1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>. 26 */ 27 28 /* 29 * Functions to convert between a list of vdevs and an nvlist representing the 30 * configuration. Each entry in the list can be one of: 31 * 32 * Device vdevs 33 * disk=(path=..., devid=...) 34 * file=(path=...) 35 * 36 * Group vdevs 37 * raidz[1|2]=(...) 38 * mirror=(...) 39 * 40 * Hot spares 41 * 42 * While the underlying implementation supports it, group vdevs cannot contain 43 * other group vdevs. All userland verification of devices is contained within 44 * this file. If successful, the nvlist returned can be passed directly to the 45 * kernel; we've done as much verification as possible in userland. 46 * 47 * Hot spares are a special case, and passed down as an array of disk vdevs, at 48 * the same level as the root of the vdev tree. 49 * 50 * The only function exported by this file is 'make_root_vdev'. The 51 * function performs several passes: 52 * 53 * 1. Construct the vdev specification. Performs syntax validation and 54 * makes sure each device is valid. 55 * 2. Check for devices in use. Using libdiskmgt, makes sure that no 56 * devices are also in use. Some can be overridden using the 'force' 57 * flag, others cannot. 58 * 3. Check for replication errors if the 'force' flag is not specified. 59 * validates that the replication level is consistent across the 60 * entire pool. 61 * 4. Call libzfs to label any whole disks with an EFI label. 62 */ 63 64 #include <assert.h> 65 #include <devid.h> 66 #include <errno.h> 67 #include <fcntl.h> 68 #include <libdiskmgt.h> 69 #include <libintl.h> 70 #include <libnvpair.h> 71 #include <limits.h> 72 #include <stdio.h> 73 #include <string.h> 74 #include <unistd.h> 75 #include <sys/efi_partition.h> 76 #include <sys/stat.h> 77 #include <sys/vtoc.h> 78 #include <sys/mntent.h> 79 80 #include "zpool_util.h" 81 82 #define DISK_ROOT "/dev/dsk" 83 #define RDISK_ROOT "/dev/rdsk" 84 #define BACKUP_SLICE "s2" 85 86 /* 87 * For any given vdev specification, we can have multiple errors. The 88 * vdev_error() function keeps track of whether we have seen an error yet, and 89 * prints out a header if its the first error we've seen. 90 */ 91 boolean_t error_seen; 92 boolean_t is_force; 93 94 /*PRINTFLIKE1*/ 95 static void 96 vdev_error(const char *fmt, ...) 97 { 98 va_list ap; 99 100 if (!error_seen) { 101 (void) fprintf(stderr, gettext("invalid vdev specification\n")); 102 if (!is_force) 103 (void) fprintf(stderr, gettext("use '-f' to override " 104 "the following errors:\n")); 105 else 106 (void) fprintf(stderr, gettext("the following errors " 107 "must be manually repaired:\n")); 108 error_seen = B_TRUE; 109 } 110 111 va_start(ap, fmt); 112 (void) vfprintf(stderr, fmt, ap); 113 va_end(ap); 114 } 115 116 static void 117 libdiskmgt_error(int error) 118 { 119 /* 120 * ENXIO/ENODEV is a valid error message if the device doesn't live in 121 * /dev/dsk. Don't bother printing an error message in this case. 122 */ 123 if (error == ENXIO || error == ENODEV) 124 return; 125 126 (void) fprintf(stderr, gettext("warning: device in use checking " 127 "failed: %s\n"), strerror(error)); 128 } 129 130 /* 131 * Validate a device, passing the bulk of the work off to libdiskmgt. 132 */ 133 static int 134 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare) 135 { 136 char *msg; 137 int error = 0; 138 dm_who_type_t who; 139 140 if (force) 141 who = DM_WHO_ZPOOL_FORCE; 142 else if (isspare) 143 who = DM_WHO_ZPOOL_SPARE; 144 else 145 who = DM_WHO_ZPOOL; 146 147 if (dm_inuse((char *)path, &msg, who, &error) || error) { 148 if (error != 0) { 149 libdiskmgt_error(error); 150 return (0); 151 } else { 152 vdev_error("%s", msg); 153 free(msg); 154 return (-1); 155 } 156 } 157 158 /* 159 * If we're given a whole disk, ignore overlapping slices since we're 160 * about to label it anyway. 161 */ 162 error = 0; 163 if (!wholedisk && !force && 164 (dm_isoverlapping((char *)path, &msg, &error) || error)) { 165 if (error == 0) { 166 /* dm_isoverlapping returned -1 */ 167 vdev_error(gettext("%s overlaps with %s\n"), path, msg); 168 free(msg); 169 return (-1); 170 } else if (error != ENODEV) { 171 /* libdiskmgt's devcache only handles physical drives */ 172 libdiskmgt_error(error); 173 return (0); 174 } 175 } 176 177 return (0); 178 } 179 180 181 /* 182 * Validate a whole disk. Iterate over all slices on the disk and make sure 183 * that none is in use by calling check_slice(). 184 */ 185 static int 186 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare) 187 { 188 dm_descriptor_t *drive, *media, *slice; 189 int err = 0; 190 int i; 191 int ret; 192 193 /* 194 * Get the drive associated with this disk. This should never fail, 195 * because we already have an alias handle open for the device. 196 */ 197 if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE, 198 &err)) == NULL || *drive == NULL) { 199 if (err) 200 libdiskmgt_error(err); 201 return (0); 202 } 203 204 if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA, 205 &err)) == NULL) { 206 dm_free_descriptors(drive); 207 if (err) 208 libdiskmgt_error(err); 209 return (0); 210 } 211 212 dm_free_descriptors(drive); 213 214 /* 215 * It is possible that the user has specified a removable media drive, 216 * and the media is not present. 217 */ 218 if (*media == NULL) { 219 dm_free_descriptors(media); 220 vdev_error(gettext("'%s' has no media in drive\n"), name); 221 return (-1); 222 } 223 224 if ((slice = dm_get_associated_descriptors(*media, DM_SLICE, 225 &err)) == NULL) { 226 dm_free_descriptors(media); 227 if (err) 228 libdiskmgt_error(err); 229 return (0); 230 } 231 232 dm_free_descriptors(media); 233 234 ret = 0; 235 236 /* 237 * Iterate over all slices and report any errors. We don't care about 238 * overlapping slices because we are using the whole disk. 239 */ 240 for (i = 0; slice[i] != NULL; i++) { 241 char *name = dm_get_name(slice[i], &err); 242 243 if (check_slice(name, force, B_TRUE, isspare) != 0) 244 ret = -1; 245 246 dm_free_name(name); 247 } 248 249 dm_free_descriptors(slice); 250 return (ret); 251 } 252 253 /* 254 * Validate a device. 255 */ 256 static int 257 check_device(const char *path, boolean_t force, boolean_t isspare) 258 { 259 dm_descriptor_t desc; 260 int err; 261 char *dev; 262 263 /* 264 * For whole disks, libdiskmgt does not include the leading dev path. 265 */ 266 dev = strrchr(path, '/'); 267 assert(dev != NULL); 268 dev++; 269 if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) { 270 err = check_disk(path, desc, force, isspare); 271 dm_free_descriptor(desc); 272 return (err); 273 } 274 275 return (check_slice(path, force, B_FALSE, isspare)); 276 } 277 278 /* 279 * Check that a file is valid. All we can do in this case is check that it's 280 * not in use by another pool, and not in use by swap. 281 */ 282 static int 283 check_file(const char *file, boolean_t force, boolean_t isspare) 284 { 285 char *name; 286 int fd; 287 int ret = 0; 288 int err; 289 pool_state_t state; 290 boolean_t inuse; 291 292 if (dm_inuse_swap(file, &err)) { 293 if (err) 294 libdiskmgt_error(err); 295 else 296 vdev_error(gettext("%s is currently used by swap. " 297 "Please see swap(1M).\n"), file); 298 return (-1); 299 } 300 301 if ((fd = open(file, O_RDONLY)) < 0) 302 return (0); 303 304 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) { 305 const char *desc; 306 307 switch (state) { 308 case POOL_STATE_ACTIVE: 309 desc = gettext("active"); 310 break; 311 312 case POOL_STATE_EXPORTED: 313 desc = gettext("exported"); 314 break; 315 316 case POOL_STATE_POTENTIALLY_ACTIVE: 317 desc = gettext("potentially active"); 318 break; 319 320 default: 321 desc = gettext("unknown"); 322 break; 323 } 324 325 /* 326 * Allow hot spares to be shared between pools. 327 */ 328 if (state == POOL_STATE_SPARE && isspare) 329 return (0); 330 331 if (state == POOL_STATE_ACTIVE || 332 state == POOL_STATE_SPARE || !force) { 333 switch (state) { 334 case POOL_STATE_SPARE: 335 vdev_error(gettext("%s is reserved as a hot " 336 "spare for pool %s\n"), file, name); 337 break; 338 default: 339 vdev_error(gettext("%s is part of %s pool " 340 "'%s'\n"), file, desc, name); 341 break; 342 } 343 ret = -1; 344 } 345 346 free(name); 347 } 348 349 (void) close(fd); 350 return (ret); 351 } 352 353 354 /* 355 * By "whole disk" we mean an entire physical disk (something we can 356 * label, toggle the write cache on, etc.) as opposed to the full 357 * capacity of a pseudo-device such as lofi or did. We act as if we 358 * are labeling the disk, which should be a pretty good test of whether 359 * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if 360 * it isn't. 361 */ 362 static boolean_t 363 is_whole_disk(const char *arg) 364 { 365 struct dk_gpt *label; 366 int fd; 367 char path[MAXPATHLEN]; 368 369 (void) snprintf(path, sizeof (path), "%s%s%s", 370 RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE); 371 if ((fd = open(path, O_RDWR | O_NDELAY)) < 0) 372 return (B_FALSE); 373 if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) { 374 (void) close(fd); 375 return (B_FALSE); 376 } 377 efi_free(label); 378 (void) close(fd); 379 return (B_TRUE); 380 } 381 382 /* 383 * Create a leaf vdev. Determine if this is a file or a device. If it's a 384 * device, fill in the device id to make a complete nvlist. Valid forms for a 385 * leaf vdev are: 386 * 387 * /dev/dsk/xxx Complete disk path 388 * /xxx Full path to file 389 * xxx Shorthand for /dev/dsk/xxx 390 */ 391 static nvlist_t * 392 make_leaf_vdev(const char *arg, uint64_t is_log) 393 { 394 char path[MAXPATHLEN]; 395 struct stat64 statbuf; 396 nvlist_t *vdev = NULL; 397 char *type = NULL; 398 boolean_t wholedisk = B_FALSE; 399 400 /* 401 * Determine what type of vdev this is, and put the full path into 402 * 'path'. We detect whether this is a device of file afterwards by 403 * checking the st_mode of the file. 404 */ 405 if (arg[0] == '/') { 406 /* 407 * Complete device or file path. Exact type is determined by 408 * examining the file descriptor afterwards. 409 */ 410 wholedisk = is_whole_disk(arg); 411 if (!wholedisk && (stat64(arg, &statbuf) != 0)) { 412 (void) fprintf(stderr, 413 gettext("cannot open '%s': %s\n"), 414 arg, strerror(errno)); 415 return (NULL); 416 } 417 418 (void) strlcpy(path, arg, sizeof (path)); 419 } else { 420 /* 421 * This may be a short path for a device, or it could be total 422 * gibberish. Check to see if it's a known device in 423 * /dev/dsk/. As part of this check, see if we've been given a 424 * an entire disk (minus the slice number). 425 */ 426 (void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT, 427 arg); 428 wholedisk = is_whole_disk(path); 429 if (!wholedisk && (stat64(path, &statbuf) != 0)) { 430 /* 431 * If we got ENOENT, then the user gave us 432 * gibberish, so try to direct them with a 433 * reasonable error message. Otherwise, 434 * regurgitate strerror() since it's the best we 435 * can do. 436 */ 437 if (errno == ENOENT) { 438 (void) fprintf(stderr, 439 gettext("cannot open '%s': no such " 440 "device in %s\n"), arg, DISK_ROOT); 441 (void) fprintf(stderr, 442 gettext("must be a full path or " 443 "shorthand device name\n")); 444 return (NULL); 445 } else { 446 (void) fprintf(stderr, 447 gettext("cannot open '%s': %s\n"), 448 path, strerror(errno)); 449 return (NULL); 450 } 451 } 452 } 453 454 /* 455 * Determine whether this is a device or a file. 456 */ 457 if (wholedisk || S_ISBLK(statbuf.st_mode)) { 458 type = VDEV_TYPE_DISK; 459 } else if (S_ISREG(statbuf.st_mode)) { 460 type = VDEV_TYPE_FILE; 461 } else { 462 (void) fprintf(stderr, gettext("cannot use '%s': must be a " 463 "block device or regular file\n"), path); 464 return (NULL); 465 } 466 467 /* 468 * Finally, we have the complete device or file, and we know that it is 469 * acceptable to use. Construct the nvlist to describe this vdev. All 470 * vdevs have a 'path' element, and devices also have a 'devid' element. 471 */ 472 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0); 473 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0); 474 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0); 475 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0); 476 if (strcmp(type, VDEV_TYPE_DISK) == 0) 477 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, 478 (uint64_t)wholedisk) == 0); 479 480 /* 481 * For a whole disk, defer getting its devid until after labeling it. 482 */ 483 if (S_ISBLK(statbuf.st_mode) && !wholedisk) { 484 /* 485 * Get the devid for the device. 486 */ 487 int fd; 488 ddi_devid_t devid; 489 char *minor = NULL, *devid_str = NULL; 490 491 if ((fd = open(path, O_RDONLY)) < 0) { 492 (void) fprintf(stderr, gettext("cannot open '%s': " 493 "%s\n"), path, strerror(errno)); 494 nvlist_free(vdev); 495 return (NULL); 496 } 497 498 if (devid_get(fd, &devid) == 0) { 499 if (devid_get_minor_name(fd, &minor) == 0 && 500 (devid_str = devid_str_encode(devid, minor)) != 501 NULL) { 502 verify(nvlist_add_string(vdev, 503 ZPOOL_CONFIG_DEVID, devid_str) == 0); 504 } 505 if (devid_str != NULL) 506 devid_str_free(devid_str); 507 if (minor != NULL) 508 devid_str_free(minor); 509 devid_free(devid); 510 } 511 512 (void) close(fd); 513 } 514 515 return (vdev); 516 } 517 518 /* 519 * Go through and verify the replication level of the pool is consistent. 520 * Performs the following checks: 521 * 522 * For the new spec, verifies that devices in mirrors and raidz are the 523 * same size. 524 * 525 * If the current configuration already has inconsistent replication 526 * levels, ignore any other potential problems in the new spec. 527 * 528 * Otherwise, make sure that the current spec (if there is one) and the new 529 * spec have consistent replication levels. 530 */ 531 typedef struct replication_level { 532 char *zprl_type; 533 uint64_t zprl_children; 534 uint64_t zprl_parity; 535 } replication_level_t; 536 537 #define ZPOOL_FUZZ (16 * 1024 * 1024) 538 539 /* 540 * Given a list of toplevel vdevs, return the current replication level. If 541 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then 542 * an error message will be displayed for each self-inconsistent vdev. 543 */ 544 static replication_level_t * 545 get_replication(nvlist_t *nvroot, boolean_t fatal) 546 { 547 nvlist_t **top; 548 uint_t t, toplevels; 549 nvlist_t **child; 550 uint_t c, children; 551 nvlist_t *nv; 552 char *type; 553 replication_level_t lastrep = {0}; 554 replication_level_t rep; 555 replication_level_t *ret; 556 boolean_t dontreport; 557 558 ret = safe_malloc(sizeof (replication_level_t)); 559 560 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 561 &top, &toplevels) == 0); 562 563 lastrep.zprl_type = NULL; 564 for (t = 0; t < toplevels; t++) { 565 uint64_t is_log = B_FALSE; 566 567 nv = top[t]; 568 569 /* 570 * For separate logs we ignore the top level vdev replication 571 * constraints. 572 */ 573 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log); 574 if (is_log) 575 continue; 576 577 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, 578 &type) == 0); 579 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 580 &child, &children) != 0) { 581 /* 582 * This is a 'file' or 'disk' vdev. 583 */ 584 rep.zprl_type = type; 585 rep.zprl_children = 1; 586 rep.zprl_parity = 0; 587 } else { 588 uint64_t vdev_size; 589 590 /* 591 * This is a mirror or RAID-Z vdev. Go through and make 592 * sure the contents are all the same (files vs. disks), 593 * keeping track of the number of elements in the 594 * process. 595 * 596 * We also check that the size of each vdev (if it can 597 * be determined) is the same. 598 */ 599 rep.zprl_type = type; 600 rep.zprl_children = 0; 601 602 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) { 603 verify(nvlist_lookup_uint64(nv, 604 ZPOOL_CONFIG_NPARITY, 605 &rep.zprl_parity) == 0); 606 assert(rep.zprl_parity != 0); 607 } else { 608 rep.zprl_parity = 0; 609 } 610 611 /* 612 * The 'dontreport' variable indicates that we've 613 * already reported an error for this spec, so don't 614 * bother doing it again. 615 */ 616 type = NULL; 617 dontreport = 0; 618 vdev_size = -1ULL; 619 for (c = 0; c < children; c++) { 620 nvlist_t *cnv = child[c]; 621 char *path; 622 struct stat64 statbuf; 623 uint64_t size = -1ULL; 624 char *childtype; 625 int fd, err; 626 627 rep.zprl_children++; 628 629 verify(nvlist_lookup_string(cnv, 630 ZPOOL_CONFIG_TYPE, &childtype) == 0); 631 632 /* 633 * If this is a replacing or spare vdev, then 634 * get the real first child of the vdev. 635 */ 636 if (strcmp(childtype, 637 VDEV_TYPE_REPLACING) == 0 || 638 strcmp(childtype, VDEV_TYPE_SPARE) == 0) { 639 nvlist_t **rchild; 640 uint_t rchildren; 641 642 verify(nvlist_lookup_nvlist_array(cnv, 643 ZPOOL_CONFIG_CHILDREN, &rchild, 644 &rchildren) == 0); 645 assert(rchildren == 2); 646 cnv = rchild[0]; 647 648 verify(nvlist_lookup_string(cnv, 649 ZPOOL_CONFIG_TYPE, 650 &childtype) == 0); 651 } 652 653 verify(nvlist_lookup_string(cnv, 654 ZPOOL_CONFIG_PATH, &path) == 0); 655 656 /* 657 * If we have a raidz/mirror that combines disks 658 * with files, report it as an error. 659 */ 660 if (!dontreport && type != NULL && 661 strcmp(type, childtype) != 0) { 662 if (ret != NULL) 663 free(ret); 664 ret = NULL; 665 if (fatal) 666 vdev_error(gettext( 667 "mismatched replication " 668 "level: %s contains both " 669 "files and devices\n"), 670 rep.zprl_type); 671 else 672 return (NULL); 673 dontreport = B_TRUE; 674 } 675 676 /* 677 * According to stat(2), the value of 'st_size' 678 * is undefined for block devices and character 679 * devices. But there is no effective way to 680 * determine the real size in userland. 681 * 682 * Instead, we'll take advantage of an 683 * implementation detail of spec_size(). If the 684 * device is currently open, then we (should) 685 * return a valid size. 686 * 687 * If we still don't get a valid size (indicated 688 * by a size of 0 or MAXOFFSET_T), then ignore 689 * this device altogether. 690 */ 691 if ((fd = open(path, O_RDONLY)) >= 0) { 692 err = fstat64(fd, &statbuf); 693 (void) close(fd); 694 } else { 695 err = stat64(path, &statbuf); 696 } 697 698 if (err != 0 || 699 statbuf.st_size == 0 || 700 statbuf.st_size == MAXOFFSET_T) 701 continue; 702 703 size = statbuf.st_size; 704 705 /* 706 * Also make sure that devices and 707 * slices have a consistent size. If 708 * they differ by a significant amount 709 * (~16MB) then report an error. 710 */ 711 if (!dontreport && 712 (vdev_size != -1ULL && 713 (labs(size - vdev_size) > 714 ZPOOL_FUZZ))) { 715 if (ret != NULL) 716 free(ret); 717 ret = NULL; 718 if (fatal) 719 vdev_error(gettext( 720 "%s contains devices of " 721 "different sizes\n"), 722 rep.zprl_type); 723 else 724 return (NULL); 725 dontreport = B_TRUE; 726 } 727 728 type = childtype; 729 vdev_size = size; 730 } 731 } 732 733 /* 734 * At this point, we have the replication of the last toplevel 735 * vdev in 'rep'. Compare it to 'lastrep' to see if its 736 * different. 737 */ 738 if (lastrep.zprl_type != NULL) { 739 if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) { 740 if (ret != NULL) 741 free(ret); 742 ret = NULL; 743 if (fatal) 744 vdev_error(gettext( 745 "mismatched replication level: " 746 "both %s and %s vdevs are " 747 "present\n"), 748 lastrep.zprl_type, rep.zprl_type); 749 else 750 return (NULL); 751 } else if (lastrep.zprl_parity != rep.zprl_parity) { 752 if (ret) 753 free(ret); 754 ret = NULL; 755 if (fatal) 756 vdev_error(gettext( 757 "mismatched replication level: " 758 "both %llu and %llu device parity " 759 "%s vdevs are present\n"), 760 lastrep.zprl_parity, 761 rep.zprl_parity, 762 rep.zprl_type); 763 else 764 return (NULL); 765 } else if (lastrep.zprl_children != rep.zprl_children) { 766 if (ret) 767 free(ret); 768 ret = NULL; 769 if (fatal) 770 vdev_error(gettext( 771 "mismatched replication level: " 772 "both %llu-way and %llu-way %s " 773 "vdevs are present\n"), 774 lastrep.zprl_children, 775 rep.zprl_children, 776 rep.zprl_type); 777 else 778 return (NULL); 779 } 780 } 781 lastrep = rep; 782 } 783 784 if (ret != NULL) 785 *ret = rep; 786 787 return (ret); 788 } 789 790 /* 791 * Check the replication level of the vdev spec against the current pool. Calls 792 * get_replication() to make sure the new spec is self-consistent. If the pool 793 * has a consistent replication level, then we ignore any errors. Otherwise, 794 * report any difference between the two. 795 */ 796 static int 797 check_replication(nvlist_t *config, nvlist_t *newroot) 798 { 799 nvlist_t **child; 800 uint_t children; 801 replication_level_t *current = NULL, *new; 802 int ret; 803 804 /* 805 * If we have a current pool configuration, check to see if it's 806 * self-consistent. If not, simply return success. 807 */ 808 if (config != NULL) { 809 nvlist_t *nvroot; 810 811 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 812 &nvroot) == 0); 813 if ((current = get_replication(nvroot, B_FALSE)) == NULL) 814 return (0); 815 } 816 /* 817 * for spares there may be no children, and therefore no 818 * replication level to check 819 */ 820 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN, 821 &child, &children) != 0) || (children == 0)) { 822 free(current); 823 return (0); 824 } 825 826 /* 827 * If all we have is logs then there's no replication level to check. 828 */ 829 if (num_logs(newroot) == children) { 830 free(current); 831 return (0); 832 } 833 834 /* 835 * Get the replication level of the new vdev spec, reporting any 836 * inconsistencies found. 837 */ 838 if ((new = get_replication(newroot, B_TRUE)) == NULL) { 839 free(current); 840 return (-1); 841 } 842 843 /* 844 * Check to see if the new vdev spec matches the replication level of 845 * the current pool. 846 */ 847 ret = 0; 848 if (current != NULL) { 849 if (strcmp(current->zprl_type, new->zprl_type) != 0) { 850 vdev_error(gettext( 851 "mismatched replication level: pool uses %s " 852 "and new vdev is %s\n"), 853 current->zprl_type, new->zprl_type); 854 ret = -1; 855 } else if (current->zprl_parity != new->zprl_parity) { 856 vdev_error(gettext( 857 "mismatched replication level: pool uses %llu " 858 "device parity and new vdev uses %llu\n"), 859 current->zprl_parity, new->zprl_parity); 860 ret = -1; 861 } else if (current->zprl_children != new->zprl_children) { 862 vdev_error(gettext( 863 "mismatched replication level: pool uses %llu-way " 864 "%s and new vdev uses %llu-way %s\n"), 865 current->zprl_children, current->zprl_type, 866 new->zprl_children, new->zprl_type); 867 ret = -1; 868 } 869 } 870 871 free(new); 872 if (current != NULL) 873 free(current); 874 875 return (ret); 876 } 877 878 /* 879 * Go through and find any whole disks in the vdev specification, labelling them 880 * as appropriate. When constructing the vdev spec, we were unable to open this 881 * device in order to provide a devid. Now that we have labelled the disk and 882 * know that slice 0 is valid, we can construct the devid now. 883 * 884 * If the disk was already labeled with an EFI label, we will have gotten the 885 * devid already (because we were able to open the whole disk). Otherwise, we 886 * need to get the devid after we label the disk. 887 */ 888 static int 889 make_disks(zpool_handle_t *zhp, nvlist_t *nv) 890 { 891 nvlist_t **child; 892 uint_t c, children; 893 char *type, *path, *diskname; 894 char buf[MAXPATHLEN]; 895 uint64_t wholedisk; 896 int fd; 897 int ret; 898 ddi_devid_t devid; 899 char *minor = NULL, *devid_str = NULL; 900 901 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 902 903 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 904 &child, &children) != 0) { 905 906 if (strcmp(type, VDEV_TYPE_DISK) != 0) 907 return (0); 908 909 /* 910 * We have a disk device. Get the path to the device 911 * and see if it's a whole disk by appending the backup 912 * slice and stat()ing the device. 913 */ 914 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0); 915 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 916 &wholedisk) != 0 || !wholedisk) 917 return (0); 918 919 diskname = strrchr(path, '/'); 920 assert(diskname != NULL); 921 diskname++; 922 if (zpool_label_disk(g_zfs, zhp, diskname) == -1) 923 return (-1); 924 925 /* 926 * Fill in the devid, now that we've labeled the disk. 927 */ 928 (void) snprintf(buf, sizeof (buf), "%ss0", path); 929 if ((fd = open(buf, O_RDONLY)) < 0) { 930 (void) fprintf(stderr, 931 gettext("cannot open '%s': %s\n"), 932 buf, strerror(errno)); 933 return (-1); 934 } 935 936 if (devid_get(fd, &devid) == 0) { 937 if (devid_get_minor_name(fd, &minor) == 0 && 938 (devid_str = devid_str_encode(devid, minor)) != 939 NULL) { 940 verify(nvlist_add_string(nv, 941 ZPOOL_CONFIG_DEVID, devid_str) == 0); 942 } 943 if (devid_str != NULL) 944 devid_str_free(devid_str); 945 if (minor != NULL) 946 devid_str_free(minor); 947 devid_free(devid); 948 } 949 950 /* 951 * Update the path to refer to the 's0' slice. The presence of 952 * the 'whole_disk' field indicates to the CLI that we should 953 * chop off the slice number when displaying the device in 954 * future output. 955 */ 956 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0); 957 958 (void) close(fd); 959 960 return (0); 961 } 962 963 for (c = 0; c < children; c++) 964 if ((ret = make_disks(zhp, child[c])) != 0) 965 return (ret); 966 967 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, 968 &child, &children) == 0) 969 for (c = 0; c < children; c++) 970 if ((ret = make_disks(zhp, child[c])) != 0) 971 return (ret); 972 973 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, 974 &child, &children) == 0) 975 for (c = 0; c < children; c++) 976 if ((ret = make_disks(zhp, child[c])) != 0) 977 return (ret); 978 979 return (0); 980 } 981 982 /* 983 * Determine if the given path is a hot spare within the given configuration. 984 */ 985 static boolean_t 986 is_spare(nvlist_t *config, const char *path) 987 { 988 int fd; 989 pool_state_t state; 990 char *name = NULL; 991 nvlist_t *label; 992 uint64_t guid, spareguid; 993 nvlist_t *nvroot; 994 nvlist_t **spares; 995 uint_t i, nspares; 996 boolean_t inuse; 997 998 if ((fd = open(path, O_RDONLY)) < 0) 999 return (B_FALSE); 1000 1001 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 || 1002 !inuse || 1003 state != POOL_STATE_SPARE || 1004 zpool_read_label(fd, &label) != 0) { 1005 free(name); 1006 (void) close(fd); 1007 return (B_FALSE); 1008 } 1009 free(name); 1010 (void) close(fd); 1011 1012 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0); 1013 nvlist_free(label); 1014 1015 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 1016 &nvroot) == 0); 1017 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1018 &spares, &nspares) == 0) { 1019 for (i = 0; i < nspares; i++) { 1020 verify(nvlist_lookup_uint64(spares[i], 1021 ZPOOL_CONFIG_GUID, &spareguid) == 0); 1022 if (spareguid == guid) 1023 return (B_TRUE); 1024 } 1025 } 1026 1027 return (B_FALSE); 1028 } 1029 1030 /* 1031 * Go through and find any devices that are in use. We rely on libdiskmgt for 1032 * the majority of this task. 1033 */ 1034 static boolean_t 1035 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force, 1036 boolean_t replacing, boolean_t isspare) 1037 { 1038 nvlist_t **child; 1039 uint_t c, children; 1040 char *type, *path; 1041 int ret = 0; 1042 char buf[MAXPATHLEN]; 1043 uint64_t wholedisk; 1044 boolean_t anyinuse = B_FALSE; 1045 1046 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 1047 1048 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1049 &child, &children) != 0) { 1050 1051 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0); 1052 1053 /* 1054 * As a generic check, we look to see if this is a replace of a 1055 * hot spare within the same pool. If so, we allow it 1056 * regardless of what libdiskmgt or zpool_in_use() says. 1057 */ 1058 if (replacing) { 1059 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 1060 &wholedisk) == 0 && wholedisk) 1061 (void) snprintf(buf, sizeof (buf), "%ss0", 1062 path); 1063 else 1064 (void) strlcpy(buf, path, sizeof (buf)); 1065 1066 if (is_spare(config, buf)) 1067 return (B_FALSE); 1068 } 1069 1070 if (strcmp(type, VDEV_TYPE_DISK) == 0) 1071 ret = check_device(path, force, isspare); 1072 else if (strcmp(type, VDEV_TYPE_FILE) == 0) 1073 ret = check_file(path, force, isspare); 1074 1075 return (ret != 0); 1076 } 1077 1078 for (c = 0; c < children; c++) 1079 if (is_device_in_use(config, child[c], force, replacing, 1080 B_FALSE)) 1081 anyinuse = B_TRUE; 1082 1083 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, 1084 &child, &children) == 0) 1085 for (c = 0; c < children; c++) 1086 if (is_device_in_use(config, child[c], force, replacing, 1087 B_TRUE)) 1088 anyinuse = B_TRUE; 1089 1090 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, 1091 &child, &children) == 0) 1092 for (c = 0; c < children; c++) 1093 if (is_device_in_use(config, child[c], force, replacing, 1094 B_FALSE)) 1095 anyinuse = B_TRUE; 1096 1097 return (anyinuse); 1098 } 1099 1100 static const char * 1101 is_grouping(const char *type, int *mindev, int *maxdev) 1102 { 1103 if (strncmp(type, "raidz", 5) == 0) { 1104 const char *p = type + 5; 1105 char *end; 1106 long nparity; 1107 1108 if (*p == '\0') { 1109 nparity = 1; 1110 } else if (*p == '0') { 1111 return (NULL); /* no zero prefixes allowed */ 1112 } else { 1113 errno = 0; 1114 nparity = strtol(p, &end, 10); 1115 if (errno != 0 || nparity < 1 || nparity >= 255 || 1116 *end != '\0') 1117 return (NULL); 1118 } 1119 1120 if (mindev != NULL) 1121 *mindev = nparity + 1; 1122 if (maxdev != NULL) 1123 *maxdev = 255; 1124 return (VDEV_TYPE_RAIDZ); 1125 } 1126 1127 if (maxdev != NULL) 1128 *maxdev = INT_MAX; 1129 1130 if (strcmp(type, "mirror") == 0) { 1131 if (mindev != NULL) 1132 *mindev = 2; 1133 return (VDEV_TYPE_MIRROR); 1134 } 1135 1136 if (strcmp(type, "spare") == 0) { 1137 if (mindev != NULL) 1138 *mindev = 1; 1139 return (VDEV_TYPE_SPARE); 1140 } 1141 1142 if (strcmp(type, "log") == 0) { 1143 if (mindev != NULL) 1144 *mindev = 1; 1145 return (VDEV_TYPE_LOG); 1146 } 1147 1148 if (strcmp(type, "cache") == 0) { 1149 if (mindev != NULL) 1150 *mindev = 1; 1151 return (VDEV_TYPE_L2CACHE); 1152 } 1153 1154 return (NULL); 1155 } 1156 1157 /* 1158 * Construct a syntactically valid vdev specification, 1159 * and ensure that all devices and files exist and can be opened. 1160 * Note: we don't bother freeing anything in the error paths 1161 * because the program is just going to exit anyway. 1162 */ 1163 nvlist_t * 1164 construct_spec(int argc, char **argv) 1165 { 1166 nvlist_t *nvroot, *nv, **top, **spares, **l2cache; 1167 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache; 1168 const char *type; 1169 uint64_t is_log; 1170 boolean_t seen_logs; 1171 1172 top = NULL; 1173 toplevels = 0; 1174 spares = NULL; 1175 l2cache = NULL; 1176 nspares = 0; 1177 nlogs = 0; 1178 nl2cache = 0; 1179 is_log = B_FALSE; 1180 seen_logs = B_FALSE; 1181 1182 while (argc > 0) { 1183 nv = NULL; 1184 1185 /* 1186 * If it's a mirror or raidz, the subsequent arguments are 1187 * its leaves -- until we encounter the next mirror or raidz. 1188 */ 1189 if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) { 1190 nvlist_t **child = NULL; 1191 int c, children = 0; 1192 1193 if (strcmp(type, VDEV_TYPE_SPARE) == 0) { 1194 if (spares != NULL) { 1195 (void) fprintf(stderr, 1196 gettext("invalid vdev " 1197 "specification: 'spare' can be " 1198 "specified only once\n")); 1199 return (NULL); 1200 } 1201 is_log = B_FALSE; 1202 } 1203 1204 if (strcmp(type, VDEV_TYPE_LOG) == 0) { 1205 if (seen_logs) { 1206 (void) fprintf(stderr, 1207 gettext("invalid vdev " 1208 "specification: 'log' can be " 1209 "specified only once\n")); 1210 return (NULL); 1211 } 1212 seen_logs = B_TRUE; 1213 is_log = B_TRUE; 1214 argc--; 1215 argv++; 1216 /* 1217 * A log is not a real grouping device. 1218 * We just set is_log and continue. 1219 */ 1220 continue; 1221 } 1222 1223 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) { 1224 if (l2cache != NULL) { 1225 (void) fprintf(stderr, 1226 gettext("invalid vdev " 1227 "specification: 'cache' can be " 1228 "specified only once\n")); 1229 return (NULL); 1230 } 1231 is_log = B_FALSE; 1232 } 1233 1234 if (is_log) { 1235 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) { 1236 (void) fprintf(stderr, 1237 gettext("invalid vdev " 1238 "specification: unsupported 'log' " 1239 "device: %s\n"), type); 1240 return (NULL); 1241 } 1242 nlogs++; 1243 } 1244 1245 for (c = 1; c < argc; c++) { 1246 if (is_grouping(argv[c], NULL, NULL) != NULL) 1247 break; 1248 children++; 1249 child = realloc(child, 1250 children * sizeof (nvlist_t *)); 1251 if (child == NULL) 1252 zpool_no_memory(); 1253 if ((nv = make_leaf_vdev(argv[c], B_FALSE)) 1254 == NULL) 1255 return (NULL); 1256 child[children - 1] = nv; 1257 } 1258 1259 if (children < mindev) { 1260 (void) fprintf(stderr, gettext("invalid vdev " 1261 "specification: %s requires at least %d " 1262 "devices\n"), argv[0], mindev); 1263 return (NULL); 1264 } 1265 1266 if (children > maxdev) { 1267 (void) fprintf(stderr, gettext("invalid vdev " 1268 "specification: %s supports no more than " 1269 "%d devices\n"), argv[0], maxdev); 1270 return (NULL); 1271 } 1272 1273 argc -= c; 1274 argv += c; 1275 1276 if (strcmp(type, VDEV_TYPE_SPARE) == 0) { 1277 spares = child; 1278 nspares = children; 1279 continue; 1280 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) { 1281 l2cache = child; 1282 nl2cache = children; 1283 continue; 1284 } else { 1285 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME, 1286 0) == 0); 1287 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 1288 type) == 0); 1289 verify(nvlist_add_uint64(nv, 1290 ZPOOL_CONFIG_IS_LOG, is_log) == 0); 1291 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) { 1292 verify(nvlist_add_uint64(nv, 1293 ZPOOL_CONFIG_NPARITY, 1294 mindev - 1) == 0); 1295 } 1296 verify(nvlist_add_nvlist_array(nv, 1297 ZPOOL_CONFIG_CHILDREN, child, 1298 children) == 0); 1299 1300 for (c = 0; c < children; c++) 1301 nvlist_free(child[c]); 1302 free(child); 1303 } 1304 } else { 1305 /* 1306 * We have a device. Pass off to make_leaf_vdev() to 1307 * construct the appropriate nvlist describing the vdev. 1308 */ 1309 if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL) 1310 return (NULL); 1311 if (is_log) 1312 nlogs++; 1313 argc--; 1314 argv++; 1315 } 1316 1317 toplevels++; 1318 top = realloc(top, toplevels * sizeof (nvlist_t *)); 1319 if (top == NULL) 1320 zpool_no_memory(); 1321 top[toplevels - 1] = nv; 1322 } 1323 1324 if (toplevels == 0 && nspares == 0 && nl2cache == 0) { 1325 (void) fprintf(stderr, gettext("invalid vdev " 1326 "specification: at least one toplevel vdev must be " 1327 "specified\n")); 1328 return (NULL); 1329 } 1330 1331 if (seen_logs && nlogs == 0) { 1332 (void) fprintf(stderr, gettext("invalid vdev specification: " 1333 "log requires at least 1 device\n")); 1334 return (NULL); 1335 } 1336 1337 /* 1338 * Finally, create nvroot and add all top-level vdevs to it. 1339 */ 1340 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0); 1341 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 1342 VDEV_TYPE_ROOT) == 0); 1343 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1344 top, toplevels) == 0); 1345 if (nspares != 0) 1346 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1347 spares, nspares) == 0); 1348 if (nl2cache != 0) 1349 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 1350 l2cache, nl2cache) == 0); 1351 1352 for (t = 0; t < toplevels; t++) 1353 nvlist_free(top[t]); 1354 for (t = 0; t < nspares; t++) 1355 nvlist_free(spares[t]); 1356 for (t = 0; t < nl2cache; t++) 1357 nvlist_free(l2cache[t]); 1358 if (spares) 1359 free(spares); 1360 if (l2cache) 1361 free(l2cache); 1362 free(top); 1363 1364 return (nvroot); 1365 } 1366 1367 nvlist_t * 1368 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props, 1369 splitflags_t flags, int argc, char **argv) 1370 { 1371 nvlist_t *newroot = NULL, **child; 1372 uint_t c, children; 1373 1374 if (argc > 0) { 1375 if ((newroot = construct_spec(argc, argv)) == NULL) { 1376 (void) fprintf(stderr, gettext("Unable to build a " 1377 "pool from the specified devices\n")); 1378 return (NULL); 1379 } 1380 1381 if (!flags.dryrun && make_disks(zhp, newroot) != 0) { 1382 nvlist_free(newroot); 1383 return (NULL); 1384 } 1385 1386 /* avoid any tricks in the spec */ 1387 verify(nvlist_lookup_nvlist_array(newroot, 1388 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0); 1389 for (c = 0; c < children; c++) { 1390 char *path; 1391 const char *type; 1392 int min, max; 1393 1394 verify(nvlist_lookup_string(child[c], 1395 ZPOOL_CONFIG_PATH, &path) == 0); 1396 if ((type = is_grouping(path, &min, &max)) != NULL) { 1397 (void) fprintf(stderr, gettext("Cannot use " 1398 "'%s' as a device for splitting\n"), type); 1399 nvlist_free(newroot); 1400 return (NULL); 1401 } 1402 } 1403 } 1404 1405 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) { 1406 if (newroot != NULL) 1407 nvlist_free(newroot); 1408 return (NULL); 1409 } 1410 1411 return (newroot); 1412 } 1413 1414 /* 1415 * Get and validate the contents of the given vdev specification. This ensures 1416 * that the nvlist returned is well-formed, that all the devices exist, and that 1417 * they are not currently in use by any other known consumer. The 'poolconfig' 1418 * parameter is the current configuration of the pool when adding devices 1419 * existing pool, and is used to perform additional checks, such as changing the 1420 * replication level of the pool. It can be 'NULL' to indicate that this is a 1421 * new pool. The 'force' flag controls whether devices should be forcefully 1422 * added, even if they appear in use. 1423 */ 1424 nvlist_t * 1425 make_root_vdev(zpool_handle_t *zhp, int force, int check_rep, 1426 boolean_t replacing, boolean_t dryrun, int argc, char **argv) 1427 { 1428 nvlist_t *newroot; 1429 nvlist_t *poolconfig = NULL; 1430 is_force = force; 1431 1432 /* 1433 * Construct the vdev specification. If this is successful, we know 1434 * that we have a valid specification, and that all devices can be 1435 * opened. 1436 */ 1437 if ((newroot = construct_spec(argc, argv)) == NULL) 1438 return (NULL); 1439 1440 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) 1441 return (NULL); 1442 1443 /* 1444 * Validate each device to make sure that its not shared with another 1445 * subsystem. We do this even if 'force' is set, because there are some 1446 * uses (such as a dedicated dump device) that even '-f' cannot 1447 * override. 1448 */ 1449 if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) { 1450 nvlist_free(newroot); 1451 return (NULL); 1452 } 1453 1454 /* 1455 * Check the replication level of the given vdevs and report any errors 1456 * found. We include the existing pool spec, if any, as we need to 1457 * catch changes against the existing replication level. 1458 */ 1459 if (check_rep && check_replication(poolconfig, newroot) != 0) { 1460 nvlist_free(newroot); 1461 return (NULL); 1462 } 1463 1464 /* 1465 * Run through the vdev specification and label any whole disks found. 1466 */ 1467 if (!dryrun && make_disks(zhp, newroot) != 0) { 1468 nvlist_free(newroot); 1469 return (NULL); 1470 } 1471 1472 return (newroot); 1473 } 1474