1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 */ 28 29 /* 30 * The objective of this program is to provide a DMU/ZAP/SPA stress test 31 * that runs entirely in userland, is easy to use, and easy to extend. 32 * 33 * The overall design of the ztest program is as follows: 34 * 35 * (1) For each major functional area (e.g. adding vdevs to a pool, 36 * creating and destroying datasets, reading and writing objects, etc) 37 * we have a simple routine to test that functionality. These 38 * individual routines do not have to do anything "stressful". 39 * 40 * (2) We turn these simple functionality tests into a stress test by 41 * running them all in parallel, with as many threads as desired, 42 * and spread across as many datasets, objects, and vdevs as desired. 43 * 44 * (3) While all this is happening, we inject faults into the pool to 45 * verify that self-healing data really works. 46 * 47 * (4) Every time we open a dataset, we change its checksum and compression 48 * functions. Thus even individual objects vary from block to block 49 * in which checksum they use and whether they're compressed. 50 * 51 * (5) To verify that we never lose on-disk consistency after a crash, 52 * we run the entire test in a child of the main process. 53 * At random times, the child self-immolates with a SIGKILL. 54 * This is the software equivalent of pulling the power cord. 55 * The parent then runs the test again, using the existing 56 * storage pool, as many times as desired. If backwards compatibility 57 * testing is enabled ztest will sometimes run the "older" version 58 * of ztest after a SIGKILL. 59 * 60 * (6) To verify that we don't have future leaks or temporal incursions, 61 * many of the functional tests record the transaction group number 62 * as part of their data. When reading old data, they verify that 63 * the transaction group number is less than the current, open txg. 64 * If you add a new test, please do this if applicable. 65 * 66 * When run with no arguments, ztest runs for about five minutes and 67 * produces no output if successful. To get a little bit of information, 68 * specify -V. To get more information, specify -VV, and so on. 69 * 70 * To turn this into an overnight stress test, use -T to specify run time. 71 * 72 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 73 * to increase the pool capacity, fanout, and overall stress level. 74 * 75 * Use the -k option to set the desired frequency of kills. 76 * 77 * When ztest invokes itself it passes all relevant information through a 78 * temporary file which is mmap-ed in the child process. This allows shared 79 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 80 * stored at offset 0 of this file and contains information on the size and 81 * number of shared structures in the file. The information stored in this file 82 * must remain backwards compatible with older versions of ztest so that 83 * ztest can invoke them during backwards compatibility testing (-B). 84 */ 85 86 #include <sys/zfs_context.h> 87 #include <sys/spa.h> 88 #include <sys/dmu.h> 89 #include <sys/txg.h> 90 #include <sys/dbuf.h> 91 #include <sys/zap.h> 92 #include <sys/dmu_objset.h> 93 #include <sys/poll.h> 94 #include <sys/stat.h> 95 #include <sys/time.h> 96 #include <sys/wait.h> 97 #include <sys/mman.h> 98 #include <sys/resource.h> 99 #include <sys/zio.h> 100 #include <sys/zil.h> 101 #include <sys/zil_impl.h> 102 #include <sys/vdev_impl.h> 103 #include <sys/vdev_file.h> 104 #include <sys/spa_impl.h> 105 #include <sys/metaslab_impl.h> 106 #include <sys/dsl_prop.h> 107 #include <sys/dsl_dataset.h> 108 #include <sys/dsl_destroy.h> 109 #include <sys/dsl_scan.h> 110 #include <sys/zio_checksum.h> 111 #include <sys/refcount.h> 112 #include <sys/zfeature.h> 113 #include <sys/dsl_userhold.h> 114 #include <stdio.h> 115 #include <stdio_ext.h> 116 #include <stdlib.h> 117 #include <unistd.h> 118 #include <signal.h> 119 #include <umem.h> 120 #include <dlfcn.h> 121 #include <ctype.h> 122 #include <math.h> 123 #include <sys/fs/zfs.h> 124 #include <libnvpair.h> 125 126 static int ztest_fd_data = -1; 127 static int ztest_fd_rand = -1; 128 129 typedef struct ztest_shared_hdr { 130 uint64_t zh_hdr_size; 131 uint64_t zh_opts_size; 132 uint64_t zh_size; 133 uint64_t zh_stats_size; 134 uint64_t zh_stats_count; 135 uint64_t zh_ds_size; 136 uint64_t zh_ds_count; 137 } ztest_shared_hdr_t; 138 139 static ztest_shared_hdr_t *ztest_shared_hdr; 140 141 typedef struct ztest_shared_opts { 142 char zo_pool[ZFS_MAX_DATASET_NAME_LEN]; 143 char zo_dir[ZFS_MAX_DATASET_NAME_LEN]; 144 char zo_alt_ztest[MAXNAMELEN]; 145 char zo_alt_libpath[MAXNAMELEN]; 146 uint64_t zo_vdevs; 147 uint64_t zo_vdevtime; 148 size_t zo_vdev_size; 149 int zo_ashift; 150 int zo_mirrors; 151 int zo_raidz; 152 int zo_raidz_parity; 153 int zo_datasets; 154 int zo_threads; 155 uint64_t zo_passtime; 156 uint64_t zo_killrate; 157 int zo_verbose; 158 int zo_init; 159 uint64_t zo_time; 160 uint64_t zo_maxloops; 161 uint64_t zo_metaslab_gang_bang; 162 } ztest_shared_opts_t; 163 164 static const ztest_shared_opts_t ztest_opts_defaults = { 165 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 166 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 167 .zo_alt_ztest = { '\0' }, 168 .zo_alt_libpath = { '\0' }, 169 .zo_vdevs = 5, 170 .zo_ashift = SPA_MINBLOCKSHIFT, 171 .zo_mirrors = 2, 172 .zo_raidz = 4, 173 .zo_raidz_parity = 1, 174 .zo_vdev_size = SPA_MINDEVSIZE * 2, 175 .zo_datasets = 7, 176 .zo_threads = 23, 177 .zo_passtime = 60, /* 60 seconds */ 178 .zo_killrate = 70, /* 70% kill rate */ 179 .zo_verbose = 0, 180 .zo_init = 1, 181 .zo_time = 300, /* 5 minutes */ 182 .zo_maxloops = 50, /* max loops during spa_freeze() */ 183 .zo_metaslab_gang_bang = 32 << 10 184 }; 185 186 extern uint64_t metaslab_gang_bang; 187 extern uint64_t metaslab_df_alloc_threshold; 188 extern uint64_t zfs_deadman_synctime_ms; 189 extern int metaslab_preload_limit; 190 191 static ztest_shared_opts_t *ztest_shared_opts; 192 static ztest_shared_opts_t ztest_opts; 193 194 typedef struct ztest_shared_ds { 195 uint64_t zd_seq; 196 } ztest_shared_ds_t; 197 198 static ztest_shared_ds_t *ztest_shared_ds; 199 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 200 201 #define BT_MAGIC 0x123456789abcdefULL 202 #define MAXFAULTS() \ 203 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 204 205 enum ztest_io_type { 206 ZTEST_IO_WRITE_TAG, 207 ZTEST_IO_WRITE_PATTERN, 208 ZTEST_IO_WRITE_ZEROES, 209 ZTEST_IO_TRUNCATE, 210 ZTEST_IO_SETATTR, 211 ZTEST_IO_REWRITE, 212 ZTEST_IO_TYPES 213 }; 214 215 typedef struct ztest_block_tag { 216 uint64_t bt_magic; 217 uint64_t bt_objset; 218 uint64_t bt_object; 219 uint64_t bt_offset; 220 uint64_t bt_gen; 221 uint64_t bt_txg; 222 uint64_t bt_crtxg; 223 } ztest_block_tag_t; 224 225 typedef struct bufwad { 226 uint64_t bw_index; 227 uint64_t bw_txg; 228 uint64_t bw_data; 229 } bufwad_t; 230 231 /* 232 * XXX -- fix zfs range locks to be generic so we can use them here. 233 */ 234 typedef enum { 235 RL_READER, 236 RL_WRITER, 237 RL_APPEND 238 } rl_type_t; 239 240 typedef struct rll { 241 void *rll_writer; 242 int rll_readers; 243 mutex_t rll_lock; 244 cond_t rll_cv; 245 } rll_t; 246 247 typedef struct rl { 248 uint64_t rl_object; 249 uint64_t rl_offset; 250 uint64_t rl_size; 251 rll_t *rl_lock; 252 } rl_t; 253 254 #define ZTEST_RANGE_LOCKS 64 255 #define ZTEST_OBJECT_LOCKS 64 256 257 /* 258 * Object descriptor. Used as a template for object lookup/create/remove. 259 */ 260 typedef struct ztest_od { 261 uint64_t od_dir; 262 uint64_t od_object; 263 dmu_object_type_t od_type; 264 dmu_object_type_t od_crtype; 265 uint64_t od_blocksize; 266 uint64_t od_crblocksize; 267 uint64_t od_gen; 268 uint64_t od_crgen; 269 char od_name[ZFS_MAX_DATASET_NAME_LEN]; 270 } ztest_od_t; 271 272 /* 273 * Per-dataset state. 274 */ 275 typedef struct ztest_ds { 276 ztest_shared_ds_t *zd_shared; 277 objset_t *zd_os; 278 rwlock_t zd_zilog_lock; 279 zilog_t *zd_zilog; 280 ztest_od_t *zd_od; /* debugging aid */ 281 char zd_name[ZFS_MAX_DATASET_NAME_LEN]; 282 mutex_t zd_dirobj_lock; 283 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 284 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 285 } ztest_ds_t; 286 287 /* 288 * Per-iteration state. 289 */ 290 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 291 292 typedef struct ztest_info { 293 ztest_func_t *zi_func; /* test function */ 294 uint64_t zi_iters; /* iterations per execution */ 295 uint64_t *zi_interval; /* execute every <interval> seconds */ 296 } ztest_info_t; 297 298 typedef struct ztest_shared_callstate { 299 uint64_t zc_count; /* per-pass count */ 300 uint64_t zc_time; /* per-pass time */ 301 uint64_t zc_next; /* next time to call this function */ 302 } ztest_shared_callstate_t; 303 304 static ztest_shared_callstate_t *ztest_shared_callstate; 305 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 306 307 /* 308 * Note: these aren't static because we want dladdr() to work. 309 */ 310 ztest_func_t ztest_dmu_read_write; 311 ztest_func_t ztest_dmu_write_parallel; 312 ztest_func_t ztest_dmu_object_alloc_free; 313 ztest_func_t ztest_dmu_commit_callbacks; 314 ztest_func_t ztest_zap; 315 ztest_func_t ztest_zap_parallel; 316 ztest_func_t ztest_zil_commit; 317 ztest_func_t ztest_zil_remount; 318 ztest_func_t ztest_dmu_read_write_zcopy; 319 ztest_func_t ztest_dmu_objset_create_destroy; 320 ztest_func_t ztest_dmu_prealloc; 321 ztest_func_t ztest_fzap; 322 ztest_func_t ztest_dmu_snapshot_create_destroy; 323 ztest_func_t ztest_dsl_prop_get_set; 324 ztest_func_t ztest_spa_prop_get_set; 325 ztest_func_t ztest_spa_create_destroy; 326 ztest_func_t ztest_fault_inject; 327 ztest_func_t ztest_ddt_repair; 328 ztest_func_t ztest_dmu_snapshot_hold; 329 ztest_func_t ztest_spa_rename; 330 ztest_func_t ztest_scrub; 331 ztest_func_t ztest_dsl_dataset_promote_busy; 332 ztest_func_t ztest_vdev_attach_detach; 333 ztest_func_t ztest_vdev_LUN_growth; 334 ztest_func_t ztest_vdev_add_remove; 335 ztest_func_t ztest_vdev_aux_add_remove; 336 ztest_func_t ztest_split_pool; 337 ztest_func_t ztest_reguid; 338 ztest_func_t ztest_spa_upgrade; 339 340 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 341 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 342 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 343 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 344 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 345 346 ztest_info_t ztest_info[] = { 347 { ztest_dmu_read_write, 1, &zopt_always }, 348 { ztest_dmu_write_parallel, 10, &zopt_always }, 349 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 350 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 351 { ztest_zap, 30, &zopt_always }, 352 { ztest_zap_parallel, 100, &zopt_always }, 353 { ztest_split_pool, 1, &zopt_always }, 354 { ztest_zil_commit, 1, &zopt_incessant }, 355 { ztest_zil_remount, 1, &zopt_sometimes }, 356 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 357 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 358 { ztest_dsl_prop_get_set, 1, &zopt_often }, 359 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 360 #if 0 361 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 362 #endif 363 { ztest_fzap, 1, &zopt_sometimes }, 364 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 365 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 366 { ztest_fault_inject, 1, &zopt_sometimes }, 367 { ztest_ddt_repair, 1, &zopt_sometimes }, 368 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 369 { ztest_reguid, 1, &zopt_rarely }, 370 { ztest_spa_rename, 1, &zopt_rarely }, 371 { ztest_scrub, 1, &zopt_rarely }, 372 { ztest_spa_upgrade, 1, &zopt_rarely }, 373 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 374 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 375 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 376 { ztest_vdev_add_remove, 1, 377 &ztest_opts.zo_vdevtime }, 378 { ztest_vdev_aux_add_remove, 1, 379 &ztest_opts.zo_vdevtime }, 380 }; 381 382 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 383 384 /* 385 * The following struct is used to hold a list of uncalled commit callbacks. 386 * The callbacks are ordered by txg number. 387 */ 388 typedef struct ztest_cb_list { 389 mutex_t zcl_callbacks_lock; 390 list_t zcl_callbacks; 391 } ztest_cb_list_t; 392 393 /* 394 * Stuff we need to share writably between parent and child. 395 */ 396 typedef struct ztest_shared { 397 boolean_t zs_do_init; 398 hrtime_t zs_proc_start; 399 hrtime_t zs_proc_stop; 400 hrtime_t zs_thread_start; 401 hrtime_t zs_thread_stop; 402 hrtime_t zs_thread_kill; 403 uint64_t zs_enospc_count; 404 uint64_t zs_vdev_next_leaf; 405 uint64_t zs_vdev_aux; 406 uint64_t zs_alloc; 407 uint64_t zs_space; 408 uint64_t zs_splits; 409 uint64_t zs_mirrors; 410 uint64_t zs_metaslab_sz; 411 uint64_t zs_metaslab_df_alloc_threshold; 412 uint64_t zs_guid; 413 } ztest_shared_t; 414 415 #define ID_PARALLEL -1ULL 416 417 static char ztest_dev_template[] = "%s/%s.%llua"; 418 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 419 ztest_shared_t *ztest_shared; 420 421 static spa_t *ztest_spa = NULL; 422 static ztest_ds_t *ztest_ds; 423 424 static mutex_t ztest_vdev_lock; 425 426 /* 427 * The ztest_name_lock protects the pool and dataset namespace used by 428 * the individual tests. To modify the namespace, consumers must grab 429 * this lock as writer. Grabbing the lock as reader will ensure that the 430 * namespace does not change while the lock is held. 431 */ 432 static rwlock_t ztest_name_lock; 433 434 static boolean_t ztest_dump_core = B_TRUE; 435 static boolean_t ztest_exiting; 436 437 /* Global commit callback list */ 438 static ztest_cb_list_t zcl; 439 440 enum ztest_object { 441 ZTEST_META_DNODE = 0, 442 ZTEST_DIROBJ, 443 ZTEST_OBJECTS 444 }; 445 446 static void usage(boolean_t) __NORETURN; 447 448 /* 449 * These libumem hooks provide a reasonable set of defaults for the allocator's 450 * debugging facilities. 451 */ 452 const char * 453 _umem_debug_init() 454 { 455 return ("default,verbose"); /* $UMEM_DEBUG setting */ 456 } 457 458 const char * 459 _umem_logging_init(void) 460 { 461 return ("fail,contents"); /* $UMEM_LOGGING setting */ 462 } 463 464 #define FATAL_MSG_SZ 1024 465 466 char *fatal_msg; 467 468 static void 469 fatal(int do_perror, char *message, ...) 470 { 471 va_list args; 472 int save_errno = errno; 473 char buf[FATAL_MSG_SZ]; 474 475 (void) fflush(stdout); 476 477 va_start(args, message); 478 (void) sprintf(buf, "ztest: "); 479 /* LINTED */ 480 (void) vsprintf(buf + strlen(buf), message, args); 481 va_end(args); 482 if (do_perror) { 483 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 484 ": %s", strerror(save_errno)); 485 } 486 (void) fprintf(stderr, "%s\n", buf); 487 fatal_msg = buf; /* to ease debugging */ 488 if (ztest_dump_core) 489 abort(); 490 exit(3); 491 } 492 493 static int 494 str2shift(const char *buf) 495 { 496 const char *ends = "BKMGTPEZ"; 497 int i; 498 499 if (buf[0] == '\0') 500 return (0); 501 for (i = 0; i < strlen(ends); i++) { 502 if (toupper(buf[0]) == ends[i]) 503 break; 504 } 505 if (i == strlen(ends)) { 506 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 507 buf); 508 usage(B_FALSE); 509 } 510 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 511 return (10*i); 512 } 513 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 514 usage(B_FALSE); 515 /* NOTREACHED */ 516 } 517 518 static uint64_t 519 nicenumtoull(const char *buf) 520 { 521 char *end; 522 uint64_t val; 523 524 val = strtoull(buf, &end, 0); 525 if (end == buf) { 526 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 527 usage(B_FALSE); 528 } else if (end[0] == '.') { 529 double fval = strtod(buf, &end); 530 fval *= pow(2, str2shift(end)); 531 if (fval > UINT64_MAX) { 532 (void) fprintf(stderr, "ztest: value too large: %s\n", 533 buf); 534 usage(B_FALSE); 535 } 536 val = (uint64_t)fval; 537 } else { 538 int shift = str2shift(end); 539 if (shift >= 64 || (val << shift) >> shift != val) { 540 (void) fprintf(stderr, "ztest: value too large: %s\n", 541 buf); 542 usage(B_FALSE); 543 } 544 val <<= shift; 545 } 546 return (val); 547 } 548 549 static void 550 usage(boolean_t requested) 551 { 552 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 553 554 char nice_vdev_size[10]; 555 char nice_gang_bang[10]; 556 FILE *fp = requested ? stdout : stderr; 557 558 nicenum(zo->zo_vdev_size, nice_vdev_size); 559 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 560 561 (void) fprintf(fp, "Usage: %s\n" 562 "\t[-v vdevs (default: %llu)]\n" 563 "\t[-s size_of_each_vdev (default: %s)]\n" 564 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 565 "\t[-m mirror_copies (default: %d)]\n" 566 "\t[-r raidz_disks (default: %d)]\n" 567 "\t[-R raidz_parity (default: %d)]\n" 568 "\t[-d datasets (default: %d)]\n" 569 "\t[-t threads (default: %d)]\n" 570 "\t[-g gang_block_threshold (default: %s)]\n" 571 "\t[-i init_count (default: %d)] initialize pool i times\n" 572 "\t[-k kill_percentage (default: %llu%%)]\n" 573 "\t[-p pool_name (default: %s)]\n" 574 "\t[-f dir (default: %s)] file directory for vdev files\n" 575 "\t[-V] verbose (use multiple times for ever more blather)\n" 576 "\t[-E] use existing pool instead of creating new one\n" 577 "\t[-T time (default: %llu sec)] total run time\n" 578 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 579 "\t[-P passtime (default: %llu sec)] time per pass\n" 580 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 581 "\t[-h] (print help)\n" 582 "", 583 zo->zo_pool, 584 (u_longlong_t)zo->zo_vdevs, /* -v */ 585 nice_vdev_size, /* -s */ 586 zo->zo_ashift, /* -a */ 587 zo->zo_mirrors, /* -m */ 588 zo->zo_raidz, /* -r */ 589 zo->zo_raidz_parity, /* -R */ 590 zo->zo_datasets, /* -d */ 591 zo->zo_threads, /* -t */ 592 nice_gang_bang, /* -g */ 593 zo->zo_init, /* -i */ 594 (u_longlong_t)zo->zo_killrate, /* -k */ 595 zo->zo_pool, /* -p */ 596 zo->zo_dir, /* -f */ 597 (u_longlong_t)zo->zo_time, /* -T */ 598 (u_longlong_t)zo->zo_maxloops, /* -F */ 599 (u_longlong_t)zo->zo_passtime); 600 exit(requested ? 0 : 1); 601 } 602 603 static void 604 process_options(int argc, char **argv) 605 { 606 char *path; 607 ztest_shared_opts_t *zo = &ztest_opts; 608 609 int opt; 610 uint64_t value; 611 char altdir[MAXNAMELEN] = { 0 }; 612 613 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 614 615 while ((opt = getopt(argc, argv, 616 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) { 617 value = 0; 618 switch (opt) { 619 case 'v': 620 case 's': 621 case 'a': 622 case 'm': 623 case 'r': 624 case 'R': 625 case 'd': 626 case 't': 627 case 'g': 628 case 'i': 629 case 'k': 630 case 'T': 631 case 'P': 632 case 'F': 633 value = nicenumtoull(optarg); 634 } 635 switch (opt) { 636 case 'v': 637 zo->zo_vdevs = value; 638 break; 639 case 's': 640 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 641 break; 642 case 'a': 643 zo->zo_ashift = value; 644 break; 645 case 'm': 646 zo->zo_mirrors = value; 647 break; 648 case 'r': 649 zo->zo_raidz = MAX(1, value); 650 break; 651 case 'R': 652 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 653 break; 654 case 'd': 655 zo->zo_datasets = MAX(1, value); 656 break; 657 case 't': 658 zo->zo_threads = MAX(1, value); 659 break; 660 case 'g': 661 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 662 value); 663 break; 664 case 'i': 665 zo->zo_init = value; 666 break; 667 case 'k': 668 zo->zo_killrate = value; 669 break; 670 case 'p': 671 (void) strlcpy(zo->zo_pool, optarg, 672 sizeof (zo->zo_pool)); 673 break; 674 case 'f': 675 path = realpath(optarg, NULL); 676 if (path == NULL) { 677 (void) fprintf(stderr, "error: %s: %s\n", 678 optarg, strerror(errno)); 679 usage(B_FALSE); 680 } else { 681 (void) strlcpy(zo->zo_dir, path, 682 sizeof (zo->zo_dir)); 683 } 684 break; 685 case 'V': 686 zo->zo_verbose++; 687 break; 688 case 'E': 689 zo->zo_init = 0; 690 break; 691 case 'T': 692 zo->zo_time = value; 693 break; 694 case 'P': 695 zo->zo_passtime = MAX(1, value); 696 break; 697 case 'F': 698 zo->zo_maxloops = MAX(1, value); 699 break; 700 case 'B': 701 (void) strlcpy(altdir, optarg, sizeof (altdir)); 702 break; 703 case 'h': 704 usage(B_TRUE); 705 break; 706 case '?': 707 default: 708 usage(B_FALSE); 709 break; 710 } 711 } 712 713 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 714 715 zo->zo_vdevtime = 716 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 717 UINT64_MAX >> 2); 718 719 if (strlen(altdir) > 0) { 720 char *cmd; 721 char *realaltdir; 722 char *bin; 723 char *ztest; 724 char *isa; 725 int isalen; 726 727 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 728 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 729 730 VERIFY(NULL != realpath(getexecname(), cmd)); 731 if (0 != access(altdir, F_OK)) { 732 ztest_dump_core = B_FALSE; 733 fatal(B_TRUE, "invalid alternate ztest path: %s", 734 altdir); 735 } 736 VERIFY(NULL != realpath(altdir, realaltdir)); 737 738 /* 739 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 740 * We want to extract <isa> to determine if we should use 741 * 32 or 64 bit binaries. 742 */ 743 bin = strstr(cmd, "/usr/bin/"); 744 ztest = strstr(bin, "/ztest"); 745 isa = bin + 9; 746 isalen = ztest - isa; 747 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 748 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 749 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 750 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 751 752 if (0 != access(zo->zo_alt_ztest, X_OK)) { 753 ztest_dump_core = B_FALSE; 754 fatal(B_TRUE, "invalid alternate ztest: %s", 755 zo->zo_alt_ztest); 756 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 757 ztest_dump_core = B_FALSE; 758 fatal(B_TRUE, "invalid alternate lib directory %s", 759 zo->zo_alt_libpath); 760 } 761 762 umem_free(cmd, MAXPATHLEN); 763 umem_free(realaltdir, MAXPATHLEN); 764 } 765 } 766 767 static void 768 ztest_kill(ztest_shared_t *zs) 769 { 770 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 771 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 772 773 /* 774 * Before we kill off ztest, make sure that the config is updated. 775 * See comment above spa_config_sync(). 776 */ 777 mutex_enter(&spa_namespace_lock); 778 spa_config_sync(ztest_spa, B_FALSE, B_FALSE); 779 mutex_exit(&spa_namespace_lock); 780 781 zfs_dbgmsg_print(FTAG); 782 (void) kill(getpid(), SIGKILL); 783 } 784 785 static uint64_t 786 ztest_random(uint64_t range) 787 { 788 uint64_t r; 789 790 ASSERT3S(ztest_fd_rand, >=, 0); 791 792 if (range == 0) 793 return (0); 794 795 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 796 fatal(1, "short read from /dev/urandom"); 797 798 return (r % range); 799 } 800 801 /* ARGSUSED */ 802 static void 803 ztest_record_enospc(const char *s) 804 { 805 ztest_shared->zs_enospc_count++; 806 } 807 808 static uint64_t 809 ztest_get_ashift(void) 810 { 811 if (ztest_opts.zo_ashift == 0) 812 return (SPA_MINBLOCKSHIFT + ztest_random(5)); 813 return (ztest_opts.zo_ashift); 814 } 815 816 static nvlist_t * 817 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 818 { 819 char pathbuf[MAXPATHLEN]; 820 uint64_t vdev; 821 nvlist_t *file; 822 823 if (ashift == 0) 824 ashift = ztest_get_ashift(); 825 826 if (path == NULL) { 827 path = pathbuf; 828 829 if (aux != NULL) { 830 vdev = ztest_shared->zs_vdev_aux; 831 (void) snprintf(path, sizeof (pathbuf), 832 ztest_aux_template, ztest_opts.zo_dir, 833 pool == NULL ? ztest_opts.zo_pool : pool, 834 aux, vdev); 835 } else { 836 vdev = ztest_shared->zs_vdev_next_leaf++; 837 (void) snprintf(path, sizeof (pathbuf), 838 ztest_dev_template, ztest_opts.zo_dir, 839 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 840 } 841 } 842 843 if (size != 0) { 844 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 845 if (fd == -1) 846 fatal(1, "can't open %s", path); 847 if (ftruncate(fd, size) != 0) 848 fatal(1, "can't ftruncate %s", path); 849 (void) close(fd); 850 } 851 852 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 853 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 854 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 855 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 856 857 return (file); 858 } 859 860 static nvlist_t * 861 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 862 uint64_t ashift, int r) 863 { 864 nvlist_t *raidz, **child; 865 int c; 866 867 if (r < 2) 868 return (make_vdev_file(path, aux, pool, size, ashift)); 869 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 870 871 for (c = 0; c < r; c++) 872 child[c] = make_vdev_file(path, aux, pool, size, ashift); 873 874 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 875 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 876 VDEV_TYPE_RAIDZ) == 0); 877 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 878 ztest_opts.zo_raidz_parity) == 0); 879 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 880 child, r) == 0); 881 882 for (c = 0; c < r; c++) 883 nvlist_free(child[c]); 884 885 umem_free(child, r * sizeof (nvlist_t *)); 886 887 return (raidz); 888 } 889 890 static nvlist_t * 891 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 892 uint64_t ashift, int r, int m) 893 { 894 nvlist_t *mirror, **child; 895 int c; 896 897 if (m < 1) 898 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 899 900 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 901 902 for (c = 0; c < m; c++) 903 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 904 905 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 906 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 907 VDEV_TYPE_MIRROR) == 0); 908 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 909 child, m) == 0); 910 911 for (c = 0; c < m; c++) 912 nvlist_free(child[c]); 913 914 umem_free(child, m * sizeof (nvlist_t *)); 915 916 return (mirror); 917 } 918 919 static nvlist_t * 920 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 921 int log, int r, int m, int t) 922 { 923 nvlist_t *root, **child; 924 int c; 925 926 ASSERT(t > 0); 927 928 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 929 930 for (c = 0; c < t; c++) { 931 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 932 r, m); 933 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 934 log) == 0); 935 } 936 937 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 938 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 939 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 940 child, t) == 0); 941 942 for (c = 0; c < t; c++) 943 nvlist_free(child[c]); 944 945 umem_free(child, t * sizeof (nvlist_t *)); 946 947 return (root); 948 } 949 950 /* 951 * Find a random spa version. Returns back a random spa version in the 952 * range [initial_version, SPA_VERSION_FEATURES]. 953 */ 954 static uint64_t 955 ztest_random_spa_version(uint64_t initial_version) 956 { 957 uint64_t version = initial_version; 958 959 if (version <= SPA_VERSION_BEFORE_FEATURES) { 960 version = version + 961 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 962 } 963 964 if (version > SPA_VERSION_BEFORE_FEATURES) 965 version = SPA_VERSION_FEATURES; 966 967 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 968 return (version); 969 } 970 971 static int 972 ztest_random_blocksize(void) 973 { 974 uint64_t block_shift; 975 /* 976 * Choose a block size >= the ashift. 977 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. 978 */ 979 int maxbs = SPA_OLD_MAXBLOCKSHIFT; 980 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) 981 maxbs = 20; 982 block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); 983 return (1 << (SPA_MINBLOCKSHIFT + block_shift)); 984 } 985 986 static int 987 ztest_random_ibshift(void) 988 { 989 return (DN_MIN_INDBLKSHIFT + 990 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 991 } 992 993 static uint64_t 994 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 995 { 996 uint64_t top; 997 vdev_t *rvd = spa->spa_root_vdev; 998 vdev_t *tvd; 999 1000 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1001 1002 do { 1003 top = ztest_random(rvd->vdev_children); 1004 tvd = rvd->vdev_child[top]; 1005 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 1006 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 1007 1008 return (top); 1009 } 1010 1011 static uint64_t 1012 ztest_random_dsl_prop(zfs_prop_t prop) 1013 { 1014 uint64_t value; 1015 1016 do { 1017 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1018 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1019 1020 return (value); 1021 } 1022 1023 static int 1024 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1025 boolean_t inherit) 1026 { 1027 const char *propname = zfs_prop_to_name(prop); 1028 const char *valname; 1029 char setpoint[MAXPATHLEN]; 1030 uint64_t curval; 1031 int error; 1032 1033 error = dsl_prop_set_int(osname, propname, 1034 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1035 1036 if (error == ENOSPC) { 1037 ztest_record_enospc(FTAG); 1038 return (error); 1039 } 1040 ASSERT0(error); 1041 1042 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1043 1044 if (ztest_opts.zo_verbose >= 6) { 1045 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1046 (void) printf("%s %s = %s at '%s'\n", 1047 osname, propname, valname, setpoint); 1048 } 1049 1050 return (error); 1051 } 1052 1053 static int 1054 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1055 { 1056 spa_t *spa = ztest_spa; 1057 nvlist_t *props = NULL; 1058 int error; 1059 1060 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1061 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1062 1063 error = spa_prop_set(spa, props); 1064 1065 nvlist_free(props); 1066 1067 if (error == ENOSPC) { 1068 ztest_record_enospc(FTAG); 1069 return (error); 1070 } 1071 ASSERT0(error); 1072 1073 return (error); 1074 } 1075 1076 static void 1077 ztest_rll_init(rll_t *rll) 1078 { 1079 rll->rll_writer = NULL; 1080 rll->rll_readers = 0; 1081 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1082 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1083 } 1084 1085 static void 1086 ztest_rll_destroy(rll_t *rll) 1087 { 1088 ASSERT(rll->rll_writer == NULL); 1089 ASSERT(rll->rll_readers == 0); 1090 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1091 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1092 } 1093 1094 static void 1095 ztest_rll_lock(rll_t *rll, rl_type_t type) 1096 { 1097 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1098 1099 if (type == RL_READER) { 1100 while (rll->rll_writer != NULL) 1101 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1102 rll->rll_readers++; 1103 } else { 1104 while (rll->rll_writer != NULL || rll->rll_readers) 1105 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1106 rll->rll_writer = curthread; 1107 } 1108 1109 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1110 } 1111 1112 static void 1113 ztest_rll_unlock(rll_t *rll) 1114 { 1115 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1116 1117 if (rll->rll_writer) { 1118 ASSERT(rll->rll_readers == 0); 1119 rll->rll_writer = NULL; 1120 } else { 1121 ASSERT(rll->rll_readers != 0); 1122 ASSERT(rll->rll_writer == NULL); 1123 rll->rll_readers--; 1124 } 1125 1126 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1127 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1128 1129 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1130 } 1131 1132 static void 1133 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1134 { 1135 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1136 1137 ztest_rll_lock(rll, type); 1138 } 1139 1140 static void 1141 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1142 { 1143 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1144 1145 ztest_rll_unlock(rll); 1146 } 1147 1148 static rl_t * 1149 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1150 uint64_t size, rl_type_t type) 1151 { 1152 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1153 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1154 rl_t *rl; 1155 1156 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1157 rl->rl_object = object; 1158 rl->rl_offset = offset; 1159 rl->rl_size = size; 1160 rl->rl_lock = rll; 1161 1162 ztest_rll_lock(rll, type); 1163 1164 return (rl); 1165 } 1166 1167 static void 1168 ztest_range_unlock(rl_t *rl) 1169 { 1170 rll_t *rll = rl->rl_lock; 1171 1172 ztest_rll_unlock(rll); 1173 1174 umem_free(rl, sizeof (*rl)); 1175 } 1176 1177 static void 1178 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1179 { 1180 zd->zd_os = os; 1181 zd->zd_zilog = dmu_objset_zil(os); 1182 zd->zd_shared = szd; 1183 dmu_objset_name(os, zd->zd_name); 1184 1185 if (zd->zd_shared != NULL) 1186 zd->zd_shared->zd_seq = 0; 1187 1188 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1189 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1190 1191 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1192 ztest_rll_init(&zd->zd_object_lock[l]); 1193 1194 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1195 ztest_rll_init(&zd->zd_range_lock[l]); 1196 } 1197 1198 static void 1199 ztest_zd_fini(ztest_ds_t *zd) 1200 { 1201 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1202 1203 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1204 ztest_rll_destroy(&zd->zd_object_lock[l]); 1205 1206 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1207 ztest_rll_destroy(&zd->zd_range_lock[l]); 1208 } 1209 1210 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1211 1212 static uint64_t 1213 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1214 { 1215 uint64_t txg; 1216 int error; 1217 1218 /* 1219 * Attempt to assign tx to some transaction group. 1220 */ 1221 error = dmu_tx_assign(tx, txg_how); 1222 if (error) { 1223 if (error == ERESTART) { 1224 ASSERT(txg_how == TXG_NOWAIT); 1225 dmu_tx_wait(tx); 1226 } else { 1227 ASSERT3U(error, ==, ENOSPC); 1228 ztest_record_enospc(tag); 1229 } 1230 dmu_tx_abort(tx); 1231 return (0); 1232 } 1233 txg = dmu_tx_get_txg(tx); 1234 ASSERT(txg != 0); 1235 return (txg); 1236 } 1237 1238 static void 1239 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1240 { 1241 uint64_t *ip = buf; 1242 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1243 1244 while (ip < ip_end) 1245 *ip++ = value; 1246 } 1247 1248 static boolean_t 1249 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1250 { 1251 uint64_t *ip = buf; 1252 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1253 uint64_t diff = 0; 1254 1255 while (ip < ip_end) 1256 diff |= (value - *ip++); 1257 1258 return (diff == 0); 1259 } 1260 1261 static void 1262 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1263 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1264 { 1265 bt->bt_magic = BT_MAGIC; 1266 bt->bt_objset = dmu_objset_id(os); 1267 bt->bt_object = object; 1268 bt->bt_offset = offset; 1269 bt->bt_gen = gen; 1270 bt->bt_txg = txg; 1271 bt->bt_crtxg = crtxg; 1272 } 1273 1274 static void 1275 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1276 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1277 { 1278 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1279 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1280 ASSERT3U(bt->bt_object, ==, object); 1281 ASSERT3U(bt->bt_offset, ==, offset); 1282 ASSERT3U(bt->bt_gen, <=, gen); 1283 ASSERT3U(bt->bt_txg, <=, txg); 1284 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1285 } 1286 1287 static ztest_block_tag_t * 1288 ztest_bt_bonus(dmu_buf_t *db) 1289 { 1290 dmu_object_info_t doi; 1291 ztest_block_tag_t *bt; 1292 1293 dmu_object_info_from_db(db, &doi); 1294 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1295 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1296 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1297 1298 return (bt); 1299 } 1300 1301 /* 1302 * ZIL logging ops 1303 */ 1304 1305 #define lrz_type lr_mode 1306 #define lrz_blocksize lr_uid 1307 #define lrz_ibshift lr_gid 1308 #define lrz_bonustype lr_rdev 1309 #define lrz_bonuslen lr_crtime[1] 1310 1311 static void 1312 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1313 { 1314 char *name = (void *)(lr + 1); /* name follows lr */ 1315 size_t namesize = strlen(name) + 1; 1316 itx_t *itx; 1317 1318 if (zil_replaying(zd->zd_zilog, tx)) 1319 return; 1320 1321 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1322 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1323 sizeof (*lr) + namesize - sizeof (lr_t)); 1324 1325 zil_itx_assign(zd->zd_zilog, itx, tx); 1326 } 1327 1328 static void 1329 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1330 { 1331 char *name = (void *)(lr + 1); /* name follows lr */ 1332 size_t namesize = strlen(name) + 1; 1333 itx_t *itx; 1334 1335 if (zil_replaying(zd->zd_zilog, tx)) 1336 return; 1337 1338 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1339 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1340 sizeof (*lr) + namesize - sizeof (lr_t)); 1341 1342 itx->itx_oid = object; 1343 zil_itx_assign(zd->zd_zilog, itx, tx); 1344 } 1345 1346 static void 1347 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1348 { 1349 itx_t *itx; 1350 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1351 1352 if (zil_replaying(zd->zd_zilog, tx)) 1353 return; 1354 1355 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1356 write_state = WR_INDIRECT; 1357 1358 itx = zil_itx_create(TX_WRITE, 1359 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1360 1361 if (write_state == WR_COPIED && 1362 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1363 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1364 zil_itx_destroy(itx); 1365 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1366 write_state = WR_NEED_COPY; 1367 } 1368 itx->itx_private = zd; 1369 itx->itx_wr_state = write_state; 1370 itx->itx_sync = (ztest_random(8) == 0); 1371 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1372 1373 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1374 sizeof (*lr) - sizeof (lr_t)); 1375 1376 zil_itx_assign(zd->zd_zilog, itx, tx); 1377 } 1378 1379 static void 1380 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1381 { 1382 itx_t *itx; 1383 1384 if (zil_replaying(zd->zd_zilog, tx)) 1385 return; 1386 1387 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1388 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1389 sizeof (*lr) - sizeof (lr_t)); 1390 1391 itx->itx_sync = B_FALSE; 1392 zil_itx_assign(zd->zd_zilog, itx, tx); 1393 } 1394 1395 static void 1396 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1397 { 1398 itx_t *itx; 1399 1400 if (zil_replaying(zd->zd_zilog, tx)) 1401 return; 1402 1403 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1404 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1405 sizeof (*lr) - sizeof (lr_t)); 1406 1407 itx->itx_sync = B_FALSE; 1408 zil_itx_assign(zd->zd_zilog, itx, tx); 1409 } 1410 1411 /* 1412 * ZIL replay ops 1413 */ 1414 static int 1415 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1416 { 1417 char *name = (void *)(lr + 1); /* name follows lr */ 1418 objset_t *os = zd->zd_os; 1419 ztest_block_tag_t *bbt; 1420 dmu_buf_t *db; 1421 dmu_tx_t *tx; 1422 uint64_t txg; 1423 int error = 0; 1424 1425 if (byteswap) 1426 byteswap_uint64_array(lr, sizeof (*lr)); 1427 1428 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1429 ASSERT(name[0] != '\0'); 1430 1431 tx = dmu_tx_create(os); 1432 1433 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1434 1435 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1436 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1437 } else { 1438 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1439 } 1440 1441 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1442 if (txg == 0) 1443 return (ENOSPC); 1444 1445 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1446 1447 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1448 if (lr->lr_foid == 0) { 1449 lr->lr_foid = zap_create(os, 1450 lr->lrz_type, lr->lrz_bonustype, 1451 lr->lrz_bonuslen, tx); 1452 } else { 1453 error = zap_create_claim(os, lr->lr_foid, 1454 lr->lrz_type, lr->lrz_bonustype, 1455 lr->lrz_bonuslen, tx); 1456 } 1457 } else { 1458 if (lr->lr_foid == 0) { 1459 lr->lr_foid = dmu_object_alloc(os, 1460 lr->lrz_type, 0, lr->lrz_bonustype, 1461 lr->lrz_bonuslen, tx); 1462 } else { 1463 error = dmu_object_claim(os, lr->lr_foid, 1464 lr->lrz_type, 0, lr->lrz_bonustype, 1465 lr->lrz_bonuslen, tx); 1466 } 1467 } 1468 1469 if (error) { 1470 ASSERT3U(error, ==, EEXIST); 1471 ASSERT(zd->zd_zilog->zl_replay); 1472 dmu_tx_commit(tx); 1473 return (error); 1474 } 1475 1476 ASSERT(lr->lr_foid != 0); 1477 1478 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1479 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1480 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1481 1482 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1483 bbt = ztest_bt_bonus(db); 1484 dmu_buf_will_dirty(db, tx); 1485 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1486 dmu_buf_rele(db, FTAG); 1487 1488 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1489 &lr->lr_foid, tx)); 1490 1491 (void) ztest_log_create(zd, tx, lr); 1492 1493 dmu_tx_commit(tx); 1494 1495 return (0); 1496 } 1497 1498 static int 1499 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1500 { 1501 char *name = (void *)(lr + 1); /* name follows lr */ 1502 objset_t *os = zd->zd_os; 1503 dmu_object_info_t doi; 1504 dmu_tx_t *tx; 1505 uint64_t object, txg; 1506 1507 if (byteswap) 1508 byteswap_uint64_array(lr, sizeof (*lr)); 1509 1510 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1511 ASSERT(name[0] != '\0'); 1512 1513 VERIFY3U(0, ==, 1514 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1515 ASSERT(object != 0); 1516 1517 ztest_object_lock(zd, object, RL_WRITER); 1518 1519 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1520 1521 tx = dmu_tx_create(os); 1522 1523 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1524 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1525 1526 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1527 if (txg == 0) { 1528 ztest_object_unlock(zd, object); 1529 return (ENOSPC); 1530 } 1531 1532 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1533 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1534 } else { 1535 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1536 } 1537 1538 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1539 1540 (void) ztest_log_remove(zd, tx, lr, object); 1541 1542 dmu_tx_commit(tx); 1543 1544 ztest_object_unlock(zd, object); 1545 1546 return (0); 1547 } 1548 1549 static int 1550 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1551 { 1552 objset_t *os = zd->zd_os; 1553 void *data = lr + 1; /* data follows lr */ 1554 uint64_t offset, length; 1555 ztest_block_tag_t *bt = data; 1556 ztest_block_tag_t *bbt; 1557 uint64_t gen, txg, lrtxg, crtxg; 1558 dmu_object_info_t doi; 1559 dmu_tx_t *tx; 1560 dmu_buf_t *db; 1561 arc_buf_t *abuf = NULL; 1562 rl_t *rl; 1563 1564 if (byteswap) 1565 byteswap_uint64_array(lr, sizeof (*lr)); 1566 1567 offset = lr->lr_offset; 1568 length = lr->lr_length; 1569 1570 /* If it's a dmu_sync() block, write the whole block */ 1571 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1572 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1573 if (length < blocksize) { 1574 offset -= offset % blocksize; 1575 length = blocksize; 1576 } 1577 } 1578 1579 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1580 byteswap_uint64_array(bt, sizeof (*bt)); 1581 1582 if (bt->bt_magic != BT_MAGIC) 1583 bt = NULL; 1584 1585 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1586 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1587 1588 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1589 1590 dmu_object_info_from_db(db, &doi); 1591 1592 bbt = ztest_bt_bonus(db); 1593 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1594 gen = bbt->bt_gen; 1595 crtxg = bbt->bt_crtxg; 1596 lrtxg = lr->lr_common.lrc_txg; 1597 1598 tx = dmu_tx_create(os); 1599 1600 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1601 1602 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1603 P2PHASE(offset, length) == 0) 1604 abuf = dmu_request_arcbuf(db, length); 1605 1606 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1607 if (txg == 0) { 1608 if (abuf != NULL) 1609 dmu_return_arcbuf(abuf); 1610 dmu_buf_rele(db, FTAG); 1611 ztest_range_unlock(rl); 1612 ztest_object_unlock(zd, lr->lr_foid); 1613 return (ENOSPC); 1614 } 1615 1616 if (bt != NULL) { 1617 /* 1618 * Usually, verify the old data before writing new data -- 1619 * but not always, because we also want to verify correct 1620 * behavior when the data was not recently read into cache. 1621 */ 1622 ASSERT(offset % doi.doi_data_block_size == 0); 1623 if (ztest_random(4) != 0) { 1624 int prefetch = ztest_random(2) ? 1625 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1626 ztest_block_tag_t rbt; 1627 1628 VERIFY(dmu_read(os, lr->lr_foid, offset, 1629 sizeof (rbt), &rbt, prefetch) == 0); 1630 if (rbt.bt_magic == BT_MAGIC) { 1631 ztest_bt_verify(&rbt, os, lr->lr_foid, 1632 offset, gen, txg, crtxg); 1633 } 1634 } 1635 1636 /* 1637 * Writes can appear to be newer than the bonus buffer because 1638 * the ztest_get_data() callback does a dmu_read() of the 1639 * open-context data, which may be different than the data 1640 * as it was when the write was generated. 1641 */ 1642 if (zd->zd_zilog->zl_replay) { 1643 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1644 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1645 bt->bt_crtxg); 1646 } 1647 1648 /* 1649 * Set the bt's gen/txg to the bonus buffer's gen/txg 1650 * so that all of the usual ASSERTs will work. 1651 */ 1652 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1653 } 1654 1655 if (abuf == NULL) { 1656 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1657 } else { 1658 bcopy(data, abuf->b_data, length); 1659 dmu_assign_arcbuf(db, offset, abuf, tx); 1660 } 1661 1662 (void) ztest_log_write(zd, tx, lr); 1663 1664 dmu_buf_rele(db, FTAG); 1665 1666 dmu_tx_commit(tx); 1667 1668 ztest_range_unlock(rl); 1669 ztest_object_unlock(zd, lr->lr_foid); 1670 1671 return (0); 1672 } 1673 1674 static int 1675 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1676 { 1677 objset_t *os = zd->zd_os; 1678 dmu_tx_t *tx; 1679 uint64_t txg; 1680 rl_t *rl; 1681 1682 if (byteswap) 1683 byteswap_uint64_array(lr, sizeof (*lr)); 1684 1685 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1686 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1687 RL_WRITER); 1688 1689 tx = dmu_tx_create(os); 1690 1691 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1692 1693 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1694 if (txg == 0) { 1695 ztest_range_unlock(rl); 1696 ztest_object_unlock(zd, lr->lr_foid); 1697 return (ENOSPC); 1698 } 1699 1700 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1701 lr->lr_length, tx) == 0); 1702 1703 (void) ztest_log_truncate(zd, tx, lr); 1704 1705 dmu_tx_commit(tx); 1706 1707 ztest_range_unlock(rl); 1708 ztest_object_unlock(zd, lr->lr_foid); 1709 1710 return (0); 1711 } 1712 1713 static int 1714 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1715 { 1716 objset_t *os = zd->zd_os; 1717 dmu_tx_t *tx; 1718 dmu_buf_t *db; 1719 ztest_block_tag_t *bbt; 1720 uint64_t txg, lrtxg, crtxg; 1721 1722 if (byteswap) 1723 byteswap_uint64_array(lr, sizeof (*lr)); 1724 1725 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1726 1727 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1728 1729 tx = dmu_tx_create(os); 1730 dmu_tx_hold_bonus(tx, lr->lr_foid); 1731 1732 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1733 if (txg == 0) { 1734 dmu_buf_rele(db, FTAG); 1735 ztest_object_unlock(zd, lr->lr_foid); 1736 return (ENOSPC); 1737 } 1738 1739 bbt = ztest_bt_bonus(db); 1740 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1741 crtxg = bbt->bt_crtxg; 1742 lrtxg = lr->lr_common.lrc_txg; 1743 1744 if (zd->zd_zilog->zl_replay) { 1745 ASSERT(lr->lr_size != 0); 1746 ASSERT(lr->lr_mode != 0); 1747 ASSERT(lrtxg != 0); 1748 } else { 1749 /* 1750 * Randomly change the size and increment the generation. 1751 */ 1752 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1753 sizeof (*bbt); 1754 lr->lr_mode = bbt->bt_gen + 1; 1755 ASSERT(lrtxg == 0); 1756 } 1757 1758 /* 1759 * Verify that the current bonus buffer is not newer than our txg. 1760 */ 1761 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1762 MAX(txg, lrtxg), crtxg); 1763 1764 dmu_buf_will_dirty(db, tx); 1765 1766 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1767 ASSERT3U(lr->lr_size, <=, db->db_size); 1768 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1769 bbt = ztest_bt_bonus(db); 1770 1771 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1772 1773 dmu_buf_rele(db, FTAG); 1774 1775 (void) ztest_log_setattr(zd, tx, lr); 1776 1777 dmu_tx_commit(tx); 1778 1779 ztest_object_unlock(zd, lr->lr_foid); 1780 1781 return (0); 1782 } 1783 1784 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1785 NULL, /* 0 no such transaction type */ 1786 ztest_replay_create, /* TX_CREATE */ 1787 NULL, /* TX_MKDIR */ 1788 NULL, /* TX_MKXATTR */ 1789 NULL, /* TX_SYMLINK */ 1790 ztest_replay_remove, /* TX_REMOVE */ 1791 NULL, /* TX_RMDIR */ 1792 NULL, /* TX_LINK */ 1793 NULL, /* TX_RENAME */ 1794 ztest_replay_write, /* TX_WRITE */ 1795 ztest_replay_truncate, /* TX_TRUNCATE */ 1796 ztest_replay_setattr, /* TX_SETATTR */ 1797 NULL, /* TX_ACL */ 1798 NULL, /* TX_CREATE_ACL */ 1799 NULL, /* TX_CREATE_ATTR */ 1800 NULL, /* TX_CREATE_ACL_ATTR */ 1801 NULL, /* TX_MKDIR_ACL */ 1802 NULL, /* TX_MKDIR_ATTR */ 1803 NULL, /* TX_MKDIR_ACL_ATTR */ 1804 NULL, /* TX_WRITE2 */ 1805 }; 1806 1807 /* 1808 * ZIL get_data callbacks 1809 */ 1810 1811 static void 1812 ztest_get_done(zgd_t *zgd, int error) 1813 { 1814 ztest_ds_t *zd = zgd->zgd_private; 1815 uint64_t object = zgd->zgd_rl->rl_object; 1816 1817 if (zgd->zgd_db) 1818 dmu_buf_rele(zgd->zgd_db, zgd); 1819 1820 ztest_range_unlock(zgd->zgd_rl); 1821 ztest_object_unlock(zd, object); 1822 1823 if (error == 0 && zgd->zgd_bp) 1824 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1825 1826 umem_free(zgd, sizeof (*zgd)); 1827 } 1828 1829 static int 1830 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1831 { 1832 ztest_ds_t *zd = arg; 1833 objset_t *os = zd->zd_os; 1834 uint64_t object = lr->lr_foid; 1835 uint64_t offset = lr->lr_offset; 1836 uint64_t size = lr->lr_length; 1837 blkptr_t *bp = &lr->lr_blkptr; 1838 uint64_t txg = lr->lr_common.lrc_txg; 1839 uint64_t crtxg; 1840 dmu_object_info_t doi; 1841 dmu_buf_t *db; 1842 zgd_t *zgd; 1843 int error; 1844 1845 ztest_object_lock(zd, object, RL_READER); 1846 error = dmu_bonus_hold(os, object, FTAG, &db); 1847 if (error) { 1848 ztest_object_unlock(zd, object); 1849 return (error); 1850 } 1851 1852 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1853 1854 if (crtxg == 0 || crtxg > txg) { 1855 dmu_buf_rele(db, FTAG); 1856 ztest_object_unlock(zd, object); 1857 return (ENOENT); 1858 } 1859 1860 dmu_object_info_from_db(db, &doi); 1861 dmu_buf_rele(db, FTAG); 1862 db = NULL; 1863 1864 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1865 zgd->zgd_zilog = zd->zd_zilog; 1866 zgd->zgd_private = zd; 1867 1868 if (buf != NULL) { /* immediate write */ 1869 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1870 RL_READER); 1871 1872 error = dmu_read(os, object, offset, size, buf, 1873 DMU_READ_NO_PREFETCH); 1874 ASSERT(error == 0); 1875 } else { 1876 size = doi.doi_data_block_size; 1877 if (ISP2(size)) { 1878 offset = P2ALIGN(offset, size); 1879 } else { 1880 ASSERT(offset < size); 1881 offset = 0; 1882 } 1883 1884 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1885 RL_READER); 1886 1887 error = dmu_buf_hold(os, object, offset, zgd, &db, 1888 DMU_READ_NO_PREFETCH); 1889 1890 if (error == 0) { 1891 blkptr_t *obp = dmu_buf_get_blkptr(db); 1892 if (obp) { 1893 ASSERT(BP_IS_HOLE(bp)); 1894 *bp = *obp; 1895 } 1896 1897 zgd->zgd_db = db; 1898 zgd->zgd_bp = bp; 1899 1900 ASSERT(db->db_offset == offset); 1901 ASSERT(db->db_size == size); 1902 1903 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1904 ztest_get_done, zgd); 1905 1906 if (error == 0) 1907 return (0); 1908 } 1909 } 1910 1911 ztest_get_done(zgd, error); 1912 1913 return (error); 1914 } 1915 1916 static void * 1917 ztest_lr_alloc(size_t lrsize, char *name) 1918 { 1919 char *lr; 1920 size_t namesize = name ? strlen(name) + 1 : 0; 1921 1922 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1923 1924 if (name) 1925 bcopy(name, lr + lrsize, namesize); 1926 1927 return (lr); 1928 } 1929 1930 void 1931 ztest_lr_free(void *lr, size_t lrsize, char *name) 1932 { 1933 size_t namesize = name ? strlen(name) + 1 : 0; 1934 1935 umem_free(lr, lrsize + namesize); 1936 } 1937 1938 /* 1939 * Lookup a bunch of objects. Returns the number of objects not found. 1940 */ 1941 static int 1942 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1943 { 1944 int missing = 0; 1945 int error; 1946 1947 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1948 1949 for (int i = 0; i < count; i++, od++) { 1950 od->od_object = 0; 1951 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1952 sizeof (uint64_t), 1, &od->od_object); 1953 if (error) { 1954 ASSERT(error == ENOENT); 1955 ASSERT(od->od_object == 0); 1956 missing++; 1957 } else { 1958 dmu_buf_t *db; 1959 ztest_block_tag_t *bbt; 1960 dmu_object_info_t doi; 1961 1962 ASSERT(od->od_object != 0); 1963 ASSERT(missing == 0); /* there should be no gaps */ 1964 1965 ztest_object_lock(zd, od->od_object, RL_READER); 1966 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1967 od->od_object, FTAG, &db)); 1968 dmu_object_info_from_db(db, &doi); 1969 bbt = ztest_bt_bonus(db); 1970 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1971 od->od_type = doi.doi_type; 1972 od->od_blocksize = doi.doi_data_block_size; 1973 od->od_gen = bbt->bt_gen; 1974 dmu_buf_rele(db, FTAG); 1975 ztest_object_unlock(zd, od->od_object); 1976 } 1977 } 1978 1979 return (missing); 1980 } 1981 1982 static int 1983 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1984 { 1985 int missing = 0; 1986 1987 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1988 1989 for (int i = 0; i < count; i++, od++) { 1990 if (missing) { 1991 od->od_object = 0; 1992 missing++; 1993 continue; 1994 } 1995 1996 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1997 1998 lr->lr_doid = od->od_dir; 1999 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 2000 lr->lrz_type = od->od_crtype; 2001 lr->lrz_blocksize = od->od_crblocksize; 2002 lr->lrz_ibshift = ztest_random_ibshift(); 2003 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 2004 lr->lrz_bonuslen = dmu_bonus_max(); 2005 lr->lr_gen = od->od_crgen; 2006 lr->lr_crtime[0] = time(NULL); 2007 2008 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2009 ASSERT(missing == 0); 2010 od->od_object = 0; 2011 missing++; 2012 } else { 2013 od->od_object = lr->lr_foid; 2014 od->od_type = od->od_crtype; 2015 od->od_blocksize = od->od_crblocksize; 2016 od->od_gen = od->od_crgen; 2017 ASSERT(od->od_object != 0); 2018 } 2019 2020 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2021 } 2022 2023 return (missing); 2024 } 2025 2026 static int 2027 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2028 { 2029 int missing = 0; 2030 int error; 2031 2032 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2033 2034 od += count - 1; 2035 2036 for (int i = count - 1; i >= 0; i--, od--) { 2037 if (missing) { 2038 missing++; 2039 continue; 2040 } 2041 2042 /* 2043 * No object was found. 2044 */ 2045 if (od->od_object == 0) 2046 continue; 2047 2048 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2049 2050 lr->lr_doid = od->od_dir; 2051 2052 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2053 ASSERT3U(error, ==, ENOSPC); 2054 missing++; 2055 } else { 2056 od->od_object = 0; 2057 } 2058 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2059 } 2060 2061 return (missing); 2062 } 2063 2064 static int 2065 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2066 void *data) 2067 { 2068 lr_write_t *lr; 2069 int error; 2070 2071 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2072 2073 lr->lr_foid = object; 2074 lr->lr_offset = offset; 2075 lr->lr_length = size; 2076 lr->lr_blkoff = 0; 2077 BP_ZERO(&lr->lr_blkptr); 2078 2079 bcopy(data, lr + 1, size); 2080 2081 error = ztest_replay_write(zd, lr, B_FALSE); 2082 2083 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2084 2085 return (error); 2086 } 2087 2088 static int 2089 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2090 { 2091 lr_truncate_t *lr; 2092 int error; 2093 2094 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2095 2096 lr->lr_foid = object; 2097 lr->lr_offset = offset; 2098 lr->lr_length = size; 2099 2100 error = ztest_replay_truncate(zd, lr, B_FALSE); 2101 2102 ztest_lr_free(lr, sizeof (*lr), NULL); 2103 2104 return (error); 2105 } 2106 2107 static int 2108 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2109 { 2110 lr_setattr_t *lr; 2111 int error; 2112 2113 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2114 2115 lr->lr_foid = object; 2116 lr->lr_size = 0; 2117 lr->lr_mode = 0; 2118 2119 error = ztest_replay_setattr(zd, lr, B_FALSE); 2120 2121 ztest_lr_free(lr, sizeof (*lr), NULL); 2122 2123 return (error); 2124 } 2125 2126 static void 2127 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2128 { 2129 objset_t *os = zd->zd_os; 2130 dmu_tx_t *tx; 2131 uint64_t txg; 2132 rl_t *rl; 2133 2134 txg_wait_synced(dmu_objset_pool(os), 0); 2135 2136 ztest_object_lock(zd, object, RL_READER); 2137 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2138 2139 tx = dmu_tx_create(os); 2140 2141 dmu_tx_hold_write(tx, object, offset, size); 2142 2143 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2144 2145 if (txg != 0) { 2146 dmu_prealloc(os, object, offset, size, tx); 2147 dmu_tx_commit(tx); 2148 txg_wait_synced(dmu_objset_pool(os), txg); 2149 } else { 2150 (void) dmu_free_long_range(os, object, offset, size); 2151 } 2152 2153 ztest_range_unlock(rl); 2154 ztest_object_unlock(zd, object); 2155 } 2156 2157 static void 2158 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2159 { 2160 int err; 2161 ztest_block_tag_t wbt; 2162 dmu_object_info_t doi; 2163 enum ztest_io_type io_type; 2164 uint64_t blocksize; 2165 void *data; 2166 2167 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2168 blocksize = doi.doi_data_block_size; 2169 data = umem_alloc(blocksize, UMEM_NOFAIL); 2170 2171 /* 2172 * Pick an i/o type at random, biased toward writing block tags. 2173 */ 2174 io_type = ztest_random(ZTEST_IO_TYPES); 2175 if (ztest_random(2) == 0) 2176 io_type = ZTEST_IO_WRITE_TAG; 2177 2178 (void) rw_rdlock(&zd->zd_zilog_lock); 2179 2180 switch (io_type) { 2181 2182 case ZTEST_IO_WRITE_TAG: 2183 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2184 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2185 break; 2186 2187 case ZTEST_IO_WRITE_PATTERN: 2188 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2189 if (ztest_random(2) == 0) { 2190 /* 2191 * Induce fletcher2 collisions to ensure that 2192 * zio_ddt_collision() detects and resolves them 2193 * when using fletcher2-verify for deduplication. 2194 */ 2195 ((uint64_t *)data)[0] ^= 1ULL << 63; 2196 ((uint64_t *)data)[4] ^= 1ULL << 63; 2197 } 2198 (void) ztest_write(zd, object, offset, blocksize, data); 2199 break; 2200 2201 case ZTEST_IO_WRITE_ZEROES: 2202 bzero(data, blocksize); 2203 (void) ztest_write(zd, object, offset, blocksize, data); 2204 break; 2205 2206 case ZTEST_IO_TRUNCATE: 2207 (void) ztest_truncate(zd, object, offset, blocksize); 2208 break; 2209 2210 case ZTEST_IO_SETATTR: 2211 (void) ztest_setattr(zd, object); 2212 break; 2213 2214 case ZTEST_IO_REWRITE: 2215 (void) rw_rdlock(&ztest_name_lock); 2216 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2217 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2218 B_FALSE); 2219 VERIFY(err == 0 || err == ENOSPC); 2220 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2221 ZFS_PROP_COMPRESSION, 2222 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2223 B_FALSE); 2224 VERIFY(err == 0 || err == ENOSPC); 2225 (void) rw_unlock(&ztest_name_lock); 2226 2227 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2228 DMU_READ_NO_PREFETCH)); 2229 2230 (void) ztest_write(zd, object, offset, blocksize, data); 2231 break; 2232 } 2233 2234 (void) rw_unlock(&zd->zd_zilog_lock); 2235 2236 umem_free(data, blocksize); 2237 } 2238 2239 /* 2240 * Initialize an object description template. 2241 */ 2242 static void 2243 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2244 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2245 { 2246 od->od_dir = ZTEST_DIROBJ; 2247 od->od_object = 0; 2248 2249 od->od_crtype = type; 2250 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2251 od->od_crgen = gen; 2252 2253 od->od_type = DMU_OT_NONE; 2254 od->od_blocksize = 0; 2255 od->od_gen = 0; 2256 2257 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2258 tag, (int64_t)id, index); 2259 } 2260 2261 /* 2262 * Lookup or create the objects for a test using the od template. 2263 * If the objects do not all exist, or if 'remove' is specified, 2264 * remove any existing objects and create new ones. Otherwise, 2265 * use the existing objects. 2266 */ 2267 static int 2268 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2269 { 2270 int count = size / sizeof (*od); 2271 int rv = 0; 2272 2273 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2274 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2275 (ztest_remove(zd, od, count) != 0 || 2276 ztest_create(zd, od, count) != 0)) 2277 rv = -1; 2278 zd->zd_od = od; 2279 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2280 2281 return (rv); 2282 } 2283 2284 /* ARGSUSED */ 2285 void 2286 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2287 { 2288 zilog_t *zilog = zd->zd_zilog; 2289 2290 (void) rw_rdlock(&zd->zd_zilog_lock); 2291 2292 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2293 2294 /* 2295 * Remember the committed values in zd, which is in parent/child 2296 * shared memory. If we die, the next iteration of ztest_run() 2297 * will verify that the log really does contain this record. 2298 */ 2299 mutex_enter(&zilog->zl_lock); 2300 ASSERT(zd->zd_shared != NULL); 2301 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2302 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2303 mutex_exit(&zilog->zl_lock); 2304 2305 (void) rw_unlock(&zd->zd_zilog_lock); 2306 } 2307 2308 /* 2309 * This function is designed to simulate the operations that occur during a 2310 * mount/unmount operation. We hold the dataset across these operations in an 2311 * attempt to expose any implicit assumptions about ZIL management. 2312 */ 2313 /* ARGSUSED */ 2314 void 2315 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2316 { 2317 objset_t *os = zd->zd_os; 2318 2319 /* 2320 * We grab the zd_dirobj_lock to ensure that no other thread is 2321 * updating the zil (i.e. adding in-memory log records) and the 2322 * zd_zilog_lock to block any I/O. 2323 */ 2324 VERIFY0(mutex_lock(&zd->zd_dirobj_lock)); 2325 (void) rw_wrlock(&zd->zd_zilog_lock); 2326 2327 /* zfsvfs_teardown() */ 2328 zil_close(zd->zd_zilog); 2329 2330 /* zfsvfs_setup() */ 2331 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2332 zil_replay(os, zd, ztest_replay_vector); 2333 2334 (void) rw_unlock(&zd->zd_zilog_lock); 2335 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2336 } 2337 2338 /* 2339 * Verify that we can't destroy an active pool, create an existing pool, 2340 * or create a pool with a bad vdev spec. 2341 */ 2342 /* ARGSUSED */ 2343 void 2344 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2345 { 2346 ztest_shared_opts_t *zo = &ztest_opts; 2347 spa_t *spa; 2348 nvlist_t *nvroot; 2349 2350 /* 2351 * Attempt to create using a bad file. 2352 */ 2353 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2354 VERIFY3U(ENOENT, ==, 2355 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2356 nvlist_free(nvroot); 2357 2358 /* 2359 * Attempt to create using a bad mirror. 2360 */ 2361 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2362 VERIFY3U(ENOENT, ==, 2363 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2364 nvlist_free(nvroot); 2365 2366 /* 2367 * Attempt to create an existing pool. It shouldn't matter 2368 * what's in the nvroot; we should fail with EEXIST. 2369 */ 2370 (void) rw_rdlock(&ztest_name_lock); 2371 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2372 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2373 nvlist_free(nvroot); 2374 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2375 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2376 spa_close(spa, FTAG); 2377 2378 (void) rw_unlock(&ztest_name_lock); 2379 } 2380 2381 /* ARGSUSED */ 2382 void 2383 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2384 { 2385 spa_t *spa; 2386 uint64_t initial_version = SPA_VERSION_INITIAL; 2387 uint64_t version, newversion; 2388 nvlist_t *nvroot, *props; 2389 char *name; 2390 2391 VERIFY0(mutex_lock(&ztest_vdev_lock)); 2392 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2393 2394 /* 2395 * Clean up from previous runs. 2396 */ 2397 (void) spa_destroy(name); 2398 2399 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2400 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2401 2402 /* 2403 * If we're configuring a RAIDZ device then make sure that the 2404 * the initial version is capable of supporting that feature. 2405 */ 2406 switch (ztest_opts.zo_raidz_parity) { 2407 case 0: 2408 case 1: 2409 initial_version = SPA_VERSION_INITIAL; 2410 break; 2411 case 2: 2412 initial_version = SPA_VERSION_RAIDZ2; 2413 break; 2414 case 3: 2415 initial_version = SPA_VERSION_RAIDZ3; 2416 break; 2417 } 2418 2419 /* 2420 * Create a pool with a spa version that can be upgraded. Pick 2421 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2422 */ 2423 do { 2424 version = ztest_random_spa_version(initial_version); 2425 } while (version > SPA_VERSION_BEFORE_FEATURES); 2426 2427 props = fnvlist_alloc(); 2428 fnvlist_add_uint64(props, 2429 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2430 VERIFY0(spa_create(name, nvroot, props, NULL)); 2431 fnvlist_free(nvroot); 2432 fnvlist_free(props); 2433 2434 VERIFY0(spa_open(name, &spa, FTAG)); 2435 VERIFY3U(spa_version(spa), ==, version); 2436 newversion = ztest_random_spa_version(version + 1); 2437 2438 if (ztest_opts.zo_verbose >= 4) { 2439 (void) printf("upgrading spa version from %llu to %llu\n", 2440 (u_longlong_t)version, (u_longlong_t)newversion); 2441 } 2442 2443 spa_upgrade(spa, newversion); 2444 VERIFY3U(spa_version(spa), >, version); 2445 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2446 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2447 spa_close(spa, FTAG); 2448 2449 strfree(name); 2450 VERIFY0(mutex_unlock(&ztest_vdev_lock)); 2451 } 2452 2453 static vdev_t * 2454 vdev_lookup_by_path(vdev_t *vd, const char *path) 2455 { 2456 vdev_t *mvd; 2457 2458 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2459 return (vd); 2460 2461 for (int c = 0; c < vd->vdev_children; c++) 2462 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2463 NULL) 2464 return (mvd); 2465 2466 return (NULL); 2467 } 2468 2469 /* 2470 * Find the first available hole which can be used as a top-level. 2471 */ 2472 int 2473 find_vdev_hole(spa_t *spa) 2474 { 2475 vdev_t *rvd = spa->spa_root_vdev; 2476 int c; 2477 2478 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2479 2480 for (c = 0; c < rvd->vdev_children; c++) { 2481 vdev_t *cvd = rvd->vdev_child[c]; 2482 2483 if (cvd->vdev_ishole) 2484 break; 2485 } 2486 return (c); 2487 } 2488 2489 /* 2490 * Verify that vdev_add() works as expected. 2491 */ 2492 /* ARGSUSED */ 2493 void 2494 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2495 { 2496 ztest_shared_t *zs = ztest_shared; 2497 spa_t *spa = ztest_spa; 2498 uint64_t leaves; 2499 uint64_t guid; 2500 nvlist_t *nvroot; 2501 int error; 2502 2503 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2504 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2505 2506 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2507 2508 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2509 2510 /* 2511 * If we have slogs then remove them 1/4 of the time. 2512 */ 2513 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2514 /* 2515 * Grab the guid from the head of the log class rotor. 2516 */ 2517 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2518 2519 spa_config_exit(spa, SCL_VDEV, FTAG); 2520 2521 /* 2522 * We have to grab the zs_name_lock as writer to 2523 * prevent a race between removing a slog (dmu_objset_find) 2524 * and destroying a dataset. Removing the slog will 2525 * grab a reference on the dataset which may cause 2526 * dmu_objset_destroy() to fail with EBUSY thus 2527 * leaving the dataset in an inconsistent state. 2528 */ 2529 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2530 error = spa_vdev_remove(spa, guid, B_FALSE); 2531 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2532 2533 if (error && error != EEXIST) 2534 fatal(0, "spa_vdev_remove() = %d", error); 2535 } else { 2536 spa_config_exit(spa, SCL_VDEV, FTAG); 2537 2538 /* 2539 * Make 1/4 of the devices be log devices. 2540 */ 2541 nvroot = make_vdev_root(NULL, NULL, NULL, 2542 ztest_opts.zo_vdev_size, 0, 2543 ztest_random(4) == 0, ztest_opts.zo_raidz, 2544 zs->zs_mirrors, 1); 2545 2546 error = spa_vdev_add(spa, nvroot); 2547 nvlist_free(nvroot); 2548 2549 if (error == ENOSPC) 2550 ztest_record_enospc("spa_vdev_add"); 2551 else if (error != 0) 2552 fatal(0, "spa_vdev_add() = %d", error); 2553 } 2554 2555 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2556 } 2557 2558 /* 2559 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2560 */ 2561 /* ARGSUSED */ 2562 void 2563 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2564 { 2565 ztest_shared_t *zs = ztest_shared; 2566 spa_t *spa = ztest_spa; 2567 vdev_t *rvd = spa->spa_root_vdev; 2568 spa_aux_vdev_t *sav; 2569 char *aux; 2570 uint64_t guid = 0; 2571 int error; 2572 2573 if (ztest_random(2) == 0) { 2574 sav = &spa->spa_spares; 2575 aux = ZPOOL_CONFIG_SPARES; 2576 } else { 2577 sav = &spa->spa_l2cache; 2578 aux = ZPOOL_CONFIG_L2CACHE; 2579 } 2580 2581 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2582 2583 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2584 2585 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2586 /* 2587 * Pick a random device to remove. 2588 */ 2589 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2590 } else { 2591 /* 2592 * Find an unused device we can add. 2593 */ 2594 zs->zs_vdev_aux = 0; 2595 for (;;) { 2596 char path[MAXPATHLEN]; 2597 int c; 2598 (void) snprintf(path, sizeof (path), ztest_aux_template, 2599 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2600 zs->zs_vdev_aux); 2601 for (c = 0; c < sav->sav_count; c++) 2602 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2603 path) == 0) 2604 break; 2605 if (c == sav->sav_count && 2606 vdev_lookup_by_path(rvd, path) == NULL) 2607 break; 2608 zs->zs_vdev_aux++; 2609 } 2610 } 2611 2612 spa_config_exit(spa, SCL_VDEV, FTAG); 2613 2614 if (guid == 0) { 2615 /* 2616 * Add a new device. 2617 */ 2618 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2619 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2620 error = spa_vdev_add(spa, nvroot); 2621 if (error != 0) 2622 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2623 nvlist_free(nvroot); 2624 } else { 2625 /* 2626 * Remove an existing device. Sometimes, dirty its 2627 * vdev state first to make sure we handle removal 2628 * of devices that have pending state changes. 2629 */ 2630 if (ztest_random(2) == 0) 2631 (void) vdev_online(spa, guid, 0, NULL); 2632 2633 error = spa_vdev_remove(spa, guid, B_FALSE); 2634 if (error != 0 && error != EBUSY) 2635 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2636 } 2637 2638 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2639 } 2640 2641 /* 2642 * split a pool if it has mirror tlvdevs 2643 */ 2644 /* ARGSUSED */ 2645 void 2646 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2647 { 2648 ztest_shared_t *zs = ztest_shared; 2649 spa_t *spa = ztest_spa; 2650 vdev_t *rvd = spa->spa_root_vdev; 2651 nvlist_t *tree, **child, *config, *split, **schild; 2652 uint_t c, children, schildren = 0, lastlogid = 0; 2653 int error = 0; 2654 2655 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2656 2657 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2658 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2659 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2660 return; 2661 } 2662 2663 /* clean up the old pool, if any */ 2664 (void) spa_destroy("splitp"); 2665 2666 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2667 2668 /* generate a config from the existing config */ 2669 mutex_enter(&spa->spa_props_lock); 2670 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2671 &tree) == 0); 2672 mutex_exit(&spa->spa_props_lock); 2673 2674 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2675 &children) == 0); 2676 2677 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2678 for (c = 0; c < children; c++) { 2679 vdev_t *tvd = rvd->vdev_child[c]; 2680 nvlist_t **mchild; 2681 uint_t mchildren; 2682 2683 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2684 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2685 0) == 0); 2686 VERIFY(nvlist_add_string(schild[schildren], 2687 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2688 VERIFY(nvlist_add_uint64(schild[schildren], 2689 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2690 if (lastlogid == 0) 2691 lastlogid = schildren; 2692 ++schildren; 2693 continue; 2694 } 2695 lastlogid = 0; 2696 VERIFY(nvlist_lookup_nvlist_array(child[c], 2697 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2698 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2699 } 2700 2701 /* OK, create a config that can be used to split */ 2702 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2703 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2704 VDEV_TYPE_ROOT) == 0); 2705 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2706 lastlogid != 0 ? lastlogid : schildren) == 0); 2707 2708 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2709 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2710 2711 for (c = 0; c < schildren; c++) 2712 nvlist_free(schild[c]); 2713 free(schild); 2714 nvlist_free(split); 2715 2716 spa_config_exit(spa, SCL_VDEV, FTAG); 2717 2718 (void) rw_wrlock(&ztest_name_lock); 2719 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2720 (void) rw_unlock(&ztest_name_lock); 2721 2722 nvlist_free(config); 2723 2724 if (error == 0) { 2725 (void) printf("successful split - results:\n"); 2726 mutex_enter(&spa_namespace_lock); 2727 show_pool_stats(spa); 2728 show_pool_stats(spa_lookup("splitp")); 2729 mutex_exit(&spa_namespace_lock); 2730 ++zs->zs_splits; 2731 --zs->zs_mirrors; 2732 } 2733 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2734 2735 } 2736 2737 /* 2738 * Verify that we can attach and detach devices. 2739 */ 2740 /* ARGSUSED */ 2741 void 2742 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2743 { 2744 ztest_shared_t *zs = ztest_shared; 2745 spa_t *spa = ztest_spa; 2746 spa_aux_vdev_t *sav = &spa->spa_spares; 2747 vdev_t *rvd = spa->spa_root_vdev; 2748 vdev_t *oldvd, *newvd, *pvd; 2749 nvlist_t *root; 2750 uint64_t leaves; 2751 uint64_t leaf, top; 2752 uint64_t ashift = ztest_get_ashift(); 2753 uint64_t oldguid, pguid; 2754 uint64_t oldsize, newsize; 2755 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2756 int replacing; 2757 int oldvd_has_siblings = B_FALSE; 2758 int newvd_is_spare = B_FALSE; 2759 int oldvd_is_log; 2760 int error, expected_error; 2761 2762 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2763 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2764 2765 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2766 2767 /* 2768 * Decide whether to do an attach or a replace. 2769 */ 2770 replacing = ztest_random(2); 2771 2772 /* 2773 * Pick a random top-level vdev. 2774 */ 2775 top = ztest_random_vdev_top(spa, B_TRUE); 2776 2777 /* 2778 * Pick a random leaf within it. 2779 */ 2780 leaf = ztest_random(leaves); 2781 2782 /* 2783 * Locate this vdev. 2784 */ 2785 oldvd = rvd->vdev_child[top]; 2786 if (zs->zs_mirrors >= 1) { 2787 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2788 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2789 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2790 } 2791 if (ztest_opts.zo_raidz > 1) { 2792 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2793 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2794 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2795 } 2796 2797 /* 2798 * If we're already doing an attach or replace, oldvd may be a 2799 * mirror vdev -- in which case, pick a random child. 2800 */ 2801 while (oldvd->vdev_children != 0) { 2802 oldvd_has_siblings = B_TRUE; 2803 ASSERT(oldvd->vdev_children >= 2); 2804 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2805 } 2806 2807 oldguid = oldvd->vdev_guid; 2808 oldsize = vdev_get_min_asize(oldvd); 2809 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2810 (void) strcpy(oldpath, oldvd->vdev_path); 2811 pvd = oldvd->vdev_parent; 2812 pguid = pvd->vdev_guid; 2813 2814 /* 2815 * If oldvd has siblings, then half of the time, detach it. 2816 */ 2817 if (oldvd_has_siblings && ztest_random(2) == 0) { 2818 spa_config_exit(spa, SCL_VDEV, FTAG); 2819 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2820 if (error != 0 && error != ENODEV && error != EBUSY && 2821 error != ENOTSUP) 2822 fatal(0, "detach (%s) returned %d", oldpath, error); 2823 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2824 return; 2825 } 2826 2827 /* 2828 * For the new vdev, choose with equal probability between the two 2829 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2830 */ 2831 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2832 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2833 newvd_is_spare = B_TRUE; 2834 (void) strcpy(newpath, newvd->vdev_path); 2835 } else { 2836 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2837 ztest_opts.zo_dir, ztest_opts.zo_pool, 2838 top * leaves + leaf); 2839 if (ztest_random(2) == 0) 2840 newpath[strlen(newpath) - 1] = 'b'; 2841 newvd = vdev_lookup_by_path(rvd, newpath); 2842 } 2843 2844 if (newvd) { 2845 newsize = vdev_get_min_asize(newvd); 2846 } else { 2847 /* 2848 * Make newsize a little bigger or smaller than oldsize. 2849 * If it's smaller, the attach should fail. 2850 * If it's larger, and we're doing a replace, 2851 * we should get dynamic LUN growth when we're done. 2852 */ 2853 newsize = 10 * oldsize / (9 + ztest_random(3)); 2854 } 2855 2856 /* 2857 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2858 * unless it's a replace; in that case any non-replacing parent is OK. 2859 * 2860 * If newvd is already part of the pool, it should fail with EBUSY. 2861 * 2862 * If newvd is too small, it should fail with EOVERFLOW. 2863 */ 2864 if (pvd->vdev_ops != &vdev_mirror_ops && 2865 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2866 pvd->vdev_ops == &vdev_replacing_ops || 2867 pvd->vdev_ops == &vdev_spare_ops)) 2868 expected_error = ENOTSUP; 2869 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2870 expected_error = ENOTSUP; 2871 else if (newvd == oldvd) 2872 expected_error = replacing ? 0 : EBUSY; 2873 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2874 expected_error = EBUSY; 2875 else if (newsize < oldsize) 2876 expected_error = EOVERFLOW; 2877 else if (ashift > oldvd->vdev_top->vdev_ashift) 2878 expected_error = EDOM; 2879 else 2880 expected_error = 0; 2881 2882 spa_config_exit(spa, SCL_VDEV, FTAG); 2883 2884 /* 2885 * Build the nvlist describing newpath. 2886 */ 2887 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2888 ashift, 0, 0, 0, 1); 2889 2890 error = spa_vdev_attach(spa, oldguid, root, replacing); 2891 2892 nvlist_free(root); 2893 2894 /* 2895 * If our parent was the replacing vdev, but the replace completed, 2896 * then instead of failing with ENOTSUP we may either succeed, 2897 * fail with ENODEV, or fail with EOVERFLOW. 2898 */ 2899 if (expected_error == ENOTSUP && 2900 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2901 expected_error = error; 2902 2903 /* 2904 * If someone grew the LUN, the replacement may be too small. 2905 */ 2906 if (error == EOVERFLOW || error == EBUSY) 2907 expected_error = error; 2908 2909 /* XXX workaround 6690467 */ 2910 if (error != expected_error && expected_error != EBUSY) { 2911 fatal(0, "attach (%s %llu, %s %llu, %d) " 2912 "returned %d, expected %d", 2913 oldpath, oldsize, newpath, 2914 newsize, replacing, error, expected_error); 2915 } 2916 2917 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2918 } 2919 2920 /* 2921 * Callback function which expands the physical size of the vdev. 2922 */ 2923 vdev_t * 2924 grow_vdev(vdev_t *vd, void *arg) 2925 { 2926 spa_t *spa = vd->vdev_spa; 2927 size_t *newsize = arg; 2928 size_t fsize; 2929 int fd; 2930 2931 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2932 ASSERT(vd->vdev_ops->vdev_op_leaf); 2933 2934 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2935 return (vd); 2936 2937 fsize = lseek(fd, 0, SEEK_END); 2938 (void) ftruncate(fd, *newsize); 2939 2940 if (ztest_opts.zo_verbose >= 6) { 2941 (void) printf("%s grew from %lu to %lu bytes\n", 2942 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2943 } 2944 (void) close(fd); 2945 return (NULL); 2946 } 2947 2948 /* 2949 * Callback function which expands a given vdev by calling vdev_online(). 2950 */ 2951 /* ARGSUSED */ 2952 vdev_t * 2953 online_vdev(vdev_t *vd, void *arg) 2954 { 2955 spa_t *spa = vd->vdev_spa; 2956 vdev_t *tvd = vd->vdev_top; 2957 uint64_t guid = vd->vdev_guid; 2958 uint64_t generation = spa->spa_config_generation + 1; 2959 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2960 int error; 2961 2962 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2963 ASSERT(vd->vdev_ops->vdev_op_leaf); 2964 2965 /* Calling vdev_online will initialize the new metaslabs */ 2966 spa_config_exit(spa, SCL_STATE, spa); 2967 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2968 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2969 2970 /* 2971 * If vdev_online returned an error or the underlying vdev_open 2972 * failed then we abort the expand. The only way to know that 2973 * vdev_open fails is by checking the returned newstate. 2974 */ 2975 if (error || newstate != VDEV_STATE_HEALTHY) { 2976 if (ztest_opts.zo_verbose >= 5) { 2977 (void) printf("Unable to expand vdev, state %llu, " 2978 "error %d\n", (u_longlong_t)newstate, error); 2979 } 2980 return (vd); 2981 } 2982 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2983 2984 /* 2985 * Since we dropped the lock we need to ensure that we're 2986 * still talking to the original vdev. It's possible this 2987 * vdev may have been detached/replaced while we were 2988 * trying to online it. 2989 */ 2990 if (generation != spa->spa_config_generation) { 2991 if (ztest_opts.zo_verbose >= 5) { 2992 (void) printf("vdev configuration has changed, " 2993 "guid %llu, state %llu, expected gen %llu, " 2994 "got gen %llu\n", 2995 (u_longlong_t)guid, 2996 (u_longlong_t)tvd->vdev_state, 2997 (u_longlong_t)generation, 2998 (u_longlong_t)spa->spa_config_generation); 2999 } 3000 return (vd); 3001 } 3002 return (NULL); 3003 } 3004 3005 /* 3006 * Traverse the vdev tree calling the supplied function. 3007 * We continue to walk the tree until we either have walked all 3008 * children or we receive a non-NULL return from the callback. 3009 * If a NULL callback is passed, then we just return back the first 3010 * leaf vdev we encounter. 3011 */ 3012 vdev_t * 3013 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3014 { 3015 if (vd->vdev_ops->vdev_op_leaf) { 3016 if (func == NULL) 3017 return (vd); 3018 else 3019 return (func(vd, arg)); 3020 } 3021 3022 for (uint_t c = 0; c < vd->vdev_children; c++) { 3023 vdev_t *cvd = vd->vdev_child[c]; 3024 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3025 return (cvd); 3026 } 3027 return (NULL); 3028 } 3029 3030 /* 3031 * Verify that dynamic LUN growth works as expected. 3032 */ 3033 /* ARGSUSED */ 3034 void 3035 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3036 { 3037 spa_t *spa = ztest_spa; 3038 vdev_t *vd, *tvd; 3039 metaslab_class_t *mc; 3040 metaslab_group_t *mg; 3041 size_t psize, newsize; 3042 uint64_t top; 3043 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3044 3045 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 3046 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3047 3048 top = ztest_random_vdev_top(spa, B_TRUE); 3049 3050 tvd = spa->spa_root_vdev->vdev_child[top]; 3051 mg = tvd->vdev_mg; 3052 mc = mg->mg_class; 3053 old_ms_count = tvd->vdev_ms_count; 3054 old_class_space = metaslab_class_get_space(mc); 3055 3056 /* 3057 * Determine the size of the first leaf vdev associated with 3058 * our top-level device. 3059 */ 3060 vd = vdev_walk_tree(tvd, NULL, NULL); 3061 ASSERT3P(vd, !=, NULL); 3062 ASSERT(vd->vdev_ops->vdev_op_leaf); 3063 3064 psize = vd->vdev_psize; 3065 3066 /* 3067 * We only try to expand the vdev if it's healthy, less than 4x its 3068 * original size, and it has a valid psize. 3069 */ 3070 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3071 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3072 spa_config_exit(spa, SCL_STATE, spa); 3073 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3074 return; 3075 } 3076 ASSERT(psize > 0); 3077 newsize = psize + psize / 8; 3078 ASSERT3U(newsize, >, psize); 3079 3080 if (ztest_opts.zo_verbose >= 6) { 3081 (void) printf("Expanding LUN %s from %lu to %lu\n", 3082 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3083 } 3084 3085 /* 3086 * Growing the vdev is a two step process: 3087 * 1). expand the physical size (i.e. relabel) 3088 * 2). online the vdev to create the new metaslabs 3089 */ 3090 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3091 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3092 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3093 if (ztest_opts.zo_verbose >= 5) { 3094 (void) printf("Could not expand LUN because " 3095 "the vdev configuration changed.\n"); 3096 } 3097 spa_config_exit(spa, SCL_STATE, spa); 3098 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3099 return; 3100 } 3101 3102 spa_config_exit(spa, SCL_STATE, spa); 3103 3104 /* 3105 * Expanding the LUN will update the config asynchronously, 3106 * thus we must wait for the async thread to complete any 3107 * pending tasks before proceeding. 3108 */ 3109 for (;;) { 3110 boolean_t done; 3111 mutex_enter(&spa->spa_async_lock); 3112 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3113 mutex_exit(&spa->spa_async_lock); 3114 if (done) 3115 break; 3116 txg_wait_synced(spa_get_dsl(spa), 0); 3117 (void) poll(NULL, 0, 100); 3118 } 3119 3120 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3121 3122 tvd = spa->spa_root_vdev->vdev_child[top]; 3123 new_ms_count = tvd->vdev_ms_count; 3124 new_class_space = metaslab_class_get_space(mc); 3125 3126 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3127 if (ztest_opts.zo_verbose >= 5) { 3128 (void) printf("Could not verify LUN expansion due to " 3129 "intervening vdev offline or remove.\n"); 3130 } 3131 spa_config_exit(spa, SCL_STATE, spa); 3132 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3133 return; 3134 } 3135 3136 /* 3137 * Make sure we were able to grow the vdev. 3138 */ 3139 if (new_ms_count <= old_ms_count) 3140 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 3141 old_ms_count, new_ms_count); 3142 3143 /* 3144 * Make sure we were able to grow the pool. 3145 */ 3146 if (new_class_space <= old_class_space) 3147 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 3148 old_class_space, new_class_space); 3149 3150 if (ztest_opts.zo_verbose >= 5) { 3151 char oldnumbuf[6], newnumbuf[6]; 3152 3153 nicenum(old_class_space, oldnumbuf); 3154 nicenum(new_class_space, newnumbuf); 3155 (void) printf("%s grew from %s to %s\n", 3156 spa->spa_name, oldnumbuf, newnumbuf); 3157 } 3158 3159 spa_config_exit(spa, SCL_STATE, spa); 3160 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3161 } 3162 3163 /* 3164 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3165 */ 3166 /* ARGSUSED */ 3167 static void 3168 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3169 { 3170 /* 3171 * Create the objects common to all ztest datasets. 3172 */ 3173 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3174 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3175 } 3176 3177 static int 3178 ztest_dataset_create(char *dsname) 3179 { 3180 uint64_t zilset = ztest_random(100); 3181 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3182 ztest_objset_create_cb, NULL); 3183 3184 if (err || zilset < 80) 3185 return (err); 3186 3187 if (ztest_opts.zo_verbose >= 6) 3188 (void) printf("Setting dataset %s to sync always\n", dsname); 3189 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3190 ZFS_SYNC_ALWAYS, B_FALSE)); 3191 } 3192 3193 /* ARGSUSED */ 3194 static int 3195 ztest_objset_destroy_cb(const char *name, void *arg) 3196 { 3197 objset_t *os; 3198 dmu_object_info_t doi; 3199 int error; 3200 3201 /* 3202 * Verify that the dataset contains a directory object. 3203 */ 3204 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3205 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3206 if (error != ENOENT) { 3207 /* We could have crashed in the middle of destroying it */ 3208 ASSERT0(error); 3209 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3210 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3211 } 3212 dmu_objset_disown(os, FTAG); 3213 3214 /* 3215 * Destroy the dataset. 3216 */ 3217 if (strchr(name, '@') != NULL) { 3218 VERIFY0(dsl_destroy_snapshot(name, B_FALSE)); 3219 } else { 3220 VERIFY0(dsl_destroy_head(name)); 3221 } 3222 return (0); 3223 } 3224 3225 static boolean_t 3226 ztest_snapshot_create(char *osname, uint64_t id) 3227 { 3228 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3229 int error; 3230 3231 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3232 3233 error = dmu_objset_snapshot_one(osname, snapname); 3234 if (error == ENOSPC) { 3235 ztest_record_enospc(FTAG); 3236 return (B_FALSE); 3237 } 3238 if (error != 0 && error != EEXIST) { 3239 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3240 snapname, error); 3241 } 3242 return (B_TRUE); 3243 } 3244 3245 static boolean_t 3246 ztest_snapshot_destroy(char *osname, uint64_t id) 3247 { 3248 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3249 int error; 3250 3251 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname, 3252 (u_longlong_t)id); 3253 3254 error = dsl_destroy_snapshot(snapname, B_FALSE); 3255 if (error != 0 && error != ENOENT) 3256 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3257 return (B_TRUE); 3258 } 3259 3260 /* ARGSUSED */ 3261 void 3262 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3263 { 3264 ztest_ds_t zdtmp; 3265 int iters; 3266 int error; 3267 objset_t *os, *os2; 3268 char name[ZFS_MAX_DATASET_NAME_LEN]; 3269 zilog_t *zilog; 3270 3271 (void) rw_rdlock(&ztest_name_lock); 3272 3273 (void) snprintf(name, sizeof (name), "%s/temp_%llu", 3274 ztest_opts.zo_pool, (u_longlong_t)id); 3275 3276 /* 3277 * If this dataset exists from a previous run, process its replay log 3278 * half of the time. If we don't replay it, then dmu_objset_destroy() 3279 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3280 */ 3281 if (ztest_random(2) == 0 && 3282 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3283 ztest_zd_init(&zdtmp, NULL, os); 3284 zil_replay(os, &zdtmp, ztest_replay_vector); 3285 ztest_zd_fini(&zdtmp); 3286 dmu_objset_disown(os, FTAG); 3287 } 3288 3289 /* 3290 * There may be an old instance of the dataset we're about to 3291 * create lying around from a previous run. If so, destroy it 3292 * and all of its snapshots. 3293 */ 3294 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3295 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3296 3297 /* 3298 * Verify that the destroyed dataset is no longer in the namespace. 3299 */ 3300 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3301 FTAG, &os)); 3302 3303 /* 3304 * Verify that we can create a new dataset. 3305 */ 3306 error = ztest_dataset_create(name); 3307 if (error) { 3308 if (error == ENOSPC) { 3309 ztest_record_enospc(FTAG); 3310 (void) rw_unlock(&ztest_name_lock); 3311 return; 3312 } 3313 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3314 } 3315 3316 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3317 3318 ztest_zd_init(&zdtmp, NULL, os); 3319 3320 /* 3321 * Open the intent log for it. 3322 */ 3323 zilog = zil_open(os, ztest_get_data); 3324 3325 /* 3326 * Put some objects in there, do a little I/O to them, 3327 * and randomly take a couple of snapshots along the way. 3328 */ 3329 iters = ztest_random(5); 3330 for (int i = 0; i < iters; i++) { 3331 ztest_dmu_object_alloc_free(&zdtmp, id); 3332 if (ztest_random(iters) == 0) 3333 (void) ztest_snapshot_create(name, i); 3334 } 3335 3336 /* 3337 * Verify that we cannot create an existing dataset. 3338 */ 3339 VERIFY3U(EEXIST, ==, 3340 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3341 3342 /* 3343 * Verify that we can hold an objset that is also owned. 3344 */ 3345 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3346 dmu_objset_rele(os2, FTAG); 3347 3348 /* 3349 * Verify that we cannot own an objset that is already owned. 3350 */ 3351 VERIFY3U(EBUSY, ==, 3352 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3353 3354 zil_close(zilog); 3355 dmu_objset_disown(os, FTAG); 3356 ztest_zd_fini(&zdtmp); 3357 3358 (void) rw_unlock(&ztest_name_lock); 3359 } 3360 3361 /* 3362 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3363 */ 3364 void 3365 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3366 { 3367 (void) rw_rdlock(&ztest_name_lock); 3368 (void) ztest_snapshot_destroy(zd->zd_name, id); 3369 (void) ztest_snapshot_create(zd->zd_name, id); 3370 (void) rw_unlock(&ztest_name_lock); 3371 } 3372 3373 /* 3374 * Cleanup non-standard snapshots and clones. 3375 */ 3376 void 3377 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3378 { 3379 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 3380 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 3381 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 3382 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 3383 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 3384 int error; 3385 3386 (void) snprintf(snap1name, sizeof (snap1name), 3387 "%s@s1_%llu", osname, id); 3388 (void) snprintf(clone1name, sizeof (clone1name), 3389 "%s/c1_%llu", osname, id); 3390 (void) snprintf(snap2name, sizeof (snap2name), 3391 "%s@s2_%llu", clone1name, id); 3392 (void) snprintf(clone2name, sizeof (clone2name), 3393 "%s/c2_%llu", osname, id); 3394 (void) snprintf(snap3name, sizeof (snap3name), 3395 "%s@s3_%llu", clone1name, id); 3396 3397 error = dsl_destroy_head(clone2name); 3398 if (error && error != ENOENT) 3399 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3400 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3401 if (error && error != ENOENT) 3402 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3403 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3404 if (error && error != ENOENT) 3405 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3406 error = dsl_destroy_head(clone1name); 3407 if (error && error != ENOENT) 3408 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3409 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3410 if (error && error != ENOENT) 3411 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3412 } 3413 3414 /* 3415 * Verify dsl_dataset_promote handles EBUSY 3416 */ 3417 void 3418 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3419 { 3420 objset_t *os; 3421 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 3422 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 3423 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 3424 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 3425 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 3426 char *osname = zd->zd_name; 3427 int error; 3428 3429 (void) rw_rdlock(&ztest_name_lock); 3430 3431 ztest_dsl_dataset_cleanup(osname, id); 3432 3433 (void) snprintf(snap1name, sizeof (snap1name), 3434 "%s@s1_%llu", osname, id); 3435 (void) snprintf(clone1name, sizeof (clone1name), 3436 "%s/c1_%llu", osname, id); 3437 (void) snprintf(snap2name, sizeof (snap2name), 3438 "%s@s2_%llu", clone1name, id); 3439 (void) snprintf(clone2name, sizeof (clone2name), 3440 "%s/c2_%llu", osname, id); 3441 (void) snprintf(snap3name, sizeof (snap3name), 3442 "%s@s3_%llu", clone1name, id); 3443 3444 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3445 if (error && error != EEXIST) { 3446 if (error == ENOSPC) { 3447 ztest_record_enospc(FTAG); 3448 goto out; 3449 } 3450 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3451 } 3452 3453 error = dmu_objset_clone(clone1name, snap1name); 3454 if (error) { 3455 if (error == ENOSPC) { 3456 ztest_record_enospc(FTAG); 3457 goto out; 3458 } 3459 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3460 } 3461 3462 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3463 if (error && error != EEXIST) { 3464 if (error == ENOSPC) { 3465 ztest_record_enospc(FTAG); 3466 goto out; 3467 } 3468 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3469 } 3470 3471 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3472 if (error && error != EEXIST) { 3473 if (error == ENOSPC) { 3474 ztest_record_enospc(FTAG); 3475 goto out; 3476 } 3477 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3478 } 3479 3480 error = dmu_objset_clone(clone2name, snap3name); 3481 if (error) { 3482 if (error == ENOSPC) { 3483 ztest_record_enospc(FTAG); 3484 goto out; 3485 } 3486 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3487 } 3488 3489 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3490 if (error) 3491 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3492 error = dsl_dataset_promote(clone2name, NULL); 3493 if (error == ENOSPC) { 3494 dmu_objset_disown(os, FTAG); 3495 ztest_record_enospc(FTAG); 3496 goto out; 3497 } 3498 if (error != EBUSY) 3499 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3500 error); 3501 dmu_objset_disown(os, FTAG); 3502 3503 out: 3504 ztest_dsl_dataset_cleanup(osname, id); 3505 3506 (void) rw_unlock(&ztest_name_lock); 3507 } 3508 3509 /* 3510 * Verify that dmu_object_{alloc,free} work as expected. 3511 */ 3512 void 3513 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3514 { 3515 ztest_od_t od[4]; 3516 int batchsize = sizeof (od) / sizeof (od[0]); 3517 3518 for (int b = 0; b < batchsize; b++) 3519 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3520 3521 /* 3522 * Destroy the previous batch of objects, create a new batch, 3523 * and do some I/O on the new objects. 3524 */ 3525 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3526 return; 3527 3528 while (ztest_random(4 * batchsize) != 0) 3529 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3530 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3531 } 3532 3533 /* 3534 * Verify that dmu_{read,write} work as expected. 3535 */ 3536 void 3537 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3538 { 3539 objset_t *os = zd->zd_os; 3540 ztest_od_t od[2]; 3541 dmu_tx_t *tx; 3542 int i, freeit, error; 3543 uint64_t n, s, txg; 3544 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3545 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3546 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3547 uint64_t regions = 997; 3548 uint64_t stride = 123456789ULL; 3549 uint64_t width = 40; 3550 int free_percent = 5; 3551 3552 /* 3553 * This test uses two objects, packobj and bigobj, that are always 3554 * updated together (i.e. in the same tx) so that their contents are 3555 * in sync and can be compared. Their contents relate to each other 3556 * in a simple way: packobj is a dense array of 'bufwad' structures, 3557 * while bigobj is a sparse array of the same bufwads. Specifically, 3558 * for any index n, there are three bufwads that should be identical: 3559 * 3560 * packobj, at offset n * sizeof (bufwad_t) 3561 * bigobj, at the head of the nth chunk 3562 * bigobj, at the tail of the nth chunk 3563 * 3564 * The chunk size is arbitrary. It doesn't have to be a power of two, 3565 * and it doesn't have any relation to the object blocksize. 3566 * The only requirement is that it can hold at least two bufwads. 3567 * 3568 * Normally, we write the bufwad to each of these locations. 3569 * However, free_percent of the time we instead write zeroes to 3570 * packobj and perform a dmu_free_range() on bigobj. By comparing 3571 * bigobj to packobj, we can verify that the DMU is correctly 3572 * tracking which parts of an object are allocated and free, 3573 * and that the contents of the allocated blocks are correct. 3574 */ 3575 3576 /* 3577 * Read the directory info. If it's the first time, set things up. 3578 */ 3579 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3580 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3581 3582 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3583 return; 3584 3585 bigobj = od[0].od_object; 3586 packobj = od[1].od_object; 3587 chunksize = od[0].od_gen; 3588 ASSERT(chunksize == od[1].od_gen); 3589 3590 /* 3591 * Prefetch a random chunk of the big object. 3592 * Our aim here is to get some async reads in flight 3593 * for blocks that we may free below; the DMU should 3594 * handle this race correctly. 3595 */ 3596 n = ztest_random(regions) * stride + ztest_random(width); 3597 s = 1 + ztest_random(2 * width - 1); 3598 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, 3599 ZIO_PRIORITY_SYNC_READ); 3600 3601 /* 3602 * Pick a random index and compute the offsets into packobj and bigobj. 3603 */ 3604 n = ztest_random(regions) * stride + ztest_random(width); 3605 s = 1 + ztest_random(width - 1); 3606 3607 packoff = n * sizeof (bufwad_t); 3608 packsize = s * sizeof (bufwad_t); 3609 3610 bigoff = n * chunksize; 3611 bigsize = s * chunksize; 3612 3613 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3614 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3615 3616 /* 3617 * free_percent of the time, free a range of bigobj rather than 3618 * overwriting it. 3619 */ 3620 freeit = (ztest_random(100) < free_percent); 3621 3622 /* 3623 * Read the current contents of our objects. 3624 */ 3625 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3626 DMU_READ_PREFETCH); 3627 ASSERT0(error); 3628 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3629 DMU_READ_PREFETCH); 3630 ASSERT0(error); 3631 3632 /* 3633 * Get a tx for the mods to both packobj and bigobj. 3634 */ 3635 tx = dmu_tx_create(os); 3636 3637 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3638 3639 if (freeit) 3640 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3641 else 3642 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3643 3644 /* This accounts for setting the checksum/compression. */ 3645 dmu_tx_hold_bonus(tx, bigobj); 3646 3647 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3648 if (txg == 0) { 3649 umem_free(packbuf, packsize); 3650 umem_free(bigbuf, bigsize); 3651 return; 3652 } 3653 3654 enum zio_checksum cksum; 3655 do { 3656 cksum = (enum zio_checksum) 3657 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 3658 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 3659 dmu_object_set_checksum(os, bigobj, cksum, tx); 3660 3661 enum zio_compress comp; 3662 do { 3663 comp = (enum zio_compress) 3664 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 3665 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 3666 dmu_object_set_compress(os, bigobj, comp, tx); 3667 3668 /* 3669 * For each index from n to n + s, verify that the existing bufwad 3670 * in packobj matches the bufwads at the head and tail of the 3671 * corresponding chunk in bigobj. Then update all three bufwads 3672 * with the new values we want to write out. 3673 */ 3674 for (i = 0; i < s; i++) { 3675 /* LINTED */ 3676 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3677 /* LINTED */ 3678 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3679 /* LINTED */ 3680 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3681 3682 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3683 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3684 3685 if (pack->bw_txg > txg) 3686 fatal(0, "future leak: got %llx, open txg is %llx", 3687 pack->bw_txg, txg); 3688 3689 if (pack->bw_data != 0 && pack->bw_index != n + i) 3690 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3691 pack->bw_index, n, i); 3692 3693 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3694 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3695 3696 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3697 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3698 3699 if (freeit) { 3700 bzero(pack, sizeof (bufwad_t)); 3701 } else { 3702 pack->bw_index = n + i; 3703 pack->bw_txg = txg; 3704 pack->bw_data = 1 + ztest_random(-2ULL); 3705 } 3706 *bigH = *pack; 3707 *bigT = *pack; 3708 } 3709 3710 /* 3711 * We've verified all the old bufwads, and made new ones. 3712 * Now write them out. 3713 */ 3714 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3715 3716 if (freeit) { 3717 if (ztest_opts.zo_verbose >= 7) { 3718 (void) printf("freeing offset %llx size %llx" 3719 " txg %llx\n", 3720 (u_longlong_t)bigoff, 3721 (u_longlong_t)bigsize, 3722 (u_longlong_t)txg); 3723 } 3724 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3725 } else { 3726 if (ztest_opts.zo_verbose >= 7) { 3727 (void) printf("writing offset %llx size %llx" 3728 " txg %llx\n", 3729 (u_longlong_t)bigoff, 3730 (u_longlong_t)bigsize, 3731 (u_longlong_t)txg); 3732 } 3733 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3734 } 3735 3736 dmu_tx_commit(tx); 3737 3738 /* 3739 * Sanity check the stuff we just wrote. 3740 */ 3741 { 3742 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3743 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3744 3745 VERIFY(0 == dmu_read(os, packobj, packoff, 3746 packsize, packcheck, DMU_READ_PREFETCH)); 3747 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3748 bigsize, bigcheck, DMU_READ_PREFETCH)); 3749 3750 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3751 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3752 3753 umem_free(packcheck, packsize); 3754 umem_free(bigcheck, bigsize); 3755 } 3756 3757 umem_free(packbuf, packsize); 3758 umem_free(bigbuf, bigsize); 3759 } 3760 3761 void 3762 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3763 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3764 { 3765 uint64_t i; 3766 bufwad_t *pack; 3767 bufwad_t *bigH; 3768 bufwad_t *bigT; 3769 3770 /* 3771 * For each index from n to n + s, verify that the existing bufwad 3772 * in packobj matches the bufwads at the head and tail of the 3773 * corresponding chunk in bigobj. Then update all three bufwads 3774 * with the new values we want to write out. 3775 */ 3776 for (i = 0; i < s; i++) { 3777 /* LINTED */ 3778 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3779 /* LINTED */ 3780 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3781 /* LINTED */ 3782 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3783 3784 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3785 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3786 3787 if (pack->bw_txg > txg) 3788 fatal(0, "future leak: got %llx, open txg is %llx", 3789 pack->bw_txg, txg); 3790 3791 if (pack->bw_data != 0 && pack->bw_index != n + i) 3792 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3793 pack->bw_index, n, i); 3794 3795 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3796 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3797 3798 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3799 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3800 3801 pack->bw_index = n + i; 3802 pack->bw_txg = txg; 3803 pack->bw_data = 1 + ztest_random(-2ULL); 3804 3805 *bigH = *pack; 3806 *bigT = *pack; 3807 } 3808 } 3809 3810 void 3811 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3812 { 3813 objset_t *os = zd->zd_os; 3814 ztest_od_t od[2]; 3815 dmu_tx_t *tx; 3816 uint64_t i; 3817 int error; 3818 uint64_t n, s, txg; 3819 bufwad_t *packbuf, *bigbuf; 3820 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3821 uint64_t blocksize = ztest_random_blocksize(); 3822 uint64_t chunksize = blocksize; 3823 uint64_t regions = 997; 3824 uint64_t stride = 123456789ULL; 3825 uint64_t width = 9; 3826 dmu_buf_t *bonus_db; 3827 arc_buf_t **bigbuf_arcbufs; 3828 dmu_object_info_t doi; 3829 3830 /* 3831 * This test uses two objects, packobj and bigobj, that are always 3832 * updated together (i.e. in the same tx) so that their contents are 3833 * in sync and can be compared. Their contents relate to each other 3834 * in a simple way: packobj is a dense array of 'bufwad' structures, 3835 * while bigobj is a sparse array of the same bufwads. Specifically, 3836 * for any index n, there are three bufwads that should be identical: 3837 * 3838 * packobj, at offset n * sizeof (bufwad_t) 3839 * bigobj, at the head of the nth chunk 3840 * bigobj, at the tail of the nth chunk 3841 * 3842 * The chunk size is set equal to bigobj block size so that 3843 * dmu_assign_arcbuf() can be tested for object updates. 3844 */ 3845 3846 /* 3847 * Read the directory info. If it's the first time, set things up. 3848 */ 3849 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3850 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3851 3852 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3853 return; 3854 3855 bigobj = od[0].od_object; 3856 packobj = od[1].od_object; 3857 blocksize = od[0].od_blocksize; 3858 chunksize = blocksize; 3859 ASSERT(chunksize == od[1].od_gen); 3860 3861 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3862 VERIFY(ISP2(doi.doi_data_block_size)); 3863 VERIFY(chunksize == doi.doi_data_block_size); 3864 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3865 3866 /* 3867 * Pick a random index and compute the offsets into packobj and bigobj. 3868 */ 3869 n = ztest_random(regions) * stride + ztest_random(width); 3870 s = 1 + ztest_random(width - 1); 3871 3872 packoff = n * sizeof (bufwad_t); 3873 packsize = s * sizeof (bufwad_t); 3874 3875 bigoff = n * chunksize; 3876 bigsize = s * chunksize; 3877 3878 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3879 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3880 3881 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3882 3883 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3884 3885 /* 3886 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3887 * Iteration 1 test zcopy to already referenced dbufs. 3888 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3889 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3890 * Iteration 4 test zcopy when dbuf is no longer dirty. 3891 * Iteration 5 test zcopy when it can't be done. 3892 * Iteration 6 one more zcopy write. 3893 */ 3894 for (i = 0; i < 7; i++) { 3895 uint64_t j; 3896 uint64_t off; 3897 3898 /* 3899 * In iteration 5 (i == 5) use arcbufs 3900 * that don't match bigobj blksz to test 3901 * dmu_assign_arcbuf() when it can't directly 3902 * assign an arcbuf to a dbuf. 3903 */ 3904 for (j = 0; j < s; j++) { 3905 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3906 bigbuf_arcbufs[j] = 3907 dmu_request_arcbuf(bonus_db, chunksize); 3908 } else { 3909 bigbuf_arcbufs[2 * j] = 3910 dmu_request_arcbuf(bonus_db, chunksize / 2); 3911 bigbuf_arcbufs[2 * j + 1] = 3912 dmu_request_arcbuf(bonus_db, chunksize / 2); 3913 } 3914 } 3915 3916 /* 3917 * Get a tx for the mods to both packobj and bigobj. 3918 */ 3919 tx = dmu_tx_create(os); 3920 3921 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3922 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3923 3924 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3925 if (txg == 0) { 3926 umem_free(packbuf, packsize); 3927 umem_free(bigbuf, bigsize); 3928 for (j = 0; j < s; j++) { 3929 if (i != 5 || 3930 chunksize < (SPA_MINBLOCKSIZE * 2)) { 3931 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3932 } else { 3933 dmu_return_arcbuf( 3934 bigbuf_arcbufs[2 * j]); 3935 dmu_return_arcbuf( 3936 bigbuf_arcbufs[2 * j + 1]); 3937 } 3938 } 3939 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3940 dmu_buf_rele(bonus_db, FTAG); 3941 return; 3942 } 3943 3944 /* 3945 * 50% of the time don't read objects in the 1st iteration to 3946 * test dmu_assign_arcbuf() for the case when there're no 3947 * existing dbufs for the specified offsets. 3948 */ 3949 if (i != 0 || ztest_random(2) != 0) { 3950 error = dmu_read(os, packobj, packoff, 3951 packsize, packbuf, DMU_READ_PREFETCH); 3952 ASSERT0(error); 3953 error = dmu_read(os, bigobj, bigoff, bigsize, 3954 bigbuf, DMU_READ_PREFETCH); 3955 ASSERT0(error); 3956 } 3957 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3958 n, chunksize, txg); 3959 3960 /* 3961 * We've verified all the old bufwads, and made new ones. 3962 * Now write them out. 3963 */ 3964 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3965 if (ztest_opts.zo_verbose >= 7) { 3966 (void) printf("writing offset %llx size %llx" 3967 " txg %llx\n", 3968 (u_longlong_t)bigoff, 3969 (u_longlong_t)bigsize, 3970 (u_longlong_t)txg); 3971 } 3972 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3973 dmu_buf_t *dbt; 3974 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3975 bcopy((caddr_t)bigbuf + (off - bigoff), 3976 bigbuf_arcbufs[j]->b_data, chunksize); 3977 } else { 3978 bcopy((caddr_t)bigbuf + (off - bigoff), 3979 bigbuf_arcbufs[2 * j]->b_data, 3980 chunksize / 2); 3981 bcopy((caddr_t)bigbuf + (off - bigoff) + 3982 chunksize / 2, 3983 bigbuf_arcbufs[2 * j + 1]->b_data, 3984 chunksize / 2); 3985 } 3986 3987 if (i == 1) { 3988 VERIFY(dmu_buf_hold(os, bigobj, off, 3989 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3990 } 3991 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3992 dmu_assign_arcbuf(bonus_db, off, 3993 bigbuf_arcbufs[j], tx); 3994 } else { 3995 dmu_assign_arcbuf(bonus_db, off, 3996 bigbuf_arcbufs[2 * j], tx); 3997 dmu_assign_arcbuf(bonus_db, 3998 off + chunksize / 2, 3999 bigbuf_arcbufs[2 * j + 1], tx); 4000 } 4001 if (i == 1) { 4002 dmu_buf_rele(dbt, FTAG); 4003 } 4004 } 4005 dmu_tx_commit(tx); 4006 4007 /* 4008 * Sanity check the stuff we just wrote. 4009 */ 4010 { 4011 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4012 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4013 4014 VERIFY(0 == dmu_read(os, packobj, packoff, 4015 packsize, packcheck, DMU_READ_PREFETCH)); 4016 VERIFY(0 == dmu_read(os, bigobj, bigoff, 4017 bigsize, bigcheck, DMU_READ_PREFETCH)); 4018 4019 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 4020 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4021 4022 umem_free(packcheck, packsize); 4023 umem_free(bigcheck, bigsize); 4024 } 4025 if (i == 2) { 4026 txg_wait_open(dmu_objset_pool(os), 0); 4027 } else if (i == 3) { 4028 txg_wait_synced(dmu_objset_pool(os), 0); 4029 } 4030 } 4031 4032 dmu_buf_rele(bonus_db, FTAG); 4033 umem_free(packbuf, packsize); 4034 umem_free(bigbuf, bigsize); 4035 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4036 } 4037 4038 /* ARGSUSED */ 4039 void 4040 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 4041 { 4042 ztest_od_t od[1]; 4043 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4044 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4045 4046 /* 4047 * Have multiple threads write to large offsets in an object 4048 * to verify that parallel writes to an object -- even to the 4049 * same blocks within the object -- doesn't cause any trouble. 4050 */ 4051 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4052 4053 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4054 return; 4055 4056 while (ztest_random(10) != 0) 4057 ztest_io(zd, od[0].od_object, offset); 4058 } 4059 4060 void 4061 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4062 { 4063 ztest_od_t od[1]; 4064 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4065 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4066 uint64_t count = ztest_random(20) + 1; 4067 uint64_t blocksize = ztest_random_blocksize(); 4068 void *data; 4069 4070 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4071 4072 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4073 return; 4074 4075 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4076 return; 4077 4078 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4079 4080 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4081 4082 while (ztest_random(count) != 0) { 4083 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4084 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4085 data) != 0) 4086 break; 4087 while (ztest_random(4) != 0) 4088 ztest_io(zd, od[0].od_object, randoff); 4089 } 4090 4091 umem_free(data, blocksize); 4092 } 4093 4094 /* 4095 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4096 */ 4097 #define ZTEST_ZAP_MIN_INTS 1 4098 #define ZTEST_ZAP_MAX_INTS 4 4099 #define ZTEST_ZAP_MAX_PROPS 1000 4100 4101 void 4102 ztest_zap(ztest_ds_t *zd, uint64_t id) 4103 { 4104 objset_t *os = zd->zd_os; 4105 ztest_od_t od[1]; 4106 uint64_t object; 4107 uint64_t txg, last_txg; 4108 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4109 uint64_t zl_ints, zl_intsize, prop; 4110 int i, ints; 4111 dmu_tx_t *tx; 4112 char propname[100], txgname[100]; 4113 int error; 4114 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4115 4116 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4117 4118 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4119 return; 4120 4121 object = od[0].od_object; 4122 4123 /* 4124 * Generate a known hash collision, and verify that 4125 * we can lookup and remove both entries. 4126 */ 4127 tx = dmu_tx_create(os); 4128 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4129 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4130 if (txg == 0) 4131 return; 4132 for (i = 0; i < 2; i++) { 4133 value[i] = i; 4134 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4135 1, &value[i], tx)); 4136 } 4137 for (i = 0; i < 2; i++) { 4138 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4139 sizeof (uint64_t), 1, &value[i], tx)); 4140 VERIFY3U(0, ==, 4141 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4142 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4143 ASSERT3U(zl_ints, ==, 1); 4144 } 4145 for (i = 0; i < 2; i++) { 4146 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4147 } 4148 dmu_tx_commit(tx); 4149 4150 /* 4151 * Generate a buch of random entries. 4152 */ 4153 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4154 4155 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4156 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4157 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4158 bzero(value, sizeof (value)); 4159 last_txg = 0; 4160 4161 /* 4162 * If these zap entries already exist, validate their contents. 4163 */ 4164 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4165 if (error == 0) { 4166 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4167 ASSERT3U(zl_ints, ==, 1); 4168 4169 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4170 zl_ints, &last_txg) == 0); 4171 4172 VERIFY(zap_length(os, object, propname, &zl_intsize, 4173 &zl_ints) == 0); 4174 4175 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4176 ASSERT3U(zl_ints, ==, ints); 4177 4178 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4179 zl_ints, value) == 0); 4180 4181 for (i = 0; i < ints; i++) { 4182 ASSERT3U(value[i], ==, last_txg + object + i); 4183 } 4184 } else { 4185 ASSERT3U(error, ==, ENOENT); 4186 } 4187 4188 /* 4189 * Atomically update two entries in our zap object. 4190 * The first is named txg_%llu, and contains the txg 4191 * in which the property was last updated. The second 4192 * is named prop_%llu, and the nth element of its value 4193 * should be txg + object + n. 4194 */ 4195 tx = dmu_tx_create(os); 4196 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4197 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4198 if (txg == 0) 4199 return; 4200 4201 if (last_txg > txg) 4202 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4203 4204 for (i = 0; i < ints; i++) 4205 value[i] = txg + object + i; 4206 4207 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4208 1, &txg, tx)); 4209 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4210 ints, value, tx)); 4211 4212 dmu_tx_commit(tx); 4213 4214 /* 4215 * Remove a random pair of entries. 4216 */ 4217 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4218 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4219 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4220 4221 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4222 4223 if (error == ENOENT) 4224 return; 4225 4226 ASSERT0(error); 4227 4228 tx = dmu_tx_create(os); 4229 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4230 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4231 if (txg == 0) 4232 return; 4233 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4234 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4235 dmu_tx_commit(tx); 4236 } 4237 4238 /* 4239 * Testcase to test the upgrading of a microzap to fatzap. 4240 */ 4241 void 4242 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4243 { 4244 objset_t *os = zd->zd_os; 4245 ztest_od_t od[1]; 4246 uint64_t object, txg; 4247 4248 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4249 4250 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4251 return; 4252 4253 object = od[0].od_object; 4254 4255 /* 4256 * Add entries to this ZAP and make sure it spills over 4257 * and gets upgraded to a fatzap. Also, since we are adding 4258 * 2050 entries we should see ptrtbl growth and leaf-block split. 4259 */ 4260 for (int i = 0; i < 2050; i++) { 4261 char name[ZFS_MAX_DATASET_NAME_LEN]; 4262 uint64_t value = i; 4263 dmu_tx_t *tx; 4264 int error; 4265 4266 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4267 id, value); 4268 4269 tx = dmu_tx_create(os); 4270 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4271 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4272 if (txg == 0) 4273 return; 4274 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4275 &value, tx); 4276 ASSERT(error == 0 || error == EEXIST); 4277 dmu_tx_commit(tx); 4278 } 4279 } 4280 4281 /* ARGSUSED */ 4282 void 4283 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4284 { 4285 objset_t *os = zd->zd_os; 4286 ztest_od_t od[1]; 4287 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4288 dmu_tx_t *tx; 4289 int i, namelen, error; 4290 int micro = ztest_random(2); 4291 char name[20], string_value[20]; 4292 void *data; 4293 4294 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4295 4296 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4297 return; 4298 4299 object = od[0].od_object; 4300 4301 /* 4302 * Generate a random name of the form 'xxx.....' where each 4303 * x is a random printable character and the dots are dots. 4304 * There are 94 such characters, and the name length goes from 4305 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4306 */ 4307 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4308 4309 for (i = 0; i < 3; i++) 4310 name[i] = '!' + ztest_random('~' - '!' + 1); 4311 for (; i < namelen - 1; i++) 4312 name[i] = '.'; 4313 name[i] = '\0'; 4314 4315 if ((namelen & 1) || micro) { 4316 wsize = sizeof (txg); 4317 wc = 1; 4318 data = &txg; 4319 } else { 4320 wsize = 1; 4321 wc = namelen; 4322 data = string_value; 4323 } 4324 4325 count = -1ULL; 4326 VERIFY0(zap_count(os, object, &count)); 4327 ASSERT(count != -1ULL); 4328 4329 /* 4330 * Select an operation: length, lookup, add, update, remove. 4331 */ 4332 i = ztest_random(5); 4333 4334 if (i >= 2) { 4335 tx = dmu_tx_create(os); 4336 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4337 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4338 if (txg == 0) 4339 return; 4340 bcopy(name, string_value, namelen); 4341 } else { 4342 tx = NULL; 4343 txg = 0; 4344 bzero(string_value, namelen); 4345 } 4346 4347 switch (i) { 4348 4349 case 0: 4350 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4351 if (error == 0) { 4352 ASSERT3U(wsize, ==, zl_wsize); 4353 ASSERT3U(wc, ==, zl_wc); 4354 } else { 4355 ASSERT3U(error, ==, ENOENT); 4356 } 4357 break; 4358 4359 case 1: 4360 error = zap_lookup(os, object, name, wsize, wc, data); 4361 if (error == 0) { 4362 if (data == string_value && 4363 bcmp(name, data, namelen) != 0) 4364 fatal(0, "name '%s' != val '%s' len %d", 4365 name, data, namelen); 4366 } else { 4367 ASSERT3U(error, ==, ENOENT); 4368 } 4369 break; 4370 4371 case 2: 4372 error = zap_add(os, object, name, wsize, wc, data, tx); 4373 ASSERT(error == 0 || error == EEXIST); 4374 break; 4375 4376 case 3: 4377 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4378 break; 4379 4380 case 4: 4381 error = zap_remove(os, object, name, tx); 4382 ASSERT(error == 0 || error == ENOENT); 4383 break; 4384 } 4385 4386 if (tx != NULL) 4387 dmu_tx_commit(tx); 4388 } 4389 4390 /* 4391 * Commit callback data. 4392 */ 4393 typedef struct ztest_cb_data { 4394 list_node_t zcd_node; 4395 uint64_t zcd_txg; 4396 int zcd_expected_err; 4397 boolean_t zcd_added; 4398 boolean_t zcd_called; 4399 spa_t *zcd_spa; 4400 } ztest_cb_data_t; 4401 4402 /* This is the actual commit callback function */ 4403 static void 4404 ztest_commit_callback(void *arg, int error) 4405 { 4406 ztest_cb_data_t *data = arg; 4407 uint64_t synced_txg; 4408 4409 VERIFY(data != NULL); 4410 VERIFY3S(data->zcd_expected_err, ==, error); 4411 VERIFY(!data->zcd_called); 4412 4413 synced_txg = spa_last_synced_txg(data->zcd_spa); 4414 if (data->zcd_txg > synced_txg) 4415 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4416 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4417 synced_txg); 4418 4419 data->zcd_called = B_TRUE; 4420 4421 if (error == ECANCELED) { 4422 ASSERT0(data->zcd_txg); 4423 ASSERT(!data->zcd_added); 4424 4425 /* 4426 * The private callback data should be destroyed here, but 4427 * since we are going to check the zcd_called field after 4428 * dmu_tx_abort(), we will destroy it there. 4429 */ 4430 return; 4431 } 4432 4433 /* Was this callback added to the global callback list? */ 4434 if (!data->zcd_added) 4435 goto out; 4436 4437 ASSERT3U(data->zcd_txg, !=, 0); 4438 4439 /* Remove our callback from the list */ 4440 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4441 list_remove(&zcl.zcl_callbacks, data); 4442 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4443 4444 out: 4445 umem_free(data, sizeof (ztest_cb_data_t)); 4446 } 4447 4448 /* Allocate and initialize callback data structure */ 4449 static ztest_cb_data_t * 4450 ztest_create_cb_data(objset_t *os, uint64_t txg) 4451 { 4452 ztest_cb_data_t *cb_data; 4453 4454 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4455 4456 cb_data->zcd_txg = txg; 4457 cb_data->zcd_spa = dmu_objset_spa(os); 4458 4459 return (cb_data); 4460 } 4461 4462 /* 4463 * If a number of txgs equal to this threshold have been created after a commit 4464 * callback has been registered but not called, then we assume there is an 4465 * implementation bug. 4466 */ 4467 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4468 4469 /* 4470 * Commit callback test. 4471 */ 4472 void 4473 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4474 { 4475 objset_t *os = zd->zd_os; 4476 ztest_od_t od[1]; 4477 dmu_tx_t *tx; 4478 ztest_cb_data_t *cb_data[3], *tmp_cb; 4479 uint64_t old_txg, txg; 4480 int i, error; 4481 4482 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4483 4484 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4485 return; 4486 4487 tx = dmu_tx_create(os); 4488 4489 cb_data[0] = ztest_create_cb_data(os, 0); 4490 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4491 4492 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4493 4494 /* Every once in a while, abort the transaction on purpose */ 4495 if (ztest_random(100) == 0) 4496 error = -1; 4497 4498 if (!error) 4499 error = dmu_tx_assign(tx, TXG_NOWAIT); 4500 4501 txg = error ? 0 : dmu_tx_get_txg(tx); 4502 4503 cb_data[0]->zcd_txg = txg; 4504 cb_data[1] = ztest_create_cb_data(os, txg); 4505 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4506 4507 if (error) { 4508 /* 4509 * It's not a strict requirement to call the registered 4510 * callbacks from inside dmu_tx_abort(), but that's what 4511 * it's supposed to happen in the current implementation 4512 * so we will check for that. 4513 */ 4514 for (i = 0; i < 2; i++) { 4515 cb_data[i]->zcd_expected_err = ECANCELED; 4516 VERIFY(!cb_data[i]->zcd_called); 4517 } 4518 4519 dmu_tx_abort(tx); 4520 4521 for (i = 0; i < 2; i++) { 4522 VERIFY(cb_data[i]->zcd_called); 4523 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4524 } 4525 4526 return; 4527 } 4528 4529 cb_data[2] = ztest_create_cb_data(os, txg); 4530 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4531 4532 /* 4533 * Read existing data to make sure there isn't a future leak. 4534 */ 4535 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4536 &old_txg, DMU_READ_PREFETCH)); 4537 4538 if (old_txg > txg) 4539 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4540 old_txg, txg); 4541 4542 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4543 4544 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4545 4546 /* 4547 * Since commit callbacks don't have any ordering requirement and since 4548 * it is theoretically possible for a commit callback to be called 4549 * after an arbitrary amount of time has elapsed since its txg has been 4550 * synced, it is difficult to reliably determine whether a commit 4551 * callback hasn't been called due to high load or due to a flawed 4552 * implementation. 4553 * 4554 * In practice, we will assume that if after a certain number of txgs a 4555 * commit callback hasn't been called, then most likely there's an 4556 * implementation bug.. 4557 */ 4558 tmp_cb = list_head(&zcl.zcl_callbacks); 4559 if (tmp_cb != NULL && 4560 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 4561 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4562 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4563 } 4564 4565 /* 4566 * Let's find the place to insert our callbacks. 4567 * 4568 * Even though the list is ordered by txg, it is possible for the 4569 * insertion point to not be the end because our txg may already be 4570 * quiescing at this point and other callbacks in the open txg 4571 * (from other objsets) may have sneaked in. 4572 */ 4573 tmp_cb = list_tail(&zcl.zcl_callbacks); 4574 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4575 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4576 4577 /* Add the 3 callbacks to the list */ 4578 for (i = 0; i < 3; i++) { 4579 if (tmp_cb == NULL) 4580 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4581 else 4582 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4583 cb_data[i]); 4584 4585 cb_data[i]->zcd_added = B_TRUE; 4586 VERIFY(!cb_data[i]->zcd_called); 4587 4588 tmp_cb = cb_data[i]; 4589 } 4590 4591 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4592 4593 dmu_tx_commit(tx); 4594 } 4595 4596 /* ARGSUSED */ 4597 void 4598 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4599 { 4600 zfs_prop_t proplist[] = { 4601 ZFS_PROP_CHECKSUM, 4602 ZFS_PROP_COMPRESSION, 4603 ZFS_PROP_COPIES, 4604 ZFS_PROP_DEDUP 4605 }; 4606 4607 (void) rw_rdlock(&ztest_name_lock); 4608 4609 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4610 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4611 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4612 4613 (void) rw_unlock(&ztest_name_lock); 4614 } 4615 4616 /* ARGSUSED */ 4617 void 4618 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4619 { 4620 nvlist_t *props = NULL; 4621 4622 (void) rw_rdlock(&ztest_name_lock); 4623 4624 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4625 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4626 4627 VERIFY0(spa_prop_get(ztest_spa, &props)); 4628 4629 if (ztest_opts.zo_verbose >= 6) 4630 dump_nvlist(props, 4); 4631 4632 nvlist_free(props); 4633 4634 (void) rw_unlock(&ztest_name_lock); 4635 } 4636 4637 static int 4638 user_release_one(const char *snapname, const char *holdname) 4639 { 4640 nvlist_t *snaps, *holds; 4641 int error; 4642 4643 snaps = fnvlist_alloc(); 4644 holds = fnvlist_alloc(); 4645 fnvlist_add_boolean(holds, holdname); 4646 fnvlist_add_nvlist(snaps, snapname, holds); 4647 fnvlist_free(holds); 4648 error = dsl_dataset_user_release(snaps, NULL); 4649 fnvlist_free(snaps); 4650 return (error); 4651 } 4652 4653 /* 4654 * Test snapshot hold/release and deferred destroy. 4655 */ 4656 void 4657 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4658 { 4659 int error; 4660 objset_t *os = zd->zd_os; 4661 objset_t *origin; 4662 char snapname[100]; 4663 char fullname[100]; 4664 char clonename[100]; 4665 char tag[100]; 4666 char osname[ZFS_MAX_DATASET_NAME_LEN]; 4667 nvlist_t *holds; 4668 4669 (void) rw_rdlock(&ztest_name_lock); 4670 4671 dmu_objset_name(os, osname); 4672 4673 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4674 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4675 (void) snprintf(clonename, sizeof (clonename), 4676 "%s/ch1_%llu", osname, id); 4677 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4678 4679 /* 4680 * Clean up from any previous run. 4681 */ 4682 error = dsl_destroy_head(clonename); 4683 if (error != ENOENT) 4684 ASSERT0(error); 4685 error = user_release_one(fullname, tag); 4686 if (error != ESRCH && error != ENOENT) 4687 ASSERT0(error); 4688 error = dsl_destroy_snapshot(fullname, B_FALSE); 4689 if (error != ENOENT) 4690 ASSERT0(error); 4691 4692 /* 4693 * Create snapshot, clone it, mark snap for deferred destroy, 4694 * destroy clone, verify snap was also destroyed. 4695 */ 4696 error = dmu_objset_snapshot_one(osname, snapname); 4697 if (error) { 4698 if (error == ENOSPC) { 4699 ztest_record_enospc("dmu_objset_snapshot"); 4700 goto out; 4701 } 4702 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4703 } 4704 4705 error = dmu_objset_clone(clonename, fullname); 4706 if (error) { 4707 if (error == ENOSPC) { 4708 ztest_record_enospc("dmu_objset_clone"); 4709 goto out; 4710 } 4711 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4712 } 4713 4714 error = dsl_destroy_snapshot(fullname, B_TRUE); 4715 if (error) { 4716 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4717 fullname, error); 4718 } 4719 4720 error = dsl_destroy_head(clonename); 4721 if (error) 4722 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4723 4724 error = dmu_objset_hold(fullname, FTAG, &origin); 4725 if (error != ENOENT) 4726 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4727 4728 /* 4729 * Create snapshot, add temporary hold, verify that we can't 4730 * destroy a held snapshot, mark for deferred destroy, 4731 * release hold, verify snapshot was destroyed. 4732 */ 4733 error = dmu_objset_snapshot_one(osname, snapname); 4734 if (error) { 4735 if (error == ENOSPC) { 4736 ztest_record_enospc("dmu_objset_snapshot"); 4737 goto out; 4738 } 4739 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4740 } 4741 4742 holds = fnvlist_alloc(); 4743 fnvlist_add_string(holds, fullname, tag); 4744 error = dsl_dataset_user_hold(holds, 0, NULL); 4745 fnvlist_free(holds); 4746 4747 if (error == ENOSPC) { 4748 ztest_record_enospc("dsl_dataset_user_hold"); 4749 goto out; 4750 } else if (error) { 4751 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", 4752 fullname, tag, error); 4753 } 4754 4755 error = dsl_destroy_snapshot(fullname, B_FALSE); 4756 if (error != EBUSY) { 4757 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4758 fullname, error); 4759 } 4760 4761 error = dsl_destroy_snapshot(fullname, B_TRUE); 4762 if (error) { 4763 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4764 fullname, error); 4765 } 4766 4767 error = user_release_one(fullname, tag); 4768 if (error) 4769 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 4770 4771 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4772 4773 out: 4774 (void) rw_unlock(&ztest_name_lock); 4775 } 4776 4777 /* 4778 * Inject random faults into the on-disk data. 4779 */ 4780 /* ARGSUSED */ 4781 void 4782 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4783 { 4784 ztest_shared_t *zs = ztest_shared; 4785 spa_t *spa = ztest_spa; 4786 int fd; 4787 uint64_t offset; 4788 uint64_t leaves; 4789 uint64_t bad = 0x1990c0ffeedecade; 4790 uint64_t top, leaf; 4791 char path0[MAXPATHLEN]; 4792 char pathrand[MAXPATHLEN]; 4793 size_t fsize; 4794 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4795 int iters = 1000; 4796 int maxfaults; 4797 int mirror_save; 4798 vdev_t *vd0 = NULL; 4799 uint64_t guid0 = 0; 4800 boolean_t islog = B_FALSE; 4801 4802 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4803 maxfaults = MAXFAULTS(); 4804 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4805 mirror_save = zs->zs_mirrors; 4806 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4807 4808 ASSERT(leaves >= 1); 4809 4810 /* 4811 * Grab the name lock as reader. There are some operations 4812 * which don't like to have their vdevs changed while 4813 * they are in progress (i.e. spa_change_guid). Those 4814 * operations will have grabbed the name lock as writer. 4815 */ 4816 (void) rw_rdlock(&ztest_name_lock); 4817 4818 /* 4819 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4820 */ 4821 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4822 4823 if (ztest_random(2) == 0) { 4824 /* 4825 * Inject errors on a normal data device or slog device. 4826 */ 4827 top = ztest_random_vdev_top(spa, B_TRUE); 4828 leaf = ztest_random(leaves) + zs->zs_splits; 4829 4830 /* 4831 * Generate paths to the first leaf in this top-level vdev, 4832 * and to the random leaf we selected. We'll induce transient 4833 * write failures and random online/offline activity on leaf 0, 4834 * and we'll write random garbage to the randomly chosen leaf. 4835 */ 4836 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4837 ztest_opts.zo_dir, ztest_opts.zo_pool, 4838 top * leaves + zs->zs_splits); 4839 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4840 ztest_opts.zo_dir, ztest_opts.zo_pool, 4841 top * leaves + leaf); 4842 4843 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4844 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4845 islog = B_TRUE; 4846 4847 /* 4848 * If the top-level vdev needs to be resilvered 4849 * then we only allow faults on the device that is 4850 * resilvering. 4851 */ 4852 if (vd0 != NULL && maxfaults != 1 && 4853 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 4854 vd0->vdev_resilver_txg != 0)) { 4855 /* 4856 * Make vd0 explicitly claim to be unreadable, 4857 * or unwriteable, or reach behind its back 4858 * and close the underlying fd. We can do this if 4859 * maxfaults == 0 because we'll fail and reexecute, 4860 * and we can do it if maxfaults >= 2 because we'll 4861 * have enough redundancy. If maxfaults == 1, the 4862 * combination of this with injection of random data 4863 * corruption below exceeds the pool's fault tolerance. 4864 */ 4865 vdev_file_t *vf = vd0->vdev_tsd; 4866 4867 if (vf != NULL && ztest_random(3) == 0) { 4868 (void) close(vf->vf_vnode->v_fd); 4869 vf->vf_vnode->v_fd = -1; 4870 } else if (ztest_random(2) == 0) { 4871 vd0->vdev_cant_read = B_TRUE; 4872 } else { 4873 vd0->vdev_cant_write = B_TRUE; 4874 } 4875 guid0 = vd0->vdev_guid; 4876 } 4877 } else { 4878 /* 4879 * Inject errors on an l2cache device. 4880 */ 4881 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4882 4883 if (sav->sav_count == 0) { 4884 spa_config_exit(spa, SCL_STATE, FTAG); 4885 (void) rw_unlock(&ztest_name_lock); 4886 return; 4887 } 4888 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4889 guid0 = vd0->vdev_guid; 4890 (void) strcpy(path0, vd0->vdev_path); 4891 (void) strcpy(pathrand, vd0->vdev_path); 4892 4893 leaf = 0; 4894 leaves = 1; 4895 maxfaults = INT_MAX; /* no limit on cache devices */ 4896 } 4897 4898 spa_config_exit(spa, SCL_STATE, FTAG); 4899 (void) rw_unlock(&ztest_name_lock); 4900 4901 /* 4902 * If we can tolerate two or more faults, or we're dealing 4903 * with a slog, randomly online/offline vd0. 4904 */ 4905 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4906 if (ztest_random(10) < 6) { 4907 int flags = (ztest_random(2) == 0 ? 4908 ZFS_OFFLINE_TEMPORARY : 0); 4909 4910 /* 4911 * We have to grab the zs_name_lock as writer to 4912 * prevent a race between offlining a slog and 4913 * destroying a dataset. Offlining the slog will 4914 * grab a reference on the dataset which may cause 4915 * dmu_objset_destroy() to fail with EBUSY thus 4916 * leaving the dataset in an inconsistent state. 4917 */ 4918 if (islog) 4919 (void) rw_wrlock(&ztest_name_lock); 4920 4921 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4922 4923 if (islog) 4924 (void) rw_unlock(&ztest_name_lock); 4925 } else { 4926 /* 4927 * Ideally we would like to be able to randomly 4928 * call vdev_[on|off]line without holding locks 4929 * to force unpredictable failures but the side 4930 * effects of vdev_[on|off]line prevent us from 4931 * doing so. We grab the ztest_vdev_lock here to 4932 * prevent a race between injection testing and 4933 * aux_vdev removal. 4934 */ 4935 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4936 (void) vdev_online(spa, guid0, 0, NULL); 4937 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4938 } 4939 } 4940 4941 if (maxfaults == 0) 4942 return; 4943 4944 /* 4945 * We have at least single-fault tolerance, so inject data corruption. 4946 */ 4947 fd = open(pathrand, O_RDWR); 4948 4949 if (fd == -1) /* we hit a gap in the device namespace */ 4950 return; 4951 4952 fsize = lseek(fd, 0, SEEK_END); 4953 4954 while (--iters != 0) { 4955 /* 4956 * The offset must be chosen carefully to ensure that 4957 * we do not inject a given logical block with errors 4958 * on two different leaf devices, because ZFS can not 4959 * tolerate that (if maxfaults==1). 4960 * 4961 * We divide each leaf into chunks of size 4962 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk 4963 * there is a series of ranges to which we can inject errors. 4964 * Each range can accept errors on only a single leaf vdev. 4965 * The error injection ranges are separated by ranges 4966 * which we will not inject errors on any device (DMZs). 4967 * Each DMZ must be large enough such that a single block 4968 * can not straddle it, so that a single block can not be 4969 * a target in two different injection ranges (on different 4970 * leaf vdevs). 4971 * 4972 * For example, with 3 leaves, each chunk looks like: 4973 * 0 to 32M: injection range for leaf 0 4974 * 32M to 64M: DMZ - no injection allowed 4975 * 64M to 96M: injection range for leaf 1 4976 * 96M to 128M: DMZ - no injection allowed 4977 * 128M to 160M: injection range for leaf 2 4978 * 160M to 192M: DMZ - no injection allowed 4979 */ 4980 offset = ztest_random(fsize / (leaves << bshift)) * 4981 (leaves << bshift) + (leaf << bshift) + 4982 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4983 4984 if (offset >= fsize) 4985 continue; 4986 4987 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4988 if (mirror_save != zs->zs_mirrors) { 4989 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4990 (void) close(fd); 4991 return; 4992 } 4993 4994 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4995 fatal(1, "can't inject bad word at 0x%llx in %s", 4996 offset, pathrand); 4997 4998 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4999 5000 if (ztest_opts.zo_verbose >= 7) 5001 (void) printf("injected bad word into %s," 5002 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 5003 } 5004 5005 (void) close(fd); 5006 } 5007 5008 /* 5009 * Verify that DDT repair works as expected. 5010 */ 5011 void 5012 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 5013 { 5014 ztest_shared_t *zs = ztest_shared; 5015 spa_t *spa = ztest_spa; 5016 objset_t *os = zd->zd_os; 5017 ztest_od_t od[1]; 5018 uint64_t object, blocksize, txg, pattern, psize; 5019 enum zio_checksum checksum = spa_dedup_checksum(spa); 5020 dmu_buf_t *db; 5021 dmu_tx_t *tx; 5022 void *buf; 5023 blkptr_t blk; 5024 int copies = 2 * ZIO_DEDUPDITTO_MIN; 5025 5026 blocksize = ztest_random_blocksize(); 5027 blocksize = MIN(blocksize, 2048); /* because we write so many */ 5028 5029 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 5030 5031 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 5032 return; 5033 5034 /* 5035 * Take the name lock as writer to prevent anyone else from changing 5036 * the pool and dataset properies we need to maintain during this test. 5037 */ 5038 (void) rw_wrlock(&ztest_name_lock); 5039 5040 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 5041 B_FALSE) != 0 || 5042 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 5043 B_FALSE) != 0) { 5044 (void) rw_unlock(&ztest_name_lock); 5045 return; 5046 } 5047 5048 object = od[0].od_object; 5049 blocksize = od[0].od_blocksize; 5050 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os); 5051 5052 ASSERT(object != 0); 5053 5054 tx = dmu_tx_create(os); 5055 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 5056 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 5057 if (txg == 0) { 5058 (void) rw_unlock(&ztest_name_lock); 5059 return; 5060 } 5061 5062 /* 5063 * Write all the copies of our block. 5064 */ 5065 for (int i = 0; i < copies; i++) { 5066 uint64_t offset = i * blocksize; 5067 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 5068 DMU_READ_NO_PREFETCH); 5069 if (error != 0) { 5070 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 5071 os, (long long)object, (long long) offset, error); 5072 } 5073 ASSERT(db->db_offset == offset); 5074 ASSERT(db->db_size == blocksize); 5075 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5076 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5077 dmu_buf_will_fill(db, tx); 5078 ztest_pattern_set(db->db_data, db->db_size, pattern); 5079 dmu_buf_rele(db, FTAG); 5080 } 5081 5082 dmu_tx_commit(tx); 5083 txg_wait_synced(spa_get_dsl(spa), txg); 5084 5085 /* 5086 * Find out what block we got. 5087 */ 5088 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5089 DMU_READ_NO_PREFETCH)); 5090 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5091 dmu_buf_rele(db, FTAG); 5092 5093 /* 5094 * Damage the block. Dedup-ditto will save us when we read it later. 5095 */ 5096 psize = BP_GET_PSIZE(&blk); 5097 buf = zio_buf_alloc(psize); 5098 ztest_pattern_set(buf, psize, ~pattern); 5099 5100 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5101 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5102 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5103 5104 zio_buf_free(buf, psize); 5105 5106 (void) rw_unlock(&ztest_name_lock); 5107 } 5108 5109 /* 5110 * Scrub the pool. 5111 */ 5112 /* ARGSUSED */ 5113 void 5114 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5115 { 5116 spa_t *spa = ztest_spa; 5117 5118 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5119 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5120 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5121 } 5122 5123 /* 5124 * Change the guid for the pool. 5125 */ 5126 /* ARGSUSED */ 5127 void 5128 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5129 { 5130 spa_t *spa = ztest_spa; 5131 uint64_t orig, load; 5132 int error; 5133 5134 orig = spa_guid(spa); 5135 load = spa_load_guid(spa); 5136 5137 (void) rw_wrlock(&ztest_name_lock); 5138 error = spa_change_guid(spa); 5139 (void) rw_unlock(&ztest_name_lock); 5140 5141 if (error != 0) 5142 return; 5143 5144 if (ztest_opts.zo_verbose >= 4) { 5145 (void) printf("Changed guid old %llu -> %llu\n", 5146 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5147 } 5148 5149 VERIFY3U(orig, !=, spa_guid(spa)); 5150 VERIFY3U(load, ==, spa_load_guid(spa)); 5151 } 5152 5153 /* 5154 * Rename the pool to a different name and then rename it back. 5155 */ 5156 /* ARGSUSED */ 5157 void 5158 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5159 { 5160 char *oldname, *newname; 5161 spa_t *spa; 5162 5163 (void) rw_wrlock(&ztest_name_lock); 5164 5165 oldname = ztest_opts.zo_pool; 5166 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5167 (void) strcpy(newname, oldname); 5168 (void) strcat(newname, "_tmp"); 5169 5170 /* 5171 * Do the rename 5172 */ 5173 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5174 5175 /* 5176 * Try to open it under the old name, which shouldn't exist 5177 */ 5178 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5179 5180 /* 5181 * Open it under the new name and make sure it's still the same spa_t. 5182 */ 5183 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5184 5185 ASSERT(spa == ztest_spa); 5186 spa_close(spa, FTAG); 5187 5188 /* 5189 * Rename it back to the original 5190 */ 5191 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5192 5193 /* 5194 * Make sure it can still be opened 5195 */ 5196 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5197 5198 ASSERT(spa == ztest_spa); 5199 spa_close(spa, FTAG); 5200 5201 umem_free(newname, strlen(newname) + 1); 5202 5203 (void) rw_unlock(&ztest_name_lock); 5204 } 5205 5206 /* 5207 * Verify pool integrity by running zdb. 5208 */ 5209 static void 5210 ztest_run_zdb(char *pool) 5211 { 5212 int status; 5213 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5214 char zbuf[1024]; 5215 char *bin; 5216 char *ztest; 5217 char *isa; 5218 int isalen; 5219 FILE *fp; 5220 5221 (void) realpath(getexecname(), zdb); 5222 5223 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5224 bin = strstr(zdb, "/usr/bin/"); 5225 ztest = strstr(bin, "/ztest"); 5226 isa = bin + 8; 5227 isalen = ztest - isa; 5228 isa = strdup(isa); 5229 /* LINTED */ 5230 (void) sprintf(bin, 5231 "/usr/sbin%.*s/zdb -bcc%s%s -d -U %s %s", 5232 isalen, 5233 isa, 5234 ztest_opts.zo_verbose >= 3 ? "s" : "", 5235 ztest_opts.zo_verbose >= 4 ? "v" : "", 5236 spa_config_path, 5237 pool); 5238 free(isa); 5239 5240 if (ztest_opts.zo_verbose >= 5) 5241 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5242 5243 fp = popen(zdb, "r"); 5244 5245 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5246 if (ztest_opts.zo_verbose >= 3) 5247 (void) printf("%s", zbuf); 5248 5249 status = pclose(fp); 5250 5251 if (status == 0) 5252 return; 5253 5254 ztest_dump_core = 0; 5255 if (WIFEXITED(status)) 5256 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5257 else 5258 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5259 } 5260 5261 static void 5262 ztest_walk_pool_directory(char *header) 5263 { 5264 spa_t *spa = NULL; 5265 5266 if (ztest_opts.zo_verbose >= 6) 5267 (void) printf("%s\n", header); 5268 5269 mutex_enter(&spa_namespace_lock); 5270 while ((spa = spa_next(spa)) != NULL) 5271 if (ztest_opts.zo_verbose >= 6) 5272 (void) printf("\t%s\n", spa_name(spa)); 5273 mutex_exit(&spa_namespace_lock); 5274 } 5275 5276 static void 5277 ztest_spa_import_export(char *oldname, char *newname) 5278 { 5279 nvlist_t *config, *newconfig; 5280 uint64_t pool_guid; 5281 spa_t *spa; 5282 int error; 5283 5284 if (ztest_opts.zo_verbose >= 4) { 5285 (void) printf("import/export: old = %s, new = %s\n", 5286 oldname, newname); 5287 } 5288 5289 /* 5290 * Clean up from previous runs. 5291 */ 5292 (void) spa_destroy(newname); 5293 5294 /* 5295 * Get the pool's configuration and guid. 5296 */ 5297 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5298 5299 /* 5300 * Kick off a scrub to tickle scrub/export races. 5301 */ 5302 if (ztest_random(2) == 0) 5303 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5304 5305 pool_guid = spa_guid(spa); 5306 spa_close(spa, FTAG); 5307 5308 ztest_walk_pool_directory("pools before export"); 5309 5310 /* 5311 * Export it. 5312 */ 5313 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5314 5315 ztest_walk_pool_directory("pools after export"); 5316 5317 /* 5318 * Try to import it. 5319 */ 5320 newconfig = spa_tryimport(config); 5321 ASSERT(newconfig != NULL); 5322 nvlist_free(newconfig); 5323 5324 /* 5325 * Import it under the new name. 5326 */ 5327 error = spa_import(newname, config, NULL, 0); 5328 if (error != 0) { 5329 dump_nvlist(config, 0); 5330 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5331 oldname, newname, error); 5332 } 5333 5334 ztest_walk_pool_directory("pools after import"); 5335 5336 /* 5337 * Try to import it again -- should fail with EEXIST. 5338 */ 5339 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5340 5341 /* 5342 * Try to import it under a different name -- should fail with EEXIST. 5343 */ 5344 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5345 5346 /* 5347 * Verify that the pool is no longer visible under the old name. 5348 */ 5349 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5350 5351 /* 5352 * Verify that we can open and close the pool using the new name. 5353 */ 5354 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5355 ASSERT(pool_guid == spa_guid(spa)); 5356 spa_close(spa, FTAG); 5357 5358 nvlist_free(config); 5359 } 5360 5361 static void 5362 ztest_resume(spa_t *spa) 5363 { 5364 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5365 (void) printf("resuming from suspended state\n"); 5366 spa_vdev_state_enter(spa, SCL_NONE); 5367 vdev_clear(spa, NULL); 5368 (void) spa_vdev_state_exit(spa, NULL, 0); 5369 (void) zio_resume(spa); 5370 } 5371 5372 static void * 5373 ztest_resume_thread(void *arg) 5374 { 5375 spa_t *spa = arg; 5376 5377 while (!ztest_exiting) { 5378 if (spa_suspended(spa)) 5379 ztest_resume(spa); 5380 (void) poll(NULL, 0, 100); 5381 } 5382 return (NULL); 5383 } 5384 5385 static void * 5386 ztest_deadman_thread(void *arg) 5387 { 5388 ztest_shared_t *zs = arg; 5389 spa_t *spa = ztest_spa; 5390 hrtime_t delta, total = 0; 5391 5392 for (;;) { 5393 delta = zs->zs_thread_stop - zs->zs_thread_start + 5394 MSEC2NSEC(zfs_deadman_synctime_ms); 5395 5396 (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); 5397 5398 /* 5399 * If the pool is suspended then fail immediately. Otherwise, 5400 * check to see if the pool is making any progress. If 5401 * vdev_deadman() discovers that there hasn't been any recent 5402 * I/Os then it will end up aborting the tests. 5403 */ 5404 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 5405 fatal(0, "aborting test after %llu seconds because " 5406 "pool has transitioned to a suspended state.", 5407 zfs_deadman_synctime_ms / 1000); 5408 return (NULL); 5409 } 5410 vdev_deadman(spa->spa_root_vdev); 5411 5412 total += zfs_deadman_synctime_ms/1000; 5413 (void) printf("ztest has been running for %lld seconds\n", 5414 total); 5415 } 5416 } 5417 5418 static void 5419 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5420 { 5421 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5422 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5423 hrtime_t functime = gethrtime(); 5424 5425 for (int i = 0; i < zi->zi_iters; i++) 5426 zi->zi_func(zd, id); 5427 5428 functime = gethrtime() - functime; 5429 5430 atomic_add_64(&zc->zc_count, 1); 5431 atomic_add_64(&zc->zc_time, functime); 5432 5433 if (ztest_opts.zo_verbose >= 4) { 5434 Dl_info dli; 5435 (void) dladdr((void *)zi->zi_func, &dli); 5436 (void) printf("%6.2f sec in %s\n", 5437 (double)functime / NANOSEC, dli.dli_sname); 5438 } 5439 } 5440 5441 static void * 5442 ztest_thread(void *arg) 5443 { 5444 int rand; 5445 uint64_t id = (uintptr_t)arg; 5446 ztest_shared_t *zs = ztest_shared; 5447 uint64_t call_next; 5448 hrtime_t now; 5449 ztest_info_t *zi; 5450 ztest_shared_callstate_t *zc; 5451 5452 while ((now = gethrtime()) < zs->zs_thread_stop) { 5453 /* 5454 * See if it's time to force a crash. 5455 */ 5456 if (now > zs->zs_thread_kill) 5457 ztest_kill(zs); 5458 5459 /* 5460 * If we're getting ENOSPC with some regularity, stop. 5461 */ 5462 if (zs->zs_enospc_count > 10) 5463 break; 5464 5465 /* 5466 * Pick a random function to execute. 5467 */ 5468 rand = ztest_random(ZTEST_FUNCS); 5469 zi = &ztest_info[rand]; 5470 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5471 call_next = zc->zc_next; 5472 5473 if (now >= call_next && 5474 atomic_cas_64(&zc->zc_next, call_next, call_next + 5475 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5476 ztest_execute(rand, zi, id); 5477 } 5478 } 5479 5480 return (NULL); 5481 } 5482 5483 static void 5484 ztest_dataset_name(char *dsname, char *pool, int d) 5485 { 5486 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d); 5487 } 5488 5489 static void 5490 ztest_dataset_destroy(int d) 5491 { 5492 char name[ZFS_MAX_DATASET_NAME_LEN]; 5493 5494 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5495 5496 if (ztest_opts.zo_verbose >= 3) 5497 (void) printf("Destroying %s to free up space\n", name); 5498 5499 /* 5500 * Cleanup any non-standard clones and snapshots. In general, 5501 * ztest thread t operates on dataset (t % zopt_datasets), 5502 * so there may be more than one thing to clean up. 5503 */ 5504 for (int t = d; t < ztest_opts.zo_threads; 5505 t += ztest_opts.zo_datasets) { 5506 ztest_dsl_dataset_cleanup(name, t); 5507 } 5508 5509 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5510 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5511 } 5512 5513 static void 5514 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5515 { 5516 uint64_t usedobjs, dirobjs, scratch; 5517 5518 /* 5519 * ZTEST_DIROBJ is the object directory for the entire dataset. 5520 * Therefore, the number of objects in use should equal the 5521 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5522 * If not, we have an object leak. 5523 * 5524 * Note that we can only check this in ztest_dataset_open(), 5525 * when the open-context and syncing-context values agree. 5526 * That's because zap_count() returns the open-context value, 5527 * while dmu_objset_space() returns the rootbp fill count. 5528 */ 5529 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5530 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5531 ASSERT3U(dirobjs + 1, ==, usedobjs); 5532 } 5533 5534 static int 5535 ztest_dataset_open(int d) 5536 { 5537 ztest_ds_t *zd = &ztest_ds[d]; 5538 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5539 objset_t *os; 5540 zilog_t *zilog; 5541 char name[ZFS_MAX_DATASET_NAME_LEN]; 5542 int error; 5543 5544 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5545 5546 (void) rw_rdlock(&ztest_name_lock); 5547 5548 error = ztest_dataset_create(name); 5549 if (error == ENOSPC) { 5550 (void) rw_unlock(&ztest_name_lock); 5551 ztest_record_enospc(FTAG); 5552 return (error); 5553 } 5554 ASSERT(error == 0 || error == EEXIST); 5555 5556 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5557 (void) rw_unlock(&ztest_name_lock); 5558 5559 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5560 5561 zilog = zd->zd_zilog; 5562 5563 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5564 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5565 fatal(0, "missing log records: claimed %llu < committed %llu", 5566 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5567 5568 ztest_dataset_dirobj_verify(zd); 5569 5570 zil_replay(os, zd, ztest_replay_vector); 5571 5572 ztest_dataset_dirobj_verify(zd); 5573 5574 if (ztest_opts.zo_verbose >= 6) 5575 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5576 zd->zd_name, 5577 (u_longlong_t)zilog->zl_parse_blk_count, 5578 (u_longlong_t)zilog->zl_parse_lr_count, 5579 (u_longlong_t)zilog->zl_replaying_seq); 5580 5581 zilog = zil_open(os, ztest_get_data); 5582 5583 if (zilog->zl_replaying_seq != 0 && 5584 zilog->zl_replaying_seq < committed_seq) 5585 fatal(0, "missing log records: replayed %llu < committed %llu", 5586 zilog->zl_replaying_seq, committed_seq); 5587 5588 return (0); 5589 } 5590 5591 static void 5592 ztest_dataset_close(int d) 5593 { 5594 ztest_ds_t *zd = &ztest_ds[d]; 5595 5596 zil_close(zd->zd_zilog); 5597 dmu_objset_disown(zd->zd_os, zd); 5598 5599 ztest_zd_fini(zd); 5600 } 5601 5602 /* 5603 * Kick off threads to run tests on all datasets in parallel. 5604 */ 5605 static void 5606 ztest_run(ztest_shared_t *zs) 5607 { 5608 thread_t *tid; 5609 spa_t *spa; 5610 objset_t *os; 5611 thread_t resume_tid; 5612 int error; 5613 5614 ztest_exiting = B_FALSE; 5615 5616 /* 5617 * Initialize parent/child shared state. 5618 */ 5619 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5620 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5621 5622 zs->zs_thread_start = gethrtime(); 5623 zs->zs_thread_stop = 5624 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5625 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5626 zs->zs_thread_kill = zs->zs_thread_stop; 5627 if (ztest_random(100) < ztest_opts.zo_killrate) { 5628 zs->zs_thread_kill -= 5629 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5630 } 5631 5632 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5633 5634 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5635 offsetof(ztest_cb_data_t, zcd_node)); 5636 5637 /* 5638 * Open our pool. 5639 */ 5640 kernel_init(FREAD | FWRITE); 5641 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5642 spa->spa_debug = B_TRUE; 5643 metaslab_preload_limit = ztest_random(20) + 1; 5644 ztest_spa = spa; 5645 5646 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5647 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5648 zs->zs_guid = dmu_objset_fsid_guid(os); 5649 dmu_objset_disown(os, FTAG); 5650 5651 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5652 5653 /* 5654 * We don't expect the pool to suspend unless maxfaults == 0, 5655 * in which case ztest_fault_inject() temporarily takes away 5656 * the only valid replica. 5657 */ 5658 if (MAXFAULTS() == 0) 5659 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5660 else 5661 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5662 5663 /* 5664 * Create a thread to periodically resume suspended I/O. 5665 */ 5666 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5667 &resume_tid) == 0); 5668 5669 /* 5670 * Create a deadman thread to abort() if we hang. 5671 */ 5672 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5673 NULL) == 0); 5674 5675 /* 5676 * Verify that we can safely inquire about about any object, 5677 * whether it's allocated or not. To make it interesting, 5678 * we probe a 5-wide window around each power of two. 5679 * This hits all edge cases, including zero and the max. 5680 */ 5681 for (int t = 0; t < 64; t++) { 5682 for (int d = -5; d <= 5; d++) { 5683 error = dmu_object_info(spa->spa_meta_objset, 5684 (1ULL << t) + d, NULL); 5685 ASSERT(error == 0 || error == ENOENT || 5686 error == EINVAL); 5687 } 5688 } 5689 5690 /* 5691 * If we got any ENOSPC errors on the previous run, destroy something. 5692 */ 5693 if (zs->zs_enospc_count != 0) { 5694 int d = ztest_random(ztest_opts.zo_datasets); 5695 ztest_dataset_destroy(d); 5696 } 5697 zs->zs_enospc_count = 0; 5698 5699 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5700 UMEM_NOFAIL); 5701 5702 if (ztest_opts.zo_verbose >= 4) 5703 (void) printf("starting main threads...\n"); 5704 5705 /* 5706 * Kick off all the tests that run in parallel. 5707 */ 5708 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5709 if (t < ztest_opts.zo_datasets && 5710 ztest_dataset_open(t) != 0) 5711 return; 5712 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5713 THR_BOUND, &tid[t]) == 0); 5714 } 5715 5716 /* 5717 * Wait for all of the tests to complete. We go in reverse order 5718 * so we don't close datasets while threads are still using them. 5719 */ 5720 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5721 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5722 if (t < ztest_opts.zo_datasets) 5723 ztest_dataset_close(t); 5724 } 5725 5726 txg_wait_synced(spa_get_dsl(spa), 0); 5727 5728 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5729 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5730 zfs_dbgmsg_print(FTAG); 5731 5732 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5733 5734 /* Kill the resume thread */ 5735 ztest_exiting = B_TRUE; 5736 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5737 ztest_resume(spa); 5738 5739 /* 5740 * Right before closing the pool, kick off a bunch of async I/O; 5741 * spa_close() should wait for it to complete. 5742 */ 5743 for (uint64_t object = 1; object < 50; object++) { 5744 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, 5745 ZIO_PRIORITY_SYNC_READ); 5746 } 5747 5748 spa_close(spa, FTAG); 5749 5750 /* 5751 * Verify that we can loop over all pools. 5752 */ 5753 mutex_enter(&spa_namespace_lock); 5754 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5755 if (ztest_opts.zo_verbose > 3) 5756 (void) printf("spa_next: found %s\n", spa_name(spa)); 5757 mutex_exit(&spa_namespace_lock); 5758 5759 /* 5760 * Verify that we can export the pool and reimport it under a 5761 * different name. 5762 */ 5763 if (ztest_random(2) == 0) { 5764 char name[ZFS_MAX_DATASET_NAME_LEN]; 5765 (void) snprintf(name, sizeof (name), "%s_import", 5766 ztest_opts.zo_pool); 5767 ztest_spa_import_export(ztest_opts.zo_pool, name); 5768 ztest_spa_import_export(name, ztest_opts.zo_pool); 5769 } 5770 5771 kernel_fini(); 5772 5773 list_destroy(&zcl.zcl_callbacks); 5774 5775 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5776 5777 (void) rwlock_destroy(&ztest_name_lock); 5778 (void) _mutex_destroy(&ztest_vdev_lock); 5779 } 5780 5781 static void 5782 ztest_freeze(void) 5783 { 5784 ztest_ds_t *zd = &ztest_ds[0]; 5785 spa_t *spa; 5786 int numloops = 0; 5787 5788 if (ztest_opts.zo_verbose >= 3) 5789 (void) printf("testing spa_freeze()...\n"); 5790 5791 kernel_init(FREAD | FWRITE); 5792 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5793 VERIFY3U(0, ==, ztest_dataset_open(0)); 5794 spa->spa_debug = B_TRUE; 5795 ztest_spa = spa; 5796 5797 /* 5798 * Force the first log block to be transactionally allocated. 5799 * We have to do this before we freeze the pool -- otherwise 5800 * the log chain won't be anchored. 5801 */ 5802 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5803 ztest_dmu_object_alloc_free(zd, 0); 5804 zil_commit(zd->zd_zilog, 0); 5805 } 5806 5807 txg_wait_synced(spa_get_dsl(spa), 0); 5808 5809 /* 5810 * Freeze the pool. This stops spa_sync() from doing anything, 5811 * so that the only way to record changes from now on is the ZIL. 5812 */ 5813 spa_freeze(spa); 5814 5815 /* 5816 * Because it is hard to predict how much space a write will actually 5817 * require beforehand, we leave ourselves some fudge space to write over 5818 * capacity. 5819 */ 5820 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; 5821 5822 /* 5823 * Run tests that generate log records but don't alter the pool config 5824 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5825 * We do a txg_wait_synced() after each iteration to force the txg 5826 * to increase well beyond the last synced value in the uberblock. 5827 * The ZIL should be OK with that. 5828 * 5829 * Run a random number of times less than zo_maxloops and ensure we do 5830 * not run out of space on the pool. 5831 */ 5832 while (ztest_random(10) != 0 && 5833 numloops++ < ztest_opts.zo_maxloops && 5834 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { 5835 ztest_od_t od; 5836 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 5837 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); 5838 ztest_io(zd, od.od_object, 5839 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 5840 txg_wait_synced(spa_get_dsl(spa), 0); 5841 } 5842 5843 /* 5844 * Commit all of the changes we just generated. 5845 */ 5846 zil_commit(zd->zd_zilog, 0); 5847 txg_wait_synced(spa_get_dsl(spa), 0); 5848 5849 /* 5850 * Close our dataset and close the pool. 5851 */ 5852 ztest_dataset_close(0); 5853 spa_close(spa, FTAG); 5854 kernel_fini(); 5855 5856 /* 5857 * Open and close the pool and dataset to induce log replay. 5858 */ 5859 kernel_init(FREAD | FWRITE); 5860 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5861 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5862 VERIFY3U(0, ==, ztest_dataset_open(0)); 5863 ztest_dataset_close(0); 5864 5865 spa->spa_debug = B_TRUE; 5866 ztest_spa = spa; 5867 txg_wait_synced(spa_get_dsl(spa), 0); 5868 ztest_reguid(NULL, 0); 5869 5870 spa_close(spa, FTAG); 5871 kernel_fini(); 5872 } 5873 5874 void 5875 print_time(hrtime_t t, char *timebuf) 5876 { 5877 hrtime_t s = t / NANOSEC; 5878 hrtime_t m = s / 60; 5879 hrtime_t h = m / 60; 5880 hrtime_t d = h / 24; 5881 5882 s -= m * 60; 5883 m -= h * 60; 5884 h -= d * 24; 5885 5886 timebuf[0] = '\0'; 5887 5888 if (d) 5889 (void) sprintf(timebuf, 5890 "%llud%02lluh%02llum%02llus", d, h, m, s); 5891 else if (h) 5892 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5893 else if (m) 5894 (void) sprintf(timebuf, "%llum%02llus", m, s); 5895 else 5896 (void) sprintf(timebuf, "%llus", s); 5897 } 5898 5899 static nvlist_t * 5900 make_random_props() 5901 { 5902 nvlist_t *props; 5903 5904 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5905 if (ztest_random(2) == 0) 5906 return (props); 5907 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5908 5909 return (props); 5910 } 5911 5912 /* 5913 * Create a storage pool with the given name and initial vdev size. 5914 * Then test spa_freeze() functionality. 5915 */ 5916 static void 5917 ztest_init(ztest_shared_t *zs) 5918 { 5919 spa_t *spa; 5920 nvlist_t *nvroot, *props; 5921 5922 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5923 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5924 5925 kernel_init(FREAD | FWRITE); 5926 5927 /* 5928 * Create the storage pool. 5929 */ 5930 (void) spa_destroy(ztest_opts.zo_pool); 5931 ztest_shared->zs_vdev_next_leaf = 0; 5932 zs->zs_splits = 0; 5933 zs->zs_mirrors = ztest_opts.zo_mirrors; 5934 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 5935 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5936 props = make_random_props(); 5937 for (int i = 0; i < SPA_FEATURES; i++) { 5938 char buf[1024]; 5939 (void) snprintf(buf, sizeof (buf), "feature@%s", 5940 spa_feature_table[i].fi_uname); 5941 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5942 } 5943 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5944 nvlist_free(nvroot); 5945 nvlist_free(props); 5946 5947 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5948 zs->zs_metaslab_sz = 5949 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5950 5951 spa_close(spa, FTAG); 5952 5953 kernel_fini(); 5954 5955 ztest_run_zdb(ztest_opts.zo_pool); 5956 5957 ztest_freeze(); 5958 5959 ztest_run_zdb(ztest_opts.zo_pool); 5960 5961 (void) rwlock_destroy(&ztest_name_lock); 5962 (void) _mutex_destroy(&ztest_vdev_lock); 5963 } 5964 5965 static void 5966 setup_data_fd(void) 5967 { 5968 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 5969 5970 ztest_fd_data = mkstemp(ztest_name_data); 5971 ASSERT3S(ztest_fd_data, >=, 0); 5972 (void) unlink(ztest_name_data); 5973 } 5974 5975 5976 static int 5977 shared_data_size(ztest_shared_hdr_t *hdr) 5978 { 5979 int size; 5980 5981 size = hdr->zh_hdr_size; 5982 size += hdr->zh_opts_size; 5983 size += hdr->zh_size; 5984 size += hdr->zh_stats_size * hdr->zh_stats_count; 5985 size += hdr->zh_ds_size * hdr->zh_ds_count; 5986 5987 return (size); 5988 } 5989 5990 static void 5991 setup_hdr(void) 5992 { 5993 int size; 5994 ztest_shared_hdr_t *hdr; 5995 5996 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5997 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5998 ASSERT(hdr != MAP_FAILED); 5999 6000 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 6001 6002 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 6003 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 6004 hdr->zh_size = sizeof (ztest_shared_t); 6005 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 6006 hdr->zh_stats_count = ZTEST_FUNCS; 6007 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 6008 hdr->zh_ds_count = ztest_opts.zo_datasets; 6009 6010 size = shared_data_size(hdr); 6011 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 6012 6013 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6014 } 6015 6016 static void 6017 setup_data(void) 6018 { 6019 int size, offset; 6020 ztest_shared_hdr_t *hdr; 6021 uint8_t *buf; 6022 6023 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6024 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 6025 ASSERT(hdr != MAP_FAILED); 6026 6027 size = shared_data_size(hdr); 6028 6029 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6030 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 6031 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6032 ASSERT(hdr != MAP_FAILED); 6033 buf = (uint8_t *)hdr; 6034 6035 offset = hdr->zh_hdr_size; 6036 ztest_shared_opts = (void *)&buf[offset]; 6037 offset += hdr->zh_opts_size; 6038 ztest_shared = (void *)&buf[offset]; 6039 offset += hdr->zh_size; 6040 ztest_shared_callstate = (void *)&buf[offset]; 6041 offset += hdr->zh_stats_size * hdr->zh_stats_count; 6042 ztest_shared_ds = (void *)&buf[offset]; 6043 } 6044 6045 static boolean_t 6046 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 6047 { 6048 pid_t pid; 6049 int status; 6050 char *cmdbuf = NULL; 6051 6052 pid = fork(); 6053 6054 if (cmd == NULL) { 6055 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6056 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 6057 cmd = cmdbuf; 6058 } 6059 6060 if (pid == -1) 6061 fatal(1, "fork failed"); 6062 6063 if (pid == 0) { /* child */ 6064 char *emptyargv[2] = { cmd, NULL }; 6065 char fd_data_str[12]; 6066 6067 struct rlimit rl = { 1024, 1024 }; 6068 (void) setrlimit(RLIMIT_NOFILE, &rl); 6069 6070 (void) close(ztest_fd_rand); 6071 VERIFY3U(11, >=, 6072 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 6073 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 6074 6075 (void) enable_extended_FILE_stdio(-1, -1); 6076 if (libpath != NULL) 6077 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 6078 (void) execv(cmd, emptyargv); 6079 ztest_dump_core = B_FALSE; 6080 fatal(B_TRUE, "exec failed: %s", cmd); 6081 } 6082 6083 if (cmdbuf != NULL) { 6084 umem_free(cmdbuf, MAXPATHLEN); 6085 cmd = NULL; 6086 } 6087 6088 while (waitpid(pid, &status, 0) != pid) 6089 continue; 6090 if (statusp != NULL) 6091 *statusp = status; 6092 6093 if (WIFEXITED(status)) { 6094 if (WEXITSTATUS(status) != 0) { 6095 (void) fprintf(stderr, "child exited with code %d\n", 6096 WEXITSTATUS(status)); 6097 exit(2); 6098 } 6099 return (B_FALSE); 6100 } else if (WIFSIGNALED(status)) { 6101 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 6102 (void) fprintf(stderr, "child died with signal %d\n", 6103 WTERMSIG(status)); 6104 exit(3); 6105 } 6106 return (B_TRUE); 6107 } else { 6108 (void) fprintf(stderr, "something strange happened to child\n"); 6109 exit(4); 6110 /* NOTREACHED */ 6111 } 6112 } 6113 6114 static void 6115 ztest_run_init(void) 6116 { 6117 ztest_shared_t *zs = ztest_shared; 6118 6119 ASSERT(ztest_opts.zo_init != 0); 6120 6121 /* 6122 * Blow away any existing copy of zpool.cache 6123 */ 6124 (void) remove(spa_config_path); 6125 6126 /* 6127 * Create and initialize our storage pool. 6128 */ 6129 for (int i = 1; i <= ztest_opts.zo_init; i++) { 6130 bzero(zs, sizeof (ztest_shared_t)); 6131 if (ztest_opts.zo_verbose >= 3 && 6132 ztest_opts.zo_init != 1) { 6133 (void) printf("ztest_init(), pass %d\n", i); 6134 } 6135 ztest_init(zs); 6136 } 6137 } 6138 6139 int 6140 main(int argc, char **argv) 6141 { 6142 int kills = 0; 6143 int iters = 0; 6144 int older = 0; 6145 int newer = 0; 6146 ztest_shared_t *zs; 6147 ztest_info_t *zi; 6148 ztest_shared_callstate_t *zc; 6149 char timebuf[100]; 6150 char numbuf[6]; 6151 spa_t *spa; 6152 char *cmd; 6153 boolean_t hasalt; 6154 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6155 6156 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6157 6158 dprintf_setup(&argc, argv); 6159 zfs_deadman_synctime_ms = 300000; 6160 6161 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6162 ASSERT3S(ztest_fd_rand, >=, 0); 6163 6164 if (!fd_data_str) { 6165 process_options(argc, argv); 6166 6167 setup_data_fd(); 6168 setup_hdr(); 6169 setup_data(); 6170 bcopy(&ztest_opts, ztest_shared_opts, 6171 sizeof (*ztest_shared_opts)); 6172 } else { 6173 ztest_fd_data = atoi(fd_data_str); 6174 setup_data(); 6175 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6176 } 6177 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6178 6179 /* Override location of zpool.cache */ 6180 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6181 ztest_opts.zo_dir), !=, -1); 6182 6183 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6184 UMEM_NOFAIL); 6185 zs = ztest_shared; 6186 6187 if (fd_data_str) { 6188 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6189 metaslab_df_alloc_threshold = 6190 zs->zs_metaslab_df_alloc_threshold; 6191 6192 if (zs->zs_do_init) 6193 ztest_run_init(); 6194 else 6195 ztest_run(zs); 6196 exit(0); 6197 } 6198 6199 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6200 6201 if (ztest_opts.zo_verbose >= 1) { 6202 (void) printf("%llu vdevs, %d datasets, %d threads," 6203 " %llu seconds...\n", 6204 (u_longlong_t)ztest_opts.zo_vdevs, 6205 ztest_opts.zo_datasets, 6206 ztest_opts.zo_threads, 6207 (u_longlong_t)ztest_opts.zo_time); 6208 } 6209 6210 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6211 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6212 6213 zs->zs_do_init = B_TRUE; 6214 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6215 if (ztest_opts.zo_verbose >= 1) { 6216 (void) printf("Executing older ztest for " 6217 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6218 } 6219 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6220 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6221 } else { 6222 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6223 } 6224 zs->zs_do_init = B_FALSE; 6225 6226 zs->zs_proc_start = gethrtime(); 6227 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6228 6229 for (int f = 0; f < ZTEST_FUNCS; f++) { 6230 zi = &ztest_info[f]; 6231 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6232 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6233 zc->zc_next = UINT64_MAX; 6234 else 6235 zc->zc_next = zs->zs_proc_start + 6236 ztest_random(2 * zi->zi_interval[0] + 1); 6237 } 6238 6239 /* 6240 * Run the tests in a loop. These tests include fault injection 6241 * to verify that self-healing data works, and forced crashes 6242 * to verify that we never lose on-disk consistency. 6243 */ 6244 while (gethrtime() < zs->zs_proc_stop) { 6245 int status; 6246 boolean_t killed; 6247 6248 /* 6249 * Initialize the workload counters for each function. 6250 */ 6251 for (int f = 0; f < ZTEST_FUNCS; f++) { 6252 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6253 zc->zc_count = 0; 6254 zc->zc_time = 0; 6255 } 6256 6257 /* Set the allocation switch size */ 6258 zs->zs_metaslab_df_alloc_threshold = 6259 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6260 6261 if (!hasalt || ztest_random(2) == 0) { 6262 if (hasalt && ztest_opts.zo_verbose >= 1) { 6263 (void) printf("Executing newer ztest: %s\n", 6264 cmd); 6265 } 6266 newer++; 6267 killed = exec_child(cmd, NULL, B_TRUE, &status); 6268 } else { 6269 if (hasalt && ztest_opts.zo_verbose >= 1) { 6270 (void) printf("Executing older ztest: %s\n", 6271 ztest_opts.zo_alt_ztest); 6272 } 6273 older++; 6274 killed = exec_child(ztest_opts.zo_alt_ztest, 6275 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6276 } 6277 6278 if (killed) 6279 kills++; 6280 iters++; 6281 6282 if (ztest_opts.zo_verbose >= 1) { 6283 hrtime_t now = gethrtime(); 6284 6285 now = MIN(now, zs->zs_proc_stop); 6286 print_time(zs->zs_proc_stop - now, timebuf); 6287 nicenum(zs->zs_space, numbuf); 6288 6289 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6290 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6291 iters, 6292 WIFEXITED(status) ? "Complete" : "SIGKILL", 6293 (u_longlong_t)zs->zs_enospc_count, 6294 100.0 * zs->zs_alloc / zs->zs_space, 6295 numbuf, 6296 100.0 * (now - zs->zs_proc_start) / 6297 (ztest_opts.zo_time * NANOSEC), timebuf); 6298 } 6299 6300 if (ztest_opts.zo_verbose >= 2) { 6301 (void) printf("\nWorkload summary:\n\n"); 6302 (void) printf("%7s %9s %s\n", 6303 "Calls", "Time", "Function"); 6304 (void) printf("%7s %9s %s\n", 6305 "-----", "----", "--------"); 6306 for (int f = 0; f < ZTEST_FUNCS; f++) { 6307 Dl_info dli; 6308 6309 zi = &ztest_info[f]; 6310 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6311 print_time(zc->zc_time, timebuf); 6312 (void) dladdr((void *)zi->zi_func, &dli); 6313 (void) printf("%7llu %9s %s\n", 6314 (u_longlong_t)zc->zc_count, timebuf, 6315 dli.dli_sname); 6316 } 6317 (void) printf("\n"); 6318 } 6319 6320 /* 6321 * It's possible that we killed a child during a rename test, 6322 * in which case we'll have a 'ztest_tmp' pool lying around 6323 * instead of 'ztest'. Do a blind rename in case this happened. 6324 */ 6325 kernel_init(FREAD); 6326 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6327 spa_close(spa, FTAG); 6328 } else { 6329 char tmpname[ZFS_MAX_DATASET_NAME_LEN]; 6330 kernel_fini(); 6331 kernel_init(FREAD | FWRITE); 6332 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6333 ztest_opts.zo_pool); 6334 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6335 } 6336 kernel_fini(); 6337 6338 ztest_run_zdb(ztest_opts.zo_pool); 6339 } 6340 6341 if (ztest_opts.zo_verbose >= 1) { 6342 if (hasalt) { 6343 (void) printf("%d runs of older ztest: %s\n", older, 6344 ztest_opts.zo_alt_ztest); 6345 (void) printf("%d runs of newer ztest: %s\n", newer, 6346 cmd); 6347 } 6348 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6349 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6350 } 6351 6352 umem_free(cmd, MAXNAMELEN); 6353 6354 return (0); 6355 } 6356