xref: /titanic_50/usr/src/cmd/cmd-inet/usr.sbin/ping/ping.c (revision 888e055994b8b0dc77b98c53dd97026237caec5d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
22  * Use is subject to license terms.
23  */
24 
25 /*
26  * Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T
27  * All Rights Reserved.
28  */
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California.
33  * All Rights Reserved.
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 #include <stdio.h>
41 #include <strings.h>
42 #include <errno.h>
43 #include <fcntl.h>
44 #include <unistd.h>
45 #include <signal.h>
46 #include <limits.h>
47 #include <math.h>
48 
49 #include <sys/time.h>
50 #include <sys/param.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/stropts.h>
54 #include <sys/file.h>
55 #include <sys/sysmacros.h>
56 
57 #include <arpa/inet.h>
58 #include <net/if.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in.h>
61 #include <netinet/ip.h>
62 #include <netinet/ip_icmp.h>
63 #include <netinet/ip_var.h>
64 #include <netinet/ip6.h>
65 #include <netinet/icmp6.h>
66 #include <netinet/udp.h>
67 #include <netdb.h>
68 #include <stdlib.h>
69 #include <priv_utils.h>
70 
71 #include <libinetutil.h>
72 #include "ping.h"
73 
74 /*
75  * This macro is used to compare 16bit, wrapping sequence numbers. Inspired by
76  * TCP's SEQ_LEQ macro.
77  */
78 #define	PINGSEQ_LEQ(a, b)	((int16_t)((a)-(b)) <= 0)
79 
80 #define	MAX_WAIT		10	/* max sec. to wait for response */
81 #define	MAX_TRAFFIC_CLASS	255	/* max traffic class for IPv6 */
82 #define	MAX_FLOW_LABEL		0xFFFFF	/* max flow label for IPv6 */
83 #define	MAX_TOS			255	/* max type-of-service for IPv4 */
84 
85 #define	TIMEOUT			20	/* default timeout value */
86 #define	DEFAULT_DATALEN		56
87 
88 #define	MULTICAST_NOLOOP	1	/* multicast options */
89 #define	MULTICAST_TTL		2
90 #define	MULTICAST_IF		4
91 
92 #define	IF_INDEX		0	/* types of -i argument */
93 #define	IF_NAME			1
94 #define	IF_ADDR			2
95 #define	IF_ADDR6		3
96 
97 #ifdef BSD
98 #define	setbuf(s, b)	setlinebuf((s))
99 #endif /* BSD */
100 
101 
102 /* interface identification */
103 union if_id {
104 	int index;		/* interface index (e.g., 1, 2) */
105 	char *name;		/* interface name (e.g., le0, hme0) */
106 	union any_in_addr addr;	/* interface address (e.g., 10.123.4.5) */
107 };
108 
109 /* stores the interface supplied by the user */
110 struct if_entry {
111 	char *str;		/* unresolved, string input */
112 	int id_type;		/* type of ID (index, name, addr, addr6) */
113 	union if_id id;		/* ID */
114 };
115 
116 char *progname;
117 char *targethost;
118 char *nexthop;
119 
120 static int send_sock;			/* send sockets */
121 static int send_sock6;
122 static struct sockaddr_in to;		/* where to send */
123 static struct sockaddr_in6 to6;
124 static union any_in_addr gw_IP_list[MAX_GWS];	/* gateways */
125 static union any_in_addr gw_IP_list6[MAX_GWS6];
126 static int if_index = 0;		/* outgoing interface index */
127 boolean_t is_alive = _B_FALSE;		/* is target host alive */
128 struct targetaddr *current_targetaddr;	/* current target IP address to probe */
129 static struct targetaddr *targetaddr_list; /* list of IP addresses to probe */
130 static int num_targetaddrs;		/* no of target addresses to probe */
131 static int num_v4 = 0;			/* count of IPv4 addresses */
132 static int num_v6 = 0;			/* count of IPv6 addresses */
133 boolean_t verbose = _B_FALSE;		/* verbose output */
134 boolean_t stats = _B_FALSE;		/* display statistics */
135 static boolean_t settos = _B_FALSE;	/* set type-of-service value */
136 boolean_t rr_option = _B_FALSE;		/* true if using record route */
137 boolean_t send_reply = _B_FALSE;	/* Send an ICMP_{ECHO|TSTAMP}REPLY */
138 					/* that goes to target and comes back */
139 					/* to the the sender via src routing. */
140 boolean_t strict = _B_FALSE;		/* true if using strict source route */
141 boolean_t ts_option = _B_FALSE;		/* true if using timestamp option */
142 boolean_t use_icmp_ts = _B_FALSE;	/* Use ICMP timestamp request */
143 boolean_t use_udp = _B_FALSE;		/* Use UDP instead of ICMP */
144 boolean_t probe_all = _B_FALSE;		/* probe all the IP addresses */
145 boolean_t nflag = _B_FALSE;		/* do not reverse lookup addresses */
146 boolean_t bypass = _B_FALSE;		/* bypass IPsec policy */
147 static int family_input = AF_UNSPEC;	/* address family supplied by user */
148 int datalen = DEFAULT_DATALEN;		/* How much data */
149 int ts_flag;				/* timestamp flag value */
150 static int num_gw;			/* number of gateways */
151 static int eff_num_gw;			/* effective number of gateways */
152 					/* if send_reply, it's 2*num_gw+1 */
153 static int num_wraps = -1;		/* no of times 64K icmp_seq wrapped */
154 static ushort_t dest_port = 32768 + 666; /* starting port for the UDP probes */
155 static char *gw_list[MAXMAX_GWS];	/* list of gateways as user enters */
156 static int interval = 1;		/* interval between transmissions */
157 static int options;			/* socket options */
158 static int moptions;			/* multicast options */
159 int npackets;				/* number of packets to send */
160 static ushort_t tos;			/* type-of-service value */
161 static int hoplimit = -1;		/* time-to-live value */
162 static int dontfrag;			/* IP*_DONTFRAG */
163 static int timeout = TIMEOUT;		/* timeout value (sec) for probes */
164 static struct if_entry out_if;		/* interface argument */
165 int ident;				/* ID for this ping run */
166 static hrtime_t t_last_probe_sent;	/* the time we sent the last probe */
167 
168 /*
169  * This buffer stores the received packets. Currently it needs to be 32 bit
170  * aligned. In the future, we'll be using 64 bit alignment, so let's use 64 bit
171  * alignment now.
172  */
173 static uint64_t in_pkt[(IP_MAXPACKET + 1)/8];
174 
175 /* Used to store the ancillary data that comes with the received packets */
176 static uint64_t ancillary_data[(IP_MAXPACKET + 1)/8];
177 
178 static int ntransmitted;	/* number of packet sent to single IP address */
179 int nreceived;			/* # of packets we got back from target host */
180 int nreceived_last_target;	/* received from last target IP */
181 /*
182  * These are used for statistics. tmin is initialized to maximum longint value.
183  * The max value is also used for timeouts.   All times are in microseconds.
184  */
185 long long tmin = LLONG_MAX;
186 long long tmax;
187 int64_t tsum;			/* sum of all times, for doing average */
188 int64_t tsum2;			/* sum of squared times, for std. dev. */
189 
190 static struct targetaddr *build_targetaddr_list(struct addrinfo *,
191     union any_in_addr *);
192 extern void check_reply(struct addrinfo *, struct msghdr *, int, ushort_t);
193 extern void check_reply6(struct addrinfo *, struct msghdr *, int, ushort_t);
194 static struct targetaddr *create_targetaddr_item(int, union any_in_addr *,
195     union any_in_addr *);
196 void find_dstaddr(ushort_t, union any_in_addr *);
197 static struct ifaddrlist *find_if(struct ifaddrlist *, int);
198 static void finish();
199 static void get_gwaddrs(char *[], int, union any_in_addr *,
200     union any_in_addr *, int *, int *);
201 static void get_hostinfo(char *, int, struct addrinfo **);
202 static ushort_t in_cksum(ushort_t *, int);
203 static int int_arg(char *s, char *what);
204 boolean_t is_a_target(struct addrinfo *, union any_in_addr *);
205 static void mirror_gws(union any_in_addr *, int);
206 static void pinger(int, struct sockaddr *, struct msghdr *, int);
207 char *pr_name(char *, int);
208 char *pr_protocol(int);
209 static void print_unknown_host_msg(const char *, const char *);
210 static void recv_icmp_packet(struct addrinfo *, int, int, ushort_t, ushort_t);
211 static void resolve_nodes(struct addrinfo **, struct addrinfo **,
212     union any_in_addr **);
213 void schedule_sigalrm();
214 static void select_all_src_addrs(union any_in_addr **, struct addrinfo *,
215     union any_in_addr *, union any_in_addr *);
216 static void select_src_addr(union any_in_addr *, int, union any_in_addr *);
217 void send_scheduled_probe();
218 boolean_t seq_match(ushort_t, int, ushort_t);
219 extern void set_ancillary_data(struct msghdr *, int, union any_in_addr *, int,
220     uint_t);
221 extern void set_IPv4_options(int, union any_in_addr *, int, struct in_addr *,
222     struct in_addr *);
223 static void set_nexthop(int, struct addrinfo *, int);
224 static boolean_t setup_socket(int, int *, int *, int *, ushort_t *,
225     struct addrinfo *);
226 void sigalrm_handler();
227 void tvsub(struct timeval *, struct timeval *);
228 static void usage(char *);
229 
230 /*
231  * main()
232  */
233 int
234 main(int argc, char *argv[])
235 {
236 	struct addrinfo	*ai_dst = NULL;		/* addrinfo host list */
237 	struct addrinfo	*ai_nexthop = NULL;		/* addrinfo nexthop */
238 	union any_in_addr *src_addr_list = NULL;	/* src addrs to use */
239 	int recv_sock = -1;				/* receive sockets */
240 	int recv_sock6 = -1;
241 	ushort_t udp_src_port;			/* src ports for UDP probes */
242 	ushort_t udp_src_port6;			/* used to identify replies */
243 	uint_t flowinfo = 0;
244 	uint_t class = 0;
245 	char abuf[INET6_ADDRSTRLEN];
246 	int c;
247 	int i;
248 	boolean_t has_sys_ip_config;
249 
250 	progname = argv[0];
251 
252 	/*
253 	 * This program needs the net_icmpaccess privilege for creating
254 	 * raw ICMP sockets.  It needs sys_ip_config for using the
255 	 * IP_NEXTHOP socket option (IPv4 only).  We'll fail
256 	 * on the socket call and report the error there when we have
257 	 * insufficient privileges.
258 	 *
259 	 * Shared-IP zones don't have the sys_ip_config privilege, so
260 	 * we need to check for it in our limit set before trying
261 	 * to set it.
262 	 */
263 	has_sys_ip_config = priv_ineffect(PRIV_SYS_IP_CONFIG);
264 
265 	(void) __init_suid_priv(PU_CLEARLIMITSET, PRIV_NET_ICMPACCESS,
266 	    has_sys_ip_config ? PRIV_SYS_IP_CONFIG : (char *)NULL,
267 	    (char *)NULL);
268 
269 	setbuf(stdout, (char *)0);
270 
271 	while ((c = getopt(argc, argv,
272 	    "abA:c:dDF:G:g:I:i:LlnN:P:p:rRSsTt:UvX:x:Y0123?")) != -1) {
273 		switch ((char)c) {
274 		case 'A':
275 			if (strcmp(optarg, "inet") == 0) {
276 				family_input = AF_INET;
277 			} else if (strcmp(optarg, "inet6") == 0) {
278 				family_input = AF_INET6;
279 			} else {
280 				Fprintf(stderr,
281 				    "%s: unknown address family %s\n",
282 				    progname, optarg);
283 				exit(EXIT_FAILURE);
284 			}
285 			break;
286 
287 		case 'a':
288 			probe_all = _B_TRUE;
289 			break;
290 
291 		case 'c':
292 			i = int_arg(optarg, "traffic class");
293 			if (i > MAX_TRAFFIC_CLASS) {
294 				Fprintf(stderr, "%s: traffic class %d out of "
295 				    "range\n", progname, i);
296 				exit(EXIT_FAILURE);
297 			}
298 			class = (uint_t)i;
299 			break;
300 
301 		case 'd':
302 			options |= SO_DEBUG;
303 			break;
304 
305 		case 'D':
306 			dontfrag = 1;
307 			break;
308 
309 		case 'b':
310 			bypass = _B_TRUE;
311 			break;
312 
313 		case 'F':
314 			i = int_arg(optarg, "flow label");
315 			if (i > MAX_FLOW_LABEL) {
316 				Fprintf(stderr, "%s: flow label %d out of "
317 				    "range\n", progname, i);
318 				exit(EXIT_FAILURE);
319 			}
320 			flowinfo = (uint_t)i;
321 			break;
322 
323 		case 'I':
324 			stats = _B_TRUE;
325 			interval = int_arg(optarg, "interval");
326 			break;
327 
328 		case 'i':
329 			/*
330 			 * this can accept interface index, interface name, and
331 			 * address configured on the interface
332 			 */
333 			moptions |= MULTICAST_IF;
334 			out_if.str = optarg;
335 
336 			if (inet_pton(AF_INET6, optarg, &out_if.id.addr) > 0) {
337 				out_if.id_type = IF_ADDR6;
338 			} else if (inet_pton(AF_INET, optarg,
339 			    &out_if.id.addr) > 0) {
340 				out_if.id_type = IF_ADDR;
341 			} else if (strcmp(optarg, "0") == 0) {
342 				out_if.id_type = IF_INDEX;
343 				out_if.id.index = 0;
344 			} else if ((out_if.id.index = atoi(optarg)) != 0) {
345 				out_if.id_type = IF_INDEX;
346 			} else {
347 				out_if.id.name = optarg;
348 				out_if.id_type = IF_NAME;
349 			}
350 			break;
351 
352 		case 'L':
353 			moptions |= MULTICAST_NOLOOP;
354 			break;
355 
356 		case 'l':
357 			send_reply = _B_TRUE;
358 			strict = _B_FALSE;
359 			break;
360 
361 		case 'n':
362 			nflag = _B_TRUE;
363 			break;
364 
365 		case 'P':
366 			settos = _B_TRUE;
367 			i = int_arg(optarg, "type-of-service");
368 			if (i > MAX_TOS) {
369 				Fprintf(stderr, "%s: tos value %d out of "
370 				    "range\n", progname, i);
371 				exit(EXIT_FAILURE);
372 			}
373 			tos = (ushort_t)i;
374 			break;
375 
376 		case 'p':
377 			i = int_arg(optarg, "port number");
378 			if (i > MAX_PORT) {
379 				Fprintf(stderr, "%s: port number %d out of "
380 				    "range\n", progname, i);
381 				exit(EXIT_FAILURE);
382 			}
383 			dest_port = (ushort_t)i;
384 			break;
385 
386 		case 'r':
387 			options |= SO_DONTROUTE;
388 			break;
389 
390 		case 'R':
391 			rr_option = _B_TRUE;
392 			break;
393 
394 		case 'S':
395 			send_reply = _B_TRUE;
396 			strict = _B_TRUE;
397 			break;
398 
399 		case 's':
400 			stats = _B_TRUE;
401 			break;
402 
403 		case 'T':
404 			ts_option = _B_TRUE;
405 			break;
406 
407 		case 't':
408 			moptions |= MULTICAST_TTL;
409 			hoplimit = int_arg(optarg, "ttl");
410 			if (hoplimit > MAXTTL) {
411 				Fprintf(stderr, "%s: ttl %d out of range\n",
412 				    progname, hoplimit);
413 				exit(EXIT_FAILURE);
414 			}
415 			break;
416 
417 		case 'U':
418 			use_udp = _B_TRUE;
419 			use_icmp_ts = _B_FALSE;
420 			break;
421 
422 		case 'v':
423 			verbose = _B_TRUE;
424 			break;
425 		/*
426 		 * 'x' and 'X' has been undocumented flags for source routing.
427 		 * Now we document loose source routing with the new flag 'g',
428 		 * which is same as in traceroute. We still keep x/X as
429 		 * as undocumented. 'G', which is for strict source routing is
430 		 * also undocumented.
431 		 */
432 		case 'x':
433 		case 'g':
434 			strict = _B_FALSE;
435 			if (num_gw > MAXMAX_GWS) {
436 				Fprintf(stderr, "%s: too many gateways\n",
437 				    progname);
438 				exit(EXIT_FAILURE);
439 			}
440 			gw_list[num_gw++] = optarg;
441 			break;
442 
443 		case 'X':
444 		case 'G':
445 			strict = _B_TRUE;
446 			if (num_gw > MAXMAX_GWS) {
447 				Fprintf(stderr, "%s: too many gateways\n",
448 				    progname);
449 				exit(EXIT_FAILURE);
450 			}
451 			gw_list[num_gw++] = optarg;
452 			break;
453 
454 		case 'N':
455 			if (nexthop != NULL) {
456 				Fprintf(stderr, "%s: only one next hop gateway"
457 				    " allowed\n", progname);
458 				exit(EXIT_FAILURE);
459 			}
460 			nexthop = optarg;
461 			break;
462 
463 		case 'Y':
464 			use_icmp_ts = _B_TRUE;
465 			use_udp = _B_FALSE;
466 			break;
467 
468 		case '0':
469 		case '1':
470 		case '2':
471 		case '3':
472 			ts_flag = (char)c - '0';
473 			break;
474 
475 		case '?':
476 			usage(progname);
477 			exit(EXIT_FAILURE);
478 			break;
479 
480 		default:
481 			usage(progname);
482 			exit(EXIT_FAILURE);
483 			break;
484 		}
485 	}
486 
487 	if (optind >= argc) {
488 		usage(progname);
489 		exit(EXIT_FAILURE);
490 	}
491 
492 	/*
493 	 * send_reply, which sends the probe packet back to itself
494 	 * doesn't work with UDP
495 	 */
496 	if (use_udp)
497 		send_reply = _B_FALSE;
498 
499 	if (getenv("MACHINE_THAT_GOES_PING") != NULL)
500 		stats = _B_TRUE;
501 
502 	targethost = argv[optind];
503 	optind++;
504 	if (optind < argc) {
505 		if (stats) {
506 			datalen = int_arg(argv[optind], "data size");
507 			optind++;
508 			if (optind < argc) {
509 				npackets = int_arg(argv[optind],
510 				    "packet count");
511 				if (npackets < 1) {
512 					Fprintf(stderr, "%s: packet count %d "
513 					    "out of range\n", progname,
514 					    npackets);
515 					exit(EXIT_FAILURE);
516 				}
517 			}
518 		} else {
519 			timeout = int_arg(argv[optind], "timeout");
520 		}
521 	}
522 
523 	/*
524 	 * Let's prepare sockaddr_in* structures, cause we might need both of
525 	 * them.
526 	 */
527 	bzero((char *)&to, sizeof (struct sockaddr_in));
528 	to.sin_family = AF_INET;
529 
530 	bzero((char *)&to6, sizeof (struct sockaddr_in6));
531 	to6.sin6_family = AF_INET6;
532 	to6.sin6_flowinfo = htonl((class << 20) | flowinfo);
533 
534 	if (stats)
535 		(void) sigset(SIGINT, finish);
536 
537 	ident = (int)getpid() & 0xFFFF;
538 
539 	/* resolve the hostnames */
540 	resolve_nodes(&ai_dst, &ai_nexthop, &src_addr_list);
541 
542 	/*
543 	 * We should make sure datalen is reasonable.
544 	 * 	IP_MAXPACKET >= IPv4/IPv6 header length +
545 	 *			IPv4 options/IPv6 routing header length +
546 	 *			ICMP/ICMP6/UDP header length +
547 	 *			datalen
548 	 */
549 
550 	if (family_input == AF_INET6 ||
551 	    (family_input == AF_UNSPEC && num_v6 != 0)) {
552 		size_t exthdr_len = 0;
553 
554 		if (send_reply) {
555 			exthdr_len = sizeof (struct ip6_rthdr0) +
556 			    2 * num_gw * sizeof (struct in6_addr);
557 		} else if (num_gw > 0) {
558 			exthdr_len = sizeof (struct ip6_rthdr0) +
559 			    num_gw * sizeof (struct in6_addr);
560 		}
561 
562 		/*
563 		 * Size of ICMP6 header and UDP header are the same. Let's
564 		 * use ICMP6_MINLEN.
565 		 */
566 		if (datalen > (IP_MAXPACKET - (sizeof (struct ip6_hdr) +
567 		    exthdr_len + ICMP6_MINLEN))) {
568 			Fprintf(stderr,
569 			    "%s: data size too large for IPv6 packet\n",
570 			    progname);
571 			num_v6 = 0;
572 		}
573 	}
574 
575 	if (family_input == AF_INET ||
576 	    (family_input == AF_UNSPEC && num_v4 != 0)) {
577 		size_t opt_len = 0;
578 
579 		if (send_reply) {
580 			/*
581 			 * Includes 3 bytes code+ptr+len, the intermediate
582 			 * gateways, the actual and the effective target.
583 			 */
584 			opt_len = 3 +
585 			    (2 * num_gw + 2) * sizeof (struct in_addr);
586 		} else if (num_gw > 0) {
587 			opt_len = 3 + (num_gw + 1) * sizeof (struct in_addr);
588 		}
589 
590 		if (rr_option) {
591 			opt_len = MAX_IPOPTLEN;
592 		} else if (ts_option) {
593 			if ((ts_flag & 0x0f) <= IPOPT_TS_TSANDADDR) {
594 				opt_len = MAX_IPOPTLEN;
595 			} else {
596 				opt_len += IPOPT_MINOFF +
597 				    2 * sizeof (struct ipt_ta);
598 				/*
599 				 * Note: BSD/4.X is broken in their check so we
600 				 * have to  bump up this number by at least one.
601 				 */
602 				opt_len++;
603 			}
604 		}
605 
606 		/* Round up to 4 byte boundary */
607 		if (opt_len & 0x3)
608 			opt_len = (opt_len & ~0x3) + 4;
609 
610 		if (datalen > (IP_MAXPACKET - (sizeof (struct ip) + opt_len +
611 		    ICMP_MINLEN))) {
612 			Fprintf(stderr,
613 			    "%s: data size too large for IPv4 packet\n",
614 			    progname);
615 			num_v4 = 0;
616 		}
617 	}
618 
619 	if (num_v4 == 0 && num_v6 == 0) {
620 		exit(EXIT_FAILURE);
621 	}
622 
623 	/* setup the sockets */
624 	if (num_v6 != 0) {
625 		if (!setup_socket(AF_INET6, &send_sock6, &recv_sock6,
626 		    &if_index, &udp_src_port6, ai_nexthop))
627 			exit(EXIT_FAILURE);
628 	}
629 
630 	if (num_v4 != 0) {
631 		if (!setup_socket(AF_INET, &send_sock, &recv_sock, &if_index,
632 		    &udp_src_port, ai_nexthop))
633 			exit(EXIT_FAILURE);
634 	}
635 
636 	__priv_relinquish();
637 
638 	/*
639 	 * If sending back to ourself, add the mirror image of current
640 	 * gateways, so that the probes travel to and from the target
641 	 * by visiting the same gateways in reverse order.
642 	 */
643 	if (send_reply) {
644 		if (num_v6 != 0)
645 			mirror_gws(gw_IP_list6, AF_INET6);
646 		if (num_v4 != 0)
647 			mirror_gws(gw_IP_list, AF_INET);
648 
649 		/* We add 1 because we put the target as the middle gateway */
650 		eff_num_gw = 2 * num_gw + 1;
651 
652 	} else {
653 		eff_num_gw = num_gw;
654 	}
655 
656 	targetaddr_list = build_targetaddr_list(ai_dst, src_addr_list);
657 	current_targetaddr = targetaddr_list;
658 
659 	/*
660 	 * Set the starting_seq_num for the first targetaddr.
661 	 * If we are sending ICMP Echo Requests, the sequence number is same as
662 	 * ICMP sequence number, and it starts from zero. If we are sending UDP
663 	 * packets, the sequence number is the destination UDP port number,
664 	 * which starts from dest_port. At each probe, this sequence number is
665 	 * incremented by one.
666 	 * We set the starting_seq_num for first targetaddr here. The
667 	 * following ones will be set by looking at where we left with the last
668 	 * targetaddr.
669 	 */
670 	current_targetaddr->starting_seq_num = use_udp ? dest_port : 0;
671 
672 	if (stats) {
673 		if (probe_all || !nflag) {
674 			Printf("PING %s: %d data bytes\n", targethost, datalen);
675 		} else {
676 			if (ai_dst->ai_family == AF_INET) {
677 				(void) inet_ntop(AF_INET,
678 				    &((struct sockaddr_in *)(void *)
679 				    ai_dst->ai_addr)->sin_addr,
680 				    abuf, sizeof (abuf));
681 			} else {
682 				(void) inet_ntop(AF_INET6,
683 				    &((struct sockaddr_in6 *)(void *)
684 				    ai_dst->ai_addr)->sin6_addr,
685 				    abuf, sizeof (abuf));
686 			}
687 			Printf("PING %s (%s): %d data bytes\n",
688 			    targethost, abuf, datalen);
689 		}
690 	}
691 
692 	/* Let's get things going */
693 	send_scheduled_probe();
694 
695 	/* SIGALRM is used to send the next scheduled probe */
696 	(void) sigset(SIGALRM, sigalrm_handler);
697 	schedule_sigalrm();
698 
699 	/*
700 	 * From now on, we'll always be listening to ICMP packets. As SIGALRM
701 	 * comes in, sigalrm_handler() will be invoked and send another
702 	 * probe.
703 	 */
704 	recv_icmp_packet(ai_dst, recv_sock6, recv_sock, udp_src_port6,
705 	    udp_src_port);
706 
707 	return (EXIT_SUCCESS);	/* should never come here */
708 }
709 
710 /*
711  * Build the target IP address list. Use command line options and
712  * name lookup results returned from name server to determine which addresses
713  * to probe, how many times, in which order.
714  */
715 static struct targetaddr *
716 build_targetaddr_list(struct addrinfo *ai_dst, union any_in_addr *src_addr_list)
717 {
718 	struct targetaddr *head = NULL;
719 	struct targetaddr *targetaddr;
720 	struct targetaddr **nextp;
721 	int num_dst;
722 	int i;
723 	struct addrinfo *aip;
724 
725 	aip = ai_dst;
726 	if (probe_all)
727 		num_dst = num_v4 + num_v6;
728 	else
729 		num_dst = 1;
730 	num_targetaddrs = num_dst;
731 	nextp = &head;
732 	for (aip = ai_dst, i = 0; aip != NULL; aip = aip->ai_next, i++) {
733 		if (aip->ai_family == AF_INET && num_v4 != 0) {
734 			targetaddr = create_targetaddr_item(aip->ai_family,
735 			    (union any_in_addr *)
736 			    /* LINTED E_BAD_PTR_CAST_ALIGN */
737 			    &((struct sockaddr_in *)
738 			    aip->ai_addr)->sin_addr,
739 			    &src_addr_list[i]);
740 		} else if (aip->ai_family == AF_INET6 && num_v6 != 0) {
741 			targetaddr = create_targetaddr_item(aip->ai_family,
742 			    (union any_in_addr *)
743 			    /* LINTED E_BAD_PTR_CAST_ALIGN */
744 			    &((struct sockaddr_in6 *)
745 			    aip->ai_addr)->sin6_addr,
746 			    &src_addr_list[i]);
747 		} else {
748 			continue;
749 		}
750 		*nextp = targetaddr;
751 		nextp = &targetaddr->next;
752 		if (num_targetaddrs == 1)
753 			break;
754 	}
755 	if (npackets == 0 && stats)
756 		*nextp = head;	/* keep going indefinitely */
757 
758 	return (head);
759 }
760 
761 /*
762  * Given an address family, dst and src addresses, by also looking at the
763  * options provided at the command line, this function creates a targetaddr
764  * to be linked with others, forming a global targetaddr list. Each targetaddr
765  * item contains information about probes sent to a specific IP address.
766  */
767 static struct targetaddr *
768 create_targetaddr_item(int family, union any_in_addr *dst_addr,
769     union any_in_addr *src_addr)
770 {
771 	struct targetaddr *targetaddr;
772 
773 	targetaddr = (struct targetaddr *)malloc(sizeof (struct targetaddr));
774 	if (targetaddr == NULL) {
775 		Fprintf(stderr, "%s: malloc %s\n", progname, strerror(errno));
776 		exit(EXIT_FAILURE);
777 	}
778 	targetaddr->family = family;
779 	targetaddr->dst_addr = *dst_addr;
780 	targetaddr->src_addr = *src_addr;
781 	if (stats) {
782 		/*
783 		 * npackets is only defined if we are in stats mode.
784 		 * npackets determines how many probes to send to each target
785 		 * IP address. npackets == 0 means send only 1 and move on to
786 		 * next target IP.
787 		 */
788 		if (npackets > 0)
789 			targetaddr->num_probes = npackets;
790 		else
791 			targetaddr->num_probes = 1;
792 	} else {
793 		targetaddr->num_probes = timeout;
794 	}
795 	targetaddr->num_sent = 0;
796 	targetaddr->got_reply = _B_FALSE;
797 	targetaddr->probing_done = _B_FALSE;
798 	targetaddr->starting_seq_num = 0; /* actual value will be set later */
799 	targetaddr->next = NULL;	/* actual value will be set later */
800 
801 	return (targetaddr);
802 }
803 
804 /*
805  * print "unknown host" message
806  */
807 static void
808 print_unknown_host_msg(const char *protocol, const char *hostname)
809 {
810 	Fprintf(stderr, "%s: unknown%s host %s\n", progname, protocol,
811 	    hostname);
812 }
813 
814 /*
815  * Resolve hostnames for the target host and gateways. Also, determine source
816  * addresses to use for each target address.
817  */
818 static void
819 resolve_nodes(struct addrinfo **ai_dstp, struct addrinfo **ai_nexthopp,
820     union any_in_addr **src_addr_listp)
821 {
822 	struct addrinfo *ai_dst = NULL;
823 	struct addrinfo *ai_nexthop = NULL;
824 	struct addrinfo *aip = NULL;
825 	union any_in_addr *src_addr_list = NULL;
826 	int num_resolved_gw = 0;
827 	int num_resolved_gw6 = 0;
828 
829 	get_hostinfo(targethost, family_input, &ai_dst);
830 	if (ai_dst == NULL) {
831 		print_unknown_host_msg("", targethost);
832 		exit(EXIT_FAILURE);
833 	}
834 	if (nexthop != NULL) {
835 		get_hostinfo(nexthop, family_input, &ai_nexthop);
836 		if (ai_nexthop == NULL) {
837 			print_unknown_host_msg("", nexthop);
838 			exit(EXIT_FAILURE);
839 		}
840 	}
841 	/* Get a count of the v4 & v6 addresses */
842 	for (aip = ai_dst; aip != NULL; aip = aip->ai_next) {
843 		switch (aip->ai_family) {
844 		case AF_INET:
845 			num_v4++;
846 			break;
847 		case AF_INET6:
848 			num_v6++;
849 			break;
850 		}
851 	}
852 
853 	if (family_input == AF_UNSPEC && !probe_all) {
854 		family_input = ai_dst->ai_family;
855 	}
856 
857 	/* resolve gateways */
858 	if (num_gw > 0) {
859 		get_gwaddrs(gw_list, family_input, gw_IP_list, gw_IP_list6,
860 		    &num_resolved_gw, &num_resolved_gw6);
861 
862 		/* we couldn't resolve a gateway as an IPv6 host */
863 		if (num_resolved_gw6 != num_gw && num_v6 != 0 &&
864 		    (family_input == AF_INET6 || family_input == AF_UNSPEC)) {
865 			print_unknown_host_msg(" IPv6",
866 			    gw_list[num_resolved_gw6]);
867 			num_v6 = 0;
868 		}
869 
870 		/* we couldn't resolve a gateway as an IPv4 host */
871 		if (num_resolved_gw != num_gw && num_v4 != 0 &&
872 		    (family_input == AF_INET || family_input == AF_UNSPEC)) {
873 			print_unknown_host_msg(" IPv4",
874 			    gw_list[num_resolved_gw]);
875 			num_v4 = 0;
876 		}
877 	}
878 
879 	if (num_v4 == 0 && num_v6 == 0)
880 		exit(EXIT_FAILURE);
881 
882 	select_all_src_addrs(&src_addr_list, ai_dst, gw_IP_list, gw_IP_list6);
883 	*ai_dstp = ai_dst;
884 	*ai_nexthopp = ai_nexthop;
885 	*src_addr_listp = src_addr_list;
886 }
887 
888 /*
889  * Resolve the gateway names, splitting results into v4 and v6 lists.
890  * Gateway addresses are added to the appropriate passed-in array; the
891  * number of resolved gateways for each af is returned in resolved[6].
892  * Assumes that passed-in arrays are large enough for MAX_GWS[6] addrs
893  * and resolved[6] ptrs are non-null; ignores array and counter if the
894  * address family param makes them irrelevant.
895  */
896 static void
897 get_gwaddrs(char **gw_list, int family, union any_in_addr *gwIPlist,
898     union any_in_addr *gwIPlist6, int *resolved, int *resolved6)
899 {
900 	int i;
901 	boolean_t check_v4 = _B_TRUE, check_v6 = _B_TRUE;
902 	struct addrinfo	*ai = NULL;
903 	struct addrinfo	*aip = NULL;
904 
905 	*resolved = *resolved6 = 0;
906 	switch (family) {
907 	case AF_UNSPEC:
908 		break;
909 	case AF_INET:
910 		check_v6 = _B_FALSE;
911 		break;
912 	case AF_INET6:
913 		check_v4 = _B_FALSE;
914 		break;
915 	default:
916 		return;
917 	}
918 
919 	if (check_v4 && num_gw >= MAX_GWS) {
920 		check_v4 = _B_FALSE;
921 		Fprintf(stderr, "%s: too many IPv4 gateways\n", progname);
922 	}
923 	if (check_v6 && num_gw > MAX_GWS6) {
924 		check_v6 = _B_FALSE;
925 		Fprintf(stderr, "%s: too many IPv6 gateways\n", progname);
926 	}
927 
928 	for (i = 0; i < num_gw; i++) {
929 		if (!check_v4 && !check_v6)
930 			return;
931 		get_hostinfo(gw_list[i], family, &ai);
932 		if (ai == NULL)
933 			return;
934 		if (check_v4 && num_v4 != 0) {
935 			for (aip = ai; aip != NULL; aip = aip->ai_next) {
936 				if (aip->ai_family == AF_INET) {
937 					/* LINTED E_BAD_PTR_CAST_ALIGN */
938 					bcopy(&((struct sockaddr_in *)
939 					    aip->ai_addr)->sin_addr,
940 					    &gwIPlist[i].addr,
941 					    aip->ai_addrlen);
942 					(*resolved)++;
943 					break;
944 				}
945 			}
946 		} else if (check_v4) {
947 			check_v4 = _B_FALSE;
948 		}
949 		if (check_v6 && num_v6 != 0) {
950 			for (aip = ai; aip != NULL; aip = aip->ai_next) {
951 				if (aip->ai_family == AF_INET6) {
952 					/* LINTED E_BAD_PTR_CAST_ALIGN */
953 					bcopy(&((struct sockaddr_in6 *)
954 					    aip->ai_addr)->sin6_addr,
955 					    &gwIPlist6[i].addr6,
956 					    aip->ai_addrlen);
957 					(*resolved6)++;
958 					break;
959 				}
960 			}
961 		} else if (check_v6) {
962 			check_v6 = _B_FALSE;
963 		}
964 	}
965 	freeaddrinfo(ai);
966 }
967 
968 /*
969  * Given the list of gateways, extends the list with its mirror image. This is
970  * used when -l/-S is used. The middle gateway will be the target address. We'll
971  * leave it blank for now.
972  */
973 static void
974 mirror_gws(union any_in_addr *gwIPlist, int family)
975 {
976 	int effective_num_gw;
977 	int i;
978 
979 	/* We add 1 because we put the target as the middle gateway */
980 	effective_num_gw = 2 * num_gw + 1;
981 
982 	if ((family == AF_INET && effective_num_gw >= MAX_GWS) ||
983 	    (family == AF_INET6 && effective_num_gw > MAX_GWS6)) {
984 		Fprintf(stderr, "%s: too many %s gateways\n",
985 		    progname, (family == AF_INET) ? "IPv4" : "IPv6");
986 		exit(EXIT_FAILURE);
987 	}
988 
989 	for (i = 0; i < num_gw; i++)
990 		gwIPlist[num_gw + i + 1].addr6 = gwIPlist[num_gw - i - 1].addr6;
991 }
992 
993 /*
994  * Given IP address or hostname, return addrinfo list.
995  * Assumes that addrinfo ** ptr is non-null.
996  */
997 static void
998 get_hostinfo(char *host, int family, struct addrinfo **aipp)
999 {
1000 	struct addrinfo hints, *ai;
1001 	struct in6_addr addr6;
1002 	struct in_addr addr;
1003 	boolean_t broadcast;		/* is this 255.255.255.255? */
1004 	char tmp_buf[INET6_ADDRSTRLEN];
1005 	int rc;
1006 
1007 	/* check if broadcast */
1008 	if (strcmp(host, "255.255.255.255") == 0)
1009 		broadcast = _B_TRUE;
1010 	else
1011 		broadcast = _B_FALSE;
1012 
1013 	/* check if IPv4-mapped address or broadcast */
1014 	if (((inet_pton(AF_INET6, host, &addr6) > 0) &&
1015 	    IN6_IS_ADDR_V4MAPPED(&addr6)) || broadcast) {
1016 		if (!broadcast) {
1017 			/*
1018 			 * Peel off the "mapping" stuff, leaving 32 bit IPv4
1019 			 * address.
1020 			 */
1021 			IN6_V4MAPPED_TO_INADDR(&addr6, &addr);
1022 
1023 			/* convert it back to a string */
1024 			(void) inet_ntop(AF_INET, (void *)&addr, tmp_buf,
1025 			    sizeof (tmp_buf));
1026 			/*
1027 			 * Now the host is an IPv4 address.
1028 			 * Since it previously was a v4 mapped v6 address
1029 			 * we can be sure that the size of buffer 'host'
1030 			 * is large enough to contain the associated v4
1031 			 * address and so we don't need to use a strn/lcpy
1032 			 * here.
1033 			 */
1034 			(void) strcpy(host, tmp_buf);
1035 		}
1036 		/*
1037 		 * If it's a broadcast address, it cannot be an IPv6 address.
1038 		 * Also, if it's a mapped address, we convert it into IPv4
1039 		 * address because ping will send and receive IPv4 packets for
1040 		 * that address. Therefore, it's a failure case to ask
1041 		 * get_hostinfo() to treat a broadcast or a mapped address
1042 		 * as an IPv6 address.
1043 		 */
1044 		if (family == AF_INET6) {
1045 			return;
1046 		}
1047 	}
1048 
1049 	(void) memset(&hints, 0, sizeof (hints));
1050 	hints.ai_family = family;
1051 	hints.ai_flags = AI_ADDRCONFIG;
1052 	rc = getaddrinfo(host, NULL, &hints, &ai);
1053 	if (rc != 0) {
1054 		if (rc != EAI_NONAME)
1055 			Fprintf(stderr, "%s: getaddrinfo: %s\n", progname,
1056 			    gai_strerror(rc));
1057 		return;
1058 	}
1059 	*aipp = ai;
1060 }
1061 
1062 /*
1063  * For each IP address of the target host, determine a source address to use.
1064  */
1065 static void
1066 select_all_src_addrs(union any_in_addr **src_addr_list, struct addrinfo *ai,
1067     union any_in_addr *gwv4, union any_in_addr *gwv6)
1068 {
1069 	union any_in_addr *list;
1070 	struct addrinfo *aip;
1071 	int num_dst = 1;
1072 	int i;
1073 
1074 	if (probe_all) {
1075 		for (aip = ai; aip->ai_next != NULL; aip = aip->ai_next)
1076 			num_dst++;
1077 	}
1078 
1079 	list = calloc((size_t)num_dst, sizeof (union any_in_addr));
1080 	if (list == NULL) {
1081 		Fprintf(stderr, "%s: calloc: %s\n", progname, strerror(errno));
1082 		exit(EXIT_FAILURE);
1083 	}
1084 
1085 	/*
1086 	 * If there's a gateway, a routing header as a consequence, our kernel
1087 	 * picks the source address based on the first hop address, rather than
1088 	 * final destination address.
1089 	 */
1090 	if (num_gw > 0) {
1091 		if (ai->ai_family == AF_INET)
1092 			select_src_addr(gwv4, ai->ai_family, &list[0]);
1093 		else
1094 			select_src_addr(gwv6, ai->ai_family, &list[0]);
1095 		/*
1096 		 * Since the first gateway address is fixed, we'll use the same
1097 		 * src address for every different final destination address
1098 		 * we send to.
1099 		 */
1100 		for (i = 1; i < num_dst; i++)
1101 			list[i] = list[0];
1102 	} else {
1103 		/*
1104 		 * Although something like 'ping -l host' results in a routing
1105 		 * header, the first gateway address is the target host's
1106 		 * address. Therefore, as far as src address selection goes,
1107 		 * the result is same as having no routing header.
1108 		 */
1109 		for (i = 0, aip = ai; i < num_dst && aip != NULL;
1110 		    i++, aip = aip->ai_next) {
1111 			if (aip->ai_family == AF_INET) {
1112 				if (num_v4 != 0) {
1113 					select_src_addr((union any_in_addr *)
1114 					    /* LINTED E_BAD_PTR_CAST_ALIGN */
1115 					    &((struct sockaddr_in *)
1116 					    aip->ai_addr)->sin_addr,
1117 					    aip->ai_family,
1118 					    &list[i]);
1119 				}
1120 			} else {
1121 				if (num_v6 != 0) {
1122 					select_src_addr((union any_in_addr *)
1123 					    /* LINTED E_BAD_PTR_CAST_ALIGN */
1124 					    &((struct sockaddr_in6 *)
1125 					    aip->ai_addr)->sin6_addr,
1126 					    aip->ai_family,
1127 					    &list[i]);
1128 				}
1129 			}
1130 		}
1131 	}
1132 
1133 	*src_addr_list = list;
1134 }
1135 
1136 /*
1137  * For a given destination address, determine a source address to use.
1138  * Returns wildcard address if it cannot determine the source address.
1139  */
1140 static void
1141 select_src_addr(union any_in_addr *dst_addr, int family,
1142     union any_in_addr *src_addr)
1143 {
1144 	struct sockaddr *sock;
1145 	struct sockaddr_in *sin;
1146 	struct sockaddr_in6 *sin6;
1147 	int tmp_fd;
1148 	size_t sock_len;
1149 
1150 	sock = (struct sockaddr *)malloc(sizeof (struct sockaddr_in6));
1151 	if (sock == NULL) {
1152 		Fprintf(stderr, "%s: malloc: %s\n", progname, strerror(errno));
1153 		exit(EXIT_FAILURE);
1154 	}
1155 	(void) bzero(sock, sizeof (struct sockaddr_in6));
1156 
1157 	if (family == AF_INET) {
1158 		/* LINTED E_BAD_PTR_CAST_ALIGN */
1159 		sin = (struct sockaddr_in *)sock;
1160 		sin->sin_family = AF_INET;
1161 		sin->sin_addr = dst_addr->addr;
1162 		sin->sin_port = IPPORT_ECHO;	/* port shouldn't be 0 */
1163 		sock_len = sizeof (struct sockaddr_in);
1164 	} else {
1165 		/* LINTED E_BAD_PTR_CAST_ALIGN */
1166 		sin6 = (struct sockaddr_in6 *)sock;
1167 		sin6->sin6_family = AF_INET6;
1168 		sin6->sin6_addr = dst_addr->addr6;
1169 		sin6->sin6_port = IPPORT_ECHO;	/* port shouldn't be 0 */
1170 		sock_len = sizeof (struct sockaddr_in6);
1171 	}
1172 
1173 	/* open a UDP socket */
1174 	if ((tmp_fd = socket(family, SOCK_DGRAM, 0)) < 0) {
1175 		Fprintf(stderr, "%s: udp socket: %s\n", progname,
1176 		    strerror(errno));
1177 		exit(EXIT_FAILURE);
1178 	}
1179 
1180 	/* connect it */
1181 	if (connect(tmp_fd, sock, sock_len) < 0) {
1182 		/*
1183 		 * If there's no route to the destination, this connect() call
1184 		 * fails. We just return all-zero (wildcard) as the source
1185 		 * address, so that user can get to see "no route to dest"
1186 		 * message, as it'll try to send the probe packet out and will
1187 		 * receive ICMP unreachable.
1188 		 */
1189 		if (family == AF_INET)
1190 			src_addr->addr.s_addr = INADDR_ANY;
1191 		else
1192 			src_addr->addr6 = in6addr_any;
1193 		free(sock);
1194 		return;
1195 	}
1196 
1197 	/* get the local sock info */
1198 	if (getsockname(tmp_fd, sock, &sock_len) < 0) {
1199 		Fprintf(stderr, "%s: getsockname: %s\n", progname,
1200 		    strerror(errno));
1201 		exit(EXIT_FAILURE);
1202 	}
1203 
1204 	if (family == AF_INET) {
1205 		src_addr->addr = sin->sin_addr;
1206 	} else {
1207 		src_addr->addr6 = sin6->sin6_addr;
1208 	}
1209 
1210 	(void) close(tmp_fd);
1211 	free(sock);
1212 }
1213 
1214 /*
1215  * Set the IP_NEXTHOP/IPV6_NEXTHOP socket option.
1216  * exits on failure
1217  */
1218 static void
1219 set_nexthop(int family, struct addrinfo	*ai_nexthop, int sock)
1220 {
1221 	if (family == AF_INET) {
1222 		ipaddr_t nh;
1223 
1224 		/* LINTED E_BAD_PTR_CAST_ALIGN */
1225 		nh = ((struct sockaddr_in *)ai_nexthop->
1226 		    ai_addr)->sin_addr.s_addr;
1227 
1228 		/* now we need the sys_ip_config privilege */
1229 		(void) __priv_bracket(PRIV_ON);
1230 		if (setsockopt(sock, IPPROTO_IP, IP_NEXTHOP,
1231 		    &nh, sizeof (ipaddr_t)) < 0) {
1232 			if (errno == EPERM)
1233 				Fprintf(stderr, "%s: Insufficient privilege "
1234 				    "to specify IPv4 nexthop router.\n",
1235 				    progname);
1236 			else
1237 				Fprintf(stderr, "%s: setsockopt %s\n",
1238 				    progname, strerror(errno));
1239 			exit(EXIT_FAILURE);
1240 		}
1241 		(void) __priv_bracket(PRIV_OFF);
1242 		/* revert to non-privileged user */
1243 	} else {
1244 		struct sockaddr_in6 *nh;
1245 
1246 		/* LINTED E_BAD_PTR_CAST_ALIGN */
1247 		nh = (struct sockaddr_in6 *)ai_nexthop->
1248 		    ai_addr;
1249 
1250 		if (setsockopt(sock, IPPROTO_IPV6, IPV6_NEXTHOP,
1251 		    nh, sizeof (struct sockaddr_in6)) < 0) {
1252 			Fprintf(stderr, "%s: setsockopt %s\n",
1253 			    progname, strerror(errno));
1254 			exit(EXIT_FAILURE);
1255 		}
1256 	}
1257 }
1258 
1259 /*
1260  * Setup the socket for the given address family.
1261  * Returns _B_TRUE on success, _B_FALSE on failure. Failure is the case when no
1262  * interface can be found, or the specified interface (-i) is not found. On
1263  * library call failures, it exit()s.
1264  */
1265 static boolean_t
1266 setup_socket(int family, int *send_sockp, int *recv_sockp, int *if_index,
1267     ushort_t *udp_src_port, struct addrinfo *ai_nexthop)
1268 {
1269 	int send_sock;
1270 	int recv_sock;
1271 	struct sockaddr_in6 sin6;
1272 	struct sockaddr_in sin;
1273 	struct sockaddr *sp;
1274 	struct ipsec_req req;
1275 	size_t slen;
1276 	int on = 1;
1277 	uchar_t char_op;
1278 	int int_op;
1279 
1280 	/* now we need the net_icmpaccess privilege */
1281 	(void) __priv_bracket(PRIV_ON);
1282 
1283 	recv_sock = socket(family, SOCK_RAW,
1284 	    (family == AF_INET) ? IPPROTO_ICMP : IPPROTO_ICMPV6);
1285 
1286 	if (recv_sock < 0) {
1287 		Fprintf(stderr, "%s: socket %s\n", progname, strerror(errno));
1288 		exit(EXIT_FAILURE);
1289 	}
1290 
1291 	/* revert to non-privileged user after opening sockets */
1292 	(void) __priv_bracket(PRIV_OFF);
1293 
1294 	if (bypass) {
1295 		(void) memset(&req, 0, sizeof (req));
1296 		req.ipsr_ah_req = IPSEC_PREF_NEVER;
1297 		req.ipsr_esp_req = IPSEC_PREF_NEVER;
1298 
1299 		if (setsockopt(recv_sock, (family == AF_INET) ? IPPROTO_IP :
1300 		    IPPROTO_IPV6, IP_SEC_OPT, &req, sizeof (req)) < 0) {
1301 			if (errno == EPERM)
1302 				Fprintf(stderr, "%s: Insufficient privilege "
1303 				    "to bypass IPsec policy.\n", progname);
1304 			else
1305 				Fprintf(stderr, "%s: setsockopt %s\n", progname,
1306 				    strerror(errno));
1307 			exit(EXIT_FAILURE);
1308 		}
1309 	}
1310 
1311 	/*
1312 	 * We always receive on raw icmp socket. But the sending socket can be
1313 	 * raw icmp or udp, depending on the use of -U flag.
1314 	 */
1315 	if (use_udp) {
1316 		send_sock = socket(family, SOCK_DGRAM, IPPROTO_UDP);
1317 		if (send_sock < 0) {
1318 			Fprintf(stderr, "%s: socket %s\n", progname,
1319 			    strerror(errno));
1320 			exit(EXIT_FAILURE);
1321 		}
1322 
1323 		if (bypass) {
1324 			if (setsockopt(send_sock, (family == AF_INET) ?
1325 			    IPPROTO_IP : IPPROTO_IPV6, IP_SEC_OPT, &req,
1326 			    sizeof (req)) < 0) {
1327 				if (errno == EPERM)
1328 					Fprintf(stderr, "%s: Insufficient "
1329 					    "privilege to bypass IPsec "
1330 					    "policy.\n", progname);
1331 				else
1332 					Fprintf(stderr, "%s: setsockopt %s\n",
1333 					    progname, strerror(errno));
1334 				exit(EXIT_FAILURE);
1335 			}
1336 		}
1337 
1338 		/*
1339 		 * In order to distinguish replies to our UDP probes from
1340 		 * other pings', we need to know our source port number.
1341 		 */
1342 		if (family == AF_INET) {
1343 			sp = (struct sockaddr *)&sin;
1344 			slen = sizeof (sin);
1345 		} else {
1346 			sp = (struct sockaddr *)&sin6;
1347 			slen = sizeof (sin6);
1348 		}
1349 		bzero(sp, slen);
1350 		sp->sa_family = family;
1351 
1352 		/* Let's bind() send_sock to wildcard address and port */
1353 		if (bind(send_sock, sp, slen) < 0) {
1354 			Fprintf(stderr, "%s: bind %s\n", progname,
1355 			    strerror(errno));
1356 			exit(EXIT_FAILURE);
1357 		}
1358 
1359 		/* .... and see what port kernel picked for us */
1360 		if (getsockname(send_sock, sp, &slen) < 0) {
1361 			Fprintf(stderr, "%s: getsockname %s\n", progname,
1362 			    strerror(errno));
1363 			exit(EXIT_FAILURE);
1364 		}
1365 		*udp_src_port = (family == AF_INET) ? sin.sin_port :
1366 		    sin6.sin6_port;
1367 	} else {
1368 		send_sock = recv_sock;
1369 	}
1370 
1371 	if (nexthop != NULL)
1372 		set_nexthop(family, ai_nexthop, send_sock);
1373 
1374 	int_op = 48 * 1024;
1375 	if (int_op < datalen)
1376 		int_op = datalen;
1377 	if (setsockopt(recv_sock, SOL_SOCKET, SO_RCVBUF, (char *)&int_op,
1378 	    sizeof (int_op)) == -1) {
1379 		Fprintf(stderr, "%s: setsockopt SO_RCVBUF %s\n", progname,
1380 		    strerror(errno));
1381 		exit(EXIT_FAILURE);
1382 	}
1383 
1384 	if (setsockopt(send_sock, SOL_SOCKET, SO_SNDBUF, (char *)&int_op,
1385 	    sizeof (int_op)) == -1) {
1386 		Fprintf(stderr, "%s: setsockopt SO_SNDBUF %s\n", progname,
1387 		    strerror(errno));
1388 		exit(EXIT_FAILURE);
1389 	}
1390 
1391 	if (options & SO_DEBUG) {
1392 		if (setsockopt(send_sock, SOL_SOCKET, SO_DEBUG, (char *)&on,
1393 		    sizeof (on)) == -1) {
1394 			Fprintf(stderr, "%s: setsockopt SO_DEBUG %s\n",
1395 			    progname, strerror(errno));
1396 			exit(EXIT_FAILURE);
1397 		}
1398 	}
1399 
1400 	if (options & SO_DONTROUTE) {
1401 		if (setsockopt(send_sock, SOL_SOCKET, SO_DONTROUTE, (char *)&on,
1402 		    sizeof (on)) == -1) {
1403 			Fprintf(stderr, "%s: setsockopt SO_DONTROUTE %s\n",
1404 			    progname, strerror(errno));
1405 			exit(EXIT_FAILURE);
1406 		}
1407 	}
1408 
1409 	if (moptions & MULTICAST_NOLOOP) {
1410 		if (family == AF_INET) {
1411 			char_op = 0;	/* used to turn off option */
1412 
1413 			if (setsockopt(send_sock, IPPROTO_IP, IP_MULTICAST_LOOP,
1414 			    (char *)&char_op, sizeof (char_op)) == -1) {
1415 				Fprintf(stderr, "%s: setsockopt "
1416 				    "IP_MULTICAST_NOLOOP %s\n", progname,
1417 				    strerror(errno));
1418 				exit(EXIT_FAILURE);
1419 			}
1420 		} else {
1421 			int_op = 0;	/* used to turn off option */
1422 
1423 			if (setsockopt(send_sock, IPPROTO_IPV6,
1424 			    IPV6_MULTICAST_LOOP, (char *)&int_op,
1425 			    sizeof (int_op)) == -1) {
1426 				Fprintf(stderr, "%s: setsockopt "
1427 				    "IPV6_MULTICAST_NOLOOP %s\n", progname,
1428 				    strerror(errno));
1429 				exit(EXIT_FAILURE);
1430 			}
1431 		}
1432 	}
1433 
1434 	if (moptions & MULTICAST_TTL) {
1435 		char_op = hoplimit;
1436 
1437 		/* Applies to unicast and multicast. */
1438 		if (family == AF_INET) {
1439 			if (setsockopt(send_sock, IPPROTO_IP, IP_MULTICAST_TTL,
1440 			    (char *)&char_op, sizeof (char)) == -1) {
1441 				Fprintf(stderr, "%s: setsockopt "
1442 				    "IP_MULTICAST_TTL %s\n", progname,
1443 				    strerror(errno));
1444 				exit(EXIT_FAILURE);
1445 			}
1446 			if (setsockopt(send_sock, IPPROTO_IP, IP_TTL,
1447 			    (char *)&hoplimit, sizeof (hoplimit)) == -1) {
1448 				Fprintf(stderr, "%s: setsockopt IP_TTL %s\n",
1449 				    progname, strerror(errno));
1450 				exit(EXIT_FAILURE);
1451 			}
1452 		}
1453 		/*
1454 		 * AF_INET6 case is handled in set_ancillary_data() function.
1455 		 * This is because when ancillary data is used (for routing
1456 		 * header and outgoing interface index), the hoplimit set using
1457 		 * setsockopt() is ignored.
1458 		 */
1459 	}
1460 
1461 	/*
1462 	 * did the user specify an interface?
1463 	 * Applies to unicast, broadcast and multicast.
1464 	 */
1465 	if (moptions & MULTICAST_IF) {
1466 		struct ifaddrlist *al = NULL;		/* interface list */
1467 		struct ifaddrlist *my_if;
1468 		char errbuf[ERRBUFSIZE];
1469 		int num_ifs;
1470 		int num_src_ifs;		/* exclude down and loopback */
1471 		int i;
1472 
1473 		/* pull out the interface list */
1474 		num_ifs = ifaddrlist(&al, family, LIFC_UNDER_IPMP, errbuf);
1475 		if (num_ifs == -1) {
1476 			Fprintf(stderr, "%s: %s\n", progname, errbuf);
1477 			exit(EXIT_FAILURE);
1478 		}
1479 
1480 		/* filter out down and loopback interfaces */
1481 		num_src_ifs = 0;
1482 		for (i = 0; i < num_ifs; i++) {
1483 			if (!(al[i].flags & IFF_LOOPBACK) &&
1484 			    (al[i].flags & IFF_UP))
1485 				num_src_ifs++;
1486 		}
1487 
1488 		if (num_src_ifs == 0) {
1489 			Fprintf(stderr, "%s: can't find any %s interface\n",
1490 			    progname, (family == AF_INET) ? "IPv4" : "IPv6");
1491 
1492 			return (_B_FALSE);	/* failure */
1493 		}
1494 
1495 		/* locate the specified interface */
1496 		my_if = find_if(al, num_ifs);
1497 		if (my_if == NULL) {
1498 			Fprintf(stderr, "%s: %s is an invalid %s interface\n",
1499 			    progname, out_if.str,
1500 			    (family == AF_INET) ? "IPv4" : "IPv6");
1501 
1502 			return (_B_FALSE);
1503 		}
1504 
1505 		if (family == AF_INET) {
1506 			struct in_pktinfo pktinfo;
1507 
1508 			if (setsockopt(send_sock, IPPROTO_IP, IP_MULTICAST_IF,
1509 			    (char *)&my_if->addr.addr,
1510 			    sizeof (struct in_addr)) == -1) {
1511 				Fprintf(stderr, "%s: setsockopt "
1512 				    "IP_MULTICAST_IF %s\n", progname,
1513 				    strerror(errno));
1514 				exit(EXIT_FAILURE);
1515 			}
1516 			bzero(&pktinfo, sizeof (pktinfo));
1517 			pktinfo.ipi_ifindex = my_if->index;
1518 			if (setsockopt(send_sock, IPPROTO_IP, IP_PKTINFO,
1519 			    (char *)&pktinfo, sizeof (pktinfo)) == -1) {
1520 				Fprintf(stderr, "%s: setsockopt "
1521 				    "IP_PKTINFO %s\n", progname,
1522 				    strerror(errno));
1523 				exit(EXIT_FAILURE);
1524 			}
1525 		} else {
1526 			/*
1527 			 * the outgoing interface is set in set_ancillary_data()
1528 			 * function
1529 			 */
1530 			*if_index = my_if->index;
1531 		}
1532 
1533 		free(al);
1534 	}
1535 
1536 	if (settos && family == AF_INET) {
1537 		int_op = tos;
1538 		if (setsockopt(send_sock, IPPROTO_IP, IP_TOS, (char *)&int_op,
1539 		    sizeof (int_op)) == -1) {
1540 			Fprintf(stderr, "%s: setsockopt IP_TOS %s\n",
1541 			    progname, strerror(errno));
1542 			exit(EXIT_FAILURE);
1543 		}
1544 	}
1545 
1546 	/* We enable or disable to not depend on the kernel default */
1547 	if (family == AF_INET) {
1548 		if (setsockopt(send_sock, IPPROTO_IP, IP_DONTFRAG,
1549 		    (char *)&dontfrag, sizeof (dontfrag)) == -1) {
1550 			Fprintf(stderr, "%s: setsockopt IP_DONTFRAG %s\n",
1551 			    progname, strerror(errno));
1552 			exit(EXIT_FAILURE);
1553 		}
1554 	} else {
1555 		if (setsockopt(send_sock, IPPROTO_IPV6, IPV6_DONTFRAG,
1556 		    (char *)&dontfrag, sizeof (dontfrag)) == -1) {
1557 			Fprintf(stderr, "%s: setsockopt IPV6_DONTFRAG %s\n",
1558 			    progname, strerror(errno));
1559 			exit(EXIT_FAILURE);
1560 		}
1561 	}
1562 
1563 	/* receiving IPv6 extension headers in verbose mode */
1564 	if (verbose && family == AF_INET6) {
1565 		if (setsockopt(recv_sock, IPPROTO_IPV6, IPV6_RECVHOPOPTS,
1566 		    (char *)&on, sizeof (on)) == -1) {
1567 			Fprintf(stderr, "%s: setsockopt IPV6_RECVHOPOPTS %s\n",
1568 			    progname, strerror(errno));
1569 			exit(EXIT_FAILURE);
1570 		}
1571 
1572 		if (setsockopt(recv_sock, IPPROTO_IPV6, IPV6_RECVDSTOPTS,
1573 		    (char *)&on, sizeof (on)) == -1) {
1574 			Fprintf(stderr, "%s: setsockopt IPV6_RECVDSTOPTS %s\n",
1575 			    progname, strerror(errno));
1576 			exit(EXIT_FAILURE);
1577 		}
1578 
1579 		if (setsockopt(recv_sock, IPPROTO_IPV6, IPV6_RECVRTHDR,
1580 		    (char *)&on, sizeof (on)) == -1) {
1581 			Fprintf(stderr, "%s: setsockopt IPV6_RECVRTHDR %s\n",
1582 			    progname, strerror(errno));
1583 			exit(EXIT_FAILURE);
1584 		}
1585 	}
1586 
1587 	*send_sockp = send_sock;
1588 	*recv_sockp = recv_sock;
1589 
1590 	/* successful */
1591 	return (_B_TRUE);
1592 }
1593 
1594 /*
1595  * Pull out the record containing all the info about the interface specified by
1596  * `out_if'. Skips interfaces which are down or loopback.
1597  */
1598 static struct ifaddrlist *
1599 find_if(struct ifaddrlist *al, int num_ifs)
1600 {
1601 	static struct ifaddrlist tmp_if;
1602 	boolean_t found;
1603 	int i;
1604 
1605 	i = 0;
1606 	found = _B_FALSE;
1607 
1608 	while (i < num_ifs && !found) {
1609 		tmp_if = al[i];
1610 
1611 		/* skip down or loopback interfaces */
1612 		if ((tmp_if.flags & IFF_LOOPBACK) || !(tmp_if.flags & IFF_UP)) {
1613 			i++;
1614 			continue;
1615 		}
1616 
1617 		/* the type of interface id is variable */
1618 		switch (out_if.id_type) {
1619 		case IF_INDEX:
1620 			if (out_if.id.index == tmp_if.index)
1621 				found = _B_TRUE;
1622 			break;
1623 
1624 		case IF_NAME:
1625 			if (strcmp(out_if.id.name, tmp_if.device) == 0)
1626 				found = _B_TRUE;
1627 			break;
1628 
1629 		case IF_ADDR:
1630 			if (out_if.id.addr.addr.s_addr ==
1631 			    tmp_if.addr.addr.s_addr) {
1632 				found = _B_TRUE;
1633 			}
1634 			break;
1635 
1636 		case IF_ADDR6:
1637 			if (IN6_ARE_ADDR_EQUAL(&out_if.id.addr.addr6,
1638 			    &tmp_if.addr.addr6)) {
1639 				found = _B_TRUE;
1640 			}
1641 			break;
1642 
1643 		default:
1644 			break;
1645 		}
1646 
1647 		i++;
1648 	}
1649 
1650 	if (found)
1651 		return (&tmp_if);
1652 	else
1653 		return (NULL);
1654 }
1655 
1656 /*
1657  * Invoked by SIGALRM, sigalrm_handler() is, responsible for calling
1658  * send_scheduled_probe() to send next probe.
1659  */
1660 void
1661 sigalrm_handler(void)
1662 {
1663 	/*
1664 	 * Guard againist denial-of-service attacks. Make sure ping doesn't
1665 	 * send probes for every SIGALRM it receives. Evil hacker can generate
1666 	 * SIGALRMs as fast as it can, but ping will ignore those which are
1667 	 * received too soon (earlier than 0.5 sec) after it sent the last
1668 	 * probe.  We use gethrtime() instead of gettimeofday() because
1669 	 * the latter is not linear and is prone to resetting or drifting
1670 	 */
1671 	if ((gethrtime() - t_last_probe_sent) < 500000000) {
1672 		return;
1673 	}
1674 	send_scheduled_probe();
1675 	schedule_sigalrm();
1676 }
1677 
1678 /*
1679  * Schedule next SIGALRM.
1680  */
1681 void
1682 schedule_sigalrm(void)
1683 {
1684 	int waittime;
1685 
1686 	if (npackets == 0 ||
1687 	    current_targetaddr->num_sent < current_targetaddr->num_probes) {
1688 		(void) alarm(interval);
1689 	} else {
1690 		if (current_targetaddr->got_reply) {
1691 			waittime = 2 * tmax / MICROSEC;
1692 			if (waittime == 0)
1693 				waittime = 1;
1694 		} else {
1695 			waittime = MAX_WAIT;
1696 		}
1697 		(void) alarm(waittime);
1698 	}
1699 }
1700 
1701 /*
1702  * Called by sigalrm_handler(), check_reply() or check_reply6(),
1703  * send_scheduled_probe() looks at the current_targetaddr and determines what
1704  * should be sent next and calls pinger().
1705  */
1706 void
1707 send_scheduled_probe()
1708 {
1709 	static struct msghdr msg6;
1710 	static boolean_t first_probe = _B_TRUE;
1711 	char tmp_buf[INET6_ADDRSTRLEN];
1712 
1713 	/*
1714 	 * We are about to move to next targetaddr if it's either we sent
1715 	 * all the probes, or somebody set the probing_done flag to
1716 	 * _B_TRUE prompting us to move on.
1717 	 */
1718 	if (current_targetaddr->num_sent == current_targetaddr->num_probes ||
1719 	    current_targetaddr->probing_done) {
1720 		/*
1721 		 * is this a dead target?
1722 		 */
1723 		if (!stats && !current_targetaddr->got_reply) {
1724 			if (!probe_all) {
1725 				Printf("no answer from %s\n", targethost);
1726 			} else {
1727 				Printf("no answer from %s(%s)\n", targethost,
1728 				    inet_ntop(current_targetaddr->family,
1729 				    &current_targetaddr->dst_addr,
1730 				    tmp_buf, sizeof (tmp_buf)));
1731 			}
1732 		}
1733 		/*
1734 		 * Before we move onto next item, let's do some clean up.
1735 		 */
1736 		current_targetaddr->got_reply = _B_FALSE;
1737 		current_targetaddr->probing_done = _B_FALSE;
1738 		/*
1739 		 * If this is probe-all without stats mode, then we need to
1740 		 * preserve this count. This is needed when we try to map an
1741 		 * icmp_seq to IP address. Otherwise, clear it.
1742 		 */
1743 		if (stats || !probe_all)
1744 			current_targetaddr->num_sent = 0;
1745 		nreceived_last_target = 0;
1746 
1747 		current_targetaddr = current_targetaddr->next;
1748 
1749 		/*
1750 		 * Did we reach the end of road?
1751 		 */
1752 		if (current_targetaddr == NULL) {
1753 			(void) alarm(0);	/* cancel alarm */
1754 			if (stats)
1755 				finish();
1756 			if (is_alive)
1757 				exit(EXIT_SUCCESS);
1758 			else
1759 				exit(EXIT_FAILURE);
1760 		} else {
1761 			/*
1762 			 * We use starting_seq_num for authenticating replies.
1763 			 * Each time we move to a new targetaddr, which has
1764 			 * a different target IP address, we update this field.
1765 			 */
1766 			current_targetaddr->starting_seq_num = use_udp ?
1767 			    dest_port : (ntransmitted % (MAX_ICMP_SEQ + 1));
1768 		}
1769 	}
1770 
1771 	if (current_targetaddr->family == AF_INET6) {
1772 		if (send_reply) {
1773 			/* sending back to ourself */
1774 			to6.sin6_addr = current_targetaddr->src_addr.addr6;
1775 		} else {
1776 			to6.sin6_addr = current_targetaddr->dst_addr.addr6;
1777 		}
1778 		/*
1779 		 * Setting the ancillary data once is enough, if we are
1780 		 * not using source routing through target (-l/-S). In
1781 		 * case -l/-S used, the middle gateway will be the
1782 		 * IP address of the source, which can be different
1783 		 * for each target IP.
1784 		 */
1785 		if (first_probe ||
1786 		    (send_reply && current_targetaddr->num_sent == 0)) {
1787 			if (send_reply) {
1788 				/* target is the middle gateway now */
1789 				gw_IP_list6[num_gw].addr6 =
1790 				    current_targetaddr->dst_addr.addr6;
1791 			}
1792 			set_ancillary_data(&msg6, hoplimit, gw_IP_list6,
1793 			    eff_num_gw, if_index);
1794 			first_probe = _B_FALSE;
1795 		}
1796 		pinger(send_sock6, (struct sockaddr *)&to6, &msg6, AF_INET6);
1797 	} else {
1798 		to.sin_addr = current_targetaddr->dst_addr.addr;
1799 		/*
1800 		 * Set IPv4 options when sending the first probe to a target
1801 		 * IP address. Some options change when the target address
1802 		 * changes.
1803 		 */
1804 		if (current_targetaddr->num_sent == 0) {
1805 			if (eff_num_gw > 0) {
1806 				gw_IP_list[num_gw].addr =
1807 				    current_targetaddr->dst_addr.addr;
1808 				/*
1809 				 * If send_reply, the target becomes the
1810 				 * middle gateway, sender becomes the last
1811 				 * gateway.
1812 				 */
1813 				if (send_reply) {
1814 					gw_IP_list[eff_num_gw].addr =
1815 					    current_targetaddr->src_addr.addr;
1816 				}
1817 			}
1818 			/*
1819 			 * In IPv4, if source routing is used, the target
1820 			 * address shows up as the last gateway, hence +1.
1821 			 */
1822 			set_IPv4_options(send_sock, gw_IP_list,
1823 			    (eff_num_gw > 0) ? eff_num_gw + 1 : 0,
1824 			    &current_targetaddr->src_addr.addr, &to.sin_addr);
1825 		}
1826 		pinger(send_sock, (struct sockaddr *)&to, NULL, AF_INET);
1827 	}
1828 
1829 	current_targetaddr->num_sent++;
1830 }
1831 
1832 /*
1833  * recv_icmp_packet()'s job is to listen to icmp packets and filter out
1834  * those ping is interested in.
1835  */
1836 static void
1837 recv_icmp_packet(struct addrinfo *ai_dst, int recv_sock6, int recv_sock,
1838 ushort_t udp_src_port6, ushort_t udp_src_port)
1839 {
1840 	struct msghdr in_msg;
1841 	struct iovec iov;
1842 	struct sockaddr_in6 from6;
1843 	fd_set fds;
1844 	int result;
1845 	int cc;
1846 	boolean_t always_true = _B_TRUE; /* lint doesn't like while(_B_TRUE) */
1847 
1848 	while (always_true) {
1849 		(void) FD_ZERO(&fds);
1850 		if (recv_sock6 != -1)
1851 			FD_SET(recv_sock6, &fds);
1852 		if (recv_sock != -1)
1853 			FD_SET(recv_sock, &fds);
1854 
1855 		result = select(MAX(recv_sock6, recv_sock) + 1, &fds,
1856 		    (fd_set *)NULL, (fd_set *)NULL, (struct timeval *)NULL);
1857 		if (result == -1) {
1858 			if (errno == EINTR) {
1859 				continue;
1860 			} else {
1861 				Fprintf(stderr, "%s: select %s\n", progname,
1862 				    strerror(errno));
1863 				exit(EXIT_FAILURE);
1864 			}
1865 		} else if (result > 0) {
1866 			in_msg.msg_name = &from6;
1867 			in_msg.msg_namelen = sizeof (from6);
1868 			iov.iov_base = in_pkt;
1869 			iov.iov_len = sizeof (in_pkt);
1870 			in_msg.msg_iov = &iov;
1871 			in_msg.msg_iovlen = 1;
1872 			in_msg.msg_control = ancillary_data;
1873 			in_msg.msg_controllen = sizeof (ancillary_data);
1874 
1875 			/* Do we have an ICMP6 packet waiting? */
1876 			if ((recv_sock6 != -1) &&
1877 			    (FD_ISSET(recv_sock6, &fds))) {
1878 				cc = recvmsg(recv_sock6, &in_msg, 0);
1879 				if (cc < 0) {
1880 					if (errno != EINTR) {
1881 						Fprintf(stderr,
1882 						    "%s: recvmsg %s\n",
1883 						    progname, strerror(errno));
1884 					}
1885 					continue;
1886 				} else if (cc > 0) {
1887 					check_reply6(ai_dst, &in_msg, cc,
1888 					    udp_src_port6);
1889 				}
1890 			}
1891 			/* Do we have an ICMP packet waiting? */
1892 			if ((recv_sock != -1) && (FD_ISSET(recv_sock, &fds))) {
1893 				cc = recvmsg(recv_sock, &in_msg, 0);
1894 				if (cc < 0) {
1895 					if (errno != EINTR) {
1896 						Fprintf(stderr,
1897 						    "%s: recvmsg %s\n",
1898 						    progname, strerror(errno));
1899 					}
1900 					continue;
1901 				} if (cc > 0) {
1902 					check_reply(ai_dst, &in_msg, cc,
1903 					    udp_src_port);
1904 				}
1905 			}
1906 		}
1907 		/*
1908 		 * If we were probing last IP address of the target host and
1909 		 * received a reply for each probe sent to this address,
1910 		 * then we are done!
1911 		 */
1912 		if ((npackets > 0) && (current_targetaddr->next == NULL) &&
1913 		    (nreceived_last_target == npackets)) {
1914 			(void) alarm(0);	/* cancel alarm */
1915 			finish();
1916 		}
1917 	} /* infinite loop */
1918 }
1919 
1920 /*
1921  * Given a host (with possibly multiple IP addresses) and an IP address, this
1922  * function determines if this IP address is one of the host's addresses to
1923  * which we're sending probes. Used to determine if we are interested in a
1924  * packet.
1925  */
1926 boolean_t
1927 is_a_target(struct addrinfo *ai, union any_in_addr *addr)
1928 {
1929 	int num_addrs;
1930 	int i;
1931 	struct addrinfo *aip;
1932 
1933 	aip = ai;
1934 	if (probe_all)
1935 		num_addrs = num_v4 + num_v6;
1936 	else
1937 		num_addrs = 1;
1938 	for (i = 0; i < num_addrs && aip != NULL; i++) {
1939 		if (aip->ai_family == AF_INET6) {
1940 			/* LINTED E_BAD_PTR_CAST_ALIGN */
1941 			if (IN6_ARE_ADDR_EQUAL(&((struct sockaddr_in6 *)
1942 			    aip->ai_addr)->sin6_addr, &addr->addr6))
1943 				return (_B_TRUE);
1944 		} else {
1945 			/* LINTED E_BAD_PTR_CAST_ALIGN */
1946 			if (((struct sockaddr_in *)
1947 			    aip->ai_addr)->sin_addr.s_addr == addr->addr.s_addr)
1948 				return (_B_TRUE);
1949 		}
1950 	}
1951 
1952 	return (_B_FALSE);
1953 }
1954 
1955 /*
1956  * Compose and transmit an ICMP ECHO REQUEST packet.  The IP packet
1957  * will be added on by the kernel.  The ID field is our UNIX process ID,
1958  * and the sequence number is an ascending integer.  The first 8 bytes
1959  * of the data portion are used to hold a UNIX "timeval" struct in network
1960  * byte-order, to compute the round-trip time.
1961  */
1962 static void
1963 pinger(int send_sock, struct sockaddr *whereto, struct msghdr *msg6,
1964     int family)
1965 {
1966 	static uint64_t out_pkt_buf[(IP_MAXPACKET + 1) / 8];
1967 	uchar_t *out_pkt = (uchar_t *)&out_pkt_buf;
1968 	/* LINTED E_BAD_PTR_CAST_ALIGN */
1969 	struct icmp *icp = (struct icmp *)out_pkt;
1970 	/* LINTED E_BAD_PTR_CAST_ALIGN */
1971 	struct sockaddr_in6 *to6 = (struct sockaddr_in6 *)whereto;
1972 	/* LINTED E_BAD_PTR_CAST_ALIGN */
1973 	struct sockaddr_in *to = (struct sockaddr_in *)whereto;
1974 	struct timeval *tp;
1975 	struct timeval t_snd;
1976 	uchar_t *datap;
1977 	struct iovec iov;
1978 	int start = 0;
1979 	int cc;
1980 	int i;
1981 
1982 	/* using UDP? */
1983 	if (use_udp) {
1984 		cc = datalen;
1985 
1986 		/* LINTED E_BAD_PTR_CAST_ALIGN */
1987 		tp = (struct timeval *)out_pkt;
1988 		datap = &out_pkt[sizeof (struct timeval)];
1989 
1990 		/*
1991 		 * This sets the port whether we are handling a v4 or v6
1992 		 * sockaddr structure.
1993 		 */
1994 		to->sin_port = htons(dest_port);
1995 
1996 		dest_port = (dest_port + 1) % (MAX_PORT + 1);
1997 		ntransmitted++;
1998 	} else {	/* using ICMP */
1999 		cc = datalen + ICMP_MINLEN;
2000 
2001 		if (family == AF_INET6) {
2002 			icp->icmp_type = send_reply ?
2003 			    ICMP6_ECHO_REPLY : ICMP6_ECHO_REQUEST;
2004 		} else if (use_icmp_ts) {	/* family is AF_INET */
2005 			icp->icmp_type = send_reply ?
2006 			    ICMP_TSTAMPREPLY : ICMP_TSTAMP;
2007 		} else {
2008 			icp->icmp_type = send_reply ?
2009 			    ICMP_ECHOREPLY : ICMP_ECHO;
2010 		}
2011 
2012 		icp->icmp_code = 0;
2013 		icp->icmp_cksum = 0;
2014 		icp->icmp_seq = htons(ntransmitted++ % (MAX_ICMP_SEQ + 1));
2015 		if (icp->icmp_seq == 0)
2016 			num_wraps++;
2017 		icp->icmp_id = htons(ident);		/* ID */
2018 
2019 		/* LINTED E_BAD_PTR_CAST_ALIGN */
2020 		tp = (struct timeval *)&out_pkt[ICMP_MINLEN];
2021 		datap = &out_pkt[ICMP_MINLEN + sizeof (struct timeval)];
2022 	}
2023 
2024 	start = sizeof (struct timeval);	/* skip for time */
2025 
2026 	(void) gettimeofday(&t_snd, (struct timezone *)NULL);
2027 
2028 	/* if packet is big enough to store timeval OR ... */
2029 	if ((datalen >= sizeof (struct timeval)) ||
2030 	    (family == AF_INET && use_icmp_ts))
2031 		*tp = t_snd;
2032 
2033 	if (family == AF_INET && use_icmp_ts) {
2034 		start = sizeof (struct id_ts);	/* skip for ICMP timestamps */
2035 		/* Number of milliseconds since midnight */
2036 		icp->icmp_otime = htonl((tp->tv_sec % (24*60*60)) * 1000 +
2037 		    tp->tv_usec / 1000);
2038 	}
2039 
2040 	for (i = start; i < datalen; i++)
2041 		*datap++ = i;
2042 
2043 	if (family == AF_INET) {
2044 		if (!use_udp)
2045 			icp->icmp_cksum = in_cksum((ushort_t *)icp, cc);
2046 
2047 		i = sendto(send_sock, (char *)out_pkt, cc, 0, whereto,
2048 		    sizeof (struct sockaddr_in));
2049 	} else {
2050 		/*
2051 		 * Fill in the rest of the msghdr structure. msg_control is set
2052 		 * in set_ancillary_data().
2053 		 */
2054 		msg6->msg_name = to6;
2055 		msg6->msg_namelen = sizeof (struct sockaddr_in6);
2056 
2057 		iov.iov_base = out_pkt;
2058 		iov.iov_len = cc;
2059 
2060 		msg6->msg_iov = &iov;
2061 		msg6->msg_iovlen = 1;
2062 
2063 		i = sendmsg(send_sock, msg6, 0);
2064 	}
2065 
2066 	/* This is a more precise time (right after we send the packet) */
2067 	t_last_probe_sent = gethrtime();
2068 
2069 	if (i < 0 || i != cc)  {
2070 		if (i < 0) {
2071 			Fprintf(stderr, "%s: sendto %s\n", progname,
2072 			    strerror(errno));
2073 			if (!stats)
2074 				exit(EXIT_FAILURE);
2075 		}
2076 		Printf("ping: wrote %s %d chars, ret=%d\n",
2077 		    targethost, cc, i);
2078 		(void) fflush(stdout);
2079 	}
2080 }
2081 
2082 /*
2083  * Return a hostname for the given IP address.
2084  */
2085 char *
2086 pr_name(char *addr, int family)
2087 {
2088 	struct sockaddr_in sin;
2089 	struct sockaddr_in6 sin6;
2090 	struct sockaddr *sa;
2091 	static struct in6_addr prev_addr = IN6ADDR_ANY_INIT;
2092 	char *cp;
2093 	char abuf[INET6_ADDRSTRLEN];
2094 	static char buf[NI_MAXHOST + INET6_ADDRSTRLEN + 3];
2095 	uint_t slen, alen, hlen;
2096 
2097 	switch (family) {
2098 	case AF_INET:
2099 		(void) memset(&sin, 0, sizeof (sin));
2100 		slen = sizeof (struct sockaddr_in);
2101 		alen = sizeof (struct in_addr);
2102 		/* LINTED E_BAD_PTR_CAST_ALIGN */
2103 		sin.sin_addr = *(struct in_addr *)addr;
2104 		sin.sin_port = 0;
2105 		sa = (struct sockaddr *)&sin;
2106 		break;
2107 	case AF_INET6:
2108 		(void) memset(&sin6, 0, sizeof (sin6));
2109 		slen = sizeof (struct sockaddr_in6);
2110 		alen = sizeof (struct in6_addr);
2111 		/* LINTED E_BAD_PTR_CAST_ALIGN */
2112 		sin6.sin6_addr = *(struct in6_addr *)addr;
2113 		sin6.sin6_port = 0;
2114 		sa = (struct sockaddr *)&sin6;
2115 		break;
2116 	default:
2117 		(void) snprintf(buf, sizeof (buf), "<invalid address family>");
2118 		return (buf);
2119 	}
2120 	sa->sa_family = family;
2121 
2122 	/* compare with the buffered (previous) lookup */
2123 	if (memcmp(addr, &prev_addr, alen) != 0) {
2124 		int flags = (nflag) ? NI_NUMERICHOST : NI_NAMEREQD;
2125 		if (getnameinfo(sa, slen, buf, sizeof (buf),
2126 		    NULL, 0, flags) != 0) {
2127 			/* getnameinfo() failed; return just the address */
2128 			if (inet_ntop(family, (const void*)addr,
2129 			    buf, sizeof (buf)) == NULL)
2130 				buf[0] = 0;
2131 		} else if (!nflag) {
2132 			/* append numeric address to hostname string */
2133 			hlen = strlen(buf);
2134 			cp = (char *)(buf + hlen);
2135 			(void) snprintf(cp, sizeof (buf) - hlen, " (%s)",
2136 			    inet_ntop(family, (const void *)addr, abuf,
2137 			    sizeof (abuf)));
2138 		}
2139 
2140 		/* LINTED E_BAD_PTR_CAST_ALIGN */
2141 		prev_addr = *(struct in6_addr *)addr;
2142 	}
2143 	return (buf);
2144 }
2145 
2146 /*
2147  * Return the protocol string, given its protocol number.
2148  */
2149 char *
2150 pr_protocol(int prot)
2151 {
2152 	static char buf[20];
2153 
2154 	switch (prot) {
2155 	case IPPROTO_ICMPV6:
2156 		(void) strlcpy(buf, "icmp6", sizeof (buf));
2157 		break;
2158 
2159 	case IPPROTO_ICMP:
2160 		(void) strlcpy(buf, "icmp", sizeof (buf));
2161 		break;
2162 
2163 	case IPPROTO_TCP:
2164 		(void) strlcpy(buf, "tcp", sizeof (buf));
2165 		break;
2166 
2167 	case IPPROTO_UDP:
2168 		(void) strlcpy(buf, "udp", sizeof (buf));
2169 		break;
2170 
2171 	default:
2172 		(void) snprintf(buf, sizeof (buf), "prot %d", prot);
2173 		break;
2174 	}
2175 
2176 	return (buf);
2177 }
2178 
2179 /*
2180  * Checks if value is between seq_begin and seq_begin+seq_len. Note that
2181  * sequence numbers wrap around after MAX_ICMP_SEQ (== MAX_PORT).
2182  */
2183 boolean_t
2184 seq_match(ushort_t seq_begin, int seq_len, ushort_t value)
2185 {
2186 	/*
2187 	 * If seq_len is too big, like some value greater than MAX_ICMP_SEQ/2,
2188 	 * truncate it down to MAX_ICMP_SEQ/2. We are not going to accept any
2189 	 * reply which come 83hr later!
2190 	 */
2191 	if (seq_len > MAX_ICMP_SEQ / 2) {
2192 		seq_begin = (seq_begin + seq_len - MAX_ICMP_SEQ / 2) %
2193 		    (MAX_ICMP_SEQ + 1);
2194 		seq_len = MAX_ICMP_SEQ / 2;
2195 	}
2196 
2197 	if (PINGSEQ_LEQ(seq_begin, value) &&
2198 	    PINGSEQ_LEQ(value, (seq_begin + seq_len - 1) % (MAX_ICMP_SEQ + 1)))
2199 		return (_B_TRUE);
2200 	else
2201 		return (_B_FALSE);
2202 }
2203 
2204 /*
2205  * For a given icmp_seq, find which destination address we must have sent this
2206  * to.
2207  */
2208 void
2209 find_dstaddr(ushort_t icmpseq, union any_in_addr *ipaddr)
2210 {
2211 	struct targetaddr *target = targetaddr_list;
2212 	int real_seq;
2213 	int targetaddr_index;
2214 	int real_npackets;
2215 	int i;
2216 
2217 	ipaddr->addr6 = in6addr_any;
2218 
2219 	/*
2220 	 * If this is probe_all and not stats, then the number of probes sent to
2221 	 * each IP address may be different (remember, we stop sending to one IP
2222 	 * address as soon as it replies). They are stored in target->num_sent
2223 	 * field. Since we don't wrap around the list (!stats), they are also
2224 	 * preserved.
2225 	 */
2226 	if (probe_all && !stats) {
2227 		do {
2228 			if (seq_match(target->starting_seq_num,
2229 			    target->num_sent, icmpseq)) {
2230 				ipaddr->addr6 = target->dst_addr.addr6;
2231 				/*
2232 				 * We are not immediately return()ing here.
2233 				 * Because of wrapping, we might find another
2234 				 * match later, which is more likely to be the
2235 				 * real one.
2236 				 */
2237 			}
2238 			target = target->next;
2239 		} while (target != NULL);
2240 	} else {
2241 		/*
2242 		 * Find the absolute (non-wrapped) seq number within the last
2243 		 * 64K
2244 		 */
2245 		if (icmpseq < (ntransmitted % (MAX_ICMP_SEQ + 1))) {
2246 			real_seq = num_wraps * (MAX_ICMP_SEQ + 1) + icmpseq;
2247 		} else {
2248 			real_seq = (num_wraps - 1) * (MAX_ICMP_SEQ + 1) +
2249 			    icmpseq;
2250 		}
2251 
2252 		/* Make sure it's non-negative */
2253 		if (real_seq < 0)
2254 			return;
2255 		real_npackets = (npackets == 0) ? 1 : npackets;
2256 
2257 		/*
2258 		 * We sent npackets many packets to each of those
2259 		 * num_targetaddrs many IP addresses.
2260 		 */
2261 		targetaddr_index =
2262 		    (real_seq % (num_targetaddrs * real_npackets)) /
2263 		    real_npackets;
2264 		for (i = 0; i < targetaddr_index; i++)
2265 			target = target->next;
2266 		ipaddr->addr6 = target->dst_addr.addr6;
2267 	}
2268 }
2269 
2270 /*
2271  * Checksum routine for Internet Protocol family headers (C Version)
2272  */
2273 static ushort_t
2274 in_cksum(ushort_t *addr, int len)
2275 {
2276 	int nleft = len;
2277 	ushort_t *w = addr;
2278 	ushort_t answer;
2279 	ushort_t odd_byte = 0;
2280 	int sum = 0;
2281 
2282 	/*
2283 	 *  Our algorithm is simple, using a 32 bit accumulator (sum),
2284 	 *  we add sequential 16 bit words to it, and at the end, fold
2285 	 *  back all the carry bits from the top 16 bits into the lower
2286 	 *  16 bits.
2287 	 */
2288 	while (nleft > 1) {
2289 		sum += *w++;
2290 		nleft -= 2;
2291 	}
2292 
2293 	/* mop up an odd byte, if necessary */
2294 	if (nleft == 1) {
2295 		*(uchar_t *)(&odd_byte) = *(uchar_t *)w;
2296 		sum += odd_byte;
2297 	}
2298 
2299 	/*
2300 	 * add back carry outs from top 16 bits to low 16 bits
2301 	 */
2302 	sum = (sum >> 16) + (sum & 0xffff);	/* add hi 16 to low 16 */
2303 	sum += (sum >> 16);			/* add carry */
2304 	answer = ~sum;				/* truncate to 16 bits */
2305 	return (answer);
2306 }
2307 
2308 /*
2309  * Subtract 2 timeval structs:  out = out - in.
2310  * Out is assumed to be >= in.
2311  */
2312 void
2313 tvsub(struct timeval *out, struct timeval *in)
2314 {
2315 	if ((out->tv_usec -= in->tv_usec) < 0) {
2316 		out->tv_sec--;
2317 		out->tv_usec += 1000000;
2318 	}
2319 	out->tv_sec -= in->tv_sec;
2320 }
2321 
2322 /*
2323  * Print out statistics, and give up.
2324  * Heavily buffered STDIO is used here, so that all the statistics
2325  * will be written with 1 sys-write call.  This is nice when more
2326  * than one copy of the program is running on a terminal;  it prevents
2327  * the statistics output from becoming intermingled.
2328  */
2329 static void
2330 finish()
2331 {
2332 	Printf("\n----%s PING Statistics----\n", targethost);
2333 	Printf("%d packets transmitted, ", ntransmitted);
2334 	Printf("%d packets received, ", nreceived);
2335 	if (ntransmitted) {
2336 		if (nreceived <= ntransmitted) {
2337 			Printf("%d%% packet loss",
2338 			    (int)(((ntransmitted-nreceived)*100) /
2339 			    ntransmitted));
2340 		} else {
2341 			Printf("%.2f times amplification",
2342 			    (double)nreceived / (double)ntransmitted);
2343 		}
2344 	}
2345 	(void) putchar('\n');
2346 
2347 	/* if packet is big enough to store timeval AND ... */
2348 	if ((datalen >= sizeof (struct timeval)) && (nreceived > 0)) {
2349 		double mean = (double)tsum / nreceived;
2350 		double smean = (double)tsum2 / nreceived;
2351 		double sd =
2352 		    sqrt(((smean - mean*mean) * nreceived) / (nreceived-1));
2353 
2354 		Printf("round-trip (ms)  min/avg/max/stddev = "
2355 		    TIMEFORMAT "/" TIMEFORMAT "/"
2356 		    TIMEFORMAT "/" TIMEFORMAT "\n",
2357 		    (double)tmin / 1000, mean / 1000,
2358 		    (double)tmax / 1000, sd / 1000);
2359 	}
2360 	(void) fflush(stdout);
2361 
2362 	exit(is_alive ? EXIT_SUCCESS : EXIT_FAILURE);
2363 }
2364 
2365 /*
2366  * print the usage line
2367  */
2368 static void
2369 usage(char *cmdname)
2370 {
2371 	Fprintf(stderr, "usage: %s host [timeout]\n", cmdname);
2372 	Fprintf(stderr,
2373 /* CSTYLED */
2374 "usage: %s -s [-l | U] [abdDLnRrv] [-A addr_family] [-c traffic_class]\n\t"
2375 "[-g gateway [-g gateway ...]] [-N nexthop] [-F flow_label] [-I interval]\n\t"
2376 "[-i interface] [-P tos] [-p port] [-t ttl] host [data_size] [npackets]\n",
2377 	    cmdname);
2378 }
2379 
2380 /*
2381  * Parse integer argument; exit with an error if it's not a number.
2382  * Now it also accepts hex. values.
2383  */
2384 static int
2385 int_arg(char *s, char *what)
2386 {
2387 	char *cp;
2388 	char *ep;
2389 	int num;
2390 
2391 	errno = 0;
2392 	if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) {
2393 		cp = s + 2;
2394 		num = (int)strtol(cp, &ep, 16);
2395 	} else {
2396 		num = (int)strtol(s, &ep, 10);
2397 	}
2398 
2399 	if (errno || *ep != '\0' || num < 0) {
2400 		(void) Fprintf(stderr, "%s: bad %s: %s\n",
2401 		    progname, what, s);
2402 		exit(EXIT_FAILURE);
2403 	}
2404 
2405 	return (num);
2406 }
2407