1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * 31 * Copyright (c) 2004 Christian Limpach. 32 * All rights reserved. 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. This section intentionally left blank. 43 * 4. The name of the author may not be used to endorse or promote products 44 * derived from this software without specific prior written permission. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 47 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 48 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 49 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 50 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 51 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 52 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 53 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 54 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 55 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 56 */ 57 /* 58 * Section 3 of the above license was updated in response to bug 6379571. 59 */ 60 61 /* 62 * xnf.c - Nemo-based network driver for domU 63 */ 64 65 #include <sys/types.h> 66 #include <sys/errno.h> 67 #include <sys/param.h> 68 #include <sys/sysmacros.h> 69 #include <sys/systm.h> 70 #include <sys/stream.h> 71 #include <sys/strsubr.h> 72 #include <sys/conf.h> 73 #include <sys/ddi.h> 74 #include <sys/devops.h> 75 #include <sys/sunddi.h> 76 #include <sys/sunndi.h> 77 #include <sys/dlpi.h> 78 #include <sys/ethernet.h> 79 #include <sys/strsun.h> 80 #include <sys/pattr.h> 81 #include <inet/ip.h> 82 #include <sys/modctl.h> 83 #include <sys/mac.h> 84 #include <sys/mac_ether.h> 85 #include <sys/bootinfo.h> 86 #include <sys/mach_mmu.h> 87 #ifdef XPV_HVM_DRIVER 88 #include <sys/xpv_support.h> 89 #include <sys/hypervisor.h> 90 #else 91 #include <sys/hypervisor.h> 92 #include <sys/evtchn_impl.h> 93 #include <sys/balloon_impl.h> 94 #endif 95 #include <xen/public/io/netif.h> 96 #include <sys/gnttab.h> 97 #include <xen/sys/xendev.h> 98 #include <sys/sdt.h> 99 100 #include <io/xnf.h> 101 102 103 /* 104 * Declarations and Module Linkage 105 */ 106 107 #define IDENT "Virtual Ethernet driver" 108 109 #if defined(DEBUG) || defined(__lint) 110 #define XNF_DEBUG 111 int xnfdebug = 0; 112 #endif 113 114 /* 115 * On a 32 bit PAE system physical and machine addresses are larger 116 * than 32 bits. ddi_btop() on such systems take an unsigned long 117 * argument, and so addresses above 4G are truncated before ddi_btop() 118 * gets to see them. To avoid this, code the shift operation here. 119 */ 120 #define xnf_btop(addr) ((addr) >> PAGESHIFT) 121 122 boolean_t xnf_cksum_offload = B_TRUE; 123 124 /* Default value for hypervisor-based copy operations */ 125 boolean_t xnf_rx_hvcopy = B_TRUE; 126 127 /* 128 * Should pages used for transmit be readonly for the peer? 129 */ 130 boolean_t xnf_tx_pages_readonly = B_FALSE; 131 /* 132 * Packets under this size are bcopied instead of using desballoc. 133 * Choose a value > XNF_FRAMESIZE (1514) to force the receive path to 134 * always copy. 135 */ 136 unsigned int xnf_rx_bcopy_thresh = 64; 137 138 unsigned int xnf_max_tx_frags = 1; 139 140 /* Required system entry points */ 141 static int xnf_attach(dev_info_t *, ddi_attach_cmd_t); 142 static int xnf_detach(dev_info_t *, ddi_detach_cmd_t); 143 144 /* Required driver entry points for Nemo */ 145 static int xnf_start(void *); 146 static void xnf_stop(void *); 147 static int xnf_set_mac_addr(void *, const uint8_t *); 148 static int xnf_set_multicast(void *, boolean_t, const uint8_t *); 149 static int xnf_set_promiscuous(void *, boolean_t); 150 static mblk_t *xnf_send(void *, mblk_t *); 151 static uint_t xnf_intr(caddr_t); 152 static int xnf_stat(void *, uint_t, uint64_t *); 153 static void xnf_blank(void *, time_t, uint_t); 154 static void xnf_resources(void *); 155 static void xnf_ioctl(void *, queue_t *, mblk_t *); 156 static boolean_t xnf_getcapab(void *, mac_capab_t, void *); 157 158 /* Driver private functions */ 159 static int xnf_alloc_dma_resources(xnf_t *); 160 static void xnf_release_dma_resources(xnf_t *); 161 static mblk_t *xnf_process_recv(xnf_t *); 162 static void xnf_rcv_complete(struct xnf_buffer_desc *); 163 static void xnf_release_mblks(xnf_t *); 164 static struct xnf_buffer_desc *xnf_alloc_tx_buffer(xnf_t *); 165 static struct xnf_buffer_desc *xnf_alloc_buffer(xnf_t *); 166 static struct xnf_buffer_desc *xnf_get_tx_buffer(xnf_t *); 167 static struct xnf_buffer_desc *xnf_get_buffer(xnf_t *); 168 static void xnf_free_buffer(struct xnf_buffer_desc *); 169 static void xnf_free_tx_buffer(struct xnf_buffer_desc *); 170 void xnf_send_driver_status(int, int); 171 static void rx_buffer_hang(xnf_t *, struct xnf_buffer_desc *); 172 static int xnf_clean_tx_ring(xnf_t *); 173 static void oe_state_change(dev_info_t *, ddi_eventcookie_t, 174 void *, void *); 175 static mblk_t *xnf_process_hvcopy_recv(xnf_t *xnfp); 176 static boolean_t xnf_hvcopy_peer_status(dev_info_t *devinfo); 177 static boolean_t xnf_kstat_init(xnf_t *xnfp); 178 179 /* 180 * XXPV dme: remove MC_IOCTL? 181 */ 182 static mac_callbacks_t xnf_callbacks = { 183 MC_RESOURCES | MC_IOCTL | MC_GETCAPAB, 184 xnf_stat, 185 xnf_start, 186 xnf_stop, 187 xnf_set_promiscuous, 188 xnf_set_multicast, 189 xnf_set_mac_addr, 190 xnf_send, 191 xnf_resources, 192 xnf_ioctl, 193 xnf_getcapab 194 }; 195 196 #define GRANT_INVALID_REF 0 197 const int xnf_rx_bufs_lowat = 4 * NET_RX_RING_SIZE; 198 const int xnf_rx_bufs_hiwat = 8 * NET_RX_RING_SIZE; /* default max */ 199 200 /* DMA attributes for network ring buffer */ 201 static ddi_dma_attr_t ringbuf_dma_attr = { 202 DMA_ATTR_V0, /* version of this structure */ 203 0, /* lowest usable address */ 204 0xffffffffffffffffULL, /* highest usable address */ 205 0x7fffffff, /* maximum DMAable byte count */ 206 MMU_PAGESIZE, /* alignment in bytes */ 207 0x7ff, /* bitmap of burst sizes */ 208 1, /* minimum transfer */ 209 0xffffffffU, /* maximum transfer */ 210 0xffffffffffffffffULL, /* maximum segment length */ 211 1, /* maximum number of segments */ 212 1, /* granularity */ 213 0, /* flags (reserved) */ 214 }; 215 216 /* DMA attributes for transmit data */ 217 static ddi_dma_attr_t tx_buffer_dma_attr = { 218 DMA_ATTR_V0, /* version of this structure */ 219 0, /* lowest usable address */ 220 0xffffffffffffffffULL, /* highest usable address */ 221 0x7fffffff, /* maximum DMAable byte count */ 222 MMU_PAGESIZE, /* alignment in bytes */ 223 0x7ff, /* bitmap of burst sizes */ 224 1, /* minimum transfer */ 225 0xffffffffU, /* maximum transfer */ 226 0xffffffffffffffffULL, /* maximum segment length */ 227 1, /* maximum number of segments */ 228 1, /* granularity */ 229 0, /* flags (reserved) */ 230 }; 231 232 /* DMA attributes for a receive buffer */ 233 static ddi_dma_attr_t rx_buffer_dma_attr = { 234 DMA_ATTR_V0, /* version of this structure */ 235 0, /* lowest usable address */ 236 0xffffffffffffffffULL, /* highest usable address */ 237 0x7fffffff, /* maximum DMAable byte count */ 238 MMU_PAGESIZE, /* alignment in bytes */ 239 0x7ff, /* bitmap of burst sizes */ 240 1, /* minimum transfer */ 241 0xffffffffU, /* maximum transfer */ 242 0xffffffffffffffffULL, /* maximum segment length */ 243 1, /* maximum number of segments */ 244 1, /* granularity */ 245 0, /* flags (reserved) */ 246 }; 247 248 /* DMA access attributes for registers and descriptors */ 249 static ddi_device_acc_attr_t accattr = { 250 DDI_DEVICE_ATTR_V0, 251 DDI_STRUCTURE_LE_ACC, /* This is a little-endian device */ 252 DDI_STRICTORDER_ACC 253 }; 254 255 /* DMA access attributes for data: NOT to be byte swapped. */ 256 static ddi_device_acc_attr_t data_accattr = { 257 DDI_DEVICE_ATTR_V0, 258 DDI_NEVERSWAP_ACC, 259 DDI_STRICTORDER_ACC 260 }; 261 262 unsigned char xnf_broadcastaddr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 263 int xnf_diagnose = 0; /* Patchable global for diagnostic purposes */ 264 265 DDI_DEFINE_STREAM_OPS(xnf_dev_ops, nulldev, nulldev, xnf_attach, xnf_detach, 266 nodev, NULL, D_MP, NULL); 267 268 static struct modldrv xnf_modldrv = { 269 &mod_driverops, /* Type of module. This one is a driver */ 270 IDENT " %I%", /* short description */ 271 &xnf_dev_ops /* driver specific ops */ 272 }; 273 274 static struct modlinkage modlinkage = { 275 MODREV_1, &xnf_modldrv, NULL 276 }; 277 278 int 279 _init(void) 280 { 281 int r; 282 283 mac_init_ops(&xnf_dev_ops, "xnf"); 284 r = mod_install(&modlinkage); 285 if (r != DDI_SUCCESS) 286 mac_fini_ops(&xnf_dev_ops); 287 288 return (r); 289 } 290 291 int 292 _fini(void) 293 { 294 return (EBUSY); /* XXPV dme: should be removable */ 295 } 296 297 int 298 _info(struct modinfo *modinfop) 299 { 300 return (mod_info(&modlinkage, modinfop)); 301 } 302 303 static int 304 xnf_setup_rings(xnf_t *xnfp) 305 { 306 int ix, err; 307 RING_IDX i; 308 struct xnf_buffer_desc *bdesc, *rbp; 309 struct xenbus_device *xsd; 310 domid_t oeid; 311 312 oeid = xvdi_get_oeid(xnfp->xnf_devinfo); 313 xsd = xvdi_get_xsd(xnfp->xnf_devinfo); 314 315 if (xnfp->xnf_tx_ring_ref != GRANT_INVALID_REF) 316 gnttab_end_foreign_access(xnfp->xnf_tx_ring_ref, 0, 0); 317 318 err = gnttab_grant_foreign_access(oeid, 319 xnf_btop(pa_to_ma(xnfp->xnf_tx_ring_phys_addr)), 0); 320 if (err <= 0) { 321 err = -err; 322 xenbus_dev_error(xsd, err, "granting access to tx ring page"); 323 goto out; 324 } 325 xnfp->xnf_tx_ring_ref = (grant_ref_t)err; 326 327 if (xnfp->xnf_rx_ring_ref != GRANT_INVALID_REF) 328 gnttab_end_foreign_access(xnfp->xnf_rx_ring_ref, 0, 0); 329 330 err = gnttab_grant_foreign_access(oeid, 331 xnf_btop(pa_to_ma(xnfp->xnf_rx_ring_phys_addr)), 0); 332 if (err <= 0) { 333 err = -err; 334 xenbus_dev_error(xsd, err, "granting access to rx ring page"); 335 goto out; 336 } 337 xnfp->xnf_rx_ring_ref = (grant_ref_t)err; 338 339 340 mutex_enter(&xnfp->xnf_intrlock); 341 342 /* 343 * Cleanup the TX ring. We just clean up any valid tx_pktinfo structs 344 * and reset the ring. Note that this can lose packets after a resume, 345 * but we expect to stagger on. 346 */ 347 mutex_enter(&xnfp->xnf_txlock); 348 349 for (i = 0; i < xnfp->xnf_n_tx; i++) { 350 struct tx_pktinfo *txp = &xnfp->xnf_tx_pkt_info[i]; 351 352 txp->id = i + 1; 353 354 if (txp->grant_ref == GRANT_INVALID_REF) { 355 ASSERT(txp->mp == NULL); 356 ASSERT(txp->bdesc == NULL); 357 continue; 358 } 359 360 if (gnttab_query_foreign_access(txp->grant_ref) != 0) 361 panic("tx grant still in use by backend domain"); 362 363 freemsg(txp->mp); 364 txp->mp = NULL; 365 366 (void) ddi_dma_unbind_handle(txp->dma_handle); 367 368 if (txp->bdesc != NULL) { 369 xnf_free_tx_buffer(txp->bdesc); 370 txp->bdesc = NULL; 371 } 372 373 (void) gnttab_end_foreign_access_ref(txp->grant_ref, 374 xnfp->xnf_tx_pages_readonly); 375 gnttab_release_grant_reference(&xnfp->xnf_gref_tx_head, 376 txp->grant_ref); 377 txp->grant_ref = GRANT_INVALID_REF; 378 } 379 380 xnfp->xnf_tx_pkt_id_list = 0; 381 xnfp->xnf_tx_ring.rsp_cons = 0; 382 xnfp->xnf_tx_ring.req_prod_pvt = 0; 383 xnfp->xnf_tx_ring.sring->req_prod = 0; 384 xnfp->xnf_tx_ring.sring->rsp_prod = 0; 385 xnfp->xnf_tx_ring.sring->rsp_event = 1; 386 387 mutex_exit(&xnfp->xnf_txlock); 388 389 /* 390 * Rebuild the RX ring. We have to rebuild the RX ring because some of 391 * our pages are currently flipped out/granted so we can't just free 392 * the RX buffers. Reclaim any unprocessed recv buffers, they won't be 393 * useable anyway since the mfn's they refer to are no longer valid. 394 * Grant the backend domain access to each hung rx buffer. 395 */ 396 i = xnfp->xnf_rx_ring.rsp_cons; 397 while (i++ != xnfp->xnf_rx_ring.sring->req_prod) { 398 volatile netif_rx_request_t *rxrp; 399 400 rxrp = RING_GET_REQUEST(&xnfp->xnf_rx_ring, i); 401 ix = rxrp - RING_GET_REQUEST(&xnfp->xnf_rx_ring, 0); 402 rbp = xnfp->xnf_rxpkt_bufptr[ix]; 403 if (rbp != NULL) { 404 grant_ref_t ref = rbp->grant_ref; 405 406 ASSERT(ref != GRANT_INVALID_REF); 407 if (xnfp->xnf_rx_hvcopy) { 408 pfn_t pfn = xnf_btop(rbp->buf_phys); 409 mfn_t mfn = pfn_to_mfn(pfn); 410 411 gnttab_grant_foreign_access_ref(ref, oeid, 412 mfn, 0); 413 } else { 414 gnttab_grant_foreign_transfer_ref(ref, 415 oeid, 0); 416 } 417 rxrp->id = ix; 418 rxrp->gref = ref; 419 } 420 } 421 422 /* 423 * Reset the ring pointers to initial state. 424 * Hang buffers for any empty ring slots. 425 */ 426 xnfp->xnf_rx_ring.rsp_cons = 0; 427 xnfp->xnf_rx_ring.req_prod_pvt = 0; 428 xnfp->xnf_rx_ring.sring->req_prod = 0; 429 xnfp->xnf_rx_ring.sring->rsp_prod = 0; 430 xnfp->xnf_rx_ring.sring->rsp_event = 1; 431 for (i = 0; i < NET_RX_RING_SIZE; i++) { 432 xnfp->xnf_rx_ring.req_prod_pvt = i; 433 if (xnfp->xnf_rxpkt_bufptr[i] != NULL) 434 continue; 435 if ((bdesc = xnf_get_buffer(xnfp)) == NULL) 436 break; 437 rx_buffer_hang(xnfp, bdesc); 438 } 439 xnfp->xnf_rx_ring.req_prod_pvt = i; 440 /* LINTED: constant in conditional context */ 441 RING_PUSH_REQUESTS(&xnfp->xnf_rx_ring); 442 443 mutex_exit(&xnfp->xnf_intrlock); 444 445 return (0); 446 447 out: 448 if (xnfp->xnf_tx_ring_ref != GRANT_INVALID_REF) 449 gnttab_end_foreign_access(xnfp->xnf_tx_ring_ref, 0, 0); 450 xnfp->xnf_tx_ring_ref = GRANT_INVALID_REF; 451 452 if (xnfp->xnf_rx_ring_ref != GRANT_INVALID_REF) 453 gnttab_end_foreign_access(xnfp->xnf_rx_ring_ref, 0, 0); 454 xnfp->xnf_rx_ring_ref = GRANT_INVALID_REF; 455 456 return (err); 457 } 458 459 460 /* Called when the upper layers free a message we passed upstream */ 461 static void 462 xnf_copy_rcv_complete(struct xnf_buffer_desc *bdesc) 463 { 464 (void) ddi_dma_unbind_handle(bdesc->dma_handle); 465 ddi_dma_mem_free(&bdesc->acc_handle); 466 ddi_dma_free_handle(&bdesc->dma_handle); 467 kmem_free(bdesc, sizeof (*bdesc)); 468 } 469 470 471 /* 472 * Connect driver to back end, called to set up communication with 473 * back end driver both initially and on resume after restore/migrate. 474 */ 475 void 476 xnf_be_connect(xnf_t *xnfp) 477 { 478 char mac[ETHERADDRL * 3]; 479 const char *message; 480 xenbus_transaction_t xbt; 481 struct xenbus_device *xsd; 482 char *xsname; 483 int err, be_no_cksum_offload; 484 485 ASSERT(!xnfp->xnf_connected); 486 487 xsd = xvdi_get_xsd(xnfp->xnf_devinfo); 488 xsname = xvdi_get_xsname(xnfp->xnf_devinfo); 489 490 err = xenbus_scanf(XBT_NULL, xvdi_get_oename(xnfp->xnf_devinfo), "mac", 491 "%s", (char *)&mac[0]); 492 if (err != 0) { 493 /* 494 * bad: we're supposed to be set up with a proper mac 495 * addr. at this point 496 */ 497 cmn_err(CE_WARN, "%s%d: no mac address", 498 ddi_driver_name(xnfp->xnf_devinfo), 499 ddi_get_instance(xnfp->xnf_devinfo)); 500 return; 501 } 502 503 if (ether_aton(mac, xnfp->xnf_mac_addr) != ETHERADDRL) { 504 err = ENOENT; 505 xenbus_dev_error(xsd, ENOENT, "parsing %s/mac", xsname); 506 return; 507 } 508 509 err = xnf_setup_rings(xnfp); 510 if (err != 0) { 511 cmn_err(CE_WARN, "failed to set up tx/rx rings"); 512 xenbus_dev_error(xsd, err, "setting up ring"); 513 return; 514 } 515 516 err = xenbus_scanf(XBT_NULL, xvdi_get_oename(xnfp->xnf_devinfo), 517 "feature-no-csum-offload", "%d", &be_no_cksum_offload); 518 /* 519 * If we fail to read the store we assume that the key is 520 * absent, implying an older domain at the far end. Older 521 * domains always support checksum offload. 522 */ 523 if (err != 0) 524 be_no_cksum_offload = 0; 525 /* 526 * If the far end cannot do checksum offload or we do not wish 527 * to do it, disable it. 528 */ 529 if ((be_no_cksum_offload == 1) || !xnfp->xnf_cksum_offload) 530 xnfp->xnf_cksum_offload = B_FALSE; 531 532 again: 533 err = xenbus_transaction_start(&xbt); 534 if (err != 0) { 535 xenbus_dev_error(xsd, EIO, "starting transaction"); 536 return; 537 } 538 539 err = xenbus_printf(xbt, xsname, "tx-ring-ref", "%u", 540 xnfp->xnf_tx_ring_ref); 541 if (err != 0) { 542 message = "writing tx ring-ref"; 543 goto abort_transaction; 544 } 545 546 err = xenbus_printf(xbt, xsname, "rx-ring-ref", "%u", 547 xnfp->xnf_rx_ring_ref); 548 if (err != 0) { 549 message = "writing rx ring-ref"; 550 goto abort_transaction; 551 } 552 553 err = xenbus_printf(xbt, xsname, "event-channel", "%u", 554 xnfp->xnf_evtchn); 555 if (err != 0) { 556 message = "writing event-channel"; 557 goto abort_transaction; 558 } 559 560 err = xenbus_printf(xbt, xsname, "feature-rx-notify", "%d", 1); 561 if (err != 0) { 562 message = "writing feature-rx-notify"; 563 goto abort_transaction; 564 } 565 566 if (!xnfp->xnf_tx_pages_readonly) { 567 err = xenbus_printf(xbt, xsname, "feature-tx-writable", 568 "%d", 1); 569 if (err != 0) { 570 message = "writing feature-tx-writable"; 571 goto abort_transaction; 572 } 573 } 574 575 err = xenbus_printf(xbt, xsname, "feature-no-csum-offload", "%d", 576 xnfp->xnf_cksum_offload ? 0 : 1); 577 if (err != 0) { 578 message = "writing feature-no-csum-offload"; 579 goto abort_transaction; 580 } 581 err = xenbus_printf(xbt, xsname, "request-rx-copy", "%d", 582 xnfp->xnf_rx_hvcopy ? 1 : 0); 583 if (err != 0) { 584 message = "writing request-rx-copy"; 585 goto abort_transaction; 586 } 587 588 err = xenbus_printf(xbt, xsname, "state", "%d", XenbusStateConnected); 589 if (err != 0) { 590 message = "writing frontend XenbusStateConnected"; 591 goto abort_transaction; 592 } 593 594 err = xenbus_transaction_end(xbt, 0); 595 if (err != 0) { 596 if (err == EAGAIN) 597 goto again; 598 xenbus_dev_error(xsd, err, "completing transaction"); 599 } 600 601 return; 602 603 abort_transaction: 604 (void) xenbus_transaction_end(xbt, 1); 605 xenbus_dev_error(xsd, err, "%s", message); 606 } 607 608 /* 609 * attach(9E) -- Attach a device to the system 610 * 611 * Called once for each board successfully probed. 612 */ 613 static int 614 xnf_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd) 615 { 616 mac_register_t *macp; 617 xnf_t *xnfp; 618 int err; 619 620 #ifdef XNF_DEBUG 621 if (xnfdebug & XNF_DEBUG_DDI) 622 printf("xnf%d: attach(0x%p)\n", ddi_get_instance(devinfo), 623 (void *)devinfo); 624 #endif 625 626 switch (cmd) { 627 case DDI_RESUME: 628 xnfp = ddi_get_driver_private(devinfo); 629 630 (void) xvdi_resume(devinfo); 631 (void) xvdi_alloc_evtchn(devinfo); 632 xnfp->xnf_evtchn = xvdi_get_evtchn(devinfo); 633 #ifdef XPV_HVM_DRIVER 634 ec_bind_evtchn_to_handler(xnfp->xnf_evtchn, IPL_VIF, xnf_intr, 635 xnfp); 636 #else 637 (void) ddi_add_intr(devinfo, 0, NULL, NULL, xnf_intr, 638 (caddr_t)xnfp); 639 #endif 640 xnf_be_connect(xnfp); 641 /* 642 * Our MAC address may have changed if we're resuming: 643 * - on a different host 644 * - on the same one and got a different MAC address 645 * because we didn't specify one of our own. 646 * so it's useful to claim that it changed in order that 647 * IP send out a gratuitous ARP. 648 */ 649 mac_unicst_update(xnfp->xnf_mh, xnfp->xnf_mac_addr); 650 return (DDI_SUCCESS); 651 652 case DDI_ATTACH: 653 break; 654 655 default: 656 return (DDI_FAILURE); 657 } 658 659 /* 660 * Allocate gld_mac_info_t and xnf_instance structures 661 */ 662 macp = mac_alloc(MAC_VERSION); 663 if (macp == NULL) 664 return (DDI_FAILURE); 665 xnfp = kmem_zalloc(sizeof (*xnfp), KM_SLEEP); 666 667 macp->m_dip = devinfo; 668 macp->m_driver = xnfp; 669 xnfp->xnf_devinfo = devinfo; 670 671 macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER; 672 macp->m_src_addr = xnfp->xnf_mac_addr; 673 macp->m_callbacks = &xnf_callbacks; 674 macp->m_min_sdu = 0; 675 macp->m_max_sdu = XNF_MAXPKT; 676 677 xnfp->xnf_running = B_FALSE; 678 xnfp->xnf_connected = B_FALSE; 679 xnfp->xnf_cksum_offload = xnf_cksum_offload; 680 xnfp->xnf_tx_pages_readonly = xnf_tx_pages_readonly; 681 682 xnfp->xnf_rx_hvcopy = xnf_hvcopy_peer_status(devinfo) && xnf_rx_hvcopy; 683 #ifdef XPV_HVM_DRIVER 684 if (!xnfp->xnf_rx_hvcopy) { 685 cmn_err(CE_WARN, "The xnf driver requires a dom0 that " 686 "supports 'feature-rx-copy'"); 687 goto failure; 688 } 689 #endif 690 691 /* 692 * Get the iblock cookie with which to initialize the mutexes. 693 */ 694 if (ddi_get_iblock_cookie(devinfo, 0, &xnfp->xnf_icookie) 695 != DDI_SUCCESS) 696 goto failure; 697 /* 698 * Driver locking strategy: the txlock protects all paths 699 * through the driver, except the interrupt thread. 700 * If the interrupt thread needs to do something which could 701 * affect the operation of any other part of the driver, 702 * it needs to acquire the txlock mutex. 703 */ 704 mutex_init(&xnfp->xnf_tx_buf_mutex, 705 NULL, MUTEX_DRIVER, xnfp->xnf_icookie); 706 mutex_init(&xnfp->xnf_rx_buf_mutex, 707 NULL, MUTEX_DRIVER, xnfp->xnf_icookie); 708 mutex_init(&xnfp->xnf_txlock, 709 NULL, MUTEX_DRIVER, xnfp->xnf_icookie); 710 mutex_init(&xnfp->xnf_intrlock, 711 NULL, MUTEX_DRIVER, xnfp->xnf_icookie); 712 cv_init(&xnfp->xnf_cv, NULL, CV_DEFAULT, NULL); 713 714 if (gnttab_alloc_grant_references(NET_TX_RING_SIZE, 715 &xnfp->xnf_gref_tx_head) < 0) { 716 cmn_err(CE_WARN, "xnf%d: can't alloc tx grant refs", 717 ddi_get_instance(xnfp->xnf_devinfo)); 718 goto failure_1; 719 } 720 if (gnttab_alloc_grant_references(NET_RX_RING_SIZE, 721 &xnfp->xnf_gref_rx_head) < 0) { 722 cmn_err(CE_WARN, "xnf%d: can't alloc rx grant refs", 723 ddi_get_instance(xnfp->xnf_devinfo)); 724 goto failure_1; 725 } 726 if (xnf_alloc_dma_resources(xnfp) == DDI_FAILURE) { 727 cmn_err(CE_WARN, "xnf%d: failed to allocate and initialize " 728 "driver data structures", 729 ddi_get_instance(xnfp->xnf_devinfo)); 730 goto failure_1; 731 } 732 733 xnfp->xnf_rx_ring.sring->rsp_event = 734 xnfp->xnf_tx_ring.sring->rsp_event = 1; 735 736 xnfp->xnf_tx_ring_ref = GRANT_INVALID_REF; 737 xnfp->xnf_rx_ring_ref = GRANT_INVALID_REF; 738 739 /* set driver private pointer now */ 740 ddi_set_driver_private(devinfo, xnfp); 741 742 if (xvdi_add_event_handler(devinfo, XS_OE_STATE, oe_state_change) 743 != DDI_SUCCESS) 744 goto failure_1; 745 746 if (!xnf_kstat_init(xnfp)) 747 goto failure_2; 748 749 /* 750 * Allocate an event channel, add the interrupt handler and 751 * bind it to the event channel. 752 */ 753 (void) xvdi_alloc_evtchn(devinfo); 754 xnfp->xnf_evtchn = xvdi_get_evtchn(devinfo); 755 #ifdef XPV_HVM_DRIVER 756 ec_bind_evtchn_to_handler(xnfp->xnf_evtchn, IPL_VIF, xnf_intr, xnfp); 757 #else 758 (void) ddi_add_intr(devinfo, 0, NULL, NULL, xnf_intr, (caddr_t)xnfp); 759 #endif 760 761 /* 762 * connect to the backend 763 */ 764 xnf_be_connect(xnfp); 765 766 err = mac_register(macp, &xnfp->xnf_mh); 767 mac_free(macp); 768 macp = NULL; 769 if (err != 0) 770 goto failure_3; 771 772 return (DDI_SUCCESS); 773 774 failure_3: 775 kstat_delete(xnfp->xnf_kstat_aux); 776 777 failure_2: 778 xvdi_remove_event_handler(devinfo, XS_OE_STATE); 779 #ifdef XPV_HVM_DRIVER 780 ec_unbind_evtchn(xnfp->xnf_evtchn); 781 xvdi_free_evtchn(devinfo); 782 #else 783 ddi_remove_intr(devinfo, 0, xnfp->xnf_icookie); 784 #endif 785 xnfp->xnf_evtchn = INVALID_EVTCHN; 786 787 failure_1: 788 xnf_release_dma_resources(xnfp); 789 cv_destroy(&xnfp->xnf_cv); 790 mutex_destroy(&xnfp->xnf_rx_buf_mutex); 791 mutex_destroy(&xnfp->xnf_txlock); 792 mutex_destroy(&xnfp->xnf_intrlock); 793 794 failure: 795 kmem_free(xnfp, sizeof (*xnfp)); 796 if (macp != NULL) 797 mac_free(macp); 798 799 return (DDI_FAILURE); 800 } 801 802 /* detach(9E) -- Detach a device from the system */ 803 static int 804 xnf_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd) 805 { 806 xnf_t *xnfp; /* Our private device info */ 807 int i; 808 809 #ifdef XNF_DEBUG 810 if (xnfdebug & XNF_DEBUG_DDI) 811 printf("xnf_detach(0x%p)\n", (void *)devinfo); 812 #endif 813 814 xnfp = ddi_get_driver_private(devinfo); 815 816 switch (cmd) { 817 case DDI_SUSPEND: 818 #ifdef XPV_HVM_DRIVER 819 ec_unbind_evtchn(xnfp->xnf_evtchn); 820 xvdi_free_evtchn(devinfo); 821 #else 822 ddi_remove_intr(devinfo, 0, xnfp->xnf_icookie); 823 #endif 824 825 xvdi_suspend(devinfo); 826 827 mutex_enter(&xnfp->xnf_intrlock); 828 mutex_enter(&xnfp->xnf_txlock); 829 830 xnfp->xnf_evtchn = INVALID_EVTCHN; 831 xnfp->xnf_connected = B_FALSE; 832 mutex_exit(&xnfp->xnf_txlock); 833 mutex_exit(&xnfp->xnf_intrlock); 834 return (DDI_SUCCESS); 835 836 case DDI_DETACH: 837 break; 838 839 default: 840 return (DDI_FAILURE); 841 } 842 843 if (xnfp->xnf_connected) 844 return (DDI_FAILURE); 845 846 /* Wait for receive buffers to be returned; give up after 5 seconds */ 847 i = 50; 848 849 mutex_enter(&xnfp->xnf_rx_buf_mutex); 850 while (xnfp->xnf_rx_bufs_outstanding > 0) { 851 mutex_exit(&xnfp->xnf_rx_buf_mutex); 852 delay(drv_usectohz(100000)); 853 if (--i == 0) { 854 cmn_err(CE_WARN, 855 "xnf%d: never reclaimed all the " 856 "receive buffers. Still have %d " 857 "buffers outstanding.", 858 ddi_get_instance(xnfp->xnf_devinfo), 859 xnfp->xnf_rx_bufs_outstanding); 860 return (DDI_FAILURE); 861 } 862 mutex_enter(&xnfp->xnf_rx_buf_mutex); 863 } 864 mutex_exit(&xnfp->xnf_rx_buf_mutex); 865 866 kstat_delete(xnfp->xnf_kstat_aux); 867 868 if (mac_unregister(xnfp->xnf_mh) != 0) 869 return (DDI_FAILURE); 870 871 /* Stop the receiver */ 872 xnf_stop(xnfp); 873 874 xvdi_remove_event_handler(devinfo, XS_OE_STATE); 875 876 /* Remove the interrupt */ 877 #ifdef XPV_HVM_DRIVER 878 ec_unbind_evtchn(xnfp->xnf_evtchn); 879 xvdi_free_evtchn(devinfo); 880 #else 881 ddi_remove_intr(devinfo, 0, xnfp->xnf_icookie); 882 #endif 883 884 /* Release any pending xmit mblks */ 885 xnf_release_mblks(xnfp); 886 887 /* Release all DMA resources */ 888 xnf_release_dma_resources(xnfp); 889 890 cv_destroy(&xnfp->xnf_cv); 891 mutex_destroy(&xnfp->xnf_rx_buf_mutex); 892 mutex_destroy(&xnfp->xnf_txlock); 893 mutex_destroy(&xnfp->xnf_intrlock); 894 895 kmem_free(xnfp, sizeof (*xnfp)); 896 897 return (DDI_SUCCESS); 898 } 899 900 /* 901 * xnf_set_mac_addr() -- set the physical network address on the board. 902 */ 903 /*ARGSUSED*/ 904 static int 905 xnf_set_mac_addr(void *arg, const uint8_t *macaddr) 906 { 907 xnf_t *xnfp = arg; 908 909 #ifdef XNF_DEBUG 910 if (xnfdebug & XNF_DEBUG_TRACE) 911 printf("xnf%d: set_mac_addr(0x%p): " 912 "%02x:%02x:%02x:%02x:%02x:%02x\n", 913 ddi_get_instance(xnfp->xnf_devinfo), 914 (void *)xnfp, macaddr[0], macaddr[1], macaddr[2], 915 macaddr[3], macaddr[4], macaddr[5]); 916 #endif 917 /* 918 * We can't set our macaddr. 919 * 920 * XXPV dme: Why not? 921 */ 922 return (ENOTSUP); 923 } 924 925 /* 926 * xnf_set_multicast() -- set (enable) or disable a multicast address. 927 * 928 * Program the hardware to enable/disable the multicast address 929 * in "mcast". Enable if "add" is true, disable if false. 930 */ 931 /*ARGSUSED*/ 932 static int 933 xnf_set_multicast(void *arg, boolean_t add, const uint8_t *mca) 934 { 935 xnf_t *xnfp = arg; 936 937 #ifdef XNF_DEBUG 938 if (xnfdebug & XNF_DEBUG_TRACE) 939 printf("xnf%d set_multicast(0x%p): " 940 "%02x:%02x:%02x:%02x:%02x:%02x\n", 941 ddi_get_instance(xnfp->xnf_devinfo), 942 (void *)xnfp, mca[0], mca[1], mca[2], 943 mca[3], mca[4], mca[5]); 944 #endif 945 946 /* 947 * XXPV dme: Ideally we'd relay the address to the backend for 948 * enabling. The protocol doesn't support that (interesting 949 * extension), so we simply succeed and hope that the relevant 950 * packets are going to arrive. 951 * 952 * If protocol support is added for enable/disable then we'll 953 * need to keep a list of those in use and re-add on resume. 954 */ 955 return (0); 956 } 957 958 /* 959 * xnf_set_promiscuous() -- set or reset promiscuous mode on the board 960 * 961 * Program the hardware to enable/disable promiscuous mode. 962 */ 963 /*ARGSUSED*/ 964 static int 965 xnf_set_promiscuous(void *arg, boolean_t on) 966 { 967 xnf_t *xnfp = arg; 968 969 #ifdef XNF_DEBUG 970 if (xnfdebug & XNF_DEBUG_TRACE) 971 printf("xnf%d set_promiscuous(0x%p, %x)\n", 972 ddi_get_instance(xnfp->xnf_devinfo), 973 (void *)xnfp, on); 974 #endif 975 /* 976 * We can't really do this, but we pretend that we can in 977 * order that snoop will work. 978 */ 979 return (0); 980 } 981 982 /* 983 * Clean buffers that we have responses for from the transmit ring. 984 */ 985 static int 986 xnf_clean_tx_ring(xnf_t *xnfp) 987 { 988 RING_IDX next_resp, i; 989 struct tx_pktinfo *reap; 990 int id; 991 grant_ref_t ref; 992 993 ASSERT(MUTEX_HELD(&xnfp->xnf_txlock)); 994 995 while (RING_HAS_UNCONSUMED_RESPONSES(&xnfp->xnf_tx_ring)) { 996 /* 997 * index of next transmission ack 998 */ 999 next_resp = xnfp->xnf_tx_ring.sring->rsp_prod; 1000 membar_consumer(); 1001 /* 1002 * Clean tx packets from ring that we have responses for 1003 */ 1004 for (i = xnfp->xnf_tx_ring.rsp_cons; i != next_resp; i++) { 1005 id = RING_GET_RESPONSE(&xnfp->xnf_tx_ring, i)->id; 1006 reap = &xnfp->xnf_tx_pkt_info[id]; 1007 ref = reap->grant_ref; 1008 /* 1009 * Return id to free list 1010 */ 1011 reap->id = xnfp->xnf_tx_pkt_id_list; 1012 xnfp->xnf_tx_pkt_id_list = id; 1013 if (gnttab_query_foreign_access(ref) != 0) 1014 panic("tx grant still in use " 1015 "by backend domain"); 1016 (void) ddi_dma_unbind_handle(reap->dma_handle); 1017 (void) gnttab_end_foreign_access_ref(ref, 1018 xnfp->xnf_tx_pages_readonly); 1019 gnttab_release_grant_reference(&xnfp->xnf_gref_tx_head, 1020 ref); 1021 freemsg(reap->mp); 1022 reap->mp = NULL; 1023 reap->grant_ref = GRANT_INVALID_REF; 1024 if (reap->bdesc != NULL) 1025 xnf_free_tx_buffer(reap->bdesc); 1026 reap->bdesc = NULL; 1027 } 1028 xnfp->xnf_tx_ring.rsp_cons = next_resp; 1029 membar_enter(); 1030 } 1031 1032 return (RING_FREE_REQUESTS(&xnfp->xnf_tx_ring)); 1033 } 1034 1035 /* 1036 * If we need to pull up data from either a packet that crosses a page 1037 * boundary or consisting of multiple mblks, do it here. We allocate 1038 * a page aligned buffer and copy the data into it. The header for the 1039 * allocated buffer is returned. (which is also allocated here) 1040 */ 1041 static struct xnf_buffer_desc * 1042 xnf_pullupmsg(xnf_t *xnfp, mblk_t *mp) 1043 { 1044 struct xnf_buffer_desc *bdesc; 1045 mblk_t *mptr; 1046 caddr_t bp; 1047 int len; 1048 1049 /* 1050 * get a xmit buffer from the xmit buffer pool 1051 */ 1052 mutex_enter(&xnfp->xnf_rx_buf_mutex); 1053 bdesc = xnf_get_tx_buffer(xnfp); 1054 mutex_exit(&xnfp->xnf_rx_buf_mutex); 1055 if (bdesc == NULL) 1056 return (bdesc); 1057 /* 1058 * Copy the data into the buffer 1059 */ 1060 xnfp->xnf_stat_tx_pullup++; 1061 bp = bdesc->buf; 1062 for (mptr = mp; mptr != NULL; mptr = mptr->b_cont) { 1063 len = mptr->b_wptr - mptr->b_rptr; 1064 bcopy(mptr->b_rptr, bp, len); 1065 bp += len; 1066 } 1067 return (bdesc); 1068 } 1069 1070 /* 1071 * xnf_send_one() -- send a packet 1072 * 1073 * Called when a packet is ready to be transmitted. A pointer to an 1074 * M_DATA message that contains the packet is passed to this routine. 1075 * At least the complete LLC header is contained in the message's 1076 * first message block, and the remainder of the packet is contained 1077 * within additional M_DATA message blocks linked to the first 1078 * message block. 1079 * 1080 */ 1081 static boolean_t 1082 xnf_send_one(xnf_t *xnfp, mblk_t *mp) 1083 { 1084 struct xnf_buffer_desc *xmitbuf; 1085 struct tx_pktinfo *txp_info; 1086 mblk_t *mptr; 1087 ddi_dma_cookie_t dma_cookie; 1088 RING_IDX slot; 1089 int length = 0, i, pktlen = 0, rc, tx_id; 1090 int tx_ring_freespace, page_oops; 1091 uint_t ncookies; 1092 volatile netif_tx_request_t *txrp; 1093 caddr_t bufaddr; 1094 grant_ref_t ref; 1095 unsigned long mfn; 1096 uint32_t pflags; 1097 domid_t oeid; 1098 1099 #ifdef XNF_DEBUG 1100 if (xnfdebug & XNF_DEBUG_SEND) 1101 printf("xnf%d send(0x%p, 0x%p)\n", 1102 ddi_get_instance(xnfp->xnf_devinfo), 1103 (void *)xnfp, (void *)mp); 1104 #endif 1105 1106 ASSERT(mp != NULL); 1107 ASSERT(mp->b_next == NULL); 1108 ASSERT(MUTEX_HELD(&xnfp->xnf_txlock)); 1109 1110 tx_ring_freespace = xnf_clean_tx_ring(xnfp); 1111 ASSERT(tx_ring_freespace >= 0); 1112 1113 oeid = xvdi_get_oeid(xnfp->xnf_devinfo); 1114 xnfp->xnf_stat_tx_attempt++; 1115 /* 1116 * If there are no xmit ring slots available, return. 1117 */ 1118 if (tx_ring_freespace == 0) { 1119 xnfp->xnf_stat_tx_defer++; 1120 return (B_FALSE); /* Send should be retried */ 1121 } 1122 1123 slot = xnfp->xnf_tx_ring.req_prod_pvt; 1124 /* Count the number of mblks in message and compute packet size */ 1125 for (i = 0, mptr = mp; mptr != NULL; mptr = mptr->b_cont, i++) 1126 pktlen += (mptr->b_wptr - mptr->b_rptr); 1127 1128 /* Make sure packet isn't too large */ 1129 if (pktlen > XNF_FRAMESIZE) { 1130 cmn_err(CE_WARN, "xnf%d: large packet %d bytes", 1131 ddi_get_instance(xnfp->xnf_devinfo), pktlen); 1132 freemsg(mp); 1133 return (B_FALSE); 1134 } 1135 1136 /* 1137 * Test if we cross a page boundary with our buffer 1138 */ 1139 page_oops = (i == 1) && 1140 (xnf_btop((size_t)mp->b_rptr) != 1141 xnf_btop((size_t)(mp->b_rptr + pktlen))); 1142 /* 1143 * XXPV - unfortunately, the Xen virtual net device currently 1144 * doesn't support multiple packet frags, so this will always 1145 * end up doing the pullup if we got more than one packet. 1146 */ 1147 if (i > xnf_max_tx_frags || page_oops) { 1148 if (page_oops) 1149 xnfp->xnf_stat_tx_pagebndry++; 1150 if ((xmitbuf = xnf_pullupmsg(xnfp, mp)) == NULL) { 1151 /* could not allocate resources? */ 1152 #ifdef XNF_DEBUG 1153 cmn_err(CE_WARN, "xnf%d: pullupmsg failed", 1154 ddi_get_instance(xnfp->xnf_devinfo)); 1155 #endif 1156 xnfp->xnf_stat_tx_defer++; 1157 return (B_FALSE); /* Retry send */ 1158 } 1159 bufaddr = xmitbuf->buf; 1160 } else { 1161 xmitbuf = NULL; 1162 bufaddr = (caddr_t)mp->b_rptr; 1163 } 1164 1165 /* set up data descriptor */ 1166 length = pktlen; 1167 1168 /* 1169 * Get packet id from free list 1170 */ 1171 tx_id = xnfp->xnf_tx_pkt_id_list; 1172 ASSERT(tx_id < NET_TX_RING_SIZE); 1173 txp_info = &xnfp->xnf_tx_pkt_info[tx_id]; 1174 xnfp->xnf_tx_pkt_id_list = txp_info->id; 1175 txp_info->id = tx_id; 1176 1177 /* Prepare for DMA mapping of tx buffer(s) */ 1178 rc = ddi_dma_addr_bind_handle(txp_info->dma_handle, 1179 NULL, bufaddr, length, DDI_DMA_WRITE | DDI_DMA_STREAMING, 1180 DDI_DMA_DONTWAIT, 0, &dma_cookie, &ncookies); 1181 if (rc != DDI_DMA_MAPPED) { 1182 ASSERT(rc != DDI_DMA_INUSE); 1183 ASSERT(rc != DDI_DMA_PARTIAL_MAP); 1184 /* 1185 * Return id to free list 1186 */ 1187 txp_info->id = xnfp->xnf_tx_pkt_id_list; 1188 xnfp->xnf_tx_pkt_id_list = tx_id; 1189 if (rc == DDI_DMA_NORESOURCES) { 1190 xnfp->xnf_stat_tx_defer++; 1191 return (B_FALSE); /* Retry later */ 1192 } 1193 #ifdef XNF_DEBUG 1194 cmn_err(CE_WARN, "xnf%d: bind_handle failed (%x)", 1195 ddi_get_instance(xnfp->xnf_devinfo), rc); 1196 #endif 1197 return (B_FALSE); 1198 } 1199 1200 ASSERT(ncookies == 1); 1201 ref = gnttab_claim_grant_reference(&xnfp->xnf_gref_tx_head); 1202 ASSERT((signed short)ref >= 0); 1203 mfn = xnf_btop(pa_to_ma((paddr_t)dma_cookie.dmac_laddress)); 1204 gnttab_grant_foreign_access_ref(ref, oeid, mfn, 1205 xnfp->xnf_tx_pages_readonly); 1206 txp_info->grant_ref = ref; 1207 txrp = RING_GET_REQUEST(&xnfp->xnf_tx_ring, slot); 1208 txrp->gref = ref; 1209 txrp->size = dma_cookie.dmac_size; 1210 txrp->offset = (uintptr_t)bufaddr & PAGEOFFSET; 1211 txrp->id = tx_id; 1212 txrp->flags = 0; 1213 hcksum_retrieve(mp, NULL, NULL, NULL, NULL, NULL, NULL, &pflags); 1214 if (pflags != 0) { 1215 ASSERT(xnfp->xnf_cksum_offload); 1216 /* 1217 * If the local protocol stack requests checksum 1218 * offload we set the 'checksum blank' flag, 1219 * indicating to the peer that we need the checksum 1220 * calculated for us. 1221 * 1222 * We _don't_ set the validated flag, because we haven't 1223 * validated that the data and the checksum match. 1224 */ 1225 txrp->flags |= NETTXF_csum_blank; 1226 xnfp->xnf_stat_tx_cksum_deferred++; 1227 } 1228 membar_producer(); 1229 xnfp->xnf_tx_ring.req_prod_pvt = slot + 1; 1230 1231 txp_info->mp = mp; 1232 txp_info->bdesc = xmitbuf; 1233 1234 xnfp->xnf_stat_opackets++; 1235 xnfp->xnf_stat_obytes += pktlen; 1236 1237 return (B_TRUE); /* successful transmit attempt */ 1238 } 1239 1240 mblk_t * 1241 xnf_send(void *arg, mblk_t *mp) 1242 { 1243 xnf_t *xnfp = arg; 1244 mblk_t *next; 1245 boolean_t sent_something = B_FALSE; 1246 1247 mutex_enter(&xnfp->xnf_txlock); 1248 1249 /* 1250 * Transmission attempts should be impossible without having 1251 * previously called xnf_start(). 1252 */ 1253 ASSERT(xnfp->xnf_running); 1254 1255 /* 1256 * Wait for getting connected to the backend 1257 */ 1258 while (!xnfp->xnf_connected) { 1259 cv_wait(&xnfp->xnf_cv, &xnfp->xnf_txlock); 1260 } 1261 1262 while (mp != NULL) { 1263 next = mp->b_next; 1264 mp->b_next = NULL; 1265 1266 if (!xnf_send_one(xnfp, mp)) { 1267 mp->b_next = next; 1268 break; 1269 } 1270 1271 mp = next; 1272 sent_something = B_TRUE; 1273 } 1274 1275 if (sent_something) { 1276 boolean_t notify; 1277 1278 /* LINTED: constant in conditional context */ 1279 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&xnfp->xnf_tx_ring, 1280 notify); 1281 if (notify) 1282 ec_notify_via_evtchn(xnfp->xnf_evtchn); 1283 } 1284 1285 mutex_exit(&xnfp->xnf_txlock); 1286 1287 return (mp); 1288 } 1289 1290 /* 1291 * xnf_intr() -- ring interrupt service routine 1292 */ 1293 static uint_t 1294 xnf_intr(caddr_t arg) 1295 { 1296 xnf_t *xnfp = (xnf_t *)arg; 1297 int tx_ring_space; 1298 1299 mutex_enter(&xnfp->xnf_intrlock); 1300 1301 /* 1302 * If not connected to the peer or not started by the upper 1303 * layers we cannot usefully handle interrupts. 1304 */ 1305 if (!(xnfp->xnf_connected && xnfp->xnf_running)) { 1306 mutex_exit(&xnfp->xnf_intrlock); 1307 xnfp->xnf_stat_unclaimed_interrupts++; 1308 return (DDI_INTR_UNCLAIMED); 1309 } 1310 1311 #ifdef XNF_DEBUG 1312 if (xnfdebug & XNF_DEBUG_INT) 1313 printf("xnf%d intr(0x%p)\n", 1314 ddi_get_instance(xnfp->xnf_devinfo), (void *)xnfp); 1315 #endif 1316 if (RING_HAS_UNCONSUMED_RESPONSES(&xnfp->xnf_rx_ring)) { 1317 mblk_t *mp; 1318 1319 if (xnfp->xnf_rx_hvcopy) 1320 mp = xnf_process_hvcopy_recv(xnfp); 1321 else 1322 mp = xnf_process_recv(xnfp); 1323 1324 if (mp != NULL) 1325 mac_rx(xnfp->xnf_mh, xnfp->xnf_rx_handle, mp); 1326 } 1327 1328 /* 1329 * Clean tx ring and try to start any blocked xmit streams if 1330 * there is now some space. 1331 */ 1332 mutex_enter(&xnfp->xnf_txlock); 1333 tx_ring_space = xnf_clean_tx_ring(xnfp); 1334 mutex_exit(&xnfp->xnf_txlock); 1335 if (tx_ring_space > XNF_TX_FREE_THRESH) { 1336 mutex_exit(&xnfp->xnf_intrlock); 1337 mac_tx_update(xnfp->xnf_mh); 1338 mutex_enter(&xnfp->xnf_intrlock); 1339 } 1340 1341 xnfp->xnf_stat_interrupts++; 1342 mutex_exit(&xnfp->xnf_intrlock); 1343 return (DDI_INTR_CLAIMED); /* indicate that the interrupt was for us */ 1344 } 1345 1346 /* 1347 * xnf_start() -- start the board receiving and enable interrupts. 1348 */ 1349 static int 1350 xnf_start(void *arg) 1351 { 1352 xnf_t *xnfp = arg; 1353 1354 #ifdef XNF_DEBUG 1355 if (xnfdebug & XNF_DEBUG_TRACE) 1356 printf("xnf%d start(0x%p)\n", 1357 ddi_get_instance(xnfp->xnf_devinfo), (void *)xnfp); 1358 #endif 1359 1360 mutex_enter(&xnfp->xnf_intrlock); 1361 mutex_enter(&xnfp->xnf_txlock); 1362 1363 /* Accept packets from above. */ 1364 xnfp->xnf_running = B_TRUE; 1365 1366 mutex_exit(&xnfp->xnf_txlock); 1367 mutex_exit(&xnfp->xnf_intrlock); 1368 1369 return (0); 1370 } 1371 1372 /* xnf_stop() - disable hardware */ 1373 static void 1374 xnf_stop(void *arg) 1375 { 1376 xnf_t *xnfp = arg; 1377 1378 #ifdef XNF_DEBUG 1379 if (xnfdebug & XNF_DEBUG_TRACE) 1380 printf("xnf%d stop(0x%p)\n", 1381 ddi_get_instance(xnfp->xnf_devinfo), (void *)xnfp); 1382 #endif 1383 1384 mutex_enter(&xnfp->xnf_intrlock); 1385 mutex_enter(&xnfp->xnf_txlock); 1386 1387 xnfp->xnf_running = B_FALSE; 1388 1389 mutex_exit(&xnfp->xnf_txlock); 1390 mutex_exit(&xnfp->xnf_intrlock); 1391 } 1392 1393 /* 1394 * Driver private functions follow 1395 */ 1396 1397 /* 1398 * Hang buffer on rx ring 1399 */ 1400 static void 1401 rx_buffer_hang(xnf_t *xnfp, struct xnf_buffer_desc *bdesc) 1402 { 1403 volatile netif_rx_request_t *reqp; 1404 RING_IDX hang_ix; 1405 grant_ref_t ref; 1406 domid_t oeid; 1407 1408 oeid = xvdi_get_oeid(xnfp->xnf_devinfo); 1409 1410 ASSERT(MUTEX_HELD(&xnfp->xnf_intrlock)); 1411 reqp = RING_GET_REQUEST(&xnfp->xnf_rx_ring, 1412 xnfp->xnf_rx_ring.req_prod_pvt); 1413 hang_ix = (RING_IDX) (reqp - RING_GET_REQUEST(&xnfp->xnf_rx_ring, 0)); 1414 ASSERT(xnfp->xnf_rxpkt_bufptr[hang_ix] == NULL); 1415 if (bdesc->grant_ref == GRANT_INVALID_REF) { 1416 ref = gnttab_claim_grant_reference(&xnfp->xnf_gref_rx_head); 1417 ASSERT((signed short)ref >= 0); 1418 bdesc->grant_ref = ref; 1419 if (xnfp->xnf_rx_hvcopy) { 1420 pfn_t pfn = xnf_btop(bdesc->buf_phys); 1421 mfn_t mfn = pfn_to_mfn(pfn); 1422 1423 gnttab_grant_foreign_access_ref(ref, oeid, mfn, 0); 1424 } else { 1425 gnttab_grant_foreign_transfer_ref(ref, oeid, 0); 1426 } 1427 } 1428 reqp->id = hang_ix; 1429 reqp->gref = bdesc->grant_ref; 1430 bdesc->id = hang_ix; 1431 xnfp->xnf_rxpkt_bufptr[hang_ix] = bdesc; 1432 membar_producer(); 1433 xnfp->xnf_rx_ring.req_prod_pvt++; 1434 } 1435 1436 static mblk_t * 1437 xnf_process_hvcopy_recv(xnf_t *xnfp) 1438 { 1439 netif_rx_response_t *rxpkt; 1440 mblk_t *mp, *head, *tail; 1441 struct xnf_buffer_desc *bdesc; 1442 boolean_t hwcsum = B_FALSE, notify, work_to_do; 1443 size_t len; 1444 1445 /* 1446 * in loop over unconsumed responses, we do: 1447 * 1. get a response 1448 * 2. take corresponding buffer off recv. ring 1449 * 3. indicate this by setting slot to NULL 1450 * 4. create a new message and 1451 * 5. copy data in, adjust ptr 1452 * 1453 * outside loop: 1454 * 7. make sure no more data has arrived; kick HV 1455 */ 1456 1457 head = tail = NULL; 1458 1459 loop: 1460 while (RING_HAS_UNCONSUMED_RESPONSES(&xnfp->xnf_rx_ring)) { 1461 1462 /* 1. */ 1463 rxpkt = RING_GET_RESPONSE(&xnfp->xnf_rx_ring, 1464 xnfp->xnf_rx_ring.rsp_cons); 1465 1466 DTRACE_PROBE4(got_PKT, int, (int)rxpkt->id, int, 1467 (int)rxpkt->offset, 1468 int, (int)rxpkt->flags, int, (int)rxpkt->status); 1469 1470 /* 1471 * 2. 1472 * Take buffer off of receive ring 1473 */ 1474 hwcsum = B_FALSE; 1475 bdesc = xnfp->xnf_rxpkt_bufptr[rxpkt->id]; 1476 /* 3 */ 1477 xnfp->xnf_rxpkt_bufptr[rxpkt->id] = NULL; 1478 ASSERT(bdesc->id == rxpkt->id); 1479 if (rxpkt->status <= 0) { 1480 DTRACE_PROBE4(pkt_status_negative, int, rxpkt->status, 1481 char *, bdesc->buf, int, rxpkt->offset, 1482 char *, ((char *)bdesc->buf) + rxpkt->offset); 1483 mp = NULL; 1484 xnfp->xnf_stat_errrx++; 1485 if (rxpkt->status == 0) 1486 xnfp->xnf_stat_runt++; 1487 if (rxpkt->status == NETIF_RSP_ERROR) 1488 xnfp->xnf_stat_mac_rcv_error++; 1489 if (rxpkt->status == NETIF_RSP_DROPPED) 1490 xnfp->xnf_stat_norxbuf++; 1491 /* 1492 * re-hang the buffer 1493 */ 1494 rx_buffer_hang(xnfp, bdesc); 1495 } else { 1496 grant_ref_t ref = bdesc->grant_ref; 1497 struct xnf_buffer_desc *new_bdesc; 1498 unsigned long off = rxpkt->offset; 1499 1500 DTRACE_PROBE4(pkt_status_ok, int, rxpkt->status, 1501 char *, bdesc->buf, int, rxpkt->offset, 1502 char *, ((char *)bdesc->buf) + rxpkt->offset); 1503 len = rxpkt->status; 1504 ASSERT(off + len <= PAGEOFFSET); 1505 if (ref == GRANT_INVALID_REF) { 1506 mp = NULL; 1507 new_bdesc = bdesc; 1508 cmn_err(CE_WARN, "Bad rx grant reference %d " 1509 "from dom %d", ref, 1510 xvdi_get_oeid(xnfp->xnf_devinfo)); 1511 goto luckless; 1512 } 1513 /* 1514 * Release ref which we'll be re-claiming in 1515 * rx_buffer_hang(). 1516 */ 1517 bdesc->grant_ref = GRANT_INVALID_REF; 1518 (void) gnttab_end_foreign_access_ref(ref, 0); 1519 gnttab_release_grant_reference(&xnfp->xnf_gref_rx_head, 1520 ref); 1521 if (rxpkt->flags & NETRXF_data_validated) 1522 hwcsum = B_TRUE; 1523 1524 /* 1525 * XXPV for the initial implementation of HVcopy, 1526 * create a new msg and copy in the data 1527 */ 1528 /* 4. */ 1529 if ((mp = allocb(len, BPRI_MED)) == NULL) { 1530 /* 1531 * Couldn't get buffer to copy to, 1532 * drop this data, and re-hang 1533 * the buffer on the ring. 1534 */ 1535 xnfp->xnf_stat_norxbuf++; 1536 DTRACE_PROBE(alloc_nix); 1537 } else { 1538 /* 5. */ 1539 DTRACE_PROBE(alloc_ok); 1540 bcopy(bdesc->buf + off, mp->b_wptr, 1541 len); 1542 mp->b_wptr += len; 1543 } 1544 new_bdesc = bdesc; 1545 luckless: 1546 1547 /* Re-hang old or hang new buffer. */ 1548 rx_buffer_hang(xnfp, new_bdesc); 1549 } 1550 if (mp) { 1551 if (hwcsum) { 1552 /* 1553 * See comments in xnf_process_recv(). 1554 */ 1555 1556 (void) hcksum_assoc(mp, NULL, 1557 NULL, 0, 0, 0, 0, 1558 HCK_FULLCKSUM | 1559 HCK_FULLCKSUM_OK, 1560 0); 1561 xnfp->xnf_stat_rx_cksum_no_need++; 1562 } 1563 if (head == NULL) { 1564 head = tail = mp; 1565 } else { 1566 tail->b_next = mp; 1567 tail = mp; 1568 } 1569 1570 ASSERT(mp->b_next == NULL); 1571 1572 xnfp->xnf_stat_ipackets++; 1573 xnfp->xnf_stat_rbytes += len; 1574 } 1575 1576 xnfp->xnf_rx_ring.rsp_cons++; 1577 1578 xnfp->xnf_stat_hvcopy_packet_processed++; 1579 } 1580 1581 /* 7. */ 1582 /* 1583 * Has more data come in since we started? 1584 */ 1585 /* LINTED: constant in conditional context */ 1586 RING_FINAL_CHECK_FOR_RESPONSES(&xnfp->xnf_rx_ring, work_to_do); 1587 if (work_to_do) 1588 goto loop; 1589 1590 /* 1591 * Indicate to the backend that we have re-filled the receive 1592 * ring. 1593 */ 1594 /* LINTED: constant in conditional context */ 1595 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&xnfp->xnf_rx_ring, notify); 1596 if (notify) 1597 ec_notify_via_evtchn(xnfp->xnf_evtchn); 1598 1599 return (head); 1600 } 1601 1602 /* Process all queued received packets */ 1603 static mblk_t * 1604 xnf_process_recv(xnf_t *xnfp) 1605 { 1606 volatile netif_rx_response_t *rxpkt; 1607 mblk_t *mp, *head, *tail; 1608 struct xnf_buffer_desc *bdesc; 1609 extern mblk_t *desballoc(unsigned char *, size_t, uint_t, frtn_t *); 1610 boolean_t hwcsum = B_FALSE, notify, work_to_do; 1611 size_t len; 1612 pfn_t pfn; 1613 long cnt; 1614 1615 head = tail = NULL; 1616 loop: 1617 while (RING_HAS_UNCONSUMED_RESPONSES(&xnfp->xnf_rx_ring)) { 1618 1619 rxpkt = RING_GET_RESPONSE(&xnfp->xnf_rx_ring, 1620 xnfp->xnf_rx_ring.rsp_cons); 1621 1622 /* 1623 * Take buffer off of receive ring 1624 */ 1625 hwcsum = B_FALSE; 1626 bdesc = xnfp->xnf_rxpkt_bufptr[rxpkt->id]; 1627 xnfp->xnf_rxpkt_bufptr[rxpkt->id] = NULL; 1628 ASSERT(bdesc->id == rxpkt->id); 1629 if (rxpkt->status <= 0) { 1630 mp = NULL; 1631 xnfp->xnf_stat_errrx++; 1632 if (rxpkt->status == 0) 1633 xnfp->xnf_stat_runt++; 1634 if (rxpkt->status == NETIF_RSP_ERROR) 1635 xnfp->xnf_stat_mac_rcv_error++; 1636 if (rxpkt->status == NETIF_RSP_DROPPED) 1637 xnfp->xnf_stat_norxbuf++; 1638 /* 1639 * re-hang the buffer 1640 */ 1641 rx_buffer_hang(xnfp, bdesc); 1642 } else { 1643 grant_ref_t ref = bdesc->grant_ref; 1644 struct xnf_buffer_desc *new_bdesc; 1645 unsigned long off = rxpkt->offset; 1646 unsigned long mfn; 1647 1648 len = rxpkt->status; 1649 ASSERT(off + len <= PAGEOFFSET); 1650 if (ref == GRANT_INVALID_REF) { 1651 mp = NULL; 1652 new_bdesc = bdesc; 1653 cmn_err(CE_WARN, "Bad rx grant reference %d " 1654 "from dom %d", ref, 1655 xvdi_get_oeid(xnfp->xnf_devinfo)); 1656 goto luckless; 1657 } 1658 bdesc->grant_ref = GRANT_INVALID_REF; 1659 mfn = gnttab_end_foreign_transfer_ref(ref); 1660 ASSERT(mfn != MFN_INVALID); 1661 ASSERT(hat_getpfnum(kas.a_hat, bdesc->buf) == 1662 PFN_INVALID); 1663 1664 gnttab_release_grant_reference(&xnfp->xnf_gref_rx_head, 1665 ref); 1666 reassign_pfn(xnf_btop(bdesc->buf_phys), mfn); 1667 hat_devload(kas.a_hat, bdesc->buf, PAGESIZE, 1668 xnf_btop(bdesc->buf_phys), 1669 PROT_READ | PROT_WRITE, HAT_LOAD); 1670 balloon_drv_added(1); 1671 1672 if (rxpkt->flags & NETRXF_data_validated) 1673 hwcsum = B_TRUE; 1674 if (len <= xnf_rx_bcopy_thresh) { 1675 /* 1676 * For small buffers, just copy the data 1677 * and send the copy upstream. 1678 */ 1679 new_bdesc = NULL; 1680 } else { 1681 /* 1682 * We send a pointer to this data upstream; 1683 * we need a new buffer to replace this one. 1684 */ 1685 mutex_enter(&xnfp->xnf_rx_buf_mutex); 1686 new_bdesc = xnf_get_buffer(xnfp); 1687 if (new_bdesc != NULL) { 1688 xnfp->xnf_rx_bufs_outstanding++; 1689 } else { 1690 xnfp->xnf_stat_rx_no_ringbuf++; 1691 } 1692 mutex_exit(&xnfp->xnf_rx_buf_mutex); 1693 } 1694 1695 if (new_bdesc == NULL) { 1696 /* 1697 * Don't have a new ring buffer; bcopy the data 1698 * from the buffer, and preserve the 1699 * original buffer 1700 */ 1701 if ((mp = allocb(len, BPRI_MED)) == NULL) { 1702 /* 1703 * Could't get buffer to copy to, 1704 * drop this data, and re-hang 1705 * the buffer on the ring. 1706 */ 1707 xnfp->xnf_stat_norxbuf++; 1708 } else { 1709 bcopy(bdesc->buf + off, mp->b_wptr, 1710 len); 1711 } 1712 /* 1713 * Give the buffer page back to xen 1714 */ 1715 pfn = xnf_btop(bdesc->buf_phys); 1716 cnt = balloon_free_pages(1, &mfn, bdesc->buf, 1717 &pfn); 1718 if (cnt != 1) { 1719 cmn_err(CE_WARN, "unable to give a " 1720 "page back to the hypervisor\n"); 1721 } 1722 new_bdesc = bdesc; 1723 } else { 1724 if ((mp = desballoc((unsigned char *)bdesc->buf, 1725 off + len, 0, (frtn_t *)bdesc)) == NULL) { 1726 /* 1727 * Couldn't get mblk to pass recv data 1728 * up with, free the old ring buffer 1729 */ 1730 xnfp->xnf_stat_norxbuf++; 1731 xnf_rcv_complete(bdesc); 1732 goto luckless; 1733 } 1734 (void) ddi_dma_sync(bdesc->dma_handle, 1735 0, 0, DDI_DMA_SYNC_FORCPU); 1736 1737 mp->b_wptr += off; 1738 mp->b_rptr += off; 1739 } 1740 luckless: 1741 if (mp) 1742 mp->b_wptr += len; 1743 /* re-hang old or hang new buffer */ 1744 rx_buffer_hang(xnfp, new_bdesc); 1745 } 1746 if (mp) { 1747 if (hwcsum) { 1748 /* 1749 * If the peer says that the data has 1750 * been validated then we declare that 1751 * the full checksum has been 1752 * verified. 1753 * 1754 * We don't look at the "checksum 1755 * blank" flag, and hence could have a 1756 * packet here that we are asserting 1757 * is good with a blank checksum. 1758 * 1759 * The hardware checksum offload 1760 * specification says that we must 1761 * provide the actual checksum as well 1762 * as an assertion that it is valid, 1763 * but the protocol stack doesn't 1764 * actually use it and some other 1765 * drivers don't bother, so we don't. 1766 * If it was necessary we could grovel 1767 * in the packet to find it. 1768 */ 1769 1770 (void) hcksum_assoc(mp, NULL, 1771 NULL, 0, 0, 0, 0, 1772 HCK_FULLCKSUM | 1773 HCK_FULLCKSUM_OK, 1774 0); 1775 xnfp->xnf_stat_rx_cksum_no_need++; 1776 } 1777 if (head == NULL) { 1778 head = tail = mp; 1779 } else { 1780 tail->b_next = mp; 1781 tail = mp; 1782 } 1783 1784 ASSERT(mp->b_next == NULL); 1785 1786 xnfp->xnf_stat_ipackets++; 1787 xnfp->xnf_stat_rbytes += len; 1788 } 1789 1790 xnfp->xnf_rx_ring.rsp_cons++; 1791 } 1792 1793 /* 1794 * Has more data come in since we started? 1795 */ 1796 /* LINTED: constant in conditional context */ 1797 RING_FINAL_CHECK_FOR_RESPONSES(&xnfp->xnf_rx_ring, work_to_do); 1798 if (work_to_do) 1799 goto loop; 1800 1801 /* 1802 * Indicate to the backend that we have re-filled the receive 1803 * ring. 1804 */ 1805 /* LINTED: constant in conditional context */ 1806 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&xnfp->xnf_rx_ring, notify); 1807 if (notify) 1808 ec_notify_via_evtchn(xnfp->xnf_evtchn); 1809 1810 return (head); 1811 } 1812 1813 /* Called when the upper layers free a message we passed upstream */ 1814 static void 1815 xnf_rcv_complete(struct xnf_buffer_desc *bdesc) 1816 { 1817 xnf_t *xnfp = bdesc->xnfp; 1818 pfn_t pfn; 1819 long cnt; 1820 1821 /* One less outstanding receive buffer */ 1822 mutex_enter(&xnfp->xnf_rx_buf_mutex); 1823 --xnfp->xnf_rx_bufs_outstanding; 1824 /* 1825 * Return buffer to the free list, unless the free list is getting 1826 * too large. XXPV - this threshold may need tuning. 1827 */ 1828 if (xnfp->xnf_rx_descs_free < xnf_rx_bufs_lowat) { 1829 /* 1830 * Unmap the page, and hand the machine page back 1831 * to xen so it can be re-used as a backend net buffer. 1832 */ 1833 pfn = xnf_btop(bdesc->buf_phys); 1834 cnt = balloon_free_pages(1, NULL, bdesc->buf, &pfn); 1835 if (cnt != 1) { 1836 cmn_err(CE_WARN, "unable to give a page back to the " 1837 "hypervisor\n"); 1838 } 1839 1840 bdesc->next = xnfp->xnf_free_list; 1841 xnfp->xnf_free_list = bdesc; 1842 xnfp->xnf_rx_descs_free++; 1843 mutex_exit(&xnfp->xnf_rx_buf_mutex); 1844 } else { 1845 /* 1846 * We can return everything here since we have a free buffer 1847 * that we have not given the backing page for back to xen. 1848 */ 1849 --xnfp->xnf_rx_buffer_count; 1850 mutex_exit(&xnfp->xnf_rx_buf_mutex); 1851 (void) ddi_dma_unbind_handle(bdesc->dma_handle); 1852 ddi_dma_mem_free(&bdesc->acc_handle); 1853 ddi_dma_free_handle(&bdesc->dma_handle); 1854 kmem_free(bdesc, sizeof (*bdesc)); 1855 } 1856 } 1857 1858 /* 1859 * xnf_alloc_dma_resources() -- initialize the drivers structures 1860 */ 1861 static int 1862 xnf_alloc_dma_resources(xnf_t *xnfp) 1863 { 1864 dev_info_t *devinfo = xnfp->xnf_devinfo; 1865 int i; 1866 size_t len; 1867 ddi_dma_cookie_t dma_cookie; 1868 uint_t ncookies; 1869 struct xnf_buffer_desc *bdesc; 1870 int rc; 1871 caddr_t rptr; 1872 1873 xnfp->xnf_n_rx = NET_RX_RING_SIZE; 1874 xnfp->xnf_max_rx_bufs = xnf_rx_bufs_hiwat; 1875 1876 xnfp->xnf_n_tx = NET_TX_RING_SIZE; 1877 1878 /* 1879 * The code below allocates all the DMA data structures that 1880 * need to be released when the driver is detached. 1881 * 1882 * First allocate handles for mapping (virtual address) pointers to 1883 * transmit data buffers to physical addresses 1884 */ 1885 for (i = 0; i < xnfp->xnf_n_tx; i++) { 1886 if ((rc = ddi_dma_alloc_handle(devinfo, 1887 &tx_buffer_dma_attr, DDI_DMA_SLEEP, 0, 1888 &xnfp->xnf_tx_pkt_info[i].dma_handle)) != DDI_SUCCESS) 1889 return (DDI_FAILURE); 1890 } 1891 1892 /* 1893 * Allocate page for the transmit descriptor ring. 1894 */ 1895 if (ddi_dma_alloc_handle(devinfo, &ringbuf_dma_attr, 1896 DDI_DMA_SLEEP, 0, &xnfp->xnf_tx_ring_dma_handle) != DDI_SUCCESS) 1897 goto alloc_error; 1898 1899 if (ddi_dma_mem_alloc(xnfp->xnf_tx_ring_dma_handle, 1900 PAGESIZE, &accattr, DDI_DMA_CONSISTENT, 1901 DDI_DMA_SLEEP, 0, &rptr, &len, 1902 &xnfp->xnf_tx_ring_dma_acchandle) != DDI_SUCCESS) { 1903 ddi_dma_free_handle(&xnfp->xnf_tx_ring_dma_handle); 1904 xnfp->xnf_tx_ring_dma_handle = NULL; 1905 goto alloc_error; 1906 } 1907 1908 if ((rc = ddi_dma_addr_bind_handle(xnfp->xnf_tx_ring_dma_handle, NULL, 1909 rptr, PAGESIZE, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 1910 DDI_DMA_SLEEP, 0, &dma_cookie, &ncookies)) != DDI_DMA_MAPPED) { 1911 ddi_dma_mem_free(&xnfp->xnf_tx_ring_dma_acchandle); 1912 ddi_dma_free_handle(&xnfp->xnf_tx_ring_dma_handle); 1913 xnfp->xnf_tx_ring_dma_handle = NULL; 1914 xnfp->xnf_tx_ring_dma_acchandle = NULL; 1915 if (rc == DDI_DMA_NORESOURCES) 1916 goto alloc_error; 1917 else 1918 goto error; 1919 } 1920 1921 ASSERT(ncookies == 1); 1922 bzero(rptr, PAGESIZE); 1923 /* LINTED: constant in conditional context */ 1924 SHARED_RING_INIT((netif_tx_sring_t *)rptr); 1925 /* LINTED: constant in conditional context */ 1926 FRONT_RING_INIT(&xnfp->xnf_tx_ring, (netif_tx_sring_t *)rptr, PAGESIZE); 1927 xnfp->xnf_tx_ring_phys_addr = dma_cookie.dmac_laddress; 1928 1929 /* 1930 * Allocate page for the receive descriptor ring. 1931 */ 1932 if (ddi_dma_alloc_handle(devinfo, &ringbuf_dma_attr, 1933 DDI_DMA_SLEEP, 0, &xnfp->xnf_rx_ring_dma_handle) != DDI_SUCCESS) 1934 goto alloc_error; 1935 1936 if (ddi_dma_mem_alloc(xnfp->xnf_rx_ring_dma_handle, 1937 PAGESIZE, &accattr, DDI_DMA_CONSISTENT, 1938 DDI_DMA_SLEEP, 0, &rptr, &len, 1939 &xnfp->xnf_rx_ring_dma_acchandle) != DDI_SUCCESS) { 1940 ddi_dma_free_handle(&xnfp->xnf_rx_ring_dma_handle); 1941 xnfp->xnf_rx_ring_dma_handle = NULL; 1942 goto alloc_error; 1943 } 1944 1945 if ((rc = ddi_dma_addr_bind_handle(xnfp->xnf_rx_ring_dma_handle, NULL, 1946 rptr, PAGESIZE, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 1947 DDI_DMA_SLEEP, 0, &dma_cookie, &ncookies)) != DDI_DMA_MAPPED) { 1948 ddi_dma_mem_free(&xnfp->xnf_rx_ring_dma_acchandle); 1949 ddi_dma_free_handle(&xnfp->xnf_rx_ring_dma_handle); 1950 xnfp->xnf_rx_ring_dma_handle = NULL; 1951 xnfp->xnf_rx_ring_dma_acchandle = NULL; 1952 if (rc == DDI_DMA_NORESOURCES) 1953 goto alloc_error; 1954 else 1955 goto error; 1956 } 1957 1958 ASSERT(ncookies == 1); 1959 bzero(rptr, PAGESIZE); 1960 /* LINTED: constant in conditional context */ 1961 SHARED_RING_INIT((netif_rx_sring_t *)rptr); 1962 /* LINTED: constant in conditional context */ 1963 FRONT_RING_INIT(&xnfp->xnf_rx_ring, (netif_rx_sring_t *)rptr, PAGESIZE); 1964 xnfp->xnf_rx_ring_phys_addr = dma_cookie.dmac_laddress; 1965 1966 /* 1967 * Preallocate receive buffers for each receive descriptor. 1968 */ 1969 1970 /* Set up the "free list" of receive buffer descriptors */ 1971 for (i = 0; i < xnfp->xnf_n_rx; i++) { 1972 if ((bdesc = xnf_alloc_buffer(xnfp)) == NULL) 1973 goto alloc_error; 1974 bdesc->next = xnfp->xnf_free_list; 1975 xnfp->xnf_free_list = bdesc; 1976 } 1977 1978 return (DDI_SUCCESS); 1979 1980 alloc_error: 1981 cmn_err(CE_WARN, "xnf%d: could not allocate enough DMA memory", 1982 ddi_get_instance(xnfp->xnf_devinfo)); 1983 error: 1984 xnf_release_dma_resources(xnfp); 1985 return (DDI_FAILURE); 1986 } 1987 1988 /* 1989 * Release all DMA resources in the opposite order from acquisition 1990 * Should not be called until all outstanding esballoc buffers 1991 * have been returned. 1992 */ 1993 static void 1994 xnf_release_dma_resources(xnf_t *xnfp) 1995 { 1996 int i; 1997 1998 /* 1999 * Free receive buffers which are currently associated with 2000 * descriptors 2001 */ 2002 for (i = 0; i < xnfp->xnf_n_rx; i++) { 2003 struct xnf_buffer_desc *bp; 2004 2005 if ((bp = xnfp->xnf_rxpkt_bufptr[i]) == NULL) 2006 continue; 2007 xnf_free_buffer(bp); 2008 xnfp->xnf_rxpkt_bufptr[i] = NULL; 2009 } 2010 2011 /* Free the receive ring buffer */ 2012 if (xnfp->xnf_rx_ring_dma_acchandle != NULL) { 2013 (void) ddi_dma_unbind_handle(xnfp->xnf_rx_ring_dma_handle); 2014 ddi_dma_mem_free(&xnfp->xnf_rx_ring_dma_acchandle); 2015 ddi_dma_free_handle(&xnfp->xnf_rx_ring_dma_handle); 2016 xnfp->xnf_rx_ring_dma_acchandle = NULL; 2017 } 2018 /* Free the transmit ring buffer */ 2019 if (xnfp->xnf_tx_ring_dma_acchandle != NULL) { 2020 (void) ddi_dma_unbind_handle(xnfp->xnf_tx_ring_dma_handle); 2021 ddi_dma_mem_free(&xnfp->xnf_tx_ring_dma_acchandle); 2022 ddi_dma_free_handle(&xnfp->xnf_tx_ring_dma_handle); 2023 xnfp->xnf_tx_ring_dma_acchandle = NULL; 2024 } 2025 } 2026 2027 static void 2028 xnf_release_mblks(xnf_t *xnfp) 2029 { 2030 int i; 2031 2032 for (i = 0; i < xnfp->xnf_n_tx; i++) { 2033 if (xnfp->xnf_tx_pkt_info[i].mp == NULL) 2034 continue; 2035 freemsg(xnfp->xnf_tx_pkt_info[i].mp); 2036 xnfp->xnf_tx_pkt_info[i].mp = NULL; 2037 (void) ddi_dma_unbind_handle( 2038 xnfp->xnf_tx_pkt_info[i].dma_handle); 2039 } 2040 } 2041 2042 /* 2043 * Remove a xmit buffer descriptor from the head of the free list and return 2044 * a pointer to it. If no buffers on list, attempt to allocate a new one. 2045 * Called with the tx_buf_mutex held. 2046 */ 2047 static struct xnf_buffer_desc * 2048 xnf_get_tx_buffer(xnf_t *xnfp) 2049 { 2050 struct xnf_buffer_desc *bdesc; 2051 2052 bdesc = xnfp->xnf_tx_free_list; 2053 if (bdesc != NULL) { 2054 xnfp->xnf_tx_free_list = bdesc->next; 2055 } else { 2056 bdesc = xnf_alloc_tx_buffer(xnfp); 2057 } 2058 return (bdesc); 2059 } 2060 2061 /* 2062 * Remove a buffer descriptor from the head of the free list and return 2063 * a pointer to it. If no buffers on list, attempt to allocate a new one. 2064 * Called with the rx_buf_mutex held. 2065 */ 2066 static struct xnf_buffer_desc * 2067 xnf_get_buffer(xnf_t *xnfp) 2068 { 2069 struct xnf_buffer_desc *bdesc; 2070 2071 bdesc = xnfp->xnf_free_list; 2072 if (bdesc != NULL) { 2073 xnfp->xnf_free_list = bdesc->next; 2074 xnfp->xnf_rx_descs_free--; 2075 } else { 2076 bdesc = xnf_alloc_buffer(xnfp); 2077 } 2078 return (bdesc); 2079 } 2080 2081 /* 2082 * Free a xmit buffer back to the xmit free list 2083 */ 2084 static void 2085 xnf_free_tx_buffer(struct xnf_buffer_desc *bp) 2086 { 2087 xnf_t *xnfp = bp->xnfp; 2088 2089 mutex_enter(&xnfp->xnf_tx_buf_mutex); 2090 bp->next = xnfp->xnf_tx_free_list; 2091 xnfp->xnf_tx_free_list = bp; 2092 mutex_exit(&xnfp->xnf_tx_buf_mutex); 2093 } 2094 2095 /* 2096 * Put a buffer descriptor onto the head of the free list. 2097 * for page-flip: 2098 * We can't really free these buffers back to the kernel 2099 * since we have given away their backing page to be used 2100 * by the back end net driver. 2101 * for hvcopy: 2102 * release all the memory 2103 */ 2104 static void 2105 xnf_free_buffer(struct xnf_buffer_desc *bdesc) 2106 { 2107 xnf_t *xnfp = bdesc->xnfp; 2108 2109 mutex_enter(&xnfp->xnf_rx_buf_mutex); 2110 if (xnfp->xnf_rx_hvcopy) { 2111 if (ddi_dma_unbind_handle(bdesc->dma_handle) != DDI_SUCCESS) 2112 goto out; 2113 ddi_dma_mem_free(&bdesc->acc_handle); 2114 ddi_dma_free_handle(&bdesc->dma_handle); 2115 kmem_free(bdesc, sizeof (*bdesc)); 2116 xnfp->xnf_rx_buffer_count--; 2117 } else { 2118 bdesc->next = xnfp->xnf_free_list; 2119 xnfp->xnf_free_list = bdesc; 2120 xnfp->xnf_rx_descs_free++; 2121 } 2122 out: 2123 mutex_exit(&xnfp->xnf_rx_buf_mutex); 2124 } 2125 2126 /* 2127 * Allocate a DMA-able xmit buffer, including a structure to 2128 * keep track of the buffer. Called with tx_buf_mutex held. 2129 */ 2130 static struct xnf_buffer_desc * 2131 xnf_alloc_tx_buffer(xnf_t *xnfp) 2132 { 2133 struct xnf_buffer_desc *bdesc; 2134 size_t len; 2135 2136 if ((bdesc = kmem_zalloc(sizeof (*bdesc), KM_NOSLEEP)) == NULL) 2137 return (NULL); 2138 2139 /* allocate a DMA access handle for receive buffer */ 2140 if (ddi_dma_alloc_handle(xnfp->xnf_devinfo, &tx_buffer_dma_attr, 2141 0, 0, &bdesc->dma_handle) != DDI_SUCCESS) 2142 goto failure; 2143 2144 /* Allocate DMA-able memory for transmit buffer */ 2145 if (ddi_dma_mem_alloc(bdesc->dma_handle, 2146 PAGESIZE, &data_accattr, DDI_DMA_STREAMING, 0, 0, 2147 &bdesc->buf, &len, &bdesc->acc_handle) != DDI_SUCCESS) 2148 goto failure_1; 2149 2150 bdesc->xnfp = xnfp; 2151 xnfp->xnf_tx_buffer_count++; 2152 2153 return (bdesc); 2154 2155 failure_1: 2156 ddi_dma_free_handle(&bdesc->dma_handle); 2157 2158 failure: 2159 kmem_free(bdesc, sizeof (*bdesc)); 2160 return (NULL); 2161 } 2162 2163 /* 2164 * Allocate a DMA-able receive buffer, including a structure to 2165 * keep track of the buffer. Called with rx_buf_mutex held. 2166 */ 2167 static struct xnf_buffer_desc * 2168 xnf_alloc_buffer(xnf_t *xnfp) 2169 { 2170 struct xnf_buffer_desc *bdesc; 2171 size_t len; 2172 uint_t ncookies; 2173 ddi_dma_cookie_t dma_cookie; 2174 long cnt; 2175 pfn_t pfn; 2176 2177 if (xnfp->xnf_rx_buffer_count >= xnfp->xnf_max_rx_bufs) 2178 return (NULL); 2179 2180 if ((bdesc = kmem_zalloc(sizeof (*bdesc), KM_NOSLEEP)) == NULL) 2181 return (NULL); 2182 2183 /* allocate a DMA access handle for receive buffer */ 2184 if (ddi_dma_alloc_handle(xnfp->xnf_devinfo, &rx_buffer_dma_attr, 2185 0, 0, &bdesc->dma_handle) != DDI_SUCCESS) 2186 goto failure; 2187 2188 /* Allocate DMA-able memory for receive buffer */ 2189 if (ddi_dma_mem_alloc(bdesc->dma_handle, 2190 PAGESIZE, &data_accattr, DDI_DMA_STREAMING, 0, 0, 2191 &bdesc->buf, &len, &bdesc->acc_handle) != DDI_SUCCESS) 2192 goto failure_1; 2193 2194 /* bind to virtual address of buffer to get physical address */ 2195 if (ddi_dma_addr_bind_handle(bdesc->dma_handle, NULL, 2196 bdesc->buf, PAGESIZE, DDI_DMA_READ | DDI_DMA_STREAMING, 2197 DDI_DMA_SLEEP, 0, &dma_cookie, &ncookies) != DDI_DMA_MAPPED) 2198 goto failure_2; 2199 2200 bdesc->buf_phys = dma_cookie.dmac_laddress; 2201 bdesc->xnfp = xnfp; 2202 if (xnfp->xnf_rx_hvcopy) { 2203 bdesc->free_rtn.free_func = xnf_copy_rcv_complete; 2204 } else { 2205 bdesc->free_rtn.free_func = xnf_rcv_complete; 2206 } 2207 bdesc->free_rtn.free_arg = (char *)bdesc; 2208 bdesc->grant_ref = GRANT_INVALID_REF; 2209 ASSERT(ncookies == 1); 2210 2211 xnfp->xnf_rx_buffer_count++; 2212 2213 if (!xnfp->xnf_rx_hvcopy) { 2214 /* 2215 * Unmap the page, and hand the machine page back 2216 * to xen so it can be used as a backend net buffer. 2217 */ 2218 pfn = xnf_btop(bdesc->buf_phys); 2219 cnt = balloon_free_pages(1, NULL, bdesc->buf, &pfn); 2220 if (cnt != 1) { 2221 cmn_err(CE_WARN, "unable to give a page back to the " 2222 "hypervisor\n"); 2223 } 2224 } 2225 2226 return (bdesc); 2227 2228 failure_2: 2229 ddi_dma_mem_free(&bdesc->acc_handle); 2230 2231 failure_1: 2232 ddi_dma_free_handle(&bdesc->dma_handle); 2233 2234 failure: 2235 kmem_free(bdesc, sizeof (*bdesc)); 2236 return (NULL); 2237 } 2238 2239 /* 2240 * Statistics. 2241 */ 2242 static char *xnf_aux_statistics[] = { 2243 "tx_cksum_deferred", 2244 "rx_cksum_no_need", 2245 "interrupts", 2246 "unclaimed_interrupts", 2247 "tx_pullup", 2248 "tx_pagebndry", 2249 "tx_attempt", 2250 "rx_no_ringbuf", 2251 "hvcopy_packet_processed", 2252 }; 2253 2254 static int 2255 xnf_kstat_aux_update(kstat_t *ksp, int flag) 2256 { 2257 xnf_t *xnfp; 2258 kstat_named_t *knp; 2259 2260 if (flag != KSTAT_READ) 2261 return (EACCES); 2262 2263 xnfp = ksp->ks_private; 2264 knp = ksp->ks_data; 2265 2266 /* 2267 * Assignment order must match that of the names in 2268 * xnf_aux_statistics. 2269 */ 2270 (knp++)->value.ui64 = xnfp->xnf_stat_tx_cksum_deferred; 2271 (knp++)->value.ui64 = xnfp->xnf_stat_rx_cksum_no_need; 2272 2273 (knp++)->value.ui64 = xnfp->xnf_stat_interrupts; 2274 (knp++)->value.ui64 = xnfp->xnf_stat_unclaimed_interrupts; 2275 (knp++)->value.ui64 = xnfp->xnf_stat_tx_pullup; 2276 (knp++)->value.ui64 = xnfp->xnf_stat_tx_pagebndry; 2277 (knp++)->value.ui64 = xnfp->xnf_stat_tx_attempt; 2278 (knp++)->value.ui64 = xnfp->xnf_stat_rx_no_ringbuf; 2279 2280 (knp++)->value.ui64 = xnfp->xnf_stat_hvcopy_packet_processed; 2281 2282 return (0); 2283 } 2284 2285 static boolean_t 2286 xnf_kstat_init(xnf_t *xnfp) 2287 { 2288 int nstat = sizeof (xnf_aux_statistics) / 2289 sizeof (xnf_aux_statistics[0]); 2290 char **cp = xnf_aux_statistics; 2291 kstat_named_t *knp; 2292 2293 /* 2294 * Create and initialise kstats. 2295 */ 2296 if ((xnfp->xnf_kstat_aux = kstat_create("xnf", 2297 ddi_get_instance(xnfp->xnf_devinfo), 2298 "aux_statistics", "net", KSTAT_TYPE_NAMED, 2299 nstat, 0)) == NULL) 2300 return (B_FALSE); 2301 2302 xnfp->xnf_kstat_aux->ks_private = xnfp; 2303 xnfp->xnf_kstat_aux->ks_update = xnf_kstat_aux_update; 2304 2305 knp = xnfp->xnf_kstat_aux->ks_data; 2306 while (nstat > 0) { 2307 kstat_named_init(knp, *cp, KSTAT_DATA_UINT64); 2308 2309 knp++; 2310 cp++; 2311 nstat--; 2312 } 2313 2314 kstat_install(xnfp->xnf_kstat_aux); 2315 2316 return (B_TRUE); 2317 } 2318 2319 static int 2320 xnf_stat(void *arg, uint_t stat, uint64_t *val) 2321 { 2322 xnf_t *xnfp = arg; 2323 2324 mutex_enter(&xnfp->xnf_intrlock); 2325 mutex_enter(&xnfp->xnf_txlock); 2326 2327 #define mac_stat(q, r) \ 2328 case (MAC_STAT_##q): \ 2329 *val = xnfp->xnf_stat_##r; \ 2330 break 2331 2332 #define ether_stat(q, r) \ 2333 case (ETHER_STAT_##q): \ 2334 *val = xnfp->xnf_stat_##r; \ 2335 break 2336 2337 switch (stat) { 2338 2339 mac_stat(IPACKETS, ipackets); 2340 mac_stat(OPACKETS, opackets); 2341 mac_stat(RBYTES, rbytes); 2342 mac_stat(OBYTES, obytes); 2343 mac_stat(NORCVBUF, norxbuf); 2344 mac_stat(IERRORS, errrx); 2345 mac_stat(NOXMTBUF, tx_defer); 2346 2347 ether_stat(MACRCV_ERRORS, mac_rcv_error); 2348 ether_stat(TOOSHORT_ERRORS, runt); 2349 2350 default: 2351 mutex_exit(&xnfp->xnf_txlock); 2352 mutex_exit(&xnfp->xnf_intrlock); 2353 2354 return (ENOTSUP); 2355 } 2356 2357 #undef mac_stat 2358 #undef ether_stat 2359 2360 mutex_exit(&xnfp->xnf_txlock); 2361 mutex_exit(&xnfp->xnf_intrlock); 2362 2363 return (0); 2364 } 2365 2366 /*ARGSUSED*/ 2367 static void 2368 xnf_blank(void *arg, time_t ticks, uint_t count) 2369 { 2370 /* 2371 * XXPV dme: blanking is not currently implemented. 2372 * 2373 * It's not obvious how to use the 'ticks' argument here. 2374 * 2375 * 'Count' might be used as an indicator of how to set 2376 * rsp_event when posting receive buffers to the rx_ring. It 2377 * would replace the code at the tail of xnf_process_recv() 2378 * that simply indicates that the next completed packet should 2379 * cause an interrupt. 2380 */ 2381 } 2382 2383 static void 2384 xnf_resources(void *arg) 2385 { 2386 xnf_t *xnfp = arg; 2387 mac_rx_fifo_t mrf; 2388 2389 mrf.mrf_type = MAC_RX_FIFO; 2390 mrf.mrf_blank = xnf_blank; 2391 mrf.mrf_arg = (void *)xnfp; 2392 mrf.mrf_normal_blank_time = 128; /* XXPV dme: see xnf_blank() */ 2393 mrf.mrf_normal_pkt_count = 8; /* XXPV dme: see xnf_blank() */ 2394 2395 xnfp->xnf_rx_handle = mac_resource_add(xnfp->xnf_mh, 2396 (mac_resource_t *)&mrf); 2397 } 2398 2399 /*ARGSUSED*/ 2400 static void 2401 xnf_ioctl(void *arg, queue_t *q, mblk_t *mp) 2402 { 2403 miocnak(q, mp, 0, EINVAL); 2404 } 2405 2406 static boolean_t 2407 xnf_getcapab(void *arg, mac_capab_t cap, void *cap_data) 2408 { 2409 xnf_t *xnfp = arg; 2410 2411 switch (cap) { 2412 case MAC_CAPAB_HCKSUM: { 2413 uint32_t *capab = cap_data; 2414 2415 /* 2416 * We declare ourselves capable of HCKSUM_INET_PARTIAL 2417 * in order that the protocol stack insert the 2418 * pseudo-header checksum in packets that it passes 2419 * down to us. 2420 * 2421 * Whilst the flag used to communicate with dom0 is 2422 * called "NETTXF_csum_blank", the checksum in the 2423 * packet must contain the pseudo-header checksum and 2424 * not zero. (In fact, a Solaris dom0 is happy to deal 2425 * with a checksum of zero, but a Linux dom0 is not.) 2426 */ 2427 if (xnfp->xnf_cksum_offload) 2428 *capab = HCKSUM_INET_PARTIAL; 2429 else 2430 *capab = 0; 2431 break; 2432 } 2433 2434 case MAC_CAPAB_POLL: 2435 /* Just return B_TRUE. */ 2436 break; 2437 2438 default: 2439 return (B_FALSE); 2440 } 2441 2442 return (B_TRUE); 2443 } 2444 2445 /*ARGSUSED*/ 2446 static void 2447 oe_state_change(dev_info_t *dip, ddi_eventcookie_t id, 2448 void *arg, void *impl_data) 2449 { 2450 xnf_t *xnfp = ddi_get_driver_private(dip); 2451 XenbusState new_state = *(XenbusState *)impl_data; 2452 2453 ASSERT(xnfp != NULL); 2454 2455 switch (new_state) { 2456 case XenbusStateConnected: 2457 mutex_enter(&xnfp->xnf_intrlock); 2458 mutex_enter(&xnfp->xnf_txlock); 2459 2460 xnfp->xnf_connected = B_TRUE; 2461 cv_broadcast(&xnfp->xnf_cv); 2462 2463 mutex_exit(&xnfp->xnf_txlock); 2464 mutex_exit(&xnfp->xnf_intrlock); 2465 2466 ec_notify_via_evtchn(xnfp->xnf_evtchn); 2467 break; 2468 2469 default: 2470 break; 2471 } 2472 } 2473 2474 /* 2475 * Check whether backend is capable of and willing to talk 2476 * to us via hypervisor copy, as opposed to page flip. 2477 */ 2478 static boolean_t 2479 xnf_hvcopy_peer_status(dev_info_t *devinfo) 2480 { 2481 int be_rx_copy; 2482 int err; 2483 2484 err = xenbus_scanf(XBT_NULL, xvdi_get_oename(devinfo), 2485 "feature-rx-copy", "%d", &be_rx_copy); 2486 /* 2487 * If we fail to read the store we assume that the key is 2488 * absent, implying an older domain at the far end. Older 2489 * domains cannot do HV copy (we assume ..). 2490 */ 2491 if (err != 0) 2492 be_rx_copy = 0; 2493 2494 return (be_rx_copy?B_TRUE:B_FALSE); 2495 } 2496