xref: /titanic_50/usr/src/common/zfs/zfs_fletcher.c (revision 888e055994b8b0dc77b98c53dd97026237caec5d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Fletcher Checksums
28  * ------------------
29  *
30  * ZFS's 2nd and 4th order Fletcher checksums are defined by the following
31  * recurrence relations:
32  *
33  *	a  = a    + f
34  *	 i    i-1    i-1
35  *
36  *	b  = b    + a
37  *	 i    i-1    i
38  *
39  *	c  = c    + b		(fletcher-4 only)
40  *	 i    i-1    i
41  *
42  *	d  = d    + c		(fletcher-4 only)
43  *	 i    i-1    i
44  *
45  * Where
46  *	a_0 = b_0 = c_0 = d_0 = 0
47  * and
48  *	f_0 .. f_(n-1) are the input data.
49  *
50  * Using standard techniques, these translate into the following series:
51  *
52  *	     __n_			     __n_
53  *	     \   |			     \   |
54  *	a  =  >     f			b  =  >     i * f
55  *	 n   /___|   n - i		 n   /___|	 n - i
56  *	     i = 1			     i = 1
57  *
58  *
59  *	     __n_			     __n_
60  *	     \   |  i*(i+1)		     \   |  i*(i+1)*(i+2)
61  *	c  =  >     ------- f		d  =  >     ------------- f
62  *	 n   /___|     2     n - i	 n   /___|	  6	   n - i
63  *	     i = 1			     i = 1
64  *
65  * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
66  * Since the additions are done mod (2^64), errors in the high bits may not
67  * be noticed.  For this reason, fletcher-2 is deprecated.
68  *
69  * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
70  * A conservative estimate of how big the buffer can get before we overflow
71  * can be estimated using f_i = 0xffffffff for all i:
72  *
73  * % bc
74  *  f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
75  * 2264
76  *  quit
77  * %
78  *
79  * So blocks of up to 2k will not overflow.  Our largest block size is
80  * 128k, which has 32k 4-byte words, so we can compute the largest possible
81  * accumulators, then divide by 2^64 to figure the max amount of overflow:
82  *
83  * % bc
84  *  a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
85  *  a/2^64;b/2^64;c/2^64;d/2^64
86  * 0
87  * 0
88  * 1365
89  * 11186858
90  *  quit
91  * %
92  *
93  * So a and b cannot overflow.  To make sure each bit of input has some
94  * effect on the contents of c and d, we can look at what the factors of
95  * the coefficients in the equations for c_n and d_n are.  The number of 2s
96  * in the factors determines the lowest set bit in the multiplier.  Running
97  * through the cases for n*(n+1)/2 reveals that the highest power of 2 is
98  * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15.  So while some data may overflow
99  * the 64-bit accumulators, every bit of every f_i effects every accumulator,
100  * even for 128k blocks.
101  *
102  * If we wanted to make a stronger version of fletcher4 (fletcher4c?),
103  * we could do our calculations mod (2^32 - 1) by adding in the carries
104  * periodically, and store the number of carries in the top 32-bits.
105  *
106  * --------------------
107  * Checksum Performance
108  * --------------------
109  *
110  * There are two interesting components to checksum performance: cached and
111  * uncached performance.  With cached data, fletcher-2 is about four times
112  * faster than fletcher-4.  With uncached data, the performance difference is
113  * negligible, since the cost of a cache fill dominates the processing time.
114  * Even though fletcher-4 is slower than fletcher-2, it is still a pretty
115  * efficient pass over the data.
116  *
117  * In normal operation, the data which is being checksummed is in a buffer
118  * which has been filled either by:
119  *
120  *	1. a compression step, which will be mostly cached, or
121  *	2. a bcopy() or copyin(), which will be uncached (because the
122  *	   copy is cache-bypassing).
123  *
124  * For both cached and uncached data, both fletcher checksums are much faster
125  * than sha-256, and slower than 'off', which doesn't touch the data at all.
126  */
127 
128 #include <sys/types.h>
129 #include <sys/sysmacros.h>
130 #include <sys/byteorder.h>
131 #include <sys/zio.h>
132 #include <sys/spa.h>
133 
134 void
135 fletcher_2_native(const void *buf, uint64_t size, zio_cksum_t *zcp)
136 {
137 	const uint64_t *ip = buf;
138 	const uint64_t *ipend = ip + (size / sizeof (uint64_t));
139 	uint64_t a0, b0, a1, b1;
140 
141 	for (a0 = b0 = a1 = b1 = 0; ip < ipend; ip += 2) {
142 		a0 += ip[0];
143 		a1 += ip[1];
144 		b0 += a0;
145 		b1 += a1;
146 	}
147 
148 	ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
149 }
150 
151 void
152 fletcher_2_byteswap(const void *buf, uint64_t size, zio_cksum_t *zcp)
153 {
154 	const uint64_t *ip = buf;
155 	const uint64_t *ipend = ip + (size / sizeof (uint64_t));
156 	uint64_t a0, b0, a1, b1;
157 
158 	for (a0 = b0 = a1 = b1 = 0; ip < ipend; ip += 2) {
159 		a0 += BSWAP_64(ip[0]);
160 		a1 += BSWAP_64(ip[1]);
161 		b0 += a0;
162 		b1 += a1;
163 	}
164 
165 	ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
166 }
167 
168 void
169 fletcher_4_native(const void *buf, uint64_t size, zio_cksum_t *zcp)
170 {
171 	const uint32_t *ip = buf;
172 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
173 	uint64_t a, b, c, d;
174 
175 	for (a = b = c = d = 0; ip < ipend; ip++) {
176 		a += ip[0];
177 		b += a;
178 		c += b;
179 		d += c;
180 	}
181 
182 	ZIO_SET_CHECKSUM(zcp, a, b, c, d);
183 }
184 
185 void
186 fletcher_4_byteswap(const void *buf, uint64_t size, zio_cksum_t *zcp)
187 {
188 	const uint32_t *ip = buf;
189 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
190 	uint64_t a, b, c, d;
191 
192 	for (a = b = c = d = 0; ip < ipend; ip++) {
193 		a += BSWAP_32(ip[0]);
194 		b += a;
195 		c += b;
196 		d += c;
197 	}
198 
199 	ZIO_SET_CHECKSUM(zcp, a, b, c, d);
200 }
201 
202 void
203 fletcher_4_incremental_native(const void *buf, uint64_t size,
204     zio_cksum_t *zcp)
205 {
206 	const uint32_t *ip = buf;
207 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
208 	uint64_t a, b, c, d;
209 
210 	a = zcp->zc_word[0];
211 	b = zcp->zc_word[1];
212 	c = zcp->zc_word[2];
213 	d = zcp->zc_word[3];
214 
215 	for (; ip < ipend; ip++) {
216 		a += ip[0];
217 		b += a;
218 		c += b;
219 		d += c;
220 	}
221 
222 	ZIO_SET_CHECKSUM(zcp, a, b, c, d);
223 }
224 
225 void
226 fletcher_4_incremental_byteswap(const void *buf, uint64_t size,
227     zio_cksum_t *zcp)
228 {
229 	const uint32_t *ip = buf;
230 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
231 	uint64_t a, b, c, d;
232 
233 	a = zcp->zc_word[0];
234 	b = zcp->zc_word[1];
235 	c = zcp->zc_word[2];
236 	d = zcp->zc_word[3];
237 
238 	for (; ip < ipend; ip++) {
239 		a += BSWAP_32(ip[0]);
240 		b += a;
241 		c += b;
242 		d += c;
243 	}
244 
245 	ZIO_SET_CHECKSUM(zcp, a, b, c, d);
246 }
247