_exit(lockp);						\
122 }
123 
124 #define	FX_HAS_CB(fxpp)	(fxpp->fx_callback != NULL)
125 
126 /* adjust x to be between 0 and fx_maxumdpri */
127 
128 #define	FX_ADJUST_PRI(pri)						\
129 {									\
130 	if (pri < 0)							\
131 		pri = 0;  						\
132 	else if (pri > fx_maxumdpri) 					\
133 		pri = fx_maxumdpri;  					\
134 }
135 
136 #define	FX_ADJUST_QUANTUM(q)						\
137 {									\
138 	if (q > INT_MAX)						\
139 		q = INT_MAX;						\
140 	else if (q <= 0)						\
141 		q = FX_TQINF;						\
142 }
143 
144 #define	FX_ISVALID(pri, quantum) \
145 	(((pri >= 0) || (pri == FX_CB_NOCHANGE)) &&			\
146 	    ((quantum >= 0) || (quantum == FX_NOCHANGE) ||		\
147 		(quantum == FX_TQDEF) || (quantum == FX_TQINF)))
148 
149 
150 static id_t	fx_cid;		/* fixed priority class ID */
151 static fxdpent_t *fx_dptbl;	/* fixed priority disp parameter table */
152 
153 static pri_t	fx_maxupri = FXMAXUPRI;
154 static pri_t	fx_maxumdpri;	/* max user mode fixed priority */
155 
156 static pri_t	fx_maxglobpri;	/* maximum global priority used by fx class */
157 static kmutex_t	fx_dptblock;	/* protects fixed priority dispatch table */
158 
159 
160 static kmutex_t	fx_cb_list_lock[FX_CB_LISTS];	/* protects list of fxprocs */
161 						/* that have callbacks */
162 static fxproc_t	fx_cb_plisthead[FX_CB_LISTS];	/* dummy fxproc at head of */
163 						/* list of fxprocs with */
164 						/* callbacks */
165 
166 static int	fx_admin(caddr_t, cred_t *);
167 static int	fx_getclinfo(void *);
168 static int	fx_parmsin(void *);
169 static int	fx_parmsout(void *, pc_vaparms_t *);
170 static int	fx_vaparmsin(void *, pc_vaparms_t *);
171 static int	fx_vaparmsout(void *, pc_vaparms_t *);
172 static int	fx_getclpri(pcpri_t *);
173 static int	fx_alloc(void **, int);
174 static void	fx_free(void *);
175 static int	fx_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
176 static void	fx_exitclass(void *);
177 static int	fx_canexit(kthread_t *, cred_t *);
178 static int	fx_fork(kthread_t *, kthread_t *, void *);
179 static void	fx_forkret(kthread_t *, kthread_t *);
180 static void	fx_parmsget(kthread_t *, void *);
181 static int	fx_parmsset(kthread_t *, void *, id_t, cred_t *);
182 static void	fx_stop(kthread_t *, int, int);
183 static void	fx_exit(kthread_t *);
184 static pri_t	fx_swapin(kthread_t *, int);
185 static pri_t	fx_swapout(kthread_t *, int);
186 static void	fx_trapret(kthread_t *);
187 static void	fx_preempt(kthread_t *);
188 static void	fx_setrun(kthread_t *);
189 static void	fx_sleep(kthread_t *);
190 static void	fx_tick(kthread_t *);
191 static void	fx_wakeup(kthread_t *);
192 static int	fx_donice(kthread_t *, cred_t *, int, int *);
193 static int	fx_doprio(kthread_t *, cred_t *, int, int *);
194 static pri_t	fx_globpri(kthread_t *);
195 static void	fx_yield(kthread_t *);
196 static void	fx_nullsys();
197 
198 extern fxdpent_t *fx_getdptbl(void);
199 
200 static void	fx_change_priority(kthread_t *, fxproc_t *);
201 static fxproc_t *fx_list_lookup(kt_did_t);
202 static void fx_list_release(fxproc_t *);
203 
204 
205 static struct classfuncs fx_classfuncs = {
206 	/* class functions */
207 	fx_admin,
208 	fx_getclinfo,
209 	fx_parmsin,
210 	fx_parmsout,
211 	fx_vaparmsin,
212 	fx_vaparmsout,
213 	fx_getclpri,
214 	fx_alloc,
215 	fx_free,
216 
217 	/* thread functions */
218 	fx_enterclass,
219 	fx_exitclass,
220 	fx_canexit,
221 	fx_fork,
222 	fx_forkret,
223 	fx_parmsget,
224 	fx_parmsset,
225 	fx_stop,
226 	fx_exit,
227 	fx_nullsys,	/* active */
228 	fx_nullsys,	/* inactive */
229 	fx_swapin,
230 	fx_swapout,
231 	fx_trapret,
232 	fx_preempt,
233 	fx_setrun,
234 	fx_sleep,
235 	fx_tick,
236 	fx_wakeup,
237 	fx_donice,
238 	fx_globpri,
239 	fx_nullsys,	/* set_process_group */
240 	fx_yield,
241 	fx_doprio,
242 };
243 
244 
245 int
246 _init()
247 {
248 	return (mod_install(&modlinkage));
249 }
250 
251 int
252 _fini()
253 {
254 	return (EBUSY);
255 }
256 
257 int
258 _info(struct modinfo *modinfop)
259 {
260 	return (mod_info(&modlinkage, modinfop));
261 }
262 
263 /*
264  * Fixed priority class initialization. Called by dispinit() at boot time.
265  * We can ignore the clparmsz argument since we know that the smallest
266  * possible parameter buffer is big enough for us.
267  */
268 /* ARGSUSED */
269 static pri_t
270 fx_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
271 {
272 	int i;
273 	extern pri_t fx_getmaxumdpri(void);
274 
275 	fx_dptbl = fx_getdptbl();
276 	fx_maxumdpri = fx_getmaxumdpri();
277 	fx_maxglobpri = fx_dptbl[fx_maxumdpri].fx_globpri;
278 
279 	fx_cid = cid;		/* Record our class ID */
280 
281 	/*
282 	 * Initialize the hash table for fxprocs with callbacks
283 	 */
284 	for (i = 0; i < FX_CB_LISTS; i++) {
285 		fx_cb_plisthead[i].fx_cb_next = fx_cb_plisthead[i].fx_cb_prev =
286 		    &fx_cb_plisthead[i];
287 	}
288 
289 	/*
290 	 * We're required to return a pointer to our classfuncs
291 	 * structure and the highest global priority value we use.
292 	 */
293 	*clfuncspp = &fx_classfuncs;
294 	return (fx_maxglobpri);
295 }
296 
297 /*
298  * Get or reset the fx_dptbl values per the user's request.
299  */
300 static int
301 fx_admin(caddr_t uaddr, cred_t *reqpcredp)
302 {
303 	fxadmin_t	fxadmin;
304 	fxdpent_t	*tmpdpp;
305 	int		userdpsz;
306 	int		i;
307 	size_t		fxdpsz;
308 
309 	if (get_udatamodel() == DATAMODEL_NATIVE) {
310 		if (copyin(uaddr, &fxadmin, sizeof (fxadmin_t)))
311 			return (EFAULT);
312 	}
313 #ifdef _SYSCALL32_IMPL
314 	else {
315 		/* get fxadmin struct from ILP32 caller */
316 		fxadmin32_t fxadmin32;
317 		if (copyin(uaddr, &fxadmin32, sizeof (fxadmin32_t)))
318 			return (EFAULT);
319 		fxadmin.fx_dpents =
320 		    (struct fxdpent *)(uintptr_t)fxadmin32.fx_dpents;
321 		fxadmin.fx_ndpents = fxadmin32.fx_ndpents;
322 		fxadmin.fx_cmd = fxadmin32.fx_cmd;
323 	}
324 #endif /* _SYSCALL32_IMPL */
325 
326 	fxdpsz = (fx_maxumdpri + 1) * sizeof (fxdpent_t);
327 
328 	switch (fxadmin.fx_cmd) {
329 	case FX_GETDPSIZE:
330 		fxadmin.fx_ndpents = fx_maxumdpri + 1;
331 
332 		if (get_udatamodel() == DATAMODEL_NATIVE) {
333 			if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t)))
334 				return (EFAULT);
335 		}
336 #ifdef _SYSCALL32_IMPL
337 		else {
338 			/* return fxadmin struct to ILP32 caller */
339 			fxadmin32_t fxadmin32;
340 			fxadmin32.fx_dpents =
341 			    (caddr32_t)(uintptr_t)fxadmin.fx_dpents;
342 			fxadmin32.fx_ndpents = fxadmin.fx_ndpents;
343 			fxadmin32.fx_cmd = fxadmin.fx_cmd;
344 			if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t)))
345 				return (EFAULT);
346 		}
347 #endif /* _SYSCALL32_IMPL */
348 		break;
349 
350 	case FX_GETDPTBL:
351 		userdpsz = MIN(fxadmin.fx_ndpents * sizeof (fxdpent_t),
352 		    fxdpsz);
353 		if (copyout(fx_dptbl, fxadmin.fx_dpents, userdpsz))
354 			return (EFAULT);
355 
356 		fxadmin.fx_ndpents = userdpsz / sizeof (fxdpent_t);
357 
358 		if (get_udatamodel() == DATAMODEL_NATIVE) {
359 			if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t)))
360 				return (EFAULT);
361 		}
362 #ifdef _SYSCALL32_IMPL
363 		else {
364 			/* return fxadmin struct to ILP32 callers */
365 			fxadmin32_t fxadmin32;
366 			fxadmin32.fx_dpents =
367 			    (caddr32_t)(uintptr_t)fxadmin.fx_dpents;
368 			fxadmin32.fx_ndpents = fxadmin.fx_ndpents;
369 			fxadmin32.fx_cmd = fxadmin.fx_cmd;
370 			if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t)))
371 				return (EFAULT);
372 		}
373 #endif /* _SYSCALL32_IMPL */
374 		break;
375 
376 	case FX_SETDPTBL:
377 		/*
378 		 * We require that the requesting process has sufficient
379 		 * privileges. We also require that the table supplied by
380 		 * the user exactly match the current fx_dptbl in size.
381 		 */
382 		if (secpolicy_dispadm(reqpcredp) != 0) {
383 			return (EPERM);
384 		}
385 		if (fxadmin.fx_ndpents * sizeof (fxdpent_t) != fxdpsz) {
386 			return (EINVAL);
387 		}
388 
389 		/*
390 		 * We read the user supplied table into a temporary buffer
391 		 * where it is validated before being copied over the
392 		 * fx_dptbl.
393 		 */
394 		tmpdpp = kmem_alloc(fxdpsz, KM_SLEEP);
395 		if (copyin(fxadmin.fx_dpents, tmpdpp, fxdpsz)) {
396 			kmem_free(tmpdpp, fxdpsz);
397 			return (EFAULT);
398 		}
399 		for (i = 0; i < fxadmin.fx_ndpents; i++) {
400 
401 			/*
402 			 * Validate the user supplied values. All we are doing
403 			 * here is verifying that the values are within their
404 			 * allowable ranges and will not panic the system. We
405 			 * make no attempt to ensure that the resulting
406 			 * configuration makes sense or results in reasonable
407 			 * performance.
408 			 */
409 			if (tmpdpp[i].fx_quantum <= 0 &&
410 			    tmpdpp[i].fx_quantum != FX_TQINF) {
411 				kmem_free(tmpdpp, fxdpsz);
412 				return (EINVAL);
413 			}
414 		}
415 
416 		/*
417 		 * Copy the user supplied values over the current fx_dptbl
418 		 * values. The fx_globpri member is read-only so we don't
419 		 * overwrite it.
420 		 */
421 		mutex_enter(&fx_dptblock);
422 		for (i = 0; i < fxadmin.fx_ndpents; i++) {
423 			fx_dptbl[i].fx_quantum = tmpdpp[i].fx_quantum;
424 		}
425 		mutex_exit(&fx_dptblock);
426 		kmem_free(tmpdpp, fxdpsz);
427 		break;
428 
429 	default:
430 		return (EINVAL);
431 	}
432 	return (0);
433 }
434 
435 /*
436  * Allocate a fixed priority class specific thread structure and
437  * initialize it with the parameters supplied. Also move the thread
438  * to specified priority.
439  */
440 static int
441 fx_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
442     void *bufp)
443 {
444 	fxkparms_t	*fxkparmsp = (fxkparms_t *)parmsp;
445 	fxproc_t	*fxpp;
446 	pri_t		reqfxupri;
447 	pri_t		reqfxuprilim;
448 
449 	fxpp = (fxproc_t *)bufp;
450 	ASSERT(fxpp != NULL);
451 
452 	/*
453 	 * Initialize the fxproc structure.
454 	 */
455 	fxpp->fx_flags = 0;
456 	fxpp->fx_callback = NULL;
457 	fxpp->fx_cookie = NULL;
458 
459 	if (fxkparmsp == NULL) {
460 		/*
461 		 * Use default values.
462 		 */
463 		fxpp->fx_pri = fxpp->fx_uprilim = 0;
464 		fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
465 		fxpp->fx_nice =  NZERO;
466 	} else {
467 		/*
468 		 * Use supplied values.
469 		 */
470 
471 		if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0) {
472 			reqfxuprilim = 0;
473 		} else {
474 			if (fxkparmsp->fx_uprilim > FX_MAX_UNPRIV_PRI &&
475 			    secpolicy_setpriority(reqpcredp) != 0)
476 				return (EPERM);
477 			reqfxuprilim = fxkparmsp->fx_uprilim;
478 			FX_ADJUST_PRI(reqfxuprilim);
479 		}
480 
481 		if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0) {
482 			reqfxupri = reqfxuprilim;
483 		} else {
484 			if (fxkparmsp->fx_upri > FX_MAX_UNPRIV_PRI &&
485 			    secpolicy_setpriority(reqpcredp) != 0)
486 				return (EPERM);
487 			/*
488 			 * Set the user priority to the requested value
489 			 * or the upri limit, whichever is lower.
490 			 */
491 			reqfxupri = fxkparmsp->fx_upri;
492 			FX_ADJUST_PRI(reqfxupri);
493 
494 			if (reqfxupri > reqfxuprilim)
495 				reqfxupri = reqfxuprilim;
496 		}
497 
498 
499 		fxpp->fx_uprilim = reqfxuprilim;
500 		fxpp->fx_pri = reqfxupri;
501 
502 		fxpp->fx_nice = NZERO - (NZERO * reqfxupri) / fx_maxupri;
503 
504 		if (((fxkparmsp->fx_cflags & FX_DOTQ) == 0) ||
505 		    (fxkparmsp->fx_tqntm == FX_TQDEF)) {
506 			fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
507 		} else {
508 			if (secpolicy_setpriority(reqpcredp) != 0)
509 				return (EPERM);
510 
511 			if (fxkparmsp->fx_tqntm == FX_TQINF)
512 				fxpp->fx_pquantum = FX_TQINF;
513 			else {
514 				fxpp->fx_pquantum = fxkparmsp->fx_tqntm;
515 			}
516 		}
517 
518 	}
519 
520 	fxpp->fx_timeleft = fxpp->fx_pquantum;
521 	cpucaps_sc_init(&fxpp->fx_caps);
522 	fxpp->fx_tp = t;
523 
524 	thread_lock(t);			/* get dispatcher lock on thread */
525 	t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
526 	t->t_cid = cid;
527 	t->t_cldata = (void *)fxpp;
528 	t->t_schedflag &= ~TS_RUNQMATCH;
529 	fx_change_priority(t, fxpp);
530 	thread_unlock(t);
531 
532 	return (0);
533 }
534 
535 /*
536  * The thread is exiting.
537  */
538 static void
539 fx_exit(kthread_t *t)
540 {
541 	fxproc_t *fxpp;
542 
543 	thread_lock(t);
544 	fxpp = (fxproc_t *)(t->t_cldata);
545 
546 	/*
547 	 * A thread could be exiting in between clock ticks, so we need to
548 	 * calculate how much CPU time it used since it was charged last time.
549 	 *
550 	 * CPU caps are not enforced on exiting processes - it is usually
551 	 * desirable to exit as soon as possible to free resources.
552 	 */
553 	(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ONLY);
554 
555 	if (FX_HAS_CB(fxpp)) {
556 		FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie);
557 		fxpp->fx_callback = NULL;
558 		fxpp->fx_cookie = NULL;
559 		thread_unlock(t);
560 		FX_CB_LIST_DELETE(fxpp);
561 		return;
562 	}
563 
564 	thread_unlock(t);
565 }
566 
567 /*
568  * Exiting the class. Free fxproc structure of thread.
569  */
570 static void
571 fx_exitclass(void *procp)
572 {
573 	fxproc_t *fxpp = (fxproc_t *)procp;
574 
575 	thread_lock(fxpp->fx_tp);
576 	if (FX_HAS_CB(fxpp)) {
577 
578 		FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie);
579 
580 		fxpp->fx_callback = NULL;
581 		fxpp->fx_cookie = NULL;
582 		thread_unlock(fxpp->fx_tp);
583 		FX_CB_LIST_DELETE(fxpp);
584 	} else
585 		thread_unlock(fxpp->fx_tp);
586 
587 	kmem_free(fxpp, sizeof (fxproc_t));
588 }
589 
590 /* ARGSUSED */
591 static int
592 fx_canexit(kthread_t *t, cred_t *cred)
593 {
594 	/*
595 	 * A thread can always leave the FX class
596 	 */
597 	return (0);
598 }
599 
600 /*
601  * Initialize fixed-priority class specific proc structure for a child.
602  * callbacks are not inherited upon fork.
603  */
604 static int
605 fx_fork(kthread_t *t, kthread_t *ct, void *bufp)
606 {
607 	fxproc_t	*pfxpp;		/* ptr to parent's fxproc structure */
608 	fxproc_t	*cfxpp;		/* ptr to child's fxproc structure */
609 
610 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
611 
612 	cfxpp = (fxproc_t *)bufp;
613 	ASSERT(cfxpp != NULL);
614 	thread_lock(t);
615 	pfxpp = (fxproc_t *)t->t_cldata;
616 	/*
617 	 * Initialize child's fxproc structure.
618 	 */
619 	cfxpp->fx_timeleft = cfxpp->fx_pquantum = pfxpp->fx_pquantum;
620 	cfxpp->fx_pri = pfxpp->fx_pri;
621 	cfxpp->fx_uprilim = pfxpp->fx_uprilim;
622 	cfxpp->fx_nice = pfxpp->fx_nice;
623 	cfxpp->fx_callback = NULL;
624 	cfxpp->fx_cookie = NULL;
625 	cfxpp->fx_flags = pfxpp->fx_flags & ~(FXBACKQ);
626 	cpucaps_sc_init(&cfxpp->fx_caps);
627 
628 	cfxpp->fx_tp = ct;
629 	ct->t_cldata = (void *)cfxpp;
630 	thread_unlock(t);
631 
632 	/*
633 	 * Link new structure into fxproc list.
634 	 */
635 	return (0);
636 }
637 
638 
639 /*
640  * Child is placed at back of dispatcher queue and parent gives
641  * up processor so that the child runs first after the fork.
642  * This allows the child immediately execing to break the multiple
643  * use of copy on write pages with no disk home. The parent will
644  * get to steal them back rather than uselessly copying them.
645  */
646 static void
647 fx_forkret(kthread_t *t, kthread_t *ct)
648 {
649 	proc_t	*pp = ttoproc(t);
650 	proc_t	*cp = ttoproc(ct);
651 	fxproc_t *fxpp;
652 
653 	ASSERT(t == curthread);
654 	ASSERT(MUTEX_HELD(&pidlock));
655 
656 	/*
657 	 * Grab the child's p_lock before dropping pidlock to ensure
658 	 * the process does not disappear before we set it running.
659 	 */
660 	mutex_enter(&cp->p_lock);
661 	continuelwps(cp);
662 	mutex_exit(&cp->p_lock);
663 
664 	mutex_enter(&pp->p_lock);
665 	mutex_exit(&pidlock);
666 	continuelwps(pp);
667 
668 	thread_lock(t);
669 	fxpp = (fxproc_t *)(t->t_cldata);
670 	t->t_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
671 	ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri);
672 	THREAD_TRANSITION(t);
673 	fx_setrun(t);
674 	thread_unlock(t);
675 	/*
676 	 * Safe to drop p_lock now since it is safe to change
677 	 * the scheduling class after this point.
678 	 */
679 	mutex_exit(&pp->p_lock);
680 
681 	swtch();
682 }
683 
684 
685 /*
686  * Get information about the fixed-priority class into the buffer
687  * pointed to by fxinfop. The maximum configured user priority
688  * is the only information we supply.
689  */
690 static int
691 fx_getclinfo(void *infop)
692 {
693 	fxinfo_t *fxinfop = (fxinfo_t *)infop;
694 	fxinfop->fx_maxupri = fx_maxupri;
695 	return (0);
696 }
697 
698 
699 
700 /*
701  * Return the user mode scheduling priority range.
702  */
703 static int
704 fx_getclpri(pcpri_t *pcprip)
705 {
706 	pcprip->pc_clpmax = fx_maxupri;
707 	pcprip->pc_clpmin = 0;
708 	return (0);
709 }
710 
711 
712 static void
713 fx_nullsys()
714 {}
715 
716 
717 /*
718  * Get the fixed-priority parameters of the thread pointed to by
719  * fxprocp into the buffer pointed to by fxparmsp.
720  */
721 static void
722 fx_parmsget(kthread_t *t, void *parmsp)
723 {
724 	fxproc_t *fxpp = (fxproc_t *)t->t_cldata;
725 	fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp;
726 
727 	fxkparmsp->fx_upri = fxpp->fx_pri;
728 	fxkparmsp->fx_uprilim = fxpp->fx_uprilim;
729 	fxkparmsp->fx_tqntm = fxpp->fx_pquantum;
730 }
731 
732 
733 
734 /*
735  * Check the validity of the fixed-priority parameters in the buffer
736  * pointed to by fxparmsp.
737  */
738 static int
739 fx_parmsin(void *parmsp)
740 {
741 	fxparms_t	*fxparmsp = (fxparms_t *)parmsp;
742 	uint_t		cflags;
743 	longlong_t	ticks;
744 	/*
745 	 * Check validity of parameters.
746 	 */
747 
748 	if ((fxparmsp->fx_uprilim > fx_maxupri ||
749 	    fxparmsp->fx_uprilim < 0) &&
750 	    fxparmsp->fx_uprilim != FX_NOCHANGE)
751 		return (EINVAL);
752 
753 	if ((fxparmsp->fx_upri > fx_maxupri ||
754 	    fxparmsp->fx_upri < 0) &&
755 	    fxparmsp->fx_upri != FX_NOCHANGE)
756 		return (EINVAL);
757 
758 	if ((fxparmsp->fx_tqsecs == 0 && fxparmsp->fx_tqnsecs == 0) ||
759 	    fxparmsp->fx_tqnsecs >= NANOSEC)
760 		return (EINVAL);
761 
762 	cflags = (fxparmsp->fx_upri != FX_NOCHANGE ? FX_DOUPRI : 0);
763 
764 	if (fxparmsp->fx_uprilim != FX_NOCHANGE) {
765 		cflags |= FX_DOUPRILIM;
766 	}
767 
768 	if (fxparmsp->fx_tqnsecs != FX_NOCHANGE)
769 		cflags |= FX_DOTQ;
770 
771 	/*
772 	 * convert the buffer to kernel format.
773 	 */
774 
775 	if (fxparmsp->fx_tqnsecs >= 0) {
776 		if ((ticks = SEC_TO_TICK((longlong_t)fxparmsp->fx_tqsecs) +
777 		    NSEC_TO_TICK_ROUNDUP(fxparmsp->fx_tqnsecs)) > INT_MAX)
778 			return (ERANGE);
779 
780 		((fxkparms_t *)fxparmsp)->fx_tqntm = (int)ticks;
781 	} else {
782 		if ((fxparmsp->fx_tqnsecs != FX_NOCHANGE) &&
783 		    (fxparmsp->fx_tqnsecs != FX_TQINF) &&
784 		    (fxparmsp->fx_tqnsecs != FX_TQDEF))
785 			return (EINVAL);
786 		((fxkparms_t *)fxparmsp)->fx_tqntm = fxparmsp->fx_tqnsecs;
787 	}
788 
789 	((fxkparms_t *)fxparmsp)->fx_cflags = cflags;
790 
791 	return (0);
792 }
793 
794 
795 /*
796  * Check the validity of the fixed-priority parameters in the pc_vaparms_t
797  * structure vaparmsp and put them in the buffer pointed to by fxprmsp.
798  * pc_vaparms_t contains (key, value) pairs of parameter.
799  */
800 static int
801 fx_vaparmsin(void *prmsp, pc_vaparms_t *vaparmsp)
802 {
803 	uint_t		secs = 0;
804 	uint_t		cnt;
805 	int		nsecs = 0;
806 	int		priflag, secflag, nsecflag, limflag;
807 	longlong_t	ticks;
808 	fxkparms_t	*fxprmsp = (fxkparms_t *)prmsp;
809 	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
810 
811 
812 	/*
813 	 * First check the validity of parameters and convert them
814 	 * from the user supplied format to the internal format.
815 	 */
816 	priflag = secflag = nsecflag = limflag = 0;
817 
818 	fxprmsp->fx_cflags = 0;
819 
820 	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
821 		return (EINVAL);
822 
823 	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
824 
825 		switch (vpp->pc_key) {
826 		case FX_KY_UPRILIM:
827 			if (limflag++)
828 				return (EINVAL);
829 			fxprmsp->fx_cflags |= FX_DOUPRILIM;
830 			fxprmsp->fx_uprilim = (pri_t)vpp->pc_parm;
831 			if (fxprmsp->fx_uprilim > fx_maxupri ||
832 			    fxprmsp->fx_uprilim < 0)
833 				return (EINVAL);
834 			break;
835 
836 		case FX_KY_UPRI:
837 			if (priflag++)
838 				return (EINVAL);
839 			fxprmsp->fx_cflags |= FX_DOUPRI;
840 			fxprmsp->fx_upri = (pri_t)vpp->pc_parm;
841 			if (fxprmsp->fx_upri > fx_maxupri ||
842 			    fxprmsp->fx_upri < 0)
843 				return (EINVAL);
844 			break;
845 
846 		case FX_KY_TQSECS:
847 			if (secflag++)
848 				return (EINVAL);
849 			fxprmsp->fx_cflags |= FX_DOTQ;
850 			secs = (uint_t)vpp->pc_parm;
851 			break;
852 
853 		case FX_KY_TQNSECS:
854 			if (nsecflag++)
855 				return (EINVAL);
856 			fxprmsp->fx_cflags |= FX_DOTQ;
857 			nsecs = (int)vpp->pc_parm;
858 			break;
859 
860 		default:
861 			return (EINVAL);
862 		}
863 	}
864 
865 	if (vaparmsp->pc_vaparmscnt == 0) {
866 		/*
867 		 * Use default parameters.
868 		 */
869 		fxprmsp->fx_upri = 0;
870 		fxprmsp->fx_uprilim = 0;
871 		fxprmsp->fx_tqntm = FX_TQDEF;
872 		fxprmsp->fx_cflags = FX_DOUPRI | FX_DOUPRILIM | FX_DOTQ;
873 	} else if ((fxprmsp->fx_cflags & FX_DOTQ) != 0) {
874 		if ((secs == 0 && nsecs == 0) || nsecs >= NANOSEC)
875 			return (EINVAL);
876 
877 		if (nsecs >= 0) {
878 			if ((ticks = SEC_TO_TICK((longlong_t)secs) +
879 			    NSEC_TO_TICK_ROUNDUP(nsecs)) > INT_MAX)
880 				return (ERANGE);
881 
882 			fxprmsp->fx_tqntm = (int)ticks;
883 		} else {
884 			if (nsecs != FX_TQINF && nsecs != FX_TQDEF)
885 				return (EINVAL);
886 			fxprmsp->fx_tqntm = nsecs;
887 		}
888 	}
889 
890 	return (0);
891 }
892 
893 
894 /*
895  * Nothing to do here but return success.
896  */
897 /* ARGSUSED */
898 static int
899 fx_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
900 {
901 	register fxkparms_t	*fxkprmsp = (fxkparms_t *)parmsp;
902 
903 	if (vaparmsp != NULL)
904 		return (0);
905 
906 	if (fxkprmsp->fx_tqntm < 0) {
907 		/*
908 		 * Quantum field set to special value (e.g. FX_TQINF)
909 		 */
910 		((fxparms_t *)fxkprmsp)->fx_tqnsecs = fxkprmsp->fx_tqntm;
911 		((fxparms_t *)fxkprmsp)->fx_tqsecs = 0;
912 
913 	} else {
914 		/* Convert quantum from ticks to seconds-nanoseconds */
915 
916 		timestruc_t ts;
917 		TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts);
918 		((fxparms_t *)fxkprmsp)->fx_tqsecs = ts.tv_sec;
919 		((fxparms_t *)fxkprmsp)->fx_tqnsecs = ts.tv_nsec;
920 	}
921 
922 	return (0);
923 }
924 
925 
926 /*
927  * Copy all selected fixed-priority class parameters to the user.
928  * The parameters are specified by a key.
929  */
930 static int
931 fx_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
932 {
933 	fxkparms_t	*fxkprmsp = (fxkparms_t *)prmsp;
934 	timestruc_t	ts;
935 	uint_t		cnt;
936 	uint_t		secs;
937 	int		nsecs;
938 	int		priflag, secflag, nsecflag, limflag;
939 	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
940 
941 	ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
942 
943 	priflag = secflag = nsecflag = limflag = 0;
944 
945 	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
946 		return (EINVAL);
947 
948 	if (fxkprmsp->fx_tqntm < 0) {
949 		/*
950 		 * Quantum field set to special value (e.g. FX_TQINF).
951 		 */
952 		secs = 0;
953 		nsecs = fxkprmsp->fx_tqntm;
954 	} else {
955 		/*
956 		 * Convert quantum from ticks to seconds-nanoseconds.
957 		 */
958 		TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts);
959 		secs = ts.tv_sec;
960 		nsecs = ts.tv_nsec;
961 	}
962 
963 
964 	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
965 
966 		switch (vpp->pc_key) {
967 		case FX_KY_UPRILIM:
968 			if (limflag++)
969 				return (EINVAL);
970 			if (copyout(&fxkprmsp->fx_uprilim,
971 			    (void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
972 				return (EFAULT);
973 			break;
974 
975 		case FX_KY_UPRI:
976 			if (priflag++)
977 				return (EINVAL);
978 			if (copyout(&fxkprmsp->fx_upri,
979 			    (void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
980 				return (EFAULT);
981 			break;
982 
983 		case FX_KY_TQSECS:
984 			if (secflag++)
985 				return (EINVAL);
986 			if (copyout(&secs,
987 			    (void *)(uintptr_t)vpp->pc_parm, sizeof (uint_t)))
988 				return (EFAULT);
989 			break;
990 
991 		case FX_KY_TQNSECS:
992 			if (nsecflag++)
993 				return (EINVAL);
994 			if (copyout(&nsecs,
995 			    (void *)(uintptr_t)vpp->pc_parm, sizeof (int)))
996 				return (EFAULT);
997 			break;
998 
999 		default:
1000 			return (EINVAL);
1001 		}
1002 	}
1003 
1004 	return (0);
1005 }
1006 
1007 /*
1008  * Set the scheduling parameters of the thread pointed to by fxprocp
1009  * to those specified in the buffer pointed to by fxparmsp.
1010  */
1011 /* ARGSUSED */
1012 static int
1013 fx_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1014 {
1015 	char		nice;
1016 	pri_t		reqfxuprilim;
1017 	pri_t		reqfxupri;
1018 	fxkparms_t	*fxkparmsp = (fxkparms_t *)parmsp;
1019 	fxproc_t	*fxpp;
1020 
1021 
1022 	ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock));
1023 
1024 	thread_lock(tx);
1025 	fxpp = (fxproc_t *)tx->t_cldata;
1026 
1027 	if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0)
1028 		reqfxuprilim = fxpp->fx_uprilim;
1029 	else
1030 		reqfxuprilim = fxkparmsp->fx_uprilim;
1031 
1032 	/*
1033 	 * Basic permissions enforced by generic kernel code
1034 	 * for all classes require that a thread attempting
1035 	 * to change the scheduling parameters of a target
1036 	 * thread be privileged or have a real or effective
1037 	 * UID matching that of the target thread. We are not
1038 	 * called unless these basic permission checks have
1039 	 * already passed. The fixed priority class requires in
1040 	 * addition that the calling thread be privileged if it
1041 	 * is attempting to raise the pri above its current
1042 	 * value This may have been checked previously but if our
1043 	 * caller passed us a non-NULL credential pointer we assume
1044 	 * it hasn't and we check it here.
1045 	 */
1046 
1047 	if ((reqpcredp != NULL) &&
1048 	    (reqfxuprilim > fxpp->fx_uprilim ||
1049 	    ((fxkparmsp->fx_cflags & FX_DOTQ) != 0)) &&
1050 	    secpolicy_raisepriority(reqpcredp) != 0) {
1051 		thread_unlock(tx);
1052 		return (EPERM);
1053 	}
1054 
1055 	FX_ADJUST_PRI(reqfxuprilim);
1056 
1057 	if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0)
1058 		reqfxupri = fxpp->fx_pri;
1059 	else
1060 		reqfxupri = fxkparmsp->fx_upri;
1061 
1062 
1063 	/*
1064 	 * Make sure the user priority doesn't exceed the upri limit.
1065 	 */
1066 	if (reqfxupri > reqfxuprilim)
1067 		reqfxupri = reqfxuprilim;
1068 
1069 	/*
1070 	 * Set fx_nice to the nice value corresponding to the user
1071 	 * priority we are setting.  Note that setting the nice field
1072 	 * of the parameter struct won't affect upri or nice.
1073 	 */
1074 
1075 	nice = NZERO - (reqfxupri * NZERO) / fx_maxupri;
1076 
1077 	if (nice > NZERO)
1078 		nice = NZERO;
1079 
1080 	fxpp->fx_uprilim = reqfxuprilim;
1081 	fxpp->fx_pri = reqfxupri;
1082 
1083 	if (fxkparmsp->fx_tqntm == FX_TQINF)
1084 		fxpp->fx_pquantum = FX_TQINF;
1085 	else if (fxkparmsp->fx_tqntm == FX_TQDEF)
1086 		fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1087 	else if ((fxkparmsp->fx_cflags & FX_DOTQ) != 0)
1088 		fxpp->fx_pquantum = fxkparmsp->fx_tqntm;
1089 
1090 	fxpp->fx_nice = nice;
1091 
1092 	fx_change_priority(tx, fxpp);
1093 	thread_unlock(tx);
1094 	return (0);
1095 }
1096 
1097 
1098 /*
1099  * Return the global scheduling priority that would be assigned
1100  * to a thread entering the fixed-priority class with the fx_upri.
1101  */
1102 static pri_t
1103 fx_globpri(kthread_t *t)
1104 {
1105 	fxproc_t *fxpp;
1106 
1107 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1108 
1109 	fxpp = (fxproc_t *)t->t_cldata;
1110 	return (fx_dptbl[fxpp->fx_pri].fx_globpri);
1111 
1112 }
1113 
1114 /*
1115  * Arrange for thread to be placed in appropriate location
1116  * on dispatcher queue.
1117  *
1118  * This is called with the current thread in TS_ONPROC and locked.
1119  */
1120 static void
1121 fx_preempt(kthread_t *t)
1122 {
1123 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1124 
1125 	ASSERT(t == curthread);
1126 	ASSERT(THREAD_LOCK_HELD(curthread));
1127 
1128 	(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
1129 
1130 	/*
1131 	 * Check to see if we're doing "preemption control" here.  If
1132 	 * we are, and if the user has requested that this thread not
1133 	 * be preempted, and if preemptions haven't been put off for
1134 	 * too long, let the preemption happen here but try to make
1135 	 * sure the thread is rescheduled as soon as possible.  We do
1136 	 * this by putting it on the front of the highest priority run
1137 	 * queue in the FX class.  If the preemption has been put off
1138 	 * for too long, clear the "nopreempt" bit and let the thread
1139 	 * be preempted.
1140 	 */
1141 	if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1142 		if (fxpp->fx_pquantum == FX_TQINF ||
1143 		    fxpp->fx_timeleft > -SC_MAX_TICKS) {
1144 			DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
1145 			schedctl_set_yield(t, 1);
1146 			setfrontdq(t);
1147 			return;
1148 		} else {
1149 			schedctl_set_nopreempt(t, 0);
1150 			DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
1151 			TNF_PROBE_2(schedctl_preempt, "schedctl FX fx_preempt",
1152 			    /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid,
1153 			    tnf_lwpid, lwpid, t->t_tid);
1154 			/*
1155 			 * Fall through and be preempted below.
1156 			 */
1157 		}
1158 	}
1159 
1160 	if (FX_HAS_CB(fxpp)) {
1161 		clock_t new_quantum =  (clock_t)fxpp->fx_pquantum;
1162 		pri_t	newpri = fxpp->fx_pri;
1163 		FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie,
1164 		    &new_quantum, &newpri);
1165 		FX_ADJUST_QUANTUM(new_quantum);
1166 		if ((int)new_quantum != fxpp->fx_pquantum) {
1167 			fxpp->fx_pquantum = (int)new_quantum;
1168 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1169 		}
1170 		FX_ADJUST_PRI(newpri);
1171 		fxpp->fx_pri = newpri;
1172 		THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1173 	}
1174 
1175 	/*
1176 	 * This thread may be placed on wait queue by CPU Caps. In this case we
1177 	 * do not need to do anything until it is removed from the wait queue.
1178 	 */
1179 	if (CPUCAPS_ENFORCE(t)) {
1180 		return;
1181 	}
1182 
1183 	if ((fxpp->fx_flags & (FXBACKQ)) == FXBACKQ) {
1184 		fxpp->fx_timeleft = fxpp->fx_pquantum;
1185 		fxpp->fx_flags &= ~FXBACKQ;
1186 		setbackdq(t);
1187 	} else {
1188 		setfrontdq(t);
1189 	}
1190 }
1191 
1192 static void
1193 fx_setrun(kthread_t *t)
1194 {
1195 	fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1196 
1197 	ASSERT(THREAD_LOCK_HELD(t));	/* t should be in transition */
1198 	fxpp->fx_flags &= ~FXBACKQ;
1199 
1200 	if (t->t_disp_time != ddi_get_lbolt())
1201 		setbackdq(t);
1202 	else
1203 		setfrontdq(t);
1204 }
1205 
1206 
1207 /*
1208  * Prepare thread for sleep. We reset the thread priority so it will
1209  * run at the kernel priority level when it wakes up.
1210  */
1211 static void
1212 fx_sleep(kthread_t *t)
1213 {
1214 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1215 
1216 	ASSERT(t == curthread);
1217 	ASSERT(THREAD_LOCK_HELD(t));
1218 
1219 	/*
1220 	 * Account for time spent on CPU before going to sleep.
1221 	 */
1222 	(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
1223 
1224 	if (FX_HAS_CB(fxpp)) {
1225 		FX_CB_SLEEP(FX_CALLB(fxpp), fxpp->fx_cookie);
1226 	}
1227 	t->t_stime = ddi_get_lbolt();		/* time stamp for the swapper */
1228 }
1229 
1230 
1231 /*
1232  * Return Values:
1233  *
1234  *	-1 if the thread is loaded or is not eligible to be swapped in.
1235  *
1236  * FX and RT threads are designed so that they don't swapout; however,
1237  * it is possible that while the thread is swapped out and in another class, it
1238  * can be changed to FX or RT.  Since these threads should be swapped in
1239  * as soon as they're runnable, rt_swapin returns SHRT_MAX, and fx_swapin
1240  * returns SHRT_MAX - 1, so that it gives deference to any swapped out
1241  * RT threads.
1242  */
1243 /* ARGSUSED */
1244 static pri_t
1245 fx_swapin(kthread_t *t, int flags)
1246 {
1247 	pri_t	tpri = -1;
1248 
1249 	ASSERT(THREAD_LOCK_HELD(t));
1250 
1251 	if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
1252 		tpri = (pri_t)SHRT_MAX - 1;
1253 	}
1254 
1255 	return (tpri);
1256 }
1257 
1258 /*
1259  * Return Values
1260  *	-1 if the thread isn't loaded or is not eligible to be swapped out.
1261  */
1262 /* ARGSUSED */
1263 static pri_t
1264 fx_swapout(kthread_t *t, int flags)
1265 {
1266 	ASSERT(THREAD_LOCK_HELD(t));
1267 
1268 	return (-1);
1269 
1270 }
1271 
1272 /* ARGSUSED */
1273 static void
1274 fx_stop(kthread_t *t, int why, int what)
1275 {
1276 	fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1277 
1278 	ASSERT(THREAD_LOCK_HELD(t));
1279 
1280 	if (FX_HAS_CB(fxpp)) {
1281 		FX_CB_STOP(FX_CALLB(fxpp), fxpp->fx_cookie);
1282 	}
1283 }
1284 
1285 /*
1286  * Check for time slice expiration.  If time slice has expired
1287  * set runrun to cause preemption.
1288  */
1289 static void
1290 fx_tick(kthread_t *t)
1291 {
1292 	boolean_t call_cpu_surrender = B_FALSE;
1293 	fxproc_t *fxpp;
1294 
1295 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1296 
1297 	thread_lock(t);
1298 
1299 	fxpp = (fxproc_t *)(t->t_cldata);
1300 
1301 	if (FX_HAS_CB(fxpp)) {
1302 		clock_t new_quantum =  (clock_t)fxpp->fx_pquantum;
1303 		pri_t	newpri = fxpp->fx_pri;
1304 		FX_CB_TICK(FX_CALLB(fxpp), fxpp->fx_cookie,
1305 		    &new_quantum, &newpri);
1306 		FX_ADJUST_QUANTUM(new_quantum);
1307 		if ((int)new_quantum != fxpp->fx_pquantum) {
1308 			fxpp->fx_pquantum = (int)new_quantum;
1309 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1310 		}
1311 		FX_ADJUST_PRI(newpri);
1312 		if (newpri != fxpp->fx_pri) {
1313 			fxpp->fx_pri = newpri;
1314 			fx_change_priority(t, fxpp);
1315 		}
1316 	}
1317 
1318 	/*
1319 	 * Keep track of thread's project CPU usage.  Note that projects
1320 	 * get charged even when threads are running in the kernel.
1321 	 */
1322 	call_cpu_surrender =  CPUCAPS_CHARGE(t, &fxpp->fx_caps,
1323 	    CPUCAPS_CHARGE_ENFORCE);
1324 
1325 	if ((fxpp->fx_pquantum != FX_TQINF) &&
1326 	    (--fxpp->fx_timeleft <= 0)) {
1327 		pri_t	new_pri;
1328 
1329 		/*
1330 		 * If we're doing preemption control and trying to
1331 		 * avoid preempting this thread, just note that
1332 		 * the thread should yield soon and let it keep
1333 		 * running (unless it's been a while).
1334 		 */
1335 		if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1336 			if (fxpp->fx_timeleft > -SC_MAX_TICKS) {
1337 				DTRACE_SCHED1(schedctl__nopreempt,
1338 				    kthread_t *, t);
1339 				schedctl_set_yield(t, 1);
1340 				thread_unlock_nopreempt(t);
1341 				return;
1342 			}
1343 			TNF_PROBE_2(schedctl_failsafe,
1344 			    "schedctl FX fx_tick", /* CSTYLED */,
1345 			    tnf_pid, pid, ttoproc(t)->p_pid,
1346 			    tnf_lwpid, lwpid, t->t_tid);
1347 		}
1348 		new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
1349 		ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri);
1350 		/*
1351 		 * When the priority of a thread is changed,
1352 		 * it may be necessary to adjust its position
1353 		 * on a sleep queue or dispatch queue. Even
1354 		 * when the priority is not changed, we need
1355 		 * to preserve round robin on dispatch queue.
1356 		 * The function thread_change_pri accomplishes
1357 		 * this.
1358 		 */
1359 		if (thread_change_pri(t, new_pri, 0)) {
1360 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1361 		} else {
1362 			call_cpu_surrender = B_TRUE;
1363 		}
1364 	} else if (t->t_state == TS_ONPROC &&
1365 	    t->t_pri < t->t_disp_queue->disp_maxrunpri) {
1366 		call_cpu_surrender = B_TRUE;
1367 	}
1368 
1369 	if (call_cpu_surrender) {
1370 		fxpp->fx_flags |= FXBACKQ;
1371 		cpu_surrender(t);
1372 	}
1373 	thread_unlock_nopreempt(t);	/* clock thread can't be preempted */
1374 }
1375 
1376 
1377 static void
1378 fx_trapret(kthread_t *t)
1379 {
1380 	cpu_t		*cp = CPU;
1381 
1382 	ASSERT(THREAD_LOCK_HELD(t));
1383 	ASSERT(t == curthread);
1384 	ASSERT(cp->cpu_dispthread == t);
1385 	ASSERT(t->t_state == TS_ONPROC);
1386 }
1387 
1388 
1389 /*
1390  * Processes waking up go to the back of their queue.
1391  */
1392 static void
1393 fx_wakeup(kthread_t *t)
1394 {
1395 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1396 
1397 	ASSERT(THREAD_LOCK_HELD(t));
1398 
1399 	t->t_stime = ddi_get_lbolt();		/* time stamp for the swapper */
1400 	if (FX_HAS_CB(fxpp)) {
1401 		clock_t new_quantum =  (clock_t)fxpp->fx_pquantum;
1402 		pri_t	newpri = fxpp->fx_pri;
1403 		FX_CB_WAKEUP(FX_CALLB(fxpp), fxpp->fx_cookie,
1404 		    &new_quantum, &newpri);
1405 		FX_ADJUST_QUANTUM(new_quantum);
1406 		if ((int)new_quantum != fxpp->fx_pquantum) {
1407 			fxpp->fx_pquantum = (int)new_quantum;
1408 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1409 		}
1410 
1411 		FX_ADJUST_PRI(newpri);
1412 		if (newpri != fxpp->fx_pri) {
1413 			fxpp->fx_pri = newpri;
1414 			THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1415 		}
1416 	}
1417 
1418 	fxpp->fx_flags &= ~FXBACKQ;
1419 
1420 	if (t->t_disp_time != ddi_get_lbolt())
1421 		setbackdq(t);
1422 	else
1423 		setfrontdq(t);
1424 }
1425 
1426 
1427 /*
1428  * When a thread yields, put it on the back of the run queue.
1429  */
1430 static void
1431 fx_yield(kthread_t *t)
1432 {
1433 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1434 
1435 	ASSERT(t == curthread);
1436 	ASSERT(THREAD_LOCK_HELD(t));
1437 
1438 	/*
1439 	 * Collect CPU usage spent before yielding CPU.
1440 	 */
1441 	(void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
1442 
1443 	if (FX_HAS_CB(fxpp))  {
1444 		clock_t new_quantum =  (clock_t)fxpp->fx_pquantum;
1445 		pri_t	newpri = fxpp->fx_pri;
1446 		FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie,
1447 		    &new_quantum, &newpri);
1448 		FX_ADJUST_QUANTUM(new_quantum);
1449 		if ((int)new_quantum != fxpp->fx_pquantum) {
1450 			fxpp->fx_pquantum = (int)new_quantum;
1451 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1452 		}
1453 		FX_ADJUST_PRI(newpri);
1454 		fxpp->fx_pri = newpri;
1455 		THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1456 	}
1457 
1458 	/*
1459 	 * Clear the preemption control "yield" bit since the user is
1460 	 * doing a yield.
1461 	 */
1462 	if (t->t_schedctl)
1463 		schedctl_set_yield(t, 0);
1464 
1465 	if (fxpp->fx_timeleft <= 0) {
1466 		/*
1467 		 * Time slice was artificially extended to avoid
1468 		 * preemption, so pretend we're preempting it now.
1469 		 */
1470 		DTRACE_SCHED1(schedctl__yield, int, -fxpp->fx_timeleft);
1471 		fxpp->fx_timeleft = fxpp->fx_pquantum;
1472 		THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1473 		ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri);
1474 	}
1475 
1476 	fxpp->fx_flags &= ~FXBACKQ;
1477 	setbackdq(t);
1478 }
1479 
1480 /*
1481  * Increment the nice value of the specified thread by incr and
1482  * return the new value in *retvalp.
1483  */
1484 static int
1485 fx_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
1486 {
1487 	int		newnice;
1488 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1489 	fxkparms_t	fxkparms;
1490 
1491 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1492 
1493 	/* If there's no change to priority, just return current setting */
1494 	if (incr == 0) {
1495 		if (retvalp) {
1496 			*retvalp = fxpp->fx_nice - NZERO;
1497 		}
1498 		return (0);
1499 	}
1500 
1501 	if ((incr < 0 || incr > 2 * NZERO) &&
1502 	    secpolicy_raisepriority(cr) != 0)
1503 		return (EPERM);
1504 
1505 	/*
1506 	 * Specifying a nice increment greater than the upper limit of
1507 	 * 2 * NZERO - 1 will result in the thread's nice value being
1508 	 * set to the upper limit.  We check for this before computing
1509 	 * the new value because otherwise we could get overflow
1510 	 * if a privileged user specified some ridiculous increment.
1511 	 */
1512 	if (incr > 2 * NZERO - 1)
1513 		incr = 2 * NZERO - 1;
1514 
1515 	newnice = fxpp->fx_nice + incr;
1516 	if (newnice > NZERO)
1517 		newnice = NZERO;
1518 	else if (newnice < 0)
1519 		newnice = 0;
1520 
1521 	fxkparms.fx_uprilim = fxkparms.fx_upri =
1522 	    -((newnice - NZERO) * fx_maxupri) / NZERO;
1523 
1524 	fxkparms.fx_cflags = FX_DOUPRILIM | FX_DOUPRI;
1525 
1526 	fxkparms.fx_tqntm = FX_TQDEF;
1527 
1528 	/*
1529 	 * Reset the uprilim and upri values of the thread. Adjust
1530 	 * time quantum accordingly.
1531 	 */
1532 
1533 	(void) fx_parmsset(t, (void *)&fxkparms, (id_t)0, (cred_t *)NULL);
1534 
1535 	/*
1536 	 * Although fx_parmsset already reset fx_nice it may
1537 	 * not have been set to precisely the value calculated above
1538 	 * because fx_parmsset determines the nice value from the
1539 	 * user priority and we may have truncated during the integer
1540 	 * conversion from nice value to user priority and back.
1541 	 * We reset fx_nice to the value we calculated above.
1542 	 */
1543 	fxpp->fx_nice = (char)newnice;
1544 
1545 	if (retvalp)
1546 		*retvalp = newnice - NZERO;
1547 
1548 	return (0);
1549 }
1550 
1551 /*
1552  * Increment the priority of the specified thread by incr and
1553  * return the new value in *retvalp.
1554  */
1555 static int
1556 fx_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp)
1557 {
1558 	int		newpri;
1559 	fxproc_t	*fxpp = (fxproc_t *)(t->t_cldata);
1560 	fxkparms_t	fxkparms;
1561 
1562 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1563 
1564 	/* If there's no change to priority, just return current setting */
1565 	if (incr == 0) {
1566 		*retvalp = fxpp->fx_pri;
1567 		return (0);
1568 	}
1569 
1570 	newpri = fxpp->fx_pri + incr;
1571 	if (newpri > fx_maxupri || newpri < 0)
1572 		return (EINVAL);
1573 
1574 	*retvalp = newpri;
1575 	fxkparms.fx_uprilim = fxkparms.fx_upri = newpri;
1576 	fxkparms.fx_tqntm = FX_NOCHANGE;
1577 	fxkparms.fx_cflags = FX_DOUPRILIM | FX_DOUPRI;
1578 
1579 	/*
1580 	 * Reset the uprilim and upri values of the thread.
1581 	 */
1582 	return (fx_parmsset(t, (void *)&fxkparms, (id_t)0, cr));
1583 }
1584 
1585 static void
1586 fx_change_priority(kthread_t *t, fxproc_t *fxpp)
1587 {
1588 	pri_t	new_pri;
1589 
1590 	ASSERT(THREAD_LOCK_HELD(t));
1591 	new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
1592 	ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri);
1593 	t->t_cpri = fxpp->fx_pri;
1594 	if (t == curthread || t->t_state == TS_ONPROC) {
1595 		/* curthread is always onproc */
1596 		cpu_t	*cp = t->t_disp_queue->disp_cpu;
1597 		THREAD_CHANGE_PRI(t, new_pri);
1598 		if (t == cp->cpu_dispthread)
1599 			cp->cpu_dispatch_pri = DISP_PRIO(t);
1600 		if (DISP_MUST_SURRENDER(t)) {
1601 			fxpp->fx_flags |= FXBACKQ;
1602 			cpu_surrender(t);
1603 		} else {
1604 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1605 		}
1606 	} else {
1607 		/*
1608 		 * When the priority of a thread is changed,
1609 		 * it may be necessary to adjust its position
1610 		 * on a sleep queue or dispatch queue.
1611 		 * The function thread_change_pri accomplishes
1612 		 * this.
1613 		 */
1614 		if (thread_change_pri(t, new_pri, 0)) {
1615 			/*
1616 			 * The thread was on a run queue. Reset
1617 			 * its CPU timeleft from the quantum
1618 			 * associated with the new priority.
1619 			 */
1620 			fxpp->fx_timeleft = fxpp->fx_pquantum;
1621 		} else {
1622 			fxpp->fx_flags |= FXBACKQ;
1623 		}
1624 	}
1625 }
1626 
1627 static int
1628 fx_alloc(void **p, int flag)
1629 {
1630 	void *bufp;
1631 
1632 	bufp = kmem_alloc(sizeof (fxproc_t), flag);
1633 	if (bufp == NULL) {
1634 		return (ENOMEM);
1635 	} else {
1636 		*p = bufp;
1637 		return (0);
1638 	}
1639 }
1640 
1641 static void
1642 fx_free(void *bufp)
1643 {
1644 	if (bufp)
1645 		kmem_free(bufp, sizeof (fxproc_t));
1646 }
1647 
1648 /*
1649  * Release the callback list mutex after successful lookup
1650  */
1651 void
1652 fx_list_release(fxproc_t *fxpp)
1653 {
1654 	int index = FX_CB_LIST_HASH(fxpp->fx_ktid);
1655 	kmutex_t *lockp = &fx_cb_list_lock[index];
1656 	mutex_exit(lockp);
1657 }
1658 
1659 fxproc_t *
1660 fx_list_lookup(kt_did_t ktid)
1661 {
1662 	int index = FX_CB_LIST_HASH(ktid);
1663 	kmutex_t *lockp = &fx_cb_list_lock[index];
1664 	fxproc_t *fxpp;
1665 
1666 	mutex_enter(lockp);
1667 
1668 	for (fxpp = fx_cb_plisthead[index].fx_cb_next;
1669 	    fxpp != &fx_cb_plisthead[index]; fxpp = fxpp->fx_cb_next) {
1670 		if (fxpp->fx_tp->t_cid == fx_cid && fxpp->fx_ktid == ktid &&
1671 		    fxpp->fx_callback != NULL) {
1672 			/*
1673 			 * The caller is responsible for calling
1674 			 * fx_list_release to drop the lock upon
1675 			 * successful lookup
1676 			 */
1677 			return (fxpp);
1678 		}
1679 	}
1680 	mutex_exit(lockp);
1681 	return ((fxproc_t *)NULL);
1682 }
1683 
1684 
1685 /*
1686  * register a callback set of routines for current thread
1687  * thread should already be in FX class
1688  */
1689 int
1690 fx_register_callbacks(fx_callbacks_t *fx_callback, fx_cookie_t cookie,
1691 	pri_t pri, clock_t quantum)
1692 {
1693 
1694 	fxproc_t	*fxpp;
1695 
1696 	if (fx_callback == NULL)
1697 		return (EINVAL);
1698 
1699 	if (secpolicy_dispadm(CRED()) != 0)
1700 		return (EPERM);
1701 
1702 	if (FX_CB_VERSION(fx_callback) != FX_CALLB_REV)
1703 		return (EINVAL);
1704 
1705 	if (!FX_ISVALID(pri, quantum))
1706 		return (EINVAL);
1707 
1708 	thread_lock(curthread);		/* get dispatcher lock on thread */
1709 
1710 	if (curthread->t_cid != fx_cid) {
1711 		thread_unlock(curthread);
1712 		return (EINVAL);
1713 	}
1714 
1715 	fxpp = (fxproc_t *)(curthread->t_cldata);
1716 	ASSERT(fxpp != NULL);
1717 	if (FX_HAS_CB(fxpp)) {
1718 		thread_unlock(curthread);
1719 		return (EINVAL);
1720 	}
1721 
1722 	fxpp->fx_callback = fx_callback;
1723 	fxpp->fx_cookie = cookie;
1724 
1725 	if (pri != FX_CB_NOCHANGE) {
1726 		fxpp->fx_pri = pri;
1727 		FX_ADJUST_PRI(fxpp->fx_pri);
1728 		if (quantum == FX_TQDEF) {
1729 			fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1730 		} else if (quantum == FX_TQINF) {
1731 			fxpp->fx_pquantum = FX_TQINF;
1732 		} else if (quantum != FX_NOCHANGE) {
1733 			FX_ADJUST_QUANTUM(quantum);
1734 			fxpp->fx_pquantum = quantum;
1735 		}
1736 	} else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) {
1737 		if (quantum == FX_TQINF)
1738 			fxpp->fx_pquantum = FX_TQINF;
1739 		else {
1740 			FX_ADJUST_QUANTUM(quantum);
1741 			fxpp->fx_pquantum = quantum;
1742 		}
1743 	}
1744 
1745 	fxpp->fx_ktid = ddi_get_kt_did();
1746 
1747 	fx_change_priority(curthread, fxpp);
1748 
1749 	thread_unlock(curthread);
1750 
1751 	/*
1752 	 * Link new structure into fxproc list.
1753 	 */
1754 	FX_CB_LIST_INSERT(fxpp);
1755 	return (0);
1756 }
1757 
1758 /* unregister a callback set of routines for current thread */
1759 int
1760 fx_unregister_callbacks()
1761 {
1762 	fxproc_t	*fxpp;
1763 
1764 	if ((fxpp = fx_list_lookup(ddi_get_kt_did())) == NULL) {
1765 		/*
1766 		 * did not have a registered callback;
1767 		 */
1768 		return (EINVAL);
1769 	}
1770 
1771 	thread_lock(fxpp->fx_tp);
1772 	fxpp->fx_callback = NULL;
1773 	fxpp->fx_cookie = NULL;
1774 	thread_unlock(fxpp->fx_tp);
1775 	fx_list_release(fxpp);
1776 
1777 	FX_CB_LIST_DELETE(fxpp);
1778 	return (0);
1779 }
1780 
1781 /*
1782  * modify priority and/or quantum value of a thread with callback
1783  */
1784 int
1785 fx_modify_priority(kt_did_t ktid, clock_t quantum, pri_t pri)
1786 {
1787 	fxproc_t	*fxpp;
1788 
1789 	if (!FX_ISVALID(pri, quantum))
1790 		return (EINVAL);
1791 
1792 	if ((fxpp = fx_list_lookup(ktid)) == NULL) {
1793 		/*
1794 		 * either thread had exited or did not have a registered
1795 		 * callback;
1796 		 */
1797 		return (ESRCH);
1798 	}
1799 
1800 	thread_lock(fxpp->fx_tp);
1801 
1802 	if (pri != FX_CB_NOCHANGE) {
1803 		fxpp->fx_pri = pri;
1804 		FX_ADJUST_PRI(fxpp->fx_pri);
1805 		if (quantum == FX_TQDEF) {
1806 			fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1807 		} else if (quantum == FX_TQINF) {
1808 			fxpp->fx_pquantum = FX_TQINF;
1809 		} else if (quantum != FX_NOCHANGE) {
1810 			FX_ADJUST_QUANTUM(quantum);
1811 			fxpp->fx_pquantum = quantum;
1812 		}
1813 	} else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) {
1814 		if (quantum == FX_TQINF) {
1815 			fxpp->fx_pquantum = FX_TQINF;
1816 		} else {
1817 			FX_ADJUST_QUANTUM(quantum);
1818 			fxpp->fx_pquantum = quantum;
1819 		}
1820 	}
1821 
1822 	fx_change_priority(fxpp->fx_tp, fxpp);
1823 
1824 	thread_unlock(fxpp->fx_tp);
1825 	fx_list_release(fxpp);
1826 	return (0);
1827 }
1828 
1829 
1830 /*
1831  * return an iblock cookie for mutex initialization to be used in callbacks
1832  */
1833 void *
1834 fx_get_mutex_cookie()
1835 {
1836 	return ((void *)(uintptr_t)__ipltospl(DISP_LEVEL));
1837 }
1838 
1839 /*
1840  * return maximum relative priority
1841  */
1842 pri_t
1843 fx_get_maxpri()
1844 {
1845 	return (fx_maxumdpri);
1846 }
1847