xref: /titanic_50/usr/src/lib/libc/port/threads/synch.c (revision 41efec2219526a9b3ecce26f97aba761ef1e1d0d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/sdt.h>
30 
31 #include "lint.h"
32 #include "thr_uberdata.h"
33 
34 /*
35  * This mutex is initialized to be held by lwp#1.
36  * It is used to block a thread that has returned from a mutex_lock()
37  * of a PTHREAD_PRIO_INHERIT mutex with an unrecoverable error.
38  */
39 mutex_t	stall_mutex = DEFAULTMUTEX;
40 
41 static int shared_mutex_held(mutex_t *);
42 
43 /*
44  * Lock statistics support functions.
45  */
46 void
47 record_begin_hold(tdb_mutex_stats_t *msp)
48 {
49 	tdb_incr(msp->mutex_lock);
50 	msp->mutex_begin_hold = gethrtime();
51 }
52 
53 hrtime_t
54 record_hold_time(tdb_mutex_stats_t *msp)
55 {
56 	hrtime_t now = gethrtime();
57 
58 	if (msp->mutex_begin_hold)
59 		msp->mutex_hold_time += now - msp->mutex_begin_hold;
60 	msp->mutex_begin_hold = 0;
61 	return (now);
62 }
63 
64 /*
65  * Called once at library initialization.
66  */
67 void
68 mutex_setup(void)
69 {
70 	if (set_lock_byte(&stall_mutex.mutex_lockw))
71 		thr_panic("mutex_setup() cannot acquire stall_mutex");
72 	stall_mutex.mutex_owner = (uintptr_t)curthread;
73 }
74 
75 /*
76  * The default spin counts of 1000 and 500 are experimentally determined.
77  * On sun4u machines with any number of processors they could be raised
78  * to 10,000 but that (experimentally) makes almost no difference.
79  * The environment variables:
80  *	_THREAD_ADAPTIVE_SPIN=count
81  *	_THREAD_RELEASE_SPIN=count
82  * can be used to override and set the counts in the range [0 .. 1,000,000].
83  */
84 int	thread_adaptive_spin = 1000;
85 uint_t	thread_max_spinners = 100;
86 int	thread_release_spin = 500;
87 int	thread_queue_verify = 0;
88 static	int	ncpus;
89 
90 /*
91  * Distinguish spinning for queue locks from spinning for regular locks.
92  * The environment variable:
93  *	_THREAD_QUEUE_SPIN=count
94  * can be used to override and set the count in the range [0 .. 1,000,000].
95  * There is no release spin concept for queue locks.
96  */
97 int	thread_queue_spin = 1000;
98 
99 /*
100  * Use the otherwise-unused 'mutex_ownerpid' field of a USYNC_THREAD
101  * mutex to be a count of adaptive spins in progress.
102  */
103 #define	mutex_spinners	mutex_ownerpid
104 
105 void
106 _mutex_set_typeattr(mutex_t *mp, int attr)
107 {
108 	mp->mutex_type |= (uint8_t)attr;
109 }
110 
111 /*
112  * 'type' can be one of USYNC_THREAD or USYNC_PROCESS, possibly
113  * augmented by the flags LOCK_RECURSIVE and/or LOCK_ERRORCHECK,
114  * or it can be USYNC_PROCESS_ROBUST with no extra flags.
115  */
116 #pragma weak _private_mutex_init = __mutex_init
117 #pragma weak mutex_init = __mutex_init
118 #pragma weak _mutex_init = __mutex_init
119 /* ARGSUSED2 */
120 int
121 __mutex_init(mutex_t *mp, int type, void *arg)
122 {
123 	int error;
124 
125 	switch (type & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) {
126 	case USYNC_THREAD:
127 	case USYNC_PROCESS:
128 		(void) _memset(mp, 0, sizeof (*mp));
129 		mp->mutex_type = (uint8_t)type;
130 		mp->mutex_flag = LOCK_INITED;
131 		error = 0;
132 		break;
133 	case USYNC_PROCESS_ROBUST:
134 		if (type & (LOCK_RECURSIVE|LOCK_ERRORCHECK))
135 			error = EINVAL;
136 		else
137 			error = ___lwp_mutex_init(mp, type);
138 		break;
139 	default:
140 		error = EINVAL;
141 		break;
142 	}
143 	if (error == 0)
144 		mp->mutex_magic = MUTEX_MAGIC;
145 	return (error);
146 }
147 
148 /*
149  * Delete mp from list of ceil mutexes owned by curthread.
150  * Return 1 if the head of the chain was updated.
151  */
152 int
153 _ceil_mylist_del(mutex_t *mp)
154 {
155 	ulwp_t *self = curthread;
156 	mxchain_t **mcpp;
157 	mxchain_t *mcp;
158 
159 	mcpp = &self->ul_mxchain;
160 	while ((*mcpp)->mxchain_mx != mp)
161 		mcpp = &(*mcpp)->mxchain_next;
162 	mcp = *mcpp;
163 	*mcpp = mcp->mxchain_next;
164 	lfree(mcp, sizeof (*mcp));
165 	return (mcpp == &self->ul_mxchain);
166 }
167 
168 /*
169  * Add mp to head of list of ceil mutexes owned by curthread.
170  * Return ENOMEM if no memory could be allocated.
171  */
172 int
173 _ceil_mylist_add(mutex_t *mp)
174 {
175 	ulwp_t *self = curthread;
176 	mxchain_t *mcp;
177 
178 	if ((mcp = lmalloc(sizeof (*mcp))) == NULL)
179 		return (ENOMEM);
180 	mcp->mxchain_mx = mp;
181 	mcp->mxchain_next = self->ul_mxchain;
182 	self->ul_mxchain = mcp;
183 	return (0);
184 }
185 
186 /*
187  * Inherit priority from ceiling.  The inheritance impacts the effective
188  * priority, not the assigned priority.  See _thread_setschedparam_main().
189  */
190 void
191 _ceil_prio_inherit(int ceil)
192 {
193 	ulwp_t *self = curthread;
194 	struct sched_param param;
195 
196 	(void) _memset(&param, 0, sizeof (param));
197 	param.sched_priority = ceil;
198 	if (_thread_setschedparam_main(self->ul_lwpid,
199 	    self->ul_policy, &param, PRIO_INHERIT)) {
200 		/*
201 		 * Panic since unclear what error code to return.
202 		 * If we do return the error codes returned by above
203 		 * called routine, update the man page...
204 		 */
205 		thr_panic("_thread_setschedparam_main() fails");
206 	}
207 }
208 
209 /*
210  * Waive inherited ceiling priority.  Inherit from head of owned ceiling locks
211  * if holding at least one ceiling lock.  If no ceiling locks are held at this
212  * point, disinherit completely, reverting back to assigned priority.
213  */
214 void
215 _ceil_prio_waive(void)
216 {
217 	ulwp_t *self = curthread;
218 	struct sched_param param;
219 
220 	(void) _memset(&param, 0, sizeof (param));
221 	if (self->ul_mxchain == NULL) {
222 		/*
223 		 * No ceil locks held.  Zero the epri, revert back to ul_pri.
224 		 * Since thread's hash lock is not held, one cannot just
225 		 * read ul_pri here...do it in the called routine...
226 		 */
227 		param.sched_priority = self->ul_pri;	/* ignored */
228 		if (_thread_setschedparam_main(self->ul_lwpid,
229 		    self->ul_policy, &param, PRIO_DISINHERIT))
230 			thr_panic("_thread_setschedparam_main() fails");
231 	} else {
232 		/*
233 		 * Set priority to that of the mutex at the head
234 		 * of the ceilmutex chain.
235 		 */
236 		param.sched_priority =
237 		    self->ul_mxchain->mxchain_mx->mutex_ceiling;
238 		if (_thread_setschedparam_main(self->ul_lwpid,
239 		    self->ul_policy, &param, PRIO_INHERIT))
240 			thr_panic("_thread_setschedparam_main() fails");
241 	}
242 }
243 
244 /*
245  * Non-preemptive spin locks.  Used by queue_lock().
246  * No lock statistics are gathered for these locks.
247  */
248 void
249 spin_lock_set(mutex_t *mp)
250 {
251 	ulwp_t *self = curthread;
252 
253 	no_preempt(self);
254 	if (set_lock_byte(&mp->mutex_lockw) == 0) {
255 		mp->mutex_owner = (uintptr_t)self;
256 		return;
257 	}
258 	/*
259 	 * Spin for a while, attempting to acquire the lock.
260 	 */
261 	if (self->ul_spin_lock_spin != UINT_MAX)
262 		self->ul_spin_lock_spin++;
263 	if (mutex_queuelock_adaptive(mp) == 0 ||
264 	    set_lock_byte(&mp->mutex_lockw) == 0) {
265 		mp->mutex_owner = (uintptr_t)self;
266 		return;
267 	}
268 	/*
269 	 * Try harder if we were previously at a no premption level.
270 	 */
271 	if (self->ul_preempt > 1) {
272 		if (self->ul_spin_lock_spin2 != UINT_MAX)
273 			self->ul_spin_lock_spin2++;
274 		if (mutex_queuelock_adaptive(mp) == 0 ||
275 		    set_lock_byte(&mp->mutex_lockw) == 0) {
276 			mp->mutex_owner = (uintptr_t)self;
277 			return;
278 		}
279 	}
280 	/*
281 	 * Give up and block in the kernel for the mutex.
282 	 */
283 	if (self->ul_spin_lock_sleep != UINT_MAX)
284 		self->ul_spin_lock_sleep++;
285 	(void) ___lwp_mutex_timedlock(mp, NULL);
286 	mp->mutex_owner = (uintptr_t)self;
287 }
288 
289 void
290 spin_lock_clear(mutex_t *mp)
291 {
292 	ulwp_t *self = curthread;
293 
294 	mp->mutex_owner = 0;
295 	if (atomic_swap_32(&mp->mutex_lockword, 0) & WAITERMASK) {
296 		(void) ___lwp_mutex_wakeup(mp);
297 		if (self->ul_spin_lock_wakeup != UINT_MAX)
298 			self->ul_spin_lock_wakeup++;
299 	}
300 	preempt(self);
301 }
302 
303 /*
304  * Allocate the sleep queue hash table.
305  */
306 void
307 queue_alloc(void)
308 {
309 	ulwp_t *self = curthread;
310 	uberdata_t *udp = self->ul_uberdata;
311 	void *data;
312 	int i;
313 
314 	/*
315 	 * No locks are needed; we call here only when single-threaded.
316 	 */
317 	ASSERT(self == udp->ulwp_one);
318 	ASSERT(!udp->uberflags.uf_mt);
319 	if ((data = _private_mmap(NULL, 2 * QHASHSIZE * sizeof (queue_head_t),
320 	    PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, (off_t)0))
321 	    == MAP_FAILED)
322 		thr_panic("cannot allocate thread queue_head table");
323 	udp->queue_head = (queue_head_t *)data;
324 	for (i = 0; i < 2 * QHASHSIZE; i++)
325 		udp->queue_head[i].qh_lock.mutex_magic = MUTEX_MAGIC;
326 }
327 
328 #if defined(THREAD_DEBUG)
329 
330 /*
331  * Debugging: verify correctness of a sleep queue.
332  */
333 void
334 QVERIFY(queue_head_t *qp)
335 {
336 	ulwp_t *self = curthread;
337 	uberdata_t *udp = self->ul_uberdata;
338 	ulwp_t *ulwp;
339 	ulwp_t *prev;
340 	uint_t index;
341 	uint32_t cnt = 0;
342 	char qtype;
343 	void *wchan;
344 
345 	ASSERT(qp >= udp->queue_head && (qp - udp->queue_head) < 2 * QHASHSIZE);
346 	ASSERT(MUTEX_OWNED(&qp->qh_lock, self));
347 	ASSERT((qp->qh_head != NULL && qp->qh_tail != NULL) ||
348 		(qp->qh_head == NULL && qp->qh_tail == NULL));
349 	if (!thread_queue_verify)
350 		return;
351 	/* real expensive stuff, only for _THREAD_QUEUE_VERIFY */
352 	qtype = ((qp - udp->queue_head) < QHASHSIZE)? MX : CV;
353 	for (prev = NULL, ulwp = qp->qh_head; ulwp != NULL;
354 	    prev = ulwp, ulwp = ulwp->ul_link, cnt++) {
355 		ASSERT(ulwp->ul_qtype == qtype);
356 		ASSERT(ulwp->ul_wchan != NULL);
357 		ASSERT(ulwp->ul_sleepq == qp);
358 		wchan = ulwp->ul_wchan;
359 		index = QUEUE_HASH(wchan, qtype);
360 		ASSERT(&udp->queue_head[index] == qp);
361 	}
362 	ASSERT(qp->qh_tail == prev);
363 	ASSERT(qp->qh_qlen == cnt);
364 }
365 
366 #else	/* THREAD_DEBUG */
367 
368 #define	QVERIFY(qp)
369 
370 #endif	/* THREAD_DEBUG */
371 
372 /*
373  * Acquire a queue head.
374  */
375 queue_head_t *
376 queue_lock(void *wchan, int qtype)
377 {
378 	uberdata_t *udp = curthread->ul_uberdata;
379 	queue_head_t *qp;
380 
381 	ASSERT(qtype == MX || qtype == CV);
382 
383 	/*
384 	 * It is possible that we could be called while still single-threaded.
385 	 * If so, we call queue_alloc() to allocate the queue_head[] array.
386 	 */
387 	if ((qp = udp->queue_head) == NULL) {
388 		queue_alloc();
389 		qp = udp->queue_head;
390 	}
391 	qp += QUEUE_HASH(wchan, qtype);
392 	spin_lock_set(&qp->qh_lock);
393 	/*
394 	 * At once per nanosecond, qh_lockcount will wrap after 512 years.
395 	 * Were we to care about this, we could peg the value at UINT64_MAX.
396 	 */
397 	qp->qh_lockcount++;
398 	QVERIFY(qp);
399 	return (qp);
400 }
401 
402 /*
403  * Release a queue head.
404  */
405 void
406 queue_unlock(queue_head_t *qp)
407 {
408 	QVERIFY(qp);
409 	spin_lock_clear(&qp->qh_lock);
410 }
411 
412 /*
413  * For rwlock queueing, we must queue writers ahead of readers of the
414  * same priority.  We do this by making writers appear to have a half
415  * point higher priority for purposes of priority comparisons below.
416  */
417 #define	CMP_PRIO(ulwp)	((real_priority(ulwp) << 1) + (ulwp)->ul_writer)
418 
419 void
420 enqueue(queue_head_t *qp, ulwp_t *ulwp, void *wchan, int qtype)
421 {
422 	ulwp_t **ulwpp;
423 	ulwp_t *next;
424 	int pri = CMP_PRIO(ulwp);
425 	int force_fifo = (qtype & FIFOQ);
426 	int do_fifo;
427 
428 	qtype &= ~FIFOQ;
429 	ASSERT(qtype == MX || qtype == CV);
430 	ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread));
431 	ASSERT(ulwp->ul_sleepq != qp);
432 
433 	/*
434 	 * LIFO queue ordering is unfair and can lead to starvation,
435 	 * but it gives better performance for heavily contended locks.
436 	 * We use thread_queue_fifo (range is 0..8) to determine
437 	 * the frequency of FIFO vs LIFO queuing:
438 	 *	0 : every 256th time	(almost always LIFO)
439 	 *	1 : every 128th time
440 	 *	2 : every 64th  time
441 	 *	3 : every 32nd  time
442 	 *	4 : every 16th  time	(the default value, mostly LIFO)
443 	 *	5 : every 8th   time
444 	 *	6 : every 4th   time
445 	 *	7 : every 2nd   time
446 	 *	8 : every time		(never LIFO, always FIFO)
447 	 * Note that there is always some degree of FIFO ordering.
448 	 * This breaks live lock conditions that occur in applications
449 	 * that are written assuming (incorrectly) that threads acquire
450 	 * locks fairly, that is, in roughly round-robin order.
451 	 * In any event, the queue is maintained in priority order.
452 	 *
453 	 * If we are given the FIFOQ flag in qtype, fifo queueing is forced.
454 	 * SUSV3 requires this for semaphores.
455 	 */
456 	do_fifo = (force_fifo ||
457 		((++qp->qh_qcnt << curthread->ul_queue_fifo) & 0xff) == 0);
458 
459 	if (qp->qh_head == NULL) {
460 		/*
461 		 * The queue is empty.  LIFO/FIFO doesn't matter.
462 		 */
463 		ASSERT(qp->qh_tail == NULL);
464 		ulwpp = &qp->qh_head;
465 	} else if (do_fifo) {
466 		/*
467 		 * Enqueue after the last thread whose priority is greater
468 		 * than or equal to the priority of the thread being queued.
469 		 * Attempt first to go directly onto the tail of the queue.
470 		 */
471 		if (pri <= CMP_PRIO(qp->qh_tail))
472 			ulwpp = &qp->qh_tail->ul_link;
473 		else {
474 			for (ulwpp = &qp->qh_head; (next = *ulwpp) != NULL;
475 			    ulwpp = &next->ul_link)
476 				if (pri > CMP_PRIO(next))
477 					break;
478 		}
479 	} else {
480 		/*
481 		 * Enqueue before the first thread whose priority is less
482 		 * than or equal to the priority of the thread being queued.
483 		 * Hopefully we can go directly onto the head of the queue.
484 		 */
485 		for (ulwpp = &qp->qh_head; (next = *ulwpp) != NULL;
486 		    ulwpp = &next->ul_link)
487 			if (pri >= CMP_PRIO(next))
488 				break;
489 	}
490 	if ((ulwp->ul_link = *ulwpp) == NULL)
491 		qp->qh_tail = ulwp;
492 	*ulwpp = ulwp;
493 
494 	ulwp->ul_sleepq = qp;
495 	ulwp->ul_wchan = wchan;
496 	ulwp->ul_qtype = qtype;
497 	if (qp->qh_qmax < ++qp->qh_qlen)
498 		qp->qh_qmax = qp->qh_qlen;
499 }
500 
501 /*
502  * Return a pointer to the queue slot of the
503  * highest priority thread on the queue.
504  * On return, prevp, if not NULL, will contain a pointer
505  * to the thread's predecessor on the queue
506  */
507 static ulwp_t **
508 queue_slot(queue_head_t *qp, void *wchan, int *more, ulwp_t **prevp)
509 {
510 	ulwp_t **ulwpp;
511 	ulwp_t *ulwp;
512 	ulwp_t *prev = NULL;
513 	ulwp_t **suspp = NULL;
514 	ulwp_t *susprev;
515 
516 	ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread));
517 
518 	/*
519 	 * Find a waiter on the sleep queue.
520 	 */
521 	for (ulwpp = &qp->qh_head; (ulwp = *ulwpp) != NULL;
522 	    prev = ulwp, ulwpp = &ulwp->ul_link) {
523 		if (ulwp->ul_wchan == wchan) {
524 			if (!ulwp->ul_stop)
525 				break;
526 			/*
527 			 * Try not to return a suspended thread.
528 			 * This mimics the old libthread's behavior.
529 			 */
530 			if (suspp == NULL) {
531 				suspp = ulwpp;
532 				susprev = prev;
533 			}
534 		}
535 	}
536 
537 	if (ulwp == NULL && suspp != NULL) {
538 		ulwp = *(ulwpp = suspp);
539 		prev = susprev;
540 		suspp = NULL;
541 	}
542 	if (ulwp == NULL) {
543 		if (more != NULL)
544 			*more = 0;
545 		return (NULL);
546 	}
547 
548 	if (prevp != NULL)
549 		*prevp = prev;
550 	if (more == NULL)
551 		return (ulwpp);
552 
553 	/*
554 	 * Scan the remainder of the queue for another waiter.
555 	 */
556 	if (suspp != NULL) {
557 		*more = 1;
558 		return (ulwpp);
559 	}
560 	for (ulwp = ulwp->ul_link; ulwp != NULL; ulwp = ulwp->ul_link) {
561 		if (ulwp->ul_wchan == wchan) {
562 			*more = 1;
563 			return (ulwpp);
564 		}
565 	}
566 
567 	*more = 0;
568 	return (ulwpp);
569 }
570 
571 ulwp_t *
572 queue_unlink(queue_head_t *qp, ulwp_t **ulwpp, ulwp_t *prev)
573 {
574 	ulwp_t *ulwp;
575 
576 	ulwp = *ulwpp;
577 	*ulwpp = ulwp->ul_link;
578 	ulwp->ul_link = NULL;
579 	if (qp->qh_tail == ulwp)
580 		qp->qh_tail = prev;
581 	qp->qh_qlen--;
582 	ulwp->ul_sleepq = NULL;
583 	ulwp->ul_wchan = NULL;
584 
585 	return (ulwp);
586 }
587 
588 ulwp_t *
589 dequeue(queue_head_t *qp, void *wchan, int *more)
590 {
591 	ulwp_t **ulwpp;
592 	ulwp_t *prev;
593 
594 	if ((ulwpp = queue_slot(qp, wchan, more, &prev)) == NULL)
595 		return (NULL);
596 	return (queue_unlink(qp, ulwpp, prev));
597 }
598 
599 /*
600  * Return a pointer to the highest priority thread sleeping on wchan.
601  */
602 ulwp_t *
603 queue_waiter(queue_head_t *qp, void *wchan)
604 {
605 	ulwp_t **ulwpp;
606 
607 	if ((ulwpp = queue_slot(qp, wchan, NULL, NULL)) == NULL)
608 		return (NULL);
609 	return (*ulwpp);
610 }
611 
612 uint8_t
613 dequeue_self(queue_head_t *qp, void *wchan)
614 {
615 	ulwp_t *self = curthread;
616 	ulwp_t **ulwpp;
617 	ulwp_t *ulwp;
618 	ulwp_t *prev = NULL;
619 	int found = 0;
620 	int more = 0;
621 
622 	ASSERT(MUTEX_OWNED(&qp->qh_lock, self));
623 
624 	/* find self on the sleep queue */
625 	for (ulwpp = &qp->qh_head; (ulwp = *ulwpp) != NULL;
626 	    prev = ulwp, ulwpp = &ulwp->ul_link) {
627 		if (ulwp == self) {
628 			/* dequeue ourself */
629 			ASSERT(self->ul_wchan == wchan);
630 			(void) queue_unlink(qp, ulwpp, prev);
631 			self->ul_cvmutex = NULL;
632 			self->ul_cv_wake = 0;
633 			found = 1;
634 			break;
635 		}
636 		if (ulwp->ul_wchan == wchan)
637 			more = 1;
638 	}
639 
640 	if (!found)
641 		thr_panic("dequeue_self(): curthread not found on queue");
642 
643 	if (more)
644 		return (1);
645 
646 	/* scan the remainder of the queue for another waiter */
647 	for (ulwp = *ulwpp; ulwp != NULL; ulwp = ulwp->ul_link) {
648 		if (ulwp->ul_wchan == wchan)
649 			return (1);
650 	}
651 
652 	return (0);
653 }
654 
655 /*
656  * Called from call_user_handler() and _thrp_suspend() to take
657  * ourself off of our sleep queue so we can grab locks.
658  */
659 void
660 unsleep_self(void)
661 {
662 	ulwp_t *self = curthread;
663 	queue_head_t *qp;
664 
665 	/*
666 	 * Calling enter_critical()/exit_critical() here would lead
667 	 * to recursion.  Just manipulate self->ul_critical directly.
668 	 */
669 	self->ul_critical++;
670 	while (self->ul_sleepq != NULL) {
671 		qp = queue_lock(self->ul_wchan, self->ul_qtype);
672 		/*
673 		 * We may have been moved from a CV queue to a
674 		 * mutex queue while we were attempting queue_lock().
675 		 * If so, just loop around and try again.
676 		 * dequeue_self() clears self->ul_sleepq.
677 		 */
678 		if (qp == self->ul_sleepq) {
679 			(void) dequeue_self(qp, self->ul_wchan);
680 			self->ul_writer = 0;
681 		}
682 		queue_unlock(qp);
683 	}
684 	self->ul_critical--;
685 }
686 
687 /*
688  * Common code for calling the the ___lwp_mutex_timedlock() system call.
689  * Returns with mutex_owner and mutex_ownerpid set correctly.
690  */
691 int
692 mutex_lock_kernel(mutex_t *mp, timespec_t *tsp, tdb_mutex_stats_t *msp)
693 {
694 	ulwp_t *self = curthread;
695 	uberdata_t *udp = self->ul_uberdata;
696 	hrtime_t begin_sleep;
697 	int error;
698 
699 	self->ul_sp = stkptr();
700 	self->ul_wchan = mp;
701 	if (__td_event_report(self, TD_SLEEP, udp)) {
702 		self->ul_td_evbuf.eventnum = TD_SLEEP;
703 		self->ul_td_evbuf.eventdata = mp;
704 		tdb_event(TD_SLEEP, udp);
705 	}
706 	if (msp) {
707 		tdb_incr(msp->mutex_sleep);
708 		begin_sleep = gethrtime();
709 	}
710 
711 	DTRACE_PROBE1(plockstat, mutex__block, mp);
712 
713 	for (;;) {
714 		if ((error = ___lwp_mutex_timedlock(mp, tsp)) != 0) {
715 			DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
716 			DTRACE_PROBE2(plockstat, mutex__error, mp, error);
717 			break;
718 		}
719 
720 		if (mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)) {
721 			/*
722 			 * Defend against forkall().  We may be the child,
723 			 * in which case we don't actually own the mutex.
724 			 */
725 			enter_critical(self);
726 			if (mp->mutex_ownerpid == udp->pid) {
727 				mp->mutex_owner = (uintptr_t)self;
728 				exit_critical(self);
729 				DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
730 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
731 				    0, 0);
732 				break;
733 			}
734 			exit_critical(self);
735 		} else {
736 			mp->mutex_owner = (uintptr_t)self;
737 			DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
738 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
739 			break;
740 		}
741 	}
742 	if (msp)
743 		msp->mutex_sleep_time += gethrtime() - begin_sleep;
744 	self->ul_wchan = NULL;
745 	self->ul_sp = 0;
746 
747 	return (error);
748 }
749 
750 /*
751  * Common code for calling the ___lwp_mutex_trylock() system call.
752  * Returns with mutex_owner and mutex_ownerpid set correctly.
753  */
754 int
755 mutex_trylock_kernel(mutex_t *mp)
756 {
757 	ulwp_t *self = curthread;
758 	uberdata_t *udp = self->ul_uberdata;
759 	int error;
760 
761 	for (;;) {
762 		if ((error = ___lwp_mutex_trylock(mp)) != 0) {
763 			if (error != EBUSY) {
764 				DTRACE_PROBE2(plockstat, mutex__error, mp,
765 				    error);
766 			}
767 			break;
768 		}
769 
770 		if (mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)) {
771 			/*
772 			 * Defend against forkall().  We may be the child,
773 			 * in which case we don't actually own the mutex.
774 			 */
775 			enter_critical(self);
776 			if (mp->mutex_ownerpid == udp->pid) {
777 				mp->mutex_owner = (uintptr_t)self;
778 				exit_critical(self);
779 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
780 				    0, 0);
781 				break;
782 			}
783 			exit_critical(self);
784 		} else {
785 			mp->mutex_owner = (uintptr_t)self;
786 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
787 			break;
788 		}
789 	}
790 
791 	return (error);
792 }
793 
794 volatile sc_shared_t *
795 setup_schedctl(void)
796 {
797 	ulwp_t *self = curthread;
798 	volatile sc_shared_t *scp;
799 	sc_shared_t *tmp;
800 
801 	if ((scp = self->ul_schedctl) == NULL && /* no shared state yet */
802 	    !self->ul_vfork &&			/* not a child of vfork() */
803 	    !self->ul_schedctl_called) {	/* haven't been called before */
804 		enter_critical(self);
805 		self->ul_schedctl_called = &self->ul_uberdata->uberflags;
806 		if ((tmp = __schedctl()) != (sc_shared_t *)(-1))
807 			self->ul_schedctl = scp = tmp;
808 		exit_critical(self);
809 	}
810 	/*
811 	 * Unless the call to setup_schedctl() is surrounded
812 	 * by enter_critical()/exit_critical(), the address
813 	 * we are returning could be invalid due to a forkall()
814 	 * having occurred in another thread.
815 	 */
816 	return (scp);
817 }
818 
819 /*
820  * Interfaces from libsched, incorporated into libc.
821  * libsched.so.1 is now a filter library onto libc.
822  */
823 #pragma weak schedctl_lookup = _schedctl_init
824 #pragma weak _schedctl_lookup = _schedctl_init
825 #pragma weak schedctl_init = _schedctl_init
826 schedctl_t *
827 _schedctl_init(void)
828 {
829 	volatile sc_shared_t *scp = setup_schedctl();
830 	return ((scp == NULL)? NULL : (schedctl_t *)&scp->sc_preemptctl);
831 }
832 
833 #pragma weak schedctl_exit = _schedctl_exit
834 void
835 _schedctl_exit(void)
836 {
837 }
838 
839 /*
840  * Contract private interface for java.
841  * Set up the schedctl data if it doesn't exist yet.
842  * Return a pointer to the pointer to the schedctl data.
843  */
844 volatile sc_shared_t *volatile *
845 _thr_schedctl(void)
846 {
847 	ulwp_t *self = curthread;
848 	volatile sc_shared_t *volatile *ptr;
849 
850 	if (self->ul_vfork)
851 		return (NULL);
852 	if (*(ptr = &self->ul_schedctl) == NULL)
853 		(void) setup_schedctl();
854 	return (ptr);
855 }
856 
857 /*
858  * Block signals and attempt to block preemption.
859  * no_preempt()/preempt() must be used in pairs but can be nested.
860  */
861 void
862 no_preempt(ulwp_t *self)
863 {
864 	volatile sc_shared_t *scp;
865 
866 	if (self->ul_preempt++ == 0) {
867 		enter_critical(self);
868 		if ((scp = self->ul_schedctl) != NULL ||
869 		    (scp = setup_schedctl()) != NULL) {
870 			/*
871 			 * Save the pre-existing preempt value.
872 			 */
873 			self->ul_savpreempt = scp->sc_preemptctl.sc_nopreempt;
874 			scp->sc_preemptctl.sc_nopreempt = 1;
875 		}
876 	}
877 }
878 
879 /*
880  * Undo the effects of no_preempt().
881  */
882 void
883 preempt(ulwp_t *self)
884 {
885 	volatile sc_shared_t *scp;
886 
887 	ASSERT(self->ul_preempt > 0);
888 	if (--self->ul_preempt == 0) {
889 		if ((scp = self->ul_schedctl) != NULL) {
890 			/*
891 			 * Restore the pre-existing preempt value.
892 			 */
893 			scp->sc_preemptctl.sc_nopreempt = self->ul_savpreempt;
894 			if (scp->sc_preemptctl.sc_yield &&
895 			    scp->sc_preemptctl.sc_nopreempt == 0) {
896 				lwp_yield();
897 				if (scp->sc_preemptctl.sc_yield) {
898 					/*
899 					 * Shouldn't happen.  This is either
900 					 * a race condition or the thread
901 					 * just entered the real-time class.
902 					 */
903 					lwp_yield();
904 					scp->sc_preemptctl.sc_yield = 0;
905 				}
906 			}
907 		}
908 		exit_critical(self);
909 	}
910 }
911 
912 /*
913  * If a call to preempt() would cause the current thread to yield or to
914  * take deferred actions in exit_critical(), then unpark the specified
915  * lwp so it can run while we delay.  Return the original lwpid if the
916  * unpark was not performed, else return zero.  The tests are a repeat
917  * of some of the tests in preempt(), above.  This is a statistical
918  * optimization solely for cond_sleep_queue(), below.
919  */
920 static lwpid_t
921 preempt_unpark(ulwp_t *self, lwpid_t lwpid)
922 {
923 	volatile sc_shared_t *scp = self->ul_schedctl;
924 
925 	ASSERT(self->ul_preempt == 1 && self->ul_critical > 0);
926 	if ((scp != NULL && scp->sc_preemptctl.sc_yield) ||
927 	    (self->ul_curplease && self->ul_critical == 1)) {
928 		(void) __lwp_unpark(lwpid);
929 		lwpid = 0;
930 	}
931 	return (lwpid);
932 }
933 
934 /*
935  * Spin for a while, trying to grab the lock.  We know that we
936  * failed set_lock_byte(&mp->mutex_lockw) once before coming here.
937  * If this fails, return EBUSY and let the caller deal with it.
938  * If this succeeds, return 0 with mutex_owner set to curthread.
939  */
940 int
941 mutex_trylock_adaptive(mutex_t *mp)
942 {
943 	ulwp_t *self = curthread;
944 	ulwp_t *ulwp;
945 	volatile sc_shared_t *scp;
946 	volatile uint8_t *lockp;
947 	volatile uint64_t *ownerp;
948 	int count, max = self->ul_adaptive_spin;
949 
950 	ASSERT(!(mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)));
951 
952 	if (max == 0 || (mp->mutex_spinners >= self->ul_max_spinners))
953 		return (EBUSY);
954 
955 	lockp = (volatile uint8_t *)&mp->mutex_lockw;
956 	ownerp = (volatile uint64_t *)&mp->mutex_owner;
957 
958 	DTRACE_PROBE1(plockstat, mutex__spin, mp);
959 
960 	/*
961 	 * This spin loop is unfair to lwps that have already dropped into
962 	 * the kernel to sleep.  They will starve on a highly-contended mutex.
963 	 * This is just too bad.  The adaptive spin algorithm is intended
964 	 * to allow programs with highly-contended locks (that is, broken
965 	 * programs) to execute with reasonable speed despite their contention.
966 	 * Being fair would reduce the speed of such programs and well-written
967 	 * programs will not suffer in any case.
968 	 */
969 	enter_critical(self);		/* protects ul_schedctl */
970 	atomic_inc_32(&mp->mutex_spinners);
971 	for (count = 0; count < max; count++) {
972 		if (*lockp == 0 && set_lock_byte(lockp) == 0) {
973 			*ownerp = (uintptr_t)self;
974 			atomic_dec_32(&mp->mutex_spinners);
975 			exit_critical(self);
976 			DTRACE_PROBE2(plockstat, mutex__spun, 1, count);
977 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count);
978 			return (0);
979 		}
980 		SMT_PAUSE();
981 		/*
982 		 * Stop spinning if the mutex owner is not running on
983 		 * a processor; it will not drop the lock any time soon
984 		 * and we would just be wasting time to keep spinning.
985 		 *
986 		 * Note that we are looking at another thread (ulwp_t)
987 		 * without ensuring that the other thread does not exit.
988 		 * The scheme relies on ulwp_t structures never being
989 		 * deallocated by the library (the library employs a free
990 		 * list of ulwp_t structs that are reused when new threads
991 		 * are created) and on schedctl shared memory never being
992 		 * deallocated once created via __schedctl().
993 		 *
994 		 * Thus, the worst that can happen when the spinning thread
995 		 * looks at the owner's schedctl data is that it is looking
996 		 * at some other thread's schedctl data.  This almost never
997 		 * happens and is benign when it does.
998 		 */
999 		if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL &&
1000 		    ((scp = ulwp->ul_schedctl) == NULL ||
1001 		    scp->sc_state != SC_ONPROC))
1002 			break;
1003 	}
1004 	atomic_dec_32(&mp->mutex_spinners);
1005 	exit_critical(self);
1006 
1007 	DTRACE_PROBE2(plockstat, mutex__spun, 0, count);
1008 
1009 	return (EBUSY);
1010 }
1011 
1012 /*
1013  * Same as mutex_trylock_adaptive(), except specifically for queue locks.
1014  * The owner field is not set here; the caller (spin_lock_set()) sets it.
1015  */
1016 int
1017 mutex_queuelock_adaptive(mutex_t *mp)
1018 {
1019 	ulwp_t *ulwp;
1020 	volatile sc_shared_t *scp;
1021 	volatile uint8_t *lockp;
1022 	volatile uint64_t *ownerp;
1023 	int count = curthread->ul_queue_spin;
1024 
1025 	ASSERT(mp->mutex_type == USYNC_THREAD);
1026 
1027 	if (count == 0)
1028 		return (EBUSY);
1029 
1030 	lockp = (volatile uint8_t *)&mp->mutex_lockw;
1031 	ownerp = (volatile uint64_t *)&mp->mutex_owner;
1032 	while (--count >= 0) {
1033 		if (*lockp == 0 && set_lock_byte(lockp) == 0)
1034 			return (0);
1035 		SMT_PAUSE();
1036 		if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL &&
1037 		    ((scp = ulwp->ul_schedctl) == NULL ||
1038 		    scp->sc_state != SC_ONPROC))
1039 			break;
1040 	}
1041 
1042 	return (EBUSY);
1043 }
1044 
1045 /*
1046  * Like mutex_trylock_adaptive(), but for process-shared mutexes.
1047  * Spin for a while, trying to grab the lock.  We know that we
1048  * failed set_lock_byte(&mp->mutex_lockw) once before coming here.
1049  * If this fails, return EBUSY and let the caller deal with it.
1050  * If this succeeds, return 0 with mutex_owner set to curthread
1051  * and mutex_ownerpid set to the current pid.
1052  */
1053 int
1054 mutex_trylock_process(mutex_t *mp)
1055 {
1056 	ulwp_t *self = curthread;
1057 	uberdata_t *udp = self->ul_uberdata;
1058 	int count;
1059 	volatile uint8_t *lockp;
1060 	volatile uint64_t *ownerp;
1061 	volatile int32_t *pidp;
1062 	pid_t pid, newpid;
1063 	uint64_t owner, newowner;
1064 
1065 	if ((count = ncpus) == 0)
1066 		count = ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN);
1067 	count = (count > 1)? self->ul_adaptive_spin : 0;
1068 
1069 	ASSERT((mp->mutex_type & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) ==
1070 		USYNC_PROCESS);
1071 
1072 	if (count == 0)
1073 		return (EBUSY);
1074 
1075 	lockp = (volatile uint8_t *)&mp->mutex_lockw;
1076 	ownerp = (volatile uint64_t *)&mp->mutex_owner;
1077 	pidp = (volatile int32_t *)&mp->mutex_ownerpid;
1078 	owner = *ownerp;
1079 	pid = *pidp;
1080 	/*
1081 	 * This is a process-shared mutex.
1082 	 * We cannot know if the owner is running on a processor.
1083 	 * We just spin and hope that it is on a processor.
1084 	 */
1085 	while (--count >= 0) {
1086 		if (*lockp == 0) {
1087 			enter_critical(self);
1088 			if (set_lock_byte(lockp) == 0) {
1089 				*ownerp = (uintptr_t)self;
1090 				*pidp = udp->pid;
1091 				exit_critical(self);
1092 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1093 				    0, 0);
1094 				return (0);
1095 			}
1096 			exit_critical(self);
1097 		} else if ((newowner = *ownerp) == owner &&
1098 		    (newpid = *pidp) == pid) {
1099 			SMT_PAUSE();
1100 			continue;
1101 		}
1102 		/*
1103 		 * The owner of the lock changed; start the count over again.
1104 		 * This may be too aggressive; it needs testing.
1105 		 */
1106 		owner = newowner;
1107 		pid = newpid;
1108 		count = self->ul_adaptive_spin;
1109 	}
1110 
1111 	return (EBUSY);
1112 }
1113 
1114 /*
1115  * Mutex wakeup code for releasing a USYNC_THREAD mutex.
1116  * Returns the lwpid of the thread that was dequeued, if any.
1117  * The caller of mutex_wakeup() must call __lwp_unpark(lwpid)
1118  * to wake up the specified lwp.
1119  */
1120 lwpid_t
1121 mutex_wakeup(mutex_t *mp)
1122 {
1123 	lwpid_t lwpid = 0;
1124 	queue_head_t *qp;
1125 	ulwp_t *ulwp;
1126 	int more;
1127 
1128 	/*
1129 	 * Dequeue a waiter from the sleep queue.  Don't touch the mutex
1130 	 * waiters bit if no one was found on the queue because the mutex
1131 	 * might have been deallocated or reallocated for another purpose.
1132 	 */
1133 	qp = queue_lock(mp, MX);
1134 	if ((ulwp = dequeue(qp, mp, &more)) != NULL) {
1135 		lwpid = ulwp->ul_lwpid;
1136 		mp->mutex_waiters = (more? 1 : 0);
1137 	}
1138 	queue_unlock(qp);
1139 	return (lwpid);
1140 }
1141 
1142 /*
1143  * Spin for a while, testing to see if the lock has been grabbed.
1144  * If this fails, call mutex_wakeup() to release a waiter.
1145  */
1146 lwpid_t
1147 mutex_unlock_queue(mutex_t *mp)
1148 {
1149 	ulwp_t *self = curthread;
1150 	uint32_t *lockw = &mp->mutex_lockword;
1151 	lwpid_t lwpid;
1152 	volatile uint8_t *lockp;
1153 	volatile uint32_t *spinp;
1154 	int count;
1155 
1156 	/*
1157 	 * We use the swap primitive to clear the lock, but we must
1158 	 * atomically retain the waiters bit for the remainder of this
1159 	 * code to work.  We first check to see if the waiters bit is
1160 	 * set and if so clear the lock by swapping in a word containing
1161 	 * only the waiters bit.  This could produce a false positive test
1162 	 * for whether there are waiters that need to be waked up, but
1163 	 * this just causes an extra call to mutex_wakeup() to do nothing.
1164 	 * The opposite case is more delicate:  If there are no waiters,
1165 	 * we swap in a zero lock byte and a zero waiters bit.  The result
1166 	 * of the swap could indicate that there really was a waiter so in
1167 	 * this case we go directly to mutex_wakeup() without performing
1168 	 * any of the adaptive code because the waiter bit has been cleared
1169 	 * and the adaptive code is unreliable in this case.
1170 	 */
1171 	if (!(*lockw & WAITERMASK)) {	/* no waiter exists right now */
1172 		mp->mutex_owner = 0;
1173 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1174 		if (!(atomic_swap_32(lockw, 0) & WAITERMASK))
1175 			return (0);	/* still no waiters */
1176 		no_preempt(self);	/* ensure a prompt wakeup */
1177 		lwpid = mutex_wakeup(mp);
1178 	} else {
1179 		no_preempt(self);	/* ensure a prompt wakeup */
1180 		lockp = (volatile uint8_t *)&mp->mutex_lockw;
1181 		spinp = (volatile uint32_t *)&mp->mutex_spinners;
1182 		mp->mutex_owner = 0;
1183 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1184 		/* clear lock, retain waiter */
1185 		(void) atomic_swap_32(lockw, WAITER);
1186 
1187 		/*
1188 		 * We spin here fewer times than mutex_trylock_adaptive().
1189 		 * We are trying to balance two conflicting goals:
1190 		 * 1. Avoid waking up anyone if a spinning thread
1191 		 *    grabs the lock.
1192 		 * 2. Wake up a sleeping thread promptly to get on
1193 		 *    with useful work.
1194 		 * We don't spin at all if there is no acquiring spinner;
1195 		 * (mp->mutex_spinners is non-zero if there are spinners).
1196 		 */
1197 		for (count = self->ul_release_spin;
1198 		    *spinp && count > 0; count--) {
1199 			/*
1200 			 * There is a waiter that we will have to wake
1201 			 * up unless someone else grabs the lock while
1202 			 * we are busy spinning.  Like the spin loop in
1203 			 * mutex_trylock_adaptive(), this spin loop is
1204 			 * unfair to lwps that have already dropped into
1205 			 * the kernel to sleep.  They will starve on a
1206 			 * highly-contended mutex.  Too bad.
1207 			 */
1208 			if (*lockp != 0) {	/* somebody grabbed the lock */
1209 				preempt(self);
1210 				return (0);
1211 			}
1212 			SMT_PAUSE();
1213 		}
1214 
1215 		/*
1216 		 * No one grabbed the lock.
1217 		 * Wake up some lwp that is waiting for it.
1218 		 */
1219 		mp->mutex_waiters = 0;
1220 		lwpid = mutex_wakeup(mp);
1221 	}
1222 
1223 	if (lwpid == 0)
1224 		preempt(self);
1225 	return (lwpid);
1226 }
1227 
1228 /*
1229  * Like mutex_unlock_queue(), but for process-shared mutexes.
1230  * We tested the waiters field before calling here and it was non-zero.
1231  */
1232 void
1233 mutex_unlock_process(mutex_t *mp)
1234 {
1235 	ulwp_t *self = curthread;
1236 	int count;
1237 	volatile uint8_t *lockp;
1238 
1239 	/*
1240 	 * See the comments in mutex_unlock_queue(), above.
1241 	 */
1242 	if ((count = ncpus) == 0)
1243 		count = ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN);
1244 	count = (count > 1)? self->ul_release_spin : 0;
1245 	no_preempt(self);
1246 	mp->mutex_owner = 0;
1247 	mp->mutex_ownerpid = 0;
1248 	DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1249 	if (count == 0) {
1250 		/* clear lock, test waiter */
1251 		if (!(atomic_swap_32(&mp->mutex_lockword, 0) & WAITERMASK)) {
1252 			/* no waiters now */
1253 			preempt(self);
1254 			return;
1255 		}
1256 	} else {
1257 		/* clear lock, retain waiter */
1258 		(void) atomic_swap_32(&mp->mutex_lockword, WAITER);
1259 		lockp = (volatile uint8_t *)&mp->mutex_lockw;
1260 		while (--count >= 0) {
1261 			if (*lockp != 0) {
1262 				/* somebody grabbed the lock */
1263 				preempt(self);
1264 				return;
1265 			}
1266 			SMT_PAUSE();
1267 		}
1268 		/*
1269 		 * We must clear the waiters field before going
1270 		 * to the kernel, else it could remain set forever.
1271 		 */
1272 		mp->mutex_waiters = 0;
1273 	}
1274 	(void) ___lwp_mutex_wakeup(mp);
1275 	preempt(self);
1276 }
1277 
1278 /*
1279  * Return the real priority of a thread.
1280  */
1281 int
1282 real_priority(ulwp_t *ulwp)
1283 {
1284 	if (ulwp->ul_epri == 0)
1285 		return (ulwp->ul_mappedpri? ulwp->ul_mappedpri : ulwp->ul_pri);
1286 	return (ulwp->ul_emappedpri? ulwp->ul_emappedpri : ulwp->ul_epri);
1287 }
1288 
1289 void
1290 stall(void)
1291 {
1292 	for (;;)
1293 		(void) mutex_lock_kernel(&stall_mutex, NULL, NULL);
1294 }
1295 
1296 /*
1297  * Acquire a USYNC_THREAD mutex via user-level sleep queues.
1298  * We failed set_lock_byte(&mp->mutex_lockw) before coming here.
1299  * Returns with mutex_owner set correctly.
1300  */
1301 int
1302 mutex_lock_queue(ulwp_t *self, tdb_mutex_stats_t *msp, mutex_t *mp,
1303 	timespec_t *tsp)
1304 {
1305 	uberdata_t *udp = curthread->ul_uberdata;
1306 	queue_head_t *qp;
1307 	hrtime_t begin_sleep;
1308 	int error = 0;
1309 
1310 	self->ul_sp = stkptr();
1311 	if (__td_event_report(self, TD_SLEEP, udp)) {
1312 		self->ul_wchan = mp;
1313 		self->ul_td_evbuf.eventnum = TD_SLEEP;
1314 		self->ul_td_evbuf.eventdata = mp;
1315 		tdb_event(TD_SLEEP, udp);
1316 	}
1317 	if (msp) {
1318 		tdb_incr(msp->mutex_sleep);
1319 		begin_sleep = gethrtime();
1320 	}
1321 
1322 	DTRACE_PROBE1(plockstat, mutex__block, mp);
1323 
1324 	/*
1325 	 * Put ourself on the sleep queue, and while we are
1326 	 * unable to grab the lock, go park in the kernel.
1327 	 * Take ourself off the sleep queue after we acquire the lock.
1328 	 * The waiter bit can be set/cleared only while holding the queue lock.
1329 	 */
1330 	qp = queue_lock(mp, MX);
1331 	enqueue(qp, self, mp, MX);
1332 	mp->mutex_waiters = 1;
1333 	for (;;) {
1334 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
1335 			mp->mutex_owner = (uintptr_t)self;
1336 			DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
1337 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1338 			mp->mutex_waiters = dequeue_self(qp, mp);
1339 			break;
1340 		}
1341 		set_parking_flag(self, 1);
1342 		queue_unlock(qp);
1343 		/*
1344 		 * __lwp_park() will return the residual time in tsp
1345 		 * if we are unparked before the timeout expires.
1346 		 */
1347 		if ((error = __lwp_park(tsp, 0)) == EINTR)
1348 			error = 0;
1349 		set_parking_flag(self, 0);
1350 		/*
1351 		 * We could have taken a signal or suspended ourself.
1352 		 * If we did, then we removed ourself from the queue.
1353 		 * Someone else may have removed us from the queue
1354 		 * as a consequence of mutex_unlock().  We may have
1355 		 * gotten a timeout from __lwp_park().  Or we may still
1356 		 * be on the queue and this is just a spurious wakeup.
1357 		 */
1358 		qp = queue_lock(mp, MX);
1359 		if (self->ul_sleepq == NULL) {
1360 			if (error) {
1361 				DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
1362 				DTRACE_PROBE2(plockstat, mutex__error, mp,
1363 				    error);
1364 				break;
1365 			}
1366 			if (set_lock_byte(&mp->mutex_lockw) == 0) {
1367 				mp->mutex_owner = (uintptr_t)self;
1368 				DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1);
1369 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1370 				    0, 0);
1371 				break;
1372 			}
1373 			enqueue(qp, self, mp, MX);
1374 			mp->mutex_waiters = 1;
1375 		}
1376 		ASSERT(self->ul_sleepq == qp &&
1377 		    self->ul_qtype == MX &&
1378 		    self->ul_wchan == mp);
1379 		if (error) {
1380 			mp->mutex_waiters = dequeue_self(qp, mp);
1381 			DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0);
1382 			DTRACE_PROBE2(plockstat, mutex__error, mp, error);
1383 			break;
1384 		}
1385 	}
1386 
1387 	ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL &&
1388 	    self->ul_wchan == NULL);
1389 	self->ul_sp = 0;
1390 
1391 	queue_unlock(qp);
1392 	if (msp)
1393 		msp->mutex_sleep_time += gethrtime() - begin_sleep;
1394 
1395 	ASSERT(error == 0 || error == EINVAL || error == ETIME);
1396 	return (error);
1397 }
1398 
1399 /*
1400  * Returns with mutex_owner set correctly.
1401  */
1402 int
1403 mutex_lock_internal(mutex_t *mp, timespec_t *tsp, int try)
1404 {
1405 	ulwp_t *self = curthread;
1406 	uberdata_t *udp = self->ul_uberdata;
1407 	int mtype = mp->mutex_type;
1408 	tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
1409 	int error = 0;
1410 
1411 	ASSERT(try == MUTEX_TRY || try == MUTEX_LOCK);
1412 
1413 	if (!self->ul_schedctl_called)
1414 		(void) setup_schedctl();
1415 
1416 	if (msp && try == MUTEX_TRY)
1417 		tdb_incr(msp->mutex_try);
1418 
1419 	if ((mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) && mutex_is_held(mp)) {
1420 		if (mtype & LOCK_RECURSIVE) {
1421 			if (mp->mutex_rcount == RECURSION_MAX) {
1422 				error = EAGAIN;
1423 			} else {
1424 				mp->mutex_rcount++;
1425 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1426 				    1, 0);
1427 				return (0);
1428 			}
1429 		} else if (try == MUTEX_TRY) {
1430 			return (EBUSY);
1431 		} else {
1432 			DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
1433 			return (EDEADLK);
1434 		}
1435 	}
1436 
1437 	if (self->ul_error_detection && try == MUTEX_LOCK &&
1438 	    tsp == NULL && mutex_is_held(mp))
1439 		lock_error(mp, "mutex_lock", NULL, NULL);
1440 
1441 	if (mtype &
1442 	    (USYNC_PROCESS_ROBUST|PTHREAD_PRIO_INHERIT|PTHREAD_PRIO_PROTECT)) {
1443 		uint8_t ceil;
1444 		int myprio;
1445 
1446 		if (mtype & PTHREAD_PRIO_PROTECT) {
1447 			ceil = mp->mutex_ceiling;
1448 			ASSERT(_validate_rt_prio(SCHED_FIFO, ceil) == 0);
1449 			myprio = real_priority(self);
1450 			if (myprio > ceil) {
1451 				DTRACE_PROBE2(plockstat, mutex__error, mp,
1452 				    EINVAL);
1453 				return (EINVAL);
1454 			}
1455 			if ((error = _ceil_mylist_add(mp)) != 0) {
1456 				DTRACE_PROBE2(plockstat, mutex__error, mp,
1457 				    error);
1458 				return (error);
1459 			}
1460 			if (myprio < ceil)
1461 				_ceil_prio_inherit(ceil);
1462 		}
1463 
1464 		if (mtype & PTHREAD_PRIO_INHERIT) {
1465 			/* go straight to the kernel */
1466 			if (try == MUTEX_TRY)
1467 				error = mutex_trylock_kernel(mp);
1468 			else	/* MUTEX_LOCK */
1469 				error = mutex_lock_kernel(mp, tsp, msp);
1470 			/*
1471 			 * The kernel never sets or clears the lock byte
1472 			 * for PTHREAD_PRIO_INHERIT mutexes.
1473 			 * Set it here for debugging consistency.
1474 			 */
1475 			switch (error) {
1476 			case 0:
1477 			case EOWNERDEAD:
1478 				mp->mutex_lockw = LOCKSET;
1479 				break;
1480 			}
1481 		} else if (mtype & USYNC_PROCESS_ROBUST) {
1482 			/* go straight to the kernel */
1483 			if (try == MUTEX_TRY)
1484 				error = mutex_trylock_kernel(mp);
1485 			else	/* MUTEX_LOCK */
1486 				error = mutex_lock_kernel(mp, tsp, msp);
1487 		} else {	/* PTHREAD_PRIO_PROTECT */
1488 			/*
1489 			 * Try once at user level before going to the kernel.
1490 			 * If this is a process shared mutex then protect
1491 			 * against forkall() while setting mp->mutex_ownerpid.
1492 			 */
1493 			if (mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)) {
1494 				enter_critical(self);
1495 				if (set_lock_byte(&mp->mutex_lockw) == 0) {
1496 					mp->mutex_owner = (uintptr_t)self;
1497 					mp->mutex_ownerpid = udp->pid;
1498 					exit_critical(self);
1499 					DTRACE_PROBE3(plockstat,
1500 					    mutex__acquire, mp, 0, 0);
1501 				} else {
1502 					exit_critical(self);
1503 					error = EBUSY;
1504 				}
1505 			} else {
1506 				if (set_lock_byte(&mp->mutex_lockw) == 0) {
1507 					mp->mutex_owner = (uintptr_t)self;
1508 					DTRACE_PROBE3(plockstat,
1509 					    mutex__acquire, mp, 0, 0);
1510 				} else {
1511 					error = EBUSY;
1512 				}
1513 			}
1514 			if (error && try == MUTEX_LOCK)
1515 				error = mutex_lock_kernel(mp, tsp, msp);
1516 		}
1517 
1518 		if (error) {
1519 			if (mtype & PTHREAD_PRIO_INHERIT) {
1520 				switch (error) {
1521 				case EOWNERDEAD:
1522 				case ENOTRECOVERABLE:
1523 					if (mtype & PTHREAD_MUTEX_ROBUST_NP)
1524 						break;
1525 					if (error == EOWNERDEAD) {
1526 						/*
1527 						 * We own the mutex; unlock it.
1528 						 * It becomes ENOTRECOVERABLE.
1529 						 * All waiters are waked up.
1530 						 */
1531 						mp->mutex_owner = 0;
1532 						mp->mutex_ownerpid = 0;
1533 						DTRACE_PROBE2(plockstat,
1534 						    mutex__release, mp, 0);
1535 						mp->mutex_lockw = LOCKCLEAR;
1536 						(void) ___lwp_mutex_unlock(mp);
1537 					}
1538 					/* FALLTHROUGH */
1539 				case EDEADLK:
1540 					if (try == MUTEX_LOCK)
1541 						stall();
1542 					error = EBUSY;
1543 					break;
1544 				}
1545 			}
1546 			if ((mtype & PTHREAD_PRIO_PROTECT) &&
1547 			    error != EOWNERDEAD) {
1548 				(void) _ceil_mylist_del(mp);
1549 				if (myprio < ceil)
1550 					_ceil_prio_waive();
1551 			}
1552 		}
1553 	} else if (mtype & USYNC_PROCESS) {
1554 		/*
1555 		 * This is a process shared mutex.  Protect against
1556 		 * forkall() while setting mp->mutex_ownerpid.
1557 		 */
1558 		enter_critical(self);
1559 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
1560 			mp->mutex_owner = (uintptr_t)self;
1561 			mp->mutex_ownerpid = udp->pid;
1562 			exit_critical(self);
1563 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1564 		} else {
1565 			/* try a little harder */
1566 			exit_critical(self);
1567 			error = mutex_trylock_process(mp);
1568 		}
1569 		if (error && try == MUTEX_LOCK)
1570 			error = mutex_lock_kernel(mp, tsp, msp);
1571 	} else  {	/* USYNC_THREAD */
1572 		/* try once */
1573 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
1574 			mp->mutex_owner = (uintptr_t)self;
1575 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1576 		} else {
1577 			/* try a little harder if we don't own the mutex */
1578 			error = EBUSY;
1579 			if (MUTEX_OWNER(mp) != self)
1580 				error = mutex_trylock_adaptive(mp);
1581 			if (error && try == MUTEX_LOCK)		/* go park */
1582 				error = mutex_lock_queue(self, msp, mp, tsp);
1583 		}
1584 	}
1585 
1586 	switch (error) {
1587 	case EOWNERDEAD:
1588 	case ELOCKUNMAPPED:
1589 		mp->mutex_owner = (uintptr_t)self;
1590 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1591 		/* FALLTHROUGH */
1592 	case 0:
1593 		if (msp)
1594 			record_begin_hold(msp);
1595 		break;
1596 	default:
1597 		if (try == MUTEX_TRY) {
1598 			if (msp)
1599 				tdb_incr(msp->mutex_try_fail);
1600 			if (__td_event_report(self, TD_LOCK_TRY, udp)) {
1601 				self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
1602 				tdb_event(TD_LOCK_TRY, udp);
1603 			}
1604 		}
1605 		break;
1606 	}
1607 
1608 	return (error);
1609 }
1610 
1611 int
1612 fast_process_lock(mutex_t *mp, timespec_t *tsp, int mtype, int try)
1613 {
1614 	ulwp_t *self = curthread;
1615 	uberdata_t *udp = self->ul_uberdata;
1616 
1617 	/*
1618 	 * We know that USYNC_PROCESS is set in mtype and that
1619 	 * zero, one, or both of the flags LOCK_RECURSIVE and
1620 	 * LOCK_ERRORCHECK are set, and that no other flags are set.
1621 	 */
1622 	enter_critical(self);
1623 	if (set_lock_byte(&mp->mutex_lockw) == 0) {
1624 		mp->mutex_owner = (uintptr_t)self;
1625 		mp->mutex_ownerpid = udp->pid;
1626 		exit_critical(self);
1627 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1628 		return (0);
1629 	}
1630 	exit_critical(self);
1631 
1632 	if ((mtype & ~USYNC_PROCESS) && shared_mutex_held(mp)) {
1633 		if (mtype & LOCK_RECURSIVE) {
1634 			if (mp->mutex_rcount == RECURSION_MAX)
1635 				return (EAGAIN);
1636 			mp->mutex_rcount++;
1637 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1, 0);
1638 			return (0);
1639 		}
1640 		if (try == MUTEX_LOCK) {
1641 			DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
1642 			return (EDEADLK);
1643 		}
1644 		return (EBUSY);
1645 	}
1646 
1647 	/* try a little harder if we don't own the mutex */
1648 	if (!shared_mutex_held(mp) && mutex_trylock_process(mp) == 0)
1649 		return (0);
1650 
1651 	if (try == MUTEX_LOCK)
1652 		return (mutex_lock_kernel(mp, tsp, NULL));
1653 
1654 	if (__td_event_report(self, TD_LOCK_TRY, udp)) {
1655 		self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
1656 		tdb_event(TD_LOCK_TRY, udp);
1657 	}
1658 	return (EBUSY);
1659 }
1660 
1661 static int
1662 slow_lock(ulwp_t *self, mutex_t *mp, timespec_t *tsp)
1663 {
1664 	int error = 0;
1665 
1666 	if (MUTEX_OWNER(mp) == self || mutex_trylock_adaptive(mp) != 0)
1667 		error = mutex_lock_queue(self, NULL, mp, tsp);
1668 	return (error);
1669 }
1670 
1671 int
1672 mutex_lock_impl(mutex_t *mp, timespec_t *tsp)
1673 {
1674 	ulwp_t *self = curthread;
1675 	uberdata_t *udp = self->ul_uberdata;
1676 	uberflags_t *gflags;
1677 	int mtype;
1678 
1679 	/*
1680 	 * Optimize the case of USYNC_THREAD, including
1681 	 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
1682 	 * no error detection, no lock statistics,
1683 	 * and the process has only a single thread.
1684 	 * (Most likely a traditional single-threaded application.)
1685 	 */
1686 	if ((((mtype = mp->mutex_type) & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
1687 	    udp->uberflags.uf_all) == 0) {
1688 		/*
1689 		 * Only one thread exists so we don't need an atomic operation.
1690 		 */
1691 		if (mp->mutex_lockw == 0) {
1692 			mp->mutex_lockw = LOCKSET;
1693 			mp->mutex_owner = (uintptr_t)self;
1694 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1695 			return (0);
1696 		}
1697 		if (mtype && MUTEX_OWNER(mp) == self) {
1698 			/*
1699 			 * LOCK_RECURSIVE, LOCK_ERRORCHECK, or both.
1700 			 */
1701 			if (mtype & LOCK_RECURSIVE) {
1702 				if (mp->mutex_rcount == RECURSION_MAX)
1703 					return (EAGAIN);
1704 				mp->mutex_rcount++;
1705 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1706 				    1, 0);
1707 				return (0);
1708 			}
1709 			DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
1710 			return (EDEADLK);	/* LOCK_ERRORCHECK */
1711 		}
1712 		/*
1713 		 * We have reached a deadlock, probably because the
1714 		 * process is executing non-async-signal-safe code in
1715 		 * a signal handler and is attempting to acquire a lock
1716 		 * that it already owns.  This is not surprising, given
1717 		 * bad programming practices over the years that has
1718 		 * resulted in applications calling printf() and such
1719 		 * in their signal handlers.  Unless the user has told
1720 		 * us that the signal handlers are safe by setting:
1721 		 *	export _THREAD_ASYNC_SAFE=1
1722 		 * we return EDEADLK rather than actually deadlocking.
1723 		 */
1724 		if (tsp == NULL &&
1725 		    MUTEX_OWNER(mp) == self && !self->ul_async_safe) {
1726 			DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
1727 			return (EDEADLK);
1728 		}
1729 	}
1730 
1731 	/*
1732 	 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
1733 	 * no error detection, and no lock statistics.
1734 	 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
1735 	 */
1736 	if ((gflags = self->ul_schedctl_called) != NULL &&
1737 	    (gflags->uf_trs_ted |
1738 	    (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) {
1739 
1740 		if (mtype & USYNC_PROCESS)
1741 			return (fast_process_lock(mp, tsp, mtype, MUTEX_LOCK));
1742 
1743 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
1744 			mp->mutex_owner = (uintptr_t)self;
1745 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1746 			return (0);
1747 		}
1748 
1749 		if (mtype && MUTEX_OWNER(mp) == self) {
1750 			if (mtype & LOCK_RECURSIVE) {
1751 				if (mp->mutex_rcount == RECURSION_MAX)
1752 					return (EAGAIN);
1753 				mp->mutex_rcount++;
1754 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1755 				    1, 0);
1756 				return (0);
1757 			}
1758 			DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK);
1759 			return (EDEADLK);	/* LOCK_ERRORCHECK */
1760 		}
1761 
1762 		return (slow_lock(self, mp, tsp));
1763 	}
1764 
1765 	/* else do it the long way */
1766 	return (mutex_lock_internal(mp, tsp, MUTEX_LOCK));
1767 }
1768 
1769 #pragma weak _private_mutex_lock = __mutex_lock
1770 #pragma weak mutex_lock = __mutex_lock
1771 #pragma weak _mutex_lock = __mutex_lock
1772 #pragma weak pthread_mutex_lock = __mutex_lock
1773 #pragma weak _pthread_mutex_lock = __mutex_lock
1774 int
1775 __mutex_lock(mutex_t *mp)
1776 {
1777 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
1778 	return (mutex_lock_impl(mp, NULL));
1779 }
1780 
1781 #pragma weak pthread_mutex_timedlock = _pthread_mutex_timedlock
1782 int
1783 _pthread_mutex_timedlock(mutex_t *mp, const timespec_t *abstime)
1784 {
1785 	timespec_t tslocal;
1786 	int error;
1787 
1788 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
1789 	abstime_to_reltime(CLOCK_REALTIME, abstime, &tslocal);
1790 	error = mutex_lock_impl(mp, &tslocal);
1791 	if (error == ETIME)
1792 		error = ETIMEDOUT;
1793 	return (error);
1794 }
1795 
1796 #pragma weak pthread_mutex_reltimedlock_np = _pthread_mutex_reltimedlock_np
1797 int
1798 _pthread_mutex_reltimedlock_np(mutex_t *mp, const timespec_t *reltime)
1799 {
1800 	timespec_t tslocal;
1801 	int error;
1802 
1803 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
1804 	tslocal = *reltime;
1805 	error = mutex_lock_impl(mp, &tslocal);
1806 	if (error == ETIME)
1807 		error = ETIMEDOUT;
1808 	return (error);
1809 }
1810 
1811 static int
1812 slow_trylock(mutex_t *mp, ulwp_t *self)
1813 {
1814 	if (MUTEX_OWNER(mp) == self ||
1815 	    mutex_trylock_adaptive(mp) != 0) {
1816 		uberdata_t *udp = self->ul_uberdata;
1817 
1818 		if (__td_event_report(self, TD_LOCK_TRY, udp)) {
1819 			self->ul_td_evbuf.eventnum = TD_LOCK_TRY;
1820 			tdb_event(TD_LOCK_TRY, udp);
1821 		}
1822 		return (EBUSY);
1823 	}
1824 	return (0);
1825 }
1826 
1827 #pragma weak _private_mutex_trylock = __mutex_trylock
1828 #pragma weak mutex_trylock = __mutex_trylock
1829 #pragma weak _mutex_trylock = __mutex_trylock
1830 #pragma weak pthread_mutex_trylock = __mutex_trylock
1831 #pragma weak _pthread_mutex_trylock = __mutex_trylock
1832 int
1833 __mutex_trylock(mutex_t *mp)
1834 {
1835 	ulwp_t *self = curthread;
1836 	uberdata_t *udp = self->ul_uberdata;
1837 	uberflags_t *gflags;
1838 	int mtype;
1839 
1840 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
1841 	/*
1842 	 * Optimize the case of USYNC_THREAD, including
1843 	 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
1844 	 * no error detection, no lock statistics,
1845 	 * and the process has only a single thread.
1846 	 * (Most likely a traditional single-threaded application.)
1847 	 */
1848 	if ((((mtype = mp->mutex_type) & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
1849 	    udp->uberflags.uf_all) == 0) {
1850 		/*
1851 		 * Only one thread exists so we don't need an atomic operation.
1852 		 */
1853 		if (mp->mutex_lockw == 0) {
1854 			mp->mutex_lockw = LOCKSET;
1855 			mp->mutex_owner = (uintptr_t)self;
1856 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1857 			return (0);
1858 		}
1859 		if (mtype && MUTEX_OWNER(mp) == self) {
1860 			if (mtype & LOCK_RECURSIVE) {
1861 				if (mp->mutex_rcount == RECURSION_MAX)
1862 					return (EAGAIN);
1863 				mp->mutex_rcount++;
1864 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1865 				    1, 0);
1866 				return (0);
1867 			}
1868 			return (EDEADLK);	/* LOCK_ERRORCHECK */
1869 		}
1870 		return (EBUSY);
1871 	}
1872 
1873 	/*
1874 	 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
1875 	 * no error detection, and no lock statistics.
1876 	 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
1877 	 */
1878 	if ((gflags = self->ul_schedctl_called) != NULL &&
1879 	    (gflags->uf_trs_ted |
1880 	    (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) {
1881 
1882 		if (mtype & USYNC_PROCESS)
1883 			return (fast_process_lock(mp, NULL, mtype, MUTEX_TRY));
1884 
1885 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
1886 			mp->mutex_owner = (uintptr_t)self;
1887 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
1888 			return (0);
1889 		}
1890 
1891 		if (mtype && MUTEX_OWNER(mp) == self) {
1892 			if (mtype & LOCK_RECURSIVE) {
1893 				if (mp->mutex_rcount == RECURSION_MAX)
1894 					return (EAGAIN);
1895 				mp->mutex_rcount++;
1896 				DTRACE_PROBE3(plockstat, mutex__acquire, mp,
1897 				    1, 0);
1898 				return (0);
1899 			}
1900 			return (EBUSY);		/* LOCK_ERRORCHECK */
1901 		}
1902 
1903 		return (slow_trylock(mp, self));
1904 	}
1905 
1906 	/* else do it the long way */
1907 	return (mutex_lock_internal(mp, NULL, MUTEX_TRY));
1908 }
1909 
1910 int
1911 mutex_unlock_internal(mutex_t *mp)
1912 {
1913 	ulwp_t *self = curthread;
1914 	uberdata_t *udp = self->ul_uberdata;
1915 	int mtype = mp->mutex_type;
1916 	tdb_mutex_stats_t *msp;
1917 	int error;
1918 	lwpid_t lwpid;
1919 
1920 	if ((mtype & LOCK_ERRORCHECK) && !mutex_is_held(mp))
1921 		return (EPERM);
1922 
1923 	if (self->ul_error_detection && !mutex_is_held(mp))
1924 		lock_error(mp, "mutex_unlock", NULL, NULL);
1925 
1926 	if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
1927 		mp->mutex_rcount--;
1928 		DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
1929 		return (0);
1930 	}
1931 
1932 	if ((msp = MUTEX_STATS(mp, udp)) != NULL)
1933 		(void) record_hold_time(msp);
1934 
1935 	if (mtype &
1936 	    (USYNC_PROCESS_ROBUST|PTHREAD_PRIO_INHERIT|PTHREAD_PRIO_PROTECT)) {
1937 		no_preempt(self);
1938 		mp->mutex_owner = 0;
1939 		mp->mutex_ownerpid = 0;
1940 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1941 		if (mtype & PTHREAD_PRIO_INHERIT) {
1942 			mp->mutex_lockw = LOCKCLEAR;
1943 			error = ___lwp_mutex_unlock(mp);
1944 		} else if (mtype & USYNC_PROCESS_ROBUST) {
1945 			error = ___lwp_mutex_unlock(mp);
1946 		} else {
1947 			if (atomic_swap_32(&mp->mutex_lockword, 0) & WAITERMASK)
1948 				(void) ___lwp_mutex_wakeup(mp);
1949 			error = 0;
1950 		}
1951 		if (mtype & PTHREAD_PRIO_PROTECT) {
1952 			if (_ceil_mylist_del(mp))
1953 				_ceil_prio_waive();
1954 		}
1955 		preempt(self);
1956 	} else if (mtype & USYNC_PROCESS) {
1957 		if (mp->mutex_lockword & WAITERMASK)
1958 			mutex_unlock_process(mp);
1959 		else {
1960 			mp->mutex_owner = 0;
1961 			mp->mutex_ownerpid = 0;
1962 			DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
1963 			if (atomic_swap_32(&mp->mutex_lockword, 0) &
1964 			    WAITERMASK) {
1965 				no_preempt(self);
1966 				(void) ___lwp_mutex_wakeup(mp);
1967 				preempt(self);
1968 			}
1969 		}
1970 		error = 0;
1971 	} else {	/* USYNC_THREAD */
1972 		if ((lwpid = mutex_unlock_queue(mp)) != 0) {
1973 			(void) __lwp_unpark(lwpid);
1974 			preempt(self);
1975 		}
1976 		error = 0;
1977 	}
1978 
1979 	return (error);
1980 }
1981 
1982 #pragma weak _private_mutex_unlock = __mutex_unlock
1983 #pragma weak mutex_unlock = __mutex_unlock
1984 #pragma weak _mutex_unlock = __mutex_unlock
1985 #pragma weak pthread_mutex_unlock = __mutex_unlock
1986 #pragma weak _pthread_mutex_unlock = __mutex_unlock
1987 int
1988 __mutex_unlock(mutex_t *mp)
1989 {
1990 	ulwp_t *self = curthread;
1991 	uberdata_t *udp = self->ul_uberdata;
1992 	uberflags_t *gflags;
1993 	lwpid_t lwpid;
1994 	int mtype;
1995 	short el;
1996 
1997 	/*
1998 	 * Optimize the case of USYNC_THREAD, including
1999 	 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases,
2000 	 * no error detection, no lock statistics,
2001 	 * and the process has only a single thread.
2002 	 * (Most likely a traditional single-threaded application.)
2003 	 */
2004 	if ((((mtype = mp->mutex_type) & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) |
2005 	    udp->uberflags.uf_all) == 0) {
2006 		if (mtype) {
2007 			/*
2008 			 * At this point we know that one or both of the
2009 			 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set.
2010 			 */
2011 			if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self))
2012 				return (EPERM);
2013 			if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
2014 				mp->mutex_rcount--;
2015 				DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
2016 				return (0);
2017 			}
2018 		}
2019 		/*
2020 		 * Only one thread exists so we don't need an atomic operation.
2021 		 * Also, there can be no waiters.
2022 		 */
2023 		mp->mutex_owner = 0;
2024 		mp->mutex_lockword = 0;
2025 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2026 		return (0);
2027 	}
2028 
2029 	/*
2030 	 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS,
2031 	 * no error detection, and no lock statistics.
2032 	 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases.
2033 	 */
2034 	if ((gflags = self->ul_schedctl_called) != NULL) {
2035 		if (((el = gflags->uf_trs_ted) | mtype) == 0) {
2036 fast_unlock:
2037 			if (!(mp->mutex_lockword & WAITERMASK)) {
2038 				/* no waiter exists right now */
2039 				mp->mutex_owner = 0;
2040 				DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2041 				if (atomic_swap_32(&mp->mutex_lockword, 0) &
2042 				    WAITERMASK) {
2043 					/* a waiter suddenly appeared */
2044 					no_preempt(self);
2045 					if ((lwpid = mutex_wakeup(mp)) != 0)
2046 						(void) __lwp_unpark(lwpid);
2047 					preempt(self);
2048 				}
2049 			} else if ((lwpid = mutex_unlock_queue(mp)) != 0) {
2050 				(void) __lwp_unpark(lwpid);
2051 				preempt(self);
2052 			}
2053 			return (0);
2054 		}
2055 		if (el)		/* error detection or lock statistics */
2056 			goto slow_unlock;
2057 		if ((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) {
2058 			/*
2059 			 * At this point we know that one or both of the
2060 			 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set.
2061 			 */
2062 			if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self))
2063 				return (EPERM);
2064 			if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
2065 				mp->mutex_rcount--;
2066 				DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
2067 				return (0);
2068 			}
2069 			goto fast_unlock;
2070 		}
2071 		if ((mtype &
2072 		    ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) {
2073 			/*
2074 			 * At this point we know that zero, one, or both of the
2075 			 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set and
2076 			 * that the USYNC_PROCESS flag is set.
2077 			 */
2078 			if ((mtype & LOCK_ERRORCHECK) && !shared_mutex_held(mp))
2079 				return (EPERM);
2080 			if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) {
2081 				mp->mutex_rcount--;
2082 				DTRACE_PROBE2(plockstat, mutex__release, mp, 1);
2083 				return (0);
2084 			}
2085 			if (mp->mutex_lockword & WAITERMASK)
2086 				mutex_unlock_process(mp);
2087 			else {
2088 				mp->mutex_owner = 0;
2089 				mp->mutex_ownerpid = 0;
2090 				DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2091 				if (atomic_swap_32(&mp->mutex_lockword, 0) &
2092 				    WAITERMASK) {
2093 					no_preempt(self);
2094 					(void) ___lwp_mutex_wakeup(mp);
2095 					preempt(self);
2096 				}
2097 			}
2098 			return (0);
2099 		}
2100 	}
2101 
2102 	/* else do it the long way */
2103 slow_unlock:
2104 	return (mutex_unlock_internal(mp));
2105 }
2106 
2107 /*
2108  * Internally to the library, almost all mutex lock/unlock actions
2109  * go through these lmutex_ functions, to protect critical regions.
2110  * We replicate a bit of code from __mutex_lock() and __mutex_unlock()
2111  * to make these functions faster since we know that the mutex type
2112  * of all internal locks is USYNC_THREAD.  We also know that internal
2113  * locking can never fail, so we panic if it does.
2114  */
2115 void
2116 lmutex_lock(mutex_t *mp)
2117 {
2118 	ulwp_t *self = curthread;
2119 	uberdata_t *udp = self->ul_uberdata;
2120 
2121 	ASSERT(mp->mutex_type == USYNC_THREAD);
2122 
2123 	enter_critical(self);
2124 	/*
2125 	 * Optimize the case of no lock statistics and only a single thread.
2126 	 * (Most likely a traditional single-threaded application.)
2127 	 */
2128 	if (udp->uberflags.uf_all == 0) {
2129 		/*
2130 		 * Only one thread exists; the mutex must be free.
2131 		 */
2132 		ASSERT(mp->mutex_lockw == 0);
2133 		mp->mutex_lockw = LOCKSET;
2134 		mp->mutex_owner = (uintptr_t)self;
2135 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2136 	} else {
2137 		tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
2138 
2139 		if (!self->ul_schedctl_called)
2140 			(void) setup_schedctl();
2141 
2142 		if (set_lock_byte(&mp->mutex_lockw) == 0) {
2143 			mp->mutex_owner = (uintptr_t)self;
2144 			DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2145 		} else if (mutex_trylock_adaptive(mp) != 0) {
2146 			(void) mutex_lock_queue(self, msp, mp, NULL);
2147 		}
2148 
2149 		if (msp)
2150 			record_begin_hold(msp);
2151 	}
2152 }
2153 
2154 void
2155 lmutex_unlock(mutex_t *mp)
2156 {
2157 	ulwp_t *self = curthread;
2158 	uberdata_t *udp = self->ul_uberdata;
2159 
2160 	ASSERT(mp->mutex_type == USYNC_THREAD);
2161 
2162 	/*
2163 	 * Optimize the case of no lock statistics and only a single thread.
2164 	 * (Most likely a traditional single-threaded application.)
2165 	 */
2166 	if (udp->uberflags.uf_all == 0) {
2167 		/*
2168 		 * Only one thread exists so there can be no waiters.
2169 		 */
2170 		mp->mutex_owner = 0;
2171 		mp->mutex_lockword = 0;
2172 		DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2173 	} else {
2174 		tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
2175 		lwpid_t lwpid;
2176 
2177 		if (msp)
2178 			(void) record_hold_time(msp);
2179 		if ((lwpid = mutex_unlock_queue(mp)) != 0) {
2180 			(void) __lwp_unpark(lwpid);
2181 			preempt(self);
2182 		}
2183 	}
2184 	exit_critical(self);
2185 }
2186 
2187 /*
2188  * For specialized code in libc, like the asynchronous i/o code,
2189  * the following sig_*() locking primitives are used in order
2190  * to make the code asynchronous signal safe.  Signals are
2191  * deferred while locks acquired by these functions are held.
2192  */
2193 void
2194 sig_mutex_lock(mutex_t *mp)
2195 {
2196 	sigoff(curthread);
2197 	(void) _private_mutex_lock(mp);
2198 }
2199 
2200 void
2201 sig_mutex_unlock(mutex_t *mp)
2202 {
2203 	(void) _private_mutex_unlock(mp);
2204 	sigon(curthread);
2205 }
2206 
2207 int
2208 sig_mutex_trylock(mutex_t *mp)
2209 {
2210 	int error;
2211 
2212 	sigoff(curthread);
2213 	if ((error = _private_mutex_trylock(mp)) != 0)
2214 		sigon(curthread);
2215 	return (error);
2216 }
2217 
2218 /*
2219  * sig_cond_wait() is a cancellation point.
2220  */
2221 int
2222 sig_cond_wait(cond_t *cv, mutex_t *mp)
2223 {
2224 	int error;
2225 
2226 	ASSERT(curthread->ul_sigdefer != 0);
2227 	_private_testcancel();
2228 	error = _cond_wait(cv, mp);
2229 	if (error == EINTR && curthread->ul_cursig) {
2230 		sig_mutex_unlock(mp);
2231 		/* take the deferred signal here */
2232 		sig_mutex_lock(mp);
2233 	}
2234 	_private_testcancel();
2235 	return (error);
2236 }
2237 
2238 /*
2239  * sig_cond_reltimedwait() is a cancellation point.
2240  */
2241 int
2242 sig_cond_reltimedwait(cond_t *cv, mutex_t *mp, const timespec_t *ts)
2243 {
2244 	int error;
2245 
2246 	ASSERT(curthread->ul_sigdefer != 0);
2247 	_private_testcancel();
2248 	error = _cond_reltimedwait(cv, mp, ts);
2249 	if (error == EINTR && curthread->ul_cursig) {
2250 		sig_mutex_unlock(mp);
2251 		/* take the deferred signal here */
2252 		sig_mutex_lock(mp);
2253 	}
2254 	_private_testcancel();
2255 	return (error);
2256 }
2257 
2258 static int
2259 shared_mutex_held(mutex_t *mparg)
2260 {
2261 	/*
2262 	 * There is an inherent data race in the current ownership design.
2263 	 * The mutex_owner and mutex_ownerpid fields cannot be set or tested
2264 	 * atomically as a pair. The original implementation tested each
2265 	 * field just once. This was exposed to trivial false positives in
2266 	 * the case of multiple multithreaded processes with thread addresses
2267 	 * in common. To close the window to an acceptable level we now use a
2268 	 * sequence of five tests: pid-thr-pid-thr-pid. This ensures that any
2269 	 * single interruption will still leave one uninterrupted sequence of
2270 	 * pid-thr-pid tests intact.
2271 	 *
2272 	 * It is assumed that all updates are always ordered thr-pid and that
2273 	 * we have TSO hardware.
2274 	 */
2275 	volatile mutex_t *mp = (volatile mutex_t *)mparg;
2276 	ulwp_t *self = curthread;
2277 	uberdata_t *udp = self->ul_uberdata;
2278 
2279 	if (mp->mutex_ownerpid != udp->pid)
2280 		return (0);
2281 
2282 	if (!MUTEX_OWNED(mp, self))
2283 		return (0);
2284 
2285 	if (mp->mutex_ownerpid != udp->pid)
2286 		return (0);
2287 
2288 	if (!MUTEX_OWNED(mp, self))
2289 		return (0);
2290 
2291 	if (mp->mutex_ownerpid != udp->pid)
2292 		return (0);
2293 
2294 	return (1);
2295 }
2296 
2297 /*
2298  * Some crufty old programs define their own version of _mutex_held()
2299  * to be simply return(1).  This breaks internal libc logic, so we
2300  * define a private version for exclusive use by libc, mutex_is_held(),
2301  * and also a new public function, __mutex_held(), to be used in new
2302  * code to circumvent these crufty old programs.
2303  */
2304 #pragma weak mutex_held = mutex_is_held
2305 #pragma weak _mutex_held = mutex_is_held
2306 #pragma weak __mutex_held = mutex_is_held
2307 int
2308 mutex_is_held(mutex_t *mp)
2309 {
2310 	if (mp->mutex_type & (USYNC_PROCESS | USYNC_PROCESS_ROBUST))
2311 		return (shared_mutex_held(mp));
2312 	return (MUTEX_OWNED(mp, curthread));
2313 }
2314 
2315 #pragma weak _private_mutex_destroy = __mutex_destroy
2316 #pragma weak mutex_destroy = __mutex_destroy
2317 #pragma weak _mutex_destroy = __mutex_destroy
2318 #pragma weak pthread_mutex_destroy = __mutex_destroy
2319 #pragma weak _pthread_mutex_destroy = __mutex_destroy
2320 int
2321 __mutex_destroy(mutex_t *mp)
2322 {
2323 	mp->mutex_magic = 0;
2324 	mp->mutex_flag &= ~LOCK_INITED;
2325 	tdb_sync_obj_deregister(mp);
2326 	return (0);
2327 }
2328 
2329 /*
2330  * Spin locks are separate from ordinary mutexes,
2331  * but we use the same data structure for them.
2332  */
2333 
2334 #pragma weak pthread_spin_init = _pthread_spin_init
2335 int
2336 _pthread_spin_init(pthread_spinlock_t *lock, int pshared)
2337 {
2338 	mutex_t *mp = (mutex_t *)lock;
2339 
2340 	(void) _memset(mp, 0, sizeof (*mp));
2341 	if (pshared == PTHREAD_PROCESS_SHARED)
2342 		mp->mutex_type = USYNC_PROCESS;
2343 	else
2344 		mp->mutex_type = USYNC_THREAD;
2345 	mp->mutex_flag = LOCK_INITED;
2346 	mp->mutex_magic = MUTEX_MAGIC;
2347 	return (0);
2348 }
2349 
2350 #pragma weak pthread_spin_destroy = _pthread_spin_destroy
2351 int
2352 _pthread_spin_destroy(pthread_spinlock_t *lock)
2353 {
2354 	(void) _memset(lock, 0, sizeof (*lock));
2355 	return (0);
2356 }
2357 
2358 #pragma weak pthread_spin_trylock = _pthread_spin_trylock
2359 int
2360 _pthread_spin_trylock(pthread_spinlock_t *lock)
2361 {
2362 	mutex_t *mp = (mutex_t *)lock;
2363 	ulwp_t *self = curthread;
2364 	int error = 0;
2365 
2366 	no_preempt(self);
2367 	if (set_lock_byte(&mp->mutex_lockw) != 0)
2368 		error = EBUSY;
2369 	else {
2370 		mp->mutex_owner = (uintptr_t)self;
2371 		if (mp->mutex_type == USYNC_PROCESS)
2372 			mp->mutex_ownerpid = self->ul_uberdata->pid;
2373 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2374 	}
2375 	preempt(self);
2376 	return (error);
2377 }
2378 
2379 #pragma weak pthread_spin_lock = _pthread_spin_lock
2380 int
2381 _pthread_spin_lock(pthread_spinlock_t *lock)
2382 {
2383 	volatile uint8_t *lockp =
2384 		(volatile uint8_t *)&((mutex_t *)lock)->mutex_lockw;
2385 
2386 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
2387 	/*
2388 	 * We don't care whether the owner is running on a processor.
2389 	 * We just spin because that's what this interface requires.
2390 	 */
2391 	for (;;) {
2392 		if (*lockp == 0) {	/* lock byte appears to be clear */
2393 			if (_pthread_spin_trylock(lock) == 0)
2394 				return (0);
2395 		}
2396 		SMT_PAUSE();
2397 	}
2398 }
2399 
2400 #pragma weak pthread_spin_unlock = _pthread_spin_unlock
2401 int
2402 _pthread_spin_unlock(pthread_spinlock_t *lock)
2403 {
2404 	mutex_t *mp = (mutex_t *)lock;
2405 	ulwp_t *self = curthread;
2406 
2407 	no_preempt(self);
2408 	mp->mutex_owner = 0;
2409 	mp->mutex_ownerpid = 0;
2410 	DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
2411 	(void) atomic_swap_32(&mp->mutex_lockword, 0);
2412 	preempt(self);
2413 	return (0);
2414 }
2415 
2416 #pragma weak cond_init = _cond_init
2417 /* ARGSUSED2 */
2418 int
2419 _cond_init(cond_t *cvp, int type, void *arg)
2420 {
2421 	if (type != USYNC_THREAD && type != USYNC_PROCESS)
2422 		return (EINVAL);
2423 	(void) _memset(cvp, 0, sizeof (*cvp));
2424 	cvp->cond_type = (uint16_t)type;
2425 	cvp->cond_magic = COND_MAGIC;
2426 	return (0);
2427 }
2428 
2429 /*
2430  * cond_sleep_queue(): utility function for cond_wait_queue().
2431  *
2432  * Go to sleep on a condvar sleep queue, expect to be waked up
2433  * by someone calling cond_signal() or cond_broadcast() or due
2434  * to receiving a UNIX signal or being cancelled, or just simply
2435  * due to a spurious wakeup (like someome calling forkall()).
2436  *
2437  * The associated mutex is *not* reacquired before returning.
2438  * That must be done by the caller of cond_sleep_queue().
2439  */
2440 int
2441 cond_sleep_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
2442 {
2443 	ulwp_t *self = curthread;
2444 	queue_head_t *qp;
2445 	queue_head_t *mqp;
2446 	lwpid_t lwpid;
2447 	int signalled;
2448 	int error;
2449 
2450 	/*
2451 	 * Put ourself on the CV sleep queue, unlock the mutex, then
2452 	 * park ourself and unpark a candidate lwp to grab the mutex.
2453 	 * We must go onto the CV sleep queue before dropping the
2454 	 * mutex in order to guarantee atomicity of the operation.
2455 	 */
2456 	self->ul_sp = stkptr();
2457 	qp = queue_lock(cvp, CV);
2458 	enqueue(qp, self, cvp, CV);
2459 	cvp->cond_waiters_user = 1;
2460 	self->ul_cvmutex = mp;
2461 	self->ul_cv_wake = (tsp != NULL);
2462 	self->ul_signalled = 0;
2463 	lwpid = mutex_unlock_queue(mp);
2464 	for (;;) {
2465 		set_parking_flag(self, 1);
2466 		queue_unlock(qp);
2467 		if (lwpid != 0) {
2468 			lwpid = preempt_unpark(self, lwpid);
2469 			preempt(self);
2470 		}
2471 		/*
2472 		 * We may have a deferred signal present,
2473 		 * in which case we should return EINTR.
2474 		 * Also, we may have received a SIGCANCEL; if so
2475 		 * and we are cancelable we should return EINTR.
2476 		 * We force an immediate EINTR return from
2477 		 * __lwp_park() by turning our parking flag off.
2478 		 */
2479 		if (self->ul_cursig != 0 ||
2480 		    (self->ul_cancelable && self->ul_cancel_pending))
2481 			set_parking_flag(self, 0);
2482 		/*
2483 		 * __lwp_park() will return the residual time in tsp
2484 		 * if we are unparked before the timeout expires.
2485 		 */
2486 		error = __lwp_park(tsp, lwpid);
2487 		set_parking_flag(self, 0);
2488 		lwpid = 0;	/* unpark the other lwp only once */
2489 		/*
2490 		 * We were waked up by cond_signal(), cond_broadcast(),
2491 		 * by an interrupt or timeout (EINTR or ETIME),
2492 		 * or we may just have gotten a spurious wakeup.
2493 		 */
2494 		qp = queue_lock(cvp, CV);
2495 		mqp = queue_lock(mp, MX);
2496 		if (self->ul_sleepq == NULL)
2497 			break;
2498 		/*
2499 		 * We are on either the condvar sleep queue or the
2500 		 * mutex sleep queue.  Break out of the sleep if we
2501 		 * were interrupted or we timed out (EINTR or ETIME).
2502 		 * Else this is a spurious wakeup; continue the loop.
2503 		 */
2504 		if (self->ul_sleepq == mqp) {		/* mutex queue */
2505 			if (error) {
2506 				mp->mutex_waiters = dequeue_self(mqp, mp);
2507 				break;
2508 			}
2509 			tsp = NULL;	/* no more timeout */
2510 		} else if (self->ul_sleepq == qp) {	/* condvar queue */
2511 			if (error) {
2512 				cvp->cond_waiters_user = dequeue_self(qp, cvp);
2513 				break;
2514 			}
2515 			/*
2516 			 * Else a spurious wakeup on the condvar queue.
2517 			 * __lwp_park() has already adjusted the timeout.
2518 			 */
2519 		} else {
2520 			thr_panic("cond_sleep_queue(): thread not on queue");
2521 		}
2522 		queue_unlock(mqp);
2523 	}
2524 
2525 	self->ul_sp = 0;
2526 	ASSERT(self->ul_cvmutex == NULL && self->ul_cv_wake == 0);
2527 	ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL &&
2528 	    self->ul_wchan == NULL);
2529 
2530 	signalled = self->ul_signalled;
2531 	self->ul_signalled = 0;
2532 	queue_unlock(qp);
2533 	queue_unlock(mqp);
2534 
2535 	/*
2536 	 * If we were concurrently cond_signal()d and any of:
2537 	 * received a UNIX signal, were cancelled, or got a timeout,
2538 	 * then perform another cond_signal() to avoid consuming it.
2539 	 */
2540 	if (error && signalled)
2541 		(void) cond_signal_internal(cvp);
2542 
2543 	return (error);
2544 }
2545 
2546 int
2547 cond_wait_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp,
2548 	tdb_mutex_stats_t *msp)
2549 {
2550 	ulwp_t *self = curthread;
2551 	int error;
2552 
2553 	/*
2554 	 * The old thread library was programmed to defer signals
2555 	 * while in cond_wait() so that the associated mutex would
2556 	 * be guaranteed to be held when the application signal
2557 	 * handler was invoked.
2558 	 *
2559 	 * We do not behave this way by default; the state of the
2560 	 * associated mutex in the signal handler is undefined.
2561 	 *
2562 	 * To accommodate applications that depend on the old
2563 	 * behavior, the _THREAD_COND_WAIT_DEFER environment
2564 	 * variable can be set to 1 and we will behave in the
2565 	 * old way with respect to cond_wait().
2566 	 */
2567 	if (self->ul_cond_wait_defer)
2568 		sigoff(self);
2569 
2570 	error = cond_sleep_queue(cvp, mp, tsp);
2571 
2572 	/*
2573 	 * Reacquire the mutex.
2574 	 */
2575 	if (set_lock_byte(&mp->mutex_lockw) == 0) {
2576 		mp->mutex_owner = (uintptr_t)self;
2577 		DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0);
2578 	} else if (mutex_trylock_adaptive(mp) != 0) {
2579 		(void) mutex_lock_queue(self, msp, mp, NULL);
2580 	}
2581 
2582 	if (msp)
2583 		record_begin_hold(msp);
2584 
2585 	/*
2586 	 * Take any deferred signal now, after we have reacquired the mutex.
2587 	 */
2588 	if (self->ul_cond_wait_defer)
2589 		sigon(self);
2590 
2591 	return (error);
2592 }
2593 
2594 /*
2595  * cond_sleep_kernel(): utility function for cond_wait_kernel().
2596  * See the comment ahead of cond_sleep_queue(), above.
2597  */
2598 int
2599 cond_sleep_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
2600 {
2601 	int mtype = mp->mutex_type;
2602 	ulwp_t *self = curthread;
2603 	int error;
2604 
2605 	if (mtype & PTHREAD_PRIO_PROTECT) {
2606 		if (_ceil_mylist_del(mp))
2607 			_ceil_prio_waive();
2608 	}
2609 
2610 	self->ul_sp = stkptr();
2611 	self->ul_wchan = cvp;
2612 	mp->mutex_owner = 0;
2613 	mp->mutex_ownerpid = 0;
2614 	if (mtype & PTHREAD_PRIO_INHERIT)
2615 		mp->mutex_lockw = LOCKCLEAR;
2616 	/*
2617 	 * ___lwp_cond_wait() returns immediately with EINTR if
2618 	 * set_parking_flag(self,0) is called on this lwp before it
2619 	 * goes to sleep in the kernel.  sigacthandler() calls this
2620 	 * when a deferred signal is noted.  This assures that we don't
2621 	 * get stuck in ___lwp_cond_wait() with all signals blocked
2622 	 * due to taking a deferred signal before going to sleep.
2623 	 */
2624 	set_parking_flag(self, 1);
2625 	if (self->ul_cursig != 0 ||
2626 	    (self->ul_cancelable && self->ul_cancel_pending))
2627 		set_parking_flag(self, 0);
2628 	error = ___lwp_cond_wait(cvp, mp, tsp, 1);
2629 	set_parking_flag(self, 0);
2630 	self->ul_sp = 0;
2631 	self->ul_wchan = NULL;
2632 	return (error);
2633 }
2634 
2635 int
2636 cond_wait_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
2637 {
2638 	ulwp_t *self = curthread;
2639 	int error;
2640 	int merror;
2641 
2642 	/*
2643 	 * See the large comment in cond_wait_queue(), above.
2644 	 */
2645 	if (self->ul_cond_wait_defer)
2646 		sigoff(self);
2647 
2648 	error = cond_sleep_kernel(cvp, mp, tsp);
2649 
2650 	/*
2651 	 * Override the return code from ___lwp_cond_wait()
2652 	 * with any non-zero return code from mutex_lock().
2653 	 * This addresses robust lock failures in particular;
2654 	 * the caller must see the EOWNERDEAD or ENOTRECOVERABLE
2655 	 * errors in order to take corrective action.
2656 	 */
2657 	if ((merror = _private_mutex_lock(mp)) != 0)
2658 		error = merror;
2659 
2660 	/*
2661 	 * Take any deferred signal now, after we have reacquired the mutex.
2662 	 */
2663 	if (self->ul_cond_wait_defer)
2664 		sigon(self);
2665 
2666 	return (error);
2667 }
2668 
2669 /*
2670  * Common code for _cond_wait() and _cond_timedwait()
2671  */
2672 int
2673 cond_wait_common(cond_t *cvp, mutex_t *mp, timespec_t *tsp)
2674 {
2675 	int mtype = mp->mutex_type;
2676 	hrtime_t begin_sleep = 0;
2677 	ulwp_t *self = curthread;
2678 	uberdata_t *udp = self->ul_uberdata;
2679 	tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
2680 	tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp);
2681 	uint8_t rcount;
2682 	int error = 0;
2683 
2684 	/*
2685 	 * The SUSV3 Posix spec for pthread_cond_timedwait() states:
2686 	 *	Except in the case of [ETIMEDOUT], all these error checks
2687 	 *	shall act as if they were performed immediately at the
2688 	 *	beginning of processing for the function and shall cause
2689 	 *	an error return, in effect, prior to modifying the state
2690 	 *	of the mutex specified by mutex or the condition variable
2691 	 *	specified by cond.
2692 	 * Therefore, we must return EINVAL now if the timout is invalid.
2693 	 */
2694 	if (tsp != NULL &&
2695 	    (tsp->tv_sec < 0 || (ulong_t)tsp->tv_nsec >= NANOSEC))
2696 		return (EINVAL);
2697 
2698 	if (__td_event_report(self, TD_SLEEP, udp)) {
2699 		self->ul_sp = stkptr();
2700 		self->ul_wchan = cvp;
2701 		self->ul_td_evbuf.eventnum = TD_SLEEP;
2702 		self->ul_td_evbuf.eventdata = cvp;
2703 		tdb_event(TD_SLEEP, udp);
2704 		self->ul_sp = 0;
2705 	}
2706 	if (csp) {
2707 		if (tsp)
2708 			tdb_incr(csp->cond_timedwait);
2709 		else
2710 			tdb_incr(csp->cond_wait);
2711 	}
2712 	if (msp)
2713 		begin_sleep = record_hold_time(msp);
2714 	else if (csp)
2715 		begin_sleep = gethrtime();
2716 
2717 	if (self->ul_error_detection) {
2718 		if (!mutex_is_held(mp))
2719 			lock_error(mp, "cond_wait", cvp, NULL);
2720 		if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0)
2721 			lock_error(mp, "recursive mutex in cond_wait",
2722 				cvp, NULL);
2723 		if (cvp->cond_type & USYNC_PROCESS) {
2724 			if (!(mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST)))
2725 				lock_error(mp, "cond_wait", cvp,
2726 					"condvar process-shared, "
2727 					"mutex process-private");
2728 		} else {
2729 			if (mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST))
2730 				lock_error(mp, "cond_wait", cvp,
2731 					"condvar process-private, "
2732 					"mutex process-shared");
2733 		}
2734 	}
2735 
2736 	/*
2737 	 * We deal with recursive mutexes by completely
2738 	 * dropping the lock and restoring the recursion
2739 	 * count after waking up.  This is arguably wrong,
2740 	 * but it obeys the principle of least astonishment.
2741 	 */
2742 	rcount = mp->mutex_rcount;
2743 	mp->mutex_rcount = 0;
2744 	if ((mtype & (USYNC_PROCESS | USYNC_PROCESS_ROBUST |
2745 	    PTHREAD_PRIO_INHERIT | PTHREAD_PRIO_PROTECT)) |
2746 	    (cvp->cond_type & USYNC_PROCESS))
2747 		error = cond_wait_kernel(cvp, mp, tsp);
2748 	else
2749 		error = cond_wait_queue(cvp, mp, tsp, msp);
2750 	mp->mutex_rcount = rcount;
2751 
2752 	if (csp) {
2753 		hrtime_t lapse = gethrtime() - begin_sleep;
2754 		if (tsp == NULL)
2755 			csp->cond_wait_sleep_time += lapse;
2756 		else {
2757 			csp->cond_timedwait_sleep_time += lapse;
2758 			if (error == ETIME)
2759 				tdb_incr(csp->cond_timedwait_timeout);
2760 		}
2761 	}
2762 	return (error);
2763 }
2764 
2765 /*
2766  * cond_wait() is a cancellation point but _cond_wait() is not.
2767  * System libraries call the non-cancellation version.
2768  * It is expected that only applications call the cancellation version.
2769  */
2770 int
2771 _cond_wait(cond_t *cvp, mutex_t *mp)
2772 {
2773 	ulwp_t *self = curthread;
2774 	uberdata_t *udp = self->ul_uberdata;
2775 	uberflags_t *gflags;
2776 
2777 	/*
2778 	 * Optimize the common case of USYNC_THREAD plus
2779 	 * no error detection, no lock statistics, and no event tracing.
2780 	 */
2781 	if ((gflags = self->ul_schedctl_called) != NULL &&
2782 	    (cvp->cond_type | mp->mutex_type | gflags->uf_trs_ted |
2783 	    self->ul_td_events_enable |
2784 	    udp->tdb.tdb_ev_global_mask.event_bits[0]) == 0)
2785 		return (cond_wait_queue(cvp, mp, NULL, NULL));
2786 
2787 	/*
2788 	 * Else do it the long way.
2789 	 */
2790 	return (cond_wait_common(cvp, mp, NULL));
2791 }
2792 
2793 int
2794 cond_wait(cond_t *cvp, mutex_t *mp)
2795 {
2796 	int error;
2797 
2798 	_cancelon();
2799 	error = _cond_wait(cvp, mp);
2800 	if (error == EINTR)
2801 		_canceloff();
2802 	else
2803 		_canceloff_nocancel();
2804 	return (error);
2805 }
2806 
2807 #pragma weak pthread_cond_wait = _pthread_cond_wait
2808 int
2809 _pthread_cond_wait(cond_t *cvp, mutex_t *mp)
2810 {
2811 	int error;
2812 
2813 	error = cond_wait(cvp, mp);
2814 	return ((error == EINTR)? 0 : error);
2815 }
2816 
2817 /*
2818  * cond_timedwait() is a cancellation point but _cond_timedwait() is not.
2819  * System libraries call the non-cancellation version.
2820  * It is expected that only applications call the cancellation version.
2821  */
2822 int
2823 _cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
2824 {
2825 	clockid_t clock_id = cvp->cond_clockid;
2826 	timespec_t reltime;
2827 	int error;
2828 
2829 	if (clock_id != CLOCK_REALTIME && clock_id != CLOCK_HIGHRES)
2830 		clock_id = CLOCK_REALTIME;
2831 	abstime_to_reltime(clock_id, abstime, &reltime);
2832 	error = cond_wait_common(cvp, mp, &reltime);
2833 	if (error == ETIME && clock_id == CLOCK_HIGHRES) {
2834 		/*
2835 		 * Don't return ETIME if we didn't really get a timeout.
2836 		 * This can happen if we return because someone resets
2837 		 * the system clock.  Just return zero in this case,
2838 		 * giving a spurious wakeup but not a timeout.
2839 		 */
2840 		if ((hrtime_t)(uint32_t)abstime->tv_sec * NANOSEC +
2841 		    abstime->tv_nsec > gethrtime())
2842 			error = 0;
2843 	}
2844 	return (error);
2845 }
2846 
2847 int
2848 cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
2849 {
2850 	int error;
2851 
2852 	_cancelon();
2853 	error = _cond_timedwait(cvp, mp, abstime);
2854 	if (error == EINTR)
2855 		_canceloff();
2856 	else
2857 		_canceloff_nocancel();
2858 	return (error);
2859 }
2860 
2861 #pragma weak pthread_cond_timedwait = _pthread_cond_timedwait
2862 int
2863 _pthread_cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime)
2864 {
2865 	int error;
2866 
2867 	error = cond_timedwait(cvp, mp, abstime);
2868 	if (error == ETIME)
2869 		error = ETIMEDOUT;
2870 	else if (error == EINTR)
2871 		error = 0;
2872 	return (error);
2873 }
2874 
2875 /*
2876  * cond_reltimedwait() is a cancellation point but _cond_reltimedwait()
2877  * is not.  System libraries call the non-cancellation version.
2878  * It is expected that only applications call the cancellation version.
2879  */
2880 int
2881 _cond_reltimedwait(cond_t *cvp, mutex_t *mp, const timespec_t *reltime)
2882 {
2883 	timespec_t tslocal = *reltime;
2884 
2885 	return (cond_wait_common(cvp, mp, &tslocal));
2886 }
2887 
2888 #pragma weak cond_reltimedwait = _cond_reltimedwait_cancel
2889 int
2890 _cond_reltimedwait_cancel(cond_t *cvp, mutex_t *mp, const timespec_t *reltime)
2891 {
2892 	int error;
2893 
2894 	_cancelon();
2895 	error = _cond_reltimedwait(cvp, mp, reltime);
2896 	if (error == EINTR)
2897 		_canceloff();
2898 	else
2899 		_canceloff_nocancel();
2900 	return (error);
2901 }
2902 
2903 #pragma weak pthread_cond_reltimedwait_np = _pthread_cond_reltimedwait_np
2904 int
2905 _pthread_cond_reltimedwait_np(cond_t *cvp, mutex_t *mp,
2906 	const timespec_t *reltime)
2907 {
2908 	int error;
2909 
2910 	error = _cond_reltimedwait_cancel(cvp, mp, reltime);
2911 	if (error == ETIME)
2912 		error = ETIMEDOUT;
2913 	else if (error == EINTR)
2914 		error = 0;
2915 	return (error);
2916 }
2917 
2918 #pragma weak pthread_cond_signal = cond_signal_internal
2919 #pragma weak _pthread_cond_signal = cond_signal_internal
2920 #pragma weak cond_signal = cond_signal_internal
2921 #pragma weak _cond_signal = cond_signal_internal
2922 int
2923 cond_signal_internal(cond_t *cvp)
2924 {
2925 	ulwp_t *self = curthread;
2926 	uberdata_t *udp = self->ul_uberdata;
2927 	tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
2928 	int error = 0;
2929 	queue_head_t *qp;
2930 	mutex_t *mp;
2931 	queue_head_t *mqp;
2932 	ulwp_t **ulwpp;
2933 	ulwp_t *ulwp;
2934 	ulwp_t *prev = NULL;
2935 	ulwp_t *next;
2936 	ulwp_t **suspp = NULL;
2937 	ulwp_t *susprev;
2938 
2939 	if (csp)
2940 		tdb_incr(csp->cond_signal);
2941 
2942 	if (cvp->cond_waiters_kernel)	/* someone sleeping in the kernel? */
2943 		error = __lwp_cond_signal(cvp);
2944 
2945 	if (!cvp->cond_waiters_user)	/* no one sleeping at user-level */
2946 		return (error);
2947 
2948 	/*
2949 	 * Move someone from the condvar sleep queue to the mutex sleep
2950 	 * queue for the mutex that he will acquire on being waked up.
2951 	 * We can do this only if we own the mutex he will acquire.
2952 	 * If we do not own the mutex, or if his ul_cv_wake flag
2953 	 * is set, just dequeue and unpark him.
2954 	 */
2955 	qp = queue_lock(cvp, CV);
2956 	for (ulwpp = &qp->qh_head; (ulwp = *ulwpp) != NULL;
2957 	    prev = ulwp, ulwpp = &ulwp->ul_link) {
2958 		if (ulwp->ul_wchan == cvp) {
2959 			if (!ulwp->ul_stop)
2960 				break;
2961 			/*
2962 			 * Try not to dequeue a suspended thread.
2963 			 * This mimics the old libthread's behavior.
2964 			 */
2965 			if (suspp == NULL) {
2966 				suspp = ulwpp;
2967 				susprev = prev;
2968 			}
2969 		}
2970 	}
2971 	if (ulwp == NULL && suspp != NULL) {
2972 		ulwp = *(ulwpp = suspp);
2973 		prev = susprev;
2974 		suspp = NULL;
2975 	}
2976 	if (ulwp == NULL) {	/* no one on the sleep queue */
2977 		cvp->cond_waiters_user = 0;
2978 		queue_unlock(qp);
2979 		return (error);
2980 	}
2981 	/*
2982 	 * Scan the remainder of the CV queue for another waiter.
2983 	 */
2984 	if (suspp != NULL) {
2985 		next = *suspp;
2986 	} else {
2987 		for (next = ulwp->ul_link; next != NULL; next = next->ul_link)
2988 			if (next->ul_wchan == cvp)
2989 				break;
2990 	}
2991 	if (next == NULL)
2992 		cvp->cond_waiters_user = 0;
2993 
2994 	/*
2995 	 * Inform the thread that he was the recipient of a cond_signal().
2996 	 * This lets him deal with cond_signal() and, concurrently,
2997 	 * one or more of a cancellation, a UNIX signal, or a timeout.
2998 	 * These latter conditions must not consume a cond_signal().
2999 	 */
3000 	ulwp->ul_signalled = 1;
3001 
3002 	/*
3003 	 * Dequeue the waiter but leave his ul_sleepq non-NULL
3004 	 * while we move him to the mutex queue so that he can
3005 	 * deal properly with spurious wakeups.
3006 	 */
3007 	*ulwpp = ulwp->ul_link;
3008 	if (qp->qh_tail == ulwp)
3009 		qp->qh_tail = prev;
3010 	qp->qh_qlen--;
3011 	ulwp->ul_link = NULL;
3012 
3013 	mp = ulwp->ul_cvmutex;		/* the mutex he will acquire */
3014 	ulwp->ul_cvmutex = NULL;
3015 	ASSERT(mp != NULL);
3016 
3017 	if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) {
3018 		lwpid_t lwpid = ulwp->ul_lwpid;
3019 
3020 		no_preempt(self);
3021 		ulwp->ul_sleepq = NULL;
3022 		ulwp->ul_wchan = NULL;
3023 		ulwp->ul_cv_wake = 0;
3024 		queue_unlock(qp);
3025 		(void) __lwp_unpark(lwpid);
3026 		preempt(self);
3027 	} else {
3028 		mqp = queue_lock(mp, MX);
3029 		enqueue(mqp, ulwp, mp, MX);
3030 		mp->mutex_waiters = 1;
3031 		queue_unlock(mqp);
3032 		queue_unlock(qp);
3033 	}
3034 
3035 	return (error);
3036 }
3037 
3038 /*
3039  * Utility function called from cond_broadcast() and rw_queue_release()
3040  * to (re)allocate a big buffer to hold the lwpids of all the threads
3041  * to be set running after they are removed from their sleep queues.
3042  * Since we are holding a queue lock, we cannot call any function
3043  * that might acquire a lock.  mmap(), munmap() and lwp_unpark_all()
3044  * are simple system calls and are safe in this regard.
3045  */
3046 lwpid_t *
3047 alloc_lwpids(lwpid_t *lwpid, int *nlwpid_ptr, int *maxlwps_ptr)
3048 {
3049 	/*
3050 	 * Allocate NEWLWPS ids on the first overflow.
3051 	 * Double the allocation each time after that.
3052 	 */
3053 	int nlwpid = *nlwpid_ptr;
3054 	int maxlwps = *maxlwps_ptr;
3055 	int first_allocation;
3056 	int newlwps;
3057 	void *vaddr;
3058 
3059 	ASSERT(nlwpid == maxlwps);
3060 
3061 	first_allocation = (maxlwps == MAXLWPS);
3062 	newlwps = first_allocation? NEWLWPS : 2 * maxlwps;
3063 	vaddr = _private_mmap(NULL, newlwps * sizeof (lwpid_t),
3064 	    PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, (off_t)0);
3065 
3066 	if (vaddr == MAP_FAILED) {
3067 		/*
3068 		 * Let's hope this never happens.
3069 		 * If it does, then we have a terrible
3070 		 * thundering herd on our hands.
3071 		 */
3072 		(void) __lwp_unpark_all(lwpid, nlwpid);
3073 		*nlwpid_ptr = 0;
3074 	} else {
3075 		(void) _memcpy(vaddr, lwpid, maxlwps * sizeof (lwpid_t));
3076 		if (!first_allocation)
3077 			(void) _private_munmap(lwpid,
3078 			    maxlwps * sizeof (lwpid_t));
3079 		lwpid = vaddr;
3080 		*maxlwps_ptr = newlwps;
3081 	}
3082 
3083 	return (lwpid);
3084 }
3085 
3086 #pragma weak pthread_cond_broadcast = cond_broadcast_internal
3087 #pragma weak _pthread_cond_broadcast = cond_broadcast_internal
3088 #pragma weak cond_broadcast = cond_broadcast_internal
3089 #pragma weak _cond_broadcast = cond_broadcast_internal
3090 int
3091 cond_broadcast_internal(cond_t *cvp)
3092 {
3093 	ulwp_t *self = curthread;
3094 	uberdata_t *udp = self->ul_uberdata;
3095 	tdb_cond_stats_t *csp = COND_STATS(cvp, udp);
3096 	int error = 0;
3097 	queue_head_t *qp;
3098 	mutex_t *mp;
3099 	mutex_t *mp_cache = NULL;
3100 	queue_head_t *mqp = NULL;
3101 	ulwp_t **ulwpp;
3102 	ulwp_t *ulwp;
3103 	ulwp_t *prev = NULL;
3104 	int nlwpid = 0;
3105 	int maxlwps = MAXLWPS;
3106 	lwpid_t buffer[MAXLWPS];
3107 	lwpid_t *lwpid = buffer;
3108 
3109 	if (csp)
3110 		tdb_incr(csp->cond_broadcast);
3111 
3112 	if (cvp->cond_waiters_kernel)	/* someone sleeping in the kernel? */
3113 		error = __lwp_cond_broadcast(cvp);
3114 
3115 	if (!cvp->cond_waiters_user)	/* no one sleeping at user-level */
3116 		return (error);
3117 
3118 	/*
3119 	 * Move everyone from the condvar sleep queue to the mutex sleep
3120 	 * queue for the mutex that they will acquire on being waked up.
3121 	 * We can do this only if we own the mutex they will acquire.
3122 	 * If we do not own the mutex, or if their ul_cv_wake flag
3123 	 * is set, just dequeue and unpark them.
3124 	 *
3125 	 * We keep track of lwpids that are to be unparked in lwpid[].
3126 	 * __lwp_unpark_all() is called to unpark all of them after
3127 	 * they have been removed from the sleep queue and the sleep
3128 	 * queue lock has been dropped.  If we run out of space in our
3129 	 * on-stack buffer, we need to allocate more but we can't call
3130 	 * lmalloc() because we are holding a queue lock when the overflow
3131 	 * occurs and lmalloc() acquires a lock.  We can't use alloca()
3132 	 * either because the application may have allocated a small
3133 	 * stack and we don't want to overrun the stack.  So we call
3134 	 * alloc_lwpids() to allocate a bigger buffer using the mmap()
3135 	 * system call directly since that path acquires no locks.
3136 	 */
3137 	qp = queue_lock(cvp, CV);
3138 	cvp->cond_waiters_user = 0;
3139 	ulwpp = &qp->qh_head;
3140 	while ((ulwp = *ulwpp) != NULL) {
3141 		if (ulwp->ul_wchan != cvp) {
3142 			prev = ulwp;
3143 			ulwpp = &ulwp->ul_link;
3144 			continue;
3145 		}
3146 		*ulwpp = ulwp->ul_link;
3147 		if (qp->qh_tail == ulwp)
3148 			qp->qh_tail = prev;
3149 		qp->qh_qlen--;
3150 		ulwp->ul_link = NULL;
3151 		mp = ulwp->ul_cvmutex;		/* his mutex */
3152 		ulwp->ul_cvmutex = NULL;
3153 		ASSERT(mp != NULL);
3154 		if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) {
3155 			ulwp->ul_sleepq = NULL;
3156 			ulwp->ul_wchan = NULL;
3157 			ulwp->ul_cv_wake = 0;
3158 			if (nlwpid == maxlwps)
3159 				lwpid = alloc_lwpids(lwpid, &nlwpid, &maxlwps);
3160 			lwpid[nlwpid++] = ulwp->ul_lwpid;
3161 		} else {
3162 			if (mp != mp_cache) {
3163 				mp_cache = mp;
3164 				if (mqp != NULL)
3165 					queue_unlock(mqp);
3166 				mqp = queue_lock(mp, MX);
3167 			}
3168 			enqueue(mqp, ulwp, mp, MX);
3169 			mp->mutex_waiters = 1;
3170 		}
3171 	}
3172 	if (mqp != NULL)
3173 		queue_unlock(mqp);
3174 	if (nlwpid == 0) {
3175 		queue_unlock(qp);
3176 	} else {
3177 		no_preempt(self);
3178 		queue_unlock(qp);
3179 		if (nlwpid == 1)
3180 			(void) __lwp_unpark(lwpid[0]);
3181 		else
3182 			(void) __lwp_unpark_all(lwpid, nlwpid);
3183 		preempt(self);
3184 	}
3185 	if (lwpid != buffer)
3186 		(void) _private_munmap(lwpid, maxlwps * sizeof (lwpid_t));
3187 	return (error);
3188 }
3189 
3190 #pragma weak pthread_cond_destroy = _cond_destroy
3191 #pragma weak _pthread_cond_destroy = _cond_destroy
3192 #pragma weak cond_destroy = _cond_destroy
3193 int
3194 _cond_destroy(cond_t *cvp)
3195 {
3196 	cvp->cond_magic = 0;
3197 	tdb_sync_obj_deregister(cvp);
3198 	return (0);
3199 }
3200 
3201 #if defined(THREAD_DEBUG)
3202 void
3203 assert_no_libc_locks_held(void)
3204 {
3205 	ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
3206 }
3207 #endif
3208 
3209 /* protected by link_lock */
3210 uint64_t spin_lock_spin;
3211 uint64_t spin_lock_spin2;
3212 uint64_t spin_lock_sleep;
3213 uint64_t spin_lock_wakeup;
3214 
3215 /*
3216  * Record spin lock statistics.
3217  * Called by a thread exiting itself in thrp_exit().
3218  * Also called via atexit() from the thread calling
3219  * exit() to do all the other threads as well.
3220  */
3221 void
3222 record_spin_locks(ulwp_t *ulwp)
3223 {
3224 	spin_lock_spin += ulwp->ul_spin_lock_spin;
3225 	spin_lock_spin2 += ulwp->ul_spin_lock_spin2;
3226 	spin_lock_sleep += ulwp->ul_spin_lock_sleep;
3227 	spin_lock_wakeup += ulwp->ul_spin_lock_wakeup;
3228 	ulwp->ul_spin_lock_spin = 0;
3229 	ulwp->ul_spin_lock_spin2 = 0;
3230 	ulwp->ul_spin_lock_sleep = 0;
3231 	ulwp->ul_spin_lock_wakeup = 0;
3232 }
3233 
3234 /*
3235  * atexit function:  dump the queue statistics to stderr.
3236  */
3237 #if !defined(__lint)
3238 #define	fprintf	_fprintf
3239 #endif
3240 #include <stdio.h>
3241 void
3242 dump_queue_statistics(void)
3243 {
3244 	uberdata_t *udp = curthread->ul_uberdata;
3245 	queue_head_t *qp;
3246 	int qn;
3247 	uint64_t spin_lock_total = 0;
3248 
3249 	if (udp->queue_head == NULL || thread_queue_dump == 0)
3250 		return;
3251 
3252 	if (fprintf(stderr, "\n%5d mutex queues:\n", QHASHSIZE) < 0 ||
3253 	    fprintf(stderr, "queue#   lockcount    max qlen\n") < 0)
3254 		return;
3255 	for (qn = 0, qp = udp->queue_head; qn < QHASHSIZE; qn++, qp++) {
3256 		if (qp->qh_lockcount == 0)
3257 			continue;
3258 		spin_lock_total += qp->qh_lockcount;
3259 		if (fprintf(stderr, "%5d %12llu%12u\n", qn,
3260 			(u_longlong_t)qp->qh_lockcount, qp->qh_qmax) < 0)
3261 				return;
3262 	}
3263 
3264 	if (fprintf(stderr, "\n%5d condvar queues:\n", QHASHSIZE) < 0 ||
3265 	    fprintf(stderr, "queue#   lockcount    max qlen\n") < 0)
3266 		return;
3267 	for (qn = 0; qn < QHASHSIZE; qn++, qp++) {
3268 		if (qp->qh_lockcount == 0)
3269 			continue;
3270 		spin_lock_total += qp->qh_lockcount;
3271 		if (fprintf(stderr, "%5d %12llu%12u\n", qn,
3272 			(u_longlong_t)qp->qh_lockcount, qp->qh_qmax) < 0)
3273 				return;
3274 	}
3275 
3276 	(void) fprintf(stderr, "\n  spin_lock_total  = %10llu\n",
3277 		(u_longlong_t)spin_lock_total);
3278 	(void) fprintf(stderr, "  spin_lock_spin   = %10llu\n",
3279 		(u_longlong_t)spin_lock_spin);
3280 	(void) fprintf(stderr, "  spin_lock_spin2  = %10llu\n",
3281 		(u_longlong_t)spin_lock_spin2);
3282 	(void) fprintf(stderr, "  spin_lock_sleep  = %10llu\n",
3283 		(u_longlong_t)spin_lock_sleep);
3284 	(void) fprintf(stderr, "  spin_lock_wakeup = %10llu\n",
3285 		(u_longlong_t)spin_lock_wakeup);
3286 }
3287