1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <mdb/mdb_param.h> 29 #include <mdb/mdb_modapi.h> 30 #include <mdb/mdb_ks.h> 31 #include <mdb/mdb_ctf.h> 32 33 #include <sys/types.h> 34 #include <sys/thread.h> 35 #include <sys/session.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/var.h> 39 #include <sys/t_lock.h> 40 #include <sys/callo.h> 41 #include <sys/priocntl.h> 42 #include <sys/class.h> 43 #include <sys/regset.h> 44 #include <sys/stack.h> 45 #include <sys/cpuvar.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs.h> 48 #include <sys/flock_impl.h> 49 #include <sys/kmem_impl.h> 50 #include <sys/vmem_impl.h> 51 #include <sys/kstat.h> 52 #include <vm/seg_vn.h> 53 #include <vm/anon.h> 54 #include <vm/as.h> 55 #include <vm/seg_map.h> 56 #include <sys/dditypes.h> 57 #include <sys/ddi_impldefs.h> 58 #include <sys/sysmacros.h> 59 #include <sys/sysconf.h> 60 #include <sys/task.h> 61 #include <sys/project.h> 62 #include <sys/taskq.h> 63 #include <sys/taskq_impl.h> 64 #include <sys/errorq_impl.h> 65 #include <sys/cred_impl.h> 66 #include <sys/zone.h> 67 #include <sys/panic.h> 68 #include <regex.h> 69 #include <sys/port_impl.h> 70 71 #include "avl.h" 72 #include "contract.h" 73 #include "cpupart_mdb.h" 74 #include "devinfo.h" 75 #include "leaky.h" 76 #include "lgrp.h" 77 #include "list.h" 78 #include "log.h" 79 #include "kgrep.h" 80 #include "kmem.h" 81 #include "bio.h" 82 #include "streams.h" 83 #include "cyclic.h" 84 #include "findstack.h" 85 #include "ndievents.h" 86 #include "mmd.h" 87 #include "net.h" 88 #include "nvpair.h" 89 #include "ctxop.h" 90 #include "tsd.h" 91 #include "thread.h" 92 #include "memory.h" 93 #include "sobj.h" 94 #include "sysevent.h" 95 #include "rctl.h" 96 #include "tsol.h" 97 #include "typegraph.h" 98 #include "ldi.h" 99 #include "vfs.h" 100 #include "zone.h" 101 #include "modhash.h" 102 #include "mdi.h" 103 104 /* 105 * Surely this is defined somewhere... 106 */ 107 #define NINTR 16 108 109 #ifndef STACK_BIAS 110 #define STACK_BIAS 0 111 #endif 112 113 static char 114 pstat2ch(uchar_t state) 115 { 116 switch (state) { 117 case SSLEEP: return ('S'); 118 case SRUN: return ('R'); 119 case SZOMB: return ('Z'); 120 case SIDL: return ('I'); 121 case SONPROC: return ('O'); 122 case SSTOP: return ('T'); 123 default: return ('?'); 124 } 125 } 126 127 #define PS_PRTTHREADS 0x1 128 #define PS_PRTLWPS 0x2 129 #define PS_PSARGS 0x4 130 #define PS_TASKS 0x8 131 #define PS_PROJECTS 0x10 132 #define PS_ZONES 0x20 133 134 static int 135 ps_threadprint(uintptr_t addr, const void *data, void *private) 136 { 137 const kthread_t *t = (const kthread_t *)data; 138 uint_t prt_flags = *((uint_t *)private); 139 140 static const mdb_bitmask_t t_state_bits[] = { 141 { "TS_FREE", UINT_MAX, TS_FREE }, 142 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 143 { "TS_RUN", TS_RUN, TS_RUN }, 144 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 145 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 146 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 147 { NULL, 0, 0 } 148 }; 149 150 if (prt_flags & PS_PRTTHREADS) 151 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 152 153 if (prt_flags & PS_PRTLWPS) 154 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 155 156 return (WALK_NEXT); 157 } 158 159 int 160 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 161 { 162 uint_t prt_flags = 0; 163 proc_t pr; 164 struct pid pid, pgid, sid; 165 sess_t session; 166 cred_t cred; 167 task_t tk; 168 kproject_t pj; 169 zone_t zn; 170 171 if (!(flags & DCMD_ADDRSPEC)) { 172 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 173 mdb_warn("can't walk 'proc'"); 174 return (DCMD_ERR); 175 } 176 return (DCMD_OK); 177 } 178 179 if (mdb_getopts(argc, argv, 180 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 181 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 182 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 183 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 184 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 185 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 186 return (DCMD_USAGE); 187 188 if (DCMD_HDRSPEC(flags)) { 189 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 190 "S", "PID", "PPID", "PGID", "SID"); 191 if (prt_flags & PS_TASKS) 192 mdb_printf("%5s ", "TASK"); 193 if (prt_flags & PS_PROJECTS) 194 mdb_printf("%5s ", "PROJ"); 195 if (prt_flags & PS_ZONES) 196 mdb_printf("%5s ", "ZONE"); 197 mdb_printf("%6s %10s %?s %s%</u>\n", 198 "UID", "FLAGS", "ADDR", "NAME"); 199 } 200 201 mdb_vread(&pr, sizeof (pr), addr); 202 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 203 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 204 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 205 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 206 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 207 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 208 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 209 if (prt_flags & PS_PROJECTS) 210 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 211 if (prt_flags & PS_ZONES) 212 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 213 214 mdb_printf("%c %6d %6d %6d %6d ", 215 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 216 sid.pid_id); 217 if (prt_flags & PS_TASKS) 218 mdb_printf("%5d ", tk.tk_tkid); 219 if (prt_flags & PS_PROJECTS) 220 mdb_printf("%5d ", pj.kpj_id); 221 if (prt_flags & PS_ZONES) 222 mdb_printf("%5d ", zn.zone_id); 223 mdb_printf("%6d 0x%08x %0?p %s\n", 224 cred.cr_uid, pr.p_flag, addr, 225 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 226 227 if (prt_flags & ~PS_PSARGS) 228 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 229 230 return (DCMD_OK); 231 } 232 233 #define PG_NEWEST 0x0001 234 #define PG_OLDEST 0x0002 235 #define PG_PIPE_OUT 0x0004 236 #define PG_EXACT_MATCH 0x0008 237 238 typedef struct pgrep_data { 239 uint_t pg_flags; 240 uint_t pg_psflags; 241 uintptr_t pg_xaddr; 242 hrtime_t pg_xstart; 243 const char *pg_pat; 244 #ifndef _KMDB 245 regex_t pg_reg; 246 #endif 247 } pgrep_data_t; 248 249 /*ARGSUSED*/ 250 static int 251 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 252 { 253 const proc_t *prp = pdata; 254 pgrep_data_t *pgp = data; 255 #ifndef _KMDB 256 regmatch_t pmatch; 257 #endif 258 259 /* 260 * kmdb doesn't have access to the reg* functions, so we fall back 261 * to strstr/strcmp. 262 */ 263 #ifdef _KMDB 264 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 265 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 266 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 267 return (WALK_NEXT); 268 #else 269 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 270 return (WALK_NEXT); 271 272 if ((pgp->pg_flags & PG_EXACT_MATCH) && 273 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 274 return (WALK_NEXT); 275 #endif 276 277 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 278 hrtime_t start; 279 280 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 281 prp->p_user.u_start.tv_nsec; 282 283 if (pgp->pg_flags & PG_NEWEST) { 284 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 285 pgp->pg_xaddr = addr; 286 pgp->pg_xstart = start; 287 } 288 } else { 289 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 290 pgp->pg_xaddr = addr; 291 pgp->pg_xstart = start; 292 } 293 } 294 295 } else if (pgp->pg_flags & PG_PIPE_OUT) { 296 mdb_printf("%p\n", addr); 297 298 } else { 299 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 300 mdb_warn("can't invoke 'ps'"); 301 return (WALK_DONE); 302 } 303 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 304 } 305 306 return (WALK_NEXT); 307 } 308 309 /*ARGSUSED*/ 310 int 311 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 312 { 313 pgrep_data_t pg; 314 int i; 315 #ifndef _KMDB 316 int err; 317 #endif 318 319 if (flags & DCMD_ADDRSPEC) 320 return (DCMD_USAGE); 321 322 pg.pg_flags = 0; 323 pg.pg_xaddr = 0; 324 325 i = mdb_getopts(argc, argv, 326 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 327 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 328 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 329 NULL); 330 331 argc -= i; 332 argv += i; 333 334 if (argc != 1) 335 return (DCMD_USAGE); 336 337 /* 338 * -n and -o are mutually exclusive. 339 */ 340 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 341 return (DCMD_USAGE); 342 343 if (argv->a_type != MDB_TYPE_STRING) 344 return (DCMD_USAGE); 345 346 if (flags & DCMD_PIPE_OUT) 347 pg.pg_flags |= PG_PIPE_OUT; 348 349 pg.pg_pat = argv->a_un.a_str; 350 if (DCMD_HDRSPEC(flags)) 351 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 352 else 353 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 354 355 #ifndef _KMDB 356 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 357 size_t nbytes; 358 char *buf; 359 360 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 361 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 362 (void) regerror(err, &pg.pg_reg, buf, nbytes); 363 mdb_warn("%s\n", buf); 364 365 return (DCMD_ERR); 366 } 367 #endif 368 369 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 370 mdb_warn("can't walk 'proc'"); 371 return (DCMD_ERR); 372 } 373 374 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 375 if (pg.pg_flags & PG_PIPE_OUT) { 376 mdb_printf("%p\n", pg.pg_xaddr); 377 } else { 378 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 379 0, NULL) != 0) { 380 mdb_warn("can't invoke 'ps'"); 381 return (DCMD_ERR); 382 } 383 } 384 } 385 386 return (DCMD_OK); 387 } 388 389 int 390 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 391 { 392 task_t tk; 393 kproject_t pj; 394 395 if (!(flags & DCMD_ADDRSPEC)) { 396 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 397 mdb_warn("can't walk task_cache"); 398 return (DCMD_ERR); 399 } 400 return (DCMD_OK); 401 } 402 if (DCMD_HDRSPEC(flags)) { 403 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 404 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 405 } 406 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 407 mdb_warn("can't read task_t structure at %p", addr); 408 return (DCMD_ERR); 409 } 410 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 411 mdb_warn("can't read project_t structure at %p", addr); 412 return (DCMD_ERR); 413 } 414 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 415 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 416 tk.tk_flags); 417 return (DCMD_OK); 418 } 419 420 int 421 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 422 { 423 kproject_t pj; 424 425 if (!(flags & DCMD_ADDRSPEC)) { 426 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 427 mdb_warn("can't walk projects"); 428 return (DCMD_ERR); 429 } 430 return (DCMD_OK); 431 } 432 if (DCMD_HDRSPEC(flags)) { 433 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 434 "ADDR", "PROJID", "ZONEID", "REFCNT"); 435 } 436 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 437 mdb_warn("can't read kproject_t structure at %p", addr); 438 return (DCMD_ERR); 439 } 440 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 441 pj.kpj_count); 442 return (DCMD_OK); 443 } 444 445 /*ARGSUSED*/ 446 int 447 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 448 { 449 callout_table_t *co_ktable[CALLOUT_TABLES]; 450 int co_kfanout; 451 callout_table_t co_table; 452 callout_t co_callout; 453 callout_t *co_ptr; 454 int co_id; 455 clock_t lbolt; 456 int i, j, k; 457 const char *lbolt_sym; 458 459 if ((flags & DCMD_ADDRSPEC) || argc != 0) 460 return (DCMD_USAGE); 461 462 if (mdb_prop_postmortem) 463 lbolt_sym = "panic_lbolt"; 464 else 465 lbolt_sym = "lbolt"; 466 467 if (mdb_readvar(&lbolt, lbolt_sym) == -1) { 468 mdb_warn("failed to read '%s'", lbolt_sym); 469 return (DCMD_ERR); 470 } 471 472 if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) { 473 mdb_warn("failed to read callout_fanout"); 474 return (DCMD_ERR); 475 } 476 477 if (mdb_readvar(&co_ktable, "callout_table") == -1) { 478 mdb_warn("failed to read callout_table"); 479 return (DCMD_ERR); 480 } 481 482 mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n", 483 "FUNCTION", "ARGUMENT", "ID", "TIME"); 484 485 for (i = 0; i < CALLOUT_NTYPES; i++) { 486 for (j = 0; j < co_kfanout; j++) { 487 488 co_id = CALLOUT_TABLE(i, j); 489 490 if (mdb_vread(&co_table, sizeof (co_table), 491 (uintptr_t)co_ktable[co_id]) == -1) { 492 mdb_warn("failed to read table at %p", 493 (uintptr_t)co_ktable[co_id]); 494 continue; 495 } 496 497 for (k = 0; k < CALLOUT_BUCKETS; k++) { 498 co_ptr = co_table.ct_idhash[k]; 499 500 while (co_ptr != NULL) { 501 mdb_vread(&co_callout, 502 sizeof (co_callout), 503 (uintptr_t)co_ptr); 504 505 mdb_printf("%-24a %0?p %0?lx %?lx " 506 "(T%+ld)\n", co_callout.c_func, 507 co_callout.c_arg, co_callout.c_xid, 508 co_callout.c_runtime, 509 co_callout.c_runtime - lbolt); 510 511 co_ptr = co_callout.c_idnext; 512 } 513 } 514 } 515 } 516 517 return (DCMD_OK); 518 } 519 520 /*ARGSUSED*/ 521 int 522 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 523 { 524 long num_classes, i; 525 sclass_t *class_tbl; 526 GElf_Sym g_sclass; 527 char class_name[PC_CLNMSZ]; 528 size_t tbl_size; 529 530 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 531 mdb_warn("failed to find symbol sclass\n"); 532 return (DCMD_ERR); 533 } 534 535 tbl_size = (size_t)g_sclass.st_size; 536 num_classes = tbl_size / (sizeof (sclass_t)); 537 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 538 539 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 540 mdb_warn("failed to read sclass"); 541 return (DCMD_ERR); 542 } 543 544 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 545 "INIT FCN", "CLASS FCN"); 546 547 for (i = 0; i < num_classes; i++) { 548 if (mdb_vread(class_name, sizeof (class_name), 549 (uintptr_t)class_tbl[i].cl_name) == -1) 550 (void) strcpy(class_name, "???"); 551 552 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 553 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 554 } 555 556 return (DCMD_OK); 557 } 558 559 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 560 561 int 562 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 563 { 564 uintptr_t rootdir; 565 vnode_t vn; 566 char buf[MAXPATHLEN]; 567 568 uint_t opt_F = FALSE; 569 570 if (mdb_getopts(argc, argv, 571 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 572 return (DCMD_USAGE); 573 574 if (!(flags & DCMD_ADDRSPEC)) { 575 mdb_warn("expected explicit vnode_t address before ::\n"); 576 return (DCMD_USAGE); 577 } 578 579 if (mdb_readvar(&rootdir, "rootdir") == -1) { 580 mdb_warn("failed to read rootdir"); 581 return (DCMD_ERR); 582 } 583 584 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 585 return (DCMD_ERR); 586 587 if (*buf == '\0') { 588 mdb_printf("??\n"); 589 return (DCMD_OK); 590 } 591 592 mdb_printf("%s", buf); 593 if (opt_F && buf[strlen(buf)-1] != '/' && 594 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 595 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 596 mdb_printf("\n"); 597 598 return (DCMD_OK); 599 } 600 601 int 602 ld_walk_init(mdb_walk_state_t *wsp) 603 { 604 wsp->walk_data = (void *)wsp->walk_addr; 605 return (WALK_NEXT); 606 } 607 608 int 609 ld_walk_step(mdb_walk_state_t *wsp) 610 { 611 int status; 612 lock_descriptor_t ld; 613 614 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 615 mdb_warn("couldn't read lock_descriptor_t at %p\n", 616 wsp->walk_addr); 617 return (WALK_ERR); 618 } 619 620 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 621 if (status == WALK_ERR) 622 return (WALK_ERR); 623 624 wsp->walk_addr = (uintptr_t)ld.l_next; 625 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 626 return (WALK_DONE); 627 628 return (status); 629 } 630 631 int 632 lg_walk_init(mdb_walk_state_t *wsp) 633 { 634 GElf_Sym sym; 635 636 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 637 mdb_warn("failed to find symbol 'lock_graph'\n"); 638 return (WALK_ERR); 639 } 640 641 wsp->walk_addr = (uintptr_t)sym.st_value; 642 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 643 644 return (WALK_NEXT); 645 } 646 647 typedef struct lg_walk_data { 648 uintptr_t startaddr; 649 mdb_walk_cb_t callback; 650 void *data; 651 } lg_walk_data_t; 652 653 /* 654 * We can't use ::walk lock_descriptor directly, because the head of each graph 655 * is really a dummy lock. Rather than trying to dynamically determine if this 656 * is a dummy node or not, we just filter out the initial element of the 657 * list. 658 */ 659 static int 660 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 661 { 662 lg_walk_data_t *lw = priv; 663 664 if (addr != lw->startaddr) 665 return (lw->callback(addr, data, lw->data)); 666 667 return (WALK_NEXT); 668 } 669 670 int 671 lg_walk_step(mdb_walk_state_t *wsp) 672 { 673 graph_t *graph; 674 lg_walk_data_t lw; 675 676 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 677 return (WALK_DONE); 678 679 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 680 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 681 return (WALK_ERR); 682 } 683 684 wsp->walk_addr += sizeof (graph); 685 686 if (graph == NULL) 687 return (WALK_NEXT); 688 689 lw.callback = wsp->walk_callback; 690 lw.data = wsp->walk_cbdata; 691 692 lw.startaddr = (uintptr_t)&(graph->active_locks); 693 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 694 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 695 return (WALK_ERR); 696 } 697 698 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 699 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 700 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 701 return (WALK_ERR); 702 } 703 704 return (WALK_NEXT); 705 } 706 707 /* 708 * The space available for the path corresponding to the locked vnode depends 709 * on whether we are printing 32- or 64-bit addresses. 710 */ 711 #ifdef _LP64 712 #define LM_VNPATHLEN 20 713 #else 714 #define LM_VNPATHLEN 30 715 #endif 716 717 /*ARGSUSED*/ 718 static int 719 lminfo_cb(uintptr_t addr, const void *data, void *priv) 720 { 721 const lock_descriptor_t *ld = data; 722 char buf[LM_VNPATHLEN]; 723 proc_t p; 724 725 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 726 addr, ld->l_type == F_RDLCK ? "RD" : 727 ld->l_type == F_WRLCK ? "WR" : "??", 728 ld->l_state, ld->l_flock.l_pid, 729 ld->l_flock.l_pid == 0 ? "<kernel>" : 730 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 731 "<defunct>" : p.p_user.u_comm, 732 ld->l_vnode); 733 734 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 735 sizeof (buf)); 736 mdb_printf("%s\n", buf); 737 738 return (WALK_NEXT); 739 } 740 741 /*ARGSUSED*/ 742 int 743 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 744 { 745 if (DCMD_HDRSPEC(flags)) 746 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 747 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 748 749 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 750 } 751 752 /*ARGSUSED*/ 753 int 754 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 755 { 756 struct seg s; 757 758 if (argc != 0) 759 return (DCMD_USAGE); 760 761 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { 762 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", 763 "SEG", "BASE", "SIZE", "DATA", "OPS"); 764 } 765 766 if (mdb_vread(&s, sizeof (s), addr) == -1) { 767 mdb_warn("failed to read seg at %p", addr); 768 return (DCMD_ERR); 769 } 770 771 mdb_printf("%?p %?p %?lx %?p %a\n", 772 addr, s.s_base, s.s_size, s.s_data, s.s_ops); 773 774 return (DCMD_OK); 775 } 776 777 /*ARGSUSED*/ 778 static int 779 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) 780 { 781 uintptr_t pp = 782 mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); 783 784 if (pp != NULL) 785 (*nres)++; 786 787 return (WALK_NEXT); 788 } 789 790 static int 791 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 792 { 793 794 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 795 796 if (segvn == (uintptr_t)seg->s_ops) { 797 struct segvn_data svn; 798 int nres = 0; 799 800 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 801 802 if (svn.amp == NULL) { 803 mdb_printf(" %8s", ""); 804 goto drive_on; 805 } 806 807 /* 808 * We've got an amp for this segment; walk through 809 * the amp, and determine mappings. 810 */ 811 if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, 812 &nres, (uintptr_t)svn.amp) == -1) 813 mdb_warn("failed to walk anon (amp=%p)", svn.amp); 814 815 mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); 816 drive_on: 817 818 if (svn.vp != NULL) { 819 char buf[29]; 820 821 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); 822 mdb_printf(" %s", buf); 823 } else 824 mdb_printf(" [ anon ]"); 825 } 826 827 mdb_printf("\n"); 828 return (WALK_NEXT); 829 } 830 831 static int 832 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 833 { 834 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 835 836 if (segvn == (uintptr_t)seg->s_ops) { 837 struct segvn_data svn; 838 839 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 840 841 if (svn.vp != NULL) { 842 mdb_printf(" %0?p", svn.vp); 843 } else { 844 mdb_printf(" [ anon ]"); 845 } 846 } 847 848 mdb_printf("\n"); 849 return (WALK_NEXT); 850 } 851 852 /*ARGSUSED*/ 853 int 854 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 855 { 856 uintptr_t segvn; 857 proc_t proc; 858 uint_t quick = FALSE; 859 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; 860 861 GElf_Sym sym; 862 863 if (!(flags & DCMD_ADDRSPEC)) 864 return (DCMD_USAGE); 865 866 if (mdb_getopts(argc, argv, 867 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) 868 return (DCMD_USAGE); 869 870 if (mdb_vread(&proc, sizeof (proc), addr) == -1) { 871 mdb_warn("failed to read proc at %p", addr); 872 return (DCMD_ERR); 873 } 874 875 if (mdb_lookup_by_name("segvn_ops", &sym) == 0) 876 segvn = (uintptr_t)sym.st_value; 877 else 878 segvn = NULL; 879 880 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); 881 882 if (quick) { 883 mdb_printf("VNODE\n"); 884 cb = (mdb_walk_cb_t)pmap_walk_seg_quick; 885 } else { 886 mdb_printf("%8s %s\n", "RES", "PATH"); 887 } 888 889 if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { 890 mdb_warn("failed to walk segments of as %p", proc.p_as); 891 return (DCMD_ERR); 892 } 893 894 return (DCMD_OK); 895 } 896 897 typedef struct anon_walk_data { 898 uintptr_t *aw_levone; 899 uintptr_t *aw_levtwo; 900 int aw_nlevone; 901 int aw_levone_ndx; 902 int aw_levtwo_ndx; 903 struct anon_map aw_amp; 904 struct anon_hdr aw_ahp; 905 } anon_walk_data_t; 906 907 int 908 anon_walk_init(mdb_walk_state_t *wsp) 909 { 910 anon_walk_data_t *aw; 911 912 if (wsp->walk_addr == NULL) { 913 mdb_warn("anon walk doesn't support global walks\n"); 914 return (WALK_ERR); 915 } 916 917 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); 918 919 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { 920 mdb_warn("failed to read anon map at %p", wsp->walk_addr); 921 mdb_free(aw, sizeof (anon_walk_data_t)); 922 return (WALK_ERR); 923 } 924 925 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), 926 (uintptr_t)(aw->aw_amp.ahp)) == -1) { 927 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); 928 mdb_free(aw, sizeof (anon_walk_data_t)); 929 return (WALK_ERR); 930 } 931 932 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || 933 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { 934 aw->aw_nlevone = aw->aw_ahp.size; 935 aw->aw_levtwo = NULL; 936 } else { 937 aw->aw_nlevone = 938 (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 939 aw->aw_levtwo = 940 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); 941 } 942 943 aw->aw_levone = 944 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); 945 946 aw->aw_levone_ndx = 0; 947 aw->aw_levtwo_ndx = 0; 948 949 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), 950 (uintptr_t)aw->aw_ahp.array_chunk); 951 952 if (aw->aw_levtwo != NULL) { 953 while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { 954 aw->aw_levone_ndx++; 955 if (aw->aw_levone_ndx == aw->aw_nlevone) { 956 mdb_warn("corrupt anon; couldn't" 957 "find ptr to lev two map"); 958 goto out; 959 } 960 } 961 962 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), 963 aw->aw_levone[aw->aw_levone_ndx]); 964 } 965 966 out: 967 wsp->walk_data = aw; 968 return (0); 969 } 970 971 int 972 anon_walk_step(mdb_walk_state_t *wsp) 973 { 974 int status; 975 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 976 struct anon anon; 977 uintptr_t anonptr; 978 979 again: 980 /* 981 * Once we've walked through level one, we're done. 982 */ 983 if (aw->aw_levone_ndx == aw->aw_nlevone) 984 return (WALK_DONE); 985 986 if (aw->aw_levtwo == NULL) { 987 anonptr = aw->aw_levone[aw->aw_levone_ndx]; 988 aw->aw_levone_ndx++; 989 } else { 990 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; 991 aw->aw_levtwo_ndx++; 992 993 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { 994 aw->aw_levtwo_ndx = 0; 995 996 do { 997 aw->aw_levone_ndx++; 998 999 if (aw->aw_levone_ndx == aw->aw_nlevone) 1000 return (WALK_DONE); 1001 } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); 1002 1003 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * 1004 sizeof (uintptr_t), 1005 aw->aw_levone[aw->aw_levone_ndx]); 1006 } 1007 } 1008 1009 if (anonptr != NULL) { 1010 mdb_vread(&anon, sizeof (anon), anonptr); 1011 status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); 1012 } else 1013 goto again; 1014 1015 return (status); 1016 } 1017 1018 void 1019 anon_walk_fini(mdb_walk_state_t *wsp) 1020 { 1021 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1022 1023 if (aw->aw_levtwo != NULL) 1024 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); 1025 1026 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); 1027 mdb_free(aw, sizeof (anon_walk_data_t)); 1028 } 1029 1030 /*ARGSUSED*/ 1031 int 1032 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1033 { 1034 if ((uintptr_t)f->f_vnode == *target) { 1035 mdb_printf("file %p\n", addr); 1036 *target = NULL; 1037 } 1038 1039 return (WALK_NEXT); 1040 } 1041 1042 /*ARGSUSED*/ 1043 int 1044 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1045 { 1046 uintptr_t t = *target; 1047 1048 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1049 mdb_warn("couldn't file walk proc %p", addr); 1050 return (WALK_ERR); 1051 } 1052 1053 if (t == NULL) 1054 mdb_printf("%p\n", addr); 1055 1056 return (WALK_NEXT); 1057 } 1058 1059 /*ARGSUSED*/ 1060 int 1061 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1062 { 1063 uintptr_t target = addr; 1064 1065 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1066 return (DCMD_USAGE); 1067 1068 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1069 mdb_warn("can't proc walk"); 1070 return (DCMD_ERR); 1071 } 1072 1073 return (DCMD_OK); 1074 } 1075 1076 typedef struct datafmt { 1077 char *hdr1; 1078 char *hdr2; 1079 char *dashes; 1080 char *fmt; 1081 } datafmt_t; 1082 1083 static datafmt_t kmemfmt[] = { 1084 { "cache ", "name ", 1085 "-------------------------", "%-25s " }, 1086 { " buf", " size", "------", "%6u " }, 1087 { " buf", "in use", "------", "%6u " }, 1088 { " buf", " total", "------", "%6u " }, 1089 { " memory", " in use", "---------", "%9u " }, 1090 { " alloc", " succeed", "---------", "%9u " }, 1091 { "alloc", " fail", "-----", "%5u " }, 1092 { NULL, NULL, NULL, NULL } 1093 }; 1094 1095 static datafmt_t vmemfmt[] = { 1096 { "vmem ", "name ", 1097 "-------------------------", "%-*s " }, 1098 { " memory", " in use", "---------", "%9llu " }, 1099 { " memory", " total", "----------", "%10llu " }, 1100 { " memory", " import", "---------", "%9llu " }, 1101 { " alloc", " succeed", "---------", "%9llu " }, 1102 { "alloc", " fail", "-----", "%5llu " }, 1103 { NULL, NULL, NULL, NULL } 1104 }; 1105 1106 /*ARGSUSED*/ 1107 static int 1108 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1109 { 1110 if (ccp->cc_rounds > 0) 1111 *avail += ccp->cc_rounds; 1112 if (ccp->cc_prounds > 0) 1113 *avail += ccp->cc_prounds; 1114 1115 return (WALK_NEXT); 1116 } 1117 1118 /*ARGSUSED*/ 1119 static int 1120 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1121 { 1122 *alloc += ccp->cc_alloc; 1123 1124 return (WALK_NEXT); 1125 } 1126 1127 /*ARGSUSED*/ 1128 static int 1129 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1130 { 1131 *avail += sp->slab_chunks - sp->slab_refcnt; 1132 1133 return (WALK_NEXT); 1134 } 1135 1136 typedef struct kmastat_vmem { 1137 uintptr_t kv_addr; 1138 struct kmastat_vmem *kv_next; 1139 int kv_meminuse; 1140 int kv_alloc; 1141 int kv_fail; 1142 } kmastat_vmem_t; 1143 1144 typedef struct kmastat_args { 1145 kmastat_vmem_t **ka_kvpp; 1146 uint_t ka_shift; 1147 } kmastat_args_t; 1148 1149 static int 1150 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 1151 { 1152 kmastat_vmem_t **kvp = kap->ka_kvpp; 1153 kmastat_vmem_t *kv; 1154 datafmt_t *dfp = kmemfmt; 1155 int magsize; 1156 1157 int avail, alloc, total; 1158 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1159 cp->cache_slabsize; 1160 1161 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1162 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1163 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1164 1165 magsize = kmem_get_magsize(cp); 1166 1167 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1168 avail = cp->cache_full.ml_total * magsize; 1169 total = cp->cache_buftotal; 1170 1171 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1172 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 1173 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 1174 1175 for (kv = *kvp; kv != NULL; kv = kv->kv_next) { 1176 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 1177 goto out; 1178 } 1179 1180 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 1181 kv->kv_next = *kvp; 1182 kv->kv_addr = (uintptr_t)cp->cache_arena; 1183 *kvp = kv; 1184 out: 1185 kv->kv_meminuse += meminuse; 1186 kv->kv_alloc += alloc; 1187 kv->kv_fail += cp->cache_alloc_fail; 1188 1189 mdb_printf((dfp++)->fmt, cp->cache_name); 1190 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 1191 mdb_printf((dfp++)->fmt, total - avail); 1192 mdb_printf((dfp++)->fmt, total); 1193 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift); 1194 mdb_printf((dfp++)->fmt, alloc); 1195 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 1196 mdb_printf("\n"); 1197 1198 return (WALK_NEXT); 1199 } 1200 1201 static int 1202 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 1203 { 1204 kmastat_vmem_t *kv = *kap->ka_kvpp; 1205 size_t len; 1206 1207 while (kv != NULL && kv->kv_addr != addr) 1208 kv = kv->kv_next; 1209 1210 if (kv == NULL || kv->kv_alloc == 0) 1211 return (WALK_NEXT); 1212 1213 len = MIN(17, strlen(v->vm_name)); 1214 1215 mdb_printf("Total [%s]%*s %6s %6s %6s %9u %9u %5u\n", v->vm_name, 1216 17 - len, "", "", "", "", 1217 kv->kv_meminuse >> kap->ka_shift, kv->kv_alloc, kv->kv_fail); 1218 1219 return (WALK_NEXT); 1220 } 1221 1222 /*ARGSUSED*/ 1223 static int 1224 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 1225 { 1226 datafmt_t *dfp = vmemfmt; 1227 const vmem_kstat_t *vkp = &v->vm_kstat; 1228 uintptr_t paddr; 1229 vmem_t parent; 1230 int ident = 0; 1231 1232 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 1233 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 1234 mdb_warn("couldn't trace %p's ancestry", addr); 1235 ident = 0; 1236 break; 1237 } 1238 paddr = (uintptr_t)parent.vm_source; 1239 } 1240 1241 mdb_printf("%*s", ident, ""); 1242 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 1243 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64); 1244 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64); 1245 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp); 1246 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 1247 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 1248 1249 mdb_printf("\n"); 1250 1251 return (WALK_NEXT); 1252 } 1253 1254 /*ARGSUSED*/ 1255 int 1256 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1257 { 1258 kmastat_vmem_t *kv = NULL; 1259 datafmt_t *dfp; 1260 kmastat_args_t ka; 1261 1262 ka.ka_shift = 0; 1263 if (mdb_getopts(argc, argv, 1264 'k', MDB_OPT_SETBITS, 10, &ka.ka_shift, 1265 'm', MDB_OPT_SETBITS, 20, &ka.ka_shift, 1266 'g', MDB_OPT_SETBITS, 30, &ka.ka_shift, NULL) != argc) 1267 return (DCMD_USAGE); 1268 1269 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1270 mdb_printf("%s ", dfp->hdr1); 1271 mdb_printf("\n"); 1272 1273 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1274 mdb_printf("%s ", dfp->hdr2); 1275 mdb_printf("\n"); 1276 1277 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1278 mdb_printf("%s ", dfp->dashes); 1279 mdb_printf("\n"); 1280 1281 ka.ka_kvpp = &kv; 1282 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 1283 mdb_warn("can't walk 'kmem_cache'"); 1284 return (DCMD_ERR); 1285 } 1286 1287 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1288 mdb_printf("%s ", dfp->dashes); 1289 mdb_printf("\n"); 1290 1291 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 1292 mdb_warn("can't walk 'vmem'"); 1293 return (DCMD_ERR); 1294 } 1295 1296 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1297 mdb_printf("%s ", dfp->dashes); 1298 mdb_printf("\n"); 1299 1300 mdb_printf("\n"); 1301 1302 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1303 mdb_printf("%s ", dfp->hdr1); 1304 mdb_printf("\n"); 1305 1306 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1307 mdb_printf("%s ", dfp->hdr2); 1308 mdb_printf("\n"); 1309 1310 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1311 mdb_printf("%s ", dfp->dashes); 1312 mdb_printf("\n"); 1313 1314 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 1315 mdb_warn("can't walk 'vmem'"); 1316 return (DCMD_ERR); 1317 } 1318 1319 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1320 mdb_printf("%s ", dfp->dashes); 1321 mdb_printf("\n"); 1322 return (DCMD_OK); 1323 } 1324 1325 /* 1326 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 1327 * up of a set of 'struct seg's. We could just scan each seg en masse, but 1328 * unfortunately, a few of the segs are both large and sparse, so we could 1329 * spend quite a bit of time scanning VAs which have no backing pages. 1330 * 1331 * So for the few very sparse segs, we skip the segment itself, and scan 1332 * the allocated vmem_segs in the vmem arena which manages that part of kas. 1333 * Currently, we do this for: 1334 * 1335 * SEG VMEM ARENA 1336 * kvseg heap_arena 1337 * kvseg32 heap32_arena 1338 * kvseg_core heap_core_arena 1339 * 1340 * In addition, we skip the segkpm segment in its entirety, since it is very 1341 * sparse, and contains no new kernel data. 1342 */ 1343 typedef struct kgrep_walk_data { 1344 kgrep_cb_func *kg_cb; 1345 void *kg_cbdata; 1346 uintptr_t kg_kvseg; 1347 uintptr_t kg_kvseg32; 1348 uintptr_t kg_kvseg_core; 1349 uintptr_t kg_segkpm; 1350 uintptr_t kg_heap_lp_base; 1351 uintptr_t kg_heap_lp_end; 1352 } kgrep_walk_data_t; 1353 1354 static int 1355 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 1356 { 1357 uintptr_t base = (uintptr_t)seg->s_base; 1358 1359 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 1360 addr == kg->kg_kvseg_core) 1361 return (WALK_NEXT); 1362 1363 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 1364 return (WALK_NEXT); 1365 1366 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 1367 } 1368 1369 /*ARGSUSED*/ 1370 static int 1371 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1372 { 1373 /* 1374 * skip large page heap address range - it is scanned by walking 1375 * allocated vmem_segs in the heap_lp_arena 1376 */ 1377 if (seg->vs_start == kg->kg_heap_lp_base && 1378 seg->vs_end == kg->kg_heap_lp_end) 1379 return (WALK_NEXT); 1380 1381 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1382 } 1383 1384 /*ARGSUSED*/ 1385 static int 1386 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1387 { 1388 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1389 } 1390 1391 static int 1392 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 1393 { 1394 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 1395 1396 if (strcmp(vmem->vm_name, "heap") != 0 && 1397 strcmp(vmem->vm_name, "heap32") != 0 && 1398 strcmp(vmem->vm_name, "heap_core") != 0 && 1399 strcmp(vmem->vm_name, "heap_lp") != 0) 1400 return (WALK_NEXT); 1401 1402 if (strcmp(vmem->vm_name, "heap_lp") == 0) 1403 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 1404 1405 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 1406 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 1407 return (WALK_ERR); 1408 } 1409 1410 return (WALK_NEXT); 1411 } 1412 1413 int 1414 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 1415 { 1416 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 1417 kgrep_walk_data_t kg; 1418 1419 if (mdb_get_state() == MDB_STATE_RUNNING) { 1420 mdb_warn("kgrep can only be run on a system " 1421 "dump or under kmdb; see dumpadm(1M)\n"); 1422 return (DCMD_ERR); 1423 } 1424 1425 if (mdb_lookup_by_name("kas", &kas) == -1) { 1426 mdb_warn("failed to locate 'kas' symbol\n"); 1427 return (DCMD_ERR); 1428 } 1429 1430 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 1431 mdb_warn("failed to locate 'kvseg' symbol\n"); 1432 return (DCMD_ERR); 1433 } 1434 1435 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 1436 mdb_warn("failed to locate 'kvseg32' symbol\n"); 1437 return (DCMD_ERR); 1438 } 1439 1440 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 1441 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 1442 return (DCMD_ERR); 1443 } 1444 1445 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 1446 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 1447 return (DCMD_ERR); 1448 } 1449 1450 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 1451 mdb_warn("failed to read 'heap_lp_base'\n"); 1452 return (DCMD_ERR); 1453 } 1454 1455 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 1456 mdb_warn("failed to read 'heap_lp_end'\n"); 1457 return (DCMD_ERR); 1458 } 1459 1460 kg.kg_cb = cb; 1461 kg.kg_cbdata = cbdata; 1462 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 1463 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 1464 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 1465 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 1466 1467 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 1468 &kg, kas.st_value) == -1) { 1469 mdb_warn("failed to walk kas segments"); 1470 return (DCMD_ERR); 1471 } 1472 1473 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 1474 mdb_warn("failed to walk heap/heap32 vmem arenas"); 1475 return (DCMD_ERR); 1476 } 1477 1478 return (DCMD_OK); 1479 } 1480 1481 size_t 1482 kgrep_subr_pagesize(void) 1483 { 1484 return (PAGESIZE); 1485 } 1486 1487 typedef struct file_walk_data { 1488 struct uf_entry *fw_flist; 1489 int fw_flistsz; 1490 int fw_ndx; 1491 int fw_nofiles; 1492 } file_walk_data_t; 1493 1494 int 1495 file_walk_init(mdb_walk_state_t *wsp) 1496 { 1497 file_walk_data_t *fw; 1498 proc_t p; 1499 1500 if (wsp->walk_addr == NULL) { 1501 mdb_warn("file walk doesn't support global walks\n"); 1502 return (WALK_ERR); 1503 } 1504 1505 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 1506 1507 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 1508 mdb_free(fw, sizeof (file_walk_data_t)); 1509 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 1510 return (WALK_ERR); 1511 } 1512 1513 if (p.p_user.u_finfo.fi_nfiles == 0) { 1514 mdb_free(fw, sizeof (file_walk_data_t)); 1515 return (WALK_DONE); 1516 } 1517 1518 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 1519 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 1520 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 1521 1522 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 1523 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 1524 mdb_warn("failed to read file array at %p", 1525 p.p_user.u_finfo.fi_list); 1526 mdb_free(fw->fw_flist, fw->fw_flistsz); 1527 mdb_free(fw, sizeof (file_walk_data_t)); 1528 return (WALK_ERR); 1529 } 1530 1531 fw->fw_ndx = 0; 1532 wsp->walk_data = fw; 1533 1534 return (WALK_NEXT); 1535 } 1536 1537 int 1538 file_walk_step(mdb_walk_state_t *wsp) 1539 { 1540 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1541 struct file file; 1542 uintptr_t fp; 1543 1544 again: 1545 if (fw->fw_ndx == fw->fw_nofiles) 1546 return (WALK_DONE); 1547 1548 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 1549 goto again; 1550 1551 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1552 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1553 } 1554 1555 int 1556 allfile_walk_step(mdb_walk_state_t *wsp) 1557 { 1558 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1559 struct file file; 1560 uintptr_t fp; 1561 1562 if (fw->fw_ndx == fw->fw_nofiles) 1563 return (WALK_DONE); 1564 1565 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 1566 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1567 else 1568 bzero(&file, sizeof (file)); 1569 1570 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1571 } 1572 1573 void 1574 file_walk_fini(mdb_walk_state_t *wsp) 1575 { 1576 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1577 1578 mdb_free(fw->fw_flist, fw->fw_flistsz); 1579 mdb_free(fw, sizeof (file_walk_data_t)); 1580 } 1581 1582 int 1583 port_walk_init(mdb_walk_state_t *wsp) 1584 { 1585 if (wsp->walk_addr == NULL) { 1586 mdb_warn("port walk doesn't support global walks\n"); 1587 return (WALK_ERR); 1588 } 1589 1590 if (mdb_layered_walk("file", wsp) == -1) { 1591 mdb_warn("couldn't walk 'file'"); 1592 return (WALK_ERR); 1593 } 1594 return (WALK_NEXT); 1595 } 1596 1597 int 1598 port_walk_step(mdb_walk_state_t *wsp) 1599 { 1600 struct vnode vn; 1601 uintptr_t vp; 1602 uintptr_t pp; 1603 struct port port; 1604 1605 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 1606 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1607 mdb_warn("failed to read vnode_t at %p", vp); 1608 return (WALK_ERR); 1609 } 1610 if (vn.v_type != VPORT) 1611 return (WALK_NEXT); 1612 1613 pp = (uintptr_t)vn.v_data; 1614 if (mdb_vread(&port, sizeof (port), pp) == -1) { 1615 mdb_warn("failed to read port_t at %p", pp); 1616 return (WALK_ERR); 1617 } 1618 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 1619 } 1620 1621 typedef struct portev_walk_data { 1622 list_node_t *pev_node; 1623 list_node_t *pev_last; 1624 size_t pev_offset; 1625 } portev_walk_data_t; 1626 1627 int 1628 portev_walk_init(mdb_walk_state_t *wsp) 1629 { 1630 portev_walk_data_t *pevd; 1631 struct port port; 1632 struct vnode vn; 1633 struct list *list; 1634 uintptr_t vp; 1635 1636 if (wsp->walk_addr == NULL) { 1637 mdb_warn("portev walk doesn't support global walks\n"); 1638 return (WALK_ERR); 1639 } 1640 1641 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 1642 1643 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 1644 mdb_free(pevd, sizeof (portev_walk_data_t)); 1645 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 1646 return (WALK_ERR); 1647 } 1648 1649 vp = (uintptr_t)port.port_vnode; 1650 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1651 mdb_free(pevd, sizeof (portev_walk_data_t)); 1652 mdb_warn("failed to read vnode_t at %p", vp); 1653 return (WALK_ERR); 1654 } 1655 1656 if (vn.v_type != VPORT) { 1657 mdb_free(pevd, sizeof (portev_walk_data_t)); 1658 mdb_warn("input address (%p) does not point to an event port", 1659 wsp->walk_addr); 1660 return (WALK_ERR); 1661 } 1662 1663 if (port.port_queue.portq_nent == 0) { 1664 mdb_free(pevd, sizeof (portev_walk_data_t)); 1665 return (WALK_DONE); 1666 } 1667 list = &port.port_queue.portq_list; 1668 pevd->pev_offset = list->list_offset; 1669 pevd->pev_last = list->list_head.list_prev; 1670 pevd->pev_node = list->list_head.list_next; 1671 wsp->walk_data = pevd; 1672 return (WALK_NEXT); 1673 } 1674 1675 int 1676 portev_walk_step(mdb_walk_state_t *wsp) 1677 { 1678 portev_walk_data_t *pevd; 1679 struct port_kevent ev; 1680 uintptr_t evp; 1681 1682 pevd = (portev_walk_data_t *)wsp->walk_data; 1683 1684 if (pevd->pev_last == NULL) 1685 return (WALK_DONE); 1686 if (pevd->pev_node == pevd->pev_last) 1687 pevd->pev_last = NULL; /* last round */ 1688 1689 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 1690 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 1691 mdb_warn("failed to read port_kevent at %p", evp); 1692 return (WALK_DONE); 1693 } 1694 pevd->pev_node = ev.portkev_node.list_next; 1695 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 1696 } 1697 1698 void 1699 portev_walk_fini(mdb_walk_state_t *wsp) 1700 { 1701 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 1702 1703 if (pevd != NULL) 1704 mdb_free(pevd, sizeof (portev_walk_data_t)); 1705 } 1706 1707 typedef struct proc_walk_data { 1708 uintptr_t *pw_stack; 1709 int pw_depth; 1710 int pw_max; 1711 } proc_walk_data_t; 1712 1713 int 1714 proc_walk_init(mdb_walk_state_t *wsp) 1715 { 1716 GElf_Sym sym; 1717 proc_walk_data_t *pw; 1718 1719 if (wsp->walk_addr == NULL) { 1720 if (mdb_lookup_by_name("p0", &sym) == -1) { 1721 mdb_warn("failed to read 'practive'"); 1722 return (WALK_ERR); 1723 } 1724 wsp->walk_addr = (uintptr_t)sym.st_value; 1725 } 1726 1727 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 1728 1729 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 1730 mdb_warn("failed to read 'nproc'"); 1731 mdb_free(pw, sizeof (pw)); 1732 return (WALK_ERR); 1733 } 1734 1735 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 1736 wsp->walk_data = pw; 1737 1738 return (WALK_NEXT); 1739 } 1740 1741 int 1742 proc_walk_step(mdb_walk_state_t *wsp) 1743 { 1744 proc_walk_data_t *pw = wsp->walk_data; 1745 uintptr_t addr = wsp->walk_addr; 1746 uintptr_t cld, sib; 1747 1748 int status; 1749 proc_t pr; 1750 1751 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 1752 mdb_warn("failed to read proc at %p", addr); 1753 return (WALK_DONE); 1754 } 1755 1756 cld = (uintptr_t)pr.p_child; 1757 sib = (uintptr_t)pr.p_sibling; 1758 1759 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 1760 pw->pw_depth--; 1761 goto sib; 1762 } 1763 1764 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 1765 1766 if (status != WALK_NEXT) 1767 return (status); 1768 1769 if ((wsp->walk_addr = cld) != NULL) { 1770 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 1771 mdb_warn("proc %p has invalid p_child %p; skipping\n", 1772 addr, cld); 1773 goto sib; 1774 } 1775 1776 pw->pw_stack[pw->pw_depth++] = addr; 1777 1778 if (pw->pw_depth == pw->pw_max) { 1779 mdb_warn("depth %d exceeds max depth; try again\n", 1780 pw->pw_depth); 1781 return (WALK_DONE); 1782 } 1783 return (WALK_NEXT); 1784 } 1785 1786 sib: 1787 /* 1788 * We know that p0 has no siblings, and if another starting proc 1789 * was given, we don't want to walk its siblings anyway. 1790 */ 1791 if (pw->pw_depth == 0) 1792 return (WALK_DONE); 1793 1794 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 1795 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 1796 addr, sib); 1797 sib = NULL; 1798 } 1799 1800 if ((wsp->walk_addr = sib) == NULL) { 1801 if (pw->pw_depth > 0) { 1802 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 1803 return (WALK_NEXT); 1804 } 1805 return (WALK_DONE); 1806 } 1807 1808 return (WALK_NEXT); 1809 } 1810 1811 void 1812 proc_walk_fini(mdb_walk_state_t *wsp) 1813 { 1814 proc_walk_data_t *pw = wsp->walk_data; 1815 1816 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 1817 mdb_free(pw, sizeof (proc_walk_data_t)); 1818 } 1819 1820 int 1821 task_walk_init(mdb_walk_state_t *wsp) 1822 { 1823 task_t task; 1824 1825 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 1826 mdb_warn("failed to read task at %p", wsp->walk_addr); 1827 return (WALK_ERR); 1828 } 1829 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 1830 wsp->walk_data = task.tk_memb_list; 1831 return (WALK_NEXT); 1832 } 1833 1834 int 1835 task_walk_step(mdb_walk_state_t *wsp) 1836 { 1837 proc_t proc; 1838 int status; 1839 1840 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 1841 mdb_warn("failed to read proc at %p", wsp->walk_addr); 1842 return (WALK_DONE); 1843 } 1844 1845 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 1846 1847 if (proc.p_tasknext == wsp->walk_data) 1848 return (WALK_DONE); 1849 1850 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 1851 return (status); 1852 } 1853 1854 int 1855 project_walk_init(mdb_walk_state_t *wsp) 1856 { 1857 if (wsp->walk_addr == NULL) { 1858 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 1859 mdb_warn("failed to read 'proj0p'"); 1860 return (WALK_ERR); 1861 } 1862 } 1863 wsp->walk_data = (void *)wsp->walk_addr; 1864 return (WALK_NEXT); 1865 } 1866 1867 int 1868 project_walk_step(mdb_walk_state_t *wsp) 1869 { 1870 uintptr_t addr = wsp->walk_addr; 1871 kproject_t pj; 1872 int status; 1873 1874 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 1875 mdb_warn("failed to read project at %p", addr); 1876 return (WALK_DONE); 1877 } 1878 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 1879 if (status != WALK_NEXT) 1880 return (status); 1881 wsp->walk_addr = (uintptr_t)pj.kpj_next; 1882 if ((void *)wsp->walk_addr == wsp->walk_data) 1883 return (WALK_DONE); 1884 return (WALK_NEXT); 1885 } 1886 1887 static int 1888 generic_walk_step(mdb_walk_state_t *wsp) 1889 { 1890 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 1891 wsp->walk_cbdata)); 1892 } 1893 1894 int 1895 seg_walk_init(mdb_walk_state_t *wsp) 1896 { 1897 if (wsp->walk_addr == NULL) { 1898 mdb_warn("seg walk must begin at struct as *\n"); 1899 return (WALK_ERR); 1900 } 1901 1902 /* 1903 * this is really just a wrapper to AVL tree walk 1904 */ 1905 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; 1906 return (avl_walk_init(wsp)); 1907 } 1908 1909 static int 1910 cpu_walk_cmp(const void *l, const void *r) 1911 { 1912 uintptr_t lhs = *((uintptr_t *)l); 1913 uintptr_t rhs = *((uintptr_t *)r); 1914 cpu_t lcpu, rcpu; 1915 1916 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 1917 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 1918 1919 if (lcpu.cpu_id < rcpu.cpu_id) 1920 return (-1); 1921 1922 if (lcpu.cpu_id > rcpu.cpu_id) 1923 return (1); 1924 1925 return (0); 1926 } 1927 1928 typedef struct cpu_walk { 1929 uintptr_t *cw_array; 1930 int cw_ndx; 1931 } cpu_walk_t; 1932 1933 int 1934 cpu_walk_init(mdb_walk_state_t *wsp) 1935 { 1936 cpu_walk_t *cw; 1937 int max_ncpus, i = 0; 1938 uintptr_t current, first; 1939 cpu_t cpu, panic_cpu; 1940 uintptr_t panicstr, addr; 1941 GElf_Sym sym; 1942 1943 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 1944 1945 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 1946 mdb_warn("failed to read 'max_ncpus'"); 1947 return (WALK_ERR); 1948 } 1949 1950 if (mdb_readvar(&panicstr, "panicstr") == -1) { 1951 mdb_warn("failed to read 'panicstr'"); 1952 return (WALK_ERR); 1953 } 1954 1955 if (panicstr != NULL) { 1956 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 1957 mdb_warn("failed to find 'panic_cpu'"); 1958 return (WALK_ERR); 1959 } 1960 1961 addr = (uintptr_t)sym.st_value; 1962 1963 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 1964 mdb_warn("failed to read 'panic_cpu'"); 1965 return (WALK_ERR); 1966 } 1967 } 1968 1969 /* 1970 * Unfortunately, there is no platform-independent way to walk 1971 * CPUs in ID order. We therefore loop through in cpu_next order, 1972 * building an array of CPU pointers which will subsequently be 1973 * sorted. 1974 */ 1975 cw->cw_array = 1976 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 1977 1978 if (mdb_readvar(&first, "cpu_list") == -1) { 1979 mdb_warn("failed to read 'cpu_list'"); 1980 return (WALK_ERR); 1981 } 1982 1983 current = first; 1984 do { 1985 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 1986 mdb_warn("failed to read cpu at %p", current); 1987 return (WALK_ERR); 1988 } 1989 1990 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 1991 cw->cw_array[i++] = addr; 1992 } else { 1993 cw->cw_array[i++] = current; 1994 } 1995 } while ((current = (uintptr_t)cpu.cpu_next) != first); 1996 1997 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 1998 wsp->walk_data = cw; 1999 2000 return (WALK_NEXT); 2001 } 2002 2003 int 2004 cpu_walk_step(mdb_walk_state_t *wsp) 2005 { 2006 cpu_walk_t *cw = wsp->walk_data; 2007 cpu_t cpu; 2008 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2009 2010 if (addr == NULL) 2011 return (WALK_DONE); 2012 2013 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2014 mdb_warn("failed to read cpu at %p", addr); 2015 return (WALK_DONE); 2016 } 2017 2018 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2019 } 2020 2021 typedef struct cpuinfo_data { 2022 intptr_t cid_cpu; 2023 uintptr_t cid_lbolt; 2024 uintptr_t **cid_ithr; 2025 char cid_print_head; 2026 char cid_print_thr; 2027 char cid_print_ithr; 2028 char cid_print_flags; 2029 } cpuinfo_data_t; 2030 2031 int 2032 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2033 { 2034 cpu_t c; 2035 int id; 2036 uint8_t pil; 2037 2038 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2039 return (WALK_NEXT); 2040 2041 if (thr->t_bound_cpu == NULL) { 2042 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2043 return (WALK_NEXT); 2044 } 2045 2046 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2047 2048 if ((id = c.cpu_id) >= NCPU) { 2049 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2050 thr->t_bound_cpu, id, NCPU); 2051 return (WALK_NEXT); 2052 } 2053 2054 if ((pil = thr->t_pil) >= NINTR) { 2055 mdb_warn("thread %p has pil (%d) greater than %d\n", 2056 addr, pil, NINTR); 2057 return (WALK_NEXT); 2058 } 2059 2060 if (cid->cid_ithr[id][pil] != NULL) { 2061 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2062 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2063 return (WALK_NEXT); 2064 } 2065 2066 cid->cid_ithr[id][pil] = addr; 2067 2068 return (WALK_NEXT); 2069 } 2070 2071 #define CPUINFO_IDWIDTH 3 2072 #define CPUINFO_FLAGWIDTH 9 2073 2074 #ifdef _LP64 2075 #if defined(__amd64) 2076 #define CPUINFO_TWIDTH 16 2077 #define CPUINFO_CPUWIDTH 16 2078 #else 2079 #define CPUINFO_CPUWIDTH 11 2080 #define CPUINFO_TWIDTH 11 2081 #endif 2082 #else 2083 #define CPUINFO_CPUWIDTH 8 2084 #define CPUINFO_TWIDTH 8 2085 #endif 2086 2087 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2088 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2089 #define CPUINFO_ITHRDELT 4 2090 2091 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2092 flagline < nflaglines ? flagbuf[flagline++] : "") 2093 2094 int 2095 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2096 { 2097 kthread_t t; 2098 disp_t disp; 2099 proc_t p; 2100 uintptr_t pinned; 2101 char **flagbuf; 2102 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2103 2104 const char *flags[] = { 2105 "RUNNING", "READY", "QUIESCED", "EXISTS", 2106 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2107 "SPARE", "FAULTED", NULL 2108 }; 2109 2110 if (cid->cid_cpu != -1) { 2111 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2112 return (WALK_NEXT); 2113 2114 /* 2115 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2116 */ 2117 cid->cid_cpu = -1; 2118 rval = WALK_DONE; 2119 } 2120 2121 if (cid->cid_print_head) { 2122 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2123 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2124 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2125 "PROC"); 2126 cid->cid_print_head = FALSE; 2127 } 2128 2129 bspl = cpu->cpu_base_spl; 2130 2131 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2132 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2133 return (WALK_ERR); 2134 } 2135 2136 mdb_printf("%3d %0*p %3x %4d %4d ", 2137 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2138 disp.disp_nrunnable, bspl); 2139 2140 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2141 mdb_printf("%3d ", t.t_pri); 2142 } else { 2143 mdb_printf("%3s ", "-"); 2144 } 2145 2146 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2147 cpu->cpu_kprunrun ? "yes" : "no"); 2148 2149 if (cpu->cpu_last_swtch) { 2150 clock_t lbolt; 2151 2152 if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { 2153 mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); 2154 return (WALK_ERR); 2155 } 2156 mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); 2157 } else { 2158 mdb_printf("%-6s ", "-"); 2159 } 2160 2161 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2162 2163 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2164 mdb_printf(" (idle)\n"); 2165 else if (cpu->cpu_thread == NULL) 2166 mdb_printf(" -\n"); 2167 else { 2168 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2169 mdb_printf(" %s\n", p.p_user.u_comm); 2170 } else { 2171 mdb_printf(" ?\n"); 2172 } 2173 } 2174 2175 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2176 2177 if (cid->cid_print_flags) { 2178 int first = 1, i, j, k; 2179 char *s; 2180 2181 cid->cid_print_head = TRUE; 2182 2183 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 2184 if (!(cpu->cpu_flags & i)) 2185 continue; 2186 2187 if (first) { 2188 s = mdb_alloc(CPUINFO_THRDELT + 1, 2189 UM_GC | UM_SLEEP); 2190 2191 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 2192 "%*s|%*s", CPUINFO_FLAGDELT, "", 2193 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 2194 flagbuf[nflaglines++] = s; 2195 } 2196 2197 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 2198 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 2199 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 2200 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 2201 first ? "<--+" : ""); 2202 2203 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 2204 s[k] = ' '; 2205 s[k] = '\0'; 2206 2207 flagbuf[nflaglines++] = s; 2208 first = 0; 2209 } 2210 } 2211 2212 if (cid->cid_print_ithr) { 2213 int i, found_one = FALSE; 2214 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 2215 2216 for (i = NINTR - 1; i >= 0; i--) { 2217 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 2218 2219 if (iaddr == NULL) 2220 continue; 2221 2222 if (!found_one) { 2223 found_one = TRUE; 2224 2225 CPUINFO_INDENT; 2226 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 2227 CPUINFO_ITHRDELT, ""); 2228 2229 CPUINFO_INDENT; 2230 mdb_printf("%c%*s+--> %3s %s\n", 2231 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 2232 "", "PIL", "THREAD"); 2233 } 2234 2235 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 2236 mdb_warn("failed to read kthread_t at %p", 2237 iaddr); 2238 return (WALK_ERR); 2239 } 2240 2241 CPUINFO_INDENT; 2242 mdb_printf("%c%*s %3d %0*p\n", 2243 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 2244 t.t_pil, CPUINFO_TWIDTH, iaddr); 2245 2246 pinned = (uintptr_t)t.t_intr; 2247 } 2248 2249 if (found_one && pinned != NULL) { 2250 cid->cid_print_head = TRUE; 2251 (void) strcpy(p.p_user.u_comm, "?"); 2252 2253 if (mdb_vread(&t, sizeof (t), 2254 (uintptr_t)pinned) == -1) { 2255 mdb_warn("failed to read kthread_t at %p", 2256 pinned); 2257 return (WALK_ERR); 2258 } 2259 if (mdb_vread(&p, sizeof (p), 2260 (uintptr_t)t.t_procp) == -1) { 2261 mdb_warn("failed to read proc_t at %p", 2262 t.t_procp); 2263 return (WALK_ERR); 2264 } 2265 2266 CPUINFO_INDENT; 2267 mdb_printf("%c%*s %3s %0*p %s\n", 2268 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 2269 CPUINFO_TWIDTH, pinned, 2270 pinned == (uintptr_t)cpu->cpu_idle_thread ? 2271 "(idle)" : p.p_user.u_comm); 2272 } 2273 } 2274 2275 if (disp.disp_nrunnable && cid->cid_print_thr) { 2276 dispq_t *dq; 2277 2278 int i, npri = disp.disp_npri; 2279 2280 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 2281 2282 if (mdb_vread(dq, sizeof (dispq_t) * npri, 2283 (uintptr_t)disp.disp_q) == -1) { 2284 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 2285 return (WALK_ERR); 2286 } 2287 2288 CPUINFO_INDENT; 2289 mdb_printf("|\n"); 2290 2291 CPUINFO_INDENT; 2292 mdb_printf("+--> %3s %-*s %s\n", "PRI", 2293 CPUINFO_TWIDTH, "THREAD", "PROC"); 2294 2295 for (i = npri - 1; i >= 0; i--) { 2296 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 2297 2298 while (taddr != NULL) { 2299 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 2300 mdb_warn("failed to read kthread_t " 2301 "at %p", taddr); 2302 return (WALK_ERR); 2303 } 2304 if (mdb_vread(&p, sizeof (p), 2305 (uintptr_t)t.t_procp) == -1) { 2306 mdb_warn("failed to read proc_t at %p", 2307 t.t_procp); 2308 return (WALK_ERR); 2309 } 2310 2311 CPUINFO_INDENT; 2312 mdb_printf(" %3d %0*p %s\n", t.t_pri, 2313 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 2314 2315 taddr = (uintptr_t)t.t_link; 2316 } 2317 } 2318 cid->cid_print_head = TRUE; 2319 } 2320 2321 while (flagline < nflaglines) 2322 mdb_printf("%s\n", flagbuf[flagline++]); 2323 2324 if (cid->cid_print_head) 2325 mdb_printf("\n"); 2326 2327 return (rval); 2328 } 2329 2330 int 2331 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2332 { 2333 uint_t verbose = FALSE; 2334 cpuinfo_data_t cid; 2335 GElf_Sym sym; 2336 clock_t lbolt; 2337 2338 cid.cid_print_ithr = FALSE; 2339 cid.cid_print_thr = FALSE; 2340 cid.cid_print_flags = FALSE; 2341 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 2342 cid.cid_cpu = -1; 2343 2344 if (flags & DCMD_ADDRSPEC) 2345 cid.cid_cpu = addr; 2346 2347 if (mdb_getopts(argc, argv, 2348 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 2349 return (DCMD_USAGE); 2350 2351 if (verbose) { 2352 cid.cid_print_ithr = TRUE; 2353 cid.cid_print_thr = TRUE; 2354 cid.cid_print_flags = TRUE; 2355 cid.cid_print_head = TRUE; 2356 } 2357 2358 if (cid.cid_print_ithr) { 2359 int i; 2360 2361 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 2362 * NCPU, UM_SLEEP | UM_GC); 2363 2364 for (i = 0; i < NCPU; i++) 2365 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 2366 NINTR, UM_SLEEP | UM_GC); 2367 2368 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 2369 &cid) == -1) { 2370 mdb_warn("couldn't walk thread"); 2371 return (DCMD_ERR); 2372 } 2373 } 2374 2375 if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { 2376 mdb_warn("failed to find panic_lbolt"); 2377 return (DCMD_ERR); 2378 } 2379 2380 cid.cid_lbolt = (uintptr_t)sym.st_value; 2381 2382 if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { 2383 mdb_warn("failed to read panic_lbolt"); 2384 return (DCMD_ERR); 2385 } 2386 2387 if (lbolt == 0) { 2388 if (mdb_lookup_by_name("lbolt", &sym) == -1) { 2389 mdb_warn("failed to find lbolt"); 2390 return (DCMD_ERR); 2391 } 2392 cid.cid_lbolt = (uintptr_t)sym.st_value; 2393 } 2394 2395 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 2396 mdb_warn("can't walk cpus"); 2397 return (DCMD_ERR); 2398 } 2399 2400 if (cid.cid_cpu != -1) { 2401 /* 2402 * We didn't find this CPU when we walked through the CPUs 2403 * (i.e. the address specified doesn't show up in the "cpu" 2404 * walk). However, the specified address may still correspond 2405 * to a valid cpu_t (for example, if the specified address is 2406 * the actual panicking cpu_t and not the cached panic_cpu). 2407 * Point is: even if we didn't find it, we still want to try 2408 * to print the specified address as a cpu_t. 2409 */ 2410 cpu_t cpu; 2411 2412 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 2413 mdb_warn("%p is neither a valid CPU ID nor a " 2414 "valid cpu_t address\n", cid.cid_cpu); 2415 return (DCMD_ERR); 2416 } 2417 2418 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 2419 } 2420 2421 return (DCMD_OK); 2422 } 2423 2424 /*ARGSUSED*/ 2425 int 2426 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2427 { 2428 int i; 2429 2430 if (!(flags & DCMD_ADDRSPEC)) 2431 return (DCMD_USAGE); 2432 2433 for (i = 0; i < sizeof (addr) * NBBY; i++) 2434 mdb_printf("%p\n", addr ^ (1UL << i)); 2435 2436 return (DCMD_OK); 2437 } 2438 2439 /* 2440 * Grumble, grumble. 2441 */ 2442 #define SMAP_HASHFUNC(vp, off) \ 2443 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 2444 ((off) >> MAXBSHIFT)) & smd_hashmsk) 2445 2446 int 2447 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2448 { 2449 long smd_hashmsk; 2450 int hash; 2451 uintptr_t offset = 0; 2452 struct smap smp; 2453 uintptr_t saddr, kaddr; 2454 uintptr_t smd_hash, smd_smap; 2455 struct seg seg; 2456 2457 if (!(flags & DCMD_ADDRSPEC)) 2458 return (DCMD_USAGE); 2459 2460 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { 2461 mdb_warn("failed to read smd_hashmsk"); 2462 return (DCMD_ERR); 2463 } 2464 2465 if (mdb_readvar(&smd_hash, "smd_hash") == -1) { 2466 mdb_warn("failed to read smd_hash"); 2467 return (DCMD_ERR); 2468 } 2469 2470 if (mdb_readvar(&smd_smap, "smd_smap") == -1) { 2471 mdb_warn("failed to read smd_hash"); 2472 return (DCMD_ERR); 2473 } 2474 2475 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2476 mdb_warn("failed to read segkmap"); 2477 return (DCMD_ERR); 2478 } 2479 2480 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2481 mdb_warn("failed to read segkmap at %p", kaddr); 2482 return (DCMD_ERR); 2483 } 2484 2485 if (argc != 0) { 2486 const mdb_arg_t *arg = &argv[0]; 2487 2488 if (arg->a_type == MDB_TYPE_IMMEDIATE) 2489 offset = arg->a_un.a_val; 2490 else 2491 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); 2492 } 2493 2494 hash = SMAP_HASHFUNC(addr, offset); 2495 2496 if (mdb_vread(&saddr, sizeof (saddr), 2497 smd_hash + hash * sizeof (uintptr_t)) == -1) { 2498 mdb_warn("couldn't read smap at %p", 2499 smd_hash + hash * sizeof (uintptr_t)); 2500 return (DCMD_ERR); 2501 } 2502 2503 do { 2504 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { 2505 mdb_warn("couldn't read smap at %p", saddr); 2506 return (DCMD_ERR); 2507 } 2508 2509 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { 2510 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", 2511 addr, offset, saddr, ((saddr - smd_smap) / 2512 sizeof (smp)) * MAXBSIZE + seg.s_base); 2513 return (DCMD_OK); 2514 } 2515 2516 saddr = (uintptr_t)smp.sm_hash; 2517 } while (saddr != NULL); 2518 2519 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); 2520 return (DCMD_OK); 2521 } 2522 2523 /*ARGSUSED*/ 2524 int 2525 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2526 { 2527 uintptr_t kaddr; 2528 struct seg seg; 2529 struct segmap_data sd; 2530 2531 if (!(flags & DCMD_ADDRSPEC)) 2532 return (DCMD_USAGE); 2533 2534 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2535 mdb_warn("failed to read segkmap"); 2536 return (DCMD_ERR); 2537 } 2538 2539 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2540 mdb_warn("failed to read segkmap at %p", kaddr); 2541 return (DCMD_ERR); 2542 } 2543 2544 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { 2545 mdb_warn("failed to read segmap_data at %p", seg.s_data); 2546 return (DCMD_ERR); 2547 } 2548 2549 mdb_printf("%p is smap %p\n", addr, 2550 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * 2551 sizeof (struct smap) + (uintptr_t)sd.smd_sm); 2552 2553 return (DCMD_OK); 2554 } 2555 2556 int 2557 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 2558 { 2559 if (p->p_as == *asp) 2560 mdb_printf("%p\n", addr); 2561 return (WALK_NEXT); 2562 } 2563 2564 /*ARGSUSED*/ 2565 int 2566 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2567 { 2568 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 2569 return (DCMD_USAGE); 2570 2571 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 2572 mdb_warn("failed to walk proc"); 2573 return (DCMD_ERR); 2574 } 2575 2576 return (DCMD_OK); 2577 } 2578 2579 /*ARGSUSED*/ 2580 int 2581 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 2582 { 2583 proc_t parent; 2584 int ident = 0; 2585 uintptr_t paddr; 2586 2587 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 2588 mdb_vread(&parent, sizeof (parent), paddr); 2589 paddr = (uintptr_t)parent.p_parent; 2590 } 2591 2592 mdb_inc_indent(ident); 2593 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 2594 mdb_dec_indent(ident); 2595 2596 return (WALK_NEXT); 2597 } 2598 2599 void 2600 ptree_ancestors(uintptr_t addr, uintptr_t start) 2601 { 2602 proc_t p; 2603 2604 if (mdb_vread(&p, sizeof (p), addr) == -1) { 2605 mdb_warn("couldn't read ancestor at %p", addr); 2606 return; 2607 } 2608 2609 if (p.p_parent != NULL) 2610 ptree_ancestors((uintptr_t)p.p_parent, start); 2611 2612 if (addr != start) 2613 (void) ptree_walk(addr, &p, NULL); 2614 } 2615 2616 /*ARGSUSED*/ 2617 int 2618 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2619 { 2620 if (!(flags & DCMD_ADDRSPEC)) 2621 addr = NULL; 2622 else 2623 ptree_ancestors(addr, addr); 2624 2625 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 2626 mdb_warn("couldn't walk 'proc'"); 2627 return (DCMD_ERR); 2628 } 2629 2630 return (DCMD_OK); 2631 } 2632 2633 /*ARGSUSED*/ 2634 static int 2635 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2636 { 2637 int fdnum; 2638 const mdb_arg_t *argp = &argv[0]; 2639 proc_t p; 2640 uf_entry_t uf; 2641 2642 if ((flags & DCMD_ADDRSPEC) == 0) { 2643 mdb_warn("fd doesn't give global information\n"); 2644 return (DCMD_ERR); 2645 } 2646 if (argc != 1) 2647 return (DCMD_USAGE); 2648 2649 if (argp->a_type == MDB_TYPE_IMMEDIATE) 2650 fdnum = argp->a_un.a_val; 2651 else 2652 fdnum = mdb_strtoull(argp->a_un.a_str); 2653 2654 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 2655 mdb_warn("couldn't read proc_t at %p", addr); 2656 return (DCMD_ERR); 2657 } 2658 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 2659 mdb_warn("process %p only has %d files open.\n", 2660 addr, p.p_user.u_finfo.fi_nfiles); 2661 return (DCMD_ERR); 2662 } 2663 if (mdb_vread(&uf, sizeof (uf_entry_t), 2664 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 2665 mdb_warn("couldn't read uf_entry_t at %p", 2666 &p.p_user.u_finfo.fi_list[fdnum]); 2667 return (DCMD_ERR); 2668 } 2669 2670 mdb_printf("%p\n", uf.uf_file); 2671 return (DCMD_OK); 2672 } 2673 2674 /*ARGSUSED*/ 2675 static int 2676 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2677 { 2678 pid_t pid = (pid_t)addr; 2679 2680 if (argc != 0) 2681 return (DCMD_USAGE); 2682 2683 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 2684 mdb_warn("PID 0t%d not found\n", pid); 2685 return (DCMD_ERR); 2686 } 2687 2688 mdb_printf("%p\n", addr); 2689 return (DCMD_OK); 2690 } 2691 2692 static char *sysfile_cmd[] = { 2693 "exclude:", 2694 "include:", 2695 "forceload:", 2696 "rootdev:", 2697 "rootfs:", 2698 "swapdev:", 2699 "swapfs:", 2700 "moddir:", 2701 "set", 2702 "unknown", 2703 }; 2704 2705 static char *sysfile_ops[] = { "", "=", "&", "|" }; 2706 2707 /*ARGSUSED*/ 2708 static int 2709 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 2710 { 2711 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 2712 *target = NULL; 2713 return (WALK_DONE); 2714 } 2715 return (WALK_NEXT); 2716 } 2717 2718 /*ARGSUSED*/ 2719 static int 2720 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2721 { 2722 struct sysparam *sysp, sys; 2723 char var[256]; 2724 char modname[256]; 2725 char val[256]; 2726 char strval[256]; 2727 vmem_t *mod_sysfile_arena; 2728 void *straddr; 2729 2730 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 2731 mdb_warn("failed to read sysparam_hd"); 2732 return (DCMD_ERR); 2733 } 2734 2735 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 2736 mdb_warn("failed to read mod_sysfile_arena"); 2737 return (DCMD_ERR); 2738 } 2739 2740 while (sysp != NULL) { 2741 var[0] = '\0'; 2742 val[0] = '\0'; 2743 modname[0] = '\0'; 2744 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 2745 mdb_warn("couldn't read sysparam %p", sysp); 2746 return (DCMD_ERR); 2747 } 2748 if (sys.sys_modnam != NULL && 2749 mdb_readstr(modname, 256, 2750 (uintptr_t)sys.sys_modnam) == -1) { 2751 mdb_warn("couldn't read modname in %p", sysp); 2752 return (DCMD_ERR); 2753 } 2754 if (sys.sys_ptr != NULL && 2755 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 2756 mdb_warn("couldn't read ptr in %p", sysp); 2757 return (DCMD_ERR); 2758 } 2759 if (sys.sys_op != SETOP_NONE) { 2760 /* 2761 * Is this an int or a string? We determine this 2762 * by checking whether straddr is contained in 2763 * mod_sysfile_arena. If so, the walker will set 2764 * straddr to NULL. 2765 */ 2766 straddr = (void *)(uintptr_t)sys.sys_info; 2767 if (sys.sys_op == SETOP_ASSIGN && 2768 sys.sys_info != 0 && 2769 mdb_pwalk("vmem_seg", 2770 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 2771 (uintptr_t)mod_sysfile_arena) == 0 && 2772 straddr == NULL && 2773 mdb_readstr(strval, 256, 2774 (uintptr_t)sys.sys_info) != -1) { 2775 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 2776 strval); 2777 } else { 2778 (void) mdb_snprintf(val, sizeof (val), 2779 "0x%llx [0t%llu]", sys.sys_info, 2780 sys.sys_info); 2781 } 2782 } 2783 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 2784 modname, modname[0] == '\0' ? "" : ":", 2785 var, sysfile_ops[sys.sys_op], val); 2786 2787 sysp = sys.sys_next; 2788 } 2789 2790 return (DCMD_OK); 2791 } 2792 2793 /* 2794 * Dump a taskq_ent_t given its address. 2795 */ 2796 /*ARGSUSED*/ 2797 int 2798 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2799 { 2800 taskq_ent_t taskq_ent; 2801 GElf_Sym sym; 2802 char buf[MDB_SYM_NAMLEN+1]; 2803 2804 2805 if (!(flags & DCMD_ADDRSPEC)) { 2806 mdb_warn("expected explicit taskq_ent_t address before ::\n"); 2807 return (DCMD_USAGE); 2808 } 2809 2810 if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { 2811 mdb_warn("failed to read taskq_ent_t at %p", addr); 2812 return (DCMD_ERR); 2813 } 2814 2815 if (DCMD_HDRSPEC(flags)) { 2816 mdb_printf("%<u>%-?s %-?s %-s%</u>\n", 2817 "ENTRY", "ARG", "FUNCTION"); 2818 } 2819 2820 if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, 2821 buf, sizeof (buf), &sym) == -1) { 2822 (void) strcpy(buf, "????"); 2823 } 2824 2825 mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); 2826 2827 return (DCMD_OK); 2828 } 2829 2830 /* 2831 * Given the address of the (taskq_t) task queue head, walk the queue listing 2832 * the address of every taskq_ent_t. 2833 */ 2834 int 2835 taskq_walk_init(mdb_walk_state_t *wsp) 2836 { 2837 taskq_t tq_head; 2838 2839 2840 if (wsp->walk_addr == NULL) { 2841 mdb_warn("start address required\n"); 2842 return (WALK_ERR); 2843 } 2844 2845 2846 /* 2847 * Save the address of the list head entry. This terminates the list. 2848 */ 2849 wsp->walk_data = (void *) 2850 ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); 2851 2852 2853 /* 2854 * Read in taskq head, set walk_addr to point to first taskq_ent_t. 2855 */ 2856 if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == 2857 -1) { 2858 mdb_warn("failed to read taskq list head at %p", 2859 wsp->walk_addr); 2860 } 2861 wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; 2862 2863 2864 /* 2865 * Check for null list (next=head) 2866 */ 2867 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2868 return (WALK_DONE); 2869 } 2870 2871 return (WALK_NEXT); 2872 } 2873 2874 2875 int 2876 taskq_walk_step(mdb_walk_state_t *wsp) 2877 { 2878 taskq_ent_t tq_ent; 2879 int status; 2880 2881 2882 if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == 2883 -1) { 2884 mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); 2885 return (DCMD_ERR); 2886 } 2887 2888 status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, 2889 wsp->walk_cbdata); 2890 2891 wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; 2892 2893 2894 /* Check if we're at the last element (next=head) */ 2895 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2896 return (WALK_DONE); 2897 } 2898 2899 return (status); 2900 } 2901 2902 int 2903 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 2904 { 2905 2906 if (*didp == thr->t_did) { 2907 mdb_printf("%p\n", addr); 2908 return (WALK_DONE); 2909 } else 2910 return (WALK_NEXT); 2911 } 2912 2913 /*ARGSUSED*/ 2914 int 2915 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2916 { 2917 const mdb_arg_t *argp = &argv[0]; 2918 kt_did_t did; 2919 2920 if (argc != 1) 2921 return (DCMD_USAGE); 2922 2923 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 2924 2925 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 2926 mdb_warn("failed to walk thread"); 2927 return (DCMD_ERR); 2928 2929 } 2930 return (DCMD_OK); 2931 2932 } 2933 2934 static int 2935 errorq_walk_init(mdb_walk_state_t *wsp) 2936 { 2937 if (wsp->walk_addr == NULL && 2938 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 2939 mdb_warn("failed to read errorq_list"); 2940 return (WALK_ERR); 2941 } 2942 2943 return (WALK_NEXT); 2944 } 2945 2946 static int 2947 errorq_walk_step(mdb_walk_state_t *wsp) 2948 { 2949 uintptr_t addr = wsp->walk_addr; 2950 errorq_t eq; 2951 2952 if (addr == NULL) 2953 return (WALK_DONE); 2954 2955 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 2956 mdb_warn("failed to read errorq at %p", addr); 2957 return (WALK_ERR); 2958 } 2959 2960 wsp->walk_addr = (uintptr_t)eq.eq_next; 2961 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 2962 } 2963 2964 typedef struct eqd_walk_data { 2965 uintptr_t *eqd_stack; 2966 void *eqd_buf; 2967 ulong_t eqd_qpos; 2968 ulong_t eqd_qlen; 2969 size_t eqd_size; 2970 } eqd_walk_data_t; 2971 2972 /* 2973 * In order to walk the list of pending error queue elements, we push the 2974 * addresses of the corresponding data buffers in to the eqd_stack array. 2975 * The error lists are in reverse chronological order when iterating using 2976 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 2977 * walker client gets addresses in order from oldest error to newest error. 2978 */ 2979 static void 2980 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 2981 { 2982 errorq_elem_t eqe; 2983 2984 while (addr != NULL) { 2985 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 2986 mdb_warn("failed to read errorq element at %p", addr); 2987 break; 2988 } 2989 2990 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 2991 mdb_warn("errorq is overfull -- more than %lu " 2992 "elems found\n", eqdp->eqd_qlen); 2993 break; 2994 } 2995 2996 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 2997 addr = (uintptr_t)eqe.eqe_prev; 2998 } 2999 } 3000 3001 static int 3002 eqd_walk_init(mdb_walk_state_t *wsp) 3003 { 3004 eqd_walk_data_t *eqdp; 3005 errorq_elem_t eqe, *addr; 3006 errorq_t eq; 3007 ulong_t i; 3008 3009 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3010 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3011 return (WALK_ERR); 3012 } 3013 3014 if (eq.eq_ptail != NULL && 3015 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3016 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3017 return (WALK_ERR); 3018 } 3019 3020 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3021 wsp->walk_data = eqdp; 3022 3023 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3024 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3025 eqdp->eqd_qlen = eq.eq_qlen; 3026 eqdp->eqd_qpos = 0; 3027 eqdp->eqd_size = eq.eq_size; 3028 3029 /* 3030 * The newest elements in the queue are on the pending list, so we 3031 * push those on to our stack first. 3032 */ 3033 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3034 3035 /* 3036 * If eq_ptail is set, it may point to a subset of the errors on the 3037 * pending list in the event a casptr() failed; if ptail's data is 3038 * already in our stack, NULL out eq_ptail and ignore it. 3039 */ 3040 if (eq.eq_ptail != NULL) { 3041 for (i = 0; i < eqdp->eqd_qpos; i++) { 3042 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3043 eq.eq_ptail = NULL; 3044 break; 3045 } 3046 } 3047 } 3048 3049 /* 3050 * If eq_phead is set, it has the processing list in order from oldest 3051 * to newest. Use this to recompute eq_ptail as best we can and then 3052 * we nicely fall into eqd_push_list() of eq_ptail below. 3053 */ 3054 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3055 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3056 eq.eq_ptail = addr; 3057 3058 /* 3059 * The oldest elements in the queue are on the processing list, subject 3060 * to machinations in the if-clauses above. Push any such elements. 3061 */ 3062 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3063 return (WALK_NEXT); 3064 } 3065 3066 static int 3067 eqd_walk_step(mdb_walk_state_t *wsp) 3068 { 3069 eqd_walk_data_t *eqdp = wsp->walk_data; 3070 uintptr_t addr; 3071 3072 if (eqdp->eqd_qpos == 0) 3073 return (WALK_DONE); 3074 3075 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3076 3077 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3078 mdb_warn("failed to read errorq data at %p", addr); 3079 return (WALK_ERR); 3080 } 3081 3082 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3083 } 3084 3085 static void 3086 eqd_walk_fini(mdb_walk_state_t *wsp) 3087 { 3088 eqd_walk_data_t *eqdp = wsp->walk_data; 3089 3090 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3091 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3092 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3093 } 3094 3095 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3096 3097 static int 3098 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3099 { 3100 int i; 3101 errorq_t eq; 3102 uint_t opt_v = FALSE; 3103 3104 if (!(flags & DCMD_ADDRSPEC)) { 3105 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3106 mdb_warn("can't walk 'errorq'"); 3107 return (DCMD_ERR); 3108 } 3109 return (DCMD_OK); 3110 } 3111 3112 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3113 argc -= i; 3114 argv += i; 3115 3116 if (argc != 0) 3117 return (DCMD_USAGE); 3118 3119 if (opt_v || DCMD_HDRSPEC(flags)) { 3120 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3121 "ADDR", "NAME", "S", "V", "N"); 3122 if (!opt_v) { 3123 mdb_printf("%7s %7s %7s%</u>\n", 3124 "ACCEPT", "DROP", "LOG"); 3125 } else { 3126 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3127 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3128 } 3129 } 3130 3131 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3132 mdb_warn("failed to read errorq at %p", addr); 3133 return (DCMD_ERR); 3134 } 3135 3136 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3137 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3138 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3139 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3140 3141 if (!opt_v) { 3142 mdb_printf("%7llu %7llu %7llu\n", 3143 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3144 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3145 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3146 } else { 3147 mdb_printf("%5s %6lu %6lu %3u %a\n", 3148 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3149 mdb_printf("%38s\n%41s" 3150 "%12s %llu\n" 3151 "%53s %llu\n" 3152 "%53s %llu\n" 3153 "%53s %llu\n" 3154 "%53s %llu\n" 3155 "%53s %llu\n" 3156 "%53s %llu\n" 3157 "%53s %llu\n\n", 3158 "|", "+-> ", 3159 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3160 "DROPPED", EQKSVAL(eq, eqk_dropped), 3161 "LOGGED", EQKSVAL(eq, eqk_logged), 3162 "RESERVED", EQKSVAL(eq, eqk_reserved), 3163 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3164 "COMMITTED", EQKSVAL(eq, eqk_committed), 3165 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3166 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3167 } 3168 3169 return (DCMD_OK); 3170 } 3171 3172 /*ARGSUSED*/ 3173 static int 3174 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3175 { 3176 cpu_t panic_cpu; 3177 kthread_t *panic_thread; 3178 void *panicbuf; 3179 panic_data_t *pd; 3180 int i, n; 3181 3182 if (!mdb_prop_postmortem) { 3183 mdb_warn("panicinfo can only be run on a system " 3184 "dump; see dumpadm(1M)\n"); 3185 return (DCMD_ERR); 3186 } 3187 3188 if (flags & DCMD_ADDRSPEC || argc != 0) 3189 return (DCMD_USAGE); 3190 3191 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3192 mdb_warn("failed to read 'panic_cpu'"); 3193 else 3194 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3195 3196 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3197 mdb_warn("failed to read 'panic_thread'"); 3198 else 3199 mdb_printf("%16s %?p\n", "thread", panic_thread); 3200 3201 panicbuf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3202 pd = (panic_data_t *)panicbuf; 3203 3204 if (mdb_readsym(panicbuf, PANICBUFSIZE, "panicbuf") == -1 || 3205 pd->pd_version != PANICBUFVERS) { 3206 mdb_warn("failed to read 'panicbuf'"); 3207 mdb_free(panicbuf, PANICBUFSIZE); 3208 return (DCMD_ERR); 3209 } 3210 3211 mdb_printf("%16s %s\n", "message", (char *)panicbuf + pd->pd_msgoff); 3212 3213 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3214 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3215 3216 for (i = 0; i < n; i++) 3217 mdb_printf("%16s %?llx\n", 3218 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3219 3220 mdb_free(panicbuf, PANICBUFSIZE); 3221 return (DCMD_OK); 3222 } 3223 3224 static const mdb_dcmd_t dcmds[] = { 3225 3226 /* from genunix.c */ 3227 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 3228 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3229 { "binding_hash_entry", ":", "print driver names hash table entry", 3230 binding_hash_entry }, 3231 { "callout", NULL, "print callout table", callout }, 3232 { "class", NULL, "print process scheduler classes", class }, 3233 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3234 { "did2thread", "? kt_did", "find kernel thread for this id", 3235 did2thread }, 3236 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3237 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3238 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3239 { "lminfo", NULL, "print lock manager information", lminfo }, 3240 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3241 { "panicinfo", NULL, "print panic information", panicinfo }, 3242 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3243 { "pmap", ":[-q]", "print process memory map", pmap }, 3244 { "project", NULL, "display kernel project(s)", project }, 3245 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3246 { "pgrep", "[-x] [-n | -o] pattern", 3247 "pattern match against all processes", pgrep }, 3248 { "ptree", NULL, "print process tree", ptree }, 3249 { "seg", ":", "print address space segment", seg }, 3250 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3251 sysevent}, 3252 { "sysevent_channel", "?", "print sysevent channel database", 3253 sysevent_channel}, 3254 { "sysevent_class_list", ":", "print sysevent class list", 3255 sysevent_class_list}, 3256 { "sysevent_subclass_list", ":", 3257 "print sysevent subclass list", sysevent_subclass_list}, 3258 { "system", NULL, "print contents of /etc/system file", sysfile }, 3259 { "task", NULL, "display kernel task(s)", task }, 3260 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 3261 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3262 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 3263 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3264 whereopen }, 3265 3266 /* from zone.c */ 3267 { "zone", "?", "display kernel zone(s)", zoneprt }, 3268 { "zsd", ":[zsd key]", "lookup zsd value from a key", zsd }, 3269 3270 /* from bio.c */ 3271 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3272 3273 /* from contract.c */ 3274 { "contract", "?", "display a contract", cmd_contract }, 3275 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3276 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3277 3278 /* from cpupart.c */ 3279 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3280 3281 /* from cyclic.c */ 3282 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3283 { "cycid", "?", "dump a cyclic id", cycid }, 3284 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3285 { "cyclic", ":", "developer information", cyclic }, 3286 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3287 3288 /* from devinfo.c */ 3289 { "devbindings", "?[-qs] [device-name | major-num]", 3290 "print devinfo nodes bound to device-name or major-num", 3291 devbindings, devinfo_help }, 3292 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3293 devinfo_help }, 3294 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3295 devinfo_audit }, 3296 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3297 devinfo_audit_log }, 3298 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3299 devinfo_audit_node }, 3300 { "devinfo2driver", ":", "find driver name for this devinfo node", 3301 devinfo2driver }, 3302 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3303 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3304 dev2major }, 3305 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3306 dev2minor }, 3307 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3308 devt }, 3309 { "major2name", "?<major-num>", "convert major number to dev name", 3310 major2name }, 3311 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3312 minornodes }, 3313 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3314 modctl2devinfo }, 3315 { "name2major", "<dev-name>", "convert dev name to major number", 3316 name2major }, 3317 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3318 { "softstate", ":<instance>", "retrieve soft-state pointer", 3319 softstate }, 3320 { "devinfo_fm", ":", "devinfo fault managment configuration", 3321 devinfo_fm }, 3322 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3323 devinfo_fmce}, 3324 3325 /* from findstack.c */ 3326 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3327 { "findstack_debug", NULL, "toggle findstack debugging", 3328 findstack_debug }, 3329 3330 /* from kgrep.c + genunix.c */ 3331 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 3332 kgrep_help }, 3333 3334 /* from kmem.c */ 3335 { "allocdby", ":", "given a thread, print its allocated buffers", 3336 allocdby }, 3337 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3338 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3339 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3340 { "kmalog", "?[ fail | slab ]", 3341 "display kmem transaction log and stack traces", kmalog }, 3342 { "kmastat", "[-kmg]", "kernel memory allocator stats", 3343 kmastat }, 3344 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3345 "of the kmem allocator", kmausers, kmausers_help }, 3346 { "kmem_cache", "?", "print kernel memory caches", kmem_cache }, 3347 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3348 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3349 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3350 kmem_verify }, 3351 { "vmem", "?", "print a vmem_t", vmem }, 3352 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3353 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3354 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3355 { "whatis", ":[-abiv]", "given an address, return information", whatis, 3356 whatis_help }, 3357 { "whatthread", ":[-v]", "print threads whose stack contains the " 3358 "given address", whatthread }, 3359 3360 /* from ldi.c */ 3361 { "ldi_handle", "?[-i]", "display a layered driver handle", 3362 ldi_handle, ldi_handle_help }, 3363 { "ldi_ident", NULL, "display a layered driver identifier", 3364 ldi_ident, ldi_ident_help }, 3365 3366 /* from leaky.c + leaky_subr.c */ 3367 { "findleaks", FINDLEAKS_USAGE, 3368 "search for potential kernel memory leaks", findleaks, 3369 findleaks_help }, 3370 3371 /* from lgrp.c */ 3372 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 3373 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 3374 3375 /* from log.c */ 3376 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 3377 3378 /* from memory.c */ 3379 { "page", "?", "display a summarized page_t", page }, 3380 { "memstat", NULL, "display memory usage summary", memstat }, 3381 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 3382 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 3383 3384 /* from mmd.c */ 3385 { "multidata", ":[-sv]", "display a summarized multidata_t", 3386 multidata }, 3387 { "pattbl", ":", "display a summarized multidata attribute table", 3388 pattbl }, 3389 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 3390 pattr2multidata }, 3391 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 3392 pdesc2slab }, 3393 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 3394 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 3395 slab2multidata }, 3396 3397 /* from modhash.c */ 3398 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 3399 "display information about one or all mod_hash structures", 3400 modhash, modhash_help }, 3401 { "modent", ":[-k | -v | -t type]", 3402 "display information about a mod_hash_entry", modent, 3403 modent_help }, 3404 3405 /* from net.c */ 3406 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 3407 mi }, 3408 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp]", 3409 "show network statistics", netstat }, 3410 { "sonode", "?[-f inet | inet6 | unix | #] " 3411 "[-t stream | dgram | raw | #] [-p #]", 3412 "filter and display sonode", sonode }, 3413 3414 /* from nvpair.c */ 3415 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 3416 nvpair_print }, 3417 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 3418 print_nvlist }, 3419 3420 /* from rctl.c */ 3421 { "rctl_dict", "?", "print systemwide default rctl definitions", 3422 rctl_dict }, 3423 { "rctl_list", ":[handle]", "print rctls for the given proc", 3424 rctl_list }, 3425 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 3426 rctl }, 3427 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 3428 "sequence", rctl_validate }, 3429 3430 /* from sobj.c */ 3431 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 3432 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 3433 mutex_help }, 3434 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 3435 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 3436 { "turnstile", "?", "display a turnstile", turnstile }, 3437 3438 /* from stream.c */ 3439 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 3440 "print an mblk", mblk_prt, mblk_help }, 3441 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 3442 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 3443 mblk2dblk }, 3444 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 3445 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 3446 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 3447 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 3448 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 3449 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 3450 "filter and display STREAM queue", queue, queue_help }, 3451 { "stdata", ":[-q|v] [-f flag] [-F flag]", 3452 "filter and display STREAM head", stdata, stdata_help }, 3453 { "str2mate", ":", "print mate of this stream", str2mate }, 3454 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 3455 { "stream", ":", "display STREAM", stream }, 3456 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 3457 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 3458 "filter and display STREAM sync queue", syncq, syncq_help }, 3459 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 3460 3461 /* from thread.c */ 3462 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 3463 thread_help }, 3464 { "threadlist", "?[-v [count]]", 3465 "display threads and associated C stack traces", threadlist, 3466 threadlist_help }, 3467 3468 /* from tsd.c */ 3469 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 3470 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 3471 3472 /* 3473 * typegraph does not work under kmdb, as it requires too much memory 3474 * for its internal data structures. 3475 */ 3476 #ifndef _KMDB 3477 /* from typegraph.c */ 3478 { "findlocks", ":", "find locks held by specified thread", findlocks }, 3479 { "findfalse", "?[-v]", "find potentially falsely shared structures", 3480 findfalse }, 3481 { "typegraph", NULL, "build type graph", typegraph }, 3482 { "istype", ":type", "manually set object type", istype }, 3483 { "notype", ":", "manually clear object type", notype }, 3484 { "whattype", ":", "determine object type", whattype }, 3485 #endif 3486 3487 /* from vfs.c */ 3488 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 3489 { "pfiles", ":[-fp]", "print process file information", pfiles, 3490 pfiles_help }, 3491 3492 /* from mdi.c */ 3493 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 3494 "and detailed pi_prop list", mdipi }, 3495 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 3496 mdiprops }, 3497 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 3498 "list all paths", mdiphci }, 3499 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 3500 "all phcis", mdivhci }, 3501 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 3502 "client links", mdiclient_paths }, 3503 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 3504 "phci links", mdiphci_paths }, 3505 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 3506 mdiphcis }, 3507 3508 { NULL } 3509 }; 3510 3511 static const mdb_walker_t walkers[] = { 3512 3513 /* from genunix.c */ 3514 { "anon", "given an amp, list of anon structures", 3515 anon_walk_init, anon_walk_step, anon_walk_fini }, 3516 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 3517 { "errorq", "walk list of system error queues", 3518 errorq_walk_init, errorq_walk_step, NULL }, 3519 { "errorq_data", "walk pending error queue data buffers", 3520 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 3521 { "allfile", "given a proc pointer, list all file pointers", 3522 file_walk_init, allfile_walk_step, file_walk_fini }, 3523 { "file", "given a proc pointer, list of open file pointers", 3524 file_walk_init, file_walk_step, file_walk_fini }, 3525 { "lock_descriptor", "walk lock_descriptor_t structures", 3526 ld_walk_init, ld_walk_step, NULL }, 3527 { "lock_graph", "walk lock graph", 3528 lg_walk_init, lg_walk_step, NULL }, 3529 { "port", "given a proc pointer, list of created event ports", 3530 port_walk_init, port_walk_step, NULL }, 3531 { "portev", "given a port pointer, list of events in the queue", 3532 portev_walk_init, portev_walk_step, portev_walk_fini }, 3533 { "proc", "list of active proc_t structures", 3534 proc_walk_init, proc_walk_step, proc_walk_fini }, 3535 { "projects", "walk a list of kernel projects", 3536 project_walk_init, project_walk_step, NULL }, 3537 { "seg", "given an as, list of segments", 3538 seg_walk_init, avl_walk_step, avl_walk_fini }, 3539 { "sysevent_pend", "walk sysevent pending queue", 3540 sysevent_pend_walk_init, sysevent_walk_step, 3541 sysevent_walk_fini}, 3542 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 3543 sysevent_walk_step, sysevent_walk_fini}, 3544 { "sysevent_channel", "walk sysevent channel subscriptions", 3545 sysevent_channel_walk_init, sysevent_channel_walk_step, 3546 sysevent_channel_walk_fini}, 3547 { "sysevent_class_list", "walk sysevent subscription's class list", 3548 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 3549 sysevent_class_list_walk_fini}, 3550 { "sysevent_subclass_list", 3551 "walk sysevent subscription's subclass list", 3552 sysevent_subclass_list_walk_init, 3553 sysevent_subclass_list_walk_step, 3554 sysevent_subclass_list_walk_fini}, 3555 { "task", "given a task pointer, walk its processes", 3556 task_walk_init, task_walk_step, NULL }, 3557 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 3558 taskq_walk_init, taskq_walk_step, NULL, NULL }, 3559 3560 /* from avl.c */ 3561 { AVL_WALK_NAME, AVL_WALK_DESC, 3562 avl_walk_init, avl_walk_step, avl_walk_fini }, 3563 3564 /* from zone.c */ 3565 { "zone", "walk a list of kernel zones", 3566 zone_walk_init, zone_walk_step, NULL }, 3567 { "zsd", "walk list of zsd entries for a zone", 3568 zsd_walk_init, zsd_walk_step, NULL }, 3569 3570 /* from bio.c */ 3571 { "buf", "walk the bio buf hash", 3572 buf_walk_init, buf_walk_step, buf_walk_fini }, 3573 3574 /* from contract.c */ 3575 { "contract", "walk all contracts, or those of the specified type", 3576 ct_walk_init, generic_walk_step, NULL }, 3577 { "ct_event", "walk events on a contract event queue", 3578 ct_event_walk_init, generic_walk_step, NULL }, 3579 { "ct_listener", "walk contract event queue listeners", 3580 ct_listener_walk_init, generic_walk_step, NULL }, 3581 3582 /* from cpupart.c */ 3583 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 3584 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 3585 NULL }, 3586 { "cpupart_walk", "walk the set of cpu partitions", 3587 cpupart_walk_init, cpupart_walk_step, NULL }, 3588 3589 /* from ctxop.c */ 3590 { "ctxop", "walk list of context ops on a thread", 3591 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 3592 3593 /* from cyclic.c */ 3594 { "cyccpu", "walk per-CPU cyc_cpu structures", 3595 cyccpu_walk_init, cyccpu_walk_step, NULL }, 3596 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 3597 cycomni_walk_init, cycomni_walk_step, NULL }, 3598 { "cyctrace", "walk cyclic trace buffer", 3599 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 3600 3601 /* from devinfo.c */ 3602 { "binding_hash", "walk all entries in binding hash table", 3603 binding_hash_walk_init, binding_hash_walk_step, NULL }, 3604 { "devinfo", "walk devinfo tree or subtree", 3605 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 3606 { "devinfo_audit_log", "walk devinfo audit system-wide log", 3607 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 3608 devinfo_audit_log_walk_fini}, 3609 { "devinfo_audit_node", "walk per-devinfo audit history", 3610 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 3611 devinfo_audit_node_walk_fini}, 3612 { "devinfo_children", "walk children of devinfo node", 3613 devinfo_children_walk_init, devinfo_children_walk_step, 3614 devinfo_children_walk_fini }, 3615 { "devinfo_parents", "walk ancestors of devinfo node", 3616 devinfo_parents_walk_init, devinfo_parents_walk_step, 3617 devinfo_parents_walk_fini }, 3618 { "devinfo_siblings", "walk siblings of devinfo node", 3619 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 3620 { "devi_next", "walk devinfo list", 3621 NULL, devi_next_walk_step, NULL }, 3622 { "devnames", "walk devnames array", 3623 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 3624 { "minornode", "given a devinfo node, walk minor nodes", 3625 minornode_walk_init, minornode_walk_step, NULL }, 3626 { "softstate", 3627 "given an i_ddi_soft_state*, list all in-use driver stateps", 3628 soft_state_walk_init, soft_state_walk_step, 3629 NULL, NULL }, 3630 { "softstate_all", 3631 "given an i_ddi_soft_state*, list all driver stateps", 3632 soft_state_walk_init, soft_state_all_walk_step, 3633 NULL, NULL }, 3634 { "devinfo_fmc", 3635 "walk a fault management handle cache active list", 3636 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 3637 3638 /* from kmem.c */ 3639 { "allocdby", "given a thread, walk its allocated bufctls", 3640 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3641 { "bufctl", "walk a kmem cache's bufctls", 3642 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 3643 { "bufctl_history", "walk the available history of a bufctl", 3644 bufctl_history_walk_init, bufctl_history_walk_step, 3645 bufctl_history_walk_fini }, 3646 { "freedby", "given a thread, walk its freed bufctls", 3647 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3648 { "freectl", "walk a kmem cache's free bufctls", 3649 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 3650 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 3651 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3652 { "freemem", "walk a kmem cache's free memory", 3653 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 3654 { "freemem_constructed", "walk a kmem cache's constructed free memory", 3655 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3656 { "kmem", "walk a kmem cache", 3657 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 3658 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 3659 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 3660 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 3661 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 3662 { "kmem_log", "walk the kmem transaction log", 3663 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 3664 { "kmem_slab", "given a kmem cache, walk its slabs", 3665 kmem_slab_walk_init, kmem_slab_walk_step, NULL }, 3666 { "kmem_slab_partial", 3667 "given a kmem cache, walk its partially allocated slabs (min 1)", 3668 kmem_slab_walk_partial_init, kmem_slab_walk_step, NULL }, 3669 { "vmem", "walk vmem structures in pre-fix, depth-first order", 3670 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 3671 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 3672 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3673 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 3674 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3675 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 3676 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 3677 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 3678 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3679 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 3680 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3681 3682 /* from ldi.c */ 3683 { "ldi_handle", "walk the layered driver handle hash", 3684 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 3685 { "ldi_ident", "walk the layered driver identifier hash", 3686 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 3687 3688 /* from leaky.c + leaky_subr.c */ 3689 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 3690 "stack trace", 3691 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 3692 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 3693 "leaks w/ same stack trace", 3694 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 3695 3696 /* from lgrp.c */ 3697 { "lgrp_cpulist", "walk CPUs in a given lgroup", 3698 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 3699 { "lgrptbl", "walk lgroup table", 3700 lgrp_walk_init, lgrp_walk_step, NULL }, 3701 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 3702 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 3703 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 3704 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 3705 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 3706 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 3707 3708 /* from list.c */ 3709 { LIST_WALK_NAME, LIST_WALK_DESC, 3710 list_walk_init, list_walk_step, list_walk_fini }, 3711 3712 /* from memory.c */ 3713 { "page", "walk all pages, or those from the specified vnode", 3714 page_walk_init, page_walk_step, page_walk_fini }, 3715 { "memlist", "walk specified memlist", 3716 NULL, memlist_walk_step, NULL }, 3717 { "swapinfo", "walk swapinfo structures", 3718 swap_walk_init, swap_walk_step, NULL }, 3719 3720 /* from mmd.c */ 3721 { "pattr", "walk pattr_t structures", pattr_walk_init, 3722 mmdq_walk_step, mmdq_walk_fini }, 3723 { "pdesc", "walk pdesc_t structures", 3724 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3725 { "pdesc_slab", "walk pdesc_slab_t structures", 3726 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3727 3728 /* from modhash.c */ 3729 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 3730 modhash_walk_step, NULL }, 3731 { "modent", "walk list of entries in a given mod_hash", 3732 modent_walk_init, modent_walk_step, modent_walk_fini }, 3733 { "modchain", "walk list of entries in a given mod_hash_entry", 3734 NULL, modchain_walk_step, NULL }, 3735 3736 /* from net.c */ 3737 { "ar", "walk ar_t structures using MI", 3738 mi_payload_walk_init, mi_payload_walk_step, 3739 mi_payload_walk_fini, &mi_ar_arg }, 3740 { "icmp", "walk ICMP control structures using MI", 3741 mi_payload_walk_init, mi_payload_walk_step, 3742 mi_payload_walk_fini, &mi_icmp_arg }, 3743 { "ill", "walk ill_t structures using MI", 3744 mi_payload_walk_init, mi_payload_walk_step, 3745 mi_payload_walk_fini, &mi_ill_arg }, 3746 { "mi", "given a MI_O, walk the MI", 3747 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 3748 { "sonode", "given a sonode, walk its children", 3749 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 3750 3751 /* from nvpair.c */ 3752 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 3753 nvpair_walk_init, nvpair_walk_step, NULL }, 3754 3755 /* from rctl.c */ 3756 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 3757 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 3758 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 3759 rctl_set_walk_step, NULL }, 3760 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 3761 rctl_val_walk_init, rctl_val_walk_step }, 3762 3763 /* from sobj.c */ 3764 { "blocked", "walk threads blocked on a given sobj", 3765 blocked_walk_init, blocked_walk_step, NULL }, 3766 { "wchan", "given a wchan, list of blocked threads", 3767 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 3768 3769 /* from stream.c */ 3770 { "b_cont", "walk mblk_t list using b_cont", 3771 mblk_walk_init, b_cont_step, mblk_walk_fini }, 3772 { "b_next", "walk mblk_t list using b_next", 3773 mblk_walk_init, b_next_step, mblk_walk_fini }, 3774 { "qlink", "walk queue_t list using q_link", 3775 queue_walk_init, queue_link_step, queue_walk_fini }, 3776 { "qnext", "walk queue_t list using q_next", 3777 queue_walk_init, queue_next_step, queue_walk_fini }, 3778 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 3779 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 3780 { "readq", "walk read queue side of stdata", 3781 str_walk_init, strr_walk_step, str_walk_fini }, 3782 { "writeq", "walk write queue side of stdata", 3783 str_walk_init, strw_walk_step, str_walk_fini }, 3784 3785 /* from thread.c */ 3786 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 3787 deathrow_walk_init, deathrow_walk_step, NULL }, 3788 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 3789 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3790 { "cpupart_dispq", 3791 "given a cpupart_t, walk threads in dispatcher queues", 3792 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3793 { "lwp_deathrow", "walk lwp_deathrow", 3794 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 3795 { "thread", "global or per-process kthread_t structures", 3796 thread_walk_init, thread_walk_step, thread_walk_fini }, 3797 { "thread_deathrow", "walk threads on thread_deathrow", 3798 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 3799 3800 /* from tsd.c */ 3801 { "tsd", "walk list of thread-specific data", 3802 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 3803 3804 /* from tsol.c */ 3805 { "tnrh", "walk remote host cache structures", 3806 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 3807 { "tnrhtp", "walk remote host template structures", 3808 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 3809 3810 /* 3811 * typegraph does not work under kmdb, as it requires too much memory 3812 * for its internal data structures. 3813 */ 3814 #ifndef _KMDB 3815 /* from typegraph.c */ 3816 { "typeconflict", "walk buffers with conflicting type inferences", 3817 typegraph_walk_init, typeconflict_walk_step }, 3818 { "typeunknown", "walk buffers with unknown types", 3819 typegraph_walk_init, typeunknown_walk_step }, 3820 #endif 3821 3822 /* from vfs.c */ 3823 { "vfs", "walk file system list", 3824 vfs_walk_init, vfs_walk_step }, 3825 3826 /* from mdi.c */ 3827 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 3828 mdi_pi_client_link_walk_init, 3829 mdi_pi_client_link_walk_step, 3830 mdi_pi_client_link_walk_fini }, 3831 3832 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 3833 mdi_pi_phci_link_walk_init, 3834 mdi_pi_phci_link_walk_step, 3835 mdi_pi_phci_link_walk_fini }, 3836 3837 { "mdiphci_list", "Walker for mdi_phci ph_next link", 3838 mdi_phci_ph_next_walk_init, 3839 mdi_phci_ph_next_walk_step, 3840 mdi_phci_ph_next_walk_fini }, 3841 3842 { NULL } 3843 }; 3844 3845 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 3846 3847 const mdb_modinfo_t * 3848 _mdb_init(void) 3849 { 3850 if (mdb_readvar(&devinfo_root, "top_devinfo") == -1) { 3851 mdb_warn("failed to read 'top_devinfo'"); 3852 return (NULL); 3853 } 3854 3855 if (findstack_init() != DCMD_OK) 3856 return (NULL); 3857 3858 kmem_init(); 3859 3860 return (&modinfo); 3861 } 3862 3863 void 3864 _mdb_fini(void) 3865 { 3866 /* 3867 * Force ::findleaks to let go any cached memory 3868 */ 3869 leaky_cleanup(1); 3870 } 3871