1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/sysmacros.h> 28 #include <sys/kmem.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/errno.h> 32 #include <sys/mman.h> 33 #include <sys/cmn_err.h> 34 #include <sys/cred.h> 35 #include <sys/vmsystm.h> 36 #include <sys/debug.h> 37 #include <vm/as.h> 38 #include <vm/seg.h> 39 #include <sys/vmparam.h> 40 #include <sys/vfs.h> 41 #include <sys/elf.h> 42 #include <sys/machelf.h> 43 #include <sys/corectl.h> 44 #include <sys/exec.h> 45 #include <sys/exechdr.h> 46 #include <sys/autoconf.h> 47 #include <sys/mem.h> 48 #include <vm/seg_dev.h> 49 #include <sys/vmparam.h> 50 #include <sys/mmapobj.h> 51 #include <sys/atomic.h> 52 53 /* 54 * Theory statement: 55 * 56 * The main driving force behind mmapobj is to interpret and map ELF files 57 * inside of the kernel instead of having the linker be responsible for this. 58 * 59 * mmapobj also supports the AOUT 4.x binary format as well as flat files in 60 * a read only manner. 61 * 62 * When interpreting and mapping an ELF file, mmapobj will map each PT_LOAD 63 * or PT_SUNWBSS segment according to the ELF standard. Refer to the "Linker 64 * and Libraries Guide" for more information about the standard and mapping 65 * rules. 66 * 67 * Having mmapobj interpret and map objects will allow the kernel to make the 68 * best decision for where to place the mappings for said objects. Thus, we 69 * can make optimizations inside of the kernel for specific platforms or 70 * cache mapping information to make mapping objects faster. 71 * 72 * The lib_va_hash will be one such optimization. For each ELF object that 73 * mmapobj is asked to interpret, we will attempt to cache the information 74 * about the PT_LOAD and PT_SUNWBSS sections to speed up future mappings of 75 * the same objects. We will cache up to LIBVA_CACHED_SEGS (see below) program 76 * headers which should cover a majority of the libraries out there without 77 * wasting space. In order to make sure that the cached information is valid, 78 * we check the passed in vnode's mtime and ctime to make sure the vnode 79 * has not been modified since the last time we used it. 80 * 81 * In addition, the lib_va_hash may contain a preferred starting VA for the 82 * object which can be useful for platforms which support a shared context. 83 * This will increase the likelyhood that library text can be shared among 84 * many different processes. We limit the reserved VA space for 32 bit objects 85 * in order to minimize fragmenting the processes address space. 86 * 87 * In addition to the above, the mmapobj interface allows for padding to be 88 * requested before the first mapping and after the last mapping created. 89 * When padding is requested, no additional optimizations will be made for 90 * that request. 91 */ 92 93 /* 94 * Threshold to prevent allocating too much kernel memory to read in the 95 * program headers for an object. If it requires more than below, 96 * we will use a KM_NOSLEEP allocation to allocate memory to hold all of the 97 * program headers which could possibly fail. If less memory than below is 98 * needed, then we use a KM_SLEEP allocation and are willing to wait for the 99 * memory if we need to. 100 */ 101 size_t mmapobj_alloc_threshold = 65536; 102 103 /* Debug stats for test coverage */ 104 #ifdef DEBUG 105 struct mobj_stats { 106 uint_t mobjs_unmap_called; 107 uint_t mobjs_remap_devnull; 108 uint_t mobjs_lookup_start; 109 uint_t mobjs_alloc_start; 110 uint_t mobjs_alloc_vmem; 111 uint_t mobjs_add_collision; 112 uint_t mobjs_get_addr; 113 uint_t mobjs_map_flat_no_padding; 114 uint_t mobjs_map_flat_padding; 115 uint_t mobjs_map_ptload_text; 116 uint_t mobjs_map_ptload_initdata; 117 uint_t mobjs_map_ptload_preread; 118 uint_t mobjs_map_ptload_unaligned_text; 119 uint_t mobjs_map_ptload_unaligned_map_fail; 120 uint_t mobjs_map_ptload_unaligned_read_fail; 121 uint_t mobjs_zfoddiff; 122 uint_t mobjs_zfoddiff_nowrite; 123 uint_t mobjs_zfodextra; 124 uint_t mobjs_ptload_failed; 125 uint_t mobjs_map_elf_no_holes; 126 uint_t mobjs_unmap_hole; 127 uint_t mobjs_nomem_header; 128 uint_t mobjs_inval_header; 129 uint_t mobjs_overlap_header; 130 uint_t mobjs_np2_align; 131 uint_t mobjs_np2_align_overflow; 132 uint_t mobjs_exec_padding; 133 uint_t mobjs_exec_addr_mapped; 134 uint_t mobjs_exec_addr_devnull; 135 uint_t mobjs_exec_addr_in_use; 136 uint_t mobjs_lvp_found; 137 uint_t mobjs_no_loadable_yet; 138 uint_t mobjs_nothing_to_map; 139 uint_t mobjs_e2big; 140 uint_t mobjs_dyn_pad_align; 141 uint_t mobjs_dyn_pad_noalign; 142 uint_t mobjs_alloc_start_fail; 143 uint_t mobjs_lvp_nocache; 144 uint_t mobjs_extra_padding; 145 uint_t mobjs_lvp_not_needed; 146 uint_t mobjs_no_mem_map_sz; 147 uint_t mobjs_check_exec_failed; 148 uint_t mobjs_lvp_used; 149 uint_t mobjs_wrong_model; 150 uint_t mobjs_noexec_fs; 151 uint_t mobjs_e2big_et_rel; 152 uint_t mobjs_et_rel_mapped; 153 uint_t mobjs_unknown_elf_type; 154 uint_t mobjs_phent32_too_small; 155 uint_t mobjs_phent64_too_small; 156 uint_t mobjs_inval_elf_class; 157 uint_t mobjs_too_many_phdrs; 158 uint_t mobjs_no_phsize; 159 uint_t mobjs_phsize_large; 160 uint_t mobjs_phsize_xtralarge; 161 uint_t mobjs_fast_wrong_model; 162 uint_t mobjs_fast_e2big; 163 uint_t mobjs_fast; 164 uint_t mobjs_fast_success; 165 uint_t mobjs_fast_not_now; 166 uint_t mobjs_small_file; 167 uint_t mobjs_read_error; 168 uint_t mobjs_unsupported; 169 uint_t mobjs_flat_e2big; 170 uint_t mobjs_phent_align32; 171 uint_t mobjs_phent_align64; 172 uint_t mobjs_lib_va_find_hit; 173 uint_t mobjs_lib_va_find_delay_delete; 174 uint_t mobjs_lib_va_find_delete; 175 uint_t mobjs_lib_va_add_delay_delete; 176 uint_t mobjs_lib_va_add_delete; 177 uint_t mobjs_min_align; 178 #if defined(__sparc) 179 uint_t mobjs_aout_uzero_fault; 180 uint_t mobjs_aout_64bit_try; 181 uint_t mobjs_aout_noexec; 182 uint_t mobjs_aout_e2big; 183 uint_t mobjs_aout_lib; 184 uint_t mobjs_aout_fixed; 185 uint_t mobjs_aout_zfoddiff; 186 uint_t mobjs_aout_map_bss; 187 uint_t mobjs_aout_bss_fail; 188 uint_t mobjs_aout_nlist; 189 uint_t mobjs_aout_addr_in_use; 190 #endif 191 } mobj_stats; 192 193 #define MOBJ_STAT_ADD(stat) ((mobj_stats.mobjs_##stat)++) 194 #else 195 #define MOBJ_STAT_ADD(stat) 196 #endif 197 198 /* lv_flags values - bitmap */ 199 #define LV_ELF32 0x1 /* 32 bit ELF file */ 200 #define LV_ELF64 0x2 /* 64 bit ELF file */ 201 #define LV_DEL 0x4 /* delete when lv_refcnt hits zero */ 202 203 /* 204 * Note: lv_num_segs will denote how many segments this file has and will 205 * only be set after the lv_mps array has been filled out. 206 * lv_mps can only be valid if lv_num_segs is non-zero. 207 */ 208 struct lib_va { 209 struct lib_va *lv_next; 210 caddr_t lv_base_va; /* start va for library */ 211 ssize_t lv_len; /* total va span of library */ 212 size_t lv_align; /* minimum alignment */ 213 uint64_t lv_nodeid; /* filesystem node id */ 214 uint64_t lv_fsid; /* filesystem id */ 215 timestruc_t lv_ctime; /* last time file was changed */ 216 timestruc_t lv_mtime; /* or modified */ 217 mmapobj_result_t lv_mps[LIBVA_CACHED_SEGS]; /* cached pheaders */ 218 int lv_num_segs; /* # segs for this file */ 219 int lv_flags; 220 uint_t lv_refcnt; /* number of holds on struct */ 221 }; 222 223 #define LIB_VA_SIZE 1024 224 #define LIB_VA_MASK (LIB_VA_SIZE - 1) 225 #define LIB_VA_MUTEX_SHIFT 3 226 227 #if (LIB_VA_SIZE & (LIB_VA_SIZE - 1)) 228 #error "LIB_VA_SIZE is not a power of 2" 229 #endif 230 231 static struct lib_va *lib_va_hash[LIB_VA_SIZE]; 232 static kmutex_t lib_va_hash_mutex[LIB_VA_SIZE >> LIB_VA_MUTEX_SHIFT]; 233 234 #define LIB_VA_HASH_MUTEX(index) \ 235 (&lib_va_hash_mutex[index >> LIB_VA_MUTEX_SHIFT]) 236 237 #define LIB_VA_HASH(nodeid) \ 238 (((nodeid) ^ ((nodeid) << 7) ^ ((nodeid) << 13)) & LIB_VA_MASK) 239 240 #define LIB_VA_MATCH_ID(arg1, arg2) \ 241 ((arg1)->lv_nodeid == (arg2)->va_nodeid && \ 242 (arg1)->lv_fsid == (arg2)->va_fsid) 243 244 #define LIB_VA_MATCH_TIME(arg1, arg2) \ 245 ((arg1)->lv_ctime.tv_sec == (arg2)->va_ctime.tv_sec && \ 246 (arg1)->lv_mtime.tv_sec == (arg2)->va_mtime.tv_sec && \ 247 (arg1)->lv_ctime.tv_nsec == (arg2)->va_ctime.tv_nsec && \ 248 (arg1)->lv_mtime.tv_nsec == (arg2)->va_mtime.tv_nsec) 249 250 #define LIB_VA_MATCH(arg1, arg2) \ 251 (LIB_VA_MATCH_ID(arg1, arg2) && LIB_VA_MATCH_TIME(arg1, arg2)) 252 253 /* 254 * In order to map libraries at the same VA in many processes, we need to carve 255 * out our own address space for them which is unique across many processes. 256 * We use different arenas for 32 bit and 64 bit libraries. 257 * 258 * Since the 32 bit address space is relatively small, we limit the number of 259 * libraries which try to use consistent virtual addresses to lib_threshold. 260 * For 64 bit libraries there is no such limit since the address space is large. 261 */ 262 static vmem_t *lib_va_32_arena; 263 static vmem_t *lib_va_64_arena; 264 uint_t lib_threshold = 20; /* modifiable via /etc/system */ 265 266 /* 267 * Number of 32 bit and 64 bit libraries in lib_va hash. 268 */ 269 static uint_t libs_mapped_32 = 0; 270 static uint_t libs_mapped_64 = 0; 271 272 /* 273 * Initialize the VA span of the lib_va arenas to about half of the VA space 274 * of a user process. These VAs will be used for optimized allocation of 275 * libraries, such that subsequent mappings of the same library will attempt 276 * to use the same VA as previous mappings of that library. 277 */ 278 void 279 lib_va_init(void) 280 { 281 size_t start; 282 size_t end; 283 size_t len; 284 /* 285 * On 32 bit sparc, the user stack and /lib/ld.so.1 will both live 286 * above the end address that we choose. On 32bit x86 only 287 * /lib/ld.so.1 will live above the end address that we choose 288 * because the user stack is at the bottom of the address space. 289 * 290 * We estimate the size of ld.so.1 to be 512K which leaves significant 291 * room for growth without needing to change this value. Thus it is 292 * safe for libraries to be mapped up to that address. 293 * 294 * If the length of ld.so.1 were to grow beyond 512K then 295 * a library who has a reserved address in that range would always 296 * fail to get that address and would have to call map_addr 297 * to get an unused address range. On DEBUG kernels, we will check 298 * on the first use of lib_va that our address does not overlap 299 * ld.so.1, and if it does, then we'll print a cmn_err message. 300 */ 301 #if defined(__sparc) 302 end = _userlimit32 - DFLSSIZ - (512 * 1024); 303 #elif defined(__i386) || defined(__amd64) 304 end = _userlimit32 - (512 * 1024); 305 #else 306 #error "no recognized machine type is defined" 307 #endif 308 len = end >> 1; 309 len = P2ROUNDUP(len, PAGESIZE); 310 start = end - len; 311 lib_va_32_arena = vmem_create("lib_va_32", (void *)start, len, 312 PAGESIZE, NULL, NULL, NULL, 0, VM_NOSLEEP | VMC_IDENTIFIER); 313 314 #if defined(_LP64) 315 /* 316 * The user stack and /lib/ld.so.1 will both live above the end address 317 * that we choose. We estimate the size of a mapped ld.so.1 to be 2M 318 * which leaves significant room for growth without needing to change 319 * this value. Thus it is safe for libraries to be mapped up to 320 * that address. The same considerations for the size of ld.so.1 that 321 * were mentioned above also apply here. 322 */ 323 end = _userlimit - DFLSSIZ - (2 * 1024 * 1024); 324 len = end >> 1; 325 len = P2ROUNDUP(len, PAGESIZE); 326 start = end - len; 327 lib_va_64_arena = vmem_create("lib_va_64", (void *)start, len, 328 PAGESIZE, NULL, NULL, NULL, 0, VM_NOSLEEP | VMC_IDENTIFIER); 329 #endif 330 } 331 332 /* 333 * Free up the resources associated with lvp as well as lvp itself. 334 * We also decrement the number of libraries mapped via a lib_va 335 * cached virtual address. 336 */ 337 void 338 lib_va_free(struct lib_va *lvp) 339 { 340 int is_64bit = lvp->lv_flags & LV_ELF64; 341 ASSERT(lvp->lv_refcnt == 0); 342 343 if (lvp->lv_base_va != NULL) { 344 vmem_xfree(is_64bit ? lib_va_64_arena : lib_va_32_arena, 345 lvp->lv_base_va, lvp->lv_len); 346 if (is_64bit) { 347 atomic_add_32(&libs_mapped_64, -1); 348 } else { 349 atomic_add_32(&libs_mapped_32, -1); 350 } 351 } 352 kmem_free(lvp, sizeof (struct lib_va)); 353 } 354 355 /* 356 * See if the file associated with the vap passed in is in the lib_va hash. 357 * If it is and the file has not been modified since last use, then 358 * return a pointer to that data. Otherwise, return NULL if the file has 359 * changed or the file was not found in the hash. 360 */ 361 static struct lib_va * 362 lib_va_find(vattr_t *vap) 363 { 364 struct lib_va *lvp; 365 struct lib_va *del = NULL; 366 struct lib_va **tmp; 367 uint_t index; 368 index = LIB_VA_HASH(vap->va_nodeid); 369 370 mutex_enter(LIB_VA_HASH_MUTEX(index)); 371 tmp = &lib_va_hash[index]; 372 while (*tmp != NULL) { 373 lvp = *tmp; 374 if (LIB_VA_MATCH_ID(lvp, vap)) { 375 if (LIB_VA_MATCH_TIME(lvp, vap)) { 376 ASSERT((lvp->lv_flags & LV_DEL) == 0); 377 lvp->lv_refcnt++; 378 MOBJ_STAT_ADD(lib_va_find_hit); 379 } else { 380 /* 381 * file was updated since last use. 382 * need to remove it from list. 383 */ 384 del = lvp; 385 *tmp = del->lv_next; 386 del->lv_next = NULL; 387 /* 388 * If we can't delete it now, mark it for later 389 */ 390 if (del->lv_refcnt) { 391 MOBJ_STAT_ADD(lib_va_find_delay_delete); 392 del->lv_flags |= LV_DEL; 393 del = NULL; 394 } 395 lvp = NULL; 396 } 397 mutex_exit(LIB_VA_HASH_MUTEX(index)); 398 if (del) { 399 ASSERT(del->lv_refcnt == 0); 400 MOBJ_STAT_ADD(lib_va_find_delete); 401 lib_va_free(del); 402 } 403 return (lvp); 404 } 405 tmp = &lvp->lv_next; 406 } 407 mutex_exit(LIB_VA_HASH_MUTEX(index)); 408 return (NULL); 409 } 410 411 /* 412 * Add a new entry to the lib_va hash. 413 * Search the hash while holding the appropriate mutex to make sure that the 414 * data is not already in the cache. If we find data that is in the cache 415 * already and has not been modified since last use, we return NULL. If it 416 * has been modified since last use, we will remove that entry from 417 * the hash and it will be deleted once it's reference count reaches zero. 418 * If there is no current entry in the hash we will add the new entry and 419 * return it to the caller who is responsible for calling lib_va_release to 420 * drop their reference count on it. 421 * 422 * lv_num_segs will be set to zero since the caller needs to add that 423 * information to the data structure. 424 */ 425 static struct lib_va * 426 lib_va_add_hash(caddr_t base_va, ssize_t len, size_t align, vattr_t *vap) 427 { 428 struct lib_va *lvp; 429 uint_t index; 430 model_t model; 431 struct lib_va **tmp; 432 struct lib_va *del = NULL; 433 434 model = get_udatamodel(); 435 index = LIB_VA_HASH(vap->va_nodeid); 436 437 lvp = kmem_alloc(sizeof (struct lib_va), KM_SLEEP); 438 439 mutex_enter(LIB_VA_HASH_MUTEX(index)); 440 441 /* 442 * Make sure not adding same data a second time. 443 * The hash chains should be relatively short and adding 444 * is a relatively rare event, so it's worth the check. 445 */ 446 tmp = &lib_va_hash[index]; 447 while (*tmp != NULL) { 448 if (LIB_VA_MATCH_ID(*tmp, vap)) { 449 if (LIB_VA_MATCH_TIME(*tmp, vap)) { 450 mutex_exit(LIB_VA_HASH_MUTEX(index)); 451 kmem_free(lvp, sizeof (struct lib_va)); 452 return (NULL); 453 } 454 455 /* 456 * We have the same nodeid and fsid but the file has 457 * been modified since we last saw it. 458 * Need to remove the old node and add this new 459 * one. 460 * Could probably use a callback mechanism to make 461 * this cleaner. 462 */ 463 ASSERT(del == NULL); 464 del = *tmp; 465 *tmp = del->lv_next; 466 del->lv_next = NULL; 467 468 /* 469 * Check to see if we can free it. If lv_refcnt 470 * is greater than zero, than some other thread 471 * has a reference to the one we want to delete 472 * and we can not delete it. All of this is done 473 * under the lib_va_hash_mutex lock so it is atomic. 474 */ 475 if (del->lv_refcnt) { 476 MOBJ_STAT_ADD(lib_va_add_delay_delete); 477 del->lv_flags |= LV_DEL; 478 del = NULL; 479 } 480 /* tmp is already advanced */ 481 continue; 482 } 483 tmp = &((*tmp)->lv_next); 484 } 485 486 lvp->lv_base_va = base_va; 487 lvp->lv_len = len; 488 lvp->lv_align = align; 489 lvp->lv_nodeid = vap->va_nodeid; 490 lvp->lv_fsid = vap->va_fsid; 491 lvp->lv_ctime.tv_sec = vap->va_ctime.tv_sec; 492 lvp->lv_ctime.tv_nsec = vap->va_ctime.tv_nsec; 493 lvp->lv_mtime.tv_sec = vap->va_mtime.tv_sec; 494 lvp->lv_mtime.tv_nsec = vap->va_mtime.tv_nsec; 495 lvp->lv_next = NULL; 496 lvp->lv_refcnt = 1; 497 498 /* Caller responsible for filling this and lv_mps out */ 499 lvp->lv_num_segs = 0; 500 501 if (model == DATAMODEL_LP64) { 502 lvp->lv_flags = LV_ELF64; 503 } else { 504 ASSERT(model == DATAMODEL_ILP32); 505 lvp->lv_flags = LV_ELF32; 506 } 507 508 if (base_va != NULL) { 509 if (model == DATAMODEL_LP64) { 510 atomic_add_32(&libs_mapped_64, 1); 511 } else { 512 ASSERT(model == DATAMODEL_ILP32); 513 atomic_add_32(&libs_mapped_32, 1); 514 } 515 } 516 ASSERT(*tmp == NULL); 517 *tmp = lvp; 518 mutex_exit(LIB_VA_HASH_MUTEX(index)); 519 if (del) { 520 ASSERT(del->lv_refcnt == 0); 521 MOBJ_STAT_ADD(lib_va_add_delete); 522 lib_va_free(del); 523 } 524 return (lvp); 525 } 526 527 /* 528 * Release the hold on lvp which was acquired by lib_va_find or lib_va_add_hash. 529 * In addition, if this is the last hold and lvp is marked for deletion, 530 * free up it's reserved address space and free the structure. 531 */ 532 static void 533 lib_va_release(struct lib_va *lvp) 534 { 535 uint_t index; 536 int to_del = 0; 537 538 ASSERT(lvp->lv_refcnt > 0); 539 540 index = LIB_VA_HASH(lvp->lv_nodeid); 541 mutex_enter(LIB_VA_HASH_MUTEX(index)); 542 if (--lvp->lv_refcnt == 0 && (lvp->lv_flags & LV_DEL)) { 543 to_del = 1; 544 } 545 mutex_exit(LIB_VA_HASH_MUTEX(index)); 546 if (to_del) { 547 ASSERT(lvp->lv_next == 0); 548 lib_va_free(lvp); 549 } 550 } 551 552 /* 553 * Dummy function for mapping through /dev/null 554 * Normally I would have used mmmmap in common/io/mem.c 555 * but that is a static function, and for /dev/null, it 556 * just returns -1. 557 */ 558 /* ARGSUSED */ 559 static int 560 mmapobj_dummy(dev_t dev, off_t off, int prot) 561 { 562 return (-1); 563 } 564 565 /* 566 * Called when an error occurred which requires mmapobj to return failure. 567 * All mapped objects will be unmapped and /dev/null mappings will be 568 * reclaimed if necessary. 569 * num_mapped is the number of elements of mrp which have been mapped, and 570 * num_segs is the total number of elements in mrp. 571 * For e_type ET_EXEC, we need to unmap all of the elements in mrp since 572 * we had already made reservations for them. 573 * If num_mapped equals num_segs, then we know that we had fully mapped 574 * the file and only need to clean up the segments described. 575 * If they are not equal, then for ET_DYN we will unmap the range from the 576 * end of the last mapped segment to the end of the last segment in mrp 577 * since we would have made a reservation for that memory earlier. 578 * If e_type is passed in as zero, num_mapped must equal num_segs. 579 */ 580 void 581 mmapobj_unmap(mmapobj_result_t *mrp, int num_mapped, int num_segs, 582 ushort_t e_type) 583 { 584 int i; 585 struct as *as = curproc->p_as; 586 caddr_t addr; 587 size_t size; 588 589 if (e_type == ET_EXEC) { 590 num_mapped = num_segs; 591 } 592 #ifdef DEBUG 593 if (e_type == 0) { 594 ASSERT(num_mapped == num_segs); 595 } 596 #endif 597 598 MOBJ_STAT_ADD(unmap_called); 599 for (i = 0; i < num_mapped; i++) { 600 601 /* 602 * If we are going to have to create a mapping we need to 603 * make sure that no one else will use the address we 604 * need to remap between the time it is unmapped and 605 * mapped below. 606 */ 607 if (mrp[i].mr_flags & MR_RESV) { 608 as_rangelock(as); 609 } 610 /* Always need to unmap what we mapped */ 611 (void) as_unmap(as, mrp[i].mr_addr, mrp[i].mr_msize); 612 613 /* Need to reclaim /dev/null reservation from earlier */ 614 if (mrp[i].mr_flags & MR_RESV) { 615 struct segdev_crargs dev_a; 616 617 ASSERT(e_type != ET_DYN); 618 /* 619 * Use seg_dev segment driver for /dev/null mapping. 620 */ 621 dev_a.mapfunc = mmapobj_dummy; 622 dev_a.dev = makedevice(mm_major, M_NULL); 623 dev_a.offset = 0; 624 dev_a.type = 0; /* neither PRIVATE nor SHARED */ 625 dev_a.prot = dev_a.maxprot = (uchar_t)PROT_NONE; 626 dev_a.hat_attr = 0; 627 dev_a.hat_flags = 0; 628 629 (void) as_map(as, mrp[i].mr_addr, mrp[i].mr_msize, 630 segdev_create, &dev_a); 631 MOBJ_STAT_ADD(remap_devnull); 632 as_rangeunlock(as); 633 } 634 } 635 636 if (num_mapped != num_segs) { 637 ASSERT(e_type == ET_DYN); 638 /* Need to unmap any reservation made after last mapped seg */ 639 if (num_mapped == 0) { 640 addr = mrp[0].mr_addr; 641 } else { 642 addr = mrp[num_mapped - 1].mr_addr + 643 mrp[num_mapped - 1].mr_msize; 644 } 645 size = (size_t)mrp[num_segs - 1].mr_addr + 646 mrp[num_segs - 1].mr_msize - (size_t)addr; 647 (void) as_unmap(as, addr, size); 648 649 /* 650 * Now we need to unmap the holes between mapped segs. 651 * Note that we have not mapped all of the segments and thus 652 * the holes between segments would not have been unmapped 653 * yet. If num_mapped == num_segs, then all of the holes 654 * between segments would have already been unmapped. 655 */ 656 657 for (i = 1; i < num_mapped; i++) { 658 addr = mrp[i - 1].mr_addr + mrp[i - 1].mr_msize; 659 size = mrp[i].mr_addr - addr; 660 (void) as_unmap(as, addr, size); 661 } 662 } 663 } 664 665 /* 666 * We need to add the start address into mrp so that the unmap function 667 * has absolute addresses to use. 668 */ 669 static void 670 mmapobj_unmap_exec(mmapobj_result_t *mrp, int num_mapped, caddr_t start_addr) 671 { 672 int i; 673 674 for (i = 0; i < num_mapped; i++) { 675 mrp[i].mr_addr += (size_t)start_addr; 676 } 677 mmapobj_unmap(mrp, num_mapped, num_mapped, ET_EXEC); 678 } 679 680 static caddr_t 681 mmapobj_lookup_start_addr(struct lib_va *lvp) 682 { 683 struct as *as = curproc->p_as; 684 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL); 685 int error; 686 uint_t ma_flags = _MAP_LOW32; 687 caddr_t base = NULL; 688 size_t len; 689 size_t align; 690 691 ASSERT(lvp != NULL); 692 MOBJ_STAT_ADD(lookup_start); 693 694 as_rangelock(as); 695 696 base = lvp->lv_base_va; 697 len = lvp->lv_len; 698 699 /* 700 * If we don't have an expected base address, or the one that we want 701 * to use is not available or acceptable, go get an acceptable 702 * address range. 703 */ 704 if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) || 705 valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) != 706 RANGE_OKAY) { 707 708 if (lvp->lv_flags & LV_ELF64) { 709 ma_flags = 0; 710 } 711 712 align = lvp->lv_align; 713 if (align > 1) { 714 ma_flags |= MAP_ALIGN; 715 } 716 717 base = (caddr_t)align; 718 map_addr(&base, len, 0, 1, ma_flags); 719 } 720 721 /* 722 * Need to reserve the address space we're going to use. 723 * Don't reserve swap space since we'll be mapping over this. 724 */ 725 if (base != NULL) { 726 crargs.flags |= MAP_NORESERVE; 727 error = as_map(as, base, len, segvn_create, &crargs); 728 if (error) { 729 base = NULL; 730 } 731 } 732 733 as_rangeunlock(as); 734 return (base); 735 } 736 737 /* 738 * Get the starting address for a given file to be mapped and return it 739 * to the caller. If we're using lib_va and we need to allocate an address, 740 * we will attempt to allocate it from the global reserved pool such that the 741 * same address can be used in the future for this file. If we can't use the 742 * reserved address then we just get one that will fit in our address space. 743 * 744 * Returns the starting virtual address for the range to be mapped or NULL 745 * if an error is encountered. If we successfully insert the requested info 746 * into the lib_va hash, then *lvpp will be set to point to this lib_va 747 * structure. The structure will have a hold on it and thus lib_va_release 748 * needs to be called on it by the caller. This function will not fill out 749 * lv_mps or lv_num_segs since it does not have enough information to do so. 750 * The caller is responsible for doing this making sure that any modifications 751 * to lv_mps are visible before setting lv_num_segs. 752 */ 753 static caddr_t 754 mmapobj_alloc_start_addr(struct lib_va **lvpp, size_t len, int use_lib_va, 755 size_t align, vattr_t *vap) 756 { 757 struct as *as = curproc->p_as; 758 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL); 759 int error; 760 model_t model; 761 uint_t ma_flags = _MAP_LOW32; 762 caddr_t base = NULL; 763 vmem_t *model_vmem; 764 765 ASSERT(lvpp != NULL); 766 767 MOBJ_STAT_ADD(alloc_start); 768 model = get_udatamodel(); 769 770 if (model == DATAMODEL_LP64) { 771 ma_flags = 0; 772 model_vmem = lib_va_64_arena; 773 } else { 774 ASSERT(model == DATAMODEL_ILP32); 775 model_vmem = lib_va_32_arena; 776 } 777 778 if (align > 1) { 779 ma_flags |= MAP_ALIGN; 780 } 781 if (use_lib_va) { 782 if (model == DATAMODEL_LP64 || libs_mapped_32 < lib_threshold) { 783 base = vmem_xalloc(model_vmem, len, align, 0, 0, NULL, 784 NULL, VM_NOSLEEP | VM_ENDALLOC); 785 MOBJ_STAT_ADD(alloc_vmem); 786 } 787 #ifdef DEBUG 788 /* 789 * Check to see if we've run into ld.so.1. 790 * If this is the first library we've mapped and we can not 791 * use our reserved address space, then it's likely that 792 * ld.so.1 is occupying some of this space and the 793 * model_vmem arena bounds need to be changed. If we've run 794 * into something else besides ld.so.1 we'll see this message 795 * on the first use of mmapobj and should ignore the message. 796 */ 797 if (base != NULL && libs_mapped_32 == 0 && 798 model == DATAMODEL_ILP32 && 799 as_gap(as, len, &base, &len, 0, NULL)) { 800 cmn_err(CE_NOTE, 801 "lib_va_32_arena may not be optimized"); 802 } else if (base != NULL && libs_mapped_64 == 0 && 803 model == DATAMODEL_LP64 && 804 as_gap(as, len, &base, &len, 0, NULL)) { 805 cmn_err(CE_NOTE, 806 "lib_va_64_arena may not be optimized"); 807 } 808 #endif 809 /* 810 * Even if the address fails to fit in our address space, 811 * or we can't use a reserved address, 812 * we should still save it off in lib_va_hash. 813 */ 814 *lvpp = lib_va_add_hash(base, len, align, vap); 815 816 /* 817 * Check for collision on insertion and free up our VA space. 818 * This is expected to be rare, so we'll just reset base to 819 * NULL instead of looking it up in the lib_va hash. 820 */ 821 if (*lvpp == NULL) { 822 if (base != NULL) { 823 vmem_xfree(model_vmem, base, len); 824 base = NULL; 825 MOBJ_STAT_ADD(add_collision); 826 } 827 } 828 } 829 830 as_rangelock(as); 831 832 /* 833 * If we don't have an expected base address, or the one that we want 834 * to use is not available or acceptable, go get an acceptable 835 * address range. 836 */ 837 if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) || 838 valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) != 839 RANGE_OKAY) { 840 MOBJ_STAT_ADD(get_addr); 841 base = (caddr_t)align; 842 map_addr(&base, len, 0, 1, ma_flags); 843 } 844 845 /* 846 * Need to reserve the address space we're going to use. 847 * Don't reserve swap space since we'll be mapping over this. 848 */ 849 if (base != NULL) { 850 /* Don't reserve swap space since we'll be mapping over this */ 851 crargs.flags |= MAP_NORESERVE; 852 error = as_map(as, base, len, segvn_create, &crargs); 853 if (error) { 854 base = NULL; 855 } 856 } 857 858 as_rangeunlock(as); 859 return (base); 860 } 861 862 /* 863 * Map the file associated with vp into the address space as a single 864 * read only private mapping. 865 * Returns 0 for success, and non-zero for failure to map the file. 866 */ 867 static int 868 mmapobj_map_flat(vnode_t *vp, mmapobj_result_t *mrp, size_t padding, 869 cred_t *fcred) 870 { 871 int error = 0; 872 struct as *as = curproc->p_as; 873 caddr_t addr = NULL; 874 caddr_t start_addr; 875 size_t len; 876 size_t pad_len; 877 int prot = PROT_USER | PROT_READ; 878 uint_t ma_flags = _MAP_LOW32; 879 vattr_t vattr; 880 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL); 881 882 if (get_udatamodel() == DATAMODEL_LP64) { 883 ma_flags = 0; 884 } 885 886 vattr.va_mask = AT_SIZE; 887 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL); 888 if (error) { 889 return (error); 890 } 891 892 len = vattr.va_size; 893 894 ma_flags |= MAP_PRIVATE; 895 if (padding == 0) { 896 MOBJ_STAT_ADD(map_flat_no_padding); 897 error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL, 898 ma_flags, fcred, NULL); 899 if (error == 0) { 900 mrp[0].mr_addr = addr; 901 mrp[0].mr_msize = len; 902 mrp[0].mr_fsize = len; 903 mrp[0].mr_offset = 0; 904 mrp[0].mr_prot = prot; 905 mrp[0].mr_flags = 0; 906 } 907 return (error); 908 } 909 910 /* padding was requested so there's more work to be done */ 911 MOBJ_STAT_ADD(map_flat_padding); 912 913 /* No need to reserve swap space now since it will be reserved later */ 914 crargs.flags |= MAP_NORESERVE; 915 916 /* Need to setup padding which can only be in PAGESIZE increments. */ 917 ASSERT((padding & PAGEOFFSET) == 0); 918 pad_len = len + (2 * padding); 919 920 as_rangelock(as); 921 map_addr(&addr, pad_len, 0, 1, ma_flags); 922 error = as_map(as, addr, pad_len, segvn_create, &crargs); 923 as_rangeunlock(as); 924 if (error) { 925 return (error); 926 } 927 start_addr = addr; 928 addr += padding; 929 ma_flags |= MAP_FIXED; 930 error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL, ma_flags, 931 fcred, NULL); 932 if (error == 0) { 933 mrp[0].mr_addr = start_addr; 934 mrp[0].mr_msize = padding; 935 mrp[0].mr_fsize = 0; 936 mrp[0].mr_offset = 0; 937 mrp[0].mr_prot = 0; 938 mrp[0].mr_flags = MR_PADDING; 939 940 mrp[1].mr_addr = addr; 941 mrp[1].mr_msize = len; 942 mrp[1].mr_fsize = len; 943 mrp[1].mr_offset = 0; 944 mrp[1].mr_prot = prot; 945 mrp[1].mr_flags = 0; 946 947 mrp[2].mr_addr = addr + P2ROUNDUP(len, PAGESIZE); 948 mrp[2].mr_msize = padding; 949 mrp[2].mr_fsize = 0; 950 mrp[2].mr_offset = 0; 951 mrp[2].mr_prot = 0; 952 mrp[2].mr_flags = MR_PADDING; 953 } else { 954 /* Need to cleanup the as_map from earlier */ 955 (void) as_unmap(as, start_addr, pad_len); 956 } 957 return (error); 958 } 959 960 /* 961 * Map a PT_LOAD or PT_SUNWBSS section of an executable file into the user's 962 * address space. 963 * vp - vnode to be mapped in 964 * addr - start address 965 * len - length of vp to be mapped 966 * zfodlen - length of zero filled memory after len above 967 * offset - offset into file where mapping should start 968 * prot - protections for this mapping 969 * fcred - credentials for the file associated with vp at open time. 970 */ 971 static int 972 mmapobj_map_ptload(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen, 973 off_t offset, int prot, cred_t *fcred) 974 { 975 int error = 0; 976 caddr_t zfodbase, oldaddr; 977 size_t oldlen; 978 size_t end; 979 size_t zfoddiff; 980 label_t ljb; 981 struct as *as = curproc->p_as; 982 model_t model; 983 int full_page; 984 985 /* 986 * See if addr and offset are aligned such that we can map in 987 * full pages instead of partial pages. 988 */ 989 full_page = (((uintptr_t)addr & PAGEOFFSET) == 990 ((uintptr_t)offset & PAGEOFFSET)); 991 992 model = get_udatamodel(); 993 994 oldaddr = addr; 995 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 996 if (len) { 997 spgcnt_t availm, npages; 998 int preread; 999 uint_t mflag = MAP_PRIVATE | MAP_FIXED; 1000 1001 if (model == DATAMODEL_ILP32) { 1002 mflag |= _MAP_LOW32; 1003 } 1004 /* We may need to map in extra bytes */ 1005 oldlen = len; 1006 len += ((size_t)oldaddr & PAGEOFFSET); 1007 1008 if (full_page) { 1009 offset = (off_t)((uintptr_t)offset & PAGEMASK); 1010 if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) { 1011 mflag |= MAP_TEXT; 1012 MOBJ_STAT_ADD(map_ptload_text); 1013 } else { 1014 mflag |= MAP_INITDATA; 1015 MOBJ_STAT_ADD(map_ptload_initdata); 1016 } 1017 1018 /* 1019 * maxprot is passed as PROT_ALL so that mdb can 1020 * write to this segment. 1021 */ 1022 if (error = VOP_MAP(vp, (offset_t)offset, as, &addr, 1023 len, prot, PROT_ALL, mflag, fcred, NULL)) { 1024 return (error); 1025 } 1026 1027 /* 1028 * If the segment can fit and is relatively small, then 1029 * we prefault the entire segment in. This is based 1030 * on the model that says the best working set of a 1031 * small program is all of its pages. 1032 * We only do this if freemem will not drop below 1033 * lotsfree since we don't want to induce paging. 1034 */ 1035 npages = (spgcnt_t)btopr(len); 1036 availm = freemem - lotsfree; 1037 preread = (npages < availm && len < PGTHRESH) ? 1 : 0; 1038 1039 /* 1040 * If we aren't prefaulting the segment, 1041 * increment "deficit", if necessary to ensure 1042 * that pages will become available when this 1043 * process starts executing. 1044 */ 1045 if (preread == 0 && npages > availm && 1046 deficit < lotsfree) { 1047 deficit += MIN((pgcnt_t)(npages - availm), 1048 lotsfree - deficit); 1049 } 1050 1051 if (preread) { 1052 (void) as_faulta(as, addr, len); 1053 MOBJ_STAT_ADD(map_ptload_preread); 1054 } 1055 } else { 1056 /* 1057 * addr and offset were not aligned such that we could 1058 * use VOP_MAP, thus we need to as_map the memory we 1059 * need and then read the data in from disk. 1060 * This code path is a corner case which should never 1061 * be taken, but hand crafted binaries could trigger 1062 * this logic and it needs to work correctly. 1063 */ 1064 MOBJ_STAT_ADD(map_ptload_unaligned_text); 1065 as_rangelock(as); 1066 (void) as_unmap(as, addr, len); 1067 1068 /* 1069 * We use zfod_argsp because we need to be able to 1070 * write to the mapping and then we'll change the 1071 * protections later if they are incorrect. 1072 */ 1073 error = as_map(as, addr, len, segvn_create, zfod_argsp); 1074 as_rangeunlock(as); 1075 if (error) { 1076 MOBJ_STAT_ADD(map_ptload_unaligned_map_fail); 1077 return (error); 1078 } 1079 1080 /* Now read in the data from disk */ 1081 error = vn_rdwr(UIO_READ, vp, oldaddr, oldlen, offset, 1082 UIO_USERSPACE, 0, (rlim64_t)0, fcred, NULL); 1083 if (error) { 1084 MOBJ_STAT_ADD(map_ptload_unaligned_read_fail); 1085 return (error); 1086 } 1087 1088 /* 1089 * Now set protections. 1090 */ 1091 if (prot != PROT_ZFOD) { 1092 (void) as_setprot(as, addr, len, prot); 1093 } 1094 } 1095 } 1096 1097 if (zfodlen) { 1098 end = (size_t)addr + len; 1099 zfodbase = (caddr_t)P2ROUNDUP(end, PAGESIZE); 1100 zfoddiff = (uintptr_t)zfodbase - end; 1101 if (zfoddiff) { 1102 MOBJ_STAT_ADD(zfoddiff); 1103 if ((prot & PROT_WRITE) == 0) { 1104 (void) as_setprot(as, (caddr_t)end, 1105 zfoddiff, prot | PROT_WRITE); 1106 MOBJ_STAT_ADD(zfoddiff_nowrite); 1107 } 1108 if (on_fault(&ljb)) { 1109 no_fault(); 1110 if ((prot & PROT_WRITE) == 0) { 1111 (void) as_setprot(as, (caddr_t)end, 1112 zfoddiff, prot); 1113 } 1114 return (EFAULT); 1115 } 1116 uzero((void *)end, zfoddiff); 1117 no_fault(); 1118 1119 /* 1120 * Remove write protection to return to original state 1121 */ 1122 if ((prot & PROT_WRITE) == 0) { 1123 (void) as_setprot(as, (caddr_t)end, 1124 zfoddiff, prot); 1125 } 1126 } 1127 if (zfodlen > zfoddiff) { 1128 struct segvn_crargs crargs = 1129 SEGVN_ZFOD_ARGS(prot, PROT_ALL); 1130 1131 MOBJ_STAT_ADD(zfodextra); 1132 zfodlen -= zfoddiff; 1133 crargs.szc = AS_MAP_NO_LPOOB; 1134 1135 1136 as_rangelock(as); 1137 (void) as_unmap(as, (caddr_t)zfodbase, zfodlen); 1138 error = as_map(as, (caddr_t)zfodbase, 1139 zfodlen, segvn_create, &crargs); 1140 as_rangeunlock(as); 1141 if (error) { 1142 return (error); 1143 } 1144 } 1145 } 1146 return (0); 1147 } 1148 1149 /* 1150 * Map the ELF file represented by vp into the users address space. The 1151 * first mapping will start at start_addr and there will be num_elements 1152 * mappings. The mappings are described by the data in mrp which may be 1153 * modified upon returning from this function. 1154 * Returns 0 for success or errno for failure. 1155 */ 1156 static int 1157 mmapobj_map_elf(struct vnode *vp, caddr_t start_addr, mmapobj_result_t *mrp, 1158 int num_elements, cred_t *fcred, ushort_t e_type) 1159 { 1160 int i; 1161 int ret; 1162 caddr_t lo; 1163 caddr_t hi; 1164 struct as *as = curproc->p_as; 1165 1166 for (i = 0; i < num_elements; i++) { 1167 caddr_t addr; 1168 size_t p_memsz; 1169 size_t p_filesz; 1170 size_t zfodlen; 1171 offset_t p_offset; 1172 size_t dif; 1173 int prot; 1174 1175 /* Always need to adjust mr_addr */ 1176 addr = start_addr + (size_t)(mrp[i].mr_addr); 1177 mrp[i].mr_addr = 1178 (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1179 1180 /* Padding has already been mapped */ 1181 if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) { 1182 continue; 1183 } 1184 p_memsz = mrp[i].mr_msize; 1185 p_filesz = mrp[i].mr_fsize; 1186 zfodlen = p_memsz - p_filesz; 1187 p_offset = mrp[i].mr_offset; 1188 dif = (uintptr_t)(addr) & PAGEOFFSET; 1189 prot = mrp[i].mr_prot | PROT_USER; 1190 ret = mmapobj_map_ptload(vp, addr, p_filesz, zfodlen, 1191 p_offset, prot, fcred); 1192 if (ret != 0) { 1193 MOBJ_STAT_ADD(ptload_failed); 1194 mmapobj_unmap(mrp, i, num_elements, e_type); 1195 return (ret); 1196 } 1197 1198 /* Need to cleanup mrp to reflect the actual values used */ 1199 mrp[i].mr_msize += dif; 1200 mrp[i].mr_offset = (size_t)addr & PAGEOFFSET; 1201 } 1202 1203 /* Also need to unmap any holes created above */ 1204 if (num_elements == 1) { 1205 MOBJ_STAT_ADD(map_elf_no_holes); 1206 return (0); 1207 } 1208 if (e_type == ET_EXEC) { 1209 return (0); 1210 } 1211 1212 as_rangelock(as); 1213 lo = start_addr; 1214 hi = mrp[0].mr_addr; 1215 1216 /* Remove holes made by the rest of the segments */ 1217 for (i = 0; i < num_elements - 1; i++) { 1218 lo = (caddr_t)P2ROUNDUP((size_t)(mrp[i].mr_addr) + 1219 mrp[i].mr_msize, PAGESIZE); 1220 hi = mrp[i + 1].mr_addr; 1221 if (lo < hi) { 1222 /* 1223 * If as_unmap fails we just use up a bit of extra 1224 * space 1225 */ 1226 (void) as_unmap(as, (caddr_t)lo, 1227 (size_t)hi - (size_t)lo); 1228 MOBJ_STAT_ADD(unmap_hole); 1229 } 1230 } 1231 as_rangeunlock(as); 1232 1233 return (0); 1234 } 1235 1236 /* Ugly hack to get STRUCT_* macros to work below */ 1237 struct myphdr { 1238 Phdr x; /* native version */ 1239 }; 1240 1241 struct myphdr32 { 1242 Elf32_Phdr x; 1243 }; 1244 1245 /* 1246 * Calculate and return the number of loadable segments in the ELF Phdr 1247 * represented by phdrbase as well as the len of the total mapping and 1248 * the max alignment that is needed for a given segment. On success, 1249 * 0 is returned, and *len, *loadable and *align have been filled out. 1250 * On failure, errno will be returned, which in this case is ENOTSUP 1251 * if we were passed an ELF file with overlapping segments. 1252 */ 1253 static int 1254 calc_loadable(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, size_t *len, 1255 int *loadable, size_t *align) 1256 { 1257 int i; 1258 int hsize; 1259 model_t model; 1260 ushort_t e_type = ehdrp->e_type; /* same offset 32 and 64 bit */ 1261 uint_t p_type; 1262 offset_t p_offset; 1263 size_t p_memsz; 1264 size_t p_align; 1265 caddr_t vaddr; 1266 int num_segs = 0; 1267 caddr_t start_addr = NULL; 1268 caddr_t p_end = NULL; 1269 size_t max_align = 0; 1270 size_t min_align = PAGESIZE; /* needed for vmem_xalloc */ 1271 STRUCT_HANDLE(myphdr, mph); 1272 #if defined(__sparc) 1273 extern int vac_size; 1274 1275 /* 1276 * Want to prevent aliasing by making the start address at least be 1277 * aligned to vac_size. 1278 */ 1279 min_align = MAX(PAGESIZE, vac_size); 1280 #endif 1281 1282 model = get_udatamodel(); 1283 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase); 1284 1285 /* hsize alignment should have been checked before calling this func */ 1286 if (model == DATAMODEL_LP64) { 1287 hsize = ehdrp->e_phentsize; 1288 if (hsize & 7) { 1289 return (ENOTSUP); 1290 } 1291 } else { 1292 ASSERT(model == DATAMODEL_ILP32); 1293 hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize; 1294 if (hsize & 3) { 1295 return (ENOTSUP); 1296 } 1297 } 1298 1299 /* 1300 * Determine the span of all loadable segments and calculate the 1301 * number of loadable segments. 1302 */ 1303 for (i = 0; i < nphdrs; i++) { 1304 p_type = STRUCT_FGET(mph, x.p_type); 1305 if (p_type == PT_LOAD || p_type == PT_SUNWBSS) { 1306 vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr); 1307 p_memsz = STRUCT_FGET(mph, x.p_memsz); 1308 1309 /* 1310 * Skip this header if it requests no memory to be 1311 * mapped. 1312 */ 1313 if (p_memsz == 0) { 1314 STRUCT_SET_HANDLE(mph, model, 1315 (struct myphdr *)((size_t)STRUCT_BUF(mph) + 1316 hsize)); 1317 MOBJ_STAT_ADD(nomem_header); 1318 continue; 1319 } 1320 if (num_segs++ == 0) { 1321 /* 1322 * The p_vaddr of the first PT_LOAD segment 1323 * must either be NULL or within the first 1324 * page in order to be interpreted. 1325 * Otherwise, its an invalid file. 1326 */ 1327 if (e_type == ET_DYN && 1328 ((caddr_t)((uintptr_t)vaddr & 1329 (uintptr_t)PAGEMASK) != NULL)) { 1330 MOBJ_STAT_ADD(inval_header); 1331 return (ENOTSUP); 1332 } 1333 start_addr = vaddr; 1334 /* 1335 * For the first segment, we need to map from 1336 * the beginning of the file, so we will 1337 * adjust the size of the mapping to include 1338 * this memory. 1339 */ 1340 p_offset = STRUCT_FGET(mph, x.p_offset); 1341 } else { 1342 p_offset = 0; 1343 } 1344 /* 1345 * Check to make sure that this mapping wouldn't 1346 * overlap a previous mapping. 1347 */ 1348 if (vaddr < p_end) { 1349 MOBJ_STAT_ADD(overlap_header); 1350 return (ENOTSUP); 1351 } 1352 1353 p_end = vaddr + p_memsz + p_offset; 1354 p_end = (caddr_t)P2ROUNDUP((size_t)p_end, PAGESIZE); 1355 1356 p_align = STRUCT_FGET(mph, x.p_align); 1357 if (p_align > 1 && p_align > max_align) { 1358 max_align = p_align; 1359 if (max_align < min_align) { 1360 max_align = min_align; 1361 MOBJ_STAT_ADD(min_align); 1362 } 1363 } 1364 } 1365 STRUCT_SET_HANDLE(mph, model, 1366 (struct myphdr *)((size_t)STRUCT_BUF(mph) + hsize)); 1367 } 1368 1369 /* 1370 * The alignment should be a power of 2, if it isn't we forgive it 1371 * and round up. On overflow, we'll set the alignment to max_align 1372 * rounded down to the nearest power of 2. 1373 */ 1374 if (max_align > 0 && !ISP2(max_align)) { 1375 MOBJ_STAT_ADD(np2_align); 1376 *align = 2 * (1L << (highbit(max_align) - 1)); 1377 if (*align < max_align || 1378 (*align > UINT_MAX && model == DATAMODEL_ILP32)) { 1379 MOBJ_STAT_ADD(np2_align_overflow); 1380 *align = 1L << (highbit(max_align) - 1); 1381 } 1382 } else { 1383 *align = max_align; 1384 } 1385 1386 ASSERT(*align >= PAGESIZE || *align == 0); 1387 1388 *loadable = num_segs; 1389 *len = p_end - start_addr; 1390 return (0); 1391 } 1392 1393 /* 1394 * Check the address space to see if the virtual addresses to be used are 1395 * available. If they are not, return errno for failure. On success, 0 1396 * will be returned, and the virtual addresses for each mmapobj_result_t 1397 * will be reserved. Note that a reservation could have earlier been made 1398 * for a given segment via a /dev/null mapping. If that is the case, then 1399 * we can use that VA space for our mappings. 1400 * Note: this function will only be used for ET_EXEC binaries. 1401 */ 1402 int 1403 check_exec_addrs(int loadable, mmapobj_result_t *mrp, caddr_t start_addr) 1404 { 1405 int i; 1406 struct as *as = curproc->p_as; 1407 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 1408 int ret; 1409 caddr_t myaddr; 1410 size_t mylen; 1411 struct seg *seg; 1412 1413 /* No need to reserve swap space now since it will be reserved later */ 1414 crargs.flags |= MAP_NORESERVE; 1415 as_rangelock(as); 1416 for (i = 0; i < loadable; i++) { 1417 1418 myaddr = start_addr + (size_t)mrp[i].mr_addr; 1419 mylen = mrp[i].mr_msize; 1420 1421 /* See if there is a hole in the as for this range */ 1422 if (as_gap(as, mylen, &myaddr, &mylen, 0, NULL) == 0) { 1423 ASSERT(myaddr == start_addr + (size_t)mrp[i].mr_addr); 1424 ASSERT(mylen == mrp[i].mr_msize); 1425 1426 #ifdef DEBUG 1427 if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) { 1428 MOBJ_STAT_ADD(exec_padding); 1429 } 1430 #endif 1431 ret = as_map(as, myaddr, mylen, segvn_create, &crargs); 1432 if (ret) { 1433 as_rangeunlock(as); 1434 mmapobj_unmap_exec(mrp, i, start_addr); 1435 return (ret); 1436 } 1437 } else { 1438 /* 1439 * There is a mapping that exists in the range 1440 * so check to see if it was a "reservation" 1441 * from /dev/null. The mapping is from 1442 * /dev/null if the mapping comes from 1443 * segdev and the type is neither MAP_SHARED 1444 * nor MAP_PRIVATE. 1445 */ 1446 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1447 seg = as_findseg(as, myaddr, 0); 1448 MOBJ_STAT_ADD(exec_addr_mapped); 1449 if (seg && seg->s_ops == &segdev_ops && 1450 ((SEGOP_GETTYPE(seg, myaddr) & 1451 (MAP_SHARED | MAP_PRIVATE)) == 0) && 1452 myaddr >= seg->s_base && 1453 myaddr + mylen <= 1454 seg->s_base + seg->s_size) { 1455 MOBJ_STAT_ADD(exec_addr_devnull); 1456 AS_LOCK_EXIT(as, &as->a_lock); 1457 (void) as_unmap(as, myaddr, mylen); 1458 ret = as_map(as, myaddr, mylen, segvn_create, 1459 &crargs); 1460 mrp[i].mr_flags |= MR_RESV; 1461 if (ret) { 1462 as_rangeunlock(as); 1463 /* Need to remap what we unmapped */ 1464 mmapobj_unmap_exec(mrp, i + 1, 1465 start_addr); 1466 return (ret); 1467 } 1468 } else { 1469 AS_LOCK_EXIT(as, &as->a_lock); 1470 as_rangeunlock(as); 1471 mmapobj_unmap_exec(mrp, i, start_addr); 1472 MOBJ_STAT_ADD(exec_addr_in_use); 1473 return (EADDRINUSE); 1474 } 1475 } 1476 } 1477 as_rangeunlock(as); 1478 return (0); 1479 } 1480 1481 /* 1482 * Walk through the ELF program headers and extract all useful information 1483 * for PT_LOAD and PT_SUNWBSS segments into mrp. 1484 * Return 0 on success or error on failure. 1485 */ 1486 static int 1487 process_phdr(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, mmapobj_result_t *mrp, 1488 vnode_t *vp, uint_t *num_mapped, size_t padding, cred_t *fcred) 1489 { 1490 int i; 1491 caddr_t start_addr = NULL; 1492 caddr_t vaddr; 1493 size_t len = 0; 1494 size_t lib_len = 0; 1495 int ret; 1496 int prot; 1497 struct lib_va *lvp = NULL; 1498 vattr_t vattr; 1499 struct as *as = curproc->p_as; 1500 int error; 1501 int loadable = 0; 1502 int current = 0; 1503 int use_lib_va = 1; 1504 size_t align = 0; 1505 size_t add_pad = 0; 1506 int hdr_seen = 0; 1507 ushort_t e_type = ehdrp->e_type; /* same offset 32 and 64 bit */ 1508 uint_t p_type; 1509 offset_t p_offset; 1510 size_t p_memsz; 1511 size_t p_filesz; 1512 uint_t p_flags; 1513 int hsize; 1514 model_t model; 1515 STRUCT_HANDLE(myphdr, mph); 1516 1517 model = get_udatamodel(); 1518 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase); 1519 1520 /* 1521 * Need to make sure that hsize is aligned properly. 1522 * For 32bit processes, 4 byte alignment is required. 1523 * For 64bit processes, 8 byte alignment is required. 1524 * If the alignment isn't correct, we need to return failure 1525 * since it could cause an alignment error panic while walking 1526 * the phdr array. 1527 */ 1528 if (model == DATAMODEL_LP64) { 1529 hsize = ehdrp->e_phentsize; 1530 if (hsize & 7) { 1531 MOBJ_STAT_ADD(phent_align64); 1532 return (ENOTSUP); 1533 } 1534 } else { 1535 ASSERT(model == DATAMODEL_ILP32); 1536 hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize; 1537 if (hsize & 3) { 1538 MOBJ_STAT_ADD(phent_align32); 1539 return (ENOTSUP); 1540 } 1541 } 1542 1543 if (padding != 0) { 1544 use_lib_va = 0; 1545 } 1546 if (e_type == ET_DYN) { 1547 vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME; 1548 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL); 1549 if (error) { 1550 return (error); 1551 } 1552 /* Check to see if we already have a description for this lib */ 1553 lvp = lib_va_find(&vattr); 1554 1555 if (lvp != NULL) { 1556 MOBJ_STAT_ADD(lvp_found); 1557 if (use_lib_va) { 1558 start_addr = mmapobj_lookup_start_addr(lvp); 1559 if (start_addr == NULL) { 1560 lib_va_release(lvp); 1561 return (ENOMEM); 1562 } 1563 } 1564 1565 /* 1566 * loadable may be zero if the original allocator 1567 * of lvp hasn't finished setting it up but the rest 1568 * of the fields will be accurate. 1569 */ 1570 loadable = lvp->lv_num_segs; 1571 len = lvp->lv_len; 1572 align = lvp->lv_align; 1573 } 1574 } 1575 1576 /* 1577 * Determine the span of all loadable segments and calculate the 1578 * number of loadable segments, the total len spanned by the mappings 1579 * and the max alignment, if we didn't get them above. 1580 */ 1581 if (loadable == 0) { 1582 MOBJ_STAT_ADD(no_loadable_yet); 1583 ret = calc_loadable(ehdrp, phdrbase, nphdrs, &len, 1584 &loadable, &align); 1585 if (ret != 0) { 1586 /* 1587 * Since it'd be an invalid file, we shouldn't have 1588 * cached it previously. 1589 */ 1590 ASSERT(lvp == NULL); 1591 return (ret); 1592 } 1593 #ifdef DEBUG 1594 if (lvp) { 1595 ASSERT(len == lvp->lv_len); 1596 ASSERT(align == lvp->lv_align); 1597 } 1598 #endif 1599 } 1600 1601 /* Make sure there's something to map. */ 1602 if (len == 0 || loadable == 0) { 1603 /* 1604 * Since it'd be an invalid file, we shouldn't have 1605 * cached it previously. 1606 */ 1607 ASSERT(lvp == NULL); 1608 MOBJ_STAT_ADD(nothing_to_map); 1609 return (ENOTSUP); 1610 } 1611 1612 lib_len = len; 1613 if (padding != 0) { 1614 loadable += 2; 1615 } 1616 if (loadable > *num_mapped) { 1617 *num_mapped = loadable; 1618 /* cleanup previous reservation */ 1619 if (start_addr) { 1620 (void) as_unmap(as, start_addr, lib_len); 1621 } 1622 MOBJ_STAT_ADD(e2big); 1623 if (lvp) { 1624 lib_va_release(lvp); 1625 } 1626 return (E2BIG); 1627 } 1628 1629 /* 1630 * We now know the size of the object to map and now we need to 1631 * get the start address to map it at. It's possible we already 1632 * have it if we found all the info we need in the lib_va cache. 1633 */ 1634 if (e_type == ET_DYN && start_addr == NULL) { 1635 /* 1636 * Need to make sure padding does not throw off 1637 * required alignment. We can only specify an 1638 * alignment for the starting address to be mapped, 1639 * so we round padding up to the alignment and map 1640 * from there and then throw out the extra later. 1641 */ 1642 if (padding != 0) { 1643 if (align > 1) { 1644 add_pad = P2ROUNDUP(padding, align); 1645 len += add_pad; 1646 MOBJ_STAT_ADD(dyn_pad_align); 1647 } else { 1648 MOBJ_STAT_ADD(dyn_pad_noalign); 1649 len += padding; /* at beginning */ 1650 } 1651 len += padding; /* at end of mapping */ 1652 } 1653 /* 1654 * At this point, if lvp is non-NULL, then above we 1655 * already found it in the cache but did not get 1656 * the start address since we were not going to use lib_va. 1657 * Since we know that lib_va will not be used, it's safe 1658 * to call mmapobj_alloc_start_addr and know that lvp 1659 * will not be modified. 1660 */ 1661 ASSERT(lvp ? use_lib_va == 0 : 1); 1662 start_addr = mmapobj_alloc_start_addr(&lvp, len, 1663 use_lib_va, align, &vattr); 1664 if (start_addr == NULL) { 1665 if (lvp) { 1666 lib_va_release(lvp); 1667 } 1668 MOBJ_STAT_ADD(alloc_start_fail); 1669 return (ENOMEM); 1670 } 1671 /* 1672 * If we can't cache it, no need to hang on to it. 1673 * Setting lv_num_segs to non-zero will make that 1674 * field active and since there are too many segments 1675 * to cache, all future users will not try to use lv_mps. 1676 */ 1677 if (lvp != NULL && loadable > LIBVA_CACHED_SEGS && use_lib_va) { 1678 lvp->lv_num_segs = loadable; 1679 lib_va_release(lvp); 1680 lvp = NULL; 1681 MOBJ_STAT_ADD(lvp_nocache); 1682 } 1683 /* 1684 * Free the beginning of the mapping if the padding 1685 * was not aligned correctly. 1686 */ 1687 if (padding != 0 && add_pad != padding) { 1688 (void) as_unmap(as, start_addr, 1689 add_pad - padding); 1690 start_addr += (add_pad - padding); 1691 MOBJ_STAT_ADD(extra_padding); 1692 } 1693 } 1694 1695 /* 1696 * At this point, we have reserved the virtual address space 1697 * for our mappings. Now we need to start filling out the mrp 1698 * array to describe all of the individual mappings we are going 1699 * to return. 1700 * For ET_EXEC there has been no memory reservation since we are 1701 * using fixed addresses. While filling in the mrp array below, 1702 * we will have the first segment biased to start at addr 0 1703 * and the rest will be biased by this same amount. Thus if there 1704 * is padding, the first padding will start at addr 0, and the next 1705 * segment will start at the value of padding. 1706 */ 1707 1708 /* We'll fill out padding later, so start filling in mrp at index 1 */ 1709 if (padding != 0) { 1710 current = 1; 1711 } 1712 1713 /* If we have no more need for lvp let it go now */ 1714 if (lvp != NULL && use_lib_va == 0) { 1715 lib_va_release(lvp); 1716 MOBJ_STAT_ADD(lvp_not_needed); 1717 lvp = NULL; 1718 } 1719 1720 /* Now fill out the mrp structs from the program headers */ 1721 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase); 1722 for (i = 0; i < nphdrs; i++) { 1723 p_type = STRUCT_FGET(mph, x.p_type); 1724 if (p_type == PT_LOAD || p_type == PT_SUNWBSS) { 1725 vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr); 1726 p_memsz = STRUCT_FGET(mph, x.p_memsz); 1727 p_filesz = STRUCT_FGET(mph, x.p_filesz); 1728 p_offset = STRUCT_FGET(mph, x.p_offset); 1729 p_flags = STRUCT_FGET(mph, x.p_flags); 1730 1731 /* 1732 * Skip this header if it requests no memory to be 1733 * mapped. 1734 */ 1735 if (p_memsz == 0) { 1736 STRUCT_SET_HANDLE(mph, model, 1737 (struct myphdr *)((size_t)STRUCT_BUF(mph) + 1738 hsize)); 1739 MOBJ_STAT_ADD(no_mem_map_sz); 1740 continue; 1741 } 1742 1743 prot = 0; 1744 if (p_flags & PF_R) 1745 prot |= PROT_READ; 1746 if (p_flags & PF_W) 1747 prot |= PROT_WRITE; 1748 if (p_flags & PF_X) 1749 prot |= PROT_EXEC; 1750 1751 ASSERT(current < loadable); 1752 mrp[current].mr_msize = p_memsz; 1753 mrp[current].mr_fsize = p_filesz; 1754 mrp[current].mr_offset = p_offset; 1755 mrp[current].mr_prot = prot; 1756 1757 if (hdr_seen == 0 && p_filesz != 0) { 1758 mrp[current].mr_flags = MR_HDR_ELF; 1759 /* 1760 * We modify mr_offset because we 1761 * need to map the ELF header as well, and if 1762 * we didn't then the header could be left out 1763 * of the mapping that we will create later. 1764 * Since we're removing the offset, we need to 1765 * account for that in the other fields as well 1766 * since we will be mapping the memory from 0 1767 * to p_offset. 1768 */ 1769 if (e_type == ET_DYN) { 1770 mrp[current].mr_offset = 0; 1771 mrp[current].mr_msize += p_offset; 1772 mrp[current].mr_fsize += p_offset; 1773 } else { 1774 ASSERT(e_type == ET_EXEC); 1775 /* 1776 * Save off the start addr which will be 1777 * our bias for the rest of the 1778 * ET_EXEC mappings. 1779 */ 1780 start_addr = vaddr - padding; 1781 } 1782 mrp[current].mr_addr = (caddr_t)padding; 1783 hdr_seen = 1; 1784 } else { 1785 if (e_type == ET_EXEC) { 1786 /* bias mr_addr */ 1787 mrp[current].mr_addr = 1788 vaddr - (size_t)start_addr; 1789 } else { 1790 mrp[current].mr_addr = vaddr + padding; 1791 } 1792 mrp[current].mr_flags = 0; 1793 } 1794 current++; 1795 } 1796 1797 /* Move to next phdr */ 1798 STRUCT_SET_HANDLE(mph, model, 1799 (struct myphdr *)((size_t)STRUCT_BUF(mph) + 1800 hsize)); 1801 } 1802 1803 /* Now fill out the padding segments */ 1804 if (padding != 0) { 1805 mrp[0].mr_addr = NULL; 1806 mrp[0].mr_msize = padding; 1807 mrp[0].mr_fsize = 0; 1808 mrp[0].mr_offset = 0; 1809 mrp[0].mr_prot = 0; 1810 mrp[0].mr_flags = MR_PADDING; 1811 1812 /* Setup padding for the last segment */ 1813 ASSERT(current == loadable - 1); 1814 mrp[current].mr_addr = (caddr_t)lib_len + padding; 1815 mrp[current].mr_msize = padding; 1816 mrp[current].mr_fsize = 0; 1817 mrp[current].mr_offset = 0; 1818 mrp[current].mr_prot = 0; 1819 mrp[current].mr_flags = MR_PADDING; 1820 } 1821 1822 /* 1823 * Need to make sure address ranges desired are not in use or 1824 * are previously allocated reservations from /dev/null. For 1825 * ET_DYN, we already made sure our address range was free. 1826 */ 1827 if (e_type == ET_EXEC) { 1828 ret = check_exec_addrs(loadable, mrp, start_addr); 1829 if (ret != 0) { 1830 ASSERT(lvp == NULL); 1831 MOBJ_STAT_ADD(check_exec_failed); 1832 return (ret); 1833 } 1834 } 1835 1836 /* Finish up our business with lvp. */ 1837 if (lvp) { 1838 ASSERT(e_type == ET_DYN); 1839 if (lvp->lv_num_segs == 0 && loadable <= LIBVA_CACHED_SEGS) { 1840 bcopy(mrp, lvp->lv_mps, 1841 loadable * sizeof (mmapobj_result_t)); 1842 membar_producer(); 1843 } 1844 /* 1845 * Setting lv_num_segs to a non-zero value indicates that 1846 * lv_mps is now valid and can be used by other threads. 1847 * So, the above stores need to finish before lv_num_segs 1848 * is updated. lv_mps is only valid if lv_num_segs is 1849 * greater than LIBVA_CACHED_SEGS. 1850 */ 1851 lvp->lv_num_segs = loadable; 1852 lib_va_release(lvp); 1853 MOBJ_STAT_ADD(lvp_used); 1854 } 1855 1856 /* Now that we have mrp completely filled out go map it */ 1857 ret = mmapobj_map_elf(vp, start_addr, mrp, loadable, fcred, e_type); 1858 if (ret == 0) { 1859 *num_mapped = loadable; 1860 } 1861 1862 return (ret); 1863 } 1864 1865 /* 1866 * Take the ELF file passed in, and do the work of mapping it. 1867 * num_mapped in - # elements in user buffer 1868 * num_mapped out - # sections mapped and length of mrp array if 1869 * no errors. 1870 */ 1871 static int 1872 doelfwork(Ehdr *ehdrp, vnode_t *vp, mmapobj_result_t *mrp, 1873 uint_t *num_mapped, size_t padding, cred_t *fcred) 1874 { 1875 int error; 1876 offset_t phoff; 1877 int nphdrs; 1878 unsigned char ei_class; 1879 unsigned short phentsize; 1880 ssize_t phsizep; 1881 caddr_t phbasep; 1882 int to_map; 1883 model_t model; 1884 1885 ei_class = ehdrp->e_ident[EI_CLASS]; 1886 model = get_udatamodel(); 1887 if ((model == DATAMODEL_ILP32 && ei_class == ELFCLASS64) || 1888 (model == DATAMODEL_LP64 && ei_class == ELFCLASS32)) { 1889 MOBJ_STAT_ADD(wrong_model); 1890 return (ENOTSUP); 1891 } 1892 1893 /* Can't execute code from "noexec" mounted filesystem. */ 1894 if (ehdrp->e_type == ET_EXEC && 1895 (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) { 1896 MOBJ_STAT_ADD(noexec_fs); 1897 return (EACCES); 1898 } 1899 1900 /* 1901 * Relocatable and core files are mapped as a single flat file 1902 * since no interpretation is done on them by mmapobj. 1903 */ 1904 if (ehdrp->e_type == ET_REL || ehdrp->e_type == ET_CORE) { 1905 to_map = padding ? 3 : 1; 1906 if (*num_mapped < to_map) { 1907 *num_mapped = to_map; 1908 MOBJ_STAT_ADD(e2big_et_rel); 1909 return (E2BIG); 1910 } 1911 error = mmapobj_map_flat(vp, mrp, padding, fcred); 1912 if (error == 0) { 1913 *num_mapped = to_map; 1914 mrp[padding ? 1 : 0].mr_flags = MR_HDR_ELF; 1915 MOBJ_STAT_ADD(et_rel_mapped); 1916 } 1917 return (error); 1918 } 1919 1920 /* Check for an unknown ELF type */ 1921 if (ehdrp->e_type != ET_EXEC && ehdrp->e_type != ET_DYN) { 1922 MOBJ_STAT_ADD(unknown_elf_type); 1923 return (ENOTSUP); 1924 } 1925 1926 if (ei_class == ELFCLASS32) { 1927 Elf32_Ehdr *e32hdr = (Elf32_Ehdr *)ehdrp; 1928 ASSERT(model == DATAMODEL_ILP32); 1929 nphdrs = e32hdr->e_phnum; 1930 phentsize = e32hdr->e_phentsize; 1931 if (phentsize < sizeof (Elf32_Phdr)) { 1932 MOBJ_STAT_ADD(phent32_too_small); 1933 return (ENOTSUP); 1934 } 1935 phoff = e32hdr->e_phoff; 1936 } else if (ei_class == ELFCLASS64) { 1937 Elf64_Ehdr *e64hdr = (Elf64_Ehdr *)ehdrp; 1938 ASSERT(model == DATAMODEL_LP64); 1939 nphdrs = e64hdr->e_phnum; 1940 phentsize = e64hdr->e_phentsize; 1941 if (phentsize < sizeof (Elf64_Phdr)) { 1942 MOBJ_STAT_ADD(phent64_too_small); 1943 return (ENOTSUP); 1944 } 1945 phoff = e64hdr->e_phoff; 1946 } else { 1947 /* fallthrough case for an invalid ELF class */ 1948 MOBJ_STAT_ADD(inval_elf_class); 1949 return (ENOTSUP); 1950 } 1951 1952 /* 1953 * nphdrs should only have this value for core files which are handled 1954 * above as a single mapping. If other file types ever use this 1955 * sentinel, then we'll add the support needed to handle this here. 1956 */ 1957 if (nphdrs == PN_XNUM) { 1958 MOBJ_STAT_ADD(too_many_phdrs); 1959 return (ENOTSUP); 1960 } 1961 1962 phsizep = nphdrs * phentsize; 1963 1964 if (phsizep == 0) { 1965 MOBJ_STAT_ADD(no_phsize); 1966 return (ENOTSUP); 1967 } 1968 1969 /* Make sure we only wait for memory if it's a reasonable request */ 1970 if (phsizep > mmapobj_alloc_threshold) { 1971 MOBJ_STAT_ADD(phsize_large); 1972 if ((phbasep = kmem_alloc(phsizep, KM_NOSLEEP)) == NULL) { 1973 MOBJ_STAT_ADD(phsize_xtralarge); 1974 return (ENOMEM); 1975 } 1976 } else { 1977 phbasep = kmem_alloc(phsizep, KM_SLEEP); 1978 } 1979 1980 if ((error = vn_rdwr(UIO_READ, vp, phbasep, phsizep, 1981 (offset_t)phoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1982 fcred, NULL)) != 0) { 1983 kmem_free(phbasep, phsizep); 1984 return (error); 1985 } 1986 1987 /* Now process the phdr's */ 1988 error = process_phdr(ehdrp, phbasep, nphdrs, mrp, vp, num_mapped, 1989 padding, fcred); 1990 kmem_free(phbasep, phsizep); 1991 return (error); 1992 } 1993 1994 #if defined(__sparc) 1995 /* 1996 * Hack to support 64 bit kernels running AOUT 4.x programs. 1997 * This is the sizeof (struct nlist) for a 32 bit kernel. 1998 * Since AOUT programs are 32 bit only, they will never use the 64 bit 1999 * sizeof (struct nlist) and thus creating a #define is the simplest 2000 * way around this since this is a format which is not being updated. 2001 * This will be used in the place of sizeof (struct nlist) below. 2002 */ 2003 #define NLIST_SIZE (0xC) 2004 2005 static int 2006 doaoutwork(vnode_t *vp, mmapobj_result_t *mrp, 2007 uint_t *num_mapped, struct exec *hdr, cred_t *fcred) 2008 { 2009 int error; 2010 size_t size; 2011 size_t osize; 2012 size_t nsize; /* nlist size */ 2013 size_t msize; 2014 size_t zfoddiff; 2015 caddr_t addr; 2016 caddr_t start_addr; 2017 struct as *as = curproc->p_as; 2018 int prot = PROT_USER | PROT_READ | PROT_EXEC; 2019 uint_t mflag = MAP_PRIVATE | _MAP_LOW32; 2020 offset_t off = 0; 2021 int segnum = 0; 2022 uint_t to_map; 2023 int is_library = 0; 2024 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 2025 2026 /* Only 32bit apps supported by this file format */ 2027 if (get_udatamodel() != DATAMODEL_ILP32) { 2028 MOBJ_STAT_ADD(aout_64bit_try); 2029 return (ENOTSUP); 2030 } 2031 2032 /* Check to see if this is a library */ 2033 if (hdr->a_magic == ZMAGIC && hdr->a_entry < PAGESIZE) { 2034 is_library = 1; 2035 } 2036 2037 /* Can't execute code from "noexec" mounted filesystem. */ 2038 if (((vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) && (is_library == 0)) { 2039 MOBJ_STAT_ADD(aout_noexec); 2040 return (EACCES); 2041 } 2042 2043 /* 2044 * There are 2 ways to calculate the mapped size of executable: 2045 * 1) rounded text size + data size + bss size. 2046 * 2) starting offset for text + text size + data size + text relocation 2047 * size + data relocation size + room for nlist data structure. 2048 * 2049 * The larger of the two sizes will be used to map this binary. 2050 */ 2051 osize = P2ROUNDUP(hdr->a_text, PAGESIZE) + hdr->a_data + hdr->a_bss; 2052 2053 off = hdr->a_magic == ZMAGIC ? 0 : sizeof (struct exec); 2054 2055 nsize = off + hdr->a_text + hdr->a_data + hdr->a_trsize + 2056 hdr->a_drsize + NLIST_SIZE; 2057 2058 size = MAX(osize, nsize); 2059 if (size != nsize) { 2060 nsize = 0; 2061 } 2062 2063 /* 2064 * 1 seg for text and 1 seg for initialized data. 2065 * 1 seg for bss (if can't fit in leftover space of init data) 2066 * 1 seg for nlist if needed. 2067 */ 2068 to_map = 2 + (nsize ? 1 : 0) + 2069 (hdr->a_bss > PAGESIZE - P2PHASE(hdr->a_data, PAGESIZE) ? 1 : 0); 2070 if (*num_mapped < to_map) { 2071 *num_mapped = to_map; 2072 MOBJ_STAT_ADD(aout_e2big); 2073 return (E2BIG); 2074 } 2075 2076 /* Reserve address space for the whole mapping */ 2077 if (is_library) { 2078 /* We'll let VOP_MAP below pick our address for us */ 2079 addr = NULL; 2080 MOBJ_STAT_ADD(aout_lib); 2081 } else { 2082 /* 2083 * default start address for fixed binaries from AOUT 4.x 2084 * standard. 2085 */ 2086 MOBJ_STAT_ADD(aout_fixed); 2087 mflag |= MAP_FIXED; 2088 addr = (caddr_t)0x2000; 2089 as_rangelock(as); 2090 if (as_gap(as, size, &addr, &size, 0, NULL) != 0) { 2091 as_rangeunlock(as); 2092 MOBJ_STAT_ADD(aout_addr_in_use); 2093 return (EADDRINUSE); 2094 } 2095 crargs.flags |= MAP_NORESERVE; 2096 error = as_map(as, addr, size, segvn_create, &crargs); 2097 ASSERT(addr == (caddr_t)0x2000); 2098 as_rangeunlock(as); 2099 } 2100 2101 start_addr = addr; 2102 osize = size; 2103 2104 /* 2105 * Map as large as we need, backed by file, this will be text, and 2106 * possibly the nlist segment. We map over this mapping for bss and 2107 * initialized data segments. 2108 */ 2109 error = VOP_MAP(vp, off, as, &addr, size, prot, PROT_ALL, 2110 mflag, fcred, NULL); 2111 if (error) { 2112 if (!is_library) { 2113 (void) as_unmap(as, start_addr, osize); 2114 } 2115 return (error); 2116 } 2117 2118 /* pickup the value of start_addr and osize for libraries */ 2119 start_addr = addr; 2120 osize = size; 2121 2122 /* 2123 * We have our initial reservation/allocation so we need to use fixed 2124 * addresses from now on. 2125 */ 2126 mflag |= MAP_FIXED; 2127 2128 mrp[0].mr_addr = addr; 2129 mrp[0].mr_msize = hdr->a_text; 2130 mrp[0].mr_fsize = hdr->a_text; 2131 mrp[0].mr_offset = 0; 2132 mrp[0].mr_prot = PROT_READ | PROT_EXEC; 2133 mrp[0].mr_flags = MR_HDR_AOUT; 2134 2135 2136 /* 2137 * Map initialized data. We are mapping over a portion of the 2138 * previous mapping which will be unmapped in VOP_MAP below. 2139 */ 2140 off = P2ROUNDUP((offset_t)(hdr->a_text), PAGESIZE); 2141 msize = off; 2142 addr += off; 2143 size = hdr->a_data; 2144 error = VOP_MAP(vp, off, as, &addr, size, PROT_ALL, PROT_ALL, 2145 mflag, fcred, NULL); 2146 if (error) { 2147 (void) as_unmap(as, start_addr, osize); 2148 return (error); 2149 } 2150 msize += size; 2151 mrp[1].mr_addr = addr; 2152 mrp[1].mr_msize = size; 2153 mrp[1].mr_fsize = size; 2154 mrp[1].mr_offset = 0; 2155 mrp[1].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC; 2156 mrp[1].mr_flags = 0; 2157 2158 /* Need to zero out remainder of page */ 2159 addr += hdr->a_data; 2160 zfoddiff = P2PHASE((size_t)addr, PAGESIZE); 2161 if (zfoddiff) { 2162 label_t ljb; 2163 2164 MOBJ_STAT_ADD(aout_zfoddiff); 2165 zfoddiff = PAGESIZE - zfoddiff; 2166 if (on_fault(&ljb)) { 2167 no_fault(); 2168 MOBJ_STAT_ADD(aout_uzero_fault); 2169 (void) as_unmap(as, start_addr, osize); 2170 return (EFAULT); 2171 } 2172 uzero(addr, zfoddiff); 2173 no_fault(); 2174 } 2175 msize += zfoddiff; 2176 segnum = 2; 2177 2178 /* Map bss */ 2179 if (hdr->a_bss > zfoddiff) { 2180 struct segvn_crargs crargs = 2181 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 2182 MOBJ_STAT_ADD(aout_map_bss); 2183 addr += zfoddiff; 2184 size = hdr->a_bss - zfoddiff; 2185 as_rangelock(as); 2186 (void) as_unmap(as, addr, size); 2187 error = as_map(as, addr, size, segvn_create, &crargs); 2188 as_rangeunlock(as); 2189 msize += size; 2190 2191 if (error) { 2192 MOBJ_STAT_ADD(aout_bss_fail); 2193 (void) as_unmap(as, start_addr, osize); 2194 return (error); 2195 } 2196 mrp[2].mr_addr = addr; 2197 mrp[2].mr_msize = size; 2198 mrp[2].mr_fsize = 0; 2199 mrp[2].mr_offset = 0; 2200 mrp[2].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC; 2201 mrp[2].mr_flags = 0; 2202 2203 addr += size; 2204 segnum = 3; 2205 } 2206 2207 /* 2208 * If we have extra bits left over, we need to include that in how 2209 * much we mapped to make sure the nlist logic is correct 2210 */ 2211 msize = P2ROUNDUP(msize, PAGESIZE); 2212 2213 if (nsize && msize < nsize) { 2214 MOBJ_STAT_ADD(aout_nlist); 2215 mrp[segnum].mr_addr = addr; 2216 mrp[segnum].mr_msize = nsize - msize; 2217 mrp[segnum].mr_fsize = 0; 2218 mrp[segnum].mr_offset = 0; 2219 mrp[segnum].mr_prot = PROT_READ | PROT_EXEC; 2220 mrp[segnum].mr_flags = 0; 2221 } 2222 2223 *num_mapped = to_map; 2224 return (0); 2225 } 2226 #endif 2227 2228 /* 2229 * These are the two types of files that we can interpret and we want to read 2230 * in enough info to cover both types when looking at the initial header. 2231 */ 2232 #define MAX_HEADER_SIZE (MAX(sizeof (Ehdr), sizeof (struct exec))) 2233 2234 /* 2235 * Map vp passed in in an interpreted manner. ELF and AOUT files will be 2236 * interpreted and mapped appropriately for execution. 2237 * num_mapped in - # elements in mrp 2238 * num_mapped out - # sections mapped and length of mrp array if 2239 * no errors or E2BIG returned. 2240 * 2241 * Returns 0 on success, errno value on failure. 2242 */ 2243 static int 2244 mmapobj_map_interpret(vnode_t *vp, mmapobj_result_t *mrp, 2245 uint_t *num_mapped, size_t padding, cred_t *fcred) 2246 { 2247 int error = 0; 2248 vattr_t vattr; 2249 struct lib_va *lvp; 2250 caddr_t start_addr; 2251 model_t model; 2252 2253 /* 2254 * header has to be aligned to the native size of ulong_t in order 2255 * to avoid an unaligned access when dereferencing the header as 2256 * a ulong_t. Thus we allocate our array on the stack of type 2257 * ulong_t and then have header, which we dereference later as a char 2258 * array point at lheader. 2259 */ 2260 ulong_t lheader[(MAX_HEADER_SIZE / (sizeof (ulong_t))) + 1]; 2261 caddr_t header = (caddr_t)&lheader; 2262 2263 vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME | AT_SIZE; 2264 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL); 2265 if (error) { 2266 return (error); 2267 } 2268 2269 /* 2270 * Check lib_va to see if we already have a full description 2271 * for this library. This is the fast path and only used for 2272 * ET_DYN ELF files (dynamic libraries). 2273 */ 2274 if (padding == 0 && (lvp = lib_va_find(&vattr)) != NULL) { 2275 int num_segs; 2276 2277 model = get_udatamodel(); 2278 if ((model == DATAMODEL_ILP32 && 2279 lvp->lv_flags & LV_ELF64) || 2280 (model == DATAMODEL_LP64 && 2281 lvp->lv_flags & LV_ELF32)) { 2282 lib_va_release(lvp); 2283 MOBJ_STAT_ADD(fast_wrong_model); 2284 return (ENOTSUP); 2285 } 2286 num_segs = lvp->lv_num_segs; 2287 if (*num_mapped < num_segs) { 2288 *num_mapped = num_segs; 2289 lib_va_release(lvp); 2290 MOBJ_STAT_ADD(fast_e2big); 2291 return (E2BIG); 2292 } 2293 2294 /* 2295 * Check to see if we have all the mappable program headers 2296 * cached. 2297 */ 2298 if (num_segs <= LIBVA_CACHED_SEGS && num_segs != 0) { 2299 MOBJ_STAT_ADD(fast); 2300 start_addr = mmapobj_lookup_start_addr(lvp); 2301 if (start_addr == NULL) { 2302 lib_va_release(lvp); 2303 return (ENOMEM); 2304 } 2305 2306 bcopy(lvp->lv_mps, mrp, 2307 num_segs * sizeof (mmapobj_result_t)); 2308 2309 error = mmapobj_map_elf(vp, start_addr, mrp, 2310 num_segs, fcred, ET_DYN); 2311 2312 lib_va_release(lvp); 2313 if (error == 0) { 2314 *num_mapped = num_segs; 2315 MOBJ_STAT_ADD(fast_success); 2316 } 2317 return (error); 2318 } 2319 MOBJ_STAT_ADD(fast_not_now); 2320 2321 /* Release it for now since we'll look it up below */ 2322 lib_va_release(lvp); 2323 } 2324 2325 /* 2326 * Time to see if this is a file we can interpret. If it's smaller 2327 * than this, then we can't interpret it. 2328 */ 2329 if (vattr.va_size < MAX_HEADER_SIZE) { 2330 MOBJ_STAT_ADD(small_file); 2331 return (ENOTSUP); 2332 } 2333 2334 if ((error = vn_rdwr(UIO_READ, vp, header, MAX_HEADER_SIZE, 0, 2335 UIO_SYSSPACE, 0, (rlim64_t)0, fcred, NULL)) != 0) { 2336 MOBJ_STAT_ADD(read_error); 2337 return (error); 2338 } 2339 2340 /* Verify file type */ 2341 if (header[EI_MAG0] == ELFMAG0 && header[EI_MAG1] == ELFMAG1 && 2342 header[EI_MAG2] == ELFMAG2 && header[EI_MAG3] == ELFMAG3) { 2343 return (doelfwork((Ehdr *)lheader, vp, mrp, num_mapped, 2344 padding, fcred)); 2345 } 2346 2347 #if defined(__sparc) 2348 /* On sparc, check for 4.X AOUT format */ 2349 switch (((struct exec *)header)->a_magic) { 2350 case OMAGIC: 2351 case ZMAGIC: 2352 case NMAGIC: 2353 return (doaoutwork(vp, mrp, num_mapped, 2354 (struct exec *)lheader, fcred)); 2355 } 2356 #endif 2357 2358 /* Unsupported type */ 2359 MOBJ_STAT_ADD(unsupported); 2360 return (ENOTSUP); 2361 } 2362 2363 /* 2364 * Given a vnode, map it as either a flat file or interpret it and map 2365 * it according to the rules of the file type. 2366 * *num_mapped will contain the size of the mmapobj_result_t array passed in. 2367 * If padding is non-zero, the mappings will be padded by that amount 2368 * rounded up to the nearest pagesize. 2369 * If the mapping is successful, *num_mapped will contain the number of 2370 * distinct mappings created, and mrp will point to the array of 2371 * mmapobj_result_t's which describe these mappings. 2372 * 2373 * On error, -1 is returned and errno is set appropriately. 2374 * A special error case will set errno to E2BIG when there are more than 2375 * *num_mapped mappings to be created and *num_mapped will be set to the 2376 * number of mappings needed. 2377 */ 2378 int 2379 mmapobj(vnode_t *vp, uint_t flags, mmapobj_result_t *mrp, 2380 uint_t *num_mapped, size_t padding, cred_t *fcred) 2381 { 2382 int to_map; 2383 int error = 0; 2384 2385 ASSERT((padding & PAGEOFFSET) == 0); 2386 ASSERT((flags & ~MMOBJ_ALL_FLAGS) == 0); 2387 ASSERT(num_mapped != NULL); 2388 ASSERT((flags & MMOBJ_PADDING) ? padding != 0 : padding == 0); 2389 2390 if ((flags & MMOBJ_INTERPRET) == 0) { 2391 to_map = padding ? 3 : 1; 2392 if (*num_mapped < to_map) { 2393 *num_mapped = to_map; 2394 MOBJ_STAT_ADD(flat_e2big); 2395 return (E2BIG); 2396 } 2397 error = mmapobj_map_flat(vp, mrp, padding, fcred); 2398 2399 if (error) { 2400 return (error); 2401 } 2402 *num_mapped = to_map; 2403 return (0); 2404 } 2405 2406 error = mmapobj_map_interpret(vp, mrp, num_mapped, padding, fcred); 2407 return (error); 2408 } 2409