xref: /titanic_44/usr/src/uts/i86pc/vm/hat_i86.c (revision 269e59f9a28bf47e0f463e64fc5af4a408b73b21)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright (c) 2010, Intel Corporation.
26  * All rights reserved.
27  */
28 
29 
30 /*
31  * VM - Hardware Address Translation management for i386 and amd64
32  *
33  * Implementation of the interfaces described in <common/vm/hat.h>
34  *
35  * Nearly all the details of how the hardware is managed should not be
36  * visible outside this layer except for misc. machine specific functions
37  * that work in conjunction with this code.
38  *
39  * Routines used only inside of i86pc/vm start with hati_ for HAT Internal.
40  */
41 
42 #include <sys/machparam.h>
43 #include <sys/machsystm.h>
44 #include <sys/mman.h>
45 #include <sys/types.h>
46 #include <sys/systm.h>
47 #include <sys/cpuvar.h>
48 #include <sys/thread.h>
49 #include <sys/proc.h>
50 #include <sys/cpu.h>
51 #include <sys/kmem.h>
52 #include <sys/disp.h>
53 #include <sys/shm.h>
54 #include <sys/sysmacros.h>
55 #include <sys/machparam.h>
56 #include <sys/vmem.h>
57 #include <sys/vmsystm.h>
58 #include <sys/promif.h>
59 #include <sys/var.h>
60 #include <sys/x86_archext.h>
61 #include <sys/atomic.h>
62 #include <sys/bitmap.h>
63 #include <sys/controlregs.h>
64 #include <sys/bootconf.h>
65 #include <sys/bootsvcs.h>
66 #include <sys/bootinfo.h>
67 #include <sys/archsystm.h>
68 
69 #include <vm/seg_kmem.h>
70 #include <vm/hat_i86.h>
71 #include <vm/as.h>
72 #include <vm/seg.h>
73 #include <vm/page.h>
74 #include <vm/seg_kp.h>
75 #include <vm/seg_kpm.h>
76 #include <vm/vm_dep.h>
77 #ifdef __xpv
78 #include <sys/hypervisor.h>
79 #endif
80 #include <vm/kboot_mmu.h>
81 #include <vm/seg_spt.h>
82 
83 #include <sys/cmn_err.h>
84 
85 /*
86  * Basic parameters for hat operation.
87  */
88 struct hat_mmu_info mmu;
89 
90 /*
91  * The page that is the kernel's top level pagetable.
92  *
93  * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries
94  * on this 4K page for its top level page table. The remaining groups of
95  * 4 entries are used for per processor copies of user VLP pagetables for
96  * running threads.  See hat_switch() and reload_pae32() for details.
97  *
98  * vlp_page[0..3] - level==2 PTEs for kernel HAT
99  * vlp_page[4..7] - level==2 PTEs for user thread on cpu 0
100  * vlp_page[8..11]  - level==2 PTE for user thread on cpu 1
101  * etc...
102  */
103 static x86pte_t *vlp_page;
104 
105 /*
106  * forward declaration of internal utility routines
107  */
108 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected,
109 	x86pte_t new);
110 
111 /*
112  * The kernel address space exists in all HATs. To implement this the
113  * kernel reserves a fixed number of entries in the topmost level(s) of page
114  * tables. The values are setup during startup and then copied to every user
115  * hat created by hat_alloc(). This means that kernelbase must be:
116  *
117  *	  4Meg aligned for 32 bit kernels
118  *	512Gig aligned for x86_64 64 bit kernel
119  *
120  * The hat_kernel_range_ts describe what needs to be copied from kernel hat
121  * to each user hat.
122  */
123 typedef struct hat_kernel_range {
124 	level_t		hkr_level;
125 	uintptr_t	hkr_start_va;
126 	uintptr_t	hkr_end_va;	/* zero means to end of memory */
127 } hat_kernel_range_t;
128 #define	NUM_KERNEL_RANGE 2
129 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE];
130 static int num_kernel_ranges;
131 
132 uint_t use_boot_reserve = 1;	/* cleared after early boot process */
133 uint_t can_steal_post_boot = 0;	/* set late in boot to enable stealing */
134 
135 /*
136  * enable_1gpg: controls 1g page support for user applications.
137  * By default, 1g pages are exported to user applications. enable_1gpg can
138  * be set to 0 to not export.
139  */
140 int	enable_1gpg = 1;
141 
142 /*
143  * AMD shanghai processors provide better management of 1gb ptes in its tlb.
144  * By default, 1g page support will be disabled for pre-shanghai AMD
145  * processors that don't have optimal tlb support for the 1g page size.
146  * chk_optimal_1gtlb can be set to 0 to force 1g page support on sub-optimal
147  * processors.
148  */
149 int	chk_optimal_1gtlb = 1;
150 
151 
152 #ifdef DEBUG
153 uint_t	map1gcnt;
154 #endif
155 
156 
157 /*
158  * A cpuset for all cpus. This is used for kernel address cross calls, since
159  * the kernel addresses apply to all cpus.
160  */
161 cpuset_t khat_cpuset;
162 
163 /*
164  * management stuff for hat structures
165  */
166 kmutex_t	hat_list_lock;
167 kcondvar_t	hat_list_cv;
168 kmem_cache_t	*hat_cache;
169 kmem_cache_t	*hat_hash_cache;
170 kmem_cache_t	*vlp_hash_cache;
171 
172 /*
173  * Simple statistics
174  */
175 struct hatstats hatstat;
176 
177 /*
178  * Some earlier hypervisor versions do not emulate cmpxchg of PTEs
179  * correctly.  For such hypervisors we must set PT_USER for kernel
180  * entries ourselves (normally the emulation would set PT_USER for
181  * kernel entries and PT_USER|PT_GLOBAL for user entries).  pt_kern is
182  * thus set appropriately.  Note that dboot/kbm is OK, as only the full
183  * HAT uses cmpxchg() and the other paths (hypercall etc.) were never
184  * incorrect.
185  */
186 int pt_kern;
187 
188 /*
189  * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's.
190  */
191 extern void atomic_orb(uchar_t *addr, uchar_t val);
192 extern void atomic_andb(uchar_t *addr, uchar_t val);
193 
194 #ifndef __xpv
195 extern pfn_t memseg_get_start(struct memseg *);
196 #endif
197 
198 #define	PP_GETRM(pp, rmmask)    (pp->p_nrm & rmmask)
199 #define	PP_ISMOD(pp)		PP_GETRM(pp, P_MOD)
200 #define	PP_ISREF(pp)		PP_GETRM(pp, P_REF)
201 #define	PP_ISRO(pp)		PP_GETRM(pp, P_RO)
202 
203 #define	PP_SETRM(pp, rm)	atomic_orb(&(pp->p_nrm), rm)
204 #define	PP_SETMOD(pp)		PP_SETRM(pp, P_MOD)
205 #define	PP_SETREF(pp)		PP_SETRM(pp, P_REF)
206 #define	PP_SETRO(pp)		PP_SETRM(pp, P_RO)
207 
208 #define	PP_CLRRM(pp, rm)	atomic_andb(&(pp->p_nrm), ~(rm))
209 #define	PP_CLRMOD(pp)   	PP_CLRRM(pp, P_MOD)
210 #define	PP_CLRREF(pp)   	PP_CLRRM(pp, P_REF)
211 #define	PP_CLRRO(pp)    	PP_CLRRM(pp, P_RO)
212 #define	PP_CLRALL(pp)		PP_CLRRM(pp, P_MOD | P_REF | P_RO)
213 
214 /*
215  * kmem cache constructor for struct hat
216  */
217 /*ARGSUSED*/
218 static int
219 hati_constructor(void *buf, void *handle, int kmflags)
220 {
221 	hat_t	*hat = buf;
222 
223 	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
224 	bzero(hat->hat_pages_mapped,
225 	    sizeof (pgcnt_t) * (mmu.max_page_level + 1));
226 	hat->hat_ism_pgcnt = 0;
227 	hat->hat_stats = 0;
228 	hat->hat_flags = 0;
229 	CPUSET_ZERO(hat->hat_cpus);
230 	hat->hat_htable = NULL;
231 	hat->hat_ht_hash = NULL;
232 	return (0);
233 }
234 
235 /*
236  * Allocate a hat structure for as. We also create the top level
237  * htable and initialize it to contain the kernel hat entries.
238  */
239 hat_t *
240 hat_alloc(struct as *as)
241 {
242 	hat_t			*hat;
243 	htable_t		*ht;	/* top level htable */
244 	uint_t			use_vlp;
245 	uint_t			r;
246 	hat_kernel_range_t	*rp;
247 	uintptr_t		va;
248 	uintptr_t		eva;
249 	uint_t			start;
250 	uint_t			cnt;
251 	htable_t		*src;
252 
253 	/*
254 	 * Once we start creating user process HATs we can enable
255 	 * the htable_steal() code.
256 	 */
257 	if (can_steal_post_boot == 0)
258 		can_steal_post_boot = 1;
259 
260 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
261 	hat = kmem_cache_alloc(hat_cache, KM_SLEEP);
262 	hat->hat_as = as;
263 	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
264 	ASSERT(hat->hat_flags == 0);
265 
266 #if defined(__xpv)
267 	/*
268 	 * No VLP stuff on the hypervisor due to the 64-bit split top level
269 	 * page tables.  On 32-bit it's not needed as the hypervisor takes
270 	 * care of copying the top level PTEs to a below 4Gig page.
271 	 */
272 	use_vlp = 0;
273 #else	/* __xpv */
274 	/* 32 bit processes uses a VLP style hat when running with PAE */
275 #if defined(__amd64)
276 	use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32);
277 #elif defined(__i386)
278 	use_vlp = mmu.pae_hat;
279 #endif
280 #endif	/* __xpv */
281 	if (use_vlp) {
282 		hat->hat_flags = HAT_VLP;
283 		bzero(hat->hat_vlp_ptes, VLP_SIZE);
284 	}
285 
286 	/*
287 	 * Allocate the htable hash
288 	 */
289 	if ((hat->hat_flags & HAT_VLP)) {
290 		hat->hat_num_hash = mmu.vlp_hash_cnt;
291 		hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP);
292 	} else {
293 		hat->hat_num_hash = mmu.hash_cnt;
294 		hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP);
295 	}
296 	bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *));
297 
298 	/*
299 	 * Initialize Kernel HAT entries at the top of the top level page
300 	 * tables for the new hat.
301 	 */
302 	hat->hat_htable = NULL;
303 	hat->hat_ht_cached = NULL;
304 	XPV_DISALLOW_MIGRATE();
305 	ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL);
306 	hat->hat_htable = ht;
307 
308 #if defined(__amd64)
309 	if (hat->hat_flags & HAT_VLP)
310 		goto init_done;
311 #endif
312 
313 	for (r = 0; r < num_kernel_ranges; ++r) {
314 		rp = &kernel_ranges[r];
315 		for (va = rp->hkr_start_va; va != rp->hkr_end_va;
316 		    va += cnt * LEVEL_SIZE(rp->hkr_level)) {
317 
318 			if (rp->hkr_level == TOP_LEVEL(hat))
319 				ht = hat->hat_htable;
320 			else
321 				ht = htable_create(hat, va, rp->hkr_level,
322 				    NULL);
323 
324 			start = htable_va2entry(va, ht);
325 			cnt = HTABLE_NUM_PTES(ht) - start;
326 			eva = va +
327 			    ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level));
328 			if (rp->hkr_end_va != 0 &&
329 			    (eva > rp->hkr_end_va || eva == 0))
330 				cnt = htable_va2entry(rp->hkr_end_va, ht) -
331 				    start;
332 
333 #if defined(__i386) && !defined(__xpv)
334 			if (ht->ht_flags & HTABLE_VLP) {
335 				bcopy(&vlp_page[start],
336 				    &hat->hat_vlp_ptes[start],
337 				    cnt * sizeof (x86pte_t));
338 				continue;
339 			}
340 #endif
341 			src = htable_lookup(kas.a_hat, va, rp->hkr_level);
342 			ASSERT(src != NULL);
343 			x86pte_copy(src, ht, start, cnt);
344 			htable_release(src);
345 		}
346 	}
347 
348 init_done:
349 
350 #if defined(__xpv)
351 	/*
352 	 * Pin top level page tables after initializing them
353 	 */
354 	xen_pin(hat->hat_htable->ht_pfn, mmu.max_level);
355 #if defined(__amd64)
356 	xen_pin(hat->hat_user_ptable, mmu.max_level);
357 #endif
358 #endif
359 	XPV_ALLOW_MIGRATE();
360 
361 	/*
362 	 * Put it at the start of the global list of all hats (used by stealing)
363 	 *
364 	 * kas.a_hat is not in the list but is instead used to find the
365 	 * first and last items in the list.
366 	 *
367 	 * - kas.a_hat->hat_next points to the start of the user hats.
368 	 *   The list ends where hat->hat_next == NULL
369 	 *
370 	 * - kas.a_hat->hat_prev points to the last of the user hats.
371 	 *   The list begins where hat->hat_prev == NULL
372 	 */
373 	mutex_enter(&hat_list_lock);
374 	hat->hat_prev = NULL;
375 	hat->hat_next = kas.a_hat->hat_next;
376 	if (hat->hat_next)
377 		hat->hat_next->hat_prev = hat;
378 	else
379 		kas.a_hat->hat_prev = hat;
380 	kas.a_hat->hat_next = hat;
381 	mutex_exit(&hat_list_lock);
382 
383 	return (hat);
384 }
385 
386 /*
387  * process has finished executing but as has not been cleaned up yet.
388  */
389 /*ARGSUSED*/
390 void
391 hat_free_start(hat_t *hat)
392 {
393 	ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock));
394 
395 	/*
396 	 * If the hat is currently a stealing victim, wait for the stealing
397 	 * to finish.  Once we mark it as HAT_FREEING, htable_steal()
398 	 * won't look at its pagetables anymore.
399 	 */
400 	mutex_enter(&hat_list_lock);
401 	while (hat->hat_flags & HAT_VICTIM)
402 		cv_wait(&hat_list_cv, &hat_list_lock);
403 	hat->hat_flags |= HAT_FREEING;
404 	mutex_exit(&hat_list_lock);
405 }
406 
407 /*
408  * An address space is being destroyed, so we destroy the associated hat.
409  */
410 void
411 hat_free_end(hat_t *hat)
412 {
413 	kmem_cache_t *cache;
414 
415 	ASSERT(hat->hat_flags & HAT_FREEING);
416 
417 	/*
418 	 * must not be running on the given hat
419 	 */
420 	ASSERT(CPU->cpu_current_hat != hat);
421 
422 	/*
423 	 * Remove it from the list of HATs
424 	 */
425 	mutex_enter(&hat_list_lock);
426 	if (hat->hat_prev)
427 		hat->hat_prev->hat_next = hat->hat_next;
428 	else
429 		kas.a_hat->hat_next = hat->hat_next;
430 	if (hat->hat_next)
431 		hat->hat_next->hat_prev = hat->hat_prev;
432 	else
433 		kas.a_hat->hat_prev = hat->hat_prev;
434 	mutex_exit(&hat_list_lock);
435 	hat->hat_next = hat->hat_prev = NULL;
436 
437 #if defined(__xpv)
438 	/*
439 	 * On the hypervisor, unpin top level page table(s)
440 	 */
441 	xen_unpin(hat->hat_htable->ht_pfn);
442 #if defined(__amd64)
443 	xen_unpin(hat->hat_user_ptable);
444 #endif
445 #endif
446 
447 	/*
448 	 * Make a pass through the htables freeing them all up.
449 	 */
450 	htable_purge_hat(hat);
451 
452 	/*
453 	 * Decide which kmem cache the hash table came from, then free it.
454 	 */
455 	if (hat->hat_flags & HAT_VLP)
456 		cache = vlp_hash_cache;
457 	else
458 		cache = hat_hash_cache;
459 	kmem_cache_free(cache, hat->hat_ht_hash);
460 	hat->hat_ht_hash = NULL;
461 
462 	hat->hat_flags = 0;
463 	kmem_cache_free(hat_cache, hat);
464 }
465 
466 /*
467  * round kernelbase down to a supported value to use for _userlimit
468  *
469  * userlimit must be aligned down to an entry in the top level htable.
470  * The one exception is for 32 bit HAT's running PAE.
471  */
472 uintptr_t
473 hat_kernelbase(uintptr_t va)
474 {
475 #if defined(__i386)
476 	va &= LEVEL_MASK(1);
477 #endif
478 	if (IN_VA_HOLE(va))
479 		panic("_userlimit %p will fall in VA hole\n", (void *)va);
480 	return (va);
481 }
482 
483 /*
484  *
485  */
486 static void
487 set_max_page_level()
488 {
489 	level_t lvl;
490 
491 	if (!kbm_largepage_support) {
492 		lvl = 0;
493 	} else {
494 		if (x86_feature & X86_1GPG) {
495 			lvl = 2;
496 			if (chk_optimal_1gtlb &&
497 			    cpuid_opteron_erratum(CPU, 6671130)) {
498 				lvl = 1;
499 			}
500 			if (plat_mnode_xcheck(LEVEL_SIZE(2) >>
501 			    LEVEL_SHIFT(0))) {
502 				lvl = 1;
503 			}
504 		} else {
505 			lvl = 1;
506 		}
507 	}
508 	mmu.max_page_level = lvl;
509 
510 	if ((lvl == 2) && (enable_1gpg == 0))
511 		mmu.umax_page_level = 1;
512 	else
513 		mmu.umax_page_level = lvl;
514 }
515 
516 /*
517  * Initialize hat data structures based on processor MMU information.
518  */
519 void
520 mmu_init(void)
521 {
522 	uint_t max_htables;
523 	uint_t pa_bits;
524 	uint_t va_bits;
525 	int i;
526 
527 	/*
528 	 * If CPU enabled the page table global bit, use it for the kernel
529 	 * This is bit 7 in CR4 (PGE - Page Global Enable).
530 	 */
531 	if ((x86_feature & X86_PGE) != 0 && (getcr4() & CR4_PGE) != 0)
532 		mmu.pt_global = PT_GLOBAL;
533 
534 	/*
535 	 * Detect NX and PAE usage.
536 	 */
537 	mmu.pae_hat = kbm_pae_support;
538 	if (kbm_nx_support)
539 		mmu.pt_nx = PT_NX;
540 	else
541 		mmu.pt_nx = 0;
542 
543 	/*
544 	 * Use CPU info to set various MMU parameters
545 	 */
546 	cpuid_get_addrsize(CPU, &pa_bits, &va_bits);
547 
548 	if (va_bits < sizeof (void *) * NBBY) {
549 		mmu.hole_start = (1ul << (va_bits - 1));
550 		mmu.hole_end = 0ul - mmu.hole_start - 1;
551 	} else {
552 		mmu.hole_end = 0;
553 		mmu.hole_start = mmu.hole_end - 1;
554 	}
555 #if defined(OPTERON_ERRATUM_121)
556 	/*
557 	 * If erratum 121 has already been detected at this time, hole_start
558 	 * contains the value to be subtracted from mmu.hole_start.
559 	 */
560 	ASSERT(hole_start == 0 || opteron_erratum_121 != 0);
561 	hole_start = mmu.hole_start - hole_start;
562 #else
563 	hole_start = mmu.hole_start;
564 #endif
565 	hole_end = mmu.hole_end;
566 
567 	mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1);
568 	if (mmu.pae_hat == 0 && pa_bits > 32)
569 		mmu.highest_pfn = PFN_4G - 1;
570 
571 	if (mmu.pae_hat) {
572 		mmu.pte_size = 8;	/* 8 byte PTEs */
573 		mmu.pte_size_shift = 3;
574 	} else {
575 		mmu.pte_size = 4;	/* 4 byte PTEs */
576 		mmu.pte_size_shift = 2;
577 	}
578 
579 	if (mmu.pae_hat && (x86_feature & X86_PAE) == 0)
580 		panic("Processor does not support PAE");
581 
582 	if ((x86_feature & X86_CX8) == 0)
583 		panic("Processor does not support cmpxchg8b instruction");
584 
585 #if defined(__amd64)
586 
587 	mmu.num_level = 4;
588 	mmu.max_level = 3;
589 	mmu.ptes_per_table = 512;
590 	mmu.top_level_count = 512;
591 
592 	mmu.level_shift[0] = 12;
593 	mmu.level_shift[1] = 21;
594 	mmu.level_shift[2] = 30;
595 	mmu.level_shift[3] = 39;
596 
597 #elif defined(__i386)
598 
599 	if (mmu.pae_hat) {
600 		mmu.num_level = 3;
601 		mmu.max_level = 2;
602 		mmu.ptes_per_table = 512;
603 		mmu.top_level_count = 4;
604 
605 		mmu.level_shift[0] = 12;
606 		mmu.level_shift[1] = 21;
607 		mmu.level_shift[2] = 30;
608 
609 	} else {
610 		mmu.num_level = 2;
611 		mmu.max_level = 1;
612 		mmu.ptes_per_table = 1024;
613 		mmu.top_level_count = 1024;
614 
615 		mmu.level_shift[0] = 12;
616 		mmu.level_shift[1] = 22;
617 	}
618 
619 #endif	/* __i386 */
620 
621 	for (i = 0; i < mmu.num_level; ++i) {
622 		mmu.level_size[i] = 1UL << mmu.level_shift[i];
623 		mmu.level_offset[i] = mmu.level_size[i] - 1;
624 		mmu.level_mask[i] = ~mmu.level_offset[i];
625 	}
626 
627 	set_max_page_level();
628 
629 	mmu_page_sizes = mmu.max_page_level + 1;
630 	mmu_exported_page_sizes = mmu.umax_page_level + 1;
631 
632 	/* restrict legacy applications from using pagesizes 1g and above */
633 	mmu_legacy_page_sizes =
634 	    (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes;
635 
636 
637 	for (i = 0; i <= mmu.max_page_level; ++i) {
638 		mmu.pte_bits[i] = PT_VALID | pt_kern;
639 		if (i > 0)
640 			mmu.pte_bits[i] |= PT_PAGESIZE;
641 	}
642 
643 	/*
644 	 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level.
645 	 */
646 	for (i = 1; i < mmu.num_level; ++i)
647 		mmu.ptp_bits[i] = PT_PTPBITS;
648 
649 #if defined(__i386)
650 	mmu.ptp_bits[2] = PT_VALID;
651 #endif
652 
653 	/*
654 	 * Compute how many hash table entries to have per process for htables.
655 	 * We start with 1 page's worth of entries.
656 	 *
657 	 * If physical memory is small, reduce the amount need to cover it.
658 	 */
659 	max_htables = physmax / mmu.ptes_per_table;
660 	mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *);
661 	while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables)
662 		mmu.hash_cnt >>= 1;
663 	mmu.vlp_hash_cnt = mmu.hash_cnt;
664 
665 #if defined(__amd64)
666 	/*
667 	 * If running in 64 bits and physical memory is large,
668 	 * increase the size of the cache to cover all of memory for
669 	 * a 64 bit process.
670 	 */
671 #define	HASH_MAX_LENGTH 4
672 	while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables)
673 		mmu.hash_cnt <<= 1;
674 #endif
675 }
676 
677 
678 /*
679  * initialize hat data structures
680  */
681 void
682 hat_init()
683 {
684 #if defined(__i386)
685 	/*
686 	 * _userlimit must be aligned correctly
687 	 */
688 	if ((_userlimit & LEVEL_MASK(1)) != _userlimit) {
689 		prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n",
690 		    (void *)_userlimit, (void *)LEVEL_SIZE(1));
691 		halt("hat_init(): Unable to continue");
692 	}
693 #endif
694 
695 	cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL);
696 
697 	/*
698 	 * initialize kmem caches
699 	 */
700 	htable_init();
701 	hment_init();
702 
703 	hat_cache = kmem_cache_create("hat_t",
704 	    sizeof (hat_t), 0, hati_constructor, NULL, NULL,
705 	    NULL, 0, 0);
706 
707 	hat_hash_cache = kmem_cache_create("HatHash",
708 	    mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
709 	    NULL, 0, 0);
710 
711 	/*
712 	 * VLP hats can use a smaller hash table size on large memroy machines
713 	 */
714 	if (mmu.hash_cnt == mmu.vlp_hash_cnt) {
715 		vlp_hash_cache = hat_hash_cache;
716 	} else {
717 		vlp_hash_cache = kmem_cache_create("HatVlpHash",
718 		    mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
719 		    NULL, 0, 0);
720 	}
721 
722 	/*
723 	 * Set up the kernel's hat
724 	 */
725 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
726 	kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP);
727 	mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
728 	kas.a_hat->hat_as = &kas;
729 	kas.a_hat->hat_flags = 0;
730 	AS_LOCK_EXIT(&kas, &kas.a_lock);
731 
732 	CPUSET_ZERO(khat_cpuset);
733 	CPUSET_ADD(khat_cpuset, CPU->cpu_id);
734 
735 	/*
736 	 * The kernel hat's next pointer serves as the head of the hat list .
737 	 * The kernel hat's prev pointer tracks the last hat on the list for
738 	 * htable_steal() to use.
739 	 */
740 	kas.a_hat->hat_next = NULL;
741 	kas.a_hat->hat_prev = NULL;
742 
743 	/*
744 	 * Allocate an htable hash bucket for the kernel
745 	 * XX64 - tune for 64 bit procs
746 	 */
747 	kas.a_hat->hat_num_hash = mmu.hash_cnt;
748 	kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP);
749 	bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *));
750 
751 	/*
752 	 * zero out the top level and cached htable pointers
753 	 */
754 	kas.a_hat->hat_ht_cached = NULL;
755 	kas.a_hat->hat_htable = NULL;
756 
757 	/*
758 	 * Pre-allocate hrm_hashtab before enabling the collection of
759 	 * refmod statistics.  Allocating on the fly would mean us
760 	 * running the risk of suffering recursive mutex enters or
761 	 * deadlocks.
762 	 */
763 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
764 	    KM_SLEEP);
765 }
766 
767 /*
768  * Prepare CPU specific pagetables for VLP processes on 64 bit kernels.
769  *
770  * Each CPU has a set of 2 pagetables that are reused for any 32 bit
771  * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and
772  * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes.
773  */
774 /*ARGSUSED*/
775 static void
776 hat_vlp_setup(struct cpu *cpu)
777 {
778 #if defined(__amd64) && !defined(__xpv)
779 	struct hat_cpu_info *hci = cpu->cpu_hat_info;
780 	pfn_t pfn;
781 
782 	/*
783 	 * allocate the level==2 page table for the bottom most
784 	 * 512Gig of address space (this is where 32 bit apps live)
785 	 */
786 	ASSERT(hci != NULL);
787 	hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
788 
789 	/*
790 	 * Allocate a top level pagetable and copy the kernel's
791 	 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry.
792 	 */
793 	hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
794 	hci->hci_vlp_pfn =
795 	    hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes);
796 	ASSERT(hci->hci_vlp_pfn != PFN_INVALID);
797 	bcopy(vlp_page, hci->hci_vlp_l3ptes, MMU_PAGESIZE);
798 
799 	pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes);
800 	ASSERT(pfn != PFN_INVALID);
801 	hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2);
802 #endif /* __amd64 && !__xpv */
803 }
804 
805 /*ARGSUSED*/
806 static void
807 hat_vlp_teardown(cpu_t *cpu)
808 {
809 #if defined(__amd64) && !defined(__xpv)
810 	struct hat_cpu_info *hci;
811 
812 	if ((hci = cpu->cpu_hat_info) == NULL)
813 		return;
814 	if (hci->hci_vlp_l2ptes)
815 		kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE);
816 	if (hci->hci_vlp_l3ptes)
817 		kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE);
818 #endif
819 }
820 
821 #define	NEXT_HKR(r, l, s, e) {			\
822 	kernel_ranges[r].hkr_level = l;		\
823 	kernel_ranges[r].hkr_start_va = s;	\
824 	kernel_ranges[r].hkr_end_va = e;	\
825 	++r;					\
826 }
827 
828 /*
829  * Finish filling in the kernel hat.
830  * Pre fill in all top level kernel page table entries for the kernel's
831  * part of the address range.  From this point on we can't use any new
832  * kernel large pages if they need PTE's at max_level
833  *
834  * create the kmap mappings.
835  */
836 void
837 hat_init_finish(void)
838 {
839 	size_t		size;
840 	uint_t		r = 0;
841 	uintptr_t	va;
842 	hat_kernel_range_t *rp;
843 
844 
845 	/*
846 	 * We are now effectively running on the kernel hat.
847 	 * Clearing use_boot_reserve shuts off using the pre-allocated boot
848 	 * reserve for all HAT allocations.  From here on, the reserves are
849 	 * only used when avoiding recursion in kmem_alloc().
850 	 */
851 	use_boot_reserve = 0;
852 	htable_adjust_reserve();
853 
854 	/*
855 	 * User HATs are initialized with copies of all kernel mappings in
856 	 * higher level page tables. Ensure that those entries exist.
857 	 */
858 #if defined(__amd64)
859 
860 	NEXT_HKR(r, 3, kernelbase, 0);
861 #if defined(__xpv)
862 	NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END);
863 #endif
864 
865 #elif defined(__i386)
866 
867 #if !defined(__xpv)
868 	if (mmu.pae_hat) {
869 		va = kernelbase;
870 		if ((va & LEVEL_MASK(2)) != va) {
871 			va = P2ROUNDUP(va, LEVEL_SIZE(2));
872 			NEXT_HKR(r, 1, kernelbase, va);
873 		}
874 		if (va != 0)
875 			NEXT_HKR(r, 2, va, 0);
876 	} else
877 #endif /* __xpv */
878 		NEXT_HKR(r, 1, kernelbase, 0);
879 
880 #endif /* __i386 */
881 
882 	num_kernel_ranges = r;
883 
884 	/*
885 	 * Create all the kernel pagetables that will have entries
886 	 * shared to user HATs.
887 	 */
888 	for (r = 0; r < num_kernel_ranges; ++r) {
889 		rp = &kernel_ranges[r];
890 		for (va = rp->hkr_start_va; va != rp->hkr_end_va;
891 		    va += LEVEL_SIZE(rp->hkr_level)) {
892 			htable_t *ht;
893 
894 			if (IN_HYPERVISOR_VA(va))
895 				continue;
896 
897 			/* can/must skip if a page mapping already exists */
898 			if (rp->hkr_level <= mmu.max_page_level &&
899 			    (ht = htable_getpage(kas.a_hat, va, NULL)) !=
900 			    NULL) {
901 				htable_release(ht);
902 				continue;
903 			}
904 
905 			(void) htable_create(kas.a_hat, va, rp->hkr_level - 1,
906 			    NULL);
907 		}
908 	}
909 
910 	/*
911 	 * 32 bit PAE metal kernels use only 4 of the 512 entries in the
912 	 * page holding the top level pagetable. We use the remainder for
913 	 * the "per CPU" page tables for VLP processes.
914 	 * Map the top level kernel pagetable into the kernel to make
915 	 * it easy to use bcopy access these tables.
916 	 */
917 	if (mmu.pae_hat) {
918 		vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP);
919 		hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE,
920 		    kas.a_hat->hat_htable->ht_pfn,
921 #if !defined(__xpv)
922 		    PROT_WRITE |
923 #endif
924 		    PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK,
925 		    HAT_LOAD | HAT_LOAD_NOCONSIST);
926 	}
927 	hat_vlp_setup(CPU);
928 
929 	/*
930 	 * Create kmap (cached mappings of kernel PTEs)
931 	 * for 32 bit we map from segmap_start .. ekernelheap
932 	 * for 64 bit we map from segmap_start .. segmap_start + segmapsize;
933 	 */
934 #if defined(__i386)
935 	size = (uintptr_t)ekernelheap - segmap_start;
936 #elif defined(__amd64)
937 	size = segmapsize;
938 #endif
939 	hat_kmap_init((uintptr_t)segmap_start, size);
940 }
941 
942 /*
943  * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references
944  * are 32 bit, so for safety we must use cas64() to install these.
945  */
946 #ifdef __i386
947 static void
948 reload_pae32(hat_t *hat, cpu_t *cpu)
949 {
950 	x86pte_t *src;
951 	x86pte_t *dest;
952 	x86pte_t pte;
953 	int i;
954 
955 	/*
956 	 * Load the 4 entries of the level 2 page table into this
957 	 * cpu's range of the vlp_page and point cr3 at them.
958 	 */
959 	ASSERT(mmu.pae_hat);
960 	src = hat->hat_vlp_ptes;
961 	dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES;
962 	for (i = 0; i < VLP_NUM_PTES; ++i) {
963 		for (;;) {
964 			pte = dest[i];
965 			if (pte == src[i])
966 				break;
967 			if (cas64(dest + i, pte, src[i]) != src[i])
968 				break;
969 		}
970 	}
971 }
972 #endif
973 
974 /*
975  * Switch to a new active hat, maintaining bit masks to track active CPUs.
976  *
977  * On the 32-bit PAE hypervisor, %cr3 is a 64-bit value, on metal it
978  * remains a 32-bit value.
979  */
980 void
981 hat_switch(hat_t *hat)
982 {
983 	uint64_t	newcr3;
984 	cpu_t		*cpu = CPU;
985 	hat_t		*old = cpu->cpu_current_hat;
986 
987 	/*
988 	 * set up this information first, so we don't miss any cross calls
989 	 */
990 	if (old != NULL) {
991 		if (old == hat)
992 			return;
993 		if (old != kas.a_hat)
994 			CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id);
995 	}
996 
997 	/*
998 	 * Add this CPU to the active set for this HAT.
999 	 */
1000 	if (hat != kas.a_hat) {
1001 		CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id);
1002 	}
1003 	cpu->cpu_current_hat = hat;
1004 
1005 	/*
1006 	 * now go ahead and load cr3
1007 	 */
1008 	if (hat->hat_flags & HAT_VLP) {
1009 #if defined(__amd64)
1010 		x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1011 
1012 		VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1013 		newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn);
1014 #elif defined(__i386)
1015 		reload_pae32(hat, cpu);
1016 		newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) +
1017 		    (cpu->cpu_id + 1) * VLP_SIZE;
1018 #endif
1019 	} else {
1020 		newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn);
1021 	}
1022 #ifdef __xpv
1023 	{
1024 		struct mmuext_op t[2];
1025 		uint_t retcnt;
1026 		uint_t opcnt = 1;
1027 
1028 		t[0].cmd = MMUEXT_NEW_BASEPTR;
1029 		t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1030 #if defined(__amd64)
1031 		/*
1032 		 * There's an interesting problem here, as to what to
1033 		 * actually specify when switching to the kernel hat.
1034 		 * For now we'll reuse the kernel hat again.
1035 		 */
1036 		t[1].cmd = MMUEXT_NEW_USER_BASEPTR;
1037 		if (hat == kas.a_hat)
1038 			t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1039 		else
1040 			t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable);
1041 		++opcnt;
1042 #endif	/* __amd64 */
1043 		if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0)
1044 			panic("HYPERVISOR_mmu_update() failed");
1045 		ASSERT(retcnt == opcnt);
1046 
1047 	}
1048 #else
1049 	setcr3(newcr3);
1050 #endif
1051 	ASSERT(cpu == CPU);
1052 }
1053 
1054 /*
1055  * Utility to return a valid x86pte_t from protections, pfn, and level number
1056  */
1057 static x86pte_t
1058 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags)
1059 {
1060 	x86pte_t	pte;
1061 	uint_t		cache_attr = attr & HAT_ORDER_MASK;
1062 
1063 	pte = MAKEPTE(pfn, level);
1064 
1065 	if (attr & PROT_WRITE)
1066 		PTE_SET(pte, PT_WRITABLE);
1067 
1068 	if (attr & PROT_USER)
1069 		PTE_SET(pte, PT_USER);
1070 
1071 	if (!(attr & PROT_EXEC))
1072 		PTE_SET(pte, mmu.pt_nx);
1073 
1074 	/*
1075 	 * Set the software bits used track ref/mod sync's and hments.
1076 	 * If not using REF/MOD, set them to avoid h/w rewriting PTEs.
1077 	 */
1078 	if (flags & HAT_LOAD_NOCONSIST)
1079 		PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD);
1080 	else if (attr & HAT_NOSYNC)
1081 		PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD);
1082 
1083 	/*
1084 	 * Set the caching attributes in the PTE. The combination
1085 	 * of attributes are poorly defined, so we pay attention
1086 	 * to them in the given order.
1087 	 *
1088 	 * The test for HAT_STRICTORDER is different because it's defined
1089 	 * as "0" - which was a stupid thing to do, but is too late to change!
1090 	 */
1091 	if (cache_attr == HAT_STRICTORDER) {
1092 		PTE_SET(pte, PT_NOCACHE);
1093 	/*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */
1094 	} else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) {
1095 		/* nothing to set */;
1096 	} else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) {
1097 		PTE_SET(pte, PT_NOCACHE);
1098 		if (x86_feature & X86_PAT)
1099 			PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE);
1100 		else
1101 			PTE_SET(pte, PT_WRITETHRU);
1102 	} else {
1103 		panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr);
1104 	}
1105 
1106 	return (pte);
1107 }
1108 
1109 /*
1110  * Duplicate address translations of the parent to the child.
1111  * This function really isn't used anymore.
1112  */
1113 /*ARGSUSED*/
1114 int
1115 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag)
1116 {
1117 	ASSERT((uintptr_t)addr < kernelbase);
1118 	ASSERT(new != kas.a_hat);
1119 	ASSERT(old != kas.a_hat);
1120 	return (0);
1121 }
1122 
1123 /*
1124  * Allocate any hat resources required for a process being swapped in.
1125  */
1126 /*ARGSUSED*/
1127 void
1128 hat_swapin(hat_t *hat)
1129 {
1130 	/* do nothing - we let everything fault back in */
1131 }
1132 
1133 /*
1134  * Unload all translations associated with an address space of a process
1135  * that is being swapped out.
1136  */
1137 void
1138 hat_swapout(hat_t *hat)
1139 {
1140 	uintptr_t	vaddr = (uintptr_t)0;
1141 	uintptr_t	eaddr = _userlimit;
1142 	htable_t	*ht = NULL;
1143 	level_t		l;
1144 
1145 	XPV_DISALLOW_MIGRATE();
1146 	/*
1147 	 * We can't just call hat_unload(hat, 0, _userlimit...)  here, because
1148 	 * seg_spt and shared pagetables can't be swapped out.
1149 	 * Take a look at segspt_shmswapout() - it's a big no-op.
1150 	 *
1151 	 * Instead we'll walk through all the address space and unload
1152 	 * any mappings which we are sure are not shared, not locked.
1153 	 */
1154 	ASSERT(IS_PAGEALIGNED(vaddr));
1155 	ASSERT(IS_PAGEALIGNED(eaddr));
1156 	ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1157 	if ((uintptr_t)hat->hat_as->a_userlimit < eaddr)
1158 		eaddr = (uintptr_t)hat->hat_as->a_userlimit;
1159 
1160 	while (vaddr < eaddr) {
1161 		(void) htable_walk(hat, &ht, &vaddr, eaddr);
1162 		if (ht == NULL)
1163 			break;
1164 
1165 		ASSERT(!IN_VA_HOLE(vaddr));
1166 
1167 		/*
1168 		 * If the page table is shared skip its entire range.
1169 		 */
1170 		l = ht->ht_level;
1171 		if (ht->ht_flags & HTABLE_SHARED_PFN) {
1172 			vaddr = ht->ht_vaddr + LEVEL_SIZE(l + 1);
1173 			htable_release(ht);
1174 			ht = NULL;
1175 			continue;
1176 		}
1177 
1178 		/*
1179 		 * If the page table has no locked entries, unload this one.
1180 		 */
1181 		if (ht->ht_lock_cnt == 0)
1182 			hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l),
1183 			    HAT_UNLOAD_UNMAP);
1184 
1185 		/*
1186 		 * If we have a level 0 page table with locked entries,
1187 		 * skip the entire page table, otherwise skip just one entry.
1188 		 */
1189 		if (ht->ht_lock_cnt > 0 && l == 0)
1190 			vaddr = ht->ht_vaddr + LEVEL_SIZE(1);
1191 		else
1192 			vaddr += LEVEL_SIZE(l);
1193 	}
1194 	if (ht)
1195 		htable_release(ht);
1196 
1197 	/*
1198 	 * We're in swapout because the system is low on memory, so
1199 	 * go back and flush all the htables off the cached list.
1200 	 */
1201 	htable_purge_hat(hat);
1202 	XPV_ALLOW_MIGRATE();
1203 }
1204 
1205 /*
1206  * returns number of bytes that have valid mappings in hat.
1207  */
1208 size_t
1209 hat_get_mapped_size(hat_t *hat)
1210 {
1211 	size_t total = 0;
1212 	int l;
1213 
1214 	for (l = 0; l <= mmu.max_page_level; l++)
1215 		total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l));
1216 	total += hat->hat_ism_pgcnt;
1217 
1218 	return (total);
1219 }
1220 
1221 /*
1222  * enable/disable collection of stats for hat.
1223  */
1224 int
1225 hat_stats_enable(hat_t *hat)
1226 {
1227 	atomic_add_32(&hat->hat_stats, 1);
1228 	return (1);
1229 }
1230 
1231 void
1232 hat_stats_disable(hat_t *hat)
1233 {
1234 	atomic_add_32(&hat->hat_stats, -1);
1235 }
1236 
1237 /*
1238  * Utility to sync the ref/mod bits from a page table entry to the page_t
1239  * We must be holding the mapping list lock when this is called.
1240  */
1241 static void
1242 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level)
1243 {
1244 	uint_t	rm = 0;
1245 	pgcnt_t	pgcnt;
1246 
1247 	if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
1248 		return;
1249 
1250 	if (PTE_GET(pte, PT_REF))
1251 		rm |= P_REF;
1252 
1253 	if (PTE_GET(pte, PT_MOD))
1254 		rm |= P_MOD;
1255 
1256 	if (rm == 0)
1257 		return;
1258 
1259 	/*
1260 	 * sync to all constituent pages of a large page
1261 	 */
1262 	ASSERT(x86_hm_held(pp));
1263 	pgcnt = page_get_pagecnt(level);
1264 	ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
1265 	for (; pgcnt > 0; --pgcnt) {
1266 		/*
1267 		 * hat_page_demote() can't decrease
1268 		 * pszc below this mapping size
1269 		 * since this large mapping existed after we
1270 		 * took mlist lock.
1271 		 */
1272 		ASSERT(pp->p_szc >= level);
1273 		hat_page_setattr(pp, rm);
1274 		++pp;
1275 	}
1276 }
1277 
1278 /*
1279  * This the set of PTE bits for PFN, permissions and caching
1280  * that are allowed to change on a HAT_LOAD_REMAP
1281  */
1282 #define	PT_REMAP_BITS							\
1283 	(PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU |		\
1284 	PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD)
1285 
1286 #define	REMAPASSERT(EX)	if (!(EX)) panic("hati_pte_map: " #EX)
1287 /*
1288  * Do the low-level work to get a mapping entered into a HAT's pagetables
1289  * and in the mapping list of the associated page_t.
1290  */
1291 static int
1292 hati_pte_map(
1293 	htable_t	*ht,
1294 	uint_t		entry,
1295 	page_t		*pp,
1296 	x86pte_t	pte,
1297 	int		flags,
1298 	void		*pte_ptr)
1299 {
1300 	hat_t		*hat = ht->ht_hat;
1301 	x86pte_t	old_pte;
1302 	level_t		l = ht->ht_level;
1303 	hment_t		*hm;
1304 	uint_t		is_consist;
1305 	uint_t		is_locked;
1306 	int		rv = 0;
1307 
1308 	/*
1309 	 * Is this a consistent (ie. need mapping list lock) mapping?
1310 	 */
1311 	is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0);
1312 
1313 	/*
1314 	 * Track locked mapping count in the htable.  Do this first,
1315 	 * as we track locking even if there already is a mapping present.
1316 	 */
1317 	is_locked = (flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat;
1318 	if (is_locked)
1319 		HTABLE_LOCK_INC(ht);
1320 
1321 	/*
1322 	 * Acquire the page's mapping list lock and get an hment to use.
1323 	 * Note that hment_prepare() might return NULL.
1324 	 */
1325 	if (is_consist) {
1326 		x86_hm_enter(pp);
1327 		hm = hment_prepare(ht, entry, pp);
1328 	}
1329 
1330 	/*
1331 	 * Set the new pte, retrieving the old one at the same time.
1332 	 */
1333 	old_pte = x86pte_set(ht, entry, pte, pte_ptr);
1334 
1335 	/*
1336 	 * Did we get a large page / page table collision?
1337 	 */
1338 	if (old_pte == LPAGE_ERROR) {
1339 		if (is_locked)
1340 			HTABLE_LOCK_DEC(ht);
1341 		rv = -1;
1342 		goto done;
1343 	}
1344 
1345 	/*
1346 	 * If the mapping didn't change there is nothing more to do.
1347 	 */
1348 	if (PTE_EQUIV(pte, old_pte))
1349 		goto done;
1350 
1351 	/*
1352 	 * Install a new mapping in the page's mapping list
1353 	 */
1354 	if (!PTE_ISVALID(old_pte)) {
1355 		if (is_consist) {
1356 			hment_assign(ht, entry, pp, hm);
1357 			x86_hm_exit(pp);
1358 		} else {
1359 			ASSERT(flags & HAT_LOAD_NOCONSIST);
1360 		}
1361 #if defined(__amd64)
1362 		if (ht->ht_flags & HTABLE_VLP) {
1363 			cpu_t *cpu = CPU;
1364 			x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1365 			VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1366 		}
1367 #endif
1368 		HTABLE_INC(ht->ht_valid_cnt);
1369 		PGCNT_INC(hat, l);
1370 		return (rv);
1371 	}
1372 
1373 	/*
1374 	 * Remap's are more complicated:
1375 	 *  - HAT_LOAD_REMAP must be specified if changing the pfn.
1376 	 *    We also require that NOCONSIST be specified.
1377 	 *  - Otherwise only permission or caching bits may change.
1378 	 */
1379 	if (!PTE_ISPAGE(old_pte, l))
1380 		panic("non-null/page mapping pte=" FMT_PTE, old_pte);
1381 
1382 	if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) {
1383 		REMAPASSERT(flags & HAT_LOAD_REMAP);
1384 		REMAPASSERT(flags & HAT_LOAD_NOCONSIST);
1385 		REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
1386 		REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) ==
1387 		    pf_is_memory(PTE2PFN(pte, l)));
1388 		REMAPASSERT(!is_consist);
1389 	}
1390 
1391 	/*
1392 	 * We only let remaps change the certain bits in the PTE.
1393 	 */
1394 	if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS))
1395 		panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n",
1396 		    old_pte, pte);
1397 
1398 	/*
1399 	 * We don't create any mapping list entries on a remap, so release
1400 	 * any allocated hment after we drop the mapping list lock.
1401 	 */
1402 done:
1403 	if (is_consist) {
1404 		x86_hm_exit(pp);
1405 		if (hm != NULL)
1406 			hment_free(hm);
1407 	}
1408 	return (rv);
1409 }
1410 
1411 /*
1412  * Internal routine to load a single page table entry. This only fails if
1413  * we attempt to overwrite a page table link with a large page.
1414  */
1415 static int
1416 hati_load_common(
1417 	hat_t		*hat,
1418 	uintptr_t	va,
1419 	page_t		*pp,
1420 	uint_t		attr,
1421 	uint_t		flags,
1422 	level_t		level,
1423 	pfn_t		pfn)
1424 {
1425 	htable_t	*ht;
1426 	uint_t		entry;
1427 	x86pte_t	pte;
1428 	int		rv = 0;
1429 
1430 	/*
1431 	 * The number 16 is arbitrary and here to catch a recursion problem
1432 	 * early before we blow out the kernel stack.
1433 	 */
1434 	++curthread->t_hatdepth;
1435 	ASSERT(curthread->t_hatdepth < 16);
1436 
1437 	ASSERT(hat == kas.a_hat ||
1438 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1439 
1440 	if (flags & HAT_LOAD_SHARE)
1441 		hat->hat_flags |= HAT_SHARED;
1442 
1443 	/*
1444 	 * Find the page table that maps this page if it already exists.
1445 	 */
1446 	ht = htable_lookup(hat, va, level);
1447 
1448 	/*
1449 	 * We must have HAT_LOAD_NOCONSIST if page_t is NULL.
1450 	 */
1451 	if (pp == NULL)
1452 		flags |= HAT_LOAD_NOCONSIST;
1453 
1454 	if (ht == NULL) {
1455 		ht = htable_create(hat, va, level, NULL);
1456 		ASSERT(ht != NULL);
1457 	}
1458 	entry = htable_va2entry(va, ht);
1459 
1460 	/*
1461 	 * a bunch of paranoid error checking
1462 	 */
1463 	ASSERT(ht->ht_busy > 0);
1464 	if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht))
1465 		panic("hati_load_common: bad htable %p, va %p",
1466 		    (void *)ht, (void *)va);
1467 	ASSERT(ht->ht_level == level);
1468 
1469 	/*
1470 	 * construct the new PTE
1471 	 */
1472 	if (hat == kas.a_hat)
1473 		attr &= ~PROT_USER;
1474 	pte = hati_mkpte(pfn, attr, level, flags);
1475 	if (hat == kas.a_hat && va >= kernelbase)
1476 		PTE_SET(pte, mmu.pt_global);
1477 
1478 	/*
1479 	 * establish the mapping
1480 	 */
1481 	rv = hati_pte_map(ht, entry, pp, pte, flags, NULL);
1482 
1483 	/*
1484 	 * release the htable and any reserves
1485 	 */
1486 	htable_release(ht);
1487 	--curthread->t_hatdepth;
1488 	return (rv);
1489 }
1490 
1491 /*
1492  * special case of hat_memload to deal with some kernel addrs for performance
1493  */
1494 static void
1495 hat_kmap_load(
1496 	caddr_t		addr,
1497 	page_t		*pp,
1498 	uint_t		attr,
1499 	uint_t		flags)
1500 {
1501 	uintptr_t	va = (uintptr_t)addr;
1502 	x86pte_t	pte;
1503 	pfn_t		pfn = page_pptonum(pp);
1504 	pgcnt_t		pg_off = mmu_btop(va - mmu.kmap_addr);
1505 	htable_t	*ht;
1506 	uint_t		entry;
1507 	void		*pte_ptr;
1508 
1509 	/*
1510 	 * construct the requested PTE
1511 	 */
1512 	attr &= ~PROT_USER;
1513 	attr |= HAT_STORECACHING_OK;
1514 	pte = hati_mkpte(pfn, attr, 0, flags);
1515 	PTE_SET(pte, mmu.pt_global);
1516 
1517 	/*
1518 	 * Figure out the pte_ptr and htable and use common code to finish up
1519 	 */
1520 	if (mmu.pae_hat)
1521 		pte_ptr = mmu.kmap_ptes + pg_off;
1522 	else
1523 		pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off;
1524 	ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >>
1525 	    LEVEL_SHIFT(1)];
1526 	entry = htable_va2entry(va, ht);
1527 	++curthread->t_hatdepth;
1528 	ASSERT(curthread->t_hatdepth < 16);
1529 	(void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr);
1530 	--curthread->t_hatdepth;
1531 }
1532 
1533 /*
1534  * hat_memload() - load a translation to the given page struct
1535  *
1536  * Flags for hat_memload/hat_devload/hat_*attr.
1537  *
1538  * 	HAT_LOAD	Default flags to load a translation to the page.
1539  *
1540  * 	HAT_LOAD_LOCK	Lock down mapping resources; hat_map(), hat_memload(),
1541  *			and hat_devload().
1542  *
1543  *	HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list.
1544  *			sets PT_NOCONSIST
1545  *
1546  *	HAT_LOAD_SHARE	A flag to hat_memload() to indicate h/w page tables
1547  *			that map some user pages (not kas) is shared by more
1548  *			than one process (eg. ISM).
1549  *
1550  *	HAT_LOAD_REMAP	Reload a valid pte with a different page frame.
1551  *
1552  *	HAT_NO_KALLOC	Do not kmem_alloc while creating the mapping; at this
1553  *			point, it's setting up mapping to allocate internal
1554  *			hat layer data structures.  This flag forces hat layer
1555  *			to tap its reserves in order to prevent infinite
1556  *			recursion.
1557  *
1558  * The following is a protection attribute (like PROT_READ, etc.)
1559  *
1560  *	HAT_NOSYNC	set PT_NOSYNC - this mapping's ref/mod bits
1561  *			are never cleared.
1562  *
1563  * Installing new valid PTE's and creation of the mapping list
1564  * entry are controlled under the same lock. It's derived from the
1565  * page_t being mapped.
1566  */
1567 static uint_t supported_memload_flags =
1568 	HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST |
1569 	HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT;
1570 
1571 void
1572 hat_memload(
1573 	hat_t		*hat,
1574 	caddr_t		addr,
1575 	page_t		*pp,
1576 	uint_t		attr,
1577 	uint_t		flags)
1578 {
1579 	uintptr_t	va = (uintptr_t)addr;
1580 	level_t		level = 0;
1581 	pfn_t		pfn = page_pptonum(pp);
1582 
1583 	XPV_DISALLOW_MIGRATE();
1584 	ASSERT(IS_PAGEALIGNED(va));
1585 	ASSERT(hat == kas.a_hat || va < _userlimit);
1586 	ASSERT(hat == kas.a_hat ||
1587 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1588 	ASSERT((flags & supported_memload_flags) == flags);
1589 
1590 	ASSERT(!IN_VA_HOLE(va));
1591 	ASSERT(!PP_ISFREE(pp));
1592 
1593 	/*
1594 	 * kernel address special case for performance.
1595 	 */
1596 	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
1597 		ASSERT(hat == kas.a_hat);
1598 		hat_kmap_load(addr, pp, attr, flags);
1599 		XPV_ALLOW_MIGRATE();
1600 		return;
1601 	}
1602 
1603 	/*
1604 	 * This is used for memory with normal caching enabled, so
1605 	 * always set HAT_STORECACHING_OK.
1606 	 */
1607 	attr |= HAT_STORECACHING_OK;
1608 	if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0)
1609 		panic("unexpected hati_load_common() failure");
1610 	XPV_ALLOW_MIGRATE();
1611 }
1612 
1613 /* ARGSUSED */
1614 void
1615 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
1616     uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
1617 {
1618 	hat_memload(hat, addr, pp, attr, flags);
1619 }
1620 
1621 /*
1622  * Load the given array of page structs using large pages when possible
1623  */
1624 void
1625 hat_memload_array(
1626 	hat_t		*hat,
1627 	caddr_t		addr,
1628 	size_t		len,
1629 	page_t		**pages,
1630 	uint_t		attr,
1631 	uint_t		flags)
1632 {
1633 	uintptr_t	va = (uintptr_t)addr;
1634 	uintptr_t	eaddr = va + len;
1635 	level_t		level;
1636 	size_t		pgsize;
1637 	pgcnt_t		pgindx = 0;
1638 	pfn_t		pfn;
1639 	pgcnt_t		i;
1640 
1641 	XPV_DISALLOW_MIGRATE();
1642 	ASSERT(IS_PAGEALIGNED(va));
1643 	ASSERT(hat == kas.a_hat || va + len <= _userlimit);
1644 	ASSERT(hat == kas.a_hat ||
1645 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1646 	ASSERT((flags & supported_memload_flags) == flags);
1647 
1648 	/*
1649 	 * memload is used for memory with full caching enabled, so
1650 	 * set HAT_STORECACHING_OK.
1651 	 */
1652 	attr |= HAT_STORECACHING_OK;
1653 
1654 	/*
1655 	 * handle all pages using largest possible pagesize
1656 	 */
1657 	while (va < eaddr) {
1658 		/*
1659 		 * decide what level mapping to use (ie. pagesize)
1660 		 */
1661 		pfn = page_pptonum(pages[pgindx]);
1662 		for (level = mmu.max_page_level; ; --level) {
1663 			pgsize = LEVEL_SIZE(level);
1664 			if (level == 0)
1665 				break;
1666 
1667 			if (!IS_P2ALIGNED(va, pgsize) ||
1668 			    (eaddr - va) < pgsize ||
1669 			    !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize))
1670 				continue;
1671 
1672 			/*
1673 			 * To use a large mapping of this size, all the
1674 			 * pages we are passed must be sequential subpages
1675 			 * of the large page.
1676 			 * hat_page_demote() can't change p_szc because
1677 			 * all pages are locked.
1678 			 */
1679 			if (pages[pgindx]->p_szc >= level) {
1680 				for (i = 0; i < mmu_btop(pgsize); ++i) {
1681 					if (pfn + i !=
1682 					    page_pptonum(pages[pgindx + i]))
1683 						break;
1684 					ASSERT(pages[pgindx + i]->p_szc >=
1685 					    level);
1686 					ASSERT(pages[pgindx] + i ==
1687 					    pages[pgindx + i]);
1688 				}
1689 				if (i == mmu_btop(pgsize)) {
1690 #ifdef DEBUG
1691 					if (level == 2)
1692 						map1gcnt++;
1693 #endif
1694 					break;
1695 				}
1696 			}
1697 		}
1698 
1699 		/*
1700 		 * Load this page mapping. If the load fails, try a smaller
1701 		 * pagesize.
1702 		 */
1703 		ASSERT(!IN_VA_HOLE(va));
1704 		while (hati_load_common(hat, va, pages[pgindx], attr,
1705 		    flags, level, pfn) != 0) {
1706 			if (level == 0)
1707 				panic("unexpected hati_load_common() failure");
1708 			--level;
1709 			pgsize = LEVEL_SIZE(level);
1710 		}
1711 
1712 		/*
1713 		 * move to next page
1714 		 */
1715 		va += pgsize;
1716 		pgindx += mmu_btop(pgsize);
1717 	}
1718 	XPV_ALLOW_MIGRATE();
1719 }
1720 
1721 /* ARGSUSED */
1722 void
1723 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
1724     struct page **pps, uint_t attr, uint_t flags,
1725     hat_region_cookie_t rcookie)
1726 {
1727 	hat_memload_array(hat, addr, len, pps, attr, flags);
1728 }
1729 
1730 /*
1731  * void hat_devload(hat, addr, len, pf, attr, flags)
1732  *	load/lock the given page frame number
1733  *
1734  * Advisory ordering attributes. Apply only to device mappings.
1735  *
1736  * HAT_STRICTORDER: the CPU must issue the references in order, as the
1737  *	programmer specified.  This is the default.
1738  * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds
1739  *	of reordering; store or load with store or load).
1740  * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores
1741  *	to consecutive locations (for example, turn two consecutive byte
1742  *	stores into one halfword store), and it may batch individual loads
1743  *	(for example, turn two consecutive byte loads into one halfword load).
1744  *	This also implies re-ordering.
1745  * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it
1746  *	until another store occurs.  The default is to fetch new data
1747  *	on every load.  This also implies merging.
1748  * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to
1749  *	the device (perhaps with other data) at a later time.  The default is
1750  *	to push the data right away.  This also implies load caching.
1751  *
1752  * Equivalent of hat_memload(), but can be used for device memory where
1753  * there are no page_t's and we support additional flags (write merging, etc).
1754  * Note that we can have large page mappings with this interface.
1755  */
1756 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK |
1757 	HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK |
1758 	HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK;
1759 
1760 void
1761 hat_devload(
1762 	hat_t		*hat,
1763 	caddr_t		addr,
1764 	size_t		len,
1765 	pfn_t		pfn,
1766 	uint_t		attr,
1767 	int		flags)
1768 {
1769 	uintptr_t	va = ALIGN2PAGE(addr);
1770 	uintptr_t	eva = va + len;
1771 	level_t		level;
1772 	size_t		pgsize;
1773 	page_t		*pp;
1774 	int		f;	/* per PTE copy of flags  - maybe modified */
1775 	uint_t		a;	/* per PTE copy of attr */
1776 
1777 	XPV_DISALLOW_MIGRATE();
1778 	ASSERT(IS_PAGEALIGNED(va));
1779 	ASSERT(hat == kas.a_hat || eva <= _userlimit);
1780 	ASSERT(hat == kas.a_hat ||
1781 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1782 	ASSERT((flags & supported_devload_flags) == flags);
1783 
1784 	/*
1785 	 * handle all pages
1786 	 */
1787 	while (va < eva) {
1788 
1789 		/*
1790 		 * decide what level mapping to use (ie. pagesize)
1791 		 */
1792 		for (level = mmu.max_page_level; ; --level) {
1793 			pgsize = LEVEL_SIZE(level);
1794 			if (level == 0)
1795 				break;
1796 			if (IS_P2ALIGNED(va, pgsize) &&
1797 			    (eva - va) >= pgsize &&
1798 			    IS_P2ALIGNED(pfn, mmu_btop(pgsize))) {
1799 #ifdef DEBUG
1800 				if (level == 2)
1801 					map1gcnt++;
1802 #endif
1803 				break;
1804 			}
1805 		}
1806 
1807 		/*
1808 		 * If this is just memory then allow caching (this happens
1809 		 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used
1810 		 * to override that. If we don't have a page_t then make sure
1811 		 * NOCONSIST is set.
1812 		 */
1813 		a = attr;
1814 		f = flags;
1815 		if (!pf_is_memory(pfn))
1816 			f |= HAT_LOAD_NOCONSIST;
1817 		else if (!(a & HAT_PLAT_NOCACHE))
1818 			a |= HAT_STORECACHING_OK;
1819 
1820 		if (f & HAT_LOAD_NOCONSIST)
1821 			pp = NULL;
1822 		else
1823 			pp = page_numtopp_nolock(pfn);
1824 
1825 		/*
1826 		 * Check to make sure we are really trying to map a valid
1827 		 * memory page. The caller wishing to intentionally map
1828 		 * free memory pages will have passed the HAT_LOAD_NOCONSIST
1829 		 * flag, then pp will be NULL.
1830 		 */
1831 		if (pp != NULL) {
1832 			if (PP_ISFREE(pp)) {
1833 				panic("hat_devload: loading "
1834 				    "a mapping to free page %p", (void *)pp);
1835 			}
1836 
1837 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1838 				panic("hat_devload: loading a mapping "
1839 				    "to an unlocked page %p",
1840 				    (void *)pp);
1841 			}
1842 		}
1843 
1844 		/*
1845 		 * load this page mapping
1846 		 */
1847 		ASSERT(!IN_VA_HOLE(va));
1848 		while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) {
1849 			if (level == 0)
1850 				panic("unexpected hati_load_common() failure");
1851 			--level;
1852 			pgsize = LEVEL_SIZE(level);
1853 		}
1854 
1855 		/*
1856 		 * move to next page
1857 		 */
1858 		va += pgsize;
1859 		pfn += mmu_btop(pgsize);
1860 	}
1861 	XPV_ALLOW_MIGRATE();
1862 }
1863 
1864 /*
1865  * void hat_unlock(hat, addr, len)
1866  *	unlock the mappings to a given range of addresses
1867  *
1868  * Locks are tracked by ht_lock_cnt in the htable.
1869  */
1870 void
1871 hat_unlock(hat_t *hat, caddr_t addr, size_t len)
1872 {
1873 	uintptr_t	vaddr = (uintptr_t)addr;
1874 	uintptr_t	eaddr = vaddr + len;
1875 	htable_t	*ht = NULL;
1876 
1877 	/*
1878 	 * kernel entries are always locked, we don't track lock counts
1879 	 */
1880 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
1881 	ASSERT(IS_PAGEALIGNED(vaddr));
1882 	ASSERT(IS_PAGEALIGNED(eaddr));
1883 	if (hat == kas.a_hat)
1884 		return;
1885 	if (eaddr > _userlimit)
1886 		panic("hat_unlock() address out of range - above _userlimit");
1887 
1888 	XPV_DISALLOW_MIGRATE();
1889 	ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1890 	while (vaddr < eaddr) {
1891 		(void) htable_walk(hat, &ht, &vaddr, eaddr);
1892 		if (ht == NULL)
1893 			break;
1894 
1895 		ASSERT(!IN_VA_HOLE(vaddr));
1896 
1897 		if (ht->ht_lock_cnt < 1)
1898 			panic("hat_unlock(): lock_cnt < 1, "
1899 			    "htable=%p, vaddr=%p\n", (void *)ht, (void *)vaddr);
1900 		HTABLE_LOCK_DEC(ht);
1901 
1902 		vaddr += LEVEL_SIZE(ht->ht_level);
1903 	}
1904 	if (ht)
1905 		htable_release(ht);
1906 	XPV_ALLOW_MIGRATE();
1907 }
1908 
1909 /* ARGSUSED */
1910 void
1911 hat_unlock_region(struct hat *hat, caddr_t addr, size_t len,
1912     hat_region_cookie_t rcookie)
1913 {
1914 	panic("No shared region support on x86");
1915 }
1916 
1917 #if !defined(__xpv)
1918 /*
1919  * Cross call service routine to demap a virtual page on
1920  * the current CPU or flush all mappings in TLB.
1921  */
1922 /*ARGSUSED*/
1923 static int
1924 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3)
1925 {
1926 	hat_t	*hat = (hat_t *)a1;
1927 	caddr_t	addr = (caddr_t)a2;
1928 
1929 	/*
1930 	 * If the target hat isn't the kernel and this CPU isn't operating
1931 	 * in the target hat, we can ignore the cross call.
1932 	 */
1933 	if (hat != kas.a_hat && hat != CPU->cpu_current_hat)
1934 		return (0);
1935 
1936 	/*
1937 	 * For a normal address, we just flush one page mapping
1938 	 */
1939 	if ((uintptr_t)addr != DEMAP_ALL_ADDR) {
1940 		mmu_tlbflush_entry(addr);
1941 		return (0);
1942 	}
1943 
1944 	/*
1945 	 * Otherwise we reload cr3 to effect a complete TLB flush.
1946 	 *
1947 	 * A reload of cr3 on a VLP process also means we must also recopy in
1948 	 * the pte values from the struct hat
1949 	 */
1950 	if (hat->hat_flags & HAT_VLP) {
1951 #if defined(__amd64)
1952 		x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes;
1953 
1954 		VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1955 #elif defined(__i386)
1956 		reload_pae32(hat, CPU);
1957 #endif
1958 	}
1959 	reload_cr3();
1960 	return (0);
1961 }
1962 
1963 /*
1964  * Flush all TLB entries, including global (ie. kernel) ones.
1965  */
1966 static void
1967 flush_all_tlb_entries(void)
1968 {
1969 	ulong_t cr4 = getcr4();
1970 
1971 	if (cr4 & CR4_PGE) {
1972 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
1973 		setcr4(cr4);
1974 
1975 		/*
1976 		 * 32 bit PAE also needs to always reload_cr3()
1977 		 */
1978 		if (mmu.max_level == 2)
1979 			reload_cr3();
1980 	} else {
1981 		reload_cr3();
1982 	}
1983 }
1984 
1985 #define	TLB_CPU_HALTED	(01ul)
1986 #define	TLB_INVAL_ALL	(02ul)
1987 #define	CAS_TLB_INFO(cpu, old, new)	\
1988 	caslong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new))
1989 
1990 /*
1991  * Record that a CPU is going idle
1992  */
1993 void
1994 tlb_going_idle(void)
1995 {
1996 	atomic_or_long((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED);
1997 }
1998 
1999 /*
2000  * Service a delayed TLB flush if coming out of being idle.
2001  * It will be called from cpu idle notification with interrupt disabled.
2002  */
2003 void
2004 tlb_service(void)
2005 {
2006 	ulong_t tlb_info;
2007 	ulong_t found;
2008 
2009 	/*
2010 	 * We only have to do something if coming out of being idle.
2011 	 */
2012 	tlb_info = CPU->cpu_m.mcpu_tlb_info;
2013 	if (tlb_info & TLB_CPU_HALTED) {
2014 		ASSERT(CPU->cpu_current_hat == kas.a_hat);
2015 
2016 		/*
2017 		 * Atomic clear and fetch of old state.
2018 		 */
2019 		while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) {
2020 			ASSERT(found & TLB_CPU_HALTED);
2021 			tlb_info = found;
2022 			SMT_PAUSE();
2023 		}
2024 		if (tlb_info & TLB_INVAL_ALL)
2025 			flush_all_tlb_entries();
2026 	}
2027 }
2028 #endif /* !__xpv */
2029 
2030 /*
2031  * Internal routine to do cross calls to invalidate a range of pages on
2032  * all CPUs using a given hat.
2033  */
2034 void
2035 hat_tlb_inval(hat_t *hat, uintptr_t va)
2036 {
2037 	extern int	flushes_require_xcalls;	/* from mp_startup.c */
2038 	cpuset_t	justme;
2039 	cpuset_t	cpus_to_shootdown;
2040 #ifndef __xpv
2041 	cpuset_t	check_cpus;
2042 	cpu_t		*cpup;
2043 	int		c;
2044 #endif
2045 
2046 	/*
2047 	 * If the hat is being destroyed, there are no more users, so
2048 	 * demap need not do anything.
2049 	 */
2050 	if (hat->hat_flags & HAT_FREEING)
2051 		return;
2052 
2053 	/*
2054 	 * If demapping from a shared pagetable, we best demap the
2055 	 * entire set of user TLBs, since we don't know what addresses
2056 	 * these were shared at.
2057 	 */
2058 	if (hat->hat_flags & HAT_SHARED) {
2059 		hat = kas.a_hat;
2060 		va = DEMAP_ALL_ADDR;
2061 	}
2062 
2063 	/*
2064 	 * if not running with multiple CPUs, don't use cross calls
2065 	 */
2066 	if (panicstr || !flushes_require_xcalls) {
2067 #ifdef __xpv
2068 		if (va == DEMAP_ALL_ADDR)
2069 			xen_flush_tlb();
2070 		else
2071 			xen_flush_va((caddr_t)va);
2072 #else
2073 		(void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL);
2074 #endif
2075 		return;
2076 	}
2077 
2078 
2079 	/*
2080 	 * Determine CPUs to shootdown. Kernel changes always do all CPUs.
2081 	 * Otherwise it's just CPUs currently executing in this hat.
2082 	 */
2083 	kpreempt_disable();
2084 	CPUSET_ONLY(justme, CPU->cpu_id);
2085 	if (hat == kas.a_hat)
2086 		cpus_to_shootdown = khat_cpuset;
2087 	else
2088 		cpus_to_shootdown = hat->hat_cpus;
2089 
2090 #ifndef __xpv
2091 	/*
2092 	 * If any CPUs in the set are idle, just request a delayed flush
2093 	 * and avoid waking them up.
2094 	 */
2095 	check_cpus = cpus_to_shootdown;
2096 	for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) {
2097 		ulong_t tlb_info;
2098 
2099 		if (!CPU_IN_SET(check_cpus, c))
2100 			continue;
2101 		CPUSET_DEL(check_cpus, c);
2102 		cpup = cpu[c];
2103 		if (cpup == NULL)
2104 			continue;
2105 
2106 		tlb_info = cpup->cpu_m.mcpu_tlb_info;
2107 		while (tlb_info == TLB_CPU_HALTED) {
2108 			(void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED,
2109 			    TLB_CPU_HALTED | TLB_INVAL_ALL);
2110 			SMT_PAUSE();
2111 			tlb_info = cpup->cpu_m.mcpu_tlb_info;
2112 		}
2113 		if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) {
2114 			HATSTAT_INC(hs_tlb_inval_delayed);
2115 			CPUSET_DEL(cpus_to_shootdown, c);
2116 		}
2117 	}
2118 #endif
2119 
2120 	if (CPUSET_ISNULL(cpus_to_shootdown) ||
2121 	    CPUSET_ISEQUAL(cpus_to_shootdown, justme)) {
2122 
2123 #ifdef __xpv
2124 		if (va == DEMAP_ALL_ADDR)
2125 			xen_flush_tlb();
2126 		else
2127 			xen_flush_va((caddr_t)va);
2128 #else
2129 		(void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL);
2130 #endif
2131 
2132 	} else {
2133 
2134 		CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id);
2135 #ifdef __xpv
2136 		if (va == DEMAP_ALL_ADDR)
2137 			xen_gflush_tlb(cpus_to_shootdown);
2138 		else
2139 			xen_gflush_va((caddr_t)va, cpus_to_shootdown);
2140 #else
2141 		xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL,
2142 		    CPUSET2BV(cpus_to_shootdown), hati_demap_func);
2143 #endif
2144 
2145 	}
2146 	kpreempt_enable();
2147 }
2148 
2149 /*
2150  * Interior routine for HAT_UNLOADs from hat_unload_callback(),
2151  * hat_kmap_unload() OR from hat_steal() code.  This routine doesn't
2152  * handle releasing of the htables.
2153  */
2154 void
2155 hat_pte_unmap(
2156 	htable_t	*ht,
2157 	uint_t		entry,
2158 	uint_t		flags,
2159 	x86pte_t	old_pte,
2160 	void		*pte_ptr)
2161 {
2162 	hat_t		*hat = ht->ht_hat;
2163 	hment_t		*hm = NULL;
2164 	page_t		*pp = NULL;
2165 	level_t		l = ht->ht_level;
2166 	pfn_t		pfn;
2167 
2168 	/*
2169 	 * We always track the locking counts, even if nothing is unmapped
2170 	 */
2171 	if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) {
2172 		ASSERT(ht->ht_lock_cnt > 0);
2173 		HTABLE_LOCK_DEC(ht);
2174 	}
2175 
2176 	/*
2177 	 * Figure out which page's mapping list lock to acquire using the PFN
2178 	 * passed in "old" PTE. We then attempt to invalidate the PTE.
2179 	 * If another thread, probably a hat_pageunload, has asynchronously
2180 	 * unmapped/remapped this address we'll loop here.
2181 	 */
2182 	ASSERT(ht->ht_busy > 0);
2183 	while (PTE_ISVALID(old_pte)) {
2184 		pfn = PTE2PFN(old_pte, l);
2185 		if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) {
2186 			pp = NULL;
2187 		} else {
2188 #ifdef __xpv
2189 			if (pfn == PFN_INVALID)
2190 				panic("Invalid PFN, but not PT_NOCONSIST");
2191 #endif
2192 			pp = page_numtopp_nolock(pfn);
2193 			if (pp == NULL) {
2194 				panic("no page_t, not NOCONSIST: old_pte="
2195 				    FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx",
2196 				    old_pte, (uintptr_t)ht, entry,
2197 				    (uintptr_t)pte_ptr);
2198 			}
2199 			x86_hm_enter(pp);
2200 		}
2201 
2202 		old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr);
2203 
2204 		/*
2205 		 * If the page hadn't changed we've unmapped it and can proceed
2206 		 */
2207 		if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn)
2208 			break;
2209 
2210 		/*
2211 		 * Otherwise, we'll have to retry with the current old_pte.
2212 		 * Drop the hment lock, since the pfn may have changed.
2213 		 */
2214 		if (pp != NULL) {
2215 			x86_hm_exit(pp);
2216 			pp = NULL;
2217 		} else {
2218 			ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
2219 		}
2220 	}
2221 
2222 	/*
2223 	 * If the old mapping wasn't valid, there's nothing more to do
2224 	 */
2225 	if (!PTE_ISVALID(old_pte)) {
2226 		if (pp != NULL)
2227 			x86_hm_exit(pp);
2228 		return;
2229 	}
2230 
2231 	/*
2232 	 * Take care of syncing any MOD/REF bits and removing the hment.
2233 	 */
2234 	if (pp != NULL) {
2235 		if (!(flags & HAT_UNLOAD_NOSYNC))
2236 			hati_sync_pte_to_page(pp, old_pte, l);
2237 		hm = hment_remove(pp, ht, entry);
2238 		x86_hm_exit(pp);
2239 		if (hm != NULL)
2240 			hment_free(hm);
2241 	}
2242 
2243 	/*
2244 	 * Handle book keeping in the htable and hat
2245 	 */
2246 	ASSERT(ht->ht_valid_cnt > 0);
2247 	HTABLE_DEC(ht->ht_valid_cnt);
2248 	PGCNT_DEC(hat, l);
2249 }
2250 
2251 /*
2252  * very cheap unload implementation to special case some kernel addresses
2253  */
2254 static void
2255 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags)
2256 {
2257 	uintptr_t	va = (uintptr_t)addr;
2258 	uintptr_t	eva = va + len;
2259 	pgcnt_t		pg_index;
2260 	htable_t	*ht;
2261 	uint_t		entry;
2262 	x86pte_t	*pte_ptr;
2263 	x86pte_t	old_pte;
2264 
2265 	for (; va < eva; va += MMU_PAGESIZE) {
2266 		/*
2267 		 * Get the PTE
2268 		 */
2269 		pg_index = mmu_btop(va - mmu.kmap_addr);
2270 		pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index);
2271 		old_pte = GET_PTE(pte_ptr);
2272 
2273 		/*
2274 		 * get the htable / entry
2275 		 */
2276 		ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr)
2277 		    >> LEVEL_SHIFT(1)];
2278 		entry = htable_va2entry(va, ht);
2279 
2280 		/*
2281 		 * use mostly common code to unmap it.
2282 		 */
2283 		hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr);
2284 	}
2285 }
2286 
2287 
2288 /*
2289  * unload a range of virtual address space (no callback)
2290  */
2291 void
2292 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2293 {
2294 	uintptr_t va = (uintptr_t)addr;
2295 
2296 	XPV_DISALLOW_MIGRATE();
2297 	ASSERT(hat == kas.a_hat || va + len <= _userlimit);
2298 
2299 	/*
2300 	 * special case for performance.
2301 	 */
2302 	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
2303 		ASSERT(hat == kas.a_hat);
2304 		hat_kmap_unload(addr, len, flags);
2305 	} else {
2306 		hat_unload_callback(hat, addr, len, flags, NULL);
2307 	}
2308 	XPV_ALLOW_MIGRATE();
2309 }
2310 
2311 /*
2312  * Do the callbacks for ranges being unloaded.
2313  */
2314 typedef struct range_info {
2315 	uintptr_t	rng_va;
2316 	ulong_t		rng_cnt;
2317 	level_t		rng_level;
2318 } range_info_t;
2319 
2320 static void
2321 handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range)
2322 {
2323 	/*
2324 	 * do callbacks to upper level VM system
2325 	 */
2326 	while (cb != NULL && cnt > 0) {
2327 		--cnt;
2328 		cb->hcb_start_addr = (caddr_t)range[cnt].rng_va;
2329 		cb->hcb_end_addr = cb->hcb_start_addr;
2330 		cb->hcb_end_addr +=
2331 		    range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level);
2332 		cb->hcb_function(cb);
2333 	}
2334 }
2335 
2336 /*
2337  * Unload a given range of addresses (has optional callback)
2338  *
2339  * Flags:
2340  * define	HAT_UNLOAD		0x00
2341  * define	HAT_UNLOAD_NOSYNC	0x02
2342  * define	HAT_UNLOAD_UNLOCK	0x04
2343  * define	HAT_UNLOAD_OTHER	0x08 - not used
2344  * define	HAT_UNLOAD_UNMAP	0x10 - same as HAT_UNLOAD
2345  */
2346 #define	MAX_UNLOAD_CNT (8)
2347 void
2348 hat_unload_callback(
2349 	hat_t		*hat,
2350 	caddr_t		addr,
2351 	size_t		len,
2352 	uint_t		flags,
2353 	hat_callback_t	*cb)
2354 {
2355 	uintptr_t	vaddr = (uintptr_t)addr;
2356 	uintptr_t	eaddr = vaddr + len;
2357 	htable_t	*ht = NULL;
2358 	uint_t		entry;
2359 	uintptr_t	contig_va = (uintptr_t)-1L;
2360 	range_info_t	r[MAX_UNLOAD_CNT];
2361 	uint_t		r_cnt = 0;
2362 	x86pte_t	old_pte;
2363 
2364 	XPV_DISALLOW_MIGRATE();
2365 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2366 	ASSERT(IS_PAGEALIGNED(vaddr));
2367 	ASSERT(IS_PAGEALIGNED(eaddr));
2368 
2369 	/*
2370 	 * Special case a single page being unloaded for speed. This happens
2371 	 * quite frequently, COW faults after a fork() for example.
2372 	 */
2373 	if (cb == NULL && len == MMU_PAGESIZE) {
2374 		ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0);
2375 		if (ht != NULL) {
2376 			if (PTE_ISVALID(old_pte))
2377 				hat_pte_unmap(ht, entry, flags, old_pte, NULL);
2378 			htable_release(ht);
2379 		}
2380 		XPV_ALLOW_MIGRATE();
2381 		return;
2382 	}
2383 
2384 	while (vaddr < eaddr) {
2385 		old_pte = htable_walk(hat, &ht, &vaddr, eaddr);
2386 		if (ht == NULL)
2387 			break;
2388 
2389 		ASSERT(!IN_VA_HOLE(vaddr));
2390 
2391 		if (vaddr < (uintptr_t)addr)
2392 			panic("hat_unload_callback(): unmap inside large page");
2393 
2394 		/*
2395 		 * We'll do the call backs for contiguous ranges
2396 		 */
2397 		if (vaddr != contig_va ||
2398 		    (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) {
2399 			if (r_cnt == MAX_UNLOAD_CNT) {
2400 				handle_ranges(cb, r_cnt, r);
2401 				r_cnt = 0;
2402 			}
2403 			r[r_cnt].rng_va = vaddr;
2404 			r[r_cnt].rng_cnt = 0;
2405 			r[r_cnt].rng_level = ht->ht_level;
2406 			++r_cnt;
2407 		}
2408 
2409 		/*
2410 		 * Unload one mapping from the page tables.
2411 		 */
2412 		entry = htable_va2entry(vaddr, ht);
2413 		hat_pte_unmap(ht, entry, flags, old_pte, NULL);
2414 		ASSERT(ht->ht_level <= mmu.max_page_level);
2415 		vaddr += LEVEL_SIZE(ht->ht_level);
2416 		contig_va = vaddr;
2417 		++r[r_cnt - 1].rng_cnt;
2418 	}
2419 	if (ht)
2420 		htable_release(ht);
2421 
2422 	/*
2423 	 * handle last range for callbacks
2424 	 */
2425 	if (r_cnt > 0)
2426 		handle_ranges(cb, r_cnt, r);
2427 	XPV_ALLOW_MIGRATE();
2428 }
2429 
2430 /*
2431  * Invalidate a virtual address translation on a slave CPU during
2432  * panic() dumps.
2433  */
2434 void
2435 hat_flush_range(hat_t *hat, caddr_t va, size_t size)
2436 {
2437 	ssize_t sz;
2438 	caddr_t endva = va + size;
2439 
2440 	while (va < endva) {
2441 		sz = hat_getpagesize(hat, va);
2442 		if (sz < 0) {
2443 #ifdef __xpv
2444 			xen_flush_tlb();
2445 #else
2446 			flush_all_tlb_entries();
2447 #endif
2448 			break;
2449 		}
2450 #ifdef __xpv
2451 		xen_flush_va(va);
2452 #else
2453 		mmu_tlbflush_entry(va);
2454 #endif
2455 		va += sz;
2456 	}
2457 }
2458 
2459 /*
2460  * synchronize mapping with software data structures
2461  *
2462  * This interface is currently only used by the working set monitor
2463  * driver.
2464  */
2465 /*ARGSUSED*/
2466 void
2467 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2468 {
2469 	uintptr_t	vaddr = (uintptr_t)addr;
2470 	uintptr_t	eaddr = vaddr + len;
2471 	htable_t	*ht = NULL;
2472 	uint_t		entry;
2473 	x86pte_t	pte;
2474 	x86pte_t	save_pte;
2475 	x86pte_t	new;
2476 	page_t		*pp;
2477 
2478 	ASSERT(!IN_VA_HOLE(vaddr));
2479 	ASSERT(IS_PAGEALIGNED(vaddr));
2480 	ASSERT(IS_PAGEALIGNED(eaddr));
2481 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2482 
2483 	XPV_DISALLOW_MIGRATE();
2484 	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2485 try_again:
2486 		pte = htable_walk(hat, &ht, &vaddr, eaddr);
2487 		if (ht == NULL)
2488 			break;
2489 		entry = htable_va2entry(vaddr, ht);
2490 
2491 		if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2492 		    PTE_GET(pte, PT_REF | PT_MOD) == 0)
2493 			continue;
2494 
2495 		/*
2496 		 * We need to acquire the mapping list lock to protect
2497 		 * against hat_pageunload(), hat_unload(), etc.
2498 		 */
2499 		pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level));
2500 		if (pp == NULL)
2501 			break;
2502 		x86_hm_enter(pp);
2503 		save_pte = pte;
2504 		pte = x86pte_get(ht, entry);
2505 		if (pte != save_pte) {
2506 			x86_hm_exit(pp);
2507 			goto try_again;
2508 		}
2509 		if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2510 		    PTE_GET(pte, PT_REF | PT_MOD) == 0) {
2511 			x86_hm_exit(pp);
2512 			continue;
2513 		}
2514 
2515 		/*
2516 		 * Need to clear ref or mod bits. We may compete with
2517 		 * hardware updating the R/M bits and have to try again.
2518 		 */
2519 		if (flags == HAT_SYNC_ZERORM) {
2520 			new = pte;
2521 			PTE_CLR(new, PT_REF | PT_MOD);
2522 			pte = hati_update_pte(ht, entry, pte, new);
2523 			if (pte != 0) {
2524 				x86_hm_exit(pp);
2525 				goto try_again;
2526 			}
2527 		} else {
2528 			/*
2529 			 * sync the PTE to the page_t
2530 			 */
2531 			hati_sync_pte_to_page(pp, save_pte, ht->ht_level);
2532 		}
2533 		x86_hm_exit(pp);
2534 	}
2535 	if (ht)
2536 		htable_release(ht);
2537 	XPV_ALLOW_MIGRATE();
2538 }
2539 
2540 /*
2541  * void	hat_map(hat, addr, len, flags)
2542  */
2543 /*ARGSUSED*/
2544 void
2545 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2546 {
2547 	/* does nothing */
2548 }
2549 
2550 /*
2551  * uint_t hat_getattr(hat, addr, *attr)
2552  *	returns attr for <hat,addr> in *attr.  returns 0 if there was a
2553  *	mapping and *attr is valid, nonzero if there was no mapping and
2554  *	*attr is not valid.
2555  */
2556 uint_t
2557 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr)
2558 {
2559 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2560 	htable_t	*ht = NULL;
2561 	x86pte_t	pte;
2562 
2563 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2564 
2565 	if (IN_VA_HOLE(vaddr))
2566 		return ((uint_t)-1);
2567 
2568 	ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level);
2569 	if (ht == NULL)
2570 		return ((uint_t)-1);
2571 
2572 	if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) {
2573 		htable_release(ht);
2574 		return ((uint_t)-1);
2575 	}
2576 
2577 	*attr = PROT_READ;
2578 	if (PTE_GET(pte, PT_WRITABLE))
2579 		*attr |= PROT_WRITE;
2580 	if (PTE_GET(pte, PT_USER))
2581 		*attr |= PROT_USER;
2582 	if (!PTE_GET(pte, mmu.pt_nx))
2583 		*attr |= PROT_EXEC;
2584 	if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
2585 		*attr |= HAT_NOSYNC;
2586 	htable_release(ht);
2587 	return (0);
2588 }
2589 
2590 /*
2591  * hat_updateattr() applies the given attribute change to an existing mapping
2592  */
2593 #define	HAT_LOAD_ATTR		1
2594 #define	HAT_SET_ATTR		2
2595 #define	HAT_CLR_ATTR		3
2596 
2597 static void
2598 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what)
2599 {
2600 	uintptr_t	vaddr = (uintptr_t)addr;
2601 	uintptr_t	eaddr = (uintptr_t)addr + len;
2602 	htable_t	*ht = NULL;
2603 	uint_t		entry;
2604 	x86pte_t	oldpte, newpte;
2605 	page_t		*pp;
2606 
2607 	XPV_DISALLOW_MIGRATE();
2608 	ASSERT(IS_PAGEALIGNED(vaddr));
2609 	ASSERT(IS_PAGEALIGNED(eaddr));
2610 	ASSERT(hat == kas.a_hat ||
2611 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2612 	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2613 try_again:
2614 		oldpte = htable_walk(hat, &ht, &vaddr, eaddr);
2615 		if (ht == NULL)
2616 			break;
2617 		if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST)
2618 			continue;
2619 
2620 		pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level));
2621 		if (pp == NULL)
2622 			continue;
2623 		x86_hm_enter(pp);
2624 
2625 		newpte = oldpte;
2626 		/*
2627 		 * We found a page table entry in the desired range,
2628 		 * figure out the new attributes.
2629 		 */
2630 		if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) {
2631 			if ((attr & PROT_WRITE) &&
2632 			    !PTE_GET(oldpte, PT_WRITABLE))
2633 				newpte |= PT_WRITABLE;
2634 
2635 			if ((attr & HAT_NOSYNC) &&
2636 			    PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC)
2637 				newpte |= PT_NOSYNC;
2638 
2639 			if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx))
2640 				newpte &= ~mmu.pt_nx;
2641 		}
2642 
2643 		if (what == HAT_LOAD_ATTR) {
2644 			if (!(attr & PROT_WRITE) &&
2645 			    PTE_GET(oldpte, PT_WRITABLE))
2646 				newpte &= ~PT_WRITABLE;
2647 
2648 			if (!(attr & HAT_NOSYNC) &&
2649 			    PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2650 				newpte &= ~PT_SOFTWARE;
2651 
2652 			if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2653 				newpte |= mmu.pt_nx;
2654 		}
2655 
2656 		if (what == HAT_CLR_ATTR) {
2657 			if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE))
2658 				newpte &= ~PT_WRITABLE;
2659 
2660 			if ((attr & HAT_NOSYNC) &&
2661 			    PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2662 				newpte &= ~PT_SOFTWARE;
2663 
2664 			if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2665 				newpte |= mmu.pt_nx;
2666 		}
2667 
2668 		/*
2669 		 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set.
2670 		 * x86pte_set() depends on this.
2671 		 */
2672 		if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC)
2673 			newpte |= PT_REF | PT_MOD;
2674 
2675 		/*
2676 		 * what about PROT_READ or others? this code only handles:
2677 		 * EXEC, WRITE, NOSYNC
2678 		 */
2679 
2680 		/*
2681 		 * If new PTE really changed, update the table.
2682 		 */
2683 		if (newpte != oldpte) {
2684 			entry = htable_va2entry(vaddr, ht);
2685 			oldpte = hati_update_pte(ht, entry, oldpte, newpte);
2686 			if (oldpte != 0) {
2687 				x86_hm_exit(pp);
2688 				goto try_again;
2689 			}
2690 		}
2691 		x86_hm_exit(pp);
2692 	}
2693 	if (ht)
2694 		htable_release(ht);
2695 	XPV_ALLOW_MIGRATE();
2696 }
2697 
2698 /*
2699  * Various wrappers for hat_updateattr()
2700  */
2701 void
2702 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2703 {
2704 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2705 	hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR);
2706 }
2707 
2708 void
2709 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2710 {
2711 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2712 	hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR);
2713 }
2714 
2715 void
2716 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2717 {
2718 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2719 	hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR);
2720 }
2721 
2722 void
2723 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot)
2724 {
2725 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2726 	hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR);
2727 }
2728 
2729 /*
2730  * size_t hat_getpagesize(hat, addr)
2731  *	returns pagesize in bytes for <hat, addr>. returns -1 of there is
2732  *	no mapping. This is an advisory call.
2733  */
2734 ssize_t
2735 hat_getpagesize(hat_t *hat, caddr_t addr)
2736 {
2737 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2738 	htable_t	*ht;
2739 	size_t		pagesize;
2740 
2741 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2742 	if (IN_VA_HOLE(vaddr))
2743 		return (-1);
2744 	ht = htable_getpage(hat, vaddr, NULL);
2745 	if (ht == NULL)
2746 		return (-1);
2747 	pagesize = LEVEL_SIZE(ht->ht_level);
2748 	htable_release(ht);
2749 	return (pagesize);
2750 }
2751 
2752 
2753 
2754 /*
2755  * pfn_t hat_getpfnum(hat, addr)
2756  *	returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid.
2757  */
2758 pfn_t
2759 hat_getpfnum(hat_t *hat, caddr_t addr)
2760 {
2761 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2762 	htable_t	*ht;
2763 	uint_t		entry;
2764 	pfn_t		pfn = PFN_INVALID;
2765 
2766 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2767 	if (khat_running == 0)
2768 		return (PFN_INVALID);
2769 
2770 	if (IN_VA_HOLE(vaddr))
2771 		return (PFN_INVALID);
2772 
2773 	XPV_DISALLOW_MIGRATE();
2774 	/*
2775 	 * A very common use of hat_getpfnum() is from the DDI for kernel pages.
2776 	 * Use the kmap_ptes (which also covers the 32 bit heap) to speed
2777 	 * this up.
2778 	 */
2779 	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2780 		x86pte_t pte;
2781 		pgcnt_t pg_index;
2782 
2783 		pg_index = mmu_btop(vaddr - mmu.kmap_addr);
2784 		pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index));
2785 		if (PTE_ISVALID(pte))
2786 			/*LINTED [use of constant 0 causes a lint warning] */
2787 			pfn = PTE2PFN(pte, 0);
2788 		XPV_ALLOW_MIGRATE();
2789 		return (pfn);
2790 	}
2791 
2792 	ht = htable_getpage(hat, vaddr, &entry);
2793 	if (ht == NULL) {
2794 		XPV_ALLOW_MIGRATE();
2795 		return (PFN_INVALID);
2796 	}
2797 	ASSERT(vaddr >= ht->ht_vaddr);
2798 	ASSERT(vaddr <= HTABLE_LAST_PAGE(ht));
2799 	pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level);
2800 	if (ht->ht_level > 0)
2801 		pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level));
2802 	htable_release(ht);
2803 	XPV_ALLOW_MIGRATE();
2804 	return (pfn);
2805 }
2806 
2807 /*
2808  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
2809  * Use hat_getpfnum(kas.a_hat, ...) instead.
2810  *
2811  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
2812  * but can't right now due to the fact that some software has grown to use
2813  * this interface incorrectly. So for now when the interface is misused,
2814  * return a warning to the user that in the future it won't work in the
2815  * way they're abusing it, and carry on.
2816  *
2817  * Note that hat_getkpfnum() is never supported on amd64.
2818  */
2819 #if !defined(__amd64)
2820 pfn_t
2821 hat_getkpfnum(caddr_t addr)
2822 {
2823 	pfn_t	pfn;
2824 	int badcaller = 0;
2825 
2826 	if (khat_running == 0)
2827 		panic("hat_getkpfnum(): called too early\n");
2828 	if ((uintptr_t)addr < kernelbase)
2829 		return (PFN_INVALID);
2830 
2831 	XPV_DISALLOW_MIGRATE();
2832 	if (segkpm && IS_KPM_ADDR(addr)) {
2833 		badcaller = 1;
2834 		pfn = hat_kpm_va2pfn(addr);
2835 	} else {
2836 		pfn = hat_getpfnum(kas.a_hat, addr);
2837 		badcaller = pf_is_memory(pfn);
2838 	}
2839 
2840 	if (badcaller)
2841 		hat_getkpfnum_badcall(caller());
2842 	XPV_ALLOW_MIGRATE();
2843 	return (pfn);
2844 }
2845 #endif /* __amd64 */
2846 
2847 /*
2848  * int hat_probe(hat, addr)
2849  *	return 0 if no valid mapping is present.  Faster version
2850  *	of hat_getattr in certain architectures.
2851  */
2852 int
2853 hat_probe(hat_t *hat, caddr_t addr)
2854 {
2855 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2856 	uint_t		entry;
2857 	htable_t	*ht;
2858 	pgcnt_t		pg_off;
2859 
2860 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2861 	ASSERT(hat == kas.a_hat ||
2862 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2863 	if (IN_VA_HOLE(vaddr))
2864 		return (0);
2865 
2866 	/*
2867 	 * Most common use of hat_probe is from segmap. We special case it
2868 	 * for performance.
2869 	 */
2870 	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2871 		pg_off = mmu_btop(vaddr - mmu.kmap_addr);
2872 		if (mmu.pae_hat)
2873 			return (PTE_ISVALID(mmu.kmap_ptes[pg_off]));
2874 		else
2875 			return (PTE_ISVALID(
2876 			    ((x86pte32_t *)mmu.kmap_ptes)[pg_off]));
2877 	}
2878 
2879 	ht = htable_getpage(hat, vaddr, &entry);
2880 	htable_release(ht);
2881 	return (ht != NULL);
2882 }
2883 
2884 /*
2885  * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM.
2886  */
2887 static int
2888 is_it_dism(hat_t *hat, caddr_t va)
2889 {
2890 	struct seg *seg;
2891 	struct shm_data *shmd;
2892 	struct spt_data *sptd;
2893 
2894 	seg = as_findseg(hat->hat_as, va, 0);
2895 	ASSERT(seg != NULL);
2896 	ASSERT(seg->s_base <= va);
2897 	shmd = (struct shm_data *)seg->s_data;
2898 	ASSERT(shmd != NULL);
2899 	sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2900 	ASSERT(sptd != NULL);
2901 	if (sptd->spt_flags & SHM_PAGEABLE)
2902 		return (1);
2903 	return (0);
2904 }
2905 
2906 /*
2907  * Simple implementation of ISM. hat_share() is similar to hat_memload_array(),
2908  * except that we use the ism_hat's existing mappings to determine the pages
2909  * and protections to use for this hat. If we find a full properly aligned
2910  * and sized pagetable, we will attempt to share the pagetable itself.
2911  */
2912 /*ARGSUSED*/
2913 int
2914 hat_share(
2915 	hat_t		*hat,
2916 	caddr_t		addr,
2917 	hat_t		*ism_hat,
2918 	caddr_t		src_addr,
2919 	size_t		len,	/* almost useless value, see below.. */
2920 	uint_t		ismszc)
2921 {
2922 	uintptr_t	vaddr_start = (uintptr_t)addr;
2923 	uintptr_t	vaddr;
2924 	uintptr_t	eaddr = vaddr_start + len;
2925 	uintptr_t	ism_addr_start = (uintptr_t)src_addr;
2926 	uintptr_t	ism_addr = ism_addr_start;
2927 	uintptr_t	e_ism_addr = ism_addr + len;
2928 	htable_t	*ism_ht = NULL;
2929 	htable_t	*ht;
2930 	x86pte_t	pte;
2931 	page_t		*pp;
2932 	pfn_t		pfn;
2933 	level_t		l;
2934 	pgcnt_t		pgcnt;
2935 	uint_t		prot;
2936 	int		is_dism;
2937 	int		flags;
2938 
2939 	/*
2940 	 * We might be asked to share an empty DISM hat by as_dup()
2941 	 */
2942 	ASSERT(hat != kas.a_hat);
2943 	ASSERT(eaddr <= _userlimit);
2944 	if (!(ism_hat->hat_flags & HAT_SHARED)) {
2945 		ASSERT(hat_get_mapped_size(ism_hat) == 0);
2946 		return (0);
2947 	}
2948 	XPV_DISALLOW_MIGRATE();
2949 
2950 	/*
2951 	 * The SPT segment driver often passes us a size larger than there are
2952 	 * valid mappings. That's because it rounds the segment size up to a
2953 	 * large pagesize, even if the actual memory mapped by ism_hat is less.
2954 	 */
2955 	ASSERT(IS_PAGEALIGNED(vaddr_start));
2956 	ASSERT(IS_PAGEALIGNED(ism_addr_start));
2957 	ASSERT(ism_hat->hat_flags & HAT_SHARED);
2958 	is_dism = is_it_dism(hat, addr);
2959 	while (ism_addr < e_ism_addr) {
2960 		/*
2961 		 * use htable_walk to get the next valid ISM mapping
2962 		 */
2963 		pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr);
2964 		if (ism_ht == NULL)
2965 			break;
2966 
2967 		/*
2968 		 * First check to see if we already share the page table.
2969 		 */
2970 		l = ism_ht->ht_level;
2971 		vaddr = vaddr_start + (ism_addr - ism_addr_start);
2972 		ht = htable_lookup(hat, vaddr, l);
2973 		if (ht != NULL) {
2974 			if (ht->ht_flags & HTABLE_SHARED_PFN)
2975 				goto shared;
2976 			htable_release(ht);
2977 			goto not_shared;
2978 		}
2979 
2980 		/*
2981 		 * Can't ever share top table.
2982 		 */
2983 		if (l == mmu.max_level)
2984 			goto not_shared;
2985 
2986 		/*
2987 		 * Avoid level mismatches later due to DISM faults.
2988 		 */
2989 		if (is_dism && l > 0)
2990 			goto not_shared;
2991 
2992 		/*
2993 		 * addresses and lengths must align
2994 		 * table must be fully populated
2995 		 * no lower level page tables
2996 		 */
2997 		if (ism_addr != ism_ht->ht_vaddr ||
2998 		    (vaddr & LEVEL_OFFSET(l + 1)) != 0)
2999 			goto not_shared;
3000 
3001 		/*
3002 		 * The range of address space must cover a full table.
3003 		 */
3004 		if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1))
3005 			goto not_shared;
3006 
3007 		/*
3008 		 * All entries in the ISM page table must be leaf PTEs.
3009 		 */
3010 		if (l > 0) {
3011 			int e;
3012 
3013 			/*
3014 			 * We know the 0th is from htable_walk() above.
3015 			 */
3016 			for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) {
3017 				x86pte_t pte;
3018 				pte = x86pte_get(ism_ht, e);
3019 				if (!PTE_ISPAGE(pte, l))
3020 					goto not_shared;
3021 			}
3022 		}
3023 
3024 		/*
3025 		 * share the page table
3026 		 */
3027 		ht = htable_create(hat, vaddr, l, ism_ht);
3028 shared:
3029 		ASSERT(ht->ht_flags & HTABLE_SHARED_PFN);
3030 		ASSERT(ht->ht_shares == ism_ht);
3031 		hat->hat_ism_pgcnt +=
3032 		    (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) <<
3033 		    (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3034 		ht->ht_valid_cnt = ism_ht->ht_valid_cnt;
3035 		htable_release(ht);
3036 		ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1);
3037 		htable_release(ism_ht);
3038 		ism_ht = NULL;
3039 		continue;
3040 
3041 not_shared:
3042 		/*
3043 		 * Unable to share the page table. Instead we will
3044 		 * create new mappings from the values in the ISM mappings.
3045 		 * Figure out what level size mappings to use;
3046 		 */
3047 		for (l = ism_ht->ht_level; l > 0; --l) {
3048 			if (LEVEL_SIZE(l) <= eaddr - vaddr &&
3049 			    (vaddr & LEVEL_OFFSET(l)) == 0)
3050 				break;
3051 		}
3052 
3053 		/*
3054 		 * The ISM mapping might be larger than the share area,
3055 		 * be careful to truncate it if needed.
3056 		 */
3057 		if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) {
3058 			pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level));
3059 		} else {
3060 			pgcnt = mmu_btop(eaddr - vaddr);
3061 			l = 0;
3062 		}
3063 
3064 		pfn = PTE2PFN(pte, ism_ht->ht_level);
3065 		ASSERT(pfn != PFN_INVALID);
3066 		while (pgcnt > 0) {
3067 			/*
3068 			 * Make a new pte for the PFN for this level.
3069 			 * Copy protections for the pte from the ISM pte.
3070 			 */
3071 			pp = page_numtopp_nolock(pfn);
3072 			ASSERT(pp != NULL);
3073 
3074 			prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK;
3075 			if (PTE_GET(pte, PT_WRITABLE))
3076 				prot |= PROT_WRITE;
3077 			if (!PTE_GET(pte, PT_NX))
3078 				prot |= PROT_EXEC;
3079 
3080 			flags = HAT_LOAD;
3081 			if (!is_dism)
3082 				flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST;
3083 			while (hati_load_common(hat, vaddr, pp, prot, flags,
3084 			    l, pfn) != 0) {
3085 				if (l == 0)
3086 					panic("hati_load_common() failure");
3087 				--l;
3088 			}
3089 
3090 			vaddr += LEVEL_SIZE(l);
3091 			ism_addr += LEVEL_SIZE(l);
3092 			pfn += mmu_btop(LEVEL_SIZE(l));
3093 			pgcnt -= mmu_btop(LEVEL_SIZE(l));
3094 		}
3095 	}
3096 	if (ism_ht != NULL)
3097 		htable_release(ism_ht);
3098 	XPV_ALLOW_MIGRATE();
3099 	return (0);
3100 }
3101 
3102 
3103 /*
3104  * hat_unshare() is similar to hat_unload_callback(), but
3105  * we have to look for empty shared pagetables. Note that
3106  * hat_unshare() is always invoked against an entire segment.
3107  */
3108 /*ARGSUSED*/
3109 void
3110 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc)
3111 {
3112 	uint64_t	vaddr = (uintptr_t)addr;
3113 	uintptr_t	eaddr = vaddr + len;
3114 	htable_t	*ht = NULL;
3115 	uint_t		need_demaps = 0;
3116 	int		flags = HAT_UNLOAD_UNMAP;
3117 	level_t		l;
3118 
3119 	ASSERT(hat != kas.a_hat);
3120 	ASSERT(eaddr <= _userlimit);
3121 	ASSERT(IS_PAGEALIGNED(vaddr));
3122 	ASSERT(IS_PAGEALIGNED(eaddr));
3123 	XPV_DISALLOW_MIGRATE();
3124 
3125 	/*
3126 	 * First go through and remove any shared pagetables.
3127 	 *
3128 	 * Note that it's ok to delay the TLB shootdown till the entire range is
3129 	 * finished, because if hat_pageunload() were to unload a shared
3130 	 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate.
3131 	 */
3132 	l = mmu.max_page_level;
3133 	if (l == mmu.max_level)
3134 		--l;
3135 	for (; l >= 0; --l) {
3136 		for (vaddr = (uintptr_t)addr; vaddr < eaddr;
3137 		    vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) {
3138 			ASSERT(!IN_VA_HOLE(vaddr));
3139 			/*
3140 			 * find a pagetable that maps the current address
3141 			 */
3142 			ht = htable_lookup(hat, vaddr, l);
3143 			if (ht == NULL)
3144 				continue;
3145 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
3146 				/*
3147 				 * clear page count, set valid_cnt to 0,
3148 				 * let htable_release() finish the job
3149 				 */
3150 				hat->hat_ism_pgcnt -= ht->ht_valid_cnt <<
3151 				    (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3152 				ht->ht_valid_cnt = 0;
3153 				need_demaps = 1;
3154 			}
3155 			htable_release(ht);
3156 		}
3157 	}
3158 
3159 	/*
3160 	 * flush the TLBs - since we're probably dealing with MANY mappings
3161 	 * we do just one CR3 reload.
3162 	 */
3163 	if (!(hat->hat_flags & HAT_FREEING) && need_demaps)
3164 		hat_tlb_inval(hat, DEMAP_ALL_ADDR);
3165 
3166 	/*
3167 	 * Now go back and clean up any unaligned mappings that
3168 	 * couldn't share pagetables.
3169 	 */
3170 	if (!is_it_dism(hat, addr))
3171 		flags |= HAT_UNLOAD_UNLOCK;
3172 	hat_unload(hat, addr, len, flags);
3173 	XPV_ALLOW_MIGRATE();
3174 }
3175 
3176 
3177 /*
3178  * hat_reserve() does nothing
3179  */
3180 /*ARGSUSED*/
3181 void
3182 hat_reserve(struct as *as, caddr_t addr, size_t len)
3183 {
3184 }
3185 
3186 
3187 /*
3188  * Called when all mappings to a page should have write permission removed.
3189  * Mostly stolen from hat_pagesync()
3190  */
3191 static void
3192 hati_page_clrwrt(struct page *pp)
3193 {
3194 	hment_t		*hm = NULL;
3195 	htable_t	*ht;
3196 	uint_t		entry;
3197 	x86pte_t	old;
3198 	x86pte_t	new;
3199 	uint_t		pszc = 0;
3200 
3201 	XPV_DISALLOW_MIGRATE();
3202 next_size:
3203 	/*
3204 	 * walk thru the mapping list clearing write permission
3205 	 */
3206 	x86_hm_enter(pp);
3207 	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3208 		if (ht->ht_level < pszc)
3209 			continue;
3210 		old = x86pte_get(ht, entry);
3211 
3212 		for (;;) {
3213 			/*
3214 			 * Is this mapping of interest?
3215 			 */
3216 			if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum ||
3217 			    PTE_GET(old, PT_WRITABLE) == 0)
3218 				break;
3219 
3220 			/*
3221 			 * Clear ref/mod writable bits. This requires cross
3222 			 * calls to ensure any executing TLBs see cleared bits.
3223 			 */
3224 			new = old;
3225 			PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE);
3226 			old = hati_update_pte(ht, entry, old, new);
3227 			if (old != 0)
3228 				continue;
3229 
3230 			break;
3231 		}
3232 	}
3233 	x86_hm_exit(pp);
3234 	while (pszc < pp->p_szc) {
3235 		page_t *tpp;
3236 		pszc++;
3237 		tpp = PP_GROUPLEADER(pp, pszc);
3238 		if (pp != tpp) {
3239 			pp = tpp;
3240 			goto next_size;
3241 		}
3242 	}
3243 	XPV_ALLOW_MIGRATE();
3244 }
3245 
3246 /*
3247  * void hat_page_setattr(pp, flag)
3248  * void hat_page_clrattr(pp, flag)
3249  *	used to set/clr ref/mod bits.
3250  */
3251 void
3252 hat_page_setattr(struct page *pp, uint_t flag)
3253 {
3254 	vnode_t		*vp = pp->p_vnode;
3255 	kmutex_t	*vphm = NULL;
3256 	page_t		**listp;
3257 	int		noshuffle;
3258 
3259 	noshuffle = flag & P_NSH;
3260 	flag &= ~P_NSH;
3261 
3262 	if (PP_GETRM(pp, flag) == flag)
3263 		return;
3264 
3265 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
3266 	    !noshuffle) {
3267 		vphm = page_vnode_mutex(vp);
3268 		mutex_enter(vphm);
3269 	}
3270 
3271 	PP_SETRM(pp, flag);
3272 
3273 	if (vphm != NULL) {
3274 
3275 		/*
3276 		 * Some File Systems examine v_pages for NULL w/o
3277 		 * grabbing the vphm mutex. Must not let it become NULL when
3278 		 * pp is the only page on the list.
3279 		 */
3280 		if (pp->p_vpnext != pp) {
3281 			page_vpsub(&vp->v_pages, pp);
3282 			if (vp->v_pages != NULL)
3283 				listp = &vp->v_pages->p_vpprev->p_vpnext;
3284 			else
3285 				listp = &vp->v_pages;
3286 			page_vpadd(listp, pp);
3287 		}
3288 		mutex_exit(vphm);
3289 	}
3290 }
3291 
3292 void
3293 hat_page_clrattr(struct page *pp, uint_t flag)
3294 {
3295 	vnode_t		*vp = pp->p_vnode;
3296 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
3297 
3298 	/*
3299 	 * Caller is expected to hold page's io lock for VMODSORT to work
3300 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
3301 	 * bit is cleared.
3302 	 * We don't have assert to avoid tripping some existing third party
3303 	 * code. The dirty page is moved back to top of the v_page list
3304 	 * after IO is done in pvn_write_done().
3305 	 */
3306 	PP_CLRRM(pp, flag);
3307 
3308 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
3309 
3310 		/*
3311 		 * VMODSORT works by removing write permissions and getting
3312 		 * a fault when a page is made dirty. At this point
3313 		 * we need to remove write permission from all mappings
3314 		 * to this page.
3315 		 */
3316 		hati_page_clrwrt(pp);
3317 	}
3318 }
3319 
3320 /*
3321  *	If flag is specified, returns 0 if attribute is disabled
3322  *	and non zero if enabled.  If flag specifes multiple attributes
3323  *	then returns 0 if ALL attributes are disabled.  This is an advisory
3324  *	call.
3325  */
3326 uint_t
3327 hat_page_getattr(struct page *pp, uint_t flag)
3328 {
3329 	return (PP_GETRM(pp, flag));
3330 }
3331 
3332 
3333 /*
3334  * common code used by hat_pageunload() and hment_steal()
3335  */
3336 hment_t *
3337 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry)
3338 {
3339 	x86pte_t old_pte;
3340 	pfn_t pfn = pp->p_pagenum;
3341 	hment_t *hm;
3342 
3343 	/*
3344 	 * We need to acquire a hold on the htable in order to
3345 	 * do the invalidate. We know the htable must exist, since
3346 	 * unmap's don't release the htable until after removing any
3347 	 * hment. Having x86_hm_enter() keeps that from proceeding.
3348 	 */
3349 	htable_acquire(ht);
3350 
3351 	/*
3352 	 * Invalidate the PTE and remove the hment.
3353 	 */
3354 	old_pte = x86pte_inval(ht, entry, 0, NULL);
3355 	if (PTE2PFN(old_pte, ht->ht_level) != pfn) {
3356 		panic("x86pte_inval() failure found PTE = " FMT_PTE
3357 		    " pfn being unmapped is %lx ht=0x%lx entry=0x%x",
3358 		    old_pte, pfn, (uintptr_t)ht, entry);
3359 	}
3360 
3361 	/*
3362 	 * Clean up all the htable information for this mapping
3363 	 */
3364 	ASSERT(ht->ht_valid_cnt > 0);
3365 	HTABLE_DEC(ht->ht_valid_cnt);
3366 	PGCNT_DEC(ht->ht_hat, ht->ht_level);
3367 
3368 	/*
3369 	 * sync ref/mod bits to the page_t
3370 	 */
3371 	if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC)
3372 		hati_sync_pte_to_page(pp, old_pte, ht->ht_level);
3373 
3374 	/*
3375 	 * Remove the mapping list entry for this page.
3376 	 */
3377 	hm = hment_remove(pp, ht, entry);
3378 
3379 	/*
3380 	 * drop the mapping list lock so that we might free the
3381 	 * hment and htable.
3382 	 */
3383 	x86_hm_exit(pp);
3384 	htable_release(ht);
3385 	return (hm);
3386 }
3387 
3388 extern int	vpm_enable;
3389 /*
3390  * Unload all translations to a page. If the page is a subpage of a large
3391  * page, the large page mappings are also removed.
3392  *
3393  * The forceflags are unused.
3394  */
3395 
3396 /*ARGSUSED*/
3397 static int
3398 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag)
3399 {
3400 	page_t		*cur_pp = pp;
3401 	hment_t		*hm;
3402 	hment_t		*prev;
3403 	htable_t	*ht;
3404 	uint_t		entry;
3405 	level_t		level;
3406 
3407 	XPV_DISALLOW_MIGRATE();
3408 
3409 	/*
3410 	 * prevent recursion due to kmem_free()
3411 	 */
3412 	++curthread->t_hatdepth;
3413 	ASSERT(curthread->t_hatdepth < 16);
3414 
3415 #if defined(__amd64)
3416 	/*
3417 	 * clear the vpm ref.
3418 	 */
3419 	if (vpm_enable) {
3420 		pp->p_vpmref = 0;
3421 	}
3422 #endif
3423 	/*
3424 	 * The loop with next_size handles pages with multiple pagesize mappings
3425 	 */
3426 next_size:
3427 	for (;;) {
3428 
3429 		/*
3430 		 * Get a mapping list entry
3431 		 */
3432 		x86_hm_enter(cur_pp);
3433 		for (prev = NULL; ; prev = hm) {
3434 			hm = hment_walk(cur_pp, &ht, &entry, prev);
3435 			if (hm == NULL) {
3436 				x86_hm_exit(cur_pp);
3437 
3438 				/*
3439 				 * If not part of a larger page, we're done.
3440 				 */
3441 				if (cur_pp->p_szc <= pg_szcd) {
3442 					ASSERT(curthread->t_hatdepth > 0);
3443 					--curthread->t_hatdepth;
3444 					XPV_ALLOW_MIGRATE();
3445 					return (0);
3446 				}
3447 
3448 				/*
3449 				 * Else check the next larger page size.
3450 				 * hat_page_demote() may decrease p_szc
3451 				 * but that's ok we'll just take an extra
3452 				 * trip discover there're no larger mappings
3453 				 * and return.
3454 				 */
3455 				++pg_szcd;
3456 				cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd);
3457 				goto next_size;
3458 			}
3459 
3460 			/*
3461 			 * If this mapping size matches, remove it.
3462 			 */
3463 			level = ht->ht_level;
3464 			if (level == pg_szcd)
3465 				break;
3466 		}
3467 
3468 		/*
3469 		 * Remove the mapping list entry for this page.
3470 		 * Note this does the x86_hm_exit() for us.
3471 		 */
3472 		hm = hati_page_unmap(cur_pp, ht, entry);
3473 		if (hm != NULL)
3474 			hment_free(hm);
3475 	}
3476 }
3477 
3478 int
3479 hat_pageunload(struct page *pp, uint_t forceflag)
3480 {
3481 	ASSERT(PAGE_EXCL(pp));
3482 	return (hati_pageunload(pp, 0, forceflag));
3483 }
3484 
3485 /*
3486  * Unload all large mappings to pp and reduce by 1 p_szc field of every large
3487  * page level that included pp.
3488  *
3489  * pp must be locked EXCL. Even though no other constituent pages are locked
3490  * it's legal to unload large mappings to pp because all constituent pages of
3491  * large locked mappings have to be locked SHARED.  therefore if we have EXCL
3492  * lock on one of constituent pages none of the large mappings to pp are
3493  * locked.
3494  *
3495  * Change (always decrease) p_szc field starting from the last constituent
3496  * page and ending with root constituent page so that root's pszc always shows
3497  * the area where hat_page_demote() may be active.
3498  *
3499  * This mechanism is only used for file system pages where it's not always
3500  * possible to get EXCL locks on all constituent pages to demote the size code
3501  * (as is done for anonymous or kernel large pages).
3502  */
3503 void
3504 hat_page_demote(page_t *pp)
3505 {
3506 	uint_t		pszc;
3507 	uint_t		rszc;
3508 	uint_t		szc;
3509 	page_t		*rootpp;
3510 	page_t		*firstpp;
3511 	page_t		*lastpp;
3512 	pgcnt_t		pgcnt;
3513 
3514 	ASSERT(PAGE_EXCL(pp));
3515 	ASSERT(!PP_ISFREE(pp));
3516 	ASSERT(page_szc_lock_assert(pp));
3517 
3518 	if (pp->p_szc == 0)
3519 		return;
3520 
3521 	rootpp = PP_GROUPLEADER(pp, 1);
3522 	(void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD);
3523 
3524 	/*
3525 	 * all large mappings to pp are gone
3526 	 * and no new can be setup since pp is locked exclusively.
3527 	 *
3528 	 * Lock the root to make sure there's only one hat_page_demote()
3529 	 * outstanding within the area of this root's pszc.
3530 	 *
3531 	 * Second potential hat_page_demote() is already eliminated by upper
3532 	 * VM layer via page_szc_lock() but we don't rely on it and use our
3533 	 * own locking (so that upper layer locking can be changed without
3534 	 * assumptions that hat depends on upper layer VM to prevent multiple
3535 	 * hat_page_demote() to be issued simultaneously to the same large
3536 	 * page).
3537 	 */
3538 again:
3539 	pszc = pp->p_szc;
3540 	if (pszc == 0)
3541 		return;
3542 	rootpp = PP_GROUPLEADER(pp, pszc);
3543 	x86_hm_enter(rootpp);
3544 	/*
3545 	 * If root's p_szc is different from pszc we raced with another
3546 	 * hat_page_demote().  Drop the lock and try to find the root again.
3547 	 * If root's p_szc is greater than pszc previous hat_page_demote() is
3548 	 * not done yet.  Take and release mlist lock of root's root to wait
3549 	 * for previous hat_page_demote() to complete.
3550 	 */
3551 	if ((rszc = rootpp->p_szc) != pszc) {
3552 		x86_hm_exit(rootpp);
3553 		if (rszc > pszc) {
3554 			/* p_szc of a locked non free page can't increase */
3555 			ASSERT(pp != rootpp);
3556 
3557 			rootpp = PP_GROUPLEADER(rootpp, rszc);
3558 			x86_hm_enter(rootpp);
3559 			x86_hm_exit(rootpp);
3560 		}
3561 		goto again;
3562 	}
3563 	ASSERT(pp->p_szc == pszc);
3564 
3565 	/*
3566 	 * Decrement by 1 p_szc of every constituent page of a region that
3567 	 * covered pp. For example if original szc is 3 it gets changed to 2
3568 	 * everywhere except in region 2 that covered pp. Region 2 that
3569 	 * covered pp gets demoted to 1 everywhere except in region 1 that
3570 	 * covered pp. The region 1 that covered pp is demoted to region
3571 	 * 0. It's done this way because from region 3 we removed level 3
3572 	 * mappings, from region 2 that covered pp we removed level 2 mappings
3573 	 * and from region 1 that covered pp we removed level 1 mappings.  All
3574 	 * changes are done from from high pfn's to low pfn's so that roots
3575 	 * are changed last allowing one to know the largest region where
3576 	 * hat_page_demote() is stil active by only looking at the root page.
3577 	 *
3578 	 * This algorithm is implemented in 2 while loops. First loop changes
3579 	 * p_szc of pages to the right of pp's level 1 region and second
3580 	 * loop changes p_szc of pages of level 1 region that covers pp
3581 	 * and all pages to the left of level 1 region that covers pp.
3582 	 * In the first loop p_szc keeps dropping with every iteration
3583 	 * and in the second loop it keeps increasing with every iteration.
3584 	 *
3585 	 * First loop description: Demote pages to the right of pp outside of
3586 	 * level 1 region that covers pp.  In every iteration of the while
3587 	 * loop below find the last page of szc region and the first page of
3588 	 * (szc - 1) region that is immediately to the right of (szc - 1)
3589 	 * region that covers pp.  From last such page to first such page
3590 	 * change every page's szc to szc - 1. Decrement szc and continue
3591 	 * looping until szc is 1. If pp belongs to the last (szc - 1) region
3592 	 * of szc region skip to the next iteration.
3593 	 */
3594 	szc = pszc;
3595 	while (szc > 1) {
3596 		lastpp = PP_GROUPLEADER(pp, szc);
3597 		pgcnt = page_get_pagecnt(szc);
3598 		lastpp += pgcnt - 1;
3599 		firstpp = PP_GROUPLEADER(pp, (szc - 1));
3600 		pgcnt = page_get_pagecnt(szc - 1);
3601 		if (lastpp - firstpp < pgcnt) {
3602 			szc--;
3603 			continue;
3604 		}
3605 		firstpp += pgcnt;
3606 		while (lastpp != firstpp) {
3607 			ASSERT(lastpp->p_szc == pszc);
3608 			lastpp->p_szc = szc - 1;
3609 			lastpp--;
3610 		}
3611 		firstpp->p_szc = szc - 1;
3612 		szc--;
3613 	}
3614 
3615 	/*
3616 	 * Second loop description:
3617 	 * First iteration changes p_szc to 0 of every
3618 	 * page of level 1 region that covers pp.
3619 	 * Subsequent iterations find last page of szc region
3620 	 * immediately to the left of szc region that covered pp
3621 	 * and first page of (szc + 1) region that covers pp.
3622 	 * From last to first page change p_szc of every page to szc.
3623 	 * Increment szc and continue looping until szc is pszc.
3624 	 * If pp belongs to the fist szc region of (szc + 1) region
3625 	 * skip to the next iteration.
3626 	 *
3627 	 */
3628 	szc = 0;
3629 	while (szc < pszc) {
3630 		firstpp = PP_GROUPLEADER(pp, (szc + 1));
3631 		if (szc == 0) {
3632 			pgcnt = page_get_pagecnt(1);
3633 			lastpp = firstpp + (pgcnt - 1);
3634 		} else {
3635 			lastpp = PP_GROUPLEADER(pp, szc);
3636 			if (firstpp == lastpp) {
3637 				szc++;
3638 				continue;
3639 			}
3640 			lastpp--;
3641 			pgcnt = page_get_pagecnt(szc);
3642 		}
3643 		while (lastpp != firstpp) {
3644 			ASSERT(lastpp->p_szc == pszc);
3645 			lastpp->p_szc = szc;
3646 			lastpp--;
3647 		}
3648 		firstpp->p_szc = szc;
3649 		if (firstpp == rootpp)
3650 			break;
3651 		szc++;
3652 	}
3653 	x86_hm_exit(rootpp);
3654 }
3655 
3656 /*
3657  * get hw stats from hardware into page struct and reset hw stats
3658  * returns attributes of page
3659  * Flags for hat_pagesync, hat_getstat, hat_sync
3660  *
3661  * define	HAT_SYNC_ZERORM		0x01
3662  *
3663  * Additional flags for hat_pagesync
3664  *
3665  * define	HAT_SYNC_STOPON_REF	0x02
3666  * define	HAT_SYNC_STOPON_MOD	0x04
3667  * define	HAT_SYNC_STOPON_RM	0x06
3668  * define	HAT_SYNC_STOPON_SHARED	0x08
3669  */
3670 uint_t
3671 hat_pagesync(struct page *pp, uint_t flags)
3672 {
3673 	hment_t		*hm = NULL;
3674 	htable_t	*ht;
3675 	uint_t		entry;
3676 	x86pte_t	old, save_old;
3677 	x86pte_t	new;
3678 	uchar_t		nrmbits = P_REF|P_MOD|P_RO;
3679 	extern ulong_t	po_share;
3680 	page_t		*save_pp = pp;
3681 	uint_t		pszc = 0;
3682 
3683 	ASSERT(PAGE_LOCKED(pp) || panicstr);
3684 
3685 	if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD))
3686 		return (pp->p_nrm & nrmbits);
3687 
3688 	if ((flags & HAT_SYNC_ZERORM) == 0) {
3689 
3690 		if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp))
3691 			return (pp->p_nrm & nrmbits);
3692 
3693 		if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp))
3694 			return (pp->p_nrm & nrmbits);
3695 
3696 		if ((flags & HAT_SYNC_STOPON_SHARED) != 0 &&
3697 		    hat_page_getshare(pp) > po_share) {
3698 			if (PP_ISRO(pp))
3699 				PP_SETREF(pp);
3700 			return (pp->p_nrm & nrmbits);
3701 		}
3702 	}
3703 
3704 	XPV_DISALLOW_MIGRATE();
3705 next_size:
3706 	/*
3707 	 * walk thru the mapping list syncing (and clearing) ref/mod bits.
3708 	 */
3709 	x86_hm_enter(pp);
3710 	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3711 		if (ht->ht_level < pszc)
3712 			continue;
3713 		old = x86pte_get(ht, entry);
3714 try_again:
3715 
3716 		ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum);
3717 
3718 		if (PTE_GET(old, PT_REF | PT_MOD) == 0)
3719 			continue;
3720 
3721 		save_old = old;
3722 		if ((flags & HAT_SYNC_ZERORM) != 0) {
3723 
3724 			/*
3725 			 * Need to clear ref or mod bits. Need to demap
3726 			 * to make sure any executing TLBs see cleared bits.
3727 			 */
3728 			new = old;
3729 			PTE_CLR(new, PT_REF | PT_MOD);
3730 			old = hati_update_pte(ht, entry, old, new);
3731 			if (old != 0)
3732 				goto try_again;
3733 
3734 			old = save_old;
3735 		}
3736 
3737 		/*
3738 		 * Sync the PTE
3739 		 */
3740 		if (!(flags & HAT_SYNC_ZERORM) &&
3741 		    PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC)
3742 			hati_sync_pte_to_page(pp, old, ht->ht_level);
3743 
3744 		/*
3745 		 * can stop short if we found a ref'd or mod'd page
3746 		 */
3747 		if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) ||
3748 		    (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) {
3749 			x86_hm_exit(pp);
3750 			goto done;
3751 		}
3752 	}
3753 	x86_hm_exit(pp);
3754 	while (pszc < pp->p_szc) {
3755 		page_t *tpp;
3756 		pszc++;
3757 		tpp = PP_GROUPLEADER(pp, pszc);
3758 		if (pp != tpp) {
3759 			pp = tpp;
3760 			goto next_size;
3761 		}
3762 	}
3763 done:
3764 	XPV_ALLOW_MIGRATE();
3765 	return (save_pp->p_nrm & nrmbits);
3766 }
3767 
3768 /*
3769  * returns approx number of mappings to this pp.  A return of 0 implies
3770  * there are no mappings to the page.
3771  */
3772 ulong_t
3773 hat_page_getshare(page_t *pp)
3774 {
3775 	uint_t cnt;
3776 	cnt = hment_mapcnt(pp);
3777 #if defined(__amd64)
3778 	if (vpm_enable && pp->p_vpmref) {
3779 		cnt += 1;
3780 	}
3781 #endif
3782 	return (cnt);
3783 }
3784 
3785 /*
3786  * Return 1 the number of mappings exceeds sh_thresh. Return 0
3787  * otherwise.
3788  */
3789 int
3790 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
3791 {
3792 	return (hat_page_getshare(pp) > sh_thresh);
3793 }
3794 
3795 /*
3796  * hat_softlock isn't supported anymore
3797  */
3798 /*ARGSUSED*/
3799 faultcode_t
3800 hat_softlock(
3801 	hat_t *hat,
3802 	caddr_t addr,
3803 	size_t *len,
3804 	struct page **page_array,
3805 	uint_t flags)
3806 {
3807 	return (FC_NOSUPPORT);
3808 }
3809 
3810 
3811 
3812 /*
3813  * Routine to expose supported HAT features to platform independent code.
3814  */
3815 /*ARGSUSED*/
3816 int
3817 hat_supported(enum hat_features feature, void *arg)
3818 {
3819 	switch (feature) {
3820 
3821 	case HAT_SHARED_PT:	/* this is really ISM */
3822 		return (1);
3823 
3824 	case HAT_DYNAMIC_ISM_UNMAP:
3825 		return (0);
3826 
3827 	case HAT_VMODSORT:
3828 		return (1);
3829 
3830 	case HAT_SHARED_REGIONS:
3831 		return (0);
3832 
3833 	default:
3834 		panic("hat_supported() - unknown feature");
3835 	}
3836 	return (0);
3837 }
3838 
3839 /*
3840  * Called when a thread is exiting and has been switched to the kernel AS
3841  */
3842 void
3843 hat_thread_exit(kthread_t *thd)
3844 {
3845 	ASSERT(thd->t_procp->p_as == &kas);
3846 	XPV_DISALLOW_MIGRATE();
3847 	hat_switch(thd->t_procp->p_as->a_hat);
3848 	XPV_ALLOW_MIGRATE();
3849 }
3850 
3851 /*
3852  * Setup the given brand new hat structure as the new HAT on this cpu's mmu.
3853  */
3854 /*ARGSUSED*/
3855 void
3856 hat_setup(hat_t *hat, int flags)
3857 {
3858 	XPV_DISALLOW_MIGRATE();
3859 	kpreempt_disable();
3860 
3861 	hat_switch(hat);
3862 
3863 	kpreempt_enable();
3864 	XPV_ALLOW_MIGRATE();
3865 }
3866 
3867 /*
3868  * Prepare for a CPU private mapping for the given address.
3869  *
3870  * The address can only be used from a single CPU and can be remapped
3871  * using hat_mempte_remap().  Return the address of the PTE.
3872  *
3873  * We do the htable_create() if necessary and increment the valid count so
3874  * the htable can't disappear.  We also hat_devload() the page table into
3875  * kernel so that the PTE is quickly accessed.
3876  */
3877 hat_mempte_t
3878 hat_mempte_setup(caddr_t addr)
3879 {
3880 	uintptr_t	va = (uintptr_t)addr;
3881 	htable_t	*ht;
3882 	uint_t		entry;
3883 	x86pte_t	oldpte;
3884 	hat_mempte_t	p;
3885 
3886 	ASSERT(IS_PAGEALIGNED(va));
3887 	ASSERT(!IN_VA_HOLE(va));
3888 	++curthread->t_hatdepth;
3889 	XPV_DISALLOW_MIGRATE();
3890 	ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0);
3891 	if (ht == NULL) {
3892 		ht = htable_create(kas.a_hat, va, 0, NULL);
3893 		entry = htable_va2entry(va, ht);
3894 		ASSERT(ht->ht_level == 0);
3895 		oldpte = x86pte_get(ht, entry);
3896 	}
3897 	if (PTE_ISVALID(oldpte))
3898 		panic("hat_mempte_setup(): address already mapped"
3899 		    "ht=%p, entry=%d, pte=" FMT_PTE, (void *)ht, entry, oldpte);
3900 
3901 	/*
3902 	 * increment ht_valid_cnt so that the pagetable can't disappear
3903 	 */
3904 	HTABLE_INC(ht->ht_valid_cnt);
3905 
3906 	/*
3907 	 * return the PTE physical address to the caller.
3908 	 */
3909 	htable_release(ht);
3910 	XPV_ALLOW_MIGRATE();
3911 	p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry);
3912 	--curthread->t_hatdepth;
3913 	return (p);
3914 }
3915 
3916 /*
3917  * Release a CPU private mapping for the given address.
3918  * We decrement the htable valid count so it might be destroyed.
3919  */
3920 /*ARGSUSED1*/
3921 void
3922 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa)
3923 {
3924 	htable_t	*ht;
3925 
3926 	XPV_DISALLOW_MIGRATE();
3927 	/*
3928 	 * invalidate any left over mapping and decrement the htable valid count
3929 	 */
3930 #ifdef __xpv
3931 	if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0,
3932 	    UVMF_INVLPG | UVMF_LOCAL))
3933 		panic("HYPERVISOR_update_va_mapping() failed");
3934 #else
3935 	{
3936 		x86pte_t *pteptr;
3937 
3938 		pteptr = x86pte_mapin(mmu_btop(pte_pa),
3939 		    (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3940 		if (mmu.pae_hat)
3941 			*pteptr = 0;
3942 		else
3943 			*(x86pte32_t *)pteptr = 0;
3944 		mmu_tlbflush_entry(addr);
3945 		x86pte_mapout();
3946 	}
3947 #endif
3948 
3949 	ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0);
3950 	if (ht == NULL)
3951 		panic("hat_mempte_release(): invalid address");
3952 	ASSERT(ht->ht_level == 0);
3953 	HTABLE_DEC(ht->ht_valid_cnt);
3954 	htable_release(ht);
3955 	XPV_ALLOW_MIGRATE();
3956 }
3957 
3958 /*
3959  * Apply a temporary CPU private mapping to a page. We flush the TLB only
3960  * on this CPU, so this ought to have been called with preemption disabled.
3961  */
3962 void
3963 hat_mempte_remap(
3964 	pfn_t		pfn,
3965 	caddr_t		addr,
3966 	hat_mempte_t	pte_pa,
3967 	uint_t		attr,
3968 	uint_t		flags)
3969 {
3970 	uintptr_t	va = (uintptr_t)addr;
3971 	x86pte_t	pte;
3972 
3973 	/*
3974 	 * Remap the given PTE to the new page's PFN. Invalidate only
3975 	 * on this CPU.
3976 	 */
3977 #ifdef DEBUG
3978 	htable_t	*ht;
3979 	uint_t		entry;
3980 
3981 	ASSERT(IS_PAGEALIGNED(va));
3982 	ASSERT(!IN_VA_HOLE(va));
3983 	ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0);
3984 	ASSERT(ht != NULL);
3985 	ASSERT(ht->ht_level == 0);
3986 	ASSERT(ht->ht_valid_cnt > 0);
3987 	ASSERT(ht->ht_pfn == mmu_btop(pte_pa));
3988 	htable_release(ht);
3989 #endif
3990 	XPV_DISALLOW_MIGRATE();
3991 	pte = hati_mkpte(pfn, attr, 0, flags);
3992 #ifdef __xpv
3993 	if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL))
3994 		panic("HYPERVISOR_update_va_mapping() failed");
3995 #else
3996 	{
3997 		x86pte_t *pteptr;
3998 
3999 		pteptr = x86pte_mapin(mmu_btop(pte_pa),
4000 		    (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
4001 		if (mmu.pae_hat)
4002 			*(x86pte_t *)pteptr = pte;
4003 		else
4004 			*(x86pte32_t *)pteptr = (x86pte32_t)pte;
4005 		mmu_tlbflush_entry(addr);
4006 		x86pte_mapout();
4007 	}
4008 #endif
4009 	XPV_ALLOW_MIGRATE();
4010 }
4011 
4012 
4013 
4014 /*
4015  * Hat locking functions
4016  * XXX - these two functions are currently being used by hatstats
4017  * 	they can be removed by using a per-as mutex for hatstats.
4018  */
4019 void
4020 hat_enter(hat_t *hat)
4021 {
4022 	mutex_enter(&hat->hat_mutex);
4023 }
4024 
4025 void
4026 hat_exit(hat_t *hat)
4027 {
4028 	mutex_exit(&hat->hat_mutex);
4029 }
4030 
4031 /*
4032  * HAT part of cpu initialization.
4033  */
4034 void
4035 hat_cpu_online(struct cpu *cpup)
4036 {
4037 	if (cpup != CPU) {
4038 		x86pte_cpu_init(cpup);
4039 		hat_vlp_setup(cpup);
4040 	}
4041 	CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id);
4042 }
4043 
4044 /*
4045  * HAT part of cpu deletion.
4046  * (currently, we only call this after the cpu is safely passivated.)
4047  */
4048 void
4049 hat_cpu_offline(struct cpu *cpup)
4050 {
4051 	ASSERT(cpup != CPU);
4052 
4053 	CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id);
4054 	hat_vlp_teardown(cpup);
4055 	x86pte_cpu_fini(cpup);
4056 }
4057 
4058 /*
4059  * Function called after all CPUs are brought online.
4060  * Used to remove low address boot mappings.
4061  */
4062 void
4063 clear_boot_mappings(uintptr_t low, uintptr_t high)
4064 {
4065 	uintptr_t vaddr = low;
4066 	htable_t *ht = NULL;
4067 	level_t level;
4068 	uint_t entry;
4069 	x86pte_t pte;
4070 
4071 	/*
4072 	 * On 1st CPU we can unload the prom mappings, basically we blow away
4073 	 * all virtual mappings under _userlimit.
4074 	 */
4075 	while (vaddr < high) {
4076 		pte = htable_walk(kas.a_hat, &ht, &vaddr, high);
4077 		if (ht == NULL)
4078 			break;
4079 
4080 		level = ht->ht_level;
4081 		entry = htable_va2entry(vaddr, ht);
4082 		ASSERT(level <= mmu.max_page_level);
4083 		ASSERT(PTE_ISPAGE(pte, level));
4084 
4085 		/*
4086 		 * Unload the mapping from the page tables.
4087 		 */
4088 		(void) x86pte_inval(ht, entry, 0, NULL);
4089 		ASSERT(ht->ht_valid_cnt > 0);
4090 		HTABLE_DEC(ht->ht_valid_cnt);
4091 		PGCNT_DEC(ht->ht_hat, ht->ht_level);
4092 
4093 		vaddr += LEVEL_SIZE(ht->ht_level);
4094 	}
4095 	if (ht)
4096 		htable_release(ht);
4097 }
4098 
4099 /*
4100  * Atomically update a new translation for a single page.  If the
4101  * currently installed PTE doesn't match the value we expect to find,
4102  * it's not updated and we return the PTE we found.
4103  *
4104  * If activating nosync or NOWRITE and the page was modified we need to sync
4105  * with the page_t. Also sync with page_t if clearing ref/mod bits.
4106  */
4107 static x86pte_t
4108 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new)
4109 {
4110 	page_t		*pp;
4111 	uint_t		rm = 0;
4112 	x86pte_t	replaced;
4113 
4114 	if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC &&
4115 	    PTE_GET(expected, PT_MOD | PT_REF) &&
4116 	    (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) ||
4117 	    !PTE_GET(new, PT_MOD | PT_REF))) {
4118 
4119 		ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level)));
4120 		pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level));
4121 		ASSERT(pp != NULL);
4122 		if (PTE_GET(expected, PT_MOD))
4123 			rm |= P_MOD;
4124 		if (PTE_GET(expected, PT_REF))
4125 			rm |= P_REF;
4126 		PTE_CLR(new, PT_MOD | PT_REF);
4127 	}
4128 
4129 	replaced = x86pte_update(ht, entry, expected, new);
4130 	if (replaced != expected)
4131 		return (replaced);
4132 
4133 	if (rm) {
4134 		/*
4135 		 * sync to all constituent pages of a large page
4136 		 */
4137 		pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level);
4138 		ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
4139 		while (pgcnt-- > 0) {
4140 			/*
4141 			 * hat_page_demote() can't decrease
4142 			 * pszc below this mapping size
4143 			 * since large mapping existed after we
4144 			 * took mlist lock.
4145 			 */
4146 			ASSERT(pp->p_szc >= ht->ht_level);
4147 			hat_page_setattr(pp, rm);
4148 			++pp;
4149 		}
4150 	}
4151 
4152 	return (0);
4153 }
4154 
4155 /* ARGSUSED */
4156 void
4157 hat_join_srd(struct hat *hat, vnode_t *evp)
4158 {
4159 }
4160 
4161 /* ARGSUSED */
4162 hat_region_cookie_t
4163 hat_join_region(struct hat *hat,
4164     caddr_t r_saddr,
4165     size_t r_size,
4166     void *r_obj,
4167     u_offset_t r_objoff,
4168     uchar_t r_perm,
4169     uchar_t r_pgszc,
4170     hat_rgn_cb_func_t r_cb_function,
4171     uint_t flags)
4172 {
4173 	panic("No shared region support on x86");
4174 	return (HAT_INVALID_REGION_COOKIE);
4175 }
4176 
4177 /* ARGSUSED */
4178 void
4179 hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags)
4180 {
4181 	panic("No shared region support on x86");
4182 }
4183 
4184 /* ARGSUSED */
4185 void
4186 hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie)
4187 {
4188 	panic("No shared region support on x86");
4189 }
4190 
4191 
4192 /*
4193  * Kernel Physical Mapping (kpm) facility
4194  *
4195  * Most of the routines needed to support segkpm are almost no-ops on the
4196  * x86 platform.  We map in the entire segment when it is created and leave
4197  * it mapped in, so there is no additional work required to set up and tear
4198  * down individual mappings.  All of these routines were created to support
4199  * SPARC platforms that have to avoid aliasing in their virtually indexed
4200  * caches.
4201  *
4202  * Most of the routines have sanity checks in them (e.g. verifying that the
4203  * passed-in page is locked).  We don't actually care about most of these
4204  * checks on x86, but we leave them in place to identify problems in the
4205  * upper levels.
4206  */
4207 
4208 /*
4209  * Map in a locked page and return the vaddr.
4210  */
4211 /*ARGSUSED*/
4212 caddr_t
4213 hat_kpm_mapin(struct page *pp, struct kpme *kpme)
4214 {
4215 	caddr_t		vaddr;
4216 
4217 #ifdef DEBUG
4218 	if (kpm_enable == 0) {
4219 		cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n");
4220 		return ((caddr_t)NULL);
4221 	}
4222 
4223 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4224 		cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n");
4225 		return ((caddr_t)NULL);
4226 	}
4227 #endif
4228 
4229 	vaddr = hat_kpm_page2va(pp, 1);
4230 
4231 	return (vaddr);
4232 }
4233 
4234 /*
4235  * Mapout a locked page.
4236  */
4237 /*ARGSUSED*/
4238 void
4239 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr)
4240 {
4241 #ifdef DEBUG
4242 	if (kpm_enable == 0) {
4243 		cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n");
4244 		return;
4245 	}
4246 
4247 	if (IS_KPM_ADDR(vaddr) == 0) {
4248 		cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n");
4249 		return;
4250 	}
4251 
4252 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4253 		cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n");
4254 		return;
4255 	}
4256 #endif
4257 }
4258 
4259 /*
4260  * hat_kpm_mapin_pfn is used to obtain a kpm mapping for physical
4261  * memory addresses that are not described by a page_t.  It can
4262  * also be used for normal pages that are not locked, but beware
4263  * this is dangerous - no locking is performed, so the identity of
4264  * the page could change.  hat_kpm_mapin_pfn is not supported when
4265  * vac_colors > 1, because the chosen va depends on the page identity,
4266  * which could change.
4267  * The caller must only pass pfn's for valid physical addresses; violation
4268  * of this rule will cause panic.
4269  */
4270 caddr_t
4271 hat_kpm_mapin_pfn(pfn_t pfn)
4272 {
4273 	caddr_t paddr, vaddr;
4274 
4275 	if (kpm_enable == 0)
4276 		return ((caddr_t)NULL);
4277 
4278 	paddr = (caddr_t)ptob(pfn);
4279 	vaddr = (uintptr_t)kpm_vbase + paddr;
4280 
4281 	return ((caddr_t)vaddr);
4282 }
4283 
4284 /*ARGSUSED*/
4285 void
4286 hat_kpm_mapout_pfn(pfn_t pfn)
4287 {
4288 	/* empty */
4289 }
4290 
4291 /*
4292  * Return the kpm virtual address for a specific pfn
4293  */
4294 caddr_t
4295 hat_kpm_pfn2va(pfn_t pfn)
4296 {
4297 	uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn);
4298 
4299 	ASSERT(!pfn_is_foreign(pfn));
4300 	return ((caddr_t)vaddr);
4301 }
4302 
4303 /*
4304  * Return the kpm virtual address for the page at pp.
4305  */
4306 /*ARGSUSED*/
4307 caddr_t
4308 hat_kpm_page2va(struct page *pp, int checkswap)
4309 {
4310 	return (hat_kpm_pfn2va(pp->p_pagenum));
4311 }
4312 
4313 /*
4314  * Return the page frame number for the kpm virtual address vaddr.
4315  */
4316 pfn_t
4317 hat_kpm_va2pfn(caddr_t vaddr)
4318 {
4319 	pfn_t		pfn;
4320 
4321 	ASSERT(IS_KPM_ADDR(vaddr));
4322 
4323 	pfn = (pfn_t)btop(vaddr - kpm_vbase);
4324 
4325 	return (pfn);
4326 }
4327 
4328 
4329 /*
4330  * Return the page for the kpm virtual address vaddr.
4331  */
4332 page_t *
4333 hat_kpm_vaddr2page(caddr_t vaddr)
4334 {
4335 	pfn_t		pfn;
4336 
4337 	ASSERT(IS_KPM_ADDR(vaddr));
4338 
4339 	pfn = hat_kpm_va2pfn(vaddr);
4340 
4341 	return (page_numtopp_nolock(pfn));
4342 }
4343 
4344 /*
4345  * hat_kpm_fault is called from segkpm_fault when we take a page fault on a
4346  * KPM page.  This should never happen on x86
4347  */
4348 int
4349 hat_kpm_fault(hat_t *hat, caddr_t vaddr)
4350 {
4351 	panic("pagefault in seg_kpm.  hat: 0x%p  vaddr: 0x%p",
4352 	    (void *)hat, (void *)vaddr);
4353 
4354 	return (0);
4355 }
4356 
4357 /*ARGSUSED*/
4358 void
4359 hat_kpm_mseghash_clear(int nentries)
4360 {}
4361 
4362 /*ARGSUSED*/
4363 void
4364 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp)
4365 {}
4366 
4367 #ifndef	__xpv
4368 void
4369 hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs,
4370 	offset_t kpm_pages_off)
4371 {
4372 	_NOTE(ARGUNUSED(nkpmpgs, kpm_pages_off));
4373 	pfn_t base, end;
4374 
4375 	/*
4376 	 * kphysm_add_memory_dynamic() does not set nkpmpgs
4377 	 * when page_t memory is externally allocated.  That
4378 	 * code must properly calculate nkpmpgs in all cases
4379 	 * if nkpmpgs needs to be used at some point.
4380 	 */
4381 
4382 	/*
4383 	 * The meta (page_t) pages for dynamically added memory are allocated
4384 	 * either from the incoming memory itself or from existing memory.
4385 	 * In the former case the base of the incoming pages will be different
4386 	 * than the base of the dynamic segment so call memseg_get_start() to
4387 	 * get the actual base of the incoming memory for each case.
4388 	 */
4389 
4390 	base = memseg_get_start(msp);
4391 	end = msp->pages_end;
4392 
4393 	hat_devload(kas.a_hat, kpm_vbase + mmu_ptob(base),
4394 	    mmu_ptob(end - base), base, PROT_READ | PROT_WRITE,
4395 	    HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4396 }
4397 
4398 void
4399 hat_kpm_addmem_mseg_insert(struct memseg *msp)
4400 {
4401 	_NOTE(ARGUNUSED(msp));
4402 }
4403 
4404 void
4405 hat_kpm_addmem_memsegs_update(struct memseg *msp)
4406 {
4407 	_NOTE(ARGUNUSED(msp));
4408 }
4409 
4410 /*
4411  * Return end of metadata for an already setup memseg.
4412  * X86 platforms don't need per-page meta data to support kpm.
4413  */
4414 caddr_t
4415 hat_kpm_mseg_reuse(struct memseg *msp)
4416 {
4417 	return ((caddr_t)msp->epages);
4418 }
4419 
4420 void
4421 hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp)
4422 {
4423 	_NOTE(ARGUNUSED(msp, mspp));
4424 	ASSERT(0);
4425 }
4426 
4427 void
4428 hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp,
4429 	struct memseg *lo, struct memseg *mid, struct memseg *hi)
4430 {
4431 	_NOTE(ARGUNUSED(msp, mspp, lo, mid, hi));
4432 	ASSERT(0);
4433 }
4434 
4435 /*
4436  * Walk the memsegs chain, applying func to each memseg span.
4437  */
4438 void
4439 hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg)
4440 {
4441 	pfn_t	pbase, pend;
4442 	void	*base;
4443 	size_t	size;
4444 	struct memseg *msp;
4445 
4446 	for (msp = memsegs; msp; msp = msp->next) {
4447 		pbase = msp->pages_base;
4448 		pend = msp->pages_end;
4449 		base = ptob(pbase) + kpm_vbase;
4450 		size = ptob(pend - pbase);
4451 		func(arg, base, size);
4452 	}
4453 }
4454 
4455 #else	/* __xpv */
4456 
4457 /*
4458  * There are specific Hypervisor calls to establish and remove mappings
4459  * to grant table references and the privcmd driver. We have to ensure
4460  * that a page table actually exists.
4461  */
4462 void
4463 hat_prepare_mapping(hat_t *hat, caddr_t addr, uint64_t *pte_ma)
4464 {
4465 	maddr_t base_ma;
4466 	htable_t *ht;
4467 	uint_t entry;
4468 
4469 	ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4470 	XPV_DISALLOW_MIGRATE();
4471 	ht = htable_create(hat, (uintptr_t)addr, 0, NULL);
4472 
4473 	/*
4474 	 * if an address for pte_ma is passed in, return the MA of the pte
4475 	 * for this specific address.  This address is only valid as long
4476 	 * as the htable stays locked.
4477 	 */
4478 	if (pte_ma != NULL) {
4479 		entry = htable_va2entry((uintptr_t)addr, ht);
4480 		base_ma = pa_to_ma(ptob(ht->ht_pfn));
4481 		*pte_ma = base_ma + (entry << mmu.pte_size_shift);
4482 	}
4483 	XPV_ALLOW_MIGRATE();
4484 }
4485 
4486 void
4487 hat_release_mapping(hat_t *hat, caddr_t addr)
4488 {
4489 	htable_t *ht;
4490 
4491 	ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4492 	XPV_DISALLOW_MIGRATE();
4493 	ht = htable_lookup(hat, (uintptr_t)addr, 0);
4494 	ASSERT(ht != NULL);
4495 	ASSERT(ht->ht_busy >= 2);
4496 	htable_release(ht);
4497 	htable_release(ht);
4498 	XPV_ALLOW_MIGRATE();
4499 }
4500 #endif	/* __xpv */
4501