xref: /titanic_50/usr/src/lib/libc/port/gen/localtime.c (revision dfb96a4f56fb431b915bc67e5d9d5c8d4f4f6679)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*	Copyright (c) 1988 AT&T	*/
30 /*	  All Rights Reserved  	*/
31 
32 
33 /*
34  * A part of this file comes from public domain source, so
35  * clarified as of June 5, 1996 by Arthur David Olson
36  * (arthur_david_olson@nih.gov).
37  */
38 
39 /*
40  * localtime.c
41  *
42  * This file contains routines to convert struct tm to time_t and
43  * back as well as adjust time values based on their timezone, which
44  * is a local offset from GMT (Greenwich Mean Time).
45  *
46  * Many timezones actually consist of more than one offset from GMT.
47  * The GMT offset that is considered the normal offset is referred
48  * to as standard time.  The other offset is referred to as alternate
49  * time, but is better known as daylight savings time or summer time.
50  *
51  * The current timezone for an application is derived from the TZ
52  * environment variable either as defined in the environment or in
53  * /etc/default/init.  As defined by IEEE 1003.1-1990 (POSIX), the
54  * TZ variable can either be:
55  *    :<characters>
56  * or
57  *    <std><offset1>[<dst>[<offset2>]][,<start>[/<time>],<end>[/<time>]
58  *
59  * <characters> is an implementation-defined string that somehow describes
60  * a timezone.  The implementation-defined description of a timezone used
61  * in Solaris is based on the public domain zoneinfo code available from
62  * elsie.nci.nih.gov and a timezone that is specified in this way is
63  * referred to as a zoneinfo timezone.  An example of this is ":US/Pacific".
64  *
65  * The precise definition of the second format can be found in POSIX,
66  * but, basically, <std> is the abbreviation for the timezone in standard
67  * (not daylight savings time), <offset1> is the standard offset from GMT,
68  * <dst> is the abbreviation for the timezone in daylight savings time and
69  * <offset2> is the daylight savings time offset from GMT.  The remainder
70  * specifies when daylight savings time begins and ends.  A timezone
71  * specified in this way is referred to as a POSIX timezone.  An example
72  * of this is "PST7PDT".
73  *
74  * In Solaris, there is an extension to this.  If the timezone is not
75  * preceded by a ":" and it does not parse as a POSIX timezone, then it
76  * will be treated as a zoneinfo timezone.  Much usage of zoneinfo
77  * timezones in Solaris is done without the leading ":".
78  *
79  * A zoneinfo timezone is a reference to a file that contains a set of
80  * rules that describe the timezone.  In Solaris, the file is in
81  * /usr/share/lib/zoneinfo.  The file is generated by zic(1M), based
82  * on zoneinfo rules "source" files.  This is all described on the zic(1M)
83  * man page.
84  */
85 
86 /*
87  * Functions that are common to ctime(3C) and cftime(3C)
88  */
89 
90 #pragma weak tzset = _tzset
91 #pragma weak localtime_r = _localtime_r
92 #pragma weak gmtime_r = _gmtime_r
93 
94 #include "synonyms.h"
95 #include "libc.h"
96 #include "tsd.h"
97 #include <stdarg.h>
98 #include <mtlib.h>
99 #include <sys/types.h>
100 #include <ctype.h>
101 #include <stdio.h>
102 #include <limits.h>
103 #include <sys/param.h>
104 #include <time.h>
105 #include <unistd.h>
106 #include <stdlib.h>
107 #include <string.h>
108 #include <tzfile.h>
109 #include <thread.h>
110 #include <synch.h>
111 #include <fcntl.h>
112 #include <errno.h>
113 #include <deflt.h>
114 #include <sys/stat.h>
115 
116 /* JAN_01_1902 cast to (int) - negative number of seconds from 1970 */
117 #define	JAN_01_1902		(int)0x8017E880
118 #define	LEN_TZDIR		(sizeof (TZDIR) - 1)
119 #define	TIMEZONE		"/etc/default/init"
120 #define	TZSTRING		"TZ="
121 #define	HASHTABLE		109
122 
123 #define	LEAPS_THRU_END_OF(y)	((y) / 4 - (y) / 100 + (y) / 400)
124 
125 /* Days since 1/1/70 to 12/31/(1900 + Y - 1) */
126 #define	DAYS_SINCE_70(Y) (YR((Y)-1L) - YR(70-1))
127 #define	YR(X) /* Calc # days since 0 A.D. X = curr. yr - 1900 */ \
128 	((1900L + (X)) * 365L + (1900L + (X)) / 4L - \
129 	(1900L + (X)) / 100L + ((1900L + (X)) - 1600L) / 400L)
130 
131 
132 /*
133  * The following macros are replacements for detzcode(), which has
134  * been in the public domain versions of the localtime.c code for
135  * a long time. The primatives supporting the CVTZCODE macro are
136  * implemented differently for different endianness (ie. little
137  * vs. big endian) out of necessity, to account for the different
138  * byte ordering of the quantities being fetched.  Both versions
139  * are substantially faster than the detzcode() macro.  The big
140  * endian version is approx. 6.8x faster than detzcode(), the
141  * little endian version is approximately 3x faster, due to the
142  * extra shifting requiring to change byte order.  The micro
143  * benchmarks used to compare were based on the SUNWSpro SC6.1
144  * (and later) compilers.
145  */
146 
147 #if defined(__sparc) || defined(__sparcv9)  /* big endian */
148 
149 #define	GET_LONG(p) \
150 	    *(uint_t *)(p)
151 
152 #define	GET_SHORTS(p) \
153 	    *(ushort_t *)(p) << 16 |\
154 	    *(ushort_t *)((p) + 2)
155 
156 #define	GET_CHARS(p) \
157 	    *(uchar_t *)(p) << 24 |\
158 	    *(uchar_t *)((p) + 1) << 16 |\
159 	    *(uchar_t *)((p) + 2) << 8  |\
160 	    *(uchar_t *)((p) + 3)
161 
162 #else /* little endian */
163 
164 #define	GET_BYTE(x) \
165 	    ((x) & 0xff)
166 
167 #define	SWAP_BYTES(x) ((\
168 	    GET_BYTE(x) << 8) |\
169 	    GET_BYTE((x) >> 8))
170 
171 #define	SWAP_WORDS(x) ((\
172 	    SWAP_BYTES(x) << 16) |\
173 	    SWAP_BYTES((x) >> 16))
174 
175 #define	GET_LONG(p) \
176 	    SWAP_WORDS(*(uint_t *)(p))
177 
178 #define	GET_SHORTS(p) \
179 	    SWAP_BYTES(*(ushort_t *)(p)) << 16 |\
180 	    SWAP_BYTES(*(ushort_t *)((p) + 2))
181 
182 #define	GET_CHARS(p) \
183 	    GET_BYTE(*(uchar_t *)(p)) << 24 |\
184 	    GET_BYTE(*(uchar_t *)((p) + 1)) << 16 |\
185 	    GET_BYTE(*(uchar_t *)((p) + 2)) << 8 |\
186 	    GET_BYTE(*(uchar_t *)((p) + 3))
187 
188 #endif
189 
190 
191 #define	IF_ALIGNED(ptr, byte_alignment) \
192 			!((uintptr_t)(ptr) & (byte_alignment - 1))
193 
194 #define	CVTZCODE(p) (int)(\
195 	    IF_ALIGNED(p, 4) ? GET_LONG(p) :\
196 	    IF_ALIGNED(p, 2) ? GET_SHORTS(p) : GET_CHARS(p));\
197 	    p += 4;
198 
199 #ifndef	FALSE
200 #define	FALSE	(0)
201 #endif
202 
203 #ifndef	TRUE
204 #define	TRUE	(1)
205 #endif
206 
207 extern	mutex_t		_time_lock;
208 
209 extern const int	__lyday_to_month[];
210 extern const int	__yday_to_month[];
211 extern const int	__mon_lengths[2][MONS_PER_YEAR];
212 extern const int	__year_lengths[2];
213 
214 const char	_tz_gmt[4] = "GMT";	/* "GMT"  */
215 const char	_tz_spaces[4] = "   ";	/* "   "  */
216 static const char	_posix_gmt0[5] = "GMT0";	/* "GMT0" */
217 
218 typedef struct ttinfo {			/* Time type information */
219 	long		tt_gmtoff;	/* GMT offset in seconds */
220 	int		tt_isdst;	/* used to set tm_isdst */
221 	int		tt_abbrind;	/* abbreviation list index */
222 	int		tt_ttisstd;	/* TRUE if trans is std time */
223 	int		tt_ttisgmt;	/* TRUE if transition is GMT */
224 } ttinfo_t;
225 
226 typedef struct lsinfo {			/* Leap second information */
227 	time_t		ls_trans;	/* transition time */
228 	long		ls_corr;	/* correction to apply */
229 } lsinfo_t;
230 
231 typedef struct previnfo {		/* Info about *prev* trans */
232 	ttinfo_t	*std;		/* Most recent std type */
233 	ttinfo_t	*alt;		/* Most recent alt type */
234 } prev_t;
235 
236 typedef enum {
237 	MON_WEEK_DOW,		/* Mm.n.d - month, week, day of week */
238 	JULIAN_DAY,		/* Jn - Julian day */
239 	DAY_OF_YEAR		/* n - day of year */
240 } posrule_type_t;
241 
242 typedef struct {
243 	posrule_type_t	r_type;		/* type of rule */
244 	int		r_day;		/* day number of rule */
245 	int		r_week;		/* week number of rule */
246 	int		r_mon;		/* month number of rule */
247 	long		r_time;		/* transition time of rule */
248 } rule_t;
249 
250 typedef struct {
251 	rule_t		*rules[2];
252 	long		offset[2];
253 	long long	rtime[2];
254 } posix_daylight_t;
255 
256 /*
257  * Note: ZONERULES_INVALID used for global curr_zonerules variable, but not
258  * for zonerules field of state_t.
259  */
260 typedef enum {
261 	ZONERULES_INVALID, POSIX, POSIX_USA, ZONEINFO
262 } zone_rules_t;
263 
264 /*
265  * The following members are allocated from the libc-internal malloc:
266  *
267  *	zonename
268  *	chars
269  */
270 typedef struct state {
271 	const char	*zonename;		/* Timezone */
272 	struct state	*next;			/* next state */
273 	zone_rules_t	zonerules;		/* Type of zone */
274 	int		daylight;		/* daylight global */
275 	long		default_timezone;	/* Def. timezone val */
276 	long		default_altzone;	/* Def. altzone val */
277 	const char	*default_tzname0;	/* Def tz..[0] val */
278 	const char	*default_tzname1;	/* Def tz..[1] val  */
279 	int		leapcnt;		/* # leap sec trans */
280 	int		timecnt;		/* # transitions */
281 	int		typecnt;		/* # zone types */
282 	int		charcnt;		/* # zone abbv. chars */
283 	char		*chars;			/* Zone abbv. chars */
284 	size_t		charsbuf_size;		/* malloc'ed buflen */
285 	prev_t		prev[TZ_MAX_TIMES];	/* Pv. trans info */
286 	time_t		ats[TZ_MAX_TIMES];	/* Trans.  times */
287 	uchar_t		types[TZ_MAX_TIMES];	/* Type indices */
288 	ttinfo_t	ttis[TZ_MAX_TYPES];	/* Zone types */
289 	lsinfo_t	lsis[TZ_MAX_LEAPS];	/* Leap sec trans */
290 	rule_t		start_rule;		/* For POSIX w/rules */
291 	rule_t		end_rule;		/* For POSIX w/rules */
292 } state_t;
293 
294 typedef struct systemtz {
295 	const char	*tz;
296 	state_t		*entry;
297 	int		flag;
298 } systemtz_t;
299 
300 static const char	*namecache;
301 
302 static state_t	*tzcache[HASHTABLE];
303 
304 static state_t	*lclzonep;
305 
306 static struct tm	tm;		/* For non-reentrant use */
307 static int		is_in_dst;	/* Set if t is in DST */
308 static zone_rules_t	curr_zonerules = ZONERULES_INVALID;
309 static int		cached_year;	/* mktime() perf. enhancement */
310 static long long	cached_secs_since_1970;	/* mktime() perf. */
311 static int		year_is_cached = FALSE;	/* mktime() perf. */
312 
313 
314 #define	_2AM		(2 * SECS_PER_HOUR)
315 #define	FIRSTWEEK	1
316 #define	LASTWEEK	5
317 
318 enum wks {
319 	_1st_week = 1,
320 	_2nd_week,
321 	_3rd_week,
322 	_4th_week,
323 	_Last_week
324 };
325 
326 enum dwk {
327 	Sun,
328 	Mon,
329 	Tue,
330 	Wed,
331 	Thu,
332 	Fri,
333 	Sat
334 };
335 
336 enum mth {
337 	Jan = 1,
338 	Feb,
339 	Mar,
340 	Apr,
341 	May,
342 	Jun,
343 	Jul,
344 	Aug,
345 	Sep,
346 	Oct,
347 	Nov,
348 	Dec
349 };
350 
351 /*
352  * The following table defines standard USA DST transitions
353  * as they have been declared throughout history, disregarding
354  * the legally sanctioned local variants.
355  *
356  * Note:  At some point, this table may be supplanted by
357  * more popular 'posixrules' logic.
358  */
359 typedef struct {
360 	int	s_year;
361 	int	e_year;
362 	rule_t	start;
363 	rule_t	end;
364 } __usa_rules_t;
365 
366 static const __usa_rules_t	__usa_rules[] = {
367 	{
368 		2007, 2037,
369 		{ MON_WEEK_DOW, Sun, _2nd_week, Mar, _2AM },
370 		{ MON_WEEK_DOW, Sun, _1st_week, Nov, _2AM },
371 	},
372 	{
373 		1987, 2006,
374 		{ MON_WEEK_DOW, Sun, _1st_week,  Apr, _2AM },
375 		{ MON_WEEK_DOW, Sun, _Last_week, Oct, _2AM },
376 	},
377 	{
378 		1976, 1986,
379 		{ MON_WEEK_DOW, Sun, _Last_week, Apr, _2AM },
380 		{ MON_WEEK_DOW, Sun, _Last_week, Oct, _2AM },
381 	},
382 	{
383 		1975, 1975,
384 		{ MON_WEEK_DOW, Sun, _Last_week, Feb, _2AM },
385 		{ MON_WEEK_DOW, Sun, _Last_week, Oct, _2AM },
386 	},
387 
388 	{
389 		1974, 1974,
390 		{ MON_WEEK_DOW, Sun, _1st_week,  Jan, _2AM },
391 		{ MON_WEEK_DOW, Sun, _Last_week, Nov, _2AM },
392 	},
393 	/*
394 	 * The entry below combines two previously separate entries for
395 	 * 1969-1973 and 1902-1968
396 	 */
397 	{
398 		1902, 1973,
399 		{ MON_WEEK_DOW, Sun, _Last_week, Apr, _2AM },
400 		{ MON_WEEK_DOW, Sun, _Last_week, Oct, _2AM },
401 	}
402 };
403 #define	MAX_RULE_TABLE	(sizeof (__usa_rules) / sizeof (__usa_rules_t) - 1)
404 
405 /*
406  * Prototypes for static functions.
407  */
408 static systemtz_t *getsystemTZ(systemtz_t *);
409 static const char *getzname(const char *, int);
410 static const char *getnum(const char *, int *, int, int);
411 static const char *getsecs(const char *, long *);
412 static const char *getoffset(const char *, long *);
413 static const char *getrule(const char *, rule_t *, int);
414 static int	load_posixinfo(const char *, state_t *);
415 static int	load_zoneinfo(const char *, state_t *);
416 static void	ltzset_u(time_t, systemtz_t *);
417 static struct tm *offtime_u(time_t, long, struct tm *);
418 static int	posix_check_dst(long long, state_t *);
419 static int	posix_daylight(long long *, int, posix_daylight_t *);
420 static void	set_zone_context(time_t);
421 
422 /*
423  * definition of difftime
424  *
425  * This code assumes time_t is type long.  Note the difference of two
426  * longs in absolute value is representable as an unsigned long.  So,
427  * compute the absolute value of the difference, cast the result to
428  * double and attach the sign back on.
429  *
430  * Note this code assumes 2's complement arithmetic.  The subtraction
431  * operation may overflow when using signed operands, but when the
432  * result is cast to unsigned long, it yields the desired value
433  * (ie, the absolute value of the difference).  The cast to unsigned
434  * long is done using pointers to avoid undefined behavior if casting
435  * a negative value to unsigned.
436  */
437 double
438 difftime(time_t time1, time_t time0)
439 {
440 	if (time1 < time0) {
441 		time0 -= time1;
442 		return (-(double)*(unsigned long *) &time0);
443 	} else {
444 		time1 -= time0;
445 		return ((double)*(unsigned long *) &time1);
446 	}
447 }
448 
449 /*
450  * Accepts a time_t, returns a tm struct based on it, with
451  * no local timezone adjustment.
452  *
453  * This routine is the thread-safe variant of gmtime(), and
454  * requires that the call provide the address of their own tm
455  * struct.
456  *
457  * Locking is not done here because set_zone_context()
458  * is not called, thus timezone, altzone, and tzname[] are not
459  * accessed, no memory is allocated, and no common dynamic
460  * data is accessed.
461  *
462  * See ctime(3C)
463  */
464 struct tm *
465 _gmtime_r(const time_t *timep, struct tm *p_tm)
466 {
467 	return (offtime_u((time_t)*timep, 0L, p_tm));
468 }
469 
470 /*
471  * Accepts a time_t, returns a tm struct based on it, with
472  * no local timezone adjustment.
473  *
474  * This function is explicitly NOT THREAD-SAFE.  The standards
475  * indicate it should provide its results in its own statically
476  * allocated tm struct that gets overwritten. The thread-safe
477  * variant is gmtime_r().  We make it mostly thread-safe by
478  * allocating its buffer in thread-specific data.
479  *
480  * See ctime(3C)
481  */
482 struct tm *
483 gmtime(const time_t *timep)
484 {
485 	struct tm *p_tm = tsdalloc(_T_STRUCT_TM, sizeof (struct tm), NULL);
486 
487 	if (p_tm == NULL)	/* memory allocation failure */
488 		p_tm = &tm;	/* use static buffer and hope for the best */
489 	return (_gmtime_r(timep, p_tm));
490 }
491 
492 /*
493  * This is the hashing function, based on the input timezone name.
494  */
495 static int
496 get_hashid(const char *id)
497 {
498 	const unsigned char	*s = (const unsigned char *)id;
499 	unsigned char	c;
500 	unsigned int	h;
501 
502 	h = *s++;
503 	while ((c = *s++) != '\0') {
504 		h = (h << 5) - h + c;
505 	}
506 	return ((int)(h % HASHTABLE));
507 }
508 
509 /*
510  * find_zone() gets the hashid for zonename, then uses the hashid
511  * to search the hash table for the appropriate timezone entry.  If
512  * the entry for zonename is found in the hash table, return a pointer
513  * to the entry.  Otherwise, update the input link_prev and link_next
514  * to the addresses of pointers for the caller to update to add the new
515  * entry to the hash table.
516  */
517 static state_t *
518 find_zone(const char *zonename, state_t ***link_prev, state_t **link_next)
519 {
520 	int	hashid;
521 	state_t	*cur, *prv;
522 
523 	hashid = get_hashid(zonename);
524 	cur = tzcache[hashid];
525 	prv = NULL;
526 	while (cur) {
527 		int	res;
528 		res = strcmp(cur->zonename, zonename);
529 		if (res == 0) {
530 			return (cur);
531 		} else if (res > 0) {
532 			break;
533 		}
534 		prv = cur;
535 		cur = cur->next;
536 	}
537 	if (prv) {
538 		*link_prev = &prv->next;
539 		*link_next = cur;
540 	} else {
541 		*link_prev = &tzcache[hashid];
542 		*link_next = NULL;
543 	}
544 	return (NULL);
545 }
546 
547 
548 /*
549  * Returns tm struct based on input time_t argument, correcting
550  * for the local timezone, producing documented side-effects
551  * to extern global state, timezone, altzone, daylight and tzname[].
552  *
553  * localtime_r() is the thread-safe variant of localtime().
554  *
555  * IMPLEMENTATION NOTE:
556  *
557  *	Locking slows multithreaded access and is probably ultimately
558  *	unnecessary here. The POSIX specification is a bit vague
559  *	as to whether the extern variables set by tzset() need to
560  *	set as a result of a call to localtime_r()
561  *
562  *	Currently, the spec only mentions that tzname[] doesn't
563  *	need to be set.  As soon as it becomes unequivocal
564  *	that the external zone state doesn't need to be asserted
565  *	for this call, and it really doesn't make much sense
566  *	to set common state from multi-threaded calls made to this
567  *	function, locking can be dispensed with here.
568  *
569  *	local zone state would still need to be aquired for the
570  *	time in question in order for calculations elicited here
571  *	to be correct, but that state wouldn't need to be shared,
572  *	thus no multi-threaded synchronization would be required.
573  *
574  *	It would be nice if POSIX would approve an ltzset_r()
575  *	function, but if not, it wouldn't stop us from making one
576  *	privately.
577  *
578  *	localtime_r() can now return NULL if overflow is detected.
579  *	offtime_u() is the function that detects overflow, and sets
580  *	errno appropriately.  We unlock before the call to offtime_u(),
581  *	so that lmutex_unlock() does not reassign errno.  The function
582  *	offtime_u() is MT-safe and does not have to be locked.  Use
583  *	my_is_in_dst to reference local copy of is_in_dst outside locks.
584  *
585  * See ctime(3C)
586  */
587 struct tm *
588 _localtime_r(const time_t *timep, struct tm *p_tm)
589 {
590 	long	offset;
591 	struct tm *rt;
592 	int	my_is_in_dst;
593 	systemtz_t	stz;
594 	systemtz_t	*tzp;
595 
596 	tzp = getsystemTZ(&stz);
597 
598 	lmutex_lock(&_time_lock);
599 	ltzset_u(*timep, tzp);
600 	if (lclzonep == NULL) {
601 		lmutex_unlock(&_time_lock);
602 		if (tzp->flag)
603 			free(tzp->entry);
604 		return (offtime_u(*timep, 0L, p_tm));
605 	}
606 	my_is_in_dst = is_in_dst;
607 	offset = (my_is_in_dst) ? -altzone : -timezone;
608 	lmutex_unlock(&_time_lock);
609 	rt = offtime_u(*timep, offset, p_tm);
610 	p_tm->tm_isdst = my_is_in_dst;
611 	if (tzp->flag)
612 		free(tzp->entry);
613 	return (rt);
614 }
615 
616 /*
617  * Accepts a time_t, returns a tm struct based on it, correcting
618  * for the local timezone.  Produces documented side-effects to
619  * extern global timezone state data.
620  *
621  * This function is explicitly NOT THREAD-SAFE.  The standards
622  * indicate it should provide its results in its own statically
623  * allocated tm struct that gets overwritten. The thread-safe
624  * variant is localtime_r().  We make it mostly thread-safe by
625  * allocating its buffer in thread-specific data.
626  *
627  * localtime() can now return NULL if overflow is detected.
628  * offtime_u() is the function that detects overflow, and sets
629  * errno appropriately.
630  *
631  * See ctime(3C)
632  */
633 struct tm *
634 localtime(const time_t *timep)
635 {
636 	struct tm *p_tm = tsdalloc(_T_STRUCT_TM, sizeof (struct tm), NULL);
637 
638 	if (p_tm == NULL)	/* memory allocation failure */
639 		p_tm = &tm;	/* use static buffer and hope for the best */
640 	return (_localtime_r(timep, p_tm));
641 }
642 
643 /*
644  * This function takes a pointer to a tm struct and returns a
645  * normalized time_t, also inducing documented side-effects in
646  * extern global zone state variables.  (See mktime(3C)).
647  */
648 time_t
649 mktime(struct tm *tmptr)
650 {
651 	struct tm _tm;
652 	long long t;		/* must hold more than 32-bit time_t */
653 	int	temp;
654 	int	mketimerrno;
655 	int	overflow;
656 	systemtz_t	stz;
657 	systemtz_t	*tzp;
658 
659 	mketimerrno = errno;
660 
661 	tzp = getsystemTZ(&stz);
662 
663 	/* mktime leaves errno unchanged if no error is encountered */
664 
665 	lmutex_lock(&_time_lock);
666 
667 	/* Calculate time_t from tm arg.  tm may need to be normalized. */
668 	t = tmptr->tm_sec + SECSPERMIN * tmptr->tm_min +
669 	    SECSPERHOUR * tmptr->tm_hour +
670 	    SECSPERDAY * (tmptr->tm_mday - 1);
671 
672 	if (tmptr->tm_mon >= 12) {
673 		tmptr->tm_year += tmptr->tm_mon / 12;
674 		tmptr->tm_mon %= 12;
675 	} else if (tmptr->tm_mon < 0) {
676 		temp = -tmptr->tm_mon;
677 		tmptr->tm_mon = 0;	/* If tm_mon divides by 12. */
678 		tmptr->tm_year -= (temp / 12);
679 		if (temp %= 12) {	/* Remainder... */
680 			tmptr->tm_year--;
681 			tmptr->tm_mon = 12 - temp;
682 		}
683 	}
684 
685 	/* Avoid numerous calculations embedded in macro if possible */
686 	if (!year_is_cached || (cached_year != tmptr->tm_year))	 {
687 		cached_year = tmptr->tm_year;
688 		year_is_cached = TRUE;
689 		/* For boundry values of tm_year, typecasting required */
690 		cached_secs_since_1970 =
691 		    (long long)SECSPERDAY * DAYS_SINCE_70(cached_year);
692 	}
693 	t += cached_secs_since_1970;
694 
695 	if (isleap(tmptr->tm_year + TM_YEAR_BASE))
696 		t += SECSPERDAY * __lyday_to_month[tmptr->tm_mon];
697 	else
698 		t += SECSPERDAY * __yday_to_month[tmptr->tm_mon];
699 
700 	ltzset_u((time_t)t, tzp);
701 	/* Attempt to convert time to GMT based on tm_isdst setting */
702 	t += (tmptr->tm_isdst > 0) ? altzone : timezone;
703 
704 #ifdef _ILP32
705 	overflow = t > LONG_MAX || t < LONG_MIN ||
706 			tmptr->tm_year < 1 || tmptr->tm_year > 138;
707 #else
708 	overflow = t > LONG_MAX || t < LONG_MIN;
709 #endif
710 	set_zone_context((time_t)t);
711 	if (tmptr->tm_isdst < 0) {
712 		long dst_delta = timezone - altzone;
713 		switch (curr_zonerules) {
714 		case ZONEINFO:
715 			if (is_in_dst) {
716 				t -= dst_delta;
717 				set_zone_context((time_t)t);
718 				if (is_in_dst) {
719 					(void) offtime_u((time_t)t,
720 						    -altzone, &_tm);
721 					_tm.tm_isdst = 1;
722 				} else {
723 					(void) offtime_u((time_t)t,
724 						    -timezone, &_tm);
725 				}
726 			} else {
727 				(void) offtime_u((time_t)t, -timezone, &_tm);
728 			}
729 			break;
730 		case POSIX_USA:
731 		case POSIX:
732 			if (is_in_dst) {
733 				t -= dst_delta;
734 				set_zone_context((time_t)t);
735 				if (is_in_dst) {
736 					(void) offtime_u((time_t)t,
737 						    -altzone, &_tm);
738 					_tm.tm_isdst = 1;
739 				} else {
740 					(void) offtime_u((time_t)t,
741 						    -timezone, &_tm);
742 				}
743 			} else { /* check for ambiguous 'fallback' transition */
744 				set_zone_context((time_t)t - dst_delta);
745 				if (is_in_dst) {  /* In fallback, force DST */
746 					t -= dst_delta;
747 					(void) offtime_u((time_t)t,
748 						    -altzone, &_tm);
749 					_tm.tm_isdst = 1;
750 				} else {
751 					(void) offtime_u((time_t)t,
752 						    -timezone, &_tm);
753 				}
754 			}
755 			break;
756 
757 		case ZONERULES_INVALID:
758 			(void) offtime_u((time_t)t, 0L, &_tm);
759 			break;
760 
761 		}
762 	} else if (is_in_dst) {
763 		(void) offtime_u((time_t)t, -altzone, &_tm);
764 		_tm.tm_isdst = 1;
765 	} else {
766 		(void) offtime_u((time_t)t, -timezone, &_tm);
767 	}
768 
769 	if (overflow || t > LONG_MAX || t < LONG_MIN) {
770 		mketimerrno = EOVERFLOW;
771 		t = -1;
772 	} else {
773 		*tmptr = _tm;
774 	}
775 
776 	lmutex_unlock(&_time_lock);
777 
778 	if (tzp->flag)
779 		free(tzp->entry);
780 	errno = mketimerrno;
781 	return ((time_t)t);
782 }
783 
784 /*
785  * Sets extern global zone state variables based on the current
786  * time.  Specifically, tzname[], timezone, altzone, and daylight
787  * are updated.  See ctime(3C) manpage.
788  */
789 void
790 _tzset(void)
791 {
792 	systemtz_t	stz;
793 	systemtz_t	*tzp;
794 
795 	tzp = getsystemTZ(&stz);
796 
797 	lmutex_lock(&_time_lock);
798 	ltzset_u(time(NULL), tzp);
799 	lmutex_unlock(&_time_lock);
800 	if (tzp->flag)
801 		free(tzp->entry);
802 }
803 
804 void
805 _ltzset(time_t tim)
806 {
807 	systemtz_t	stz;
808 	systemtz_t	*tzp;
809 
810 	tzp = getsystemTZ(&stz);
811 
812 	lmutex_lock(&_time_lock);
813 	ltzset_u(tim, tzp);
814 	lmutex_unlock(&_time_lock);
815 	if (tzp->flag)
816 		free(tzp->entry);
817 }
818 
819 /*
820  * Loads local zone information if TZ changed since last time zone
821  * information was loaded, or if this is the first time thru.
822  * We already hold _time_lock; no further locking is required.
823  */
824 static void
825 ltzset_u(time_t t, systemtz_t *tzp)
826 {
827 	const char	*zonename = tzp->tz;
828 	state_t	*entry, **p, *q;
829 
830 	if (zonename == NULL || *zonename == '\0')
831 		zonename = _posix_gmt0;
832 
833 	if (curr_zonerules != ZONERULES_INVALID &&
834 	    strcmp(namecache, zonename) == 0) {
835 		set_zone_context(t);
836 		return;
837 	}
838 
839 	entry = find_zone(zonename, &p, &q);
840 	if (entry == NULL) {
841 		/*
842 		 * No timezone entry found in hash table, so load it,
843 		 * and create a new timezone entry.
844 		 */
845 		char	*newzonename, *charsbuf;
846 
847 		/* Invalidate the current timezone */
848 		curr_zonerules = ZONERULES_INVALID;
849 
850 		newzonename = libc_strdup(zonename);
851 		daylight = 0;
852 		entry = tzp->entry;
853 
854 		if (entry == NULL || newzonename == NULL) {
855 			/* something wrong happened. */
856 			if (newzonename != NULL)
857 				libc_free(newzonename);
858 			timezone = altzone = 0;
859 			is_in_dst = 0;
860 			tzname[0] = (char *)_tz_gmt;
861 			tzname[1] = (char *)_tz_spaces;
862 			return;
863 		}
864 
865 		/*
866 		 * Builds transition cache and sets up zone state data for zone
867 		 * specified in TZ, which can be specified as a POSIX zone or an
868 		 * Olson zoneinfo file reference.
869 		 *
870 		 * If local data cannot be parsed or loaded, the local zone
871 		 * tables are set up for GMT.
872 		 *
873 		 * Unless a leading ':' is prepended to TZ, TZ is initially
874 		 * parsed as a POSIX zone;  failing that, it reverts to
875 		 * a zoneinfo check.
876 		 * However, if a ':' is prepended, the zone will *only* be
877 		 * parsed as zoneinfo.  If any failure occurs parsing or
878 		 * loading a zoneinfo TZ, GMT data is loaded for the local zone.
879 		 *
880 		 * Example:  There is a zoneinfo file in the standard
881 		 * distribution called 'PST8PDT'.  The only way the user can
882 		 * specify that file under Solaris is to set TZ to ":PST8PDT".
883 		 * Otherwise the initial parse of PST8PDT as a POSIX zone will
884 		 * succeed and be used.
885 		 */
886 		if ((charsbuf = libc_malloc(TZ_MAX_CHARS)) == NULL) {
887 			libc_free(newzonename);
888 
889 			timezone = altzone = 0;
890 			is_in_dst = 0;
891 			tzname[0] = (char *)_tz_gmt;
892 			tzname[1] = (char *)_tz_spaces;
893 			return;
894 		}
895 		entry->charsbuf_size = TZ_MAX_CHARS;
896 		entry->chars = charsbuf;
897 		entry->default_tzname0 = _tz_gmt;
898 		entry->default_tzname1 = _tz_spaces;
899 		entry->zonename = newzonename;
900 
901 		if (*zonename == ':') {
902 			if (load_zoneinfo(zonename + 1, entry) != 0) {
903 				(void) load_posixinfo(_posix_gmt0, entry);
904 			}
905 		} else if (load_posixinfo(zonename, entry) != 0) {
906 			if (load_zoneinfo(zonename, entry) != 0) {
907 				(void) load_posixinfo(_posix_gmt0, entry);
908 			}
909 		}
910 		/*
911 		 * The pre-allocated buffer is used; reset the free flag
912 		 * so the buffer won't be freed.
913 		 */
914 		tzp->flag = 0;
915 		entry->next = q;
916 		*p = entry;
917 	}
918 
919 	curr_zonerules = entry->zonerules;
920 	namecache = entry->zonename;
921 	daylight = entry->daylight;
922 	lclzonep = entry;
923 
924 	set_zone_context(t);
925 }
926 
927 /*
928  * Sets timezone, altzone, tzname[], extern globals, to represent
929  * disposition of t with respect to TZ; See ctime(3C). is_in_dst,
930  * internal global is also set.  daylight is set at zone load time.
931  *
932  * Issues:
933  *
934  *	In this function, any time_t not located in the cache is handled
935  *	as a miss.  To build/update transition cache, load_zoneinfo()
936  *	must be called prior to this routine.
937  *
938  *	If POSIX zone, cache miss penalty is slightly degraded
939  *	performance.  For zoneinfo, penalty is decreased is_in_dst
940  *	accuracy.
941  *
942  *	POSIX, despite its chicken/egg problem, ie. not knowing DST
943  *	until time known, and not knowing time until DST known, at
944  *	least uses the same algorithm for 64-bit time as 32-bit.
945  *
946  *	The fact that zoneinfo files only contain transistions for 32-bit
947  *	time space is a well known problem, as yet unresolved.
948  *	Without an official standard for coping with out-of-range
949  *	zoneinfo times,  assumptions must be made.  For now
950  *	the assumption is:   If t exceeds 32-bit boundries and local zone
951  *	is zoneinfo type, is_in_dst is set to to 0 for negative values
952  *	of t, and set to the same DST state as the highest ordered
953  * 	transition in cache for positive values of t.
954  */
955 static void
956 set_zone_context(time_t t)
957 {
958 	prev_t		*prevp;
959 	int    		lo, hi, tidx;
960 	ttinfo_t	*ttisp, *std, *alt;
961 
962 	/* If state data not loaded or TZ busted, just use GMT */
963 	if (lclzonep == NULL || curr_zonerules == ZONERULES_INVALID) {
964 		timezone = altzone = 0;
965 		daylight = is_in_dst = 0;
966 		tzname[0] = (char *)_tz_gmt;
967 		tzname[1] = (char *)_tz_spaces;
968 		return;
969 	}
970 
971 	/* Retrieve suitable defaults for this zone */
972 	altzone = lclzonep->default_altzone;
973 	timezone = lclzonep->default_timezone;
974 	tzname[0] = (char *)lclzonep->default_tzname0;
975 	tzname[1] = (char *)lclzonep->default_tzname1;
976 	is_in_dst = 0;
977 
978 	if (lclzonep->timecnt <= 0 || lclzonep->typecnt < 2)
979 		/* Loaded zone incapable of transitioning. */
980 		return;
981 
982 	/*
983 	 * At least one alt. zone and one transistion exist. Locate
984 	 * state for 't' quickly as possible.  Use defaults as necessary.
985 	 */
986 	lo = 0;
987 	hi = lclzonep->timecnt - 1;
988 
989 	if (t < lclzonep->ats[0] || t >= lclzonep->ats[hi]) {
990 
991 		/*  CACHE MISS.  Calculate DST as best as possible */
992 		if (lclzonep->zonerules == POSIX_USA ||
993 		    lclzonep->zonerules == POSIX) {
994 			/* Must nvoke calculations to determine DST */
995 			is_in_dst = (daylight) ?
996 			    posix_check_dst(t, lclzonep) : 0;
997 			return;
998 		} else if (t < lclzonep->ats[0]) {   /* zoneinfo... */
999 			/* t precedes 1st transition.  Use defaults */
1000 			return;
1001 		} else	{    /* zoneinfo */
1002 			/* t follows final transistion.  Use final */
1003 			tidx = hi;
1004 		}
1005 
1006 	} else {
1007 
1008 		/*  CACHE HIT.  Locate transition using binary search. */
1009 
1010 		while (lo <= hi) {
1011 			tidx = (lo + hi) / 2;
1012 			if (t == lclzonep->ats[tidx])
1013 				break;
1014 			else if (t < lclzonep->ats[tidx])
1015 				hi = tidx - 1;
1016 			else
1017 				lo = tidx + 1;
1018 		}
1019 		if (lo > hi)
1020 			tidx = hi;
1021 	}
1022 
1023 	/*
1024 	 * Set extern globals based on located transition and summary of
1025 	 * its previous state, which were cached when zone was loaded
1026 	 */
1027 	ttisp = &lclzonep->ttis[lclzonep->types[tidx]];
1028 	prevp = &lclzonep->prev[tidx];
1029 
1030 	if ((is_in_dst = ttisp->tt_isdst) == 0) { /* std. time */
1031 		timezone = -ttisp->tt_gmtoff;
1032 		tzname[0] = &lclzonep->chars[ttisp->tt_abbrind];
1033 		if ((alt = prevp->alt) != NULL) {
1034 			altzone = -alt->tt_gmtoff;
1035 			tzname[1] = &lclzonep->chars[alt->tt_abbrind];
1036 		}
1037 	} else { /* alt. time */
1038 		altzone = -ttisp->tt_gmtoff;
1039 		tzname[1] = &lclzonep->chars[ttisp->tt_abbrind];
1040 		if ((std = prevp->std) != NULL) {
1041 			timezone = -std->tt_gmtoff;
1042 			tzname[0] = &lclzonep->chars[std->tt_abbrind];
1043 		}
1044 	}
1045 }
1046 
1047 /*
1048  * This function takes a time_t and gmt offset and produces a
1049  * tm struct based on specified time.
1050  *
1051  * The the following fields are calculated, based entirely
1052  * on the offset-adjusted value of t:
1053  *
1054  * tm_year, tm_mon, tm_mday, tm_hour, tm_min, tm_sec
1055  * tm_yday. tm_wday.  (tm_isdst is ALWAYS set to 0).
1056  */
1057 
1058 static struct tm *
1059 offtime_u(time_t t, long offset, struct tm *tmptr)
1060 {
1061 	long		days;
1062 	long		rem;
1063 	long		y;
1064 	int		yleap;
1065 	const int	*ip;
1066 
1067 	days = t / SECSPERDAY;
1068 	rem = t % SECSPERDAY;
1069 	rem += offset;
1070 	while (rem < 0) {
1071 		rem += SECSPERDAY;
1072 		--days;
1073 	}
1074 	while (rem >= SECSPERDAY) {
1075 		rem -= SECSPERDAY;
1076 		++days;
1077 	}
1078 	tmptr->tm_hour = (int)(rem / SECSPERHOUR);
1079 	rem = rem % SECSPERHOUR;
1080 	tmptr->tm_min = (int)(rem / SECSPERMIN);
1081 	tmptr->tm_sec = (int)(rem % SECSPERMIN);
1082 
1083 	tmptr->tm_wday = (int)((EPOCH_WDAY + days) % DAYSPERWEEK);
1084 	if (tmptr->tm_wday < 0)
1085 		tmptr->tm_wday += DAYSPERWEEK;
1086 	y = EPOCH_YEAR;
1087 	while (days < 0 || days >= (long)__year_lengths[yleap = isleap(y)]) {
1088 		long newy;
1089 
1090 		newy = y + days / DAYSPERNYEAR;
1091 		if (days < 0)
1092 			--newy;
1093 		days -= ((long)newy - (long)y) * DAYSPERNYEAR +
1094 			LEAPS_THRU_END_OF(newy > 0 ? newy - 1L : newy) -
1095 			LEAPS_THRU_END_OF(y > 0 ? y - 1L : y);
1096 		y = newy;
1097 	}
1098 	tmptr->tm_year = (int)(y - TM_YEAR_BASE);
1099 	tmptr->tm_yday = (int)days;
1100 	ip = __mon_lengths[yleap];
1101 	for (tmptr->tm_mon = 0; days >=
1102 		(long)ip[tmptr->tm_mon]; ++(tmptr->tm_mon))
1103 			days = days - (long)ip[tmptr->tm_mon];
1104 	tmptr->tm_mday = (int)(days + 1);
1105 	tmptr->tm_isdst = 0;
1106 
1107 #ifdef _LP64
1108 	/* do as much as possible before checking for error. */
1109 	if ((y > (long)INT_MAX + TM_YEAR_BASE) ||
1110 	    (y < (long)INT_MIN + TM_YEAR_BASE)) {
1111 		errno = EOVERFLOW;
1112 		return (NULL);
1113 	}
1114 #endif
1115 	return (tmptr);
1116 }
1117 
1118 /*
1119  * Check whether DST is set for time in question.  Only applies to
1120  * POSIX timezones.  If explicit POSIX transition rules were provided
1121  * for the current zone, use those, otherwise use default USA POSIX
1122  * transitions.
1123  */
1124 static int
1125 posix_check_dst(long long t, state_t *sp)
1126 {
1127 	struct tm	gmttm;
1128 	long long	jan01;
1129 	int		year, i, idx, ridx;
1130 	posix_daylight_t	pdaylight;
1131 
1132 	(void) offtime_u(t, 0L, &gmttm);
1133 
1134 	year = gmttm.tm_year + 1900;
1135 	jan01 = t - ((gmttm.tm_yday * SECSPERDAY) +
1136 			(gmttm.tm_hour * SECSPERHOUR) +
1137 			(gmttm.tm_min * SECSPERMIN) + gmttm.tm_sec);
1138 	/*
1139 	 * If transition rules were provided for this zone,
1140 	 * use them, otherwise, default to USA daylight rules,
1141 	 * which are historically correct for the continental USA,
1142 	 * excluding local provisions.  (This logic may be replaced
1143 	 * at some point in the future with "posixrules" to offer
1144 	 * more flexibility to the system administrator).
1145 	 */
1146 	if (sp->zonerules == POSIX)	 {	/* POSIX rules */
1147 		pdaylight.rules[0] = &sp->start_rule;
1148 		pdaylight.rules[1] = &sp->end_rule;
1149 	} else { 			/* POSIX_USA: USA */
1150 		i = 0;
1151 		while (year < __usa_rules[i].s_year && i < MAX_RULE_TABLE) {
1152 			i++;
1153 		}
1154 		pdaylight.rules[0] = (rule_t *)&__usa_rules[i].start;
1155 		pdaylight.rules[1] = (rule_t *)&__usa_rules[i].end;
1156 	}
1157 	pdaylight.offset[0] = timezone;
1158 	pdaylight.offset[1] = altzone;
1159 
1160 	idx = posix_daylight(&jan01, year, &pdaylight);
1161 	ridx = !idx;
1162 
1163 	/*
1164 	 * Note:  t, rtime[0], and rtime[1] are all bounded within 'year'
1165 	 * beginning on 'jan01'
1166 	 */
1167 	if (t >= pdaylight.rtime[idx] && t < pdaylight.rtime[ridx]) {
1168 		return (ridx);
1169 	} else {
1170 		return (idx);
1171 	}
1172 }
1173 
1174 /*
1175  * Given January 1, 00:00:00 GMT for a year as an Epoch-relative time,
1176  * along with the integer year #, a posix_daylight_t that is composed
1177  * of two rules, and two GMT offsets (timezone and altzone), calculate
1178  * the two Epoch-relative times the two rules take effect, and return
1179  * them in the two rtime fields of the posix_daylight_t structure.
1180  * Also update janfirst by a year, by adding the appropriate number of
1181  * seconds depending on whether the year is a leap year or not.  (We take
1182  * advantage that this routine knows the leap year status.)
1183  */
1184 static int
1185 posix_daylight(long long *janfirst, int year, posix_daylight_t *pdaylightp)
1186 {
1187 	rule_t	*rulep;
1188 	long	offset;
1189 	int	idx;
1190 	int	i, d, m1, yy0, yy1, yy2, dow;
1191 	long	leapyear;
1192 	long long	value;
1193 
1194 	static const int	__secs_year_lengths[2] = {
1195 		DAYS_PER_NYEAR * SECSPERDAY,
1196 		DAYS_PER_LYEAR * SECSPERDAY
1197 	};
1198 
1199 	leapyear = isleap(year);
1200 
1201 	for (idx = 0; idx < 2; idx++) {
1202 		rulep = pdaylightp->rules[idx];
1203 		offset = pdaylightp->offset[idx];
1204 
1205 		switch (rulep->r_type) {
1206 
1207 		case MON_WEEK_DOW:
1208 			/*
1209 			 * Mm.n.d - nth "dth day" of month m.
1210 			 */
1211 			value = *janfirst;
1212 			for (i = 0; i < rulep->r_mon - 1; ++i)
1213 				value += __mon_lengths[leapyear][i] *
1214 				    SECSPERDAY;
1215 
1216 			/*
1217 			 * Use Zeller's Congruence to get day-of-week of first
1218 			 * day of month.
1219 			 */
1220 			m1 = (rulep->r_mon + 9) % 12 + 1;
1221 			yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
1222 			yy1 = yy0 / 100;
1223 			yy2 = yy0 % 100;
1224 			dow = ((26 * m1 - 2) / 10 +
1225 			    1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
1226 
1227 			if (dow < 0)
1228 				dow += DAYSPERWEEK;
1229 
1230 			/*
1231 			 * Following heuristic increases accuracy of USA rules
1232 			 * for negative years.
1233 			 */
1234 			if (year < 1 && leapyear)
1235 				++dow;
1236 			/*
1237 			 * "dow" is the day-of-week of the first day of the
1238 			 * month.  Get the day-of-month, zero-origin, of the
1239 			 * first "dow" day of the month.
1240 			 */
1241 			d = rulep->r_day - dow;
1242 			if (d < 0)
1243 				d += DAYSPERWEEK;
1244 			for (i = 1; i < rulep->r_week; ++i) {
1245 				if (d + DAYSPERWEEK >=
1246 				    __mon_lengths[leapyear][rulep->r_mon - 1])
1247 					break;
1248 				d += DAYSPERWEEK;
1249 			}
1250 			/*
1251 			 * "d" is the day-of-month, zero-origin, of the day
1252 			 * we want.
1253 			 */
1254 			value += d * SECSPERDAY;
1255 			break;
1256 
1257 		case JULIAN_DAY:
1258 			/*
1259 			 * Jn - Julian day, 1 == Jan 1, 60 == March 1 even
1260 			 * in leap yrs.
1261 			 */
1262 			value = *janfirst + (rulep->r_day - 1) * SECSPERDAY;
1263 			if (leapyear && rulep->r_day >= 60)
1264 				value += SECSPERDAY;
1265 			break;
1266 
1267 		case DAY_OF_YEAR:
1268 			/*
1269 			 * n - day of year.
1270 			 */
1271 			value = *janfirst + rulep->r_day * SECSPERDAY;
1272 			break;
1273 		}
1274 		pdaylightp->rtime[idx] = value + rulep->r_time + offset;
1275 	}
1276 	*janfirst += __secs_year_lengths[leapyear];
1277 
1278 	return ((pdaylightp->rtime[0] > pdaylightp->rtime[1]) ? 1 : 0);
1279 }
1280 
1281 /*
1282  * Try to load zoneinfo file into internal transition tables using name
1283  * indicated in TZ, and do validity checks.  The format of zic(1M)
1284  * compiled zoneinfo files isdescribed in tzfile.h
1285  */
1286 static int
1287 load_zoneinfo(const char *name, state_t *sp)
1288 {
1289 	char	*cp;
1290 	char	*cp2;
1291 	int	i;
1292 	long	cnt;
1293 	int	fid;
1294 	int	ttisstdcnt;
1295 	int	ttisgmtcnt;
1296 	char	*fullname;
1297 	size_t	namelen;
1298 	char	*bufp;
1299 	size_t	flen;
1300 	prev_t	*prevp;
1301 /* LINTED */
1302 	struct	tzhead *tzhp;
1303 	struct	stat64	stbuf;
1304 	ttinfo_t	*most_recent_alt = NULL;
1305 	ttinfo_t	*most_recent_std = NULL;
1306 	ttinfo_t	*ttisp;
1307 
1308 
1309 	if (name == NULL && (name = TZDEFAULT) == NULL)
1310 		return (-1);
1311 
1312 	if ((name[0] == '/') || strstr(name, "../"))
1313 		return (-1);
1314 
1315 	/*
1316 	 * We allocate fullname this way to avoid having
1317 	 * a PATH_MAX size buffer in our stack frame.
1318 	 */
1319 	namelen = LEN_TZDIR + 1 + strlen(name) + 1;
1320 	if ((fullname = lmalloc(namelen)) == NULL)
1321 		return (-1);
1322 	(void) strcpy(fullname, TZDIR "/");
1323 	(void) strcpy(fullname + LEN_TZDIR + 1, name);
1324 	if ((fid = open(fullname, O_RDONLY)) == -1) {
1325 		lfree(fullname, namelen);
1326 		return (-1);
1327 	}
1328 	lfree(fullname, namelen);
1329 
1330 	if (fstat64(fid, &stbuf) == -1) {
1331 		(void) close(fid);
1332 		return (-1);
1333 	}
1334 
1335 	flen = (size_t)stbuf.st_size;
1336 	if (flen < sizeof (struct tzhead)) {
1337 		(void) close(fid);
1338 		return (-1);
1339 	}
1340 
1341 	/*
1342 	 * It would be nice to use alloca() to allocate bufp but,
1343 	 * as above, we wish to avoid allocating a big buffer in
1344 	 * our stack frame, and also because alloca() gives us no
1345 	 * opportunity to fail gracefully on allocation failure.
1346 	 */
1347 	cp = bufp = lmalloc(flen);
1348 	if (bufp == NULL) {
1349 		(void) close(fid);
1350 		return (-1);
1351 	}
1352 
1353 	if ((cnt = read(fid, bufp, flen)) != flen) {
1354 		lfree(bufp, flen);
1355 		(void) close(fid);
1356 		return (-1);
1357 	}
1358 
1359 	if (close(fid) != 0) {
1360 		lfree(bufp, flen);
1361 		return (-1);
1362 	}
1363 
1364 	cp += (sizeof (tzhp->tzh_magic)) + (sizeof (tzhp->tzh_reserved));
1365 
1366 /* LINTED: alignment */
1367 	ttisstdcnt = CVTZCODE(cp);
1368 /* LINTED: alignment */
1369 	ttisgmtcnt = CVTZCODE(cp);
1370 /* LINTED: alignment */
1371 	sp->leapcnt = CVTZCODE(cp);
1372 /* LINTED: alignment */
1373 	sp->timecnt = CVTZCODE(cp);
1374 /* LINTED: alignment */
1375 	sp->typecnt = CVTZCODE(cp);
1376 /* LINTED: alignment */
1377 	sp->charcnt = CVTZCODE(cp);
1378 
1379 	if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
1380 	    sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
1381 	    sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
1382 	    sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
1383 	    (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
1384 	    (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) {
1385 		lfree(bufp, flen);
1386 		return (-1);
1387 	}
1388 
1389 	if (cnt - (cp - bufp) < (long)(sp->timecnt * 4 +	/* ats */
1390 	    sp->timecnt +			/* types */
1391 	    sp->typecnt * (4 + 2) +		/* ttinfos */
1392 	    sp->charcnt +			/* chars */
1393 	    sp->leapcnt * (4 + 4) +		/* lsinfos */
1394 	    ttisstdcnt +			/* ttisstds */
1395 	    ttisgmtcnt)) {			/* ttisgmts */
1396 		lfree(bufp, flen);
1397 		return (-1);
1398 	}
1399 
1400 
1401 	for (i = 0; i < sp->timecnt; ++i) {
1402 /* LINTED: alignment */
1403 		sp->ats[i] = CVTZCODE(cp);
1404 	}
1405 
1406 	/*
1407 	 * Skip over types[] for now and load ttis[] so that when
1408 	 * types[] are loaded we can check for transitions to STD & DST.
1409 	 * This allows us to shave cycles in ltzset_u(), including
1410 	 * eliminating the need to check set 'daylight' later.
1411 	 */
1412 
1413 	cp2 = (char *)((uintptr_t)cp + sp->timecnt);
1414 
1415 	for (i = 0; i < sp->typecnt; ++i) {
1416 		ttisp = &sp->ttis[i];
1417 /* LINTED: alignment */
1418 		ttisp->tt_gmtoff = CVTZCODE(cp2);
1419 		ttisp->tt_isdst = (uchar_t)*cp2++;
1420 
1421 		if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) {
1422 			lfree(bufp, flen);
1423 			return (-1);
1424 		}
1425 
1426 		ttisp->tt_abbrind = (uchar_t)*cp2++;
1427 		if (ttisp->tt_abbrind < 0 ||
1428 		    ttisp->tt_abbrind > sp->charcnt) {
1429 			lfree(bufp, flen);
1430 			return (-1);
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * Since ttis were loaded ahead of types, it is possible to
1436 	 * detect whether daylight is ever set for this zone now, and
1437 	 * also preload other information to avoid repeated lookups later.
1438 	 * This logic facilitates keeping a running tab on the state of
1439 	 * std zone and alternate zone transitions such that timezone,
1440 	 * altzone and tzname[] can be determined quickly via an
1441 	 * index to any transition.
1442 	 *
1443 	 * For transition #0 there are no previous transitions,
1444 	 * so prev->std and prev->alt will be null, but that's OK,
1445 	 * because null prev->std/prev->alt effectively
1446 	 * indicates none existed prior.
1447 	 */
1448 
1449 	prevp = &sp->prev[0];
1450 
1451 	for (i = 0; i < sp->timecnt; ++i) {
1452 
1453 		sp->types[i] = (uchar_t)*cp++;
1454 		ttisp = &sp->ttis[sp->types[i]];
1455 
1456 		prevp->std = most_recent_std;
1457 		prevp->alt = most_recent_alt;
1458 
1459 		if (ttisp->tt_isdst == 1) {
1460 			most_recent_alt = ttisp;
1461 		} else {
1462 			most_recent_std = ttisp;
1463 		}
1464 
1465 		if ((int)sp->types[i] >= sp->typecnt) {
1466 			lfree(bufp, flen);
1467 			return (-1);
1468 		}
1469 
1470 		++prevp;
1471 	}
1472 	if (most_recent_alt == NULL)
1473 		sp->daylight = 0;
1474 	else
1475 		sp->daylight = 1;
1476 
1477 	/*
1478 	 * Set pointer ahead to where it would have been if we
1479 	 * had read types[] and ttis[] in the same order they
1480 	 * occurred in the file.
1481 	 */
1482 	cp = cp2;
1483 	for (i = 0; i < sp->charcnt; ++i)
1484 		sp->chars[i] = *cp++;
1485 
1486 	sp->chars[i] = '\0';	/* ensure '\0' at end */
1487 
1488 	for (i = 0; i < sp->leapcnt; ++i) {
1489 		struct lsinfo *lsisp;
1490 
1491 		lsisp = &sp->lsis[i];
1492 /* LINTED: alignment */
1493 		lsisp->ls_trans = CVTZCODE(cp);
1494 /* LINTED: alignment */
1495 		lsisp->ls_corr = CVTZCODE(cp);
1496 	}
1497 
1498 	for (i = 0; i < sp->typecnt; ++i) {
1499 		ttisp = &sp->ttis[i];
1500 		if (ttisstdcnt == 0) {
1501 			ttisp->tt_ttisstd = FALSE;
1502 		} else {
1503 			ttisp->tt_ttisstd = *cp++;
1504 			if (ttisp->tt_ttisstd != TRUE &&
1505 			    ttisp->tt_ttisstd != FALSE) {
1506 				lfree(bufp, flen);
1507 				return (-1);
1508 			}
1509 		}
1510 	}
1511 
1512 	for (i = 0; i < sp->typecnt; ++i) {
1513 		ttisp = &sp->ttis[i];
1514 		if (ttisgmtcnt == 0) {
1515 			ttisp->tt_ttisgmt = FALSE;
1516 		} else {
1517 			ttisp->tt_ttisgmt = *cp++;
1518 			if (ttisp->tt_ttisgmt != TRUE &&
1519 			    ttisp->tt_ttisgmt != FALSE) {
1520 				lfree(bufp, flen);
1521 				return (-1);
1522 			}
1523 		}
1524 	}
1525 
1526 	/*
1527 	 * Other defaults set at beginning of this routine
1528 	 * to cover case where zoneinfo file cannot be loaded
1529 	 */
1530 	sp->default_timezone = -sp->ttis[0].tt_gmtoff;
1531 	sp->default_altzone  = 0;
1532 	sp->default_tzname0  = &sp->chars[0];
1533 	sp->default_tzname1  = _tz_spaces;
1534 
1535 	lfree(bufp, flen);
1536 
1537 	sp->zonerules = ZONEINFO;
1538 
1539 	return (0);
1540 }
1541 
1542 /*
1543  * Given a POSIX section 8-style TZ string, fill in transition tables.
1544  *
1545  * Examples:
1546  *
1547  * TZ = PST8 or GMT0
1548  *	Timecnt set to 0 and typecnt set to 1, reflecting std time only.
1549  *
1550  * TZ = PST8PDT or PST8PDT7
1551  *	Create transition times by applying USA transitions from
1552  *	Jan 1 of each year covering 1902-2038.  POSIX offsets
1553  *	as specified in the TZ are used to calculate the tt_gmtoff
1554  *	for each of the two zones.  If ommitted, DST defaults to
1555  *	std. time minus one hour.
1556  *
1557  * TZ = <PST8>8PDT  or <PST8>8<PDT9>
1558  *      Quoted transition.  The values in angled brackets are treated
1559  *      as zone name text, not parsed as offsets.  The offsets
1560  *      occuring following the zonename section.  In this way,
1561  *      instead of PST being displayed for standard time, it could
1562  *      be displayed as PST8 to give an indication of the offset
1563  *      of that zone to GMT.
1564  *
1565  * TZ = GMT0BST, M3.5.0/1, M10.5.0/2   or  GMT0BST, J23953, J23989
1566  *	Create transition times based on the application new-year
1567  *	relative POSIX transitions, parsed from TZ, from Jan 1
1568  *	for each year covering 1902-2038.  POSIX offsets specified
1569  *	in TZ are used to calculate tt_gmtoff for each of the two
1570  *	zones.
1571  *
1572  */
1573 static int
1574 load_posixinfo(const char *name, state_t *sp)
1575 {
1576 	const char	*stdname;
1577 	const char	*dstname = 0;
1578 	size_t		stdlen;
1579 	size_t		dstlen;
1580 	long		stdoff = 0;
1581 	long		dstoff = 0;
1582 	time_t		*tranp;
1583 	uchar_t		*typep;
1584 	prev_t		*prevp;
1585 	char		*cp;
1586 	int		year;
1587 	int		i;
1588 	long long	janfirst;
1589 	ttinfo_t	*dst;
1590 	ttinfo_t	*std;
1591 	int		quoted;
1592 	zone_rules_t	zonetype;
1593 	posix_daylight_t	pdaylight;
1594 
1595 	zonetype = POSIX_USA;
1596 	stdname = name;
1597 
1598 	if ((quoted = (*stdname == '<')) != 0)
1599 		++stdname;
1600 
1601 	/* Parse/extract STD zone name, len and GMT offset */
1602 	if (*name != '\0') {
1603 		if ((name = getzname(name, quoted)) == NULL)
1604 			return (-1);
1605 		stdlen = name - stdname;
1606 		if (*name == '>')
1607 			++name;
1608 		if (*name == '\0' || stdlen < 1) {
1609 			return (-1);
1610 		} else {
1611 			if ((name = getoffset(name, &stdoff)) == NULL)
1612 				return (-1);
1613 		}
1614 	}
1615 
1616 	/* If DST specified in TZ, extract DST zone details */
1617 	if (*name != '\0') {
1618 
1619 		dstname = name;
1620 		if ((quoted = (*dstname == '<')) != 0)
1621 			++dstname;
1622 		if ((name = getzname(name, quoted)) == NULL)
1623 			return (-1);
1624 		dstlen = name - dstname;
1625 		if (dstlen < 1)
1626 		    return (-1);
1627 		if (*name == '>')
1628 			++name;
1629 		if (*name != '\0' && *name != ',' && *name != ';') {
1630 			if ((name = getoffset(name, &dstoff)) == NULL)
1631 				return (-1);
1632 		} else {
1633 			dstoff = stdoff - SECSPERHOUR;
1634 		}
1635 
1636 		/* If any present, extract POSIX transitions from TZ */
1637 		if (*name == ',' || *name == ';') {
1638 			/* Backward compatibility using ';' separator */
1639 			int	compat_flag = (*name == ';');
1640 			++name;
1641 			if ((name = getrule(name, &sp->start_rule, compat_flag))
1642 			    == NULL)
1643 				return (-1);
1644 			if (*name++ != ',')
1645 				return (-1);
1646 			if ((name = getrule(name, &sp->end_rule, compat_flag))
1647 			    == NULL)
1648 				return (-1);
1649 			if (*name != '\0')
1650 				return (-1);
1651 			zonetype = POSIX;
1652 		}
1653 
1654 		/*
1655 		 * We know STD and DST zones are specified with this timezone
1656 		 * therefore the cache will be set up with 2 transitions per
1657 		 * year transitioning to their respective std and dst zones.
1658 		 */
1659 		sp->daylight = 1;
1660 		sp->typecnt = 2;
1661 		sp->timecnt = 272;
1662 
1663 		/*
1664 		 * Insert zone data from POSIX TZ into state table
1665 		 * The Olson public domain POSIX code sets up ttis[0] to be DST,
1666 		 * as we are doing here.  It seems to be the correct behavior.
1667 		 * The US/Pacific zoneinfo file also lists DST as first type.
1668 		 */
1669 		dst = &sp->ttis[0];
1670 		dst->tt_gmtoff = -dstoff;
1671 		dst->tt_isdst = 1;
1672 
1673 		std = &sp->ttis[1];
1674 		std->tt_gmtoff = -stdoff;
1675 		std->tt_isdst = 0;
1676 
1677 		sp->prev[0].std = NULL;
1678 		sp->prev[0].alt = NULL;
1679 
1680 		/* Create transition data based on POSIX TZ */
1681 		tranp = sp->ats;
1682 		prevp  = &sp->prev[1];
1683 		typep  = sp->types;
1684 
1685 		/*
1686 		 * We only cache from 1902 to 2037 to avoid transistions
1687 		 * that wrap at the 32-bit boundries, since 1901 and 2038
1688 		 * are not full years in 32-bit time.  The rough edges
1689 		 * will be handled as transition cache misses.
1690 		 */
1691 
1692 		janfirst = JAN_01_1902;
1693 
1694 		pdaylight.rules[0] = &sp->start_rule;
1695 		pdaylight.rules[1] = &sp->end_rule;
1696 		pdaylight.offset[0] = stdoff;
1697 		pdaylight.offset[1] = dstoff;
1698 
1699 		for (i = MAX_RULE_TABLE; i >= 0; i--) {
1700 			if (zonetype == POSIX_USA) {
1701 				pdaylight.rules[0] =
1702 				    (rule_t *)&__usa_rules[i].start;
1703 				pdaylight.rules[1] =
1704 				    (rule_t *)&__usa_rules[i].end;
1705 			}
1706 			for (year = __usa_rules[i].s_year;
1707 			    year <= __usa_rules[i].e_year;
1708 			    year++) {
1709 				int	idx, ridx;
1710 				idx =
1711 				    posix_daylight(&janfirst, year, &pdaylight);
1712 				ridx = !idx;
1713 
1714 				/*
1715 				 * Two transitions per year. Since there are
1716 				 * only two zone types for this POSIX zone,
1717 				 * previous std and alt are always set to
1718 				 * &ttis[0] and &ttis[1].
1719 				 */
1720 				*tranp++ = (time_t)pdaylight.rtime[idx];
1721 				*typep++ = idx;
1722 				prevp->std = std;
1723 				prevp->alt = dst;
1724 				++prevp;
1725 
1726 				*tranp++ = (time_t)pdaylight.rtime[ridx];
1727 				*typep++ = ridx;
1728 				prevp->std = std;
1729 				prevp->alt = dst;
1730 				++prevp;
1731 			}
1732 		}
1733 	} else {  /* DST wasn't specified in POSIX TZ */
1734 
1735 		/*  Since we only have STD time, there are no transitions */
1736 		dstlen = 0;
1737 		sp->daylight = 0;
1738 		sp->typecnt = 1;
1739 		sp->timecnt = 0;
1740 		std = &sp->ttis[0];
1741 		std->tt_gmtoff = -stdoff;
1742 		std->tt_isdst = 0;
1743 
1744 	}
1745 
1746 	/* Setup zone name character data for state table */
1747 	sp->charcnt = (int)(stdlen + 1);
1748 	if (dstlen != 0)
1749 		sp->charcnt += dstlen + 1;
1750 
1751 	/* If bigger than zone name abbv. buffer, grow it */
1752 	if ((size_t)sp->charcnt > sp->charsbuf_size) {
1753 		if ((cp = libc_realloc(sp->chars, sp->charcnt)) == NULL)
1754 			return (-1);
1755 		sp->chars = cp;
1756 		sp->charsbuf_size = sp->charcnt;
1757 	}
1758 
1759 	/*
1760 	 * Copy zone name text null-terminatedly into state table.
1761 	 * By doing the copy once during zone loading, setting
1762 	 * tzname[] subsequently merely involves setting pointer
1763 	 *
1764 	 * If either or both std. or alt. zone name < 3 chars,
1765 	 * space pad the deficient name(s) to right.
1766 	 */
1767 
1768 	std->tt_abbrind = 0;
1769 	cp = sp->chars;
1770 	(void) strncpy(cp, stdname, stdlen);
1771 	while (stdlen < 3)
1772 		cp[stdlen++] = ' ';
1773 	cp[stdlen] = '\0';
1774 
1775 	i = (int)(stdlen + 1);
1776 	if (dstlen != 0) {
1777 		dst->tt_abbrind = i;
1778 		cp += i;
1779 		(void) strncpy(cp, dstname, dstlen);
1780 		while (dstlen < 3)
1781 			cp[dstlen++] = ' ';
1782 		cp[dstlen] = '\0';
1783 	}
1784 
1785 	/* Save default values */
1786 	if (sp->typecnt == 1) {
1787 		sp->default_timezone = stdoff;
1788 		sp->default_altzone = stdoff;
1789 		sp->default_tzname0 = &sp->chars[0];
1790 		sp->default_tzname1 = _tz_spaces;
1791 	} else {
1792 		sp->default_timezone = -std->tt_gmtoff;
1793 		sp->default_altzone = -dst->tt_gmtoff;
1794 		sp->default_tzname0 = &sp->chars[std->tt_abbrind];
1795 		sp->default_tzname1 = &sp->chars[dst->tt_abbrind];
1796 	}
1797 
1798 	sp->zonerules = zonetype;
1799 
1800 	return (0);
1801 }
1802 
1803 
1804 /*
1805  * Given a pointer into a time zone string, scan until a character that is not
1806  * a valid character in a zone name is found.  Return ptr to that character.
1807  * Return NULL if error (ie. non-printable character located in name)
1808  */
1809 static const char *
1810 getzname(const char *strp, int quoted)
1811 {
1812 	char	c;
1813 
1814 	if (quoted) {
1815 		while ((c = *strp) != '\0' && c != '>' &&
1816 			isgraph((unsigned char)c))
1817 				++strp;
1818 	} else {
1819 		while ((c = *strp) != '\0' && isgraph((unsigned char)c) &&
1820 		    !isdigit((unsigned char)c) && c != ',' && c != '-' &&
1821 			    c != '+')
1822 				++strp;
1823 	}
1824 
1825 	/* Found an excessively invalid character.  Discredit whole name */
1826 	if (c != '\0' && !isgraph((unsigned char)c))
1827 		return (NULL);
1828 
1829 	return (strp);
1830 }
1831 
1832 /*
1833  * Given pointer into time zone string, extract first
1834  * number pointed to.  Validate number within range specified,
1835  * Return ptr to first char following valid numeric sequence.
1836  */
1837 static const char *
1838 getnum(const char *strp, int *nump, int min, int max)
1839 {
1840 	char	c;
1841 	int	num;
1842 
1843 	if (strp == NULL || !isdigit((unsigned char)(c = *strp)))
1844 		return (NULL);
1845 	num = 0;
1846 	do {
1847 		num = num * 10 + (c - '0');
1848 		if (num > max)
1849 			return (NULL);	/* illegal value */
1850 		c = *++strp;
1851 	} while (isdigit((unsigned char)c));
1852 	if (num < min)
1853 		return (NULL);		/* illegal value */
1854 	*nump = num;
1855 	return (strp);
1856 }
1857 
1858 /*
1859  * Given a pointer into a time zone string, extract a number of seconds,
1860  * in hh[:mm[:ss]] form, from the string.  If an error occurs, return NULL,
1861  * otherwise, return a pointer to the first character not part of the number
1862  * of seconds.
1863  */
1864 static const char *
1865 getsecs(const char *strp, long *secsp)
1866 {
1867 	int	num;
1868 
1869 	/*
1870 	 * `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
1871 	 * "M10.4.6/26", which does not conform to Posix,
1872 	 * but which specifies the equivalent of
1873 	 * ``02:00 on the first Sunday on or after 23 Oct''.
1874 	 */
1875 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
1876 	if (strp == NULL)
1877 		return (NULL);
1878 	*secsp = num * (long)SECSPERHOUR;
1879 	if (*strp == ':') {
1880 		++strp;
1881 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
1882 		if (strp == NULL)
1883 			return (NULL);
1884 		*secsp += num * SECSPERMIN;
1885 		if (*strp == ':') {
1886 			++strp;
1887 			/* `SECSPERMIN' allows for leap seconds.  */
1888 			strp = getnum(strp, &num, 0, SECSPERMIN);
1889 			if (strp == NULL)
1890 				return (NULL);
1891 			*secsp += num;
1892 		}
1893 	}
1894 	return (strp);
1895 }
1896 
1897 /*
1898  * Given a pointer into a time zone string, extract an offset, in
1899  * [+-]hh[:mm[:ss]] form, from the string.
1900  * If any error occurs, return NULL.
1901  * Otherwise, return a pointer to the first character not part of the time.
1902  */
1903 static const char *
1904 getoffset(const char *strp, long *offsetp)
1905 {
1906 	int	neg = 0;
1907 
1908 	if (*strp == '-') {
1909 		neg = 1;
1910 		++strp;
1911 	} else if (*strp == '+') {
1912 		++strp;
1913 	}
1914 	strp = getsecs(strp, offsetp);
1915 	if (strp == NULL)
1916 		return (NULL);		/* illegal time */
1917 	if (neg)
1918 		*offsetp = -*offsetp;
1919 	return (strp);
1920 }
1921 
1922 /*
1923  * Given a pointer into a time zone string, extract a rule in the form
1924  * date[/time].  See POSIX section 8 for the format of "date" and "time".
1925  * If a valid rule is not found, return NULL.
1926  * Otherwise, return a pointer to the first character not part of the rule.
1927  *
1928  * If compat_flag is set, support old 1-based day of year values.
1929  */
1930 static const char *
1931 getrule(const char *strp, rule_t *rulep, int compat_flag)
1932 {
1933 	if (compat_flag == 0 && *strp == 'M') {
1934 		/*
1935 		 * Month, week, day.
1936 		 */
1937 		rulep->r_type = MON_WEEK_DOW;
1938 		++strp;
1939 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
1940 		if (strp == NULL)
1941 			return (NULL);
1942 		if (*strp++ != '.')
1943 			return (NULL);
1944 		strp = getnum(strp, &rulep->r_week, 1, 5);
1945 		if (strp == NULL)
1946 			return (NULL);
1947 		if (*strp++ != '.')
1948 			return (NULL);
1949 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
1950 	} else if (compat_flag == 0 && *strp == 'J') {
1951 		/*
1952 		 * Julian day.
1953 		 */
1954 		rulep->r_type = JULIAN_DAY;
1955 		++strp;
1956 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
1957 
1958 	} else if (isdigit((unsigned char)*strp)) {
1959 		/*
1960 		 * Day of year.
1961 		 */
1962 		rulep->r_type = DAY_OF_YEAR;
1963 		if (compat_flag == 0) {
1964 			/* zero-based day of year */
1965 			strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
1966 		} else {
1967 			/* one-based day of year */
1968 			strp = getnum(strp, &rulep->r_day, 1, DAYSPERLYEAR);
1969 			rulep->r_day--;
1970 		}
1971 	} else {
1972 		return (NULL);		/* ZONERULES_INVALID format */
1973 	}
1974 	if (strp == NULL)
1975 		return (NULL);
1976 	if (*strp == '/') {
1977 		/*
1978 		 * Time specified.
1979 		 */
1980 		++strp;
1981 		strp = getsecs(strp, &rulep->r_time);
1982 	} else	{
1983 		rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
1984 	}
1985 	return (strp);
1986 }
1987 
1988 /*
1989  * Returns default value for TZ as specified in /etc/default/init file, if
1990  * a default value for TZ is provided there.
1991  */
1992 static char *
1993 get_default_tz(void)
1994 {
1995 	char	*tz = NULL;
1996 	uchar_t	*tzp, *tzq;
1997 	int	flags;
1998 
1999 	if (defopen(TIMEZONE) == 0) {
2000 		flags = defcntl(DC_GETFLAGS, 0);
2001 		TURNON(flags, DC_STRIP_QUOTES);
2002 		(void) defcntl(DC_SETFLAGS, flags);
2003 
2004 		if ((tzp = (uchar_t *)defread(TZSTRING)) != NULL) {
2005 			while (isspace(*tzp))
2006 				tzp++;
2007 			tzq = tzp;
2008 			while (!isspace(*tzq) &&
2009 			    *tzq != ';' &&
2010 			    *tzq != '#' &&
2011 			    *tzq != '\0')
2012 				tzq++;
2013 			*tzq = '\0';
2014 			if (*tzp != '\0')
2015 				tz = strdup((char *)tzp);
2016 		}
2017 
2018 		(void) defopen(NULL);
2019 	}
2020 	return (tz);
2021 }
2022 
2023 static state_t *
2024 get_zone(systemtz_t *tzp)
2025 {
2026 	int	hashid;
2027 	state_t	*m, *p;
2028 	const char *zonename = tzp->tz;
2029 
2030 	hashid = get_hashid(zonename);
2031 	m = tzcache[hashid];
2032 	while (m) {
2033 		int	r;
2034 		r = strcmp(m->zonename, zonename);
2035 		if (r == 0) {
2036 			/* matched */
2037 			return (NULL);
2038 		} else if (r > 0) {
2039 			break;
2040 		}
2041 		m = m->next;
2042 	}
2043 	/* malloc() return value is also checked for NULL in ltzset_u() */
2044 	p = malloc(sizeof (state_t));
2045 
2046 	/* ltzset_u() resets the free flag to 0 if it uses the p buffer */
2047 	if (p != NULL)
2048 		tzp->flag = 1;
2049 	return (p);
2050 }
2051 
2052 /*
2053  * getsystemTZ() returns the TZ value if it is set in the environment, or
2054  * it returns the system TZ;  if the systemTZ has not yet been set,
2055  * get_default_tz() is called to read the /etc/default/init file to get
2056  * the value.
2057  *
2058  * getsystemTZ() also calls get_zone() to do an initial check to see if the
2059  * timezone is the current timezone, or one that is already loaded in the
2060  * hash table.  If get_zone() determines the timezone has not yet been loaded,
2061  * it pre-allocates a buffer for a state_t struct, which ltzset_u() can use
2062  * later to load the timezone and add to the hash table.
2063  *
2064  * The large state_t buffer is allocated here to avoid calls to malloc()
2065  * within mutex_locks.
2066  */
2067 static systemtz_t *
2068 getsystemTZ(systemtz_t *stzp)
2069 {
2070 	static const char	*systemTZ = NULL;
2071 	char	*tz;
2072 
2073 	assert_no_libc_locks_held();
2074 
2075 	stzp->flag = 0;
2076 
2077 	tz = getenv("TZ");
2078 	if (tz != NULL && *tz != '\0') {
2079 		stzp->tz = (const char *)tz;
2080 		goto get_entry;
2081 	}
2082 
2083 	if (systemTZ != NULL) {
2084 		stzp->tz = systemTZ;
2085 		goto get_entry;
2086 	}
2087 
2088 	tz = get_default_tz();
2089 	lmutex_lock(&_time_lock);
2090 	if (systemTZ == NULL) {
2091 		if ((systemTZ = tz) != NULL)	/* found TZ entry in the file */
2092 			tz = NULL;
2093 		else
2094 			systemTZ = _posix_gmt0;	/* no TZ entry in the file */
2095 	}
2096 	lmutex_unlock(&_time_lock);
2097 
2098 	if (tz != NULL)		/* someone beat us to it; free our entry */
2099 		free(tz);
2100 
2101 	stzp->tz = systemTZ;
2102 
2103 get_entry:
2104 	/*
2105 	 * The object referred to by the 1st 'namecache'
2106 	 * may be different from the one by the 2nd 'namecache' below.
2107 	 * But, it does not matter.  The bottomline is at this point
2108 	 * 'namecache' points to non-NULL and whether the string pointed
2109 	 * to by 'namecache' is equivalent to stzp->tz or not.
2110 	 */
2111 	if (namecache != NULL && strcmp(namecache, stzp->tz) == 0) {
2112 		/*
2113 		 * At this point, we found the entry having the same
2114 		 * zonename as stzp->tz exists.  Later we will find
2115 		 * the exact one, so we don't need to allocate
2116 		 * the memory here.
2117 		 */
2118 		stzp->entry = NULL;
2119 	} else {
2120 		/*
2121 		 * At this point, we could not get the evidence that this
2122 		 * zonename had been cached.  We will look into the cache
2123 		 * further.
2124 		 */
2125 		stzp->entry = get_zone(stzp);
2126 	}
2127 	return (stzp);
2128 }
2129