xref: /titanic_50/usr/src/lib/libzpool/common/taskq.c (revision 1babaf948dd28d81d79cf3ec089d6edc111ed4a8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
27  * Copyright 2012 Garrett D'Amore <garrett@damore.org>.  All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 
32 int taskq_now;
33 taskq_t *system_taskq;
34 
35 #define	TASKQ_ACTIVE	0x00010000
36 
37 struct taskq {
38 	kmutex_t	tq_lock;
39 	krwlock_t	tq_threadlock;
40 	kcondvar_t	tq_dispatch_cv;
41 	kcondvar_t	tq_wait_cv;
42 	thread_t	*tq_threadlist;
43 	int		tq_flags;
44 	int		tq_active;
45 	int		tq_nthreads;
46 	int		tq_nalloc;
47 	int		tq_minalloc;
48 	int		tq_maxalloc;
49 	kcondvar_t	tq_maxalloc_cv;
50 	int		tq_maxalloc_wait;
51 	taskq_ent_t	*tq_freelist;
52 	taskq_ent_t	tq_task;
53 };
54 
55 static taskq_ent_t *
56 task_alloc(taskq_t *tq, int tqflags)
57 {
58 	taskq_ent_t *t;
59 	int rv;
60 
61 again:	if ((t = tq->tq_freelist) != NULL && tq->tq_nalloc >= tq->tq_minalloc) {
62 		tq->tq_freelist = t->tqent_next;
63 	} else {
64 		if (tq->tq_nalloc >= tq->tq_maxalloc) {
65 			if (!(tqflags & KM_SLEEP))
66 				return (NULL);
67 
68 			/*
69 			 * We don't want to exceed tq_maxalloc, but we can't
70 			 * wait for other tasks to complete (and thus free up
71 			 * task structures) without risking deadlock with
72 			 * the caller.  So, we just delay for one second
73 			 * to throttle the allocation rate. If we have tasks
74 			 * complete before one second timeout expires then
75 			 * taskq_ent_free will signal us and we will
76 			 * immediately retry the allocation.
77 			 */
78 			tq->tq_maxalloc_wait++;
79 			rv = cv_timedwait(&tq->tq_maxalloc_cv,
80 			    &tq->tq_lock, ddi_get_lbolt() + hz);
81 			tq->tq_maxalloc_wait--;
82 			if (rv > 0)
83 				goto again;		/* signaled */
84 		}
85 		mutex_exit(&tq->tq_lock);
86 
87 		t = kmem_alloc(sizeof (taskq_ent_t), tqflags);
88 
89 		mutex_enter(&tq->tq_lock);
90 		if (t != NULL)
91 			tq->tq_nalloc++;
92 	}
93 	return (t);
94 }
95 
96 static void
97 task_free(taskq_t *tq, taskq_ent_t *t)
98 {
99 	if (tq->tq_nalloc <= tq->tq_minalloc) {
100 		t->tqent_next = tq->tq_freelist;
101 		tq->tq_freelist = t;
102 	} else {
103 		tq->tq_nalloc--;
104 		mutex_exit(&tq->tq_lock);
105 		kmem_free(t, sizeof (taskq_ent_t));
106 		mutex_enter(&tq->tq_lock);
107 	}
108 
109 	if (tq->tq_maxalloc_wait)
110 		cv_signal(&tq->tq_maxalloc_cv);
111 }
112 
113 taskqid_t
114 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t tqflags)
115 {
116 	taskq_ent_t *t;
117 
118 	if (taskq_now) {
119 		func(arg);
120 		return (1);
121 	}
122 
123 	mutex_enter(&tq->tq_lock);
124 	ASSERT(tq->tq_flags & TASKQ_ACTIVE);
125 	if ((t = task_alloc(tq, tqflags)) == NULL) {
126 		mutex_exit(&tq->tq_lock);
127 		return (0);
128 	}
129 	if (tqflags & TQ_FRONT) {
130 		t->tqent_next = tq->tq_task.tqent_next;
131 		t->tqent_prev = &tq->tq_task;
132 	} else {
133 		t->tqent_next = &tq->tq_task;
134 		t->tqent_prev = tq->tq_task.tqent_prev;
135 	}
136 	t->tqent_next->tqent_prev = t;
137 	t->tqent_prev->tqent_next = t;
138 	t->tqent_func = func;
139 	t->tqent_arg = arg;
140 	t->tqent_flags = 0;
141 	cv_signal(&tq->tq_dispatch_cv);
142 	mutex_exit(&tq->tq_lock);
143 	return (1);
144 }
145 
146 void
147 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
148     taskq_ent_t *t)
149 {
150 	ASSERT(func != NULL);
151 	ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
152 
153 	/*
154 	 * Mark it as a prealloc'd task.  This is important
155 	 * to ensure that we don't free it later.
156 	 */
157 	t->tqent_flags |= TQENT_FLAG_PREALLOC;
158 	/*
159 	 * Enqueue the task to the underlying queue.
160 	 */
161 	mutex_enter(&tq->tq_lock);
162 
163 	if (flags & TQ_FRONT) {
164 		t->tqent_next = tq->tq_task.tqent_next;
165 		t->tqent_prev = &tq->tq_task;
166 	} else {
167 		t->tqent_next = &tq->tq_task;
168 		t->tqent_prev = tq->tq_task.tqent_prev;
169 	}
170 	t->tqent_next->tqent_prev = t;
171 	t->tqent_prev->tqent_next = t;
172 	t->tqent_func = func;
173 	t->tqent_arg = arg;
174 	cv_signal(&tq->tq_dispatch_cv);
175 	mutex_exit(&tq->tq_lock);
176 }
177 
178 void
179 taskq_wait(taskq_t *tq)
180 {
181 	mutex_enter(&tq->tq_lock);
182 	while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
183 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
184 	mutex_exit(&tq->tq_lock);
185 }
186 
187 static void *
188 taskq_thread(void *arg)
189 {
190 	taskq_t *tq = arg;
191 	taskq_ent_t *t;
192 	boolean_t prealloc;
193 
194 	mutex_enter(&tq->tq_lock);
195 	while (tq->tq_flags & TASKQ_ACTIVE) {
196 		if ((t = tq->tq_task.tqent_next) == &tq->tq_task) {
197 			if (--tq->tq_active == 0)
198 				cv_broadcast(&tq->tq_wait_cv);
199 			cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
200 			tq->tq_active++;
201 			continue;
202 		}
203 		t->tqent_prev->tqent_next = t->tqent_next;
204 		t->tqent_next->tqent_prev = t->tqent_prev;
205 		t->tqent_next = NULL;
206 		t->tqent_prev = NULL;
207 		prealloc = t->tqent_flags & TQENT_FLAG_PREALLOC;
208 		mutex_exit(&tq->tq_lock);
209 
210 		rw_enter(&tq->tq_threadlock, RW_READER);
211 		t->tqent_func(t->tqent_arg);
212 		rw_exit(&tq->tq_threadlock);
213 
214 		mutex_enter(&tq->tq_lock);
215 		if (!prealloc)
216 			task_free(tq, t);
217 	}
218 	tq->tq_nthreads--;
219 	cv_broadcast(&tq->tq_wait_cv);
220 	mutex_exit(&tq->tq_lock);
221 	return (NULL);
222 }
223 
224 /*ARGSUSED*/
225 taskq_t *
226 taskq_create(const char *name, int nthreads, pri_t pri,
227 	int minalloc, int maxalloc, uint_t flags)
228 {
229 	taskq_t *tq = kmem_zalloc(sizeof (taskq_t), KM_SLEEP);
230 	int t;
231 
232 	if (flags & TASKQ_THREADS_CPU_PCT) {
233 		int pct;
234 		ASSERT3S(nthreads, >=, 0);
235 		ASSERT3S(nthreads, <=, 100);
236 		pct = MIN(nthreads, 100);
237 		pct = MAX(pct, 0);
238 
239 		nthreads = (sysconf(_SC_NPROCESSORS_ONLN) * pct) / 100;
240 		nthreads = MAX(nthreads, 1);	/* need at least 1 thread */
241 	} else {
242 		ASSERT3S(nthreads, >=, 1);
243 	}
244 
245 	rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
246 	mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
247 	cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
248 	cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
249 	cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL);
250 	tq->tq_flags = flags | TASKQ_ACTIVE;
251 	tq->tq_active = nthreads;
252 	tq->tq_nthreads = nthreads;
253 	tq->tq_minalloc = minalloc;
254 	tq->tq_maxalloc = maxalloc;
255 	tq->tq_task.tqent_next = &tq->tq_task;
256 	tq->tq_task.tqent_prev = &tq->tq_task;
257 	tq->tq_threadlist = kmem_alloc(nthreads * sizeof (thread_t), KM_SLEEP);
258 
259 	if (flags & TASKQ_PREPOPULATE) {
260 		mutex_enter(&tq->tq_lock);
261 		while (minalloc-- > 0)
262 			task_free(tq, task_alloc(tq, KM_SLEEP));
263 		mutex_exit(&tq->tq_lock);
264 	}
265 
266 	for (t = 0; t < nthreads; t++)
267 		(void) thr_create(0, 0, taskq_thread,
268 		    tq, THR_BOUND, &tq->tq_threadlist[t]);
269 
270 	return (tq);
271 }
272 
273 void
274 taskq_destroy(taskq_t *tq)
275 {
276 	int t;
277 	int nthreads = tq->tq_nthreads;
278 
279 	taskq_wait(tq);
280 
281 	mutex_enter(&tq->tq_lock);
282 
283 	tq->tq_flags &= ~TASKQ_ACTIVE;
284 	cv_broadcast(&tq->tq_dispatch_cv);
285 
286 	while (tq->tq_nthreads != 0)
287 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
288 
289 	tq->tq_minalloc = 0;
290 	while (tq->tq_nalloc != 0) {
291 		ASSERT(tq->tq_freelist != NULL);
292 		task_free(tq, task_alloc(tq, KM_SLEEP));
293 	}
294 
295 	mutex_exit(&tq->tq_lock);
296 
297 	for (t = 0; t < nthreads; t++)
298 		(void) thr_join(tq->tq_threadlist[t], NULL, NULL);
299 
300 	kmem_free(tq->tq_threadlist, nthreads * sizeof (thread_t));
301 
302 	rw_destroy(&tq->tq_threadlock);
303 	mutex_destroy(&tq->tq_lock);
304 	cv_destroy(&tq->tq_dispatch_cv);
305 	cv_destroy(&tq->tq_wait_cv);
306 	cv_destroy(&tq->tq_maxalloc_cv);
307 
308 	kmem_free(tq, sizeof (taskq_t));
309 }
310 
311 int
312 taskq_member(taskq_t *tq, void *t)
313 {
314 	int i;
315 
316 	if (taskq_now)
317 		return (1);
318 
319 	for (i = 0; i < tq->tq_nthreads; i++)
320 		if (tq->tq_threadlist[i] == (thread_t)(uintptr_t)t)
321 			return (1);
322 
323 	return (0);
324 }
325 
326 void
327 system_taskq_init(void)
328 {
329 	system_taskq = taskq_create("system_taskq", 64, minclsyspri, 4, 512,
330 	    TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
331 }
332 
333 void
334 system_taskq_fini(void)
335 {
336 	taskq_destroy(system_taskq);
337 	system_taskq = NULL; /* defensive */
338 }
339