1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/tuneable.h> 33 #include <sys/systm.h> 34 #include <sys/vm.h> 35 #include <sys/kmem.h> 36 #include <sys/vmem.h> 37 #include <sys/mman.h> 38 #include <sys/cmn_err.h> 39 #include <sys/debug.h> 40 #include <sys/dumphdr.h> 41 #include <sys/bootconf.h> 42 #include <sys/lgrp.h> 43 #include <vm/seg_kmem.h> 44 #include <vm/hat.h> 45 #include <vm/page.h> 46 #include <vm/vm_dep.h> 47 #include <vm/faultcode.h> 48 #include <sys/promif.h> 49 #include <vm/seg_kp.h> 50 #include <sys/bitmap.h> 51 #include <sys/mem_cage.h> 52 53 /* 54 * seg_kmem is the primary kernel memory segment driver. It 55 * maps the kernel heap [kernelheap, ekernelheap), module text, 56 * and all memory which was allocated before the VM was initialized 57 * into kas. 58 * 59 * Pages which belong to seg_kmem are hashed into &kvp vnode at 60 * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1. 61 * They must never be paged out since segkmem_fault() is a no-op to 62 * prevent recursive faults. 63 * 64 * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on 65 * __x86 and are unlocked (p_sharelock == 0) on __sparc. Once __x86 66 * supports relocation the #ifdef kludges can be removed. 67 * 68 * seg_kmem pages may be subject to relocation by page_relocate(), 69 * provided that the HAT supports it; if this is so, segkmem_reloc 70 * will be set to a nonzero value. All boot time allocated memory as 71 * well as static memory is considered off limits to relocation. 72 * Pages are "relocatable" if p_state does not have P_NORELOC set, so 73 * we request P_NORELOC pages for memory that isn't safe to relocate. 74 * 75 * The kernel heap is logically divided up into four pieces: 76 * 77 * heap32_arena is for allocations that require 32-bit absolute 78 * virtual addresses (e.g. code that uses 32-bit pointers/offsets). 79 * 80 * heap_core is for allocations that require 2GB *relative* 81 * offsets; in other words all memory from heap_core is within 82 * 2GB of all other memory from the same arena. This is a requirement 83 * of the addressing modes of some processors in supervisor code. 84 * 85 * heap_arena is the general heap arena. 86 * 87 * static_arena is the static memory arena. Allocations from it 88 * are not subject to relocation so it is safe to use the memory 89 * physical address as well as the virtual address (e.g. the VA to 90 * PA translations are static). Caches may import from static_arena; 91 * all other static memory allocations should use static_alloc_arena. 92 * 93 * On some platforms which have limited virtual address space, seg_kmem 94 * may share [kernelheap, ekernelheap) with seg_kp; if this is so, 95 * segkp_bitmap is non-NULL, and each bit represents a page of virtual 96 * address space which is actually seg_kp mapped. 97 */ 98 99 extern ulong_t *segkp_bitmap; /* Is set if segkp is from the kernel heap */ 100 101 char *kernelheap; /* start of primary kernel heap */ 102 char *ekernelheap; /* end of primary kernel heap */ 103 struct seg kvseg; /* primary kernel heap segment */ 104 struct seg kvseg_core; /* "core" kernel heap segment */ 105 struct seg kzioseg; /* Segment for zio mappings */ 106 vmem_t *heap_arena; /* primary kernel heap arena */ 107 vmem_t *heap_core_arena; /* core kernel heap arena */ 108 char *heap_core_base; /* start of core kernel heap arena */ 109 char *heap_lp_base; /* start of kernel large page heap arena */ 110 char *heap_lp_end; /* end of kernel large page heap arena */ 111 vmem_t *hat_memload_arena; /* HAT translation data */ 112 struct seg kvseg32; /* 32-bit kernel heap segment */ 113 vmem_t *heap32_arena; /* 32-bit kernel heap arena */ 114 vmem_t *heaptext_arena; /* heaptext arena */ 115 struct as kas; /* kernel address space */ 116 struct vnode kvp; /* vnode for all segkmem pages */ 117 struct vnode zvp; /* vnode for zfs pages */ 118 int segkmem_reloc; /* enable/disable relocatable segkmem pages */ 119 vmem_t *static_arena; /* arena for caches to import static memory */ 120 vmem_t *static_alloc_arena; /* arena for allocating static memory */ 121 vmem_t *zio_arena = NULL; /* arena for allocating zio memory */ 122 vmem_t *zio_alloc_arena = NULL; /* arena for allocating zio memory */ 123 124 /* 125 * seg_kmem driver can map part of the kernel heap with large pages. 126 * Currently this functionality is implemented for sparc platforms only. 127 * 128 * The large page size "segkmem_lpsize" for kernel heap is selected in the 129 * platform specific code. It can also be modified via /etc/system file. 130 * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large 131 * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to 132 * match segkmem_lpsize. 133 * 134 * At boot time we carve from kernel heap arena a range of virtual addresses 135 * that will be used for large page mappings. This range [heap_lp_base, 136 * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also 137 * create "kmem_lp_arena" that caches memory already backed up by large 138 * pages. kmem_lp_arena imports virtual segments from heap_lp_arena. 139 */ 140 141 size_t segkmem_lpsize; 142 static uint_t segkmem_lpshift = PAGESHIFT; 143 int segkmem_lpszc = 0; 144 145 size_t segkmem_kmemlp_quantum = 0x400000; /* 4MB */ 146 size_t segkmem_heaplp_quantum; 147 vmem_t *heap_lp_arena; 148 static vmem_t *kmem_lp_arena; 149 static vmem_t *segkmem_ppa_arena; 150 static segkmem_lpcb_t segkmem_lpcb; 151 152 /* 153 * We use "segkmem_kmemlp_max" to limit the total amount of physical memory 154 * consumed by the large page heap. By default this parameter is set to 1/8 of 155 * physmem but can be adjusted through /etc/system either directly or 156 * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem 157 * we allow for large page heap. 158 */ 159 size_t segkmem_kmemlp_max; 160 static uint_t segkmem_kmemlp_pcnt; 161 162 /* 163 * Getting large pages for kernel heap could be problematic due to 164 * physical memory fragmentation. That's why we allow to preallocate 165 * "segkmem_kmemlp_min" bytes at boot time. 166 */ 167 static size_t segkmem_kmemlp_min; 168 169 /* 170 * Throttling is used to avoid expensive tries to allocate large pages 171 * for kernel heap when a lot of succesive attempts to do so fail. 172 */ 173 static ulong_t segkmem_lpthrottle_max = 0x400000; 174 static ulong_t segkmem_lpthrottle_start = 0x40; 175 static ulong_t segkmem_use_lpthrottle = 1; 176 177 /* 178 * Freed pages accumulate on a garbage list until segkmem is ready, 179 * at which point we call segkmem_gc() to free it all. 180 */ 181 typedef struct segkmem_gc_list { 182 struct segkmem_gc_list *gc_next; 183 vmem_t *gc_arena; 184 size_t gc_size; 185 } segkmem_gc_list_t; 186 187 static segkmem_gc_list_t *segkmem_gc_list; 188 189 /* 190 * Allocations from the hat_memload arena add VM_MEMLOAD to their 191 * vmflags so that segkmem_xalloc() can inform the hat layer that it needs 192 * to take steps to prevent infinite recursion. HAT allocations also 193 * must be non-relocatable to prevent recursive page faults. 194 */ 195 static void * 196 hat_memload_alloc(vmem_t *vmp, size_t size, int flags) 197 { 198 flags |= (VM_MEMLOAD | VM_NORELOC); 199 return (segkmem_alloc(vmp, size, flags)); 200 } 201 202 /* 203 * Allocations from static_arena arena (or any other arena that uses 204 * segkmem_alloc_permanent()) require non-relocatable (permanently 205 * wired) memory pages, since these pages are referenced by physical 206 * as well as virtual address. 207 */ 208 void * 209 segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags) 210 { 211 return (segkmem_alloc(vmp, size, flags | VM_NORELOC)); 212 } 213 214 /* 215 * Initialize kernel heap boundaries. 216 */ 217 void 218 kernelheap_init( 219 void *heap_start, 220 void *heap_end, 221 char *first_avail, 222 void *core_start, 223 void *core_end) 224 { 225 uintptr_t textbase; 226 size_t core_size; 227 size_t heap_size; 228 vmem_t *heaptext_parent; 229 size_t heap_lp_size = 0; 230 #ifdef __sparc 231 size_t kmem64_sz = kmem64_aligned_end - kmem64_base; 232 #endif /* __sparc */ 233 234 kernelheap = heap_start; 235 ekernelheap = heap_end; 236 237 #ifdef __sparc 238 heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4); 239 /* 240 * Bias heap_lp start address by kmem64_sz to reduce collisions 241 * in 4M kernel TSB between kmem64 area and heap_lp 242 */ 243 kmem64_sz = P2ROUNDUP(kmem64_sz, MMU_PAGESIZE256M); 244 if (kmem64_sz <= heap_lp_size / 2) 245 heap_lp_size -= kmem64_sz; 246 heap_lp_base = ekernelheap - heap_lp_size; 247 heap_lp_end = heap_lp_base + heap_lp_size; 248 #endif /* __sparc */ 249 250 /* 251 * If this platform has a 'core' heap area, then the space for 252 * overflow module text should be carved out of the end of that 253 * heap. Otherwise, it gets carved out of the general purpose 254 * heap. 255 */ 256 core_size = (uintptr_t)core_end - (uintptr_t)core_start; 257 if (core_size > 0) { 258 ASSERT(core_size >= HEAPTEXT_SIZE); 259 textbase = (uintptr_t)core_end - HEAPTEXT_SIZE; 260 core_size -= HEAPTEXT_SIZE; 261 } 262 #ifndef __sparc 263 else { 264 ekernelheap -= HEAPTEXT_SIZE; 265 textbase = (uintptr_t)ekernelheap; 266 } 267 #endif 268 269 heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap; 270 heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE, 271 segkmem_alloc, segkmem_free); 272 273 if (core_size > 0) { 274 heap_core_arena = vmem_create("heap_core", core_start, 275 core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 276 heap_core_base = core_start; 277 } else { 278 heap_core_arena = heap_arena; 279 heap_core_base = kernelheap; 280 } 281 282 /* 283 * reserve space for the large page heap. If large pages for kernel 284 * heap is enabled large page heap arean will be created later in the 285 * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated 286 * range will be returned back to the heap_arena. 287 */ 288 if (heap_lp_size) { 289 (void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0, 290 heap_lp_base, heap_lp_end, 291 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 292 } 293 294 /* 295 * Remove the already-spoken-for memory range [kernelheap, first_avail). 296 */ 297 (void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE, 298 0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 299 300 #ifdef __sparc 301 heap32_arena = vmem_create("heap32", (void *)SYSBASE32, 302 SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL, 303 NULL, NULL, 0, VM_SLEEP); 304 305 textbase = SYSLIMIT32 - HEAPTEXT_SIZE; 306 heaptext_parent = NULL; 307 #else /* __sparc */ 308 heap32_arena = heap_core_arena; 309 heaptext_parent = heap_core_arena; 310 #endif /* __sparc */ 311 312 heaptext_arena = vmem_create("heaptext", (void *)textbase, 313 HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP); 314 315 /* 316 * Create a set of arenas for memory with static translations 317 * (e.g. VA -> PA translations cannot change). Since using 318 * kernel pages by physical address implies it isn't safe to 319 * walk across page boundaries, the static_arena quantum must 320 * be PAGESIZE. Any kmem caches that require static memory 321 * should source from static_arena, while direct allocations 322 * should only use static_alloc_arena. 323 */ 324 static_arena = vmem_create("static", NULL, 0, PAGESIZE, 325 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP); 326 static_alloc_arena = vmem_create("static_alloc", NULL, 0, 327 sizeof (uint64_t), vmem_alloc, vmem_free, static_arena, 328 0, VM_SLEEP); 329 330 /* 331 * Create an arena for translation data (ptes, hmes, or hblks). 332 * We need an arena for this because hat_memload() is essential 333 * to vmem_populate() (see comments in common/os/vmem.c). 334 * 335 * Note: any kmem cache that allocates from hat_memload_arena 336 * must be created as a KMC_NOHASH cache (i.e. no external slab 337 * and bufctl structures to allocate) so that slab creation doesn't 338 * require anything more than a single vmem_alloc(). 339 */ 340 hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE, 341 hat_memload_alloc, segkmem_free, heap_arena, 0, 342 VM_SLEEP | VMC_POPULATOR); 343 } 344 345 void 346 boot_mapin(caddr_t addr, size_t size) 347 { 348 caddr_t eaddr; 349 page_t *pp; 350 pfn_t pfnum; 351 352 if (page_resv(btop(size), KM_NOSLEEP) == 0) 353 panic("boot_mapin: page_resv failed"); 354 355 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 356 pfnum = va_to_pfn(addr); 357 if (pfnum == PFN_INVALID) 358 continue; 359 if ((pp = page_numtopp_nolock(pfnum)) == NULL) 360 panic("boot_mapin(): No pp for pfnum = %lx", pfnum); 361 362 /* 363 * must break up any large pages that may have constituent 364 * pages being utilized for BOP_ALLOC()'s before calling 365 * page_numtopp().The locking code (ie. page_reclaim()) 366 * can't handle them 367 */ 368 if (pp->p_szc != 0) 369 page_boot_demote(pp); 370 371 pp = page_numtopp(pfnum, SE_EXCL); 372 if (pp == NULL || PP_ISFREE(pp)) 373 panic("boot_alloc: pp is NULL or free"); 374 375 /* 376 * If the cage is on but doesn't yet contain this page, 377 * mark it as non-relocatable. 378 */ 379 if (kcage_on && !PP_ISNORELOC(pp)) { 380 PP_SETNORELOC(pp); 381 PLCNT_XFER_NORELOC(pp); 382 } 383 384 (void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL); 385 pp->p_lckcnt = 1; 386 #if defined(__x86) 387 page_downgrade(pp); 388 #else 389 page_unlock(pp); 390 #endif 391 } 392 } 393 394 /* 395 * Get pages from boot and hash them into the kernel's vp. 396 * Used after page structs have been allocated, but before segkmem is ready. 397 */ 398 void * 399 boot_alloc(void *inaddr, size_t size, uint_t align) 400 { 401 caddr_t addr = inaddr; 402 403 if (bootops == NULL) 404 prom_panic("boot_alloc: attempt to allocate memory after " 405 "BOP_GONE"); 406 407 size = ptob(btopr(size)); 408 #ifdef __sparc 409 if (bop_alloc_chunk(addr, size, align) != (caddr_t)addr) 410 panic("boot_alloc: bop_alloc_chunk failed"); 411 #else 412 if (BOP_ALLOC(bootops, addr, size, align) != addr) 413 panic("boot_alloc: BOP_ALLOC failed"); 414 #endif 415 boot_mapin((caddr_t)addr, size); 416 return (addr); 417 } 418 419 static void 420 segkmem_badop() 421 { 422 panic("segkmem_badop"); 423 } 424 425 #define SEGKMEM_BADOP(t) (t(*)())segkmem_badop 426 427 /*ARGSUSED*/ 428 static faultcode_t 429 segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size, 430 enum fault_type type, enum seg_rw rw) 431 { 432 pgcnt_t npages; 433 spgcnt_t pg; 434 page_t *pp; 435 struct vnode *vp = seg->s_data; 436 437 ASSERT(RW_READ_HELD(&seg->s_as->a_lock)); 438 439 if (seg->s_as != &kas || size > seg->s_size || 440 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 441 panic("segkmem_fault: bad args"); 442 443 /* 444 * If it is one of segkp pages, call segkp_fault. 445 */ 446 if (segkp_bitmap && seg == &kvseg && 447 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 448 return (SEGOP_FAULT(hat, segkp, addr, size, type, rw)); 449 450 if (rw != S_READ && rw != S_WRITE && rw != S_OTHER) 451 return (FC_NOSUPPORT); 452 453 npages = btopr(size); 454 455 switch (type) { 456 case F_SOFTLOCK: /* lock down already-loaded translations */ 457 for (pg = 0; pg < npages; pg++) { 458 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 459 SE_SHARED); 460 if (pp == NULL) { 461 /* 462 * Hmm, no page. Does a kernel mapping 463 * exist for it? 464 */ 465 if (!hat_probe(kas.a_hat, addr)) { 466 addr -= PAGESIZE; 467 while (--pg >= 0) { 468 pp = page_find(vp, (u_offset_t) 469 (uintptr_t)addr); 470 if (pp) 471 page_unlock(pp); 472 addr -= PAGESIZE; 473 } 474 return (FC_NOMAP); 475 } 476 } 477 addr += PAGESIZE; 478 } 479 if (rw == S_OTHER) 480 hat_reserve(seg->s_as, addr, size); 481 return (0); 482 case F_SOFTUNLOCK: 483 while (npages--) { 484 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 485 if (pp) 486 page_unlock(pp); 487 addr += PAGESIZE; 488 } 489 return (0); 490 default: 491 return (FC_NOSUPPORT); 492 } 493 /*NOTREACHED*/ 494 } 495 496 static int 497 segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 498 { 499 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 500 501 if (seg->s_as != &kas || size > seg->s_size || 502 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 503 panic("segkmem_setprot: bad args"); 504 505 /* 506 * If it is one of segkp pages, call segkp. 507 */ 508 if (segkp_bitmap && seg == &kvseg && 509 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 510 return (SEGOP_SETPROT(segkp, addr, size, prot)); 511 512 if (prot == 0) 513 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD); 514 else 515 hat_chgprot(kas.a_hat, addr, size, prot); 516 return (0); 517 } 518 519 /* 520 * This is a dummy segkmem function overloaded to call segkp 521 * when segkp is under the heap. 522 */ 523 /* ARGSUSED */ 524 static int 525 segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 526 { 527 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 528 529 if (seg->s_as != &kas) 530 segkmem_badop(); 531 532 /* 533 * If it is one of segkp pages, call into segkp. 534 */ 535 if (segkp_bitmap && seg == &kvseg && 536 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 537 return (SEGOP_CHECKPROT(segkp, addr, size, prot)); 538 539 segkmem_badop(); 540 return (0); 541 } 542 543 /* 544 * This is a dummy segkmem function overloaded to call segkp 545 * when segkp is under the heap. 546 */ 547 /* ARGSUSED */ 548 static int 549 segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta) 550 { 551 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 552 553 if (seg->s_as != &kas) 554 segkmem_badop(); 555 556 /* 557 * If it is one of segkp pages, call into segkp. 558 */ 559 if (segkp_bitmap && seg == &kvseg && 560 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 561 return (SEGOP_KLUSTER(segkp, addr, delta)); 562 563 segkmem_badop(); 564 return (0); 565 } 566 567 static void 568 segkmem_xdump_range(void *arg, void *start, size_t size) 569 { 570 struct as *as = arg; 571 caddr_t addr = start; 572 caddr_t addr_end = addr + size; 573 574 while (addr < addr_end) { 575 pfn_t pfn = hat_getpfnum(kas.a_hat, addr); 576 if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn)) 577 dump_addpage(as, addr, pfn); 578 addr += PAGESIZE; 579 dump_timeleft = dump_timeout; 580 } 581 } 582 583 static void 584 segkmem_dump_range(void *arg, void *start, size_t size) 585 { 586 caddr_t addr = start; 587 caddr_t addr_end = addr + size; 588 589 /* 590 * If we are about to start dumping the range of addresses we 591 * carved out of the kernel heap for the large page heap walk 592 * heap_lp_arena to find what segments are actually populated 593 */ 594 if (SEGKMEM_USE_LARGEPAGES && 595 addr == heap_lp_base && addr_end == heap_lp_end && 596 vmem_size(heap_lp_arena, VMEM_ALLOC) < size) { 597 vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT, 598 segkmem_xdump_range, arg); 599 } else { 600 segkmem_xdump_range(arg, start, size); 601 } 602 } 603 604 static void 605 segkmem_dump(struct seg *seg) 606 { 607 /* 608 * The kernel's heap_arena (represented by kvseg) is a very large 609 * VA space, most of which is typically unused. To speed up dumping 610 * we use vmem_walk() to quickly find the pieces of heap_arena that 611 * are actually in use. We do the same for heap32_arena and 612 * heap_core. 613 * 614 * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage() 615 * may ultimately need to allocate memory. Reentrant walks are 616 * necessarily imperfect snapshots. The kernel heap continues 617 * to change during a live crash dump, for example. For a normal 618 * crash dump, however, we know that there won't be any other threads 619 * messing with the heap. Therefore, at worst, we may fail to dump 620 * the pages that get allocated by the act of dumping; but we will 621 * always dump every page that was allocated when the walk began. 622 * 623 * The other segkmem segments are dense (fully populated), so there's 624 * no need to use this technique when dumping them. 625 * 626 * Note: when adding special dump handling for any new sparsely- 627 * populated segments, be sure to add similar handling to the ::kgrep 628 * code in mdb. 629 */ 630 if (seg == &kvseg) { 631 vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT, 632 segkmem_dump_range, seg->s_as); 633 #ifndef __sparc 634 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 635 segkmem_dump_range, seg->s_as); 636 #endif 637 } else if (seg == &kvseg_core) { 638 vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT, 639 segkmem_dump_range, seg->s_as); 640 } else if (seg == &kvseg32) { 641 vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT, 642 segkmem_dump_range, seg->s_as); 643 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 644 segkmem_dump_range, seg->s_as); 645 } else if (seg == &kzioseg) { 646 /* 647 * We don't want to dump pages attached to kzioseg since they 648 * contain file data from ZFS. If this page's segment is 649 * kzioseg return instead of writing it to the dump device. 650 */ 651 return; 652 } else { 653 segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size); 654 } 655 } 656 657 /* 658 * lock/unlock kmem pages over a given range [addr, addr+len). 659 * Returns a shadow list of pages in ppp. If there are holes 660 * in the range (e.g. some of the kernel mappings do not have 661 * underlying page_ts) returns ENOTSUP so that as_pagelock() 662 * will handle the range via as_fault(F_SOFTLOCK). 663 */ 664 /*ARGSUSED*/ 665 static int 666 segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len, 667 page_t ***ppp, enum lock_type type, enum seg_rw rw) 668 { 669 page_t **pplist, *pp; 670 pgcnt_t npages; 671 spgcnt_t pg; 672 size_t nb; 673 struct vnode *vp = seg->s_data; 674 675 ASSERT(ppp != NULL); 676 677 /* 678 * If it is one of segkp pages, call into segkp. 679 */ 680 if (segkp_bitmap && seg == &kvseg && 681 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 682 return (SEGOP_PAGELOCK(segkp, addr, len, ppp, type, rw)); 683 684 npages = btopr(len); 685 nb = sizeof (page_t *) * npages; 686 687 if (type == L_PAGEUNLOCK) { 688 pplist = *ppp; 689 ASSERT(pplist != NULL); 690 691 for (pg = 0; pg < npages; pg++) { 692 pp = pplist[pg]; 693 page_unlock(pp); 694 } 695 kmem_free(pplist, nb); 696 return (0); 697 } 698 699 ASSERT(type == L_PAGELOCK); 700 701 pplist = kmem_alloc(nb, KM_NOSLEEP); 702 if (pplist == NULL) { 703 *ppp = NULL; 704 return (ENOTSUP); /* take the slow path */ 705 } 706 707 for (pg = 0; pg < npages; pg++) { 708 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_SHARED); 709 if (pp == NULL) { 710 while (--pg >= 0) 711 page_unlock(pplist[pg]); 712 kmem_free(pplist, nb); 713 *ppp = NULL; 714 return (ENOTSUP); 715 } 716 pplist[pg] = pp; 717 addr += PAGESIZE; 718 } 719 720 *ppp = pplist; 721 return (0); 722 } 723 724 /* 725 * This is a dummy segkmem function overloaded to call segkp 726 * when segkp is under the heap. 727 */ 728 /* ARGSUSED */ 729 static int 730 segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 731 { 732 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 733 734 if (seg->s_as != &kas) 735 segkmem_badop(); 736 737 /* 738 * If it is one of segkp pages, call into segkp. 739 */ 740 if (segkp_bitmap && seg == &kvseg && 741 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 742 return (SEGOP_GETMEMID(segkp, addr, memidp)); 743 744 segkmem_badop(); 745 return (0); 746 } 747 748 /*ARGSUSED*/ 749 static lgrp_mem_policy_info_t * 750 segkmem_getpolicy(struct seg *seg, caddr_t addr) 751 { 752 return (NULL); 753 } 754 755 /*ARGSUSED*/ 756 static int 757 segkmem_capable(struct seg *seg, segcapability_t capability) 758 { 759 if (capability == S_CAPABILITY_NOMINFLT) 760 return (1); 761 return (0); 762 } 763 764 static struct seg_ops segkmem_ops = { 765 SEGKMEM_BADOP(int), /* dup */ 766 SEGKMEM_BADOP(int), /* unmap */ 767 SEGKMEM_BADOP(void), /* free */ 768 segkmem_fault, 769 SEGKMEM_BADOP(faultcode_t), /* faulta */ 770 segkmem_setprot, 771 segkmem_checkprot, 772 segkmem_kluster, 773 SEGKMEM_BADOP(size_t), /* swapout */ 774 SEGKMEM_BADOP(int), /* sync */ 775 SEGKMEM_BADOP(size_t), /* incore */ 776 SEGKMEM_BADOP(int), /* lockop */ 777 SEGKMEM_BADOP(int), /* getprot */ 778 SEGKMEM_BADOP(u_offset_t), /* getoffset */ 779 SEGKMEM_BADOP(int), /* gettype */ 780 SEGKMEM_BADOP(int), /* getvp */ 781 SEGKMEM_BADOP(int), /* advise */ 782 segkmem_dump, 783 segkmem_pagelock, 784 SEGKMEM_BADOP(int), /* setpgsz */ 785 segkmem_getmemid, 786 segkmem_getpolicy, /* getpolicy */ 787 segkmem_capable, /* capable */ 788 }; 789 790 int 791 segkmem_zio_create(struct seg *seg) 792 { 793 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 794 seg->s_ops = &segkmem_ops; 795 seg->s_data = &zvp; 796 kas.a_size += seg->s_size; 797 return (0); 798 } 799 800 int 801 segkmem_create(struct seg *seg) 802 { 803 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 804 seg->s_ops = &segkmem_ops; 805 seg->s_data = &kvp; 806 kas.a_size += seg->s_size; 807 return (0); 808 } 809 810 /*ARGSUSED*/ 811 page_t * 812 segkmem_page_create(void *addr, size_t size, int vmflag, void *arg) 813 { 814 struct seg kseg; 815 int pgflags; 816 struct vnode *vp = arg; 817 818 if (vp == NULL) 819 vp = &kvp; 820 821 kseg.s_as = &kas; 822 pgflags = PG_EXCL; 823 824 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 825 pgflags |= PG_NORELOC; 826 if ((vmflag & VM_NOSLEEP) == 0) 827 pgflags |= PG_WAIT; 828 if (vmflag & VM_PANIC) 829 pgflags |= PG_PANIC; 830 if (vmflag & VM_PUSHPAGE) 831 pgflags |= PG_PUSHPAGE; 832 833 return (page_create_va(vp, (u_offset_t)(uintptr_t)addr, size, 834 pgflags, &kseg, addr)); 835 } 836 837 /* 838 * Allocate pages to back the virtual address range [addr, addr + size). 839 * If addr is NULL, allocate the virtual address space as well. 840 */ 841 void * 842 segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr, 843 page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg) 844 { 845 page_t *ppl; 846 caddr_t addr = inaddr; 847 pgcnt_t npages = btopr(size); 848 int allocflag; 849 850 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 851 return (NULL); 852 853 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 854 855 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 856 if (inaddr == NULL) 857 vmem_free(vmp, addr, size); 858 return (NULL); 859 } 860 861 ppl = page_create_func(addr, size, vmflag, pcarg); 862 if (ppl == NULL) { 863 if (inaddr == NULL) 864 vmem_free(vmp, addr, size); 865 page_unresv(npages); 866 return (NULL); 867 } 868 869 /* 870 * Under certain conditions, we need to let the HAT layer know 871 * that it cannot safely allocate memory. Allocations from 872 * the hat_memload vmem arena always need this, to prevent 873 * infinite recursion. 874 * 875 * In addition, the x86 hat cannot safely do memory 876 * allocations while in vmem_populate(), because there 877 * is no simple bound on its usage. 878 */ 879 if (vmflag & VM_MEMLOAD) 880 allocflag = HAT_NO_KALLOC; 881 #if defined(__x86) 882 else if (vmem_is_populator()) 883 allocflag = HAT_NO_KALLOC; 884 #endif 885 else 886 allocflag = 0; 887 888 while (ppl != NULL) { 889 page_t *pp = ppl; 890 page_sub(&ppl, pp); 891 ASSERT(page_iolock_assert(pp)); 892 ASSERT(PAGE_EXCL(pp)); 893 page_io_unlock(pp); 894 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp, 895 (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 896 HAT_LOAD_LOCK | allocflag); 897 pp->p_lckcnt = 1; 898 #if defined(__x86) 899 page_downgrade(pp); 900 #else 901 if (vmflag & SEGKMEM_SHARELOCKED) 902 page_downgrade(pp); 903 else 904 page_unlock(pp); 905 #endif 906 } 907 908 return (addr); 909 } 910 911 static void * 912 segkmem_alloc_vn(vmem_t *vmp, size_t size, int vmflag, struct vnode *vp) 913 { 914 void *addr; 915 segkmem_gc_list_t *gcp, **prev_gcpp; 916 917 ASSERT(vp != NULL); 918 919 if (kvseg.s_base == NULL) { 920 #ifndef __sparc 921 if (bootops->bsys_alloc == NULL) 922 halt("Memory allocation between bop_alloc() and " 923 "kmem_alloc().\n"); 924 #endif 925 926 /* 927 * There's not a lot of memory to go around during boot, 928 * so recycle it if we can. 929 */ 930 for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL; 931 prev_gcpp = &gcp->gc_next) { 932 if (gcp->gc_arena == vmp && gcp->gc_size == size) { 933 *prev_gcpp = gcp->gc_next; 934 return (gcp); 935 } 936 } 937 938 addr = vmem_alloc(vmp, size, vmflag | VM_PANIC); 939 if (boot_alloc(addr, size, BO_NO_ALIGN) != addr) 940 panic("segkmem_alloc: boot_alloc failed"); 941 return (addr); 942 } 943 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 944 segkmem_page_create, vp)); 945 } 946 947 void * 948 segkmem_alloc(vmem_t *vmp, size_t size, int vmflag) 949 { 950 return (segkmem_alloc_vn(vmp, size, vmflag, &kvp)); 951 } 952 953 void * 954 segkmem_zio_alloc(vmem_t *vmp, size_t size, int vmflag) 955 { 956 return (segkmem_alloc_vn(vmp, size, vmflag, &zvp)); 957 } 958 959 /* 960 * Any changes to this routine must also be carried over to 961 * devmap_free_pages() in the seg_dev driver. This is because 962 * we currently don't have a special kernel segment for non-paged 963 * kernel memory that is exported by drivers to user space. 964 */ 965 static void 966 segkmem_free_vn(vmem_t *vmp, void *inaddr, size_t size, struct vnode *vp, 967 void (*func)(page_t *)) 968 { 969 page_t *pp; 970 caddr_t addr = inaddr; 971 caddr_t eaddr; 972 pgcnt_t npages = btopr(size); 973 974 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 975 ASSERT(vp != NULL); 976 977 if (kvseg.s_base == NULL) { 978 segkmem_gc_list_t *gc = inaddr; 979 gc->gc_arena = vmp; 980 gc->gc_size = size; 981 gc->gc_next = segkmem_gc_list; 982 segkmem_gc_list = gc; 983 return; 984 } 985 986 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 987 988 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 989 #if defined(__x86) 990 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 991 if (pp == NULL) 992 panic("segkmem_free: page not found"); 993 if (!page_tryupgrade(pp)) { 994 /* 995 * Some other thread has a sharelock. Wait for 996 * it to drop the lock so we can free this page. 997 */ 998 page_unlock(pp); 999 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 1000 SE_EXCL); 1001 } 1002 #else 1003 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1004 #endif 1005 if (pp == NULL) 1006 panic("segkmem_free: page not found"); 1007 /* Clear p_lckcnt so page_destroy() doesn't update availrmem */ 1008 pp->p_lckcnt = 0; 1009 if (func) 1010 func(pp); 1011 else 1012 page_destroy(pp, 0); 1013 } 1014 if (func == NULL) 1015 page_unresv(npages); 1016 1017 if (vmp != NULL) 1018 vmem_free(vmp, inaddr, size); 1019 1020 } 1021 1022 void 1023 segkmem_xfree(vmem_t *vmp, void *inaddr, size_t size, void (*func)(page_t *)) 1024 { 1025 segkmem_free_vn(vmp, inaddr, size, &kvp, func); 1026 } 1027 1028 void 1029 segkmem_free(vmem_t *vmp, void *inaddr, size_t size) 1030 { 1031 segkmem_free_vn(vmp, inaddr, size, &kvp, NULL); 1032 } 1033 1034 void 1035 segkmem_zio_free(vmem_t *vmp, void *inaddr, size_t size) 1036 { 1037 segkmem_free_vn(vmp, inaddr, size, &zvp, NULL); 1038 } 1039 1040 void 1041 segkmem_gc(void) 1042 { 1043 ASSERT(kvseg.s_base != NULL); 1044 while (segkmem_gc_list != NULL) { 1045 segkmem_gc_list_t *gc = segkmem_gc_list; 1046 segkmem_gc_list = gc->gc_next; 1047 segkmem_free(gc->gc_arena, gc, gc->gc_size); 1048 } 1049 } 1050 1051 /* 1052 * Legacy entry points from here to end of file. 1053 */ 1054 void 1055 segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot, 1056 pfn_t pfn, uint_t flags) 1057 { 1058 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1059 hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot, 1060 flags | HAT_LOAD_LOCK); 1061 } 1062 1063 void 1064 segkmem_mapout(struct seg *seg, void *addr, size_t size) 1065 { 1066 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1067 } 1068 1069 void * 1070 kmem_getpages(pgcnt_t npages, int kmflag) 1071 { 1072 return (kmem_alloc(ptob(npages), kmflag)); 1073 } 1074 1075 void 1076 kmem_freepages(void *addr, pgcnt_t npages) 1077 { 1078 kmem_free(addr, ptob(npages)); 1079 } 1080 1081 /* 1082 * segkmem_page_create_large() allocates a large page to be used for the kmem 1083 * caches. If kpr is enabled we ask for a relocatable page unless requested 1084 * otherwise. If kpr is disabled we have to ask for a non-reloc page 1085 */ 1086 static page_t * 1087 segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg) 1088 { 1089 int pgflags; 1090 1091 pgflags = PG_EXCL; 1092 1093 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 1094 pgflags |= PG_NORELOC; 1095 if (!(vmflag & VM_NOSLEEP)) 1096 pgflags |= PG_WAIT; 1097 if (vmflag & VM_PUSHPAGE) 1098 pgflags |= PG_PUSHPAGE; 1099 1100 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 1101 pgflags, &kvseg, addr, arg)); 1102 } 1103 1104 /* 1105 * Allocate a large page to back the virtual address range 1106 * [addr, addr + size). If addr is NULL, allocate the virtual address 1107 * space as well. 1108 */ 1109 static void * 1110 segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag, 1111 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *), 1112 void *pcarg) 1113 { 1114 caddr_t addr = inaddr, pa; 1115 size_t lpsize = segkmem_lpsize; 1116 pgcnt_t npages = btopr(size); 1117 pgcnt_t nbpages = btop(lpsize); 1118 pgcnt_t nlpages = size >> segkmem_lpshift; 1119 size_t ppasize = nbpages * sizeof (page_t *); 1120 page_t *pp, *rootpp, **ppa, *pplist = NULL; 1121 int i; 1122 1123 vmflag |= VM_NOSLEEP; 1124 1125 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 1126 return (NULL); 1127 } 1128 1129 /* 1130 * allocate an array we need for hat_memload_array. 1131 * we use a separate arena to avoid recursion. 1132 * we will not need this array when hat_memload_array learns pp++ 1133 */ 1134 if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) { 1135 goto fail_array_alloc; 1136 } 1137 1138 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 1139 goto fail_vmem_alloc; 1140 1141 ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0); 1142 1143 /* create all the pages */ 1144 for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) { 1145 if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL) 1146 goto fail_page_create; 1147 page_list_concat(&pplist, &pp); 1148 } 1149 1150 /* at this point we have all the resource to complete the request */ 1151 while ((rootpp = pplist) != NULL) { 1152 for (i = 0; i < nbpages; i++) { 1153 ASSERT(pplist != NULL); 1154 pp = pplist; 1155 page_sub(&pplist, pp); 1156 ASSERT(page_iolock_assert(pp)); 1157 page_io_unlock(pp); 1158 ppa[i] = pp; 1159 } 1160 /* 1161 * Load the locked entry. It's OK to preload the entry into the 1162 * TSB since we now support large mappings in the kernel TSB. 1163 */ 1164 hat_memload_array(kas.a_hat, 1165 (caddr_t)(uintptr_t)rootpp->p_offset, lpsize, 1166 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 1167 HAT_LOAD_LOCK); 1168 1169 for (--i; i >= 0; --i) { 1170 ppa[i]->p_lckcnt = 1; 1171 page_unlock(ppa[i]); 1172 } 1173 } 1174 1175 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1176 return (addr); 1177 1178 fail_page_create: 1179 while ((rootpp = pplist) != NULL) { 1180 for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) { 1181 ASSERT(pp != NULL); 1182 page_sub(&pplist, pp); 1183 ASSERT(page_iolock_assert(pp)); 1184 page_io_unlock(pp); 1185 } 1186 page_destroy_pages(rootpp); 1187 } 1188 1189 if (inaddr == NULL) 1190 vmem_free(vmp, addr, size); 1191 1192 fail_vmem_alloc: 1193 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1194 1195 fail_array_alloc: 1196 page_unresv(npages); 1197 1198 return (NULL); 1199 } 1200 1201 static void 1202 segkmem_free_one_lp(caddr_t addr, size_t size) 1203 { 1204 page_t *pp, *rootpp = NULL; 1205 pgcnt_t pgs_left = btopr(size); 1206 1207 ASSERT(size == segkmem_lpsize); 1208 1209 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1210 1211 for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) { 1212 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1213 if (pp == NULL) 1214 panic("segkmem_free_one_lp: page not found"); 1215 ASSERT(PAGE_EXCL(pp)); 1216 pp->p_lckcnt = 0; 1217 if (rootpp == NULL) 1218 rootpp = pp; 1219 } 1220 ASSERT(rootpp != NULL); 1221 page_destroy_pages(rootpp); 1222 1223 /* page_unresv() is done by the caller */ 1224 } 1225 1226 /* 1227 * This function is called to import new spans into the vmem arenas like 1228 * kmem_default_arena and kmem_oversize_arena. It first tries to import 1229 * spans from large page arena - kmem_lp_arena. In order to do this it might 1230 * have to "upgrade the requested size" to kmem_lp_arena quantum. If 1231 * it was not able to satisfy the upgraded request it then calls regular 1232 * segkmem_alloc() that satisfies the request by importing from "*vmp" arena 1233 */ 1234 /*ARGSUSED*/ 1235 void * 1236 segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, size_t align, int vmflag) 1237 { 1238 size_t size; 1239 kthread_t *t = curthread; 1240 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1241 1242 ASSERT(sizep != NULL); 1243 1244 size = *sizep; 1245 1246 if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) && 1247 !(vmflag & SEGKMEM_SHARELOCKED)) { 1248 1249 size_t kmemlp_qnt = segkmem_kmemlp_quantum; 1250 size_t asize = P2ROUNDUP(size, kmemlp_qnt); 1251 void *addr = NULL; 1252 ulong_t *lpthrtp = &lpcb->lp_throttle; 1253 ulong_t lpthrt = *lpthrtp; 1254 int dowakeup = 0; 1255 int doalloc = 1; 1256 1257 ASSERT(kmem_lp_arena != NULL); 1258 ASSERT(asize >= size); 1259 1260 if (lpthrt != 0) { 1261 /* try to update the throttle value */ 1262 lpthrt = atomic_add_long_nv(lpthrtp, 1); 1263 if (lpthrt >= segkmem_lpthrottle_max) { 1264 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1265 segkmem_lpthrottle_max / 4); 1266 } 1267 1268 /* 1269 * when we get above throttle start do an exponential 1270 * backoff at trying large pages and reaping 1271 */ 1272 if (lpthrt > segkmem_lpthrottle_start && 1273 (lpthrt & (lpthrt - 1))) { 1274 lpcb->allocs_throttled++; 1275 lpthrt--; 1276 if ((lpthrt & (lpthrt - 1)) == 0) 1277 kmem_reap(); 1278 return (segkmem_alloc(vmp, size, vmflag)); 1279 } 1280 } 1281 1282 if (!(vmflag & VM_NOSLEEP) && 1283 segkmem_heaplp_quantum >= (8 * kmemlp_qnt) && 1284 vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt && 1285 asize < (segkmem_heaplp_quantum - kmemlp_qnt)) { 1286 1287 /* 1288 * we are low on free memory in kmem_lp_arena 1289 * we let only one guy to allocate heap_lp 1290 * quantum size chunk that everybody is going to 1291 * share 1292 */ 1293 mutex_enter(&lpcb->lp_lock); 1294 1295 if (lpcb->lp_wait) { 1296 1297 /* we are not the first one - wait */ 1298 cv_wait(&lpcb->lp_cv, &lpcb->lp_lock); 1299 if (vmem_size(kmem_lp_arena, VMEM_FREE) < 1300 kmemlp_qnt) { 1301 doalloc = 0; 1302 } 1303 } else if (vmem_size(kmem_lp_arena, VMEM_FREE) <= 1304 kmemlp_qnt) { 1305 1306 /* 1307 * we are the first one, make sure we import 1308 * a large page 1309 */ 1310 if (asize == kmemlp_qnt) 1311 asize += kmemlp_qnt; 1312 dowakeup = 1; 1313 lpcb->lp_wait = 1; 1314 } 1315 1316 mutex_exit(&lpcb->lp_lock); 1317 } 1318 1319 /* 1320 * VM_ABORT flag prevents sleeps in vmem_xalloc when 1321 * large pages are not available. In that case this allocation 1322 * attempt will fail and we will retry allocation with small 1323 * pages. We also do not want to panic if this allocation fails 1324 * because we are going to retry. 1325 */ 1326 if (doalloc) { 1327 addr = vmem_alloc(kmem_lp_arena, asize, 1328 (vmflag | VM_ABORT) & ~VM_PANIC); 1329 1330 if (dowakeup) { 1331 mutex_enter(&lpcb->lp_lock); 1332 ASSERT(lpcb->lp_wait != 0); 1333 lpcb->lp_wait = 0; 1334 cv_broadcast(&lpcb->lp_cv); 1335 mutex_exit(&lpcb->lp_lock); 1336 } 1337 } 1338 1339 if (addr != NULL) { 1340 *sizep = asize; 1341 *lpthrtp = 0; 1342 return (addr); 1343 } 1344 1345 if (vmflag & VM_NOSLEEP) 1346 lpcb->nosleep_allocs_failed++; 1347 else 1348 lpcb->sleep_allocs_failed++; 1349 lpcb->alloc_bytes_failed += size; 1350 1351 /* if large page throttling is not started yet do it */ 1352 if (segkmem_use_lpthrottle && lpthrt == 0) { 1353 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1); 1354 } 1355 } 1356 return (segkmem_alloc(vmp, size, vmflag)); 1357 } 1358 1359 void 1360 segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size) 1361 { 1362 if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) { 1363 segkmem_free(vmp, inaddr, size); 1364 } else { 1365 vmem_free(kmem_lp_arena, inaddr, size); 1366 } 1367 } 1368 1369 /* 1370 * segkmem_alloc_lpi() imports virtual memory from large page heap arena 1371 * into kmem_lp arena. In the process it maps the imported segment with 1372 * large pages 1373 */ 1374 static void * 1375 segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag) 1376 { 1377 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1378 void *addr; 1379 1380 ASSERT(size != 0); 1381 ASSERT(vmp == heap_lp_arena); 1382 1383 /* do not allow large page heap grow beyound limits */ 1384 if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) { 1385 lpcb->allocs_limited++; 1386 return (NULL); 1387 } 1388 1389 addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0, 1390 segkmem_page_create_large, NULL); 1391 return (addr); 1392 } 1393 1394 /* 1395 * segkmem_free_lpi() returns virtual memory back into large page heap arena 1396 * from kmem_lp arena. Beore doing this it unmaps the segment and frees 1397 * large pages used to map it. 1398 */ 1399 static void 1400 segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size) 1401 { 1402 pgcnt_t nlpages = size >> segkmem_lpshift; 1403 size_t lpsize = segkmem_lpsize; 1404 caddr_t addr = inaddr; 1405 pgcnt_t npages = btopr(size); 1406 int i; 1407 1408 ASSERT(vmp == heap_lp_arena); 1409 ASSERT(IS_KMEM_VA_LARGEPAGE(addr)); 1410 ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0); 1411 1412 for (i = 0; i < nlpages; i++) { 1413 segkmem_free_one_lp(addr, lpsize); 1414 addr += lpsize; 1415 } 1416 1417 page_unresv(npages); 1418 1419 vmem_free(vmp, inaddr, size); 1420 } 1421 1422 /* 1423 * This function is called at system boot time by kmem_init right after 1424 * /etc/system file has been read. It checks based on hardware configuration 1425 * and /etc/system settings if system is going to use large pages. The 1426 * initialiazation necessary to actually start using large pages 1427 * happens later in the process after segkmem_heap_lp_init() is called. 1428 */ 1429 int 1430 segkmem_lpsetup() 1431 { 1432 int use_large_pages = 0; 1433 1434 #ifdef __sparc 1435 1436 size_t memtotal = physmem * PAGESIZE; 1437 1438 if (heap_lp_base == NULL) { 1439 segkmem_lpsize = PAGESIZE; 1440 return (0); 1441 } 1442 1443 /* get a platform dependent value of large page size for kernel heap */ 1444 segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize); 1445 1446 if (segkmem_lpsize <= PAGESIZE) { 1447 /* 1448 * put virtual space reserved for the large page kernel 1449 * back to the regular heap 1450 */ 1451 vmem_xfree(heap_arena, heap_lp_base, 1452 heap_lp_end - heap_lp_base); 1453 heap_lp_base = NULL; 1454 heap_lp_end = NULL; 1455 segkmem_lpsize = PAGESIZE; 1456 return (0); 1457 } 1458 1459 /* set heap_lp quantum if necessary */ 1460 if (segkmem_heaplp_quantum == 0 || 1461 (segkmem_heaplp_quantum & (segkmem_heaplp_quantum - 1)) || 1462 P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) { 1463 segkmem_heaplp_quantum = segkmem_lpsize; 1464 } 1465 1466 /* set kmem_lp quantum if necessary */ 1467 if (segkmem_kmemlp_quantum == 0 || 1468 (segkmem_kmemlp_quantum & (segkmem_kmemlp_quantum - 1)) || 1469 segkmem_kmemlp_quantum > segkmem_heaplp_quantum) { 1470 segkmem_kmemlp_quantum = segkmem_heaplp_quantum; 1471 } 1472 1473 /* set total amount of memory allowed for large page kernel heap */ 1474 if (segkmem_kmemlp_max == 0) { 1475 if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100) 1476 segkmem_kmemlp_pcnt = 12; 1477 segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100; 1478 } 1479 segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max, 1480 segkmem_heaplp_quantum); 1481 1482 /* fix lp kmem preallocation request if necesssary */ 1483 if (segkmem_kmemlp_min) { 1484 segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min, 1485 segkmem_heaplp_quantum); 1486 if (segkmem_kmemlp_min > segkmem_kmemlp_max) 1487 segkmem_kmemlp_min = segkmem_kmemlp_max; 1488 } 1489 1490 use_large_pages = 1; 1491 segkmem_lpszc = page_szc(segkmem_lpsize); 1492 segkmem_lpshift = page_get_shift(segkmem_lpszc); 1493 1494 #endif 1495 return (use_large_pages); 1496 } 1497 1498 void 1499 segkmem_zio_init(void *zio_mem_base, size_t zio_mem_size) 1500 { 1501 ASSERT(zio_mem_base != NULL); 1502 ASSERT(zio_mem_size != 0); 1503 1504 zio_arena = vmem_create("zio", zio_mem_base, zio_mem_size, PAGESIZE, 1505 NULL, NULL, NULL, 0, VM_SLEEP); 1506 1507 zio_alloc_arena = vmem_create("zio_buf", NULL, 0, PAGESIZE, 1508 segkmem_zio_alloc, segkmem_zio_free, zio_arena, 0, VM_SLEEP); 1509 1510 ASSERT(zio_arena != NULL); 1511 ASSERT(zio_alloc_arena != NULL); 1512 } 1513 1514 #ifdef __sparc 1515 1516 1517 static void * 1518 segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag) 1519 { 1520 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1521 void *addr; 1522 1523 if (ppaquantum <= PAGESIZE) 1524 return (segkmem_alloc(vmp, size, vmflag)); 1525 1526 ASSERT((size & (ppaquantum - 1)) == 0); 1527 1528 addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag); 1529 if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0, 1530 segkmem_page_create, NULL) == NULL) { 1531 vmem_xfree(vmp, addr, size); 1532 addr = NULL; 1533 } 1534 1535 return (addr); 1536 } 1537 1538 static void 1539 segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size) 1540 { 1541 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1542 1543 ASSERT(addr != NULL); 1544 1545 if (ppaquantum <= PAGESIZE) { 1546 segkmem_free(vmp, addr, size); 1547 } else { 1548 segkmem_free(NULL, addr, size); 1549 vmem_xfree(vmp, addr, size); 1550 } 1551 } 1552 1553 void 1554 segkmem_heap_lp_init() 1555 { 1556 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1557 size_t heap_lp_size = heap_lp_end - heap_lp_base; 1558 size_t lpsize = segkmem_lpsize; 1559 size_t ppaquantum; 1560 void *addr; 1561 1562 if (segkmem_lpsize <= PAGESIZE) { 1563 ASSERT(heap_lp_base == NULL); 1564 ASSERT(heap_lp_end == NULL); 1565 return; 1566 } 1567 1568 ASSERT(segkmem_heaplp_quantum >= lpsize); 1569 ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0); 1570 ASSERT(lpcb->lp_uselp == 0); 1571 ASSERT(heap_lp_base != NULL); 1572 ASSERT(heap_lp_end != NULL); 1573 ASSERT(heap_lp_base < heap_lp_end); 1574 ASSERT(heap_lp_arena == NULL); 1575 ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0); 1576 ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0); 1577 1578 /* create large page heap arena */ 1579 heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size, 1580 segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP); 1581 1582 ASSERT(heap_lp_arena != NULL); 1583 1584 /* This arena caches memory already mapped by large pages */ 1585 kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum, 1586 segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP); 1587 1588 ASSERT(kmem_lp_arena != NULL); 1589 1590 mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL); 1591 cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL); 1592 1593 /* 1594 * this arena is used for the array of page_t pointers necessary 1595 * to call hat_mem_load_array 1596 */ 1597 ppaquantum = btopr(lpsize) * sizeof (page_t *); 1598 segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum, 1599 segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum, 1600 VM_SLEEP); 1601 1602 ASSERT(segkmem_ppa_arena != NULL); 1603 1604 /* prealloacate some memory for the lp kernel heap */ 1605 if (segkmem_kmemlp_min) { 1606 1607 ASSERT(P2PHASE(segkmem_kmemlp_min, 1608 segkmem_heaplp_quantum) == 0); 1609 1610 if ((addr = segkmem_alloc_lpi(heap_lp_arena, 1611 segkmem_kmemlp_min, VM_SLEEP)) != NULL) { 1612 1613 addr = vmem_add(kmem_lp_arena, addr, 1614 segkmem_kmemlp_min, VM_SLEEP); 1615 ASSERT(addr != NULL); 1616 } 1617 } 1618 1619 lpcb->lp_uselp = 1; 1620 } 1621 1622 #endif 1623