xref: /titanic_44/usr/src/uts/common/io/scsi/targets/sd.c (revision 4a6ec905b96eb96a398c346f59e034a90ce8ad37)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/kstat.h>
41 #include <sys/vtrace.h>
42 #include <sys/note.h>
43 #include <sys/thread.h>
44 #include <sys/proc.h>
45 #include <sys/efi_partition.h>
46 #include <sys/var.h>
47 #include <sys/aio_req.h>
48 
49 #ifdef __lock_lint
50 #define	_LP64
51 #define	__amd64
52 #endif
53 
54 #if (defined(__fibre))
55 /* Note: is there a leadville version of the following? */
56 #include <sys/fc4/fcal_linkapp.h>
57 #endif
58 #include <sys/taskq.h>
59 #include <sys/uuid.h>
60 #include <sys/byteorder.h>
61 #include <sys/sdt.h>
62 
63 #include "sd_xbuf.h"
64 
65 #include <sys/scsi/targets/sddef.h>
66 #include <sys/cmlb.h>
67 #include <sys/sysevent/eventdefs.h>
68 #include <sys/sysevent/dev.h>
69 
70 
71 /*
72  * Loadable module info.
73  */
74 #if (defined(__fibre))
75 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
76 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
77 #else
78 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
79 char _depends_on[]	= "misc/scsi misc/cmlb";
80 #endif
81 
82 /*
83  * Define the interconnect type, to allow the driver to distinguish
84  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
85  *
86  * This is really for backward compatibility. In the future, the driver
87  * should actually check the "interconnect-type" property as reported by
88  * the HBA; however at present this property is not defined by all HBAs,
89  * so we will use this #define (1) to permit the driver to run in
90  * backward-compatibility mode; and (2) to print a notification message
91  * if an FC HBA does not support the "interconnect-type" property.  The
92  * behavior of the driver will be to assume parallel SCSI behaviors unless
93  * the "interconnect-type" property is defined by the HBA **AND** has a
94  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
95  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
96  * Channel behaviors (as per the old ssd).  (Note that the
97  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
98  * will result in the driver assuming parallel SCSI behaviors.)
99  *
100  * (see common/sys/scsi/impl/services.h)
101  *
102  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
103  * since some FC HBAs may already support that, and there is some code in
104  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
105  * default would confuse that code, and besides things should work fine
106  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
107  * "interconnect_type" property.
108  *
109  */
110 #if (defined(__fibre))
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
112 #else
113 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
114 #endif
115 
116 /*
117  * The name of the driver, established from the module name in _init.
118  */
119 static	char *sd_label			= NULL;
120 
121 /*
122  * Driver name is unfortunately prefixed on some driver.conf properties.
123  */
124 #if (defined(__fibre))
125 #define	sd_max_xfer_size		ssd_max_xfer_size
126 #define	sd_config_list			ssd_config_list
127 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
128 static	char *sd_config_list		= "ssd-config-list";
129 #else
130 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
131 static	char *sd_config_list		= "sd-config-list";
132 #endif
133 
134 /*
135  * Driver global variables
136  */
137 
138 #if (defined(__fibre))
139 /*
140  * These #defines are to avoid namespace collisions that occur because this
141  * code is currently used to compile two separate driver modules: sd and ssd.
142  * All global variables need to be treated this way (even if declared static)
143  * in order to allow the debugger to resolve the names properly.
144  * It is anticipated that in the near future the ssd module will be obsoleted,
145  * at which time this namespace issue should go away.
146  */
147 #define	sd_state			ssd_state
148 #define	sd_io_time			ssd_io_time
149 #define	sd_failfast_enable		ssd_failfast_enable
150 #define	sd_ua_retry_count		ssd_ua_retry_count
151 #define	sd_report_pfa			ssd_report_pfa
152 #define	sd_max_throttle			ssd_max_throttle
153 #define	sd_min_throttle			ssd_min_throttle
154 #define	sd_rot_delay			ssd_rot_delay
155 
156 #define	sd_retry_on_reservation_conflict	\
157 					ssd_retry_on_reservation_conflict
158 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
159 #define	sd_resv_conflict_name		ssd_resv_conflict_name
160 
161 #define	sd_component_mask		ssd_component_mask
162 #define	sd_level_mask			ssd_level_mask
163 #define	sd_debug_un			ssd_debug_un
164 #define	sd_error_level			ssd_error_level
165 
166 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
167 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
168 
169 #define	sd_tr				ssd_tr
170 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
171 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
172 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
173 #define	sd_check_media_time		ssd_check_media_time
174 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
175 #define	sd_label_mutex			ssd_label_mutex
176 #define	sd_detach_mutex			ssd_detach_mutex
177 #define	sd_log_buf			ssd_log_buf
178 #define	sd_log_mutex			ssd_log_mutex
179 
180 #define	sd_disk_table			ssd_disk_table
181 #define	sd_disk_table_size		ssd_disk_table_size
182 #define	sd_sense_mutex			ssd_sense_mutex
183 #define	sd_cdbtab			ssd_cdbtab
184 
185 #define	sd_cb_ops			ssd_cb_ops
186 #define	sd_ops				ssd_ops
187 #define	sd_additional_codes		ssd_additional_codes
188 #define	sd_tgops			ssd_tgops
189 
190 #define	sd_minor_data			ssd_minor_data
191 #define	sd_minor_data_efi		ssd_minor_data_efi
192 
193 #define	sd_tq				ssd_tq
194 #define	sd_wmr_tq			ssd_wmr_tq
195 #define	sd_taskq_name			ssd_taskq_name
196 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
197 #define	sd_taskq_minalloc		ssd_taskq_minalloc
198 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
199 
200 #define	sd_dump_format_string		ssd_dump_format_string
201 
202 #define	sd_iostart_chain		ssd_iostart_chain
203 #define	sd_iodone_chain			ssd_iodone_chain
204 
205 #define	sd_pm_idletime			ssd_pm_idletime
206 
207 #define	sd_force_pm_supported		ssd_force_pm_supported
208 
209 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
210 
211 #endif
212 
213 
214 #ifdef	SDDEBUG
215 int	sd_force_pm_supported		= 0;
216 #endif	/* SDDEBUG */
217 
218 void *sd_state				= NULL;
219 int sd_io_time				= SD_IO_TIME;
220 int sd_failfast_enable			= 1;
221 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
222 int sd_report_pfa			= 1;
223 int sd_max_throttle			= SD_MAX_THROTTLE;
224 int sd_min_throttle			= SD_MIN_THROTTLE;
225 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
226 int sd_qfull_throttle_enable		= TRUE;
227 
228 int sd_retry_on_reservation_conflict	= 1;
229 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
230 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
231 
232 static int sd_dtype_optical_bind	= -1;
233 
234 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
235 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
236 
237 /*
238  * Global data for debug logging. To enable debug printing, sd_component_mask
239  * and sd_level_mask should be set to the desired bit patterns as outlined in
240  * sddef.h.
241  */
242 uint_t	sd_component_mask		= 0x0;
243 uint_t	sd_level_mask			= 0x0;
244 struct	sd_lun *sd_debug_un		= NULL;
245 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
246 
247 /* Note: these may go away in the future... */
248 static uint32_t	sd_xbuf_active_limit	= 512;
249 static uint32_t sd_xbuf_reserve_limit	= 16;
250 
251 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
252 
253 /*
254  * Timer value used to reset the throttle after it has been reduced
255  * (typically in response to TRAN_BUSY or STATUS_QFULL)
256  */
257 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
258 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
259 
260 /*
261  * Interval value associated with the media change scsi watch.
262  */
263 static int sd_check_media_time		= 3000000;
264 
265 /*
266  * Wait value used for in progress operations during a DDI_SUSPEND
267  */
268 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
269 
270 /*
271  * sd_label_mutex protects a static buffer used in the disk label
272  * component of the driver
273  */
274 static kmutex_t sd_label_mutex;
275 
276 /*
277  * sd_detach_mutex protects un_layer_count, un_detach_count, and
278  * un_opens_in_progress in the sd_lun structure.
279  */
280 static kmutex_t sd_detach_mutex;
281 
282 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
283 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
284 
285 /*
286  * Global buffer and mutex for debug logging
287  */
288 static char	sd_log_buf[1024];
289 static kmutex_t	sd_log_mutex;
290 
291 /*
292  * Structs and globals for recording attached lun information.
293  * This maintains a chain. Each node in the chain represents a SCSI controller.
294  * The structure records the number of luns attached to each target connected
295  * with the controller.
296  * For parallel scsi device only.
297  */
298 struct sd_scsi_hba_tgt_lun {
299 	struct sd_scsi_hba_tgt_lun	*next;
300 	dev_info_t			*pdip;
301 	int				nlun[NTARGETS_WIDE];
302 };
303 
304 /*
305  * Flag to indicate the lun is attached or detached
306  */
307 #define	SD_SCSI_LUN_ATTACH	0
308 #define	SD_SCSI_LUN_DETACH	1
309 
310 static kmutex_t	sd_scsi_target_lun_mutex;
311 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
312 
313 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
314     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
315 
316 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
317     sd_scsi_target_lun_head))
318 
319 /*
320  * "Smart" Probe Caching structs, globals, #defines, etc.
321  * For parallel scsi and non-self-identify device only.
322  */
323 
324 /*
325  * The following resources and routines are implemented to support
326  * "smart" probing, which caches the scsi_probe() results in an array,
327  * in order to help avoid long probe times.
328  */
329 struct sd_scsi_probe_cache {
330 	struct	sd_scsi_probe_cache	*next;
331 	dev_info_t	*pdip;
332 	int		cache[NTARGETS_WIDE];
333 };
334 
335 static kmutex_t	sd_scsi_probe_cache_mutex;
336 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
337 
338 /*
339  * Really we only need protection on the head of the linked list, but
340  * better safe than sorry.
341  */
342 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
343     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
344 
345 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
346     sd_scsi_probe_cache_head))
347 
348 
349 /*
350  * Vendor specific data name property declarations
351  */
352 
353 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
354 
355 static sd_tunables seagate_properties = {
356 	SEAGATE_THROTTLE_VALUE,
357 	0,
358 	0,
359 	0,
360 	0,
361 	0,
362 	0,
363 	0,
364 	0
365 };
366 
367 
368 static sd_tunables fujitsu_properties = {
369 	FUJITSU_THROTTLE_VALUE,
370 	0,
371 	0,
372 	0,
373 	0,
374 	0,
375 	0,
376 	0,
377 	0
378 };
379 
380 static sd_tunables ibm_properties = {
381 	IBM_THROTTLE_VALUE,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0,
387 	0,
388 	0,
389 	0
390 };
391 
392 static sd_tunables purple_properties = {
393 	PURPLE_THROTTLE_VALUE,
394 	0,
395 	0,
396 	PURPLE_BUSY_RETRIES,
397 	PURPLE_RESET_RETRY_COUNT,
398 	PURPLE_RESERVE_RELEASE_TIME,
399 	0,
400 	0,
401 	0
402 };
403 
404 static sd_tunables sve_properties = {
405 	SVE_THROTTLE_VALUE,
406 	0,
407 	0,
408 	SVE_BUSY_RETRIES,
409 	SVE_RESET_RETRY_COUNT,
410 	SVE_RESERVE_RELEASE_TIME,
411 	SVE_MIN_THROTTLE_VALUE,
412 	SVE_DISKSORT_DISABLED_FLAG,
413 	0
414 };
415 
416 static sd_tunables maserati_properties = {
417 	0,
418 	0,
419 	0,
420 	0,
421 	0,
422 	0,
423 	0,
424 	MASERATI_DISKSORT_DISABLED_FLAG,
425 	MASERATI_LUN_RESET_ENABLED_FLAG
426 };
427 
428 static sd_tunables pirus_properties = {
429 	PIRUS_THROTTLE_VALUE,
430 	0,
431 	PIRUS_NRR_COUNT,
432 	PIRUS_BUSY_RETRIES,
433 	PIRUS_RESET_RETRY_COUNT,
434 	0,
435 	PIRUS_MIN_THROTTLE_VALUE,
436 	PIRUS_DISKSORT_DISABLED_FLAG,
437 	PIRUS_LUN_RESET_ENABLED_FLAG
438 };
439 
440 #endif
441 
442 #if (defined(__sparc) && !defined(__fibre)) || \
443 	(defined(__i386) || defined(__amd64))
444 
445 
446 static sd_tunables elite_properties = {
447 	ELITE_THROTTLE_VALUE,
448 	0,
449 	0,
450 	0,
451 	0,
452 	0,
453 	0,
454 	0,
455 	0
456 };
457 
458 static sd_tunables st31200n_properties = {
459 	ST31200N_THROTTLE_VALUE,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	0,
466 	0,
467 	0
468 };
469 
470 #endif /* Fibre or not */
471 
472 static sd_tunables lsi_properties_scsi = {
473 	LSI_THROTTLE_VALUE,
474 	0,
475 	LSI_NOTREADY_RETRIES,
476 	0,
477 	0,
478 	0,
479 	0,
480 	0,
481 	0
482 };
483 
484 static sd_tunables symbios_properties = {
485 	SYMBIOS_THROTTLE_VALUE,
486 	0,
487 	SYMBIOS_NOTREADY_RETRIES,
488 	0,
489 	0,
490 	0,
491 	0,
492 	0,
493 	0
494 };
495 
496 static sd_tunables lsi_properties = {
497 	0,
498 	0,
499 	LSI_NOTREADY_RETRIES,
500 	0,
501 	0,
502 	0,
503 	0,
504 	0,
505 	0
506 };
507 
508 static sd_tunables lsi_oem_properties = {
509 	0,
510 	0,
511 	LSI_OEM_NOTREADY_RETRIES,
512 	0,
513 	0,
514 	0,
515 	0,
516 	0,
517 	0,
518 	1
519 };
520 
521 
522 
523 #if (defined(SD_PROP_TST))
524 
525 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
526 #define	SD_TST_THROTTLE_VAL	16
527 #define	SD_TST_NOTREADY_VAL	12
528 #define	SD_TST_BUSY_VAL		60
529 #define	SD_TST_RST_RETRY_VAL	36
530 #define	SD_TST_RSV_REL_TIME	60
531 
532 static sd_tunables tst_properties = {
533 	SD_TST_THROTTLE_VAL,
534 	SD_TST_CTYPE_VAL,
535 	SD_TST_NOTREADY_VAL,
536 	SD_TST_BUSY_VAL,
537 	SD_TST_RST_RETRY_VAL,
538 	SD_TST_RSV_REL_TIME,
539 	0,
540 	0,
541 	0
542 };
543 #endif
544 
545 /* This is similar to the ANSI toupper implementation */
546 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
547 
548 /*
549  * Static Driver Configuration Table
550  *
551  * This is the table of disks which need throttle adjustment (or, perhaps
552  * something else as defined by the flags at a future time.)  device_id
553  * is a string consisting of concatenated vid (vendor), pid (product/model)
554  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
555  * the parts of the string are as defined by the sizes in the scsi_inquiry
556  * structure.  Device type is searched as far as the device_id string is
557  * defined.  Flags defines which values are to be set in the driver from the
558  * properties list.
559  *
560  * Entries below which begin and end with a "*" are a special case.
561  * These do not have a specific vendor, and the string which follows
562  * can appear anywhere in the 16 byte PID portion of the inquiry data.
563  *
564  * Entries below which begin and end with a " " (blank) are a special
565  * case. The comparison function will treat multiple consecutive blanks
566  * as equivalent to a single blank. For example, this causes a
567  * sd_disk_table entry of " NEC CDROM " to match a device's id string
568  * of  "NEC       CDROM".
569  *
570  * Note: The MD21 controller type has been obsoleted.
571  *	 ST318202F is a Legacy device
572  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
573  *	 made with an FC connection. The entries here are a legacy.
574  */
575 static sd_disk_config_t sd_disk_table[] = {
576 #if defined(__fibre) || defined(__i386) || defined(__amd64)
577 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
578 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
579 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
580 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
581 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
582 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
583 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
584 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
585 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
586 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
589 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
590 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
591 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
592 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
593 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
594 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
595 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
596 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
597 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
598 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
599 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
600 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
601 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
602 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
603 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
604 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
605 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
606 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
607 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
608 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
609 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
610 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
611 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
612 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
613 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
620 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
621 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
622 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
623 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
624 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
625 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
626 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
627 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
628 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
629 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
630 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
631 			SD_CONF_BSET_BSY_RETRY_COUNT|
632 			SD_CONF_BSET_RST_RETRIES|
633 			SD_CONF_BSET_RSV_REL_TIME,
634 		&purple_properties },
635 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
636 		SD_CONF_BSET_BSY_RETRY_COUNT|
637 		SD_CONF_BSET_RST_RETRIES|
638 		SD_CONF_BSET_RSV_REL_TIME|
639 		SD_CONF_BSET_MIN_THROTTLE|
640 		SD_CONF_BSET_DISKSORT_DISABLED,
641 		&sve_properties },
642 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
643 			SD_CONF_BSET_BSY_RETRY_COUNT|
644 			SD_CONF_BSET_RST_RETRIES|
645 			SD_CONF_BSET_RSV_REL_TIME,
646 		&purple_properties },
647 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
648 		SD_CONF_BSET_LUN_RESET_ENABLED,
649 		&maserati_properties },
650 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
651 		SD_CONF_BSET_NRR_COUNT|
652 		SD_CONF_BSET_BSY_RETRY_COUNT|
653 		SD_CONF_BSET_RST_RETRIES|
654 		SD_CONF_BSET_MIN_THROTTLE|
655 		SD_CONF_BSET_DISKSORT_DISABLED|
656 		SD_CONF_BSET_LUN_RESET_ENABLED,
657 		&pirus_properties },
658 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
659 		SD_CONF_BSET_NRR_COUNT|
660 		SD_CONF_BSET_BSY_RETRY_COUNT|
661 		SD_CONF_BSET_RST_RETRIES|
662 		SD_CONF_BSET_MIN_THROTTLE|
663 		SD_CONF_BSET_DISKSORT_DISABLED|
664 		SD_CONF_BSET_LUN_RESET_ENABLED,
665 		&pirus_properties },
666 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
667 		SD_CONF_BSET_NRR_COUNT|
668 		SD_CONF_BSET_BSY_RETRY_COUNT|
669 		SD_CONF_BSET_RST_RETRIES|
670 		SD_CONF_BSET_MIN_THROTTLE|
671 		SD_CONF_BSET_DISKSORT_DISABLED|
672 		SD_CONF_BSET_LUN_RESET_ENABLED,
673 		&pirus_properties },
674 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
675 		SD_CONF_BSET_NRR_COUNT|
676 		SD_CONF_BSET_BSY_RETRY_COUNT|
677 		SD_CONF_BSET_RST_RETRIES|
678 		SD_CONF_BSET_MIN_THROTTLE|
679 		SD_CONF_BSET_DISKSORT_DISABLED|
680 		SD_CONF_BSET_LUN_RESET_ENABLED,
681 		&pirus_properties },
682 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
683 		SD_CONF_BSET_NRR_COUNT|
684 		SD_CONF_BSET_BSY_RETRY_COUNT|
685 		SD_CONF_BSET_RST_RETRIES|
686 		SD_CONF_BSET_MIN_THROTTLE|
687 		SD_CONF_BSET_DISKSORT_DISABLED|
688 		SD_CONF_BSET_LUN_RESET_ENABLED,
689 		&pirus_properties },
690 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
691 		SD_CONF_BSET_NRR_COUNT|
692 		SD_CONF_BSET_BSY_RETRY_COUNT|
693 		SD_CONF_BSET_RST_RETRIES|
694 		SD_CONF_BSET_MIN_THROTTLE|
695 		SD_CONF_BSET_DISKSORT_DISABLED|
696 		SD_CONF_BSET_LUN_RESET_ENABLED,
697 		&pirus_properties },
698 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
699 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
700 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
701 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
702 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
703 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
704 #endif /* fibre or NON-sparc platforms */
705 #if ((defined(__sparc) && !defined(__fibre)) ||\
706 	(defined(__i386) || defined(__amd64)))
707 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
708 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
709 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
710 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
711 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
712 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
713 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
714 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
715 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
716 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
717 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
718 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
719 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
720 	    &symbios_properties },
721 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
722 	    &lsi_properties_scsi },
723 #if defined(__i386) || defined(__amd64)
724 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
725 				    | SD_CONF_BSET_READSUB_BCD
726 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
727 				    | SD_CONF_BSET_NO_READ_HEADER
728 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
729 
730 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
731 				    | SD_CONF_BSET_READSUB_BCD
732 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
733 				    | SD_CONF_BSET_NO_READ_HEADER
734 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
735 #endif /* __i386 || __amd64 */
736 #endif /* sparc NON-fibre or NON-sparc platforms */
737 
738 #if (defined(SD_PROP_TST))
739 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
740 				| SD_CONF_BSET_CTYPE
741 				| SD_CONF_BSET_NRR_COUNT
742 				| SD_CONF_BSET_FAB_DEVID
743 				| SD_CONF_BSET_NOCACHE
744 				| SD_CONF_BSET_BSY_RETRY_COUNT
745 				| SD_CONF_BSET_PLAYMSF_BCD
746 				| SD_CONF_BSET_READSUB_BCD
747 				| SD_CONF_BSET_READ_TOC_TRK_BCD
748 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
749 				| SD_CONF_BSET_NO_READ_HEADER
750 				| SD_CONF_BSET_READ_CD_XD4
751 				| SD_CONF_BSET_RST_RETRIES
752 				| SD_CONF_BSET_RSV_REL_TIME
753 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
754 #endif
755 };
756 
757 static const int sd_disk_table_size =
758 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
759 
760 
761 
762 #define	SD_INTERCONNECT_PARALLEL	0
763 #define	SD_INTERCONNECT_FABRIC		1
764 #define	SD_INTERCONNECT_FIBRE		2
765 #define	SD_INTERCONNECT_SSA		3
766 #define	SD_INTERCONNECT_SATA		4
767 #define	SD_IS_PARALLEL_SCSI(un)		\
768 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
769 #define	SD_IS_SERIAL(un)		\
770 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
771 
772 /*
773  * Definitions used by device id registration routines
774  */
775 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
776 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
777 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
778 
779 static kmutex_t sd_sense_mutex = {0};
780 
781 /*
782  * Macros for updates of the driver state
783  */
784 #define	New_state(un, s)        \
785 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
786 #define	Restore_state(un)	\
787 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
788 
789 static struct sd_cdbinfo sd_cdbtab[] = {
790 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
791 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
792 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
793 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
794 };
795 
796 /*
797  * Specifies the number of seconds that must have elapsed since the last
798  * cmd. has completed for a device to be declared idle to the PM framework.
799  */
800 static int sd_pm_idletime = 1;
801 
802 /*
803  * Internal function prototypes
804  */
805 
806 #if (defined(__fibre))
807 /*
808  * These #defines are to avoid namespace collisions that occur because this
809  * code is currently used to compile two separate driver modules: sd and ssd.
810  * All function names need to be treated this way (even if declared static)
811  * in order to allow the debugger to resolve the names properly.
812  * It is anticipated that in the near future the ssd module will be obsoleted,
813  * at which time this ugliness should go away.
814  */
815 #define	sd_log_trace			ssd_log_trace
816 #define	sd_log_info			ssd_log_info
817 #define	sd_log_err			ssd_log_err
818 #define	sdprobe				ssdprobe
819 #define	sdinfo				ssdinfo
820 #define	sd_prop_op			ssd_prop_op
821 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
822 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
823 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
824 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
825 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
826 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
827 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
828 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
829 #define	sd_spin_up_unit			ssd_spin_up_unit
830 #define	sd_enable_descr_sense		ssd_enable_descr_sense
831 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
832 #define	sd_set_mmc_caps			ssd_set_mmc_caps
833 #define	sd_read_unit_properties		ssd_read_unit_properties
834 #define	sd_process_sdconf_file		ssd_process_sdconf_file
835 #define	sd_process_sdconf_table		ssd_process_sdconf_table
836 #define	sd_sdconf_id_match		ssd_sdconf_id_match
837 #define	sd_blank_cmp			ssd_blank_cmp
838 #define	sd_chk_vers1_data		ssd_chk_vers1_data
839 #define	sd_set_vers1_properties		ssd_set_vers1_properties
840 
841 #define	sd_get_physical_geometry	ssd_get_physical_geometry
842 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
843 #define	sd_update_block_info		ssd_update_block_info
844 #define	sd_register_devid		ssd_register_devid
845 #define	sd_get_devid			ssd_get_devid
846 #define	sd_create_devid			ssd_create_devid
847 #define	sd_write_deviceid		ssd_write_deviceid
848 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
849 #define	sd_setup_pm			ssd_setup_pm
850 #define	sd_create_pm_components		ssd_create_pm_components
851 #define	sd_ddi_suspend			ssd_ddi_suspend
852 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
853 #define	sd_ddi_resume			ssd_ddi_resume
854 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
855 #define	sdpower				ssdpower
856 #define	sdattach			ssdattach
857 #define	sddetach			ssddetach
858 #define	sd_unit_attach			ssd_unit_attach
859 #define	sd_unit_detach			ssd_unit_detach
860 #define	sd_set_unit_attributes		ssd_set_unit_attributes
861 #define	sd_create_errstats		ssd_create_errstats
862 #define	sd_set_errstats			ssd_set_errstats
863 #define	sd_set_pstats			ssd_set_pstats
864 #define	sddump				ssddump
865 #define	sd_scsi_poll			ssd_scsi_poll
866 #define	sd_send_polled_RQS		ssd_send_polled_RQS
867 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
868 #define	sd_init_event_callbacks		ssd_init_event_callbacks
869 #define	sd_event_callback		ssd_event_callback
870 #define	sd_cache_control		ssd_cache_control
871 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
872 #define	sd_get_nv_sup			ssd_get_nv_sup
873 #define	sd_make_device			ssd_make_device
874 #define	sdopen				ssdopen
875 #define	sdclose				ssdclose
876 #define	sd_ready_and_valid		ssd_ready_and_valid
877 #define	sdmin				ssdmin
878 #define	sdread				ssdread
879 #define	sdwrite				ssdwrite
880 #define	sdaread				ssdaread
881 #define	sdawrite			ssdawrite
882 #define	sdstrategy			ssdstrategy
883 #define	sdioctl				ssdioctl
884 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
885 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
886 #define	sd_checksum_iostart		ssd_checksum_iostart
887 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
888 #define	sd_pm_iostart			ssd_pm_iostart
889 #define	sd_core_iostart			ssd_core_iostart
890 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
891 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
892 #define	sd_checksum_iodone		ssd_checksum_iodone
893 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
894 #define	sd_pm_iodone			ssd_pm_iodone
895 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
896 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
897 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
898 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
899 #define	sd_buf_iodone			ssd_buf_iodone
900 #define	sd_uscsi_strategy		ssd_uscsi_strategy
901 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
902 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
903 #define	sd_uscsi_iodone			ssd_uscsi_iodone
904 #define	sd_xbuf_strategy		ssd_xbuf_strategy
905 #define	sd_xbuf_init			ssd_xbuf_init
906 #define	sd_pm_entry			ssd_pm_entry
907 #define	sd_pm_exit			ssd_pm_exit
908 
909 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
910 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
911 
912 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
913 #define	sdintr				ssdintr
914 #define	sd_start_cmds			ssd_start_cmds
915 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
916 #define	sd_bioclone_alloc		ssd_bioclone_alloc
917 #define	sd_bioclone_free		ssd_bioclone_free
918 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
919 #define	sd_shadow_buf_free		ssd_shadow_buf_free
920 #define	sd_print_transport_rejected_message	\
921 					ssd_print_transport_rejected_message
922 #define	sd_retry_command		ssd_retry_command
923 #define	sd_set_retry_bp			ssd_set_retry_bp
924 #define	sd_send_request_sense_command	ssd_send_request_sense_command
925 #define	sd_start_retry_command		ssd_start_retry_command
926 #define	sd_start_direct_priority_command	\
927 					ssd_start_direct_priority_command
928 #define	sd_return_failed_command	ssd_return_failed_command
929 #define	sd_return_failed_command_no_restart	\
930 					ssd_return_failed_command_no_restart
931 #define	sd_return_command		ssd_return_command
932 #define	sd_sync_with_callback		ssd_sync_with_callback
933 #define	sdrunout			ssdrunout
934 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
935 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
936 #define	sd_reduce_throttle		ssd_reduce_throttle
937 #define	sd_restore_throttle		ssd_restore_throttle
938 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
939 #define	sd_init_cdb_limits		ssd_init_cdb_limits
940 #define	sd_pkt_status_good		ssd_pkt_status_good
941 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
942 #define	sd_pkt_status_busy		ssd_pkt_status_busy
943 #define	sd_pkt_status_reservation_conflict	\
944 					ssd_pkt_status_reservation_conflict
945 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
946 #define	sd_handle_request_sense		ssd_handle_request_sense
947 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
948 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
949 #define	sd_validate_sense_data		ssd_validate_sense_data
950 #define	sd_decode_sense			ssd_decode_sense
951 #define	sd_print_sense_msg		ssd_print_sense_msg
952 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
953 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
954 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
955 #define	sd_sense_key_medium_or_hardware_error	\
956 					ssd_sense_key_medium_or_hardware_error
957 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
958 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
959 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
960 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
961 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
962 #define	sd_sense_key_default		ssd_sense_key_default
963 #define	sd_print_retry_msg		ssd_print_retry_msg
964 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
965 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
966 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
967 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
968 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
969 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
970 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
971 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
972 #define	sd_pkt_reason_default		ssd_pkt_reason_default
973 #define	sd_reset_target			ssd_reset_target
974 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
975 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
976 #define	sd_taskq_create			ssd_taskq_create
977 #define	sd_taskq_delete			ssd_taskq_delete
978 #define	sd_target_change_task		ssd_target_change_task
979 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
980 #define	sd_media_change_task		ssd_media_change_task
981 #define	sd_handle_mchange		ssd_handle_mchange
982 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
983 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
984 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
985 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
986 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
987 					sd_send_scsi_feature_GET_CONFIGURATION
988 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
989 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
990 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
991 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
992 					ssd_send_scsi_PERSISTENT_RESERVE_IN
993 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
994 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
995 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
996 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
997 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
998 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
999 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1000 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1001 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1002 #define	sd_alloc_rqs			ssd_alloc_rqs
1003 #define	sd_free_rqs			ssd_free_rqs
1004 #define	sd_dump_memory			ssd_dump_memory
1005 #define	sd_get_media_info		ssd_get_media_info
1006 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1007 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1008 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1009 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1010 #define	sd_check_mhd			ssd_check_mhd
1011 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1012 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1013 #define	sd_sname			ssd_sname
1014 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1015 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1016 #define	sd_take_ownership		ssd_take_ownership
1017 #define	sd_reserve_release		ssd_reserve_release
1018 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1019 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1020 #define	sd_persistent_reservation_in_read_keys	\
1021 					ssd_persistent_reservation_in_read_keys
1022 #define	sd_persistent_reservation_in_read_resv	\
1023 					ssd_persistent_reservation_in_read_resv
1024 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1025 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1026 #define	sd_mhdioc_release		ssd_mhdioc_release
1027 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1028 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1029 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1030 #define	sr_change_blkmode		ssr_change_blkmode
1031 #define	sr_change_speed			ssr_change_speed
1032 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1033 #define	sr_pause_resume			ssr_pause_resume
1034 #define	sr_play_msf			ssr_play_msf
1035 #define	sr_play_trkind			ssr_play_trkind
1036 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1037 #define	sr_read_subchannel		ssr_read_subchannel
1038 #define	sr_read_tocentry		ssr_read_tocentry
1039 #define	sr_read_tochdr			ssr_read_tochdr
1040 #define	sr_read_cdda			ssr_read_cdda
1041 #define	sr_read_cdxa			ssr_read_cdxa
1042 #define	sr_read_mode1			ssr_read_mode1
1043 #define	sr_read_mode2			ssr_read_mode2
1044 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1045 #define	sr_sector_mode			ssr_sector_mode
1046 #define	sr_eject			ssr_eject
1047 #define	sr_ejected			ssr_ejected
1048 #define	sr_check_wp			ssr_check_wp
1049 #define	sd_check_media			ssd_check_media
1050 #define	sd_media_watch_cb		ssd_media_watch_cb
1051 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1052 #define	sr_volume_ctrl			ssr_volume_ctrl
1053 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1054 #define	sd_log_page_supported		ssd_log_page_supported
1055 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1056 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1057 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1058 #define	sd_range_lock			ssd_range_lock
1059 #define	sd_get_range			ssd_get_range
1060 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1061 #define	sd_range_unlock			ssd_range_unlock
1062 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1063 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1064 
1065 #define	sd_iostart_chain		ssd_iostart_chain
1066 #define	sd_iodone_chain			ssd_iodone_chain
1067 #define	sd_initpkt_map			ssd_initpkt_map
1068 #define	sd_destroypkt_map		ssd_destroypkt_map
1069 #define	sd_chain_type_map		ssd_chain_type_map
1070 #define	sd_chain_index_map		ssd_chain_index_map
1071 
1072 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1073 #define	sd_failfast_flushq		ssd_failfast_flushq
1074 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1075 
1076 #define	sd_is_lsi			ssd_is_lsi
1077 #define	sd_tg_rdwr			ssd_tg_rdwr
1078 #define	sd_tg_getinfo			ssd_tg_getinfo
1079 
1080 #endif	/* #if (defined(__fibre)) */
1081 
1082 
1083 int _init(void);
1084 int _fini(void);
1085 int _info(struct modinfo *modinfop);
1086 
1087 /*PRINTFLIKE3*/
1088 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1089 /*PRINTFLIKE3*/
1090 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1091 /*PRINTFLIKE3*/
1092 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1093 
1094 static int sdprobe(dev_info_t *devi);
1095 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1096     void **result);
1097 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1098     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1099 
1100 /*
1101  * Smart probe for parallel scsi
1102  */
1103 static void sd_scsi_probe_cache_init(void);
1104 static void sd_scsi_probe_cache_fini(void);
1105 static void sd_scsi_clear_probe_cache(void);
1106 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1107 
1108 /*
1109  * Attached luns on target for parallel scsi
1110  */
1111 static void sd_scsi_target_lun_init(void);
1112 static void sd_scsi_target_lun_fini(void);
1113 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1114 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1115 
1116 static int	sd_spin_up_unit(struct sd_lun *un);
1117 #ifdef _LP64
1118 static void	sd_enable_descr_sense(struct sd_lun *un);
1119 static void	sd_reenable_dsense_task(void *arg);
1120 #endif /* _LP64 */
1121 
1122 static void	sd_set_mmc_caps(struct sd_lun *un);
1123 
1124 static void sd_read_unit_properties(struct sd_lun *un);
1125 static int  sd_process_sdconf_file(struct sd_lun *un);
1126 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1127     int *data_list, sd_tunables *values);
1128 static void sd_process_sdconf_table(struct sd_lun *un);
1129 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1130 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1131 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1132 	int list_len, char *dataname_ptr);
1133 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1134     sd_tunables *prop_list);
1135 
1136 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1137     int reservation_flag);
1138 static int  sd_get_devid(struct sd_lun *un);
1139 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1140 static int  sd_write_deviceid(struct sd_lun *un);
1141 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1142 static int  sd_check_vpd_page_support(struct sd_lun *un);
1143 
1144 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1145 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1146 
1147 static int  sd_ddi_suspend(dev_info_t *devi);
1148 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1149 static int  sd_ddi_resume(dev_info_t *devi);
1150 static int  sd_ddi_pm_resume(struct sd_lun *un);
1151 static int  sdpower(dev_info_t *devi, int component, int level);
1152 
1153 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1154 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1155 static int  sd_unit_attach(dev_info_t *devi);
1156 static int  sd_unit_detach(dev_info_t *devi);
1157 
1158 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1159 static void sd_create_errstats(struct sd_lun *un, int instance);
1160 static void sd_set_errstats(struct sd_lun *un);
1161 static void sd_set_pstats(struct sd_lun *un);
1162 
1163 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1164 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1165 static int  sd_send_polled_RQS(struct sd_lun *un);
1166 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1167 
1168 #if (defined(__fibre))
1169 /*
1170  * Event callbacks (photon)
1171  */
1172 static void sd_init_event_callbacks(struct sd_lun *un);
1173 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1174 #endif
1175 
1176 /*
1177  * Defines for sd_cache_control
1178  */
1179 
1180 #define	SD_CACHE_ENABLE		1
1181 #define	SD_CACHE_DISABLE	0
1182 #define	SD_CACHE_NOCHANGE	-1
1183 
1184 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1185 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1186 static void  sd_get_nv_sup(struct sd_lun *un);
1187 static dev_t sd_make_device(dev_info_t *devi);
1188 
1189 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1190 	uint64_t capacity);
1191 
1192 /*
1193  * Driver entry point functions.
1194  */
1195 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1196 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1197 static int  sd_ready_and_valid(struct sd_lun *un);
1198 
1199 static void sdmin(struct buf *bp);
1200 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1201 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1202 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1203 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1204 
1205 static int sdstrategy(struct buf *bp);
1206 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1207 
1208 /*
1209  * Function prototypes for layering functions in the iostart chain.
1210  */
1211 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1212 	struct buf *bp);
1213 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1214 	struct buf *bp);
1215 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1216 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1217 	struct buf *bp);
1218 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1219 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1220 
1221 /*
1222  * Function prototypes for layering functions in the iodone chain.
1223  */
1224 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1225 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1226 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1227 	struct buf *bp);
1228 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1229 	struct buf *bp);
1230 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1231 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1232 	struct buf *bp);
1233 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1234 
1235 /*
1236  * Prototypes for functions to support buf(9S) based IO.
1237  */
1238 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1239 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1240 static void sd_destroypkt_for_buf(struct buf *);
1241 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1242 	struct buf *bp, int flags,
1243 	int (*callback)(caddr_t), caddr_t callback_arg,
1244 	diskaddr_t lba, uint32_t blockcount);
1245 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1246 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1247 
1248 /*
1249  * Prototypes for functions to support USCSI IO.
1250  */
1251 static int sd_uscsi_strategy(struct buf *bp);
1252 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1253 static void sd_destroypkt_for_uscsi(struct buf *);
1254 
1255 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1256 	uchar_t chain_type, void *pktinfop);
1257 
1258 static int  sd_pm_entry(struct sd_lun *un);
1259 static void sd_pm_exit(struct sd_lun *un);
1260 
1261 static void sd_pm_idletimeout_handler(void *arg);
1262 
1263 /*
1264  * sd_core internal functions (used at the sd_core_io layer).
1265  */
1266 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1267 static void sdintr(struct scsi_pkt *pktp);
1268 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1269 
1270 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1271 	enum uio_seg dataspace, int path_flag);
1272 
1273 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1274 	daddr_t blkno, int (*func)(struct buf *));
1275 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1276 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1277 static void sd_bioclone_free(struct buf *bp);
1278 static void sd_shadow_buf_free(struct buf *bp);
1279 
1280 static void sd_print_transport_rejected_message(struct sd_lun *un,
1281 	struct sd_xbuf *xp, int code);
1282 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1283     void *arg, int code);
1284 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1285     void *arg, int code);
1286 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1287     void *arg, int code);
1288 
1289 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1290 	int retry_check_flag,
1291 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1292 		int c),
1293 	void *user_arg, int failure_code,  clock_t retry_delay,
1294 	void (*statp)(kstat_io_t *));
1295 
1296 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1297 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1298 
1299 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1300 	struct scsi_pkt *pktp);
1301 static void sd_start_retry_command(void *arg);
1302 static void sd_start_direct_priority_command(void *arg);
1303 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1304 	int errcode);
1305 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1306 	struct buf *bp, int errcode);
1307 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1308 static void sd_sync_with_callback(struct sd_lun *un);
1309 static int sdrunout(caddr_t arg);
1310 
1311 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1312 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1313 
1314 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1315 static void sd_restore_throttle(void *arg);
1316 
1317 static void sd_init_cdb_limits(struct sd_lun *un);
1318 
1319 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1320 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1321 
1322 /*
1323  * Error handling functions
1324  */
1325 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1326 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1327 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1328 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1329 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1330 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1331 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1332 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1333 
1334 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1335 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1336 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1337 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1338 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1339 	struct sd_xbuf *xp, size_t actual_len);
1340 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1341 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1342 
1343 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1344 	void *arg, int code);
1345 
1346 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1347 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1348 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1349 	uint8_t *sense_datap,
1350 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1351 static void sd_sense_key_not_ready(struct sd_lun *un,
1352 	uint8_t *sense_datap,
1353 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1354 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1355 	uint8_t *sense_datap,
1356 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1357 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1358 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1359 static void sd_sense_key_unit_attention(struct sd_lun *un,
1360 	uint8_t *sense_datap,
1361 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1362 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1363 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1364 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1365 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1366 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1367 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1368 static void sd_sense_key_default(struct sd_lun *un,
1369 	uint8_t *sense_datap,
1370 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1371 
1372 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1373 	void *arg, int flag);
1374 
1375 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1376 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1377 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1378 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1379 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1380 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1381 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1382 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1383 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1384 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1385 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1386 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1387 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1388 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1389 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1390 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1391 
1392 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1393 
1394 static void sd_start_stop_unit_callback(void *arg);
1395 static void sd_start_stop_unit_task(void *arg);
1396 
1397 static void sd_taskq_create(void);
1398 static void sd_taskq_delete(void);
1399 static void sd_target_change_task(void *arg);
1400 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1401 static void sd_media_change_task(void *arg);
1402 
1403 static int sd_handle_mchange(struct sd_lun *un);
1404 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1405 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1406 	uint32_t *lbap, int path_flag);
1407 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1408 	uint32_t *lbap, int path_flag);
1409 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1410 	int path_flag);
1411 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1412 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1413 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1414 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1415 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1416 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1417 	uchar_t usr_cmd, uchar_t *usr_bufp);
1418 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1419 	struct dk_callback *dkc);
1420 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1421 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1422 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1423 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1424 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1425 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1426 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1427 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1428 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1429 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1430 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1431 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1432 	size_t buflen, daddr_t start_block, int path_flag);
1433 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1434 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1435 	path_flag)
1436 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1437 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1438 	path_flag)
1439 
1440 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1441 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1442 	uint16_t param_ptr, int path_flag);
1443 
1444 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1445 static void sd_free_rqs(struct sd_lun *un);
1446 
1447 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1448 	uchar_t *data, int len, int fmt);
1449 static void sd_panic_for_res_conflict(struct sd_lun *un);
1450 
1451 /*
1452  * Disk Ioctl Function Prototypes
1453  */
1454 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1455 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1456 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1457 
1458 /*
1459  * Multi-host Ioctl Prototypes
1460  */
1461 static int sd_check_mhd(dev_t dev, int interval);
1462 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1463 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1464 static char *sd_sname(uchar_t status);
1465 static void sd_mhd_resvd_recover(void *arg);
1466 static void sd_resv_reclaim_thread();
1467 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1468 static int sd_reserve_release(dev_t dev, int cmd);
1469 static void sd_rmv_resv_reclaim_req(dev_t dev);
1470 static void sd_mhd_reset_notify_cb(caddr_t arg);
1471 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1472 	mhioc_inkeys_t *usrp, int flag);
1473 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1474 	mhioc_inresvs_t *usrp, int flag);
1475 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1476 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1477 static int sd_mhdioc_release(dev_t dev);
1478 static int sd_mhdioc_register_devid(dev_t dev);
1479 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1480 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1481 
1482 /*
1483  * SCSI removable prototypes
1484  */
1485 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1486 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1487 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1488 static int sr_pause_resume(dev_t dev, int mode);
1489 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1490 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1491 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1492 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1493 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1494 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1495 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1496 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1497 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1498 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1499 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1500 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1501 static int sr_eject(dev_t dev);
1502 static void sr_ejected(register struct sd_lun *un);
1503 static int sr_check_wp(dev_t dev);
1504 static int sd_check_media(dev_t dev, enum dkio_state state);
1505 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1506 static void sd_delayed_cv_broadcast(void *arg);
1507 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1508 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1509 
1510 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1511 
1512 /*
1513  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1514  */
1515 static void sd_check_for_writable_cd(struct sd_lun *un, int path_flag);
1516 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1517 static void sd_wm_cache_destructor(void *wm, void *un);
1518 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1519 	daddr_t endb, ushort_t typ);
1520 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1521 	daddr_t endb);
1522 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1523 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1524 static void sd_read_modify_write_task(void * arg);
1525 static int
1526 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1527 	struct buf **bpp);
1528 
1529 
1530 /*
1531  * Function prototypes for failfast support.
1532  */
1533 static void sd_failfast_flushq(struct sd_lun *un);
1534 static int sd_failfast_flushq_callback(struct buf *bp);
1535 
1536 /*
1537  * Function prototypes to check for lsi devices
1538  */
1539 static void sd_is_lsi(struct sd_lun *un);
1540 
1541 /*
1542  * Function prototypes for partial DMA support
1543  */
1544 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1545 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1546 
1547 
1548 /* Function prototypes for cmlb */
1549 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1550     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1551 
1552 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1553 
1554 /*
1555  * Constants for failfast support:
1556  *
1557  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1558  * failfast processing being performed.
1559  *
1560  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1561  * failfast processing on all bufs with B_FAILFAST set.
1562  */
1563 
1564 #define	SD_FAILFAST_INACTIVE		0
1565 #define	SD_FAILFAST_ACTIVE		1
1566 
1567 /*
1568  * Bitmask to control behavior of buf(9S) flushes when a transition to
1569  * the failfast state occurs. Optional bits include:
1570  *
1571  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1572  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1573  * be flushed.
1574  *
1575  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1576  * driver, in addition to the regular wait queue. This includes the xbuf
1577  * queues. When clear, only the driver's wait queue will be flushed.
1578  */
1579 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1580 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1581 
1582 /*
1583  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1584  * to flush all queues within the driver.
1585  */
1586 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1587 
1588 
1589 /*
1590  * SD Testing Fault Injection
1591  */
1592 #ifdef SD_FAULT_INJECTION
1593 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1594 static void sd_faultinjection(struct scsi_pkt *pktp);
1595 static void sd_injection_log(char *buf, struct sd_lun *un);
1596 #endif
1597 
1598 /*
1599  * Device driver ops vector
1600  */
1601 static struct cb_ops sd_cb_ops = {
1602 	sdopen,			/* open */
1603 	sdclose,		/* close */
1604 	sdstrategy,		/* strategy */
1605 	nodev,			/* print */
1606 	sddump,			/* dump */
1607 	sdread,			/* read */
1608 	sdwrite,		/* write */
1609 	sdioctl,		/* ioctl */
1610 	nodev,			/* devmap */
1611 	nodev,			/* mmap */
1612 	nodev,			/* segmap */
1613 	nochpoll,		/* poll */
1614 	sd_prop_op,		/* cb_prop_op */
1615 	0,			/* streamtab  */
1616 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1617 	CB_REV,			/* cb_rev */
1618 	sdaread, 		/* async I/O read entry point */
1619 	sdawrite		/* async I/O write entry point */
1620 };
1621 
1622 static struct dev_ops sd_ops = {
1623 	DEVO_REV,		/* devo_rev, */
1624 	0,			/* refcnt  */
1625 	sdinfo,			/* info */
1626 	nulldev,		/* identify */
1627 	sdprobe,		/* probe */
1628 	sdattach,		/* attach */
1629 	sddetach,		/* detach */
1630 	nodev,			/* reset */
1631 	&sd_cb_ops,		/* driver operations */
1632 	NULL,			/* bus operations */
1633 	sdpower			/* power */
1634 };
1635 
1636 
1637 /*
1638  * This is the loadable module wrapper.
1639  */
1640 #include <sys/modctl.h>
1641 
1642 static struct modldrv modldrv = {
1643 	&mod_driverops,		/* Type of module. This one is a driver */
1644 	SD_MODULE_NAME,		/* Module name. */
1645 	&sd_ops			/* driver ops */
1646 };
1647 
1648 
1649 static struct modlinkage modlinkage = {
1650 	MODREV_1,
1651 	&modldrv,
1652 	NULL
1653 };
1654 
1655 static cmlb_tg_ops_t sd_tgops = {
1656 	TG_DK_OPS_VERSION_1,
1657 	sd_tg_rdwr,
1658 	sd_tg_getinfo
1659 	};
1660 
1661 static struct scsi_asq_key_strings sd_additional_codes[] = {
1662 	0x81, 0, "Logical Unit is Reserved",
1663 	0x85, 0, "Audio Address Not Valid",
1664 	0xb6, 0, "Media Load Mechanism Failed",
1665 	0xB9, 0, "Audio Play Operation Aborted",
1666 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1667 	0x53, 2, "Medium removal prevented",
1668 	0x6f, 0, "Authentication failed during key exchange",
1669 	0x6f, 1, "Key not present",
1670 	0x6f, 2, "Key not established",
1671 	0x6f, 3, "Read without proper authentication",
1672 	0x6f, 4, "Mismatched region to this logical unit",
1673 	0x6f, 5, "Region reset count error",
1674 	0xffff, 0x0, NULL
1675 };
1676 
1677 
1678 /*
1679  * Struct for passing printing information for sense data messages
1680  */
1681 struct sd_sense_info {
1682 	int	ssi_severity;
1683 	int	ssi_pfa_flag;
1684 };
1685 
1686 /*
1687  * Table of function pointers for iostart-side routines. Separate "chains"
1688  * of layered function calls are formed by placing the function pointers
1689  * sequentially in the desired order. Functions are called according to an
1690  * incrementing table index ordering. The last function in each chain must
1691  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1692  * in the sd_iodone_chain[] array.
1693  *
1694  * Note: It may seem more natural to organize both the iostart and iodone
1695  * functions together, into an array of structures (or some similar
1696  * organization) with a common index, rather than two separate arrays which
1697  * must be maintained in synchronization. The purpose of this division is
1698  * to achieve improved performance: individual arrays allows for more
1699  * effective cache line utilization on certain platforms.
1700  */
1701 
1702 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1703 
1704 
1705 static sd_chain_t sd_iostart_chain[] = {
1706 
1707 	/* Chain for buf IO for disk drive targets (PM enabled) */
1708 	sd_mapblockaddr_iostart,	/* Index: 0 */
1709 	sd_pm_iostart,			/* Index: 1 */
1710 	sd_core_iostart,		/* Index: 2 */
1711 
1712 	/* Chain for buf IO for disk drive targets (PM disabled) */
1713 	sd_mapblockaddr_iostart,	/* Index: 3 */
1714 	sd_core_iostart,		/* Index: 4 */
1715 
1716 	/* Chain for buf IO for removable-media targets (PM enabled) */
1717 	sd_mapblockaddr_iostart,	/* Index: 5 */
1718 	sd_mapblocksize_iostart,	/* Index: 6 */
1719 	sd_pm_iostart,			/* Index: 7 */
1720 	sd_core_iostart,		/* Index: 8 */
1721 
1722 	/* Chain for buf IO for removable-media targets (PM disabled) */
1723 	sd_mapblockaddr_iostart,	/* Index: 9 */
1724 	sd_mapblocksize_iostart,	/* Index: 10 */
1725 	sd_core_iostart,		/* Index: 11 */
1726 
1727 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1728 	sd_mapblockaddr_iostart,	/* Index: 12 */
1729 	sd_checksum_iostart,		/* Index: 13 */
1730 	sd_pm_iostart,			/* Index: 14 */
1731 	sd_core_iostart,		/* Index: 15 */
1732 
1733 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1734 	sd_mapblockaddr_iostart,	/* Index: 16 */
1735 	sd_checksum_iostart,		/* Index: 17 */
1736 	sd_core_iostart,		/* Index: 18 */
1737 
1738 	/* Chain for USCSI commands (all targets) */
1739 	sd_pm_iostart,			/* Index: 19 */
1740 	sd_core_iostart,		/* Index: 20 */
1741 
1742 	/* Chain for checksumming USCSI commands (all targets) */
1743 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1744 	sd_pm_iostart,			/* Index: 22 */
1745 	sd_core_iostart,		/* Index: 23 */
1746 
1747 	/* Chain for "direct" USCSI commands (all targets) */
1748 	sd_core_iostart,		/* Index: 24 */
1749 
1750 	/* Chain for "direct priority" USCSI commands (all targets) */
1751 	sd_core_iostart,		/* Index: 25 */
1752 };
1753 
1754 /*
1755  * Macros to locate the first function of each iostart chain in the
1756  * sd_iostart_chain[] array. These are located by the index in the array.
1757  */
1758 #define	SD_CHAIN_DISK_IOSTART			0
1759 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1760 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1761 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1762 #define	SD_CHAIN_CHKSUM_IOSTART			12
1763 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1764 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1765 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1766 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1767 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1768 
1769 
1770 /*
1771  * Table of function pointers for the iodone-side routines for the driver-
1772  * internal layering mechanism.  The calling sequence for iodone routines
1773  * uses a decrementing table index, so the last routine called in a chain
1774  * must be at the lowest array index location for that chain.  The last
1775  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1776  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1777  * of the functions in an iodone side chain must correspond to the ordering
1778  * of the iostart routines for that chain.  Note that there is no iodone
1779  * side routine that corresponds to sd_core_iostart(), so there is no
1780  * entry in the table for this.
1781  */
1782 
1783 static sd_chain_t sd_iodone_chain[] = {
1784 
1785 	/* Chain for buf IO for disk drive targets (PM enabled) */
1786 	sd_buf_iodone,			/* Index: 0 */
1787 	sd_mapblockaddr_iodone,		/* Index: 1 */
1788 	sd_pm_iodone,			/* Index: 2 */
1789 
1790 	/* Chain for buf IO for disk drive targets (PM disabled) */
1791 	sd_buf_iodone,			/* Index: 3 */
1792 	sd_mapblockaddr_iodone,		/* Index: 4 */
1793 
1794 	/* Chain for buf IO for removable-media targets (PM enabled) */
1795 	sd_buf_iodone,			/* Index: 5 */
1796 	sd_mapblockaddr_iodone,		/* Index: 6 */
1797 	sd_mapblocksize_iodone,		/* Index: 7 */
1798 	sd_pm_iodone,			/* Index: 8 */
1799 
1800 	/* Chain for buf IO for removable-media targets (PM disabled) */
1801 	sd_buf_iodone,			/* Index: 9 */
1802 	sd_mapblockaddr_iodone,		/* Index: 10 */
1803 	sd_mapblocksize_iodone,		/* Index: 11 */
1804 
1805 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1806 	sd_buf_iodone,			/* Index: 12 */
1807 	sd_mapblockaddr_iodone,		/* Index: 13 */
1808 	sd_checksum_iodone,		/* Index: 14 */
1809 	sd_pm_iodone,			/* Index: 15 */
1810 
1811 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1812 	sd_buf_iodone,			/* Index: 16 */
1813 	sd_mapblockaddr_iodone,		/* Index: 17 */
1814 	sd_checksum_iodone,		/* Index: 18 */
1815 
1816 	/* Chain for USCSI commands (non-checksum targets) */
1817 	sd_uscsi_iodone,		/* Index: 19 */
1818 	sd_pm_iodone,			/* Index: 20 */
1819 
1820 	/* Chain for USCSI commands (checksum targets) */
1821 	sd_uscsi_iodone,		/* Index: 21 */
1822 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1823 	sd_pm_iodone,			/* Index: 22 */
1824 
1825 	/* Chain for "direct" USCSI commands (all targets) */
1826 	sd_uscsi_iodone,		/* Index: 24 */
1827 
1828 	/* Chain for "direct priority" USCSI commands (all targets) */
1829 	sd_uscsi_iodone,		/* Index: 25 */
1830 };
1831 
1832 
1833 /*
1834  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1835  * each iodone-side chain. These are located by the array index, but as the
1836  * iodone side functions are called in a decrementing-index order, the
1837  * highest index number in each chain must be specified (as these correspond
1838  * to the first function in the iodone chain that will be called by the core
1839  * at IO completion time).
1840  */
1841 
1842 #define	SD_CHAIN_DISK_IODONE			2
1843 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1844 #define	SD_CHAIN_RMMEDIA_IODONE			8
1845 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1846 #define	SD_CHAIN_CHKSUM_IODONE			15
1847 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1848 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1849 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1850 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1851 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1852 
1853 
1854 
1855 
1856 /*
1857  * Array to map a layering chain index to the appropriate initpkt routine.
1858  * The redundant entries are present so that the index used for accessing
1859  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1860  * with this table as well.
1861  */
1862 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1863 
1864 static sd_initpkt_t	sd_initpkt_map[] = {
1865 
1866 	/* Chain for buf IO for disk drive targets (PM enabled) */
1867 	sd_initpkt_for_buf,		/* Index: 0 */
1868 	sd_initpkt_for_buf,		/* Index: 1 */
1869 	sd_initpkt_for_buf,		/* Index: 2 */
1870 
1871 	/* Chain for buf IO for disk drive targets (PM disabled) */
1872 	sd_initpkt_for_buf,		/* Index: 3 */
1873 	sd_initpkt_for_buf,		/* Index: 4 */
1874 
1875 	/* Chain for buf IO for removable-media targets (PM enabled) */
1876 	sd_initpkt_for_buf,		/* Index: 5 */
1877 	sd_initpkt_for_buf,		/* Index: 6 */
1878 	sd_initpkt_for_buf,		/* Index: 7 */
1879 	sd_initpkt_for_buf,		/* Index: 8 */
1880 
1881 	/* Chain for buf IO for removable-media targets (PM disabled) */
1882 	sd_initpkt_for_buf,		/* Index: 9 */
1883 	sd_initpkt_for_buf,		/* Index: 10 */
1884 	sd_initpkt_for_buf,		/* Index: 11 */
1885 
1886 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1887 	sd_initpkt_for_buf,		/* Index: 12 */
1888 	sd_initpkt_for_buf,		/* Index: 13 */
1889 	sd_initpkt_for_buf,		/* Index: 14 */
1890 	sd_initpkt_for_buf,		/* Index: 15 */
1891 
1892 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1893 	sd_initpkt_for_buf,		/* Index: 16 */
1894 	sd_initpkt_for_buf,		/* Index: 17 */
1895 	sd_initpkt_for_buf,		/* Index: 18 */
1896 
1897 	/* Chain for USCSI commands (non-checksum targets) */
1898 	sd_initpkt_for_uscsi,		/* Index: 19 */
1899 	sd_initpkt_for_uscsi,		/* Index: 20 */
1900 
1901 	/* Chain for USCSI commands (checksum targets) */
1902 	sd_initpkt_for_uscsi,		/* Index: 21 */
1903 	sd_initpkt_for_uscsi,		/* Index: 22 */
1904 	sd_initpkt_for_uscsi,		/* Index: 22 */
1905 
1906 	/* Chain for "direct" USCSI commands (all targets) */
1907 	sd_initpkt_for_uscsi,		/* Index: 24 */
1908 
1909 	/* Chain for "direct priority" USCSI commands (all targets) */
1910 	sd_initpkt_for_uscsi,		/* Index: 25 */
1911 
1912 };
1913 
1914 
1915 /*
1916  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1917  * The redundant entries are present so that the index used for accessing
1918  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1919  * with this table as well.
1920  */
1921 typedef void (*sd_destroypkt_t)(struct buf *);
1922 
1923 static sd_destroypkt_t	sd_destroypkt_map[] = {
1924 
1925 	/* Chain for buf IO for disk drive targets (PM enabled) */
1926 	sd_destroypkt_for_buf,		/* Index: 0 */
1927 	sd_destroypkt_for_buf,		/* Index: 1 */
1928 	sd_destroypkt_for_buf,		/* Index: 2 */
1929 
1930 	/* Chain for buf IO for disk drive targets (PM disabled) */
1931 	sd_destroypkt_for_buf,		/* Index: 3 */
1932 	sd_destroypkt_for_buf,		/* Index: 4 */
1933 
1934 	/* Chain for buf IO for removable-media targets (PM enabled) */
1935 	sd_destroypkt_for_buf,		/* Index: 5 */
1936 	sd_destroypkt_for_buf,		/* Index: 6 */
1937 	sd_destroypkt_for_buf,		/* Index: 7 */
1938 	sd_destroypkt_for_buf,		/* Index: 8 */
1939 
1940 	/* Chain for buf IO for removable-media targets (PM disabled) */
1941 	sd_destroypkt_for_buf,		/* Index: 9 */
1942 	sd_destroypkt_for_buf,		/* Index: 10 */
1943 	sd_destroypkt_for_buf,		/* Index: 11 */
1944 
1945 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1946 	sd_destroypkt_for_buf,		/* Index: 12 */
1947 	sd_destroypkt_for_buf,		/* Index: 13 */
1948 	sd_destroypkt_for_buf,		/* Index: 14 */
1949 	sd_destroypkt_for_buf,		/* Index: 15 */
1950 
1951 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1952 	sd_destroypkt_for_buf,		/* Index: 16 */
1953 	sd_destroypkt_for_buf,		/* Index: 17 */
1954 	sd_destroypkt_for_buf,		/* Index: 18 */
1955 
1956 	/* Chain for USCSI commands (non-checksum targets) */
1957 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1958 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1959 
1960 	/* Chain for USCSI commands (checksum targets) */
1961 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1962 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1963 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1964 
1965 	/* Chain for "direct" USCSI commands (all targets) */
1966 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1967 
1968 	/* Chain for "direct priority" USCSI commands (all targets) */
1969 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1970 
1971 };
1972 
1973 
1974 
1975 /*
1976  * Array to map a layering chain index to the appropriate chain "type".
1977  * The chain type indicates a specific property/usage of the chain.
1978  * The redundant entries are present so that the index used for accessing
1979  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1980  * with this table as well.
1981  */
1982 
1983 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1984 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1985 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1986 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1987 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1988 						/* (for error recovery) */
1989 
1990 static int sd_chain_type_map[] = {
1991 
1992 	/* Chain for buf IO for disk drive targets (PM enabled) */
1993 	SD_CHAIN_BUFIO,			/* Index: 0 */
1994 	SD_CHAIN_BUFIO,			/* Index: 1 */
1995 	SD_CHAIN_BUFIO,			/* Index: 2 */
1996 
1997 	/* Chain for buf IO for disk drive targets (PM disabled) */
1998 	SD_CHAIN_BUFIO,			/* Index: 3 */
1999 	SD_CHAIN_BUFIO,			/* Index: 4 */
2000 
2001 	/* Chain for buf IO for removable-media targets (PM enabled) */
2002 	SD_CHAIN_BUFIO,			/* Index: 5 */
2003 	SD_CHAIN_BUFIO,			/* Index: 6 */
2004 	SD_CHAIN_BUFIO,			/* Index: 7 */
2005 	SD_CHAIN_BUFIO,			/* Index: 8 */
2006 
2007 	/* Chain for buf IO for removable-media targets (PM disabled) */
2008 	SD_CHAIN_BUFIO,			/* Index: 9 */
2009 	SD_CHAIN_BUFIO,			/* Index: 10 */
2010 	SD_CHAIN_BUFIO,			/* Index: 11 */
2011 
2012 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2013 	SD_CHAIN_BUFIO,			/* Index: 12 */
2014 	SD_CHAIN_BUFIO,			/* Index: 13 */
2015 	SD_CHAIN_BUFIO,			/* Index: 14 */
2016 	SD_CHAIN_BUFIO,			/* Index: 15 */
2017 
2018 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2019 	SD_CHAIN_BUFIO,			/* Index: 16 */
2020 	SD_CHAIN_BUFIO,			/* Index: 17 */
2021 	SD_CHAIN_BUFIO,			/* Index: 18 */
2022 
2023 	/* Chain for USCSI commands (non-checksum targets) */
2024 	SD_CHAIN_USCSI,			/* Index: 19 */
2025 	SD_CHAIN_USCSI,			/* Index: 20 */
2026 
2027 	/* Chain for USCSI commands (checksum targets) */
2028 	SD_CHAIN_USCSI,			/* Index: 21 */
2029 	SD_CHAIN_USCSI,			/* Index: 22 */
2030 	SD_CHAIN_USCSI,			/* Index: 22 */
2031 
2032 	/* Chain for "direct" USCSI commands (all targets) */
2033 	SD_CHAIN_DIRECT,		/* Index: 24 */
2034 
2035 	/* Chain for "direct priority" USCSI commands (all targets) */
2036 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2037 };
2038 
2039 
2040 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2041 #define	SD_IS_BUFIO(xp)			\
2042 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2043 
2044 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2045 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2046 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2047 
2048 
2049 
2050 /*
2051  * Struct, array, and macros to map a specific chain to the appropriate
2052  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2053  *
2054  * The sd_chain_index_map[] array is used at attach time to set the various
2055  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2056  * chain to be used with the instance. This allows different instances to use
2057  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2058  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2059  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2060  * dynamically & without the use of locking; and (2) a layer may update the
2061  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2062  * to allow for deferred processing of an IO within the same chain from a
2063  * different execution context.
2064  */
2065 
2066 struct sd_chain_index {
2067 	int	sci_iostart_index;
2068 	int	sci_iodone_index;
2069 };
2070 
2071 static struct sd_chain_index	sd_chain_index_map[] = {
2072 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2073 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2074 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2075 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2076 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2077 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2078 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2079 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2080 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2081 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2082 };
2083 
2084 
2085 /*
2086  * The following are indexes into the sd_chain_index_map[] array.
2087  */
2088 
2089 /* un->un_buf_chain_type must be set to one of these */
2090 #define	SD_CHAIN_INFO_DISK		0
2091 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2092 #define	SD_CHAIN_INFO_RMMEDIA		2
2093 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2094 #define	SD_CHAIN_INFO_CHKSUM		4
2095 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2096 
2097 /* un->un_uscsi_chain_type must be set to one of these */
2098 #define	SD_CHAIN_INFO_USCSI_CMD		6
2099 /* USCSI with PM disabled is the same as DIRECT */
2100 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2101 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2102 
2103 /* un->un_direct_chain_type must be set to one of these */
2104 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2105 
2106 /* un->un_priority_chain_type must be set to one of these */
2107 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2108 
2109 /* size for devid inquiries */
2110 #define	MAX_INQUIRY_SIZE		0xF0
2111 
2112 /*
2113  * Macros used by functions to pass a given buf(9S) struct along to the
2114  * next function in the layering chain for further processing.
2115  *
2116  * In the following macros, passing more than three arguments to the called
2117  * routines causes the optimizer for the SPARC compiler to stop doing tail
2118  * call elimination which results in significant performance degradation.
2119  */
2120 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2121 	((*(sd_iostart_chain[index]))(index, un, bp))
2122 
2123 #define	SD_BEGIN_IODONE(index, un, bp)	\
2124 	((*(sd_iodone_chain[index]))(index, un, bp))
2125 
2126 #define	SD_NEXT_IOSTART(index, un, bp)				\
2127 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2128 
2129 #define	SD_NEXT_IODONE(index, un, bp)				\
2130 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2131 
2132 /*
2133  *    Function: _init
2134  *
2135  * Description: This is the driver _init(9E) entry point.
2136  *
2137  * Return Code: Returns the value from mod_install(9F) or
2138  *		ddi_soft_state_init(9F) as appropriate.
2139  *
2140  *     Context: Called when driver module loaded.
2141  */
2142 
2143 int
2144 _init(void)
2145 {
2146 	int	err;
2147 
2148 	/* establish driver name from module name */
2149 	sd_label = mod_modname(&modlinkage);
2150 
2151 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2152 	    SD_MAXUNIT);
2153 
2154 	if (err != 0) {
2155 		return (err);
2156 	}
2157 
2158 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2159 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2160 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2161 
2162 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2163 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2164 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2165 
2166 	/*
2167 	 * it's ok to init here even for fibre device
2168 	 */
2169 	sd_scsi_probe_cache_init();
2170 
2171 	sd_scsi_target_lun_init();
2172 
2173 	/*
2174 	 * Creating taskq before mod_install ensures that all callers (threads)
2175 	 * that enter the module after a successfull mod_install encounter
2176 	 * a valid taskq.
2177 	 */
2178 	sd_taskq_create();
2179 
2180 	err = mod_install(&modlinkage);
2181 	if (err != 0) {
2182 		/* delete taskq if install fails */
2183 		sd_taskq_delete();
2184 
2185 		mutex_destroy(&sd_detach_mutex);
2186 		mutex_destroy(&sd_log_mutex);
2187 		mutex_destroy(&sd_label_mutex);
2188 
2189 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2190 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2191 		cv_destroy(&sd_tr.srq_inprocess_cv);
2192 
2193 		sd_scsi_probe_cache_fini();
2194 
2195 		sd_scsi_target_lun_fini();
2196 
2197 		ddi_soft_state_fini(&sd_state);
2198 		return (err);
2199 	}
2200 
2201 	return (err);
2202 }
2203 
2204 
2205 /*
2206  *    Function: _fini
2207  *
2208  * Description: This is the driver _fini(9E) entry point.
2209  *
2210  * Return Code: Returns the value from mod_remove(9F)
2211  *
2212  *     Context: Called when driver module is unloaded.
2213  */
2214 
2215 int
2216 _fini(void)
2217 {
2218 	int err;
2219 
2220 	if ((err = mod_remove(&modlinkage)) != 0) {
2221 		return (err);
2222 	}
2223 
2224 	sd_taskq_delete();
2225 
2226 	mutex_destroy(&sd_detach_mutex);
2227 	mutex_destroy(&sd_log_mutex);
2228 	mutex_destroy(&sd_label_mutex);
2229 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2230 
2231 	sd_scsi_probe_cache_fini();
2232 
2233 	sd_scsi_target_lun_fini();
2234 
2235 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2236 	cv_destroy(&sd_tr.srq_inprocess_cv);
2237 
2238 	ddi_soft_state_fini(&sd_state);
2239 
2240 	return (err);
2241 }
2242 
2243 
2244 /*
2245  *    Function: _info
2246  *
2247  * Description: This is the driver _info(9E) entry point.
2248  *
2249  *   Arguments: modinfop - pointer to the driver modinfo structure
2250  *
2251  * Return Code: Returns the value from mod_info(9F).
2252  *
2253  *     Context: Kernel thread context
2254  */
2255 
2256 int
2257 _info(struct modinfo *modinfop)
2258 {
2259 	return (mod_info(&modlinkage, modinfop));
2260 }
2261 
2262 
2263 /*
2264  * The following routines implement the driver message logging facility.
2265  * They provide component- and level- based debug output filtering.
2266  * Output may also be restricted to messages for a single instance by
2267  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2268  * to NULL, then messages for all instances are printed.
2269  *
2270  * These routines have been cloned from each other due to the language
2271  * constraints of macros and variable argument list processing.
2272  */
2273 
2274 
2275 /*
2276  *    Function: sd_log_err
2277  *
2278  * Description: This routine is called by the SD_ERROR macro for debug
2279  *		logging of error conditions.
2280  *
2281  *   Arguments: comp - driver component being logged
2282  *		dev  - pointer to driver info structure
2283  *		fmt  - error string and format to be logged
2284  */
2285 
2286 static void
2287 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2288 {
2289 	va_list		ap;
2290 	dev_info_t	*dev;
2291 
2292 	ASSERT(un != NULL);
2293 	dev = SD_DEVINFO(un);
2294 	ASSERT(dev != NULL);
2295 
2296 	/*
2297 	 * Filter messages based on the global component and level masks.
2298 	 * Also print if un matches the value of sd_debug_un, or if
2299 	 * sd_debug_un is set to NULL.
2300 	 */
2301 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2302 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2303 		mutex_enter(&sd_log_mutex);
2304 		va_start(ap, fmt);
2305 		(void) vsprintf(sd_log_buf, fmt, ap);
2306 		va_end(ap);
2307 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2308 		mutex_exit(&sd_log_mutex);
2309 	}
2310 #ifdef SD_FAULT_INJECTION
2311 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2312 	if (un->sd_injection_mask & comp) {
2313 		mutex_enter(&sd_log_mutex);
2314 		va_start(ap, fmt);
2315 		(void) vsprintf(sd_log_buf, fmt, ap);
2316 		va_end(ap);
2317 		sd_injection_log(sd_log_buf, un);
2318 		mutex_exit(&sd_log_mutex);
2319 	}
2320 #endif
2321 }
2322 
2323 
2324 /*
2325  *    Function: sd_log_info
2326  *
2327  * Description: This routine is called by the SD_INFO macro for debug
2328  *		logging of general purpose informational conditions.
2329  *
2330  *   Arguments: comp - driver component being logged
2331  *		dev  - pointer to driver info structure
2332  *		fmt  - info string and format to be logged
2333  */
2334 
2335 static void
2336 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2337 {
2338 	va_list		ap;
2339 	dev_info_t	*dev;
2340 
2341 	ASSERT(un != NULL);
2342 	dev = SD_DEVINFO(un);
2343 	ASSERT(dev != NULL);
2344 
2345 	/*
2346 	 * Filter messages based on the global component and level masks.
2347 	 * Also print if un matches the value of sd_debug_un, or if
2348 	 * sd_debug_un is set to NULL.
2349 	 */
2350 	if ((sd_component_mask & component) &&
2351 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2352 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2353 		mutex_enter(&sd_log_mutex);
2354 		va_start(ap, fmt);
2355 		(void) vsprintf(sd_log_buf, fmt, ap);
2356 		va_end(ap);
2357 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2358 		mutex_exit(&sd_log_mutex);
2359 	}
2360 #ifdef SD_FAULT_INJECTION
2361 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2362 	if (un->sd_injection_mask & component) {
2363 		mutex_enter(&sd_log_mutex);
2364 		va_start(ap, fmt);
2365 		(void) vsprintf(sd_log_buf, fmt, ap);
2366 		va_end(ap);
2367 		sd_injection_log(sd_log_buf, un);
2368 		mutex_exit(&sd_log_mutex);
2369 	}
2370 #endif
2371 }
2372 
2373 
2374 /*
2375  *    Function: sd_log_trace
2376  *
2377  * Description: This routine is called by the SD_TRACE macro for debug
2378  *		logging of trace conditions (i.e. function entry/exit).
2379  *
2380  *   Arguments: comp - driver component being logged
2381  *		dev  - pointer to driver info structure
2382  *		fmt  - trace string and format to be logged
2383  */
2384 
2385 static void
2386 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2387 {
2388 	va_list		ap;
2389 	dev_info_t	*dev;
2390 
2391 	ASSERT(un != NULL);
2392 	dev = SD_DEVINFO(un);
2393 	ASSERT(dev != NULL);
2394 
2395 	/*
2396 	 * Filter messages based on the global component and level masks.
2397 	 * Also print if un matches the value of sd_debug_un, or if
2398 	 * sd_debug_un is set to NULL.
2399 	 */
2400 	if ((sd_component_mask & component) &&
2401 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2402 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2403 		mutex_enter(&sd_log_mutex);
2404 		va_start(ap, fmt);
2405 		(void) vsprintf(sd_log_buf, fmt, ap);
2406 		va_end(ap);
2407 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2408 		mutex_exit(&sd_log_mutex);
2409 	}
2410 #ifdef SD_FAULT_INJECTION
2411 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2412 	if (un->sd_injection_mask & component) {
2413 		mutex_enter(&sd_log_mutex);
2414 		va_start(ap, fmt);
2415 		(void) vsprintf(sd_log_buf, fmt, ap);
2416 		va_end(ap);
2417 		sd_injection_log(sd_log_buf, un);
2418 		mutex_exit(&sd_log_mutex);
2419 	}
2420 #endif
2421 }
2422 
2423 
2424 /*
2425  *    Function: sdprobe
2426  *
2427  * Description: This is the driver probe(9e) entry point function.
2428  *
2429  *   Arguments: devi - opaque device info handle
2430  *
2431  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2432  *              DDI_PROBE_FAILURE: If the probe failed.
2433  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2434  *				   but may be present in the future.
2435  */
2436 
2437 static int
2438 sdprobe(dev_info_t *devi)
2439 {
2440 	struct scsi_device	*devp;
2441 	int			rval;
2442 	int			instance;
2443 
2444 	/*
2445 	 * if it wasn't for pln, sdprobe could actually be nulldev
2446 	 * in the "__fibre" case.
2447 	 */
2448 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2449 		return (DDI_PROBE_DONTCARE);
2450 	}
2451 
2452 	devp = ddi_get_driver_private(devi);
2453 
2454 	if (devp == NULL) {
2455 		/* Ooops... nexus driver is mis-configured... */
2456 		return (DDI_PROBE_FAILURE);
2457 	}
2458 
2459 	instance = ddi_get_instance(devi);
2460 
2461 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2462 		return (DDI_PROBE_PARTIAL);
2463 	}
2464 
2465 	/*
2466 	 * Call the SCSA utility probe routine to see if we actually
2467 	 * have a target at this SCSI nexus.
2468 	 */
2469 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2470 	case SCSIPROBE_EXISTS:
2471 		switch (devp->sd_inq->inq_dtype) {
2472 		case DTYPE_DIRECT:
2473 			rval = DDI_PROBE_SUCCESS;
2474 			break;
2475 		case DTYPE_RODIRECT:
2476 			/* CDs etc. Can be removable media */
2477 			rval = DDI_PROBE_SUCCESS;
2478 			break;
2479 		case DTYPE_OPTICAL:
2480 			/*
2481 			 * Rewritable optical driver HP115AA
2482 			 * Can also be removable media
2483 			 */
2484 
2485 			/*
2486 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2487 			 * pre solaris 9 sparc sd behavior is required
2488 			 *
2489 			 * If first time through and sd_dtype_optical_bind
2490 			 * has not been set in /etc/system check properties
2491 			 */
2492 
2493 			if (sd_dtype_optical_bind  < 0) {
2494 				sd_dtype_optical_bind = ddi_prop_get_int
2495 				    (DDI_DEV_T_ANY, devi, 0,
2496 				    "optical-device-bind", 1);
2497 			}
2498 
2499 			if (sd_dtype_optical_bind == 0) {
2500 				rval = DDI_PROBE_FAILURE;
2501 			} else {
2502 				rval = DDI_PROBE_SUCCESS;
2503 			}
2504 			break;
2505 
2506 		case DTYPE_NOTPRESENT:
2507 		default:
2508 			rval = DDI_PROBE_FAILURE;
2509 			break;
2510 		}
2511 		break;
2512 	default:
2513 		rval = DDI_PROBE_PARTIAL;
2514 		break;
2515 	}
2516 
2517 	/*
2518 	 * This routine checks for resource allocation prior to freeing,
2519 	 * so it will take care of the "smart probing" case where a
2520 	 * scsi_probe() may or may not have been issued and will *not*
2521 	 * free previously-freed resources.
2522 	 */
2523 	scsi_unprobe(devp);
2524 	return (rval);
2525 }
2526 
2527 
2528 /*
2529  *    Function: sdinfo
2530  *
2531  * Description: This is the driver getinfo(9e) entry point function.
2532  * 		Given the device number, return the devinfo pointer from
2533  *		the scsi_device structure or the instance number
2534  *		associated with the dev_t.
2535  *
2536  *   Arguments: dip     - pointer to device info structure
2537  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2538  *			  DDI_INFO_DEVT2INSTANCE)
2539  *		arg     - driver dev_t
2540  *		resultp - user buffer for request response
2541  *
2542  * Return Code: DDI_SUCCESS
2543  *              DDI_FAILURE
2544  */
2545 /* ARGSUSED */
2546 static int
2547 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2548 {
2549 	struct sd_lun	*un;
2550 	dev_t		dev;
2551 	int		instance;
2552 	int		error;
2553 
2554 	switch (infocmd) {
2555 	case DDI_INFO_DEVT2DEVINFO:
2556 		dev = (dev_t)arg;
2557 		instance = SDUNIT(dev);
2558 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2559 			return (DDI_FAILURE);
2560 		}
2561 		*result = (void *) SD_DEVINFO(un);
2562 		error = DDI_SUCCESS;
2563 		break;
2564 	case DDI_INFO_DEVT2INSTANCE:
2565 		dev = (dev_t)arg;
2566 		instance = SDUNIT(dev);
2567 		*result = (void *)(uintptr_t)instance;
2568 		error = DDI_SUCCESS;
2569 		break;
2570 	default:
2571 		error = DDI_FAILURE;
2572 	}
2573 	return (error);
2574 }
2575 
2576 /*
2577  *    Function: sd_prop_op
2578  *
2579  * Description: This is the driver prop_op(9e) entry point function.
2580  *		Return the number of blocks for the partition in question
2581  *		or forward the request to the property facilities.
2582  *
2583  *   Arguments: dev       - device number
2584  *		dip       - pointer to device info structure
2585  *		prop_op   - property operator
2586  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2587  *		name      - pointer to property name
2588  *		valuep    - pointer or address of the user buffer
2589  *		lengthp   - property length
2590  *
2591  * Return Code: DDI_PROP_SUCCESS
2592  *              DDI_PROP_NOT_FOUND
2593  *              DDI_PROP_UNDEFINED
2594  *              DDI_PROP_NO_MEMORY
2595  *              DDI_PROP_BUF_TOO_SMALL
2596  */
2597 
2598 static int
2599 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2600 	char *name, caddr_t valuep, int *lengthp)
2601 {
2602 	int		instance = ddi_get_instance(dip);
2603 	struct sd_lun	*un;
2604 	uint64_t	nblocks64;
2605 	uint_t		dblk;
2606 
2607 	/*
2608 	 * Our dynamic properties are all device specific and size oriented.
2609 	 * Requests issued under conditions where size is valid are passed
2610 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2611 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2612 	 */
2613 	un = ddi_get_soft_state(sd_state, instance);
2614 	if ((dev == DDI_DEV_T_ANY) || (un == NULL)) {
2615 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2616 		    name, valuep, lengthp));
2617 	} else if (!SD_IS_VALID_LABEL(un)) {
2618 		return (ddi_prop_op(dev, dip, prop_op, mod_flags, name,
2619 		    valuep, lengthp));
2620 	}
2621 
2622 	/* get nblocks value */
2623 	ASSERT(!mutex_owned(SD_MUTEX(un)));
2624 
2625 	(void) cmlb_partinfo(un->un_cmlbhandle, SDPART(dev),
2626 	    (diskaddr_t *)&nblocks64, NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
2627 
2628 	/* report size in target size blocks */
2629 	dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
2630 	return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op, mod_flags,
2631 	    name, valuep, lengthp, nblocks64 / dblk, un->un_tgt_blocksize));
2632 }
2633 
2634 /*
2635  * The following functions are for smart probing:
2636  * sd_scsi_probe_cache_init()
2637  * sd_scsi_probe_cache_fini()
2638  * sd_scsi_clear_probe_cache()
2639  * sd_scsi_probe_with_cache()
2640  */
2641 
2642 /*
2643  *    Function: sd_scsi_probe_cache_init
2644  *
2645  * Description: Initializes the probe response cache mutex and head pointer.
2646  *
2647  *     Context: Kernel thread context
2648  */
2649 
2650 static void
2651 sd_scsi_probe_cache_init(void)
2652 {
2653 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2654 	sd_scsi_probe_cache_head = NULL;
2655 }
2656 
2657 
2658 /*
2659  *    Function: sd_scsi_probe_cache_fini
2660  *
2661  * Description: Frees all resources associated with the probe response cache.
2662  *
2663  *     Context: Kernel thread context
2664  */
2665 
2666 static void
2667 sd_scsi_probe_cache_fini(void)
2668 {
2669 	struct sd_scsi_probe_cache *cp;
2670 	struct sd_scsi_probe_cache *ncp;
2671 
2672 	/* Clean up our smart probing linked list */
2673 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2674 		ncp = cp->next;
2675 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2676 	}
2677 	sd_scsi_probe_cache_head = NULL;
2678 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2679 }
2680 
2681 
2682 /*
2683  *    Function: sd_scsi_clear_probe_cache
2684  *
2685  * Description: This routine clears the probe response cache. This is
2686  *		done when open() returns ENXIO so that when deferred
2687  *		attach is attempted (possibly after a device has been
2688  *		turned on) we will retry the probe. Since we don't know
2689  *		which target we failed to open, we just clear the
2690  *		entire cache.
2691  *
2692  *     Context: Kernel thread context
2693  */
2694 
2695 static void
2696 sd_scsi_clear_probe_cache(void)
2697 {
2698 	struct sd_scsi_probe_cache	*cp;
2699 	int				i;
2700 
2701 	mutex_enter(&sd_scsi_probe_cache_mutex);
2702 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2703 		/*
2704 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2705 		 * force probing to be performed the next time
2706 		 * sd_scsi_probe_with_cache is called.
2707 		 */
2708 		for (i = 0; i < NTARGETS_WIDE; i++) {
2709 			cp->cache[i] = SCSIPROBE_EXISTS;
2710 		}
2711 	}
2712 	mutex_exit(&sd_scsi_probe_cache_mutex);
2713 }
2714 
2715 
2716 /*
2717  *    Function: sd_scsi_probe_with_cache
2718  *
2719  * Description: This routine implements support for a scsi device probe
2720  *		with cache. The driver maintains a cache of the target
2721  *		responses to scsi probes. If we get no response from a
2722  *		target during a probe inquiry, we remember that, and we
2723  *		avoid additional calls to scsi_probe on non-zero LUNs
2724  *		on the same target until the cache is cleared. By doing
2725  *		so we avoid the 1/4 sec selection timeout for nonzero
2726  *		LUNs. lun0 of a target is always probed.
2727  *
2728  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2729  *              waitfunc - indicates what the allocator routines should
2730  *			   do when resources are not available. This value
2731  *			   is passed on to scsi_probe() when that routine
2732  *			   is called.
2733  *
2734  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2735  *		otherwise the value returned by scsi_probe(9F).
2736  *
2737  *     Context: Kernel thread context
2738  */
2739 
2740 static int
2741 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2742 {
2743 	struct sd_scsi_probe_cache	*cp;
2744 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2745 	int		lun, tgt;
2746 
2747 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2748 	    SCSI_ADDR_PROP_LUN, 0);
2749 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2750 	    SCSI_ADDR_PROP_TARGET, -1);
2751 
2752 	/* Make sure caching enabled and target in range */
2753 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2754 		/* do it the old way (no cache) */
2755 		return (scsi_probe(devp, waitfn));
2756 	}
2757 
2758 	mutex_enter(&sd_scsi_probe_cache_mutex);
2759 
2760 	/* Find the cache for this scsi bus instance */
2761 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2762 		if (cp->pdip == pdip) {
2763 			break;
2764 		}
2765 	}
2766 
2767 	/* If we can't find a cache for this pdip, create one */
2768 	if (cp == NULL) {
2769 		int i;
2770 
2771 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2772 		    KM_SLEEP);
2773 		cp->pdip = pdip;
2774 		cp->next = sd_scsi_probe_cache_head;
2775 		sd_scsi_probe_cache_head = cp;
2776 		for (i = 0; i < NTARGETS_WIDE; i++) {
2777 			cp->cache[i] = SCSIPROBE_EXISTS;
2778 		}
2779 	}
2780 
2781 	mutex_exit(&sd_scsi_probe_cache_mutex);
2782 
2783 	/* Recompute the cache for this target if LUN zero */
2784 	if (lun == 0) {
2785 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2786 	}
2787 
2788 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2789 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2790 		return (SCSIPROBE_NORESP);
2791 	}
2792 
2793 	/* Do the actual probe; save & return the result */
2794 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2795 }
2796 
2797 
2798 /*
2799  *    Function: sd_scsi_target_lun_init
2800  *
2801  * Description: Initializes the attached lun chain mutex and head pointer.
2802  *
2803  *     Context: Kernel thread context
2804  */
2805 
2806 static void
2807 sd_scsi_target_lun_init(void)
2808 {
2809 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2810 	sd_scsi_target_lun_head = NULL;
2811 }
2812 
2813 
2814 /*
2815  *    Function: sd_scsi_target_lun_fini
2816  *
2817  * Description: Frees all resources associated with the attached lun
2818  *              chain
2819  *
2820  *     Context: Kernel thread context
2821  */
2822 
2823 static void
2824 sd_scsi_target_lun_fini(void)
2825 {
2826 	struct sd_scsi_hba_tgt_lun	*cp;
2827 	struct sd_scsi_hba_tgt_lun	*ncp;
2828 
2829 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2830 		ncp = cp->next;
2831 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2832 	}
2833 	sd_scsi_target_lun_head = NULL;
2834 	mutex_destroy(&sd_scsi_target_lun_mutex);
2835 }
2836 
2837 
2838 /*
2839  *    Function: sd_scsi_get_target_lun_count
2840  *
2841  * Description: This routine will check in the attached lun chain to see
2842  * 		how many luns are attached on the required SCSI controller
2843  * 		and target. Currently, some capabilities like tagged queue
2844  *		are supported per target based by HBA. So all luns in a
2845  *		target have the same capabilities. Based on this assumption,
2846  * 		sd should only set these capabilities once per target. This
2847  *		function is called when sd needs to decide how many luns
2848  *		already attached on a target.
2849  *
2850  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2851  *			  controller device.
2852  *              target	- The target ID on the controller's SCSI bus.
2853  *
2854  * Return Code: The number of luns attached on the required target and
2855  *		controller.
2856  *		-1 if target ID is not in parallel SCSI scope or the given
2857  * 		dip is not in the chain.
2858  *
2859  *     Context: Kernel thread context
2860  */
2861 
2862 static int
2863 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2864 {
2865 	struct sd_scsi_hba_tgt_lun	*cp;
2866 
2867 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2868 		return (-1);
2869 	}
2870 
2871 	mutex_enter(&sd_scsi_target_lun_mutex);
2872 
2873 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2874 		if (cp->pdip == dip) {
2875 			break;
2876 		}
2877 	}
2878 
2879 	mutex_exit(&sd_scsi_target_lun_mutex);
2880 
2881 	if (cp == NULL) {
2882 		return (-1);
2883 	}
2884 
2885 	return (cp->nlun[target]);
2886 }
2887 
2888 
2889 /*
2890  *    Function: sd_scsi_update_lun_on_target
2891  *
2892  * Description: This routine is used to update the attached lun chain when a
2893  *		lun is attached or detached on a target.
2894  *
2895  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2896  *                        controller device.
2897  *              target  - The target ID on the controller's SCSI bus.
2898  *		flag	- Indicate the lun is attached or detached.
2899  *
2900  *     Context: Kernel thread context
2901  */
2902 
2903 static void
2904 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2905 {
2906 	struct sd_scsi_hba_tgt_lun	*cp;
2907 
2908 	mutex_enter(&sd_scsi_target_lun_mutex);
2909 
2910 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2911 		if (cp->pdip == dip) {
2912 			break;
2913 		}
2914 	}
2915 
2916 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2917 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2918 		    KM_SLEEP);
2919 		cp->pdip = dip;
2920 		cp->next = sd_scsi_target_lun_head;
2921 		sd_scsi_target_lun_head = cp;
2922 	}
2923 
2924 	mutex_exit(&sd_scsi_target_lun_mutex);
2925 
2926 	if (cp != NULL) {
2927 		if (flag == SD_SCSI_LUN_ATTACH) {
2928 			cp->nlun[target] ++;
2929 		} else {
2930 			cp->nlun[target] --;
2931 		}
2932 	}
2933 }
2934 
2935 
2936 /*
2937  *    Function: sd_spin_up_unit
2938  *
2939  * Description: Issues the following commands to spin-up the device:
2940  *		START STOP UNIT, and INQUIRY.
2941  *
2942  *   Arguments: un - driver soft state (unit) structure
2943  *
2944  * Return Code: 0 - success
2945  *		EIO - failure
2946  *		EACCES - reservation conflict
2947  *
2948  *     Context: Kernel thread context
2949  */
2950 
2951 static int
2952 sd_spin_up_unit(struct sd_lun *un)
2953 {
2954 	size_t	resid		= 0;
2955 	int	has_conflict	= FALSE;
2956 	uchar_t *bufaddr;
2957 
2958 	ASSERT(un != NULL);
2959 
2960 	/*
2961 	 * Send a throwaway START UNIT command.
2962 	 *
2963 	 * If we fail on this, we don't care presently what precisely
2964 	 * is wrong.  EMC's arrays will also fail this with a check
2965 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2966 	 * we don't want to fail the attach because it may become
2967 	 * "active" later.
2968 	 */
2969 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2970 	    == EACCES)
2971 		has_conflict = TRUE;
2972 
2973 	/*
2974 	 * Send another INQUIRY command to the target. This is necessary for
2975 	 * non-removable media direct access devices because their INQUIRY data
2976 	 * may not be fully qualified until they are spun up (perhaps via the
2977 	 * START command above).  Note: This seems to be needed for some
2978 	 * legacy devices only.) The INQUIRY command should succeed even if a
2979 	 * Reservation Conflict is present.
2980 	 */
2981 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2982 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2983 		kmem_free(bufaddr, SUN_INQSIZE);
2984 		return (EIO);
2985 	}
2986 
2987 	/*
2988 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2989 	 * Note that this routine does not return a failure here even if the
2990 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2991 	 */
2992 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2993 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2994 	}
2995 
2996 	kmem_free(bufaddr, SUN_INQSIZE);
2997 
2998 	/* If we hit a reservation conflict above, tell the caller. */
2999 	if (has_conflict == TRUE) {
3000 		return (EACCES);
3001 	}
3002 
3003 	return (0);
3004 }
3005 
3006 #ifdef _LP64
3007 /*
3008  *    Function: sd_enable_descr_sense
3009  *
3010  * Description: This routine attempts to select descriptor sense format
3011  *		using the Control mode page.  Devices that support 64 bit
3012  *		LBAs (for >2TB luns) should also implement descriptor
3013  *		sense data so we will call this function whenever we see
3014  *		a lun larger than 2TB.  If for some reason the device
3015  *		supports 64 bit LBAs but doesn't support descriptor sense
3016  *		presumably the mode select will fail.  Everything will
3017  *		continue to work normally except that we will not get
3018  *		complete sense data for commands that fail with an LBA
3019  *		larger than 32 bits.
3020  *
3021  *   Arguments: un - driver soft state (unit) structure
3022  *
3023  *     Context: Kernel thread context only
3024  */
3025 
3026 static void
3027 sd_enable_descr_sense(struct sd_lun *un)
3028 {
3029 	uchar_t			*header;
3030 	struct mode_control_scsi3 *ctrl_bufp;
3031 	size_t			buflen;
3032 	size_t			bd_len;
3033 
3034 	/*
3035 	 * Read MODE SENSE page 0xA, Control Mode Page
3036 	 */
3037 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3038 	    sizeof (struct mode_control_scsi3);
3039 	header = kmem_zalloc(buflen, KM_SLEEP);
3040 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3041 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3042 		SD_ERROR(SD_LOG_COMMON, un,
3043 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3044 		goto eds_exit;
3045 	}
3046 
3047 	/*
3048 	 * Determine size of Block Descriptors in order to locate
3049 	 * the mode page data. ATAPI devices return 0, SCSI devices
3050 	 * should return MODE_BLK_DESC_LENGTH.
3051 	 */
3052 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3053 
3054 	/* Clear the mode data length field for MODE SELECT */
3055 	((struct mode_header *)header)->length = 0;
3056 
3057 	ctrl_bufp = (struct mode_control_scsi3 *)
3058 	    (header + MODE_HEADER_LENGTH + bd_len);
3059 
3060 	/*
3061 	 * If the page length is smaller than the expected value,
3062 	 * the target device doesn't support D_SENSE. Bail out here.
3063 	 */
3064 	if (ctrl_bufp->mode_page.length <
3065 	    sizeof (struct mode_control_scsi3) - 2) {
3066 		SD_ERROR(SD_LOG_COMMON, un,
3067 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3068 		goto eds_exit;
3069 	}
3070 
3071 	/*
3072 	 * Clear PS bit for MODE SELECT
3073 	 */
3074 	ctrl_bufp->mode_page.ps = 0;
3075 
3076 	/*
3077 	 * Set D_SENSE to enable descriptor sense format.
3078 	 */
3079 	ctrl_bufp->d_sense = 1;
3080 
3081 	/*
3082 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3083 	 */
3084 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3085 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3086 		SD_INFO(SD_LOG_COMMON, un,
3087 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3088 		goto eds_exit;
3089 	}
3090 
3091 eds_exit:
3092 	kmem_free(header, buflen);
3093 }
3094 
3095 /*
3096  *    Function: sd_reenable_dsense_task
3097  *
3098  * Description: Re-enable descriptor sense after device or bus reset
3099  *
3100  *     Context: Executes in a taskq() thread context
3101  */
3102 static void
3103 sd_reenable_dsense_task(void *arg)
3104 {
3105 	struct	sd_lun	*un = arg;
3106 
3107 	ASSERT(un != NULL);
3108 	sd_enable_descr_sense(un);
3109 }
3110 #endif /* _LP64 */
3111 
3112 /*
3113  *    Function: sd_set_mmc_caps
3114  *
3115  * Description: This routine determines if the device is MMC compliant and if
3116  *		the device supports CDDA via a mode sense of the CDVD
3117  *		capabilities mode page. Also checks if the device is a
3118  *		dvdram writable device.
3119  *
3120  *   Arguments: un - driver soft state (unit) structure
3121  *
3122  *     Context: Kernel thread context only
3123  */
3124 
3125 static void
3126 sd_set_mmc_caps(struct sd_lun *un)
3127 {
3128 	struct mode_header_grp2		*sense_mhp;
3129 	uchar_t				*sense_page;
3130 	caddr_t				buf;
3131 	int				bd_len;
3132 	int				status;
3133 	struct uscsi_cmd		com;
3134 	int				rtn;
3135 	uchar_t				*out_data_rw, *out_data_hd;
3136 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3137 
3138 	ASSERT(un != NULL);
3139 
3140 	/*
3141 	 * The flags which will be set in this function are - mmc compliant,
3142 	 * dvdram writable device, cdda support. Initialize them to FALSE
3143 	 * and if a capability is detected - it will be set to TRUE.
3144 	 */
3145 	un->un_f_mmc_cap = FALSE;
3146 	un->un_f_dvdram_writable_device = FALSE;
3147 	un->un_f_cfg_cdda = FALSE;
3148 
3149 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3150 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3151 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3152 
3153 	if (status != 0) {
3154 		/* command failed; just return */
3155 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3156 		return;
3157 	}
3158 	/*
3159 	 * If the mode sense request for the CDROM CAPABILITIES
3160 	 * page (0x2A) succeeds the device is assumed to be MMC.
3161 	 */
3162 	un->un_f_mmc_cap = TRUE;
3163 
3164 	/* Get to the page data */
3165 	sense_mhp = (struct mode_header_grp2 *)buf;
3166 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3167 	    sense_mhp->bdesc_length_lo;
3168 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3169 		/*
3170 		 * We did not get back the expected block descriptor
3171 		 * length so we cannot determine if the device supports
3172 		 * CDDA. However, we still indicate the device is MMC
3173 		 * according to the successful response to the page
3174 		 * 0x2A mode sense request.
3175 		 */
3176 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3177 		    "sd_set_mmc_caps: Mode Sense returned "
3178 		    "invalid block descriptor length\n");
3179 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3180 		return;
3181 	}
3182 
3183 	/* See if read CDDA is supported */
3184 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3185 	    bd_len);
3186 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3187 
3188 	/* See if writing DVD RAM is supported. */
3189 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3190 	if (un->un_f_dvdram_writable_device == TRUE) {
3191 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3192 		return;
3193 	}
3194 
3195 	/*
3196 	 * If the device presents DVD or CD capabilities in the mode
3197 	 * page, we can return here since a RRD will not have
3198 	 * these capabilities.
3199 	 */
3200 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3201 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3202 		return;
3203 	}
3204 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3205 
3206 	/*
3207 	 * If un->un_f_dvdram_writable_device is still FALSE,
3208 	 * check for a Removable Rigid Disk (RRD).  A RRD
3209 	 * device is identified by the features RANDOM_WRITABLE and
3210 	 * HARDWARE_DEFECT_MANAGEMENT.
3211 	 */
3212 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3213 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3214 
3215 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3216 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3217 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3218 	if (rtn != 0) {
3219 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3220 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3221 		return;
3222 	}
3223 
3224 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3225 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3226 
3227 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3228 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3229 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3230 	if (rtn == 0) {
3231 		/*
3232 		 * We have good information, check for random writable
3233 		 * and hardware defect features.
3234 		 */
3235 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3236 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3237 			un->un_f_dvdram_writable_device = TRUE;
3238 		}
3239 	}
3240 
3241 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3242 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3243 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3244 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3245 }
3246 
3247 /*
3248  *    Function: sd_check_for_writable_cd
3249  *
3250  * Description: This routine determines if the media in the device is
3251  *		writable or not. It uses the get configuration command (0x46)
3252  *		to determine if the media is writable
3253  *
3254  *   Arguments: un - driver soft state (unit) structure
3255  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3256  *                           chain and the normal command waitq, or
3257  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3258  *                           "direct" chain and bypass the normal command
3259  *                           waitq.
3260  *
3261  *     Context: Never called at interrupt context.
3262  */
3263 
3264 static void
3265 sd_check_for_writable_cd(struct sd_lun *un, int path_flag)
3266 {
3267 	struct uscsi_cmd		com;
3268 	uchar_t				*out_data;
3269 	uchar_t				*rqbuf;
3270 	int				rtn;
3271 	uchar_t				*out_data_rw, *out_data_hd;
3272 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3273 	struct mode_header_grp2		*sense_mhp;
3274 	uchar_t				*sense_page;
3275 	caddr_t				buf;
3276 	int				bd_len;
3277 	int				status;
3278 
3279 	ASSERT(un != NULL);
3280 	ASSERT(mutex_owned(SD_MUTEX(un)));
3281 
3282 	/*
3283 	 * Initialize the writable media to false, if configuration info.
3284 	 * tells us otherwise then only we will set it.
3285 	 */
3286 	un->un_f_mmc_writable_media = FALSE;
3287 	mutex_exit(SD_MUTEX(un));
3288 
3289 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3290 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3291 
3292 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3293 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3294 
3295 	mutex_enter(SD_MUTEX(un));
3296 	if (rtn == 0) {
3297 		/*
3298 		 * We have good information, check for writable DVD.
3299 		 */
3300 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3301 			un->un_f_mmc_writable_media = TRUE;
3302 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3303 			kmem_free(rqbuf, SENSE_LENGTH);
3304 			return;
3305 		}
3306 	}
3307 
3308 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3309 	kmem_free(rqbuf, SENSE_LENGTH);
3310 
3311 	/*
3312 	 * Determine if this is a RRD type device.
3313 	 */
3314 	mutex_exit(SD_MUTEX(un));
3315 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3316 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3317 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3318 	mutex_enter(SD_MUTEX(un));
3319 	if (status != 0) {
3320 		/* command failed; just return */
3321 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3322 		return;
3323 	}
3324 
3325 	/* Get to the page data */
3326 	sense_mhp = (struct mode_header_grp2 *)buf;
3327 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3328 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3329 		/*
3330 		 * We did not get back the expected block descriptor length so
3331 		 * we cannot check the mode page.
3332 		 */
3333 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3334 		    "sd_check_for_writable_cd: Mode Sense returned "
3335 		    "invalid block descriptor length\n");
3336 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3337 		return;
3338 	}
3339 
3340 	/*
3341 	 * If the device presents DVD or CD capabilities in the mode
3342 	 * page, we can return here since a RRD device will not have
3343 	 * these capabilities.
3344 	 */
3345 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3346 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3347 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3348 		return;
3349 	}
3350 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3351 
3352 	/*
3353 	 * If un->un_f_mmc_writable_media is still FALSE,
3354 	 * check for RRD type media.  A RRD device is identified
3355 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3356 	 */
3357 	mutex_exit(SD_MUTEX(un));
3358 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3359 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3360 
3361 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3362 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3363 	    RANDOM_WRITABLE, path_flag);
3364 	if (rtn != 0) {
3365 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3366 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3367 		mutex_enter(SD_MUTEX(un));
3368 		return;
3369 	}
3370 
3371 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3372 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3373 
3374 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3375 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3376 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3377 	mutex_enter(SD_MUTEX(un));
3378 	if (rtn == 0) {
3379 		/*
3380 		 * We have good information, check for random writable
3381 		 * and hardware defect features as current.
3382 		 */
3383 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3384 		    (out_data_rw[10] & 0x1) &&
3385 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3386 		    (out_data_hd[10] & 0x1)) {
3387 			un->un_f_mmc_writable_media = TRUE;
3388 		}
3389 	}
3390 
3391 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3392 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3393 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3394 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3395 }
3396 
3397 /*
3398  *    Function: sd_read_unit_properties
3399  *
3400  * Description: The following implements a property lookup mechanism.
3401  *		Properties for particular disks (keyed on vendor, model
3402  *		and rev numbers) are sought in the sd.conf file via
3403  *		sd_process_sdconf_file(), and if not found there, are
3404  *		looked for in a list hardcoded in this driver via
3405  *		sd_process_sdconf_table() Once located the properties
3406  *		are used to update the driver unit structure.
3407  *
3408  *   Arguments: un - driver soft state (unit) structure
3409  */
3410 
3411 static void
3412 sd_read_unit_properties(struct sd_lun *un)
3413 {
3414 	/*
3415 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3416 	 * the "sd-config-list" property (from the sd.conf file) or if
3417 	 * there was not a match for the inquiry vid/pid. If this event
3418 	 * occurs the static driver configuration table is searched for
3419 	 * a match.
3420 	 */
3421 	ASSERT(un != NULL);
3422 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3423 		sd_process_sdconf_table(un);
3424 	}
3425 
3426 	/* check for LSI device */
3427 	sd_is_lsi(un);
3428 
3429 
3430 }
3431 
3432 
3433 /*
3434  *    Function: sd_process_sdconf_file
3435  *
3436  * Description: Use ddi_getlongprop to obtain the properties from the
3437  *		driver's config file (ie, sd.conf) and update the driver
3438  *		soft state structure accordingly.
3439  *
3440  *   Arguments: un - driver soft state (unit) structure
3441  *
3442  * Return Code: SD_SUCCESS - The properties were successfully set according
3443  *			     to the driver configuration file.
3444  *		SD_FAILURE - The driver config list was not obtained or
3445  *			     there was no vid/pid match. This indicates that
3446  *			     the static config table should be used.
3447  *
3448  * The config file has a property, "sd-config-list", which consists of
3449  * one or more duplets as follows:
3450  *
3451  *  sd-config-list=
3452  *	<duplet>,
3453  *	[<duplet>,]
3454  *	[<duplet>];
3455  *
3456  * The structure of each duplet is as follows:
3457  *
3458  *  <duplet>:= <vid+pid>,<data-property-name_list>
3459  *
3460  * The first entry of the duplet is the device ID string (the concatenated
3461  * vid & pid; not to be confused with a device_id).  This is defined in
3462  * the same way as in the sd_disk_table.
3463  *
3464  * The second part of the duplet is a string that identifies a
3465  * data-property-name-list. The data-property-name-list is defined as
3466  * follows:
3467  *
3468  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3469  *
3470  * The syntax of <data-property-name> depends on the <version> field.
3471  *
3472  * If version = SD_CONF_VERSION_1 we have the following syntax:
3473  *
3474  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3475  *
3476  * where the prop0 value will be used to set prop0 if bit0 set in the
3477  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3478  *
3479  */
3480 
3481 static int
3482 sd_process_sdconf_file(struct sd_lun *un)
3483 {
3484 	char	*config_list = NULL;
3485 	int	config_list_len;
3486 	int	len;
3487 	int	dupletlen = 0;
3488 	char	*vidptr;
3489 	int	vidlen;
3490 	char	*dnlist_ptr;
3491 	char	*dataname_ptr;
3492 	int	dnlist_len;
3493 	int	dataname_len;
3494 	int	*data_list;
3495 	int	data_list_len;
3496 	int	rval = SD_FAILURE;
3497 	int	i;
3498 
3499 	ASSERT(un != NULL);
3500 
3501 	/* Obtain the configuration list associated with the .conf file */
3502 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3503 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3504 	    != DDI_PROP_SUCCESS) {
3505 		return (SD_FAILURE);
3506 	}
3507 
3508 	/*
3509 	 * Compare vids in each duplet to the inquiry vid - if a match is
3510 	 * made, get the data value and update the soft state structure
3511 	 * accordingly.
3512 	 *
3513 	 * Note: This algorithm is complex and difficult to maintain. It should
3514 	 * be replaced with a more robust implementation.
3515 	 */
3516 	for (len = config_list_len, vidptr = config_list; len > 0;
3517 	    vidptr += dupletlen, len -= dupletlen) {
3518 		/*
3519 		 * Note: The assumption here is that each vid entry is on
3520 		 * a unique line from its associated duplet.
3521 		 */
3522 		vidlen = dupletlen = (int)strlen(vidptr);
3523 		if ((vidlen == 0) ||
3524 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3525 			dupletlen++;
3526 			continue;
3527 		}
3528 
3529 		/*
3530 		 * dnlist contains 1 or more blank separated
3531 		 * data-property-name entries
3532 		 */
3533 		dnlist_ptr = vidptr + vidlen + 1;
3534 		dnlist_len = (int)strlen(dnlist_ptr);
3535 		dupletlen += dnlist_len + 2;
3536 
3537 		/*
3538 		 * Set a pointer for the first data-property-name
3539 		 * entry in the list
3540 		 */
3541 		dataname_ptr = dnlist_ptr;
3542 		dataname_len = 0;
3543 
3544 		/*
3545 		 * Loop through all data-property-name entries in the
3546 		 * data-property-name-list setting the properties for each.
3547 		 */
3548 		while (dataname_len < dnlist_len) {
3549 			int version;
3550 
3551 			/*
3552 			 * Determine the length of the current
3553 			 * data-property-name entry by indexing until a
3554 			 * blank or NULL is encountered. When the space is
3555 			 * encountered reset it to a NULL for compliance
3556 			 * with ddi_getlongprop().
3557 			 */
3558 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3559 			    (dataname_ptr[i] != '\0')); i++) {
3560 				;
3561 			}
3562 
3563 			dataname_len += i;
3564 			/* If not null terminated, Make it so */
3565 			if (dataname_ptr[i] == ' ') {
3566 				dataname_ptr[i] = '\0';
3567 			}
3568 			dataname_len++;
3569 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3570 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3571 			    vidptr, dataname_ptr);
3572 
3573 			/* Get the data list */
3574 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3575 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3576 			    != DDI_PROP_SUCCESS) {
3577 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3578 				    "sd_process_sdconf_file: data property (%s)"
3579 				    " has no value\n", dataname_ptr);
3580 				dataname_ptr = dnlist_ptr + dataname_len;
3581 				continue;
3582 			}
3583 
3584 			version = data_list[0];
3585 
3586 			if (version == SD_CONF_VERSION_1) {
3587 				sd_tunables values;
3588 
3589 				/* Set the properties */
3590 				if (sd_chk_vers1_data(un, data_list[1],
3591 				    &data_list[2], data_list_len, dataname_ptr)
3592 				    == SD_SUCCESS) {
3593 					sd_get_tunables_from_conf(un,
3594 					    data_list[1], &data_list[2],
3595 					    &values);
3596 					sd_set_vers1_properties(un,
3597 					    data_list[1], &values);
3598 					rval = SD_SUCCESS;
3599 				} else {
3600 					rval = SD_FAILURE;
3601 				}
3602 			} else {
3603 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3604 				    "data property %s version 0x%x is invalid.",
3605 				    dataname_ptr, version);
3606 				rval = SD_FAILURE;
3607 			}
3608 			kmem_free(data_list, data_list_len);
3609 			dataname_ptr = dnlist_ptr + dataname_len;
3610 		}
3611 	}
3612 
3613 	/* free up the memory allocated by ddi_getlongprop */
3614 	if (config_list) {
3615 		kmem_free(config_list, config_list_len);
3616 	}
3617 
3618 	return (rval);
3619 }
3620 
3621 /*
3622  *    Function: sd_get_tunables_from_conf()
3623  *
3624  *
3625  *    This function reads the data list from the sd.conf file and pulls
3626  *    the values that can have numeric values as arguments and places
3627  *    the values in the appropriate sd_tunables member.
3628  *    Since the order of the data list members varies across platforms
3629  *    This function reads them from the data list in a platform specific
3630  *    order and places them into the correct sd_tunable member that is
3631  *    consistent across all platforms.
3632  */
3633 static void
3634 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3635     sd_tunables *values)
3636 {
3637 	int i;
3638 	int mask;
3639 
3640 	bzero(values, sizeof (sd_tunables));
3641 
3642 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3643 
3644 		mask = 1 << i;
3645 		if (mask > flags) {
3646 			break;
3647 		}
3648 
3649 		switch (mask & flags) {
3650 		case 0:	/* This mask bit not set in flags */
3651 			continue;
3652 		case SD_CONF_BSET_THROTTLE:
3653 			values->sdt_throttle = data_list[i];
3654 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3655 			    "sd_get_tunables_from_conf: throttle = %d\n",
3656 			    values->sdt_throttle);
3657 			break;
3658 		case SD_CONF_BSET_CTYPE:
3659 			values->sdt_ctype = data_list[i];
3660 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3661 			    "sd_get_tunables_from_conf: ctype = %d\n",
3662 			    values->sdt_ctype);
3663 			break;
3664 		case SD_CONF_BSET_NRR_COUNT:
3665 			values->sdt_not_rdy_retries = data_list[i];
3666 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3667 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3668 			    values->sdt_not_rdy_retries);
3669 			break;
3670 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3671 			values->sdt_busy_retries = data_list[i];
3672 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3673 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3674 			    values->sdt_busy_retries);
3675 			break;
3676 		case SD_CONF_BSET_RST_RETRIES:
3677 			values->sdt_reset_retries = data_list[i];
3678 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3679 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3680 			    values->sdt_reset_retries);
3681 			break;
3682 		case SD_CONF_BSET_RSV_REL_TIME:
3683 			values->sdt_reserv_rel_time = data_list[i];
3684 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3685 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3686 			    values->sdt_reserv_rel_time);
3687 			break;
3688 		case SD_CONF_BSET_MIN_THROTTLE:
3689 			values->sdt_min_throttle = data_list[i];
3690 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3691 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3692 			    values->sdt_min_throttle);
3693 			break;
3694 		case SD_CONF_BSET_DISKSORT_DISABLED:
3695 			values->sdt_disk_sort_dis = data_list[i];
3696 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3697 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3698 			    values->sdt_disk_sort_dis);
3699 			break;
3700 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3701 			values->sdt_lun_reset_enable = data_list[i];
3702 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3703 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3704 			    "\n", values->sdt_lun_reset_enable);
3705 			break;
3706 		case SD_CONF_BSET_CACHE_IS_NV:
3707 			values->sdt_suppress_cache_flush = data_list[i];
3708 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3709 			    "sd_get_tunables_from_conf: \
3710 			    suppress_cache_flush = %d"
3711 			    "\n", values->sdt_suppress_cache_flush);
3712 			break;
3713 		}
3714 	}
3715 }
3716 
3717 /*
3718  *    Function: sd_process_sdconf_table
3719  *
3720  * Description: Search the static configuration table for a match on the
3721  *		inquiry vid/pid and update the driver soft state structure
3722  *		according to the table property values for the device.
3723  *
3724  *		The form of a configuration table entry is:
3725  *		  <vid+pid>,<flags>,<property-data>
3726  *		  "SEAGATE ST42400N",1,0x40000,
3727  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
3728  *
3729  *   Arguments: un - driver soft state (unit) structure
3730  */
3731 
3732 static void
3733 sd_process_sdconf_table(struct sd_lun *un)
3734 {
3735 	char	*id = NULL;
3736 	int	table_index;
3737 	int	idlen;
3738 
3739 	ASSERT(un != NULL);
3740 	for (table_index = 0; table_index < sd_disk_table_size;
3741 	    table_index++) {
3742 		id = sd_disk_table[table_index].device_id;
3743 		idlen = strlen(id);
3744 		if (idlen == 0) {
3745 			continue;
3746 		}
3747 
3748 		/*
3749 		 * The static configuration table currently does not
3750 		 * implement version 10 properties. Additionally,
3751 		 * multiple data-property-name entries are not
3752 		 * implemented in the static configuration table.
3753 		 */
3754 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3755 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3756 			    "sd_process_sdconf_table: disk %s\n", id);
3757 			sd_set_vers1_properties(un,
3758 			    sd_disk_table[table_index].flags,
3759 			    sd_disk_table[table_index].properties);
3760 			break;
3761 		}
3762 	}
3763 }
3764 
3765 
3766 /*
3767  *    Function: sd_sdconf_id_match
3768  *
3769  * Description: This local function implements a case sensitive vid/pid
3770  *		comparison as well as the boundary cases of wild card and
3771  *		multiple blanks.
3772  *
3773  *		Note: An implicit assumption made here is that the scsi
3774  *		inquiry structure will always keep the vid, pid and
3775  *		revision strings in consecutive sequence, so they can be
3776  *		read as a single string. If this assumption is not the
3777  *		case, a separate string, to be used for the check, needs
3778  *		to be built with these strings concatenated.
3779  *
3780  *   Arguments: un - driver soft state (unit) structure
3781  *		id - table or config file vid/pid
3782  *		idlen  - length of the vid/pid (bytes)
3783  *
3784  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3785  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3786  */
3787 
3788 static int
3789 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3790 {
3791 	struct scsi_inquiry	*sd_inq;
3792 	int 			rval = SD_SUCCESS;
3793 
3794 	ASSERT(un != NULL);
3795 	sd_inq = un->un_sd->sd_inq;
3796 	ASSERT(id != NULL);
3797 
3798 	/*
3799 	 * We use the inq_vid as a pointer to a buffer containing the
3800 	 * vid and pid and use the entire vid/pid length of the table
3801 	 * entry for the comparison. This works because the inq_pid
3802 	 * data member follows inq_vid in the scsi_inquiry structure.
3803 	 */
3804 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3805 		/*
3806 		 * The user id string is compared to the inquiry vid/pid
3807 		 * using a case insensitive comparison and ignoring
3808 		 * multiple spaces.
3809 		 */
3810 		rval = sd_blank_cmp(un, id, idlen);
3811 		if (rval != SD_SUCCESS) {
3812 			/*
3813 			 * User id strings that start and end with a "*"
3814 			 * are a special case. These do not have a
3815 			 * specific vendor, and the product string can
3816 			 * appear anywhere in the 16 byte PID portion of
3817 			 * the inquiry data. This is a simple strstr()
3818 			 * type search for the user id in the inquiry data.
3819 			 */
3820 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3821 				char	*pidptr = &id[1];
3822 				int	i;
3823 				int	j;
3824 				int	pidstrlen = idlen - 2;
3825 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3826 				    pidstrlen;
3827 
3828 				if (j < 0) {
3829 					return (SD_FAILURE);
3830 				}
3831 				for (i = 0; i < j; i++) {
3832 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3833 					    pidptr, pidstrlen) == 0) {
3834 						rval = SD_SUCCESS;
3835 						break;
3836 					}
3837 				}
3838 			}
3839 		}
3840 	}
3841 	return (rval);
3842 }
3843 
3844 
3845 /*
3846  *    Function: sd_blank_cmp
3847  *
3848  * Description: If the id string starts and ends with a space, treat
3849  *		multiple consecutive spaces as equivalent to a single
3850  *		space. For example, this causes a sd_disk_table entry
3851  *		of " NEC CDROM " to match a device's id string of
3852  *		"NEC       CDROM".
3853  *
3854  *		Note: The success exit condition for this routine is if
3855  *		the pointer to the table entry is '\0' and the cnt of
3856  *		the inquiry length is zero. This will happen if the inquiry
3857  *		string returned by the device is padded with spaces to be
3858  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3859  *		SCSI spec states that the inquiry string is to be padded with
3860  *		spaces.
3861  *
3862  *   Arguments: un - driver soft state (unit) structure
3863  *		id - table or config file vid/pid
3864  *		idlen  - length of the vid/pid (bytes)
3865  *
3866  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3867  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3868  */
3869 
3870 static int
3871 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3872 {
3873 	char		*p1;
3874 	char		*p2;
3875 	int		cnt;
3876 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3877 	    sizeof (SD_INQUIRY(un)->inq_pid);
3878 
3879 	ASSERT(un != NULL);
3880 	p2 = un->un_sd->sd_inq->inq_vid;
3881 	ASSERT(id != NULL);
3882 	p1 = id;
3883 
3884 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3885 		/*
3886 		 * Note: string p1 is terminated by a NUL but string p2
3887 		 * isn't.  The end of p2 is determined by cnt.
3888 		 */
3889 		for (;;) {
3890 			/* skip over any extra blanks in both strings */
3891 			while ((*p1 != '\0') && (*p1 == ' ')) {
3892 				p1++;
3893 			}
3894 			while ((cnt != 0) && (*p2 == ' ')) {
3895 				p2++;
3896 				cnt--;
3897 			}
3898 
3899 			/* compare the two strings */
3900 			if ((cnt == 0) ||
3901 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3902 				break;
3903 			}
3904 			while ((cnt > 0) &&
3905 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3906 				p1++;
3907 				p2++;
3908 				cnt--;
3909 			}
3910 		}
3911 	}
3912 
3913 	/* return SD_SUCCESS if both strings match */
3914 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3915 }
3916 
3917 
3918 /*
3919  *    Function: sd_chk_vers1_data
3920  *
3921  * Description: Verify the version 1 device properties provided by the
3922  *		user via the configuration file
3923  *
3924  *   Arguments: un	     - driver soft state (unit) structure
3925  *		flags	     - integer mask indicating properties to be set
3926  *		prop_list    - integer list of property values
3927  *		list_len     - length of user provided data
3928  *
3929  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3930  *		SD_FAILURE - Indicates the user provided data is invalid
3931  */
3932 
3933 static int
3934 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3935     int list_len, char *dataname_ptr)
3936 {
3937 	int i;
3938 	int mask = 1;
3939 	int index = 0;
3940 
3941 	ASSERT(un != NULL);
3942 
3943 	/* Check for a NULL property name and list */
3944 	if (dataname_ptr == NULL) {
3945 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3946 		    "sd_chk_vers1_data: NULL data property name.");
3947 		return (SD_FAILURE);
3948 	}
3949 	if (prop_list == NULL) {
3950 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3951 		    "sd_chk_vers1_data: %s NULL data property list.",
3952 		    dataname_ptr);
3953 		return (SD_FAILURE);
3954 	}
3955 
3956 	/* Display a warning if undefined bits are set in the flags */
3957 	if (flags & ~SD_CONF_BIT_MASK) {
3958 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3959 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3960 		    "Properties not set.",
3961 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3962 		return (SD_FAILURE);
3963 	}
3964 
3965 	/*
3966 	 * Verify the length of the list by identifying the highest bit set
3967 	 * in the flags and validating that the property list has a length
3968 	 * up to the index of this bit.
3969 	 */
3970 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3971 		if (flags & mask) {
3972 			index++;
3973 		}
3974 		mask = 1 << i;
3975 	}
3976 	if ((list_len / sizeof (int)) < (index + 2)) {
3977 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3978 		    "sd_chk_vers1_data: "
3979 		    "Data property list %s size is incorrect. "
3980 		    "Properties not set.", dataname_ptr);
3981 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3982 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3983 		return (SD_FAILURE);
3984 	}
3985 	return (SD_SUCCESS);
3986 }
3987 
3988 
3989 /*
3990  *    Function: sd_set_vers1_properties
3991  *
3992  * Description: Set version 1 device properties based on a property list
3993  *		retrieved from the driver configuration file or static
3994  *		configuration table. Version 1 properties have the format:
3995  *
3996  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3997  *
3998  *		where the prop0 value will be used to set prop0 if bit0
3999  *		is set in the flags
4000  *
4001  *   Arguments: un	     - driver soft state (unit) structure
4002  *		flags	     - integer mask indicating properties to be set
4003  *		prop_list    - integer list of property values
4004  */
4005 
4006 static void
4007 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4008 {
4009 	ASSERT(un != NULL);
4010 
4011 	/*
4012 	 * Set the flag to indicate cache is to be disabled. An attempt
4013 	 * to disable the cache via sd_cache_control() will be made
4014 	 * later during attach once the basic initialization is complete.
4015 	 */
4016 	if (flags & SD_CONF_BSET_NOCACHE) {
4017 		un->un_f_opt_disable_cache = TRUE;
4018 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4019 		    "sd_set_vers1_properties: caching disabled flag set\n");
4020 	}
4021 
4022 	/* CD-specific configuration parameters */
4023 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4024 		un->un_f_cfg_playmsf_bcd = TRUE;
4025 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4026 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4027 	}
4028 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4029 		un->un_f_cfg_readsub_bcd = TRUE;
4030 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4031 		    "sd_set_vers1_properties: readsub_bcd set\n");
4032 	}
4033 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4034 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4035 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4036 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4037 	}
4038 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4039 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4040 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4041 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4042 	}
4043 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4044 		un->un_f_cfg_no_read_header = TRUE;
4045 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4046 		    "sd_set_vers1_properties: no_read_header set\n");
4047 	}
4048 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4049 		un->un_f_cfg_read_cd_xd4 = TRUE;
4050 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4051 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4052 	}
4053 
4054 	/* Support for devices which do not have valid/unique serial numbers */
4055 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4056 		un->un_f_opt_fab_devid = TRUE;
4057 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4058 		    "sd_set_vers1_properties: fab_devid bit set\n");
4059 	}
4060 
4061 	/* Support for user throttle configuration */
4062 	if (flags & SD_CONF_BSET_THROTTLE) {
4063 		ASSERT(prop_list != NULL);
4064 		un->un_saved_throttle = un->un_throttle =
4065 		    prop_list->sdt_throttle;
4066 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4067 		    "sd_set_vers1_properties: throttle set to %d\n",
4068 		    prop_list->sdt_throttle);
4069 	}
4070 
4071 	/* Set the per disk retry count according to the conf file or table. */
4072 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4073 		ASSERT(prop_list != NULL);
4074 		if (prop_list->sdt_not_rdy_retries) {
4075 			un->un_notready_retry_count =
4076 			    prop_list->sdt_not_rdy_retries;
4077 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4078 			    "sd_set_vers1_properties: not ready retry count"
4079 			    " set to %d\n", un->un_notready_retry_count);
4080 		}
4081 	}
4082 
4083 	/* The controller type is reported for generic disk driver ioctls */
4084 	if (flags & SD_CONF_BSET_CTYPE) {
4085 		ASSERT(prop_list != NULL);
4086 		switch (prop_list->sdt_ctype) {
4087 		case CTYPE_CDROM:
4088 			un->un_ctype = prop_list->sdt_ctype;
4089 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4090 			    "sd_set_vers1_properties: ctype set to "
4091 			    "CTYPE_CDROM\n");
4092 			break;
4093 		case CTYPE_CCS:
4094 			un->un_ctype = prop_list->sdt_ctype;
4095 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4096 			    "sd_set_vers1_properties: ctype set to "
4097 			    "CTYPE_CCS\n");
4098 			break;
4099 		case CTYPE_ROD:		/* RW optical */
4100 			un->un_ctype = prop_list->sdt_ctype;
4101 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4102 			    "sd_set_vers1_properties: ctype set to "
4103 			    "CTYPE_ROD\n");
4104 			break;
4105 		default:
4106 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4107 			    "sd_set_vers1_properties: Could not set "
4108 			    "invalid ctype value (%d)",
4109 			    prop_list->sdt_ctype);
4110 		}
4111 	}
4112 
4113 	/* Purple failover timeout */
4114 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4115 		ASSERT(prop_list != NULL);
4116 		un->un_busy_retry_count =
4117 		    prop_list->sdt_busy_retries;
4118 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4119 		    "sd_set_vers1_properties: "
4120 		    "busy retry count set to %d\n",
4121 		    un->un_busy_retry_count);
4122 	}
4123 
4124 	/* Purple reset retry count */
4125 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4126 		ASSERT(prop_list != NULL);
4127 		un->un_reset_retry_count =
4128 		    prop_list->sdt_reset_retries;
4129 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4130 		    "sd_set_vers1_properties: "
4131 		    "reset retry count set to %d\n",
4132 		    un->un_reset_retry_count);
4133 	}
4134 
4135 	/* Purple reservation release timeout */
4136 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4137 		ASSERT(prop_list != NULL);
4138 		un->un_reserve_release_time =
4139 		    prop_list->sdt_reserv_rel_time;
4140 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4141 		    "sd_set_vers1_properties: "
4142 		    "reservation release timeout set to %d\n",
4143 		    un->un_reserve_release_time);
4144 	}
4145 
4146 	/*
4147 	 * Driver flag telling the driver to verify that no commands are pending
4148 	 * for a device before issuing a Test Unit Ready. This is a workaround
4149 	 * for a firmware bug in some Seagate eliteI drives.
4150 	 */
4151 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4152 		un->un_f_cfg_tur_check = TRUE;
4153 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4154 		    "sd_set_vers1_properties: tur queue check set\n");
4155 	}
4156 
4157 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4158 		un->un_min_throttle = prop_list->sdt_min_throttle;
4159 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4160 		    "sd_set_vers1_properties: min throttle set to %d\n",
4161 		    un->un_min_throttle);
4162 	}
4163 
4164 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4165 		un->un_f_disksort_disabled =
4166 		    (prop_list->sdt_disk_sort_dis != 0) ?
4167 		    TRUE : FALSE;
4168 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4169 		    "sd_set_vers1_properties: disksort disabled "
4170 		    "flag set to %d\n",
4171 		    prop_list->sdt_disk_sort_dis);
4172 	}
4173 
4174 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4175 		un->un_f_lun_reset_enabled =
4176 		    (prop_list->sdt_lun_reset_enable != 0) ?
4177 		    TRUE : FALSE;
4178 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4179 		    "sd_set_vers1_properties: lun reset enabled "
4180 		    "flag set to %d\n",
4181 		    prop_list->sdt_lun_reset_enable);
4182 	}
4183 
4184 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4185 		un->un_f_suppress_cache_flush =
4186 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4187 		    TRUE : FALSE;
4188 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4189 		    "sd_set_vers1_properties: suppress_cache_flush "
4190 		    "flag set to %d\n",
4191 		    prop_list->sdt_suppress_cache_flush);
4192 	}
4193 
4194 	/*
4195 	 * Validate the throttle values.
4196 	 * If any of the numbers are invalid, set everything to defaults.
4197 	 */
4198 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4199 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4200 	    (un->un_min_throttle > un->un_throttle)) {
4201 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4202 		un->un_min_throttle = sd_min_throttle;
4203 	}
4204 }
4205 
4206 /*
4207  *   Function: sd_is_lsi()
4208  *
4209  *   Description: Check for lsi devices, step through the static device
4210  *	table to match vid/pid.
4211  *
4212  *   Args: un - ptr to sd_lun
4213  *
4214  *   Notes:  When creating new LSI property, need to add the new LSI property
4215  *		to this function.
4216  */
4217 static void
4218 sd_is_lsi(struct sd_lun *un)
4219 {
4220 	char	*id = NULL;
4221 	int	table_index;
4222 	int	idlen;
4223 	void	*prop;
4224 
4225 	ASSERT(un != NULL);
4226 	for (table_index = 0; table_index < sd_disk_table_size;
4227 	    table_index++) {
4228 		id = sd_disk_table[table_index].device_id;
4229 		idlen = strlen(id);
4230 		if (idlen == 0) {
4231 			continue;
4232 		}
4233 
4234 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4235 			prop = sd_disk_table[table_index].properties;
4236 			if (prop == &lsi_properties ||
4237 			    prop == &lsi_oem_properties ||
4238 			    prop == &lsi_properties_scsi ||
4239 			    prop == &symbios_properties) {
4240 				un->un_f_cfg_is_lsi = TRUE;
4241 			}
4242 			break;
4243 		}
4244 	}
4245 }
4246 
4247 /*
4248  *    Function: sd_get_physical_geometry
4249  *
4250  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4251  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4252  *		target, and use this information to initialize the physical
4253  *		geometry cache specified by pgeom_p.
4254  *
4255  *		MODE SENSE is an optional command, so failure in this case
4256  *		does not necessarily denote an error. We want to use the
4257  *		MODE SENSE commands to derive the physical geometry of the
4258  *		device, but if either command fails, the logical geometry is
4259  *		used as the fallback for disk label geometry in cmlb.
4260  *
4261  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4262  *		have already been initialized for the current target and
4263  *		that the current values be passed as args so that we don't
4264  *		end up ever trying to use -1 as a valid value. This could
4265  *		happen if either value is reset while we're not holding
4266  *		the mutex.
4267  *
4268  *   Arguments: un - driver soft state (unit) structure
4269  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4270  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4271  *			to use the USCSI "direct" chain and bypass the normal
4272  *			command waitq.
4273  *
4274  *     Context: Kernel thread only (can sleep).
4275  */
4276 
4277 static int
4278 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4279 	diskaddr_t capacity, int lbasize, int path_flag)
4280 {
4281 	struct	mode_format	*page3p;
4282 	struct	mode_geometry	*page4p;
4283 	struct	mode_header	*headerp;
4284 	int	sector_size;
4285 	int	nsect;
4286 	int	nhead;
4287 	int	ncyl;
4288 	int	intrlv;
4289 	int	spc;
4290 	diskaddr_t	modesense_capacity;
4291 	int	rpm;
4292 	int	bd_len;
4293 	int	mode_header_length;
4294 	uchar_t	*p3bufp;
4295 	uchar_t	*p4bufp;
4296 	int	cdbsize;
4297 	int 	ret = EIO;
4298 
4299 	ASSERT(un != NULL);
4300 
4301 	if (lbasize == 0) {
4302 		if (ISCD(un)) {
4303 			lbasize = 2048;
4304 		} else {
4305 			lbasize = un->un_sys_blocksize;
4306 		}
4307 	}
4308 	pgeom_p->g_secsize = (unsigned short)lbasize;
4309 
4310 	/*
4311 	 * If the unit is a cd/dvd drive MODE SENSE page three
4312 	 * and MODE SENSE page four are reserved (see SBC spec
4313 	 * and MMC spec). To prevent soft errors just return
4314 	 * using the default LBA size.
4315 	 */
4316 	if (ISCD(un))
4317 		return (ret);
4318 
4319 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4320 
4321 	/*
4322 	 * Retrieve MODE SENSE page 3 - Format Device Page
4323 	 */
4324 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4325 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4326 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4327 	    != 0) {
4328 		SD_ERROR(SD_LOG_COMMON, un,
4329 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4330 		goto page3_exit;
4331 	}
4332 
4333 	/*
4334 	 * Determine size of Block Descriptors in order to locate the mode
4335 	 * page data.  ATAPI devices return 0, SCSI devices should return
4336 	 * MODE_BLK_DESC_LENGTH.
4337 	 */
4338 	headerp = (struct mode_header *)p3bufp;
4339 	if (un->un_f_cfg_is_atapi == TRUE) {
4340 		struct mode_header_grp2 *mhp =
4341 		    (struct mode_header_grp2 *)headerp;
4342 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4343 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4344 	} else {
4345 		mode_header_length = MODE_HEADER_LENGTH;
4346 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4347 	}
4348 
4349 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4350 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4351 		    "received unexpected bd_len of %d, page3\n", bd_len);
4352 		goto page3_exit;
4353 	}
4354 
4355 	page3p = (struct mode_format *)
4356 	    ((caddr_t)headerp + mode_header_length + bd_len);
4357 
4358 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4359 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4360 		    "mode sense pg3 code mismatch %d\n",
4361 		    page3p->mode_page.code);
4362 		goto page3_exit;
4363 	}
4364 
4365 	/*
4366 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4367 	 * complete successfully; otherwise, revert to the logical geometry.
4368 	 * So, we need to save everything in temporary variables.
4369 	 */
4370 	sector_size = BE_16(page3p->data_bytes_sect);
4371 
4372 	/*
4373 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4374 	 */
4375 	if (sector_size == 0) {
4376 		sector_size = un->un_sys_blocksize;
4377 	} else {
4378 		sector_size &= ~(un->un_sys_blocksize - 1);
4379 	}
4380 
4381 	nsect  = BE_16(page3p->sect_track);
4382 	intrlv = BE_16(page3p->interleave);
4383 
4384 	SD_INFO(SD_LOG_COMMON, un,
4385 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4386 	SD_INFO(SD_LOG_COMMON, un,
4387 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4388 	    page3p->mode_page.code, nsect, sector_size);
4389 	SD_INFO(SD_LOG_COMMON, un,
4390 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4391 	    BE_16(page3p->track_skew),
4392 	    BE_16(page3p->cylinder_skew));
4393 
4394 
4395 	/*
4396 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4397 	 */
4398 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4399 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4400 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4401 	    != 0) {
4402 		SD_ERROR(SD_LOG_COMMON, un,
4403 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4404 		goto page4_exit;
4405 	}
4406 
4407 	/*
4408 	 * Determine size of Block Descriptors in order to locate the mode
4409 	 * page data.  ATAPI devices return 0, SCSI devices should return
4410 	 * MODE_BLK_DESC_LENGTH.
4411 	 */
4412 	headerp = (struct mode_header *)p4bufp;
4413 	if (un->un_f_cfg_is_atapi == TRUE) {
4414 		struct mode_header_grp2 *mhp =
4415 		    (struct mode_header_grp2 *)headerp;
4416 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4417 	} else {
4418 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4419 	}
4420 
4421 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4422 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4423 		    "received unexpected bd_len of %d, page4\n", bd_len);
4424 		goto page4_exit;
4425 	}
4426 
4427 	page4p = (struct mode_geometry *)
4428 	    ((caddr_t)headerp + mode_header_length + bd_len);
4429 
4430 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4431 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4432 		    "mode sense pg4 code mismatch %d\n",
4433 		    page4p->mode_page.code);
4434 		goto page4_exit;
4435 	}
4436 
4437 	/*
4438 	 * Stash the data now, after we know that both commands completed.
4439 	 */
4440 
4441 
4442 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4443 	spc   = nhead * nsect;
4444 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4445 	rpm   = BE_16(page4p->rpm);
4446 
4447 	modesense_capacity = spc * ncyl;
4448 
4449 	SD_INFO(SD_LOG_COMMON, un,
4450 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4451 	SD_INFO(SD_LOG_COMMON, un,
4452 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4453 	SD_INFO(SD_LOG_COMMON, un,
4454 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4455 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4456 	    (void *)pgeom_p, capacity);
4457 
4458 	/*
4459 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4460 	 * the product of C * H * S returned by MODE SENSE >= that returned
4461 	 * by read capacity. This is an idiosyncrasy of the original x86
4462 	 * disk subsystem.
4463 	 */
4464 	if (modesense_capacity >= capacity) {
4465 		SD_INFO(SD_LOG_COMMON, un,
4466 		    "sd_get_physical_geometry: adjusting acyl; "
4467 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4468 		    (modesense_capacity - capacity + spc - 1) / spc);
4469 		if (sector_size != 0) {
4470 			/* 1243403: NEC D38x7 drives don't support sec size */
4471 			pgeom_p->g_secsize = (unsigned short)sector_size;
4472 		}
4473 		pgeom_p->g_nsect    = (unsigned short)nsect;
4474 		pgeom_p->g_nhead    = (unsigned short)nhead;
4475 		pgeom_p->g_capacity = capacity;
4476 		pgeom_p->g_acyl	    =
4477 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4478 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4479 	}
4480 
4481 	pgeom_p->g_rpm    = (unsigned short)rpm;
4482 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4483 	ret = 0;
4484 
4485 	SD_INFO(SD_LOG_COMMON, un,
4486 	    "sd_get_physical_geometry: mode sense geometry:\n");
4487 	SD_INFO(SD_LOG_COMMON, un,
4488 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4489 	    nsect, sector_size, intrlv);
4490 	SD_INFO(SD_LOG_COMMON, un,
4491 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4492 	    nhead, ncyl, rpm, modesense_capacity);
4493 	SD_INFO(SD_LOG_COMMON, un,
4494 	    "sd_get_physical_geometry: (cached)\n");
4495 	SD_INFO(SD_LOG_COMMON, un,
4496 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4497 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4498 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4499 	SD_INFO(SD_LOG_COMMON, un,
4500 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4501 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4502 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4503 
4504 page4_exit:
4505 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4506 page3_exit:
4507 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4508 
4509 	return (ret);
4510 }
4511 
4512 /*
4513  *    Function: sd_get_virtual_geometry
4514  *
4515  * Description: Ask the controller to tell us about the target device.
4516  *
4517  *   Arguments: un - pointer to softstate
4518  *		capacity - disk capacity in #blocks
4519  *		lbasize - disk block size in bytes
4520  *
4521  *     Context: Kernel thread only
4522  */
4523 
4524 static int
4525 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4526     diskaddr_t capacity, int lbasize)
4527 {
4528 	uint_t	geombuf;
4529 	int	spc;
4530 
4531 	ASSERT(un != NULL);
4532 
4533 	/* Set sector size, and total number of sectors */
4534 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4535 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4536 
4537 	/* Let the HBA tell us its geometry */
4538 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4539 
4540 	/* A value of -1 indicates an undefined "geometry" property */
4541 	if (geombuf == (-1)) {
4542 		return (EINVAL);
4543 	}
4544 
4545 	/* Initialize the logical geometry cache. */
4546 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4547 	lgeom_p->g_nsect   = geombuf & 0xffff;
4548 	lgeom_p->g_secsize = un->un_sys_blocksize;
4549 
4550 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4551 
4552 	/*
4553 	 * Note: The driver originally converted the capacity value from
4554 	 * target blocks to system blocks. However, the capacity value passed
4555 	 * to this routine is already in terms of system blocks (this scaling
4556 	 * is done when the READ CAPACITY command is issued and processed).
4557 	 * This 'error' may have gone undetected because the usage of g_ncyl
4558 	 * (which is based upon g_capacity) is very limited within the driver
4559 	 */
4560 	lgeom_p->g_capacity = capacity;
4561 
4562 	/*
4563 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4564 	 * hba may return zero values if the device has been removed.
4565 	 */
4566 	if (spc == 0) {
4567 		lgeom_p->g_ncyl = 0;
4568 	} else {
4569 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4570 	}
4571 	lgeom_p->g_acyl = 0;
4572 
4573 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4574 	return (0);
4575 
4576 }
4577 /*
4578  *    Function: sd_update_block_info
4579  *
4580  * Description: Calculate a byte count to sector count bitshift value
4581  *		from sector size.
4582  *
4583  *   Arguments: un: unit struct.
4584  *		lbasize: new target sector size
4585  *		capacity: new target capacity, ie. block count
4586  *
4587  *     Context: Kernel thread context
4588  */
4589 
4590 static void
4591 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4592 {
4593 	uint_t		dblk;
4594 
4595 	if (lbasize != 0) {
4596 		un->un_tgt_blocksize = lbasize;
4597 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4598 	}
4599 
4600 	if (capacity != 0) {
4601 		un->un_blockcount		= capacity;
4602 		un->un_f_blockcount_is_valid	= TRUE;
4603 	}
4604 
4605 	/*
4606 	 * Update device capacity properties.
4607 	 *
4608 	 *   'device-nblocks'	number of blocks in target's units
4609 	 *   'device-blksize'	data bearing size of target's block
4610 	 *
4611 	 * NOTE: math is complicated by the fact that un_tgt_blocksize may
4612 	 * not be a power of two for checksumming disks with 520/528 byte
4613 	 * sectors.
4614 	 */
4615 	if (un->un_f_tgt_blocksize_is_valid &&
4616 	    un->un_f_blockcount_is_valid &&
4617 	    un->un_sys_blocksize) {
4618 		dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
4619 		(void) ddi_prop_update_int64(DDI_DEV_T_NONE, SD_DEVINFO(un),
4620 		    "device-nblocks", un->un_blockcount / dblk);
4621 		/*
4622 		 * To save memory, only define "device-blksize" when its
4623 		 * value is differnet than the default DEV_BSIZE value.
4624 		 */
4625 		if ((un->un_sys_blocksize * dblk) != DEV_BSIZE)
4626 			(void) ddi_prop_update_int(DDI_DEV_T_NONE,
4627 			    SD_DEVINFO(un), "device-blksize",
4628 			    un->un_sys_blocksize * dblk);
4629 	}
4630 }
4631 
4632 
4633 /*
4634  *    Function: sd_register_devid
4635  *
4636  * Description: This routine will obtain the device id information from the
4637  *		target, obtain the serial number, and register the device
4638  *		id with the ddi framework.
4639  *
4640  *   Arguments: devi - the system's dev_info_t for the device.
4641  *		un - driver soft state (unit) structure
4642  *		reservation_flag - indicates if a reservation conflict
4643  *		occurred during attach
4644  *
4645  *     Context: Kernel Thread
4646  */
4647 static void
4648 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
4649 {
4650 	int		rval		= 0;
4651 	uchar_t		*inq80		= NULL;
4652 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
4653 	size_t		inq80_resid	= 0;
4654 	uchar_t		*inq83		= NULL;
4655 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
4656 	size_t		inq83_resid	= 0;
4657 	int		dlen, len;
4658 	char		*sn;
4659 
4660 	ASSERT(un != NULL);
4661 	ASSERT(mutex_owned(SD_MUTEX(un)));
4662 	ASSERT((SD_DEVINFO(un)) == devi);
4663 
4664 	/*
4665 	 * If transport has already registered a devid for this target
4666 	 * then that takes precedence over the driver's determination
4667 	 * of the devid.
4668 	 */
4669 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
4670 		ASSERT(un->un_devid);
4671 		return; /* use devid registered by the transport */
4672 	}
4673 
4674 	/*
4675 	 * This is the case of antiquated Sun disk drives that have the
4676 	 * FAB_DEVID property set in the disk_table.  These drives
4677 	 * manage the devid's by storing them in last 2 available sectors
4678 	 * on the drive and have them fabricated by the ddi layer by calling
4679 	 * ddi_devid_init and passing the DEVID_FAB flag.
4680 	 */
4681 	if (un->un_f_opt_fab_devid == TRUE) {
4682 		/*
4683 		 * Depending on EINVAL isn't reliable, since a reserved disk
4684 		 * may result in invalid geometry, so check to make sure a
4685 		 * reservation conflict did not occur during attach.
4686 		 */
4687 		if ((sd_get_devid(un) == EINVAL) &&
4688 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
4689 			/*
4690 			 * The devid is invalid AND there is no reservation
4691 			 * conflict.  Fabricate a new devid.
4692 			 */
4693 			(void) sd_create_devid(un);
4694 		}
4695 
4696 		/* Register the devid if it exists */
4697 		if (un->un_devid != NULL) {
4698 			(void) ddi_devid_register(SD_DEVINFO(un),
4699 			    un->un_devid);
4700 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4701 			    "sd_register_devid: Devid Fabricated\n");
4702 		}
4703 		return;
4704 	}
4705 
4706 	/*
4707 	 * We check the availibility of the World Wide Name (0x83) and Unit
4708 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
4709 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
4710 	 * 0x83 is availible, that is the best choice.  Our next choice is
4711 	 * 0x80.  If neither are availible, we munge the devid from the device
4712 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
4713 	 * to fabricate a devid for non-Sun qualified disks.
4714 	 */
4715 	if (sd_check_vpd_page_support(un) == 0) {
4716 		/* collect page 80 data if available */
4717 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
4718 
4719 			mutex_exit(SD_MUTEX(un));
4720 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
4721 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
4722 			    0x01, 0x80, &inq80_resid);
4723 
4724 			if (rval != 0) {
4725 				kmem_free(inq80, inq80_len);
4726 				inq80 = NULL;
4727 				inq80_len = 0;
4728 			} else if (ddi_prop_exists(
4729 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
4730 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
4731 			    INQUIRY_SERIAL_NO) == 0) {
4732 				/*
4733 				 * If we don't already have a serial number
4734 				 * property, do quick verify of data returned
4735 				 * and define property.
4736 				 */
4737 				dlen = inq80_len - inq80_resid;
4738 				len = (size_t)inq80[3];
4739 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
4740 					/*
4741 					 * Ensure sn termination, skip leading
4742 					 * blanks, and create property
4743 					 * 'inquiry-serial-no'.
4744 					 */
4745 					sn = (char *)&inq80[4];
4746 					sn[len] = 0;
4747 					while (*sn && (*sn == ' '))
4748 						sn++;
4749 					if (*sn) {
4750 						(void) ddi_prop_update_string(
4751 						    DDI_DEV_T_NONE,
4752 						    SD_DEVINFO(un),
4753 						    INQUIRY_SERIAL_NO, sn);
4754 					}
4755 				}
4756 			}
4757 			mutex_enter(SD_MUTEX(un));
4758 		}
4759 
4760 		/* collect page 83 data if available */
4761 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
4762 			mutex_exit(SD_MUTEX(un));
4763 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
4764 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
4765 			    0x01, 0x83, &inq83_resid);
4766 
4767 			if (rval != 0) {
4768 				kmem_free(inq83, inq83_len);
4769 				inq83 = NULL;
4770 				inq83_len = 0;
4771 			}
4772 			mutex_enter(SD_MUTEX(un));
4773 		}
4774 	}
4775 
4776 	/* encode best devid possible based on data available */
4777 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
4778 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
4779 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
4780 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
4781 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
4782 
4783 		/* devid successfully encoded, register devid */
4784 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
4785 
4786 	} else {
4787 		/*
4788 		 * Unable to encode a devid based on data available.
4789 		 * This is not a Sun qualified disk.  Older Sun disk
4790 		 * drives that have the SD_FAB_DEVID property
4791 		 * set in the disk_table and non Sun qualified
4792 		 * disks are treated in the same manner.  These
4793 		 * drives manage the devid's by storing them in
4794 		 * last 2 available sectors on the drive and
4795 		 * have them fabricated by the ddi layer by
4796 		 * calling ddi_devid_init and passing the
4797 		 * DEVID_FAB flag.
4798 		 * Create a fabricate devid only if there's no
4799 		 * fabricate devid existed.
4800 		 */
4801 		if (sd_get_devid(un) == EINVAL) {
4802 			(void) sd_create_devid(un);
4803 		}
4804 		un->un_f_opt_fab_devid = TRUE;
4805 
4806 		/* Register the devid if it exists */
4807 		if (un->un_devid != NULL) {
4808 			(void) ddi_devid_register(SD_DEVINFO(un),
4809 			    un->un_devid);
4810 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4811 			    "sd_register_devid: devid fabricated using "
4812 			    "ddi framework\n");
4813 		}
4814 	}
4815 
4816 	/* clean up resources */
4817 	if (inq80 != NULL) {
4818 		kmem_free(inq80, inq80_len);
4819 	}
4820 	if (inq83 != NULL) {
4821 		kmem_free(inq83, inq83_len);
4822 	}
4823 }
4824 
4825 
4826 
4827 /*
4828  *    Function: sd_get_devid
4829  *
4830  * Description: This routine will return 0 if a valid device id has been
4831  *		obtained from the target and stored in the soft state. If a
4832  *		valid device id has not been previously read and stored, a
4833  *		read attempt will be made.
4834  *
4835  *   Arguments: un - driver soft state (unit) structure
4836  *
4837  * Return Code: 0 if we successfully get the device id
4838  *
4839  *     Context: Kernel Thread
4840  */
4841 
4842 static int
4843 sd_get_devid(struct sd_lun *un)
4844 {
4845 	struct dk_devid		*dkdevid;
4846 	ddi_devid_t		tmpid;
4847 	uint_t			*ip;
4848 	size_t			sz;
4849 	diskaddr_t		blk;
4850 	int			status;
4851 	int			chksum;
4852 	int			i;
4853 	size_t			buffer_size;
4854 
4855 	ASSERT(un != NULL);
4856 	ASSERT(mutex_owned(SD_MUTEX(un)));
4857 
4858 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
4859 	    un);
4860 
4861 	if (un->un_devid != NULL) {
4862 		return (0);
4863 	}
4864 
4865 	mutex_exit(SD_MUTEX(un));
4866 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4867 	    (void *)SD_PATH_DIRECT) != 0) {
4868 		mutex_enter(SD_MUTEX(un));
4869 		return (EINVAL);
4870 	}
4871 
4872 	/*
4873 	 * Read and verify device id, stored in the reserved cylinders at the
4874 	 * end of the disk. Backup label is on the odd sectors of the last
4875 	 * track of the last cylinder. Device id will be on track of the next
4876 	 * to last cylinder.
4877 	 */
4878 	mutex_enter(SD_MUTEX(un));
4879 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
4880 	mutex_exit(SD_MUTEX(un));
4881 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
4882 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
4883 	    SD_PATH_DIRECT);
4884 	if (status != 0) {
4885 		goto error;
4886 	}
4887 
4888 	/* Validate the revision */
4889 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
4890 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
4891 		status = EINVAL;
4892 		goto error;
4893 	}
4894 
4895 	/* Calculate the checksum */
4896 	chksum = 0;
4897 	ip = (uint_t *)dkdevid;
4898 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4899 	    i++) {
4900 		chksum ^= ip[i];
4901 	}
4902 
4903 	/* Compare the checksums */
4904 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
4905 		status = EINVAL;
4906 		goto error;
4907 	}
4908 
4909 	/* Validate the device id */
4910 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
4911 		status = EINVAL;
4912 		goto error;
4913 	}
4914 
4915 	/*
4916 	 * Store the device id in the driver soft state
4917 	 */
4918 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
4919 	tmpid = kmem_alloc(sz, KM_SLEEP);
4920 
4921 	mutex_enter(SD_MUTEX(un));
4922 
4923 	un->un_devid = tmpid;
4924 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
4925 
4926 	kmem_free(dkdevid, buffer_size);
4927 
4928 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
4929 
4930 	return (status);
4931 error:
4932 	mutex_enter(SD_MUTEX(un));
4933 	kmem_free(dkdevid, buffer_size);
4934 	return (status);
4935 }
4936 
4937 
4938 /*
4939  *    Function: sd_create_devid
4940  *
4941  * Description: This routine will fabricate the device id and write it
4942  *		to the disk.
4943  *
4944  *   Arguments: un - driver soft state (unit) structure
4945  *
4946  * Return Code: value of the fabricated device id
4947  *
4948  *     Context: Kernel Thread
4949  */
4950 
4951 static ddi_devid_t
4952 sd_create_devid(struct sd_lun *un)
4953 {
4954 	ASSERT(un != NULL);
4955 
4956 	/* Fabricate the devid */
4957 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
4958 	    == DDI_FAILURE) {
4959 		return (NULL);
4960 	}
4961 
4962 	/* Write the devid to disk */
4963 	if (sd_write_deviceid(un) != 0) {
4964 		ddi_devid_free(un->un_devid);
4965 		un->un_devid = NULL;
4966 	}
4967 
4968 	return (un->un_devid);
4969 }
4970 
4971 
4972 /*
4973  *    Function: sd_write_deviceid
4974  *
4975  * Description: This routine will write the device id to the disk
4976  *		reserved sector.
4977  *
4978  *   Arguments: un - driver soft state (unit) structure
4979  *
4980  * Return Code: EINVAL
4981  *		value returned by sd_send_scsi_cmd
4982  *
4983  *     Context: Kernel Thread
4984  */
4985 
4986 static int
4987 sd_write_deviceid(struct sd_lun *un)
4988 {
4989 	struct dk_devid		*dkdevid;
4990 	diskaddr_t		blk;
4991 	uint_t			*ip, chksum;
4992 	int			status;
4993 	int			i;
4994 
4995 	ASSERT(mutex_owned(SD_MUTEX(un)));
4996 
4997 	mutex_exit(SD_MUTEX(un));
4998 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4999 	    (void *)SD_PATH_DIRECT) != 0) {
5000 		mutex_enter(SD_MUTEX(un));
5001 		return (-1);
5002 	}
5003 
5004 
5005 	/* Allocate the buffer */
5006 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5007 
5008 	/* Fill in the revision */
5009 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5010 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5011 
5012 	/* Copy in the device id */
5013 	mutex_enter(SD_MUTEX(un));
5014 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5015 	    ddi_devid_sizeof(un->un_devid));
5016 	mutex_exit(SD_MUTEX(un));
5017 
5018 	/* Calculate the checksum */
5019 	chksum = 0;
5020 	ip = (uint_t *)dkdevid;
5021 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5022 	    i++) {
5023 		chksum ^= ip[i];
5024 	}
5025 
5026 	/* Fill-in checksum */
5027 	DKD_FORMCHKSUM(chksum, dkdevid);
5028 
5029 	/* Write the reserved sector */
5030 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
5031 	    SD_PATH_DIRECT);
5032 
5033 	kmem_free(dkdevid, un->un_sys_blocksize);
5034 
5035 	mutex_enter(SD_MUTEX(un));
5036 	return (status);
5037 }
5038 
5039 
5040 /*
5041  *    Function: sd_check_vpd_page_support
5042  *
5043  * Description: This routine sends an inquiry command with the EVPD bit set and
5044  *		a page code of 0x00 to the device. It is used to determine which
5045  *		vital product pages are availible to find the devid. We are
5046  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
5047  *		device does not support that command.
5048  *
5049  *   Arguments: un  - driver soft state (unit) structure
5050  *
5051  * Return Code: 0 - success
5052  *		1 - check condition
5053  *
5054  *     Context: This routine can sleep.
5055  */
5056 
5057 static int
5058 sd_check_vpd_page_support(struct sd_lun *un)
5059 {
5060 	uchar_t	*page_list	= NULL;
5061 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5062 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5063 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5064 	int    	rval		= 0;
5065 	int	counter;
5066 
5067 	ASSERT(un != NULL);
5068 	ASSERT(mutex_owned(SD_MUTEX(un)));
5069 
5070 	mutex_exit(SD_MUTEX(un));
5071 
5072 	/*
5073 	 * We'll set the page length to the maximum to save figuring it out
5074 	 * with an additional call.
5075 	 */
5076 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5077 
5078 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
5079 	    page_code, NULL);
5080 
5081 	mutex_enter(SD_MUTEX(un));
5082 
5083 	/*
5084 	 * Now we must validate that the device accepted the command, as some
5085 	 * drives do not support it.  If the drive does support it, we will
5086 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5087 	 * not, we return -1.
5088 	 */
5089 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5090 		/* Loop to find one of the 2 pages we need */
5091 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5092 
5093 		/*
5094 		 * Pages are returned in ascending order, and 0x83 is what we
5095 		 * are hoping for.
5096 		 */
5097 		while ((page_list[counter] <= 0x86) &&
5098 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5099 		    VPD_HEAD_OFFSET))) {
5100 			/*
5101 			 * Add 3 because page_list[3] is the number of
5102 			 * pages minus 3
5103 			 */
5104 
5105 			switch (page_list[counter]) {
5106 			case 0x00:
5107 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5108 				break;
5109 			case 0x80:
5110 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5111 				break;
5112 			case 0x81:
5113 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5114 				break;
5115 			case 0x82:
5116 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5117 				break;
5118 			case 0x83:
5119 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5120 				break;
5121 			case 0x86:
5122 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5123 				break;
5124 			}
5125 			counter++;
5126 		}
5127 
5128 	} else {
5129 		rval = -1;
5130 
5131 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5132 		    "sd_check_vpd_page_support: This drive does not implement "
5133 		    "VPD pages.\n");
5134 	}
5135 
5136 	kmem_free(page_list, page_length);
5137 
5138 	return (rval);
5139 }
5140 
5141 
5142 /*
5143  *    Function: sd_setup_pm
5144  *
5145  * Description: Initialize Power Management on the device
5146  *
5147  *     Context: Kernel Thread
5148  */
5149 
5150 static void
5151 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
5152 {
5153 	uint_t	log_page_size;
5154 	uchar_t	*log_page_data;
5155 	int	rval;
5156 
5157 	/*
5158 	 * Since we are called from attach, holding a mutex for
5159 	 * un is unnecessary. Because some of the routines called
5160 	 * from here require SD_MUTEX to not be held, assert this
5161 	 * right up front.
5162 	 */
5163 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5164 	/*
5165 	 * Since the sd device does not have the 'reg' property,
5166 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5167 	 * The following code is to tell cpr that this device
5168 	 * DOES need to be suspended and resumed.
5169 	 */
5170 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5171 	    "pm-hardware-state", "needs-suspend-resume");
5172 
5173 	/*
5174 	 * This complies with the new power management framework
5175 	 * for certain desktop machines. Create the pm_components
5176 	 * property as a string array property.
5177 	 */
5178 	if (un->un_f_pm_supported) {
5179 		/*
5180 		 * not all devices have a motor, try it first.
5181 		 * some devices may return ILLEGAL REQUEST, some
5182 		 * will hang
5183 		 * The following START_STOP_UNIT is used to check if target
5184 		 * device has a motor.
5185 		 */
5186 		un->un_f_start_stop_supported = TRUE;
5187 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
5188 		    SD_PATH_DIRECT) != 0) {
5189 			un->un_f_start_stop_supported = FALSE;
5190 		}
5191 
5192 		/*
5193 		 * create pm properties anyways otherwise the parent can't
5194 		 * go to sleep
5195 		 */
5196 		(void) sd_create_pm_components(devi, un);
5197 		un->un_f_pm_is_enabled = TRUE;
5198 		return;
5199 	}
5200 
5201 	if (!un->un_f_log_sense_supported) {
5202 		un->un_power_level = SD_SPINDLE_ON;
5203 		un->un_f_pm_is_enabled = FALSE;
5204 		return;
5205 	}
5206 
5207 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
5208 
5209 #ifdef	SDDEBUG
5210 	if (sd_force_pm_supported) {
5211 		/* Force a successful result */
5212 		rval = 1;
5213 	}
5214 #endif
5215 
5216 	/*
5217 	 * If the start-stop cycle counter log page is not supported
5218 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5219 	 * then we should not create the pm_components property.
5220 	 */
5221 	if (rval == -1) {
5222 		/*
5223 		 * Error.
5224 		 * Reading log sense failed, most likely this is
5225 		 * an older drive that does not support log sense.
5226 		 * If this fails auto-pm is not supported.
5227 		 */
5228 		un->un_power_level = SD_SPINDLE_ON;
5229 		un->un_f_pm_is_enabled = FALSE;
5230 
5231 	} else if (rval == 0) {
5232 		/*
5233 		 * Page not found.
5234 		 * The start stop cycle counter is implemented as page
5235 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5236 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5237 		 */
5238 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
5239 			/*
5240 			 * Page found, use this one.
5241 			 */
5242 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5243 			un->un_f_pm_is_enabled = TRUE;
5244 		} else {
5245 			/*
5246 			 * Error or page not found.
5247 			 * auto-pm is not supported for this device.
5248 			 */
5249 			un->un_power_level = SD_SPINDLE_ON;
5250 			un->un_f_pm_is_enabled = FALSE;
5251 		}
5252 	} else {
5253 		/*
5254 		 * Page found, use it.
5255 		 */
5256 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5257 		un->un_f_pm_is_enabled = TRUE;
5258 	}
5259 
5260 
5261 	if (un->un_f_pm_is_enabled == TRUE) {
5262 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5263 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5264 
5265 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5266 		    log_page_size, un->un_start_stop_cycle_page,
5267 		    0x01, 0, SD_PATH_DIRECT);
5268 #ifdef	SDDEBUG
5269 		if (sd_force_pm_supported) {
5270 			/* Force a successful result */
5271 			rval = 0;
5272 		}
5273 #endif
5274 
5275 		/*
5276 		 * If the Log sense for Page( Start/stop cycle counter page)
5277 		 * succeeds, then power managment is supported and we can
5278 		 * enable auto-pm.
5279 		 */
5280 		if (rval == 0)  {
5281 			(void) sd_create_pm_components(devi, un);
5282 		} else {
5283 			un->un_power_level = SD_SPINDLE_ON;
5284 			un->un_f_pm_is_enabled = FALSE;
5285 		}
5286 
5287 		kmem_free(log_page_data, log_page_size);
5288 	}
5289 }
5290 
5291 
5292 /*
5293  *    Function: sd_create_pm_components
5294  *
5295  * Description: Initialize PM property.
5296  *
5297  *     Context: Kernel thread context
5298  */
5299 
5300 static void
5301 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5302 {
5303 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5304 
5305 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5306 
5307 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5308 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5309 		/*
5310 		 * When components are initially created they are idle,
5311 		 * power up any non-removables.
5312 		 * Note: the return value of pm_raise_power can't be used
5313 		 * for determining if PM should be enabled for this device.
5314 		 * Even if you check the return values and remove this
5315 		 * property created above, the PM framework will not honor the
5316 		 * change after the first call to pm_raise_power. Hence,
5317 		 * removal of that property does not help if pm_raise_power
5318 		 * fails. In the case of removable media, the start/stop
5319 		 * will fail if the media is not present.
5320 		 */
5321 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5322 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5323 			mutex_enter(SD_MUTEX(un));
5324 			un->un_power_level = SD_SPINDLE_ON;
5325 			mutex_enter(&un->un_pm_mutex);
5326 			/* Set to on and not busy. */
5327 			un->un_pm_count = 0;
5328 		} else {
5329 			mutex_enter(SD_MUTEX(un));
5330 			un->un_power_level = SD_SPINDLE_OFF;
5331 			mutex_enter(&un->un_pm_mutex);
5332 			/* Set to off. */
5333 			un->un_pm_count = -1;
5334 		}
5335 		mutex_exit(&un->un_pm_mutex);
5336 		mutex_exit(SD_MUTEX(un));
5337 	} else {
5338 		un->un_power_level = SD_SPINDLE_ON;
5339 		un->un_f_pm_is_enabled = FALSE;
5340 	}
5341 }
5342 
5343 
5344 /*
5345  *    Function: sd_ddi_suspend
5346  *
5347  * Description: Performs system power-down operations. This includes
5348  *		setting the drive state to indicate its suspended so
5349  *		that no new commands will be accepted. Also, wait for
5350  *		all commands that are in transport or queued to a timer
5351  *		for retry to complete. All timeout threads are cancelled.
5352  *
5353  * Return Code: DDI_FAILURE or DDI_SUCCESS
5354  *
5355  *     Context: Kernel thread context
5356  */
5357 
5358 static int
5359 sd_ddi_suspend(dev_info_t *devi)
5360 {
5361 	struct	sd_lun	*un;
5362 	clock_t		wait_cmds_complete;
5363 
5364 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5365 	if (un == NULL) {
5366 		return (DDI_FAILURE);
5367 	}
5368 
5369 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5370 
5371 	mutex_enter(SD_MUTEX(un));
5372 
5373 	/* Return success if the device is already suspended. */
5374 	if (un->un_state == SD_STATE_SUSPENDED) {
5375 		mutex_exit(SD_MUTEX(un));
5376 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5377 		    "device already suspended, exiting\n");
5378 		return (DDI_SUCCESS);
5379 	}
5380 
5381 	/* Return failure if the device is being used by HA */
5382 	if (un->un_resvd_status &
5383 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5384 		mutex_exit(SD_MUTEX(un));
5385 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5386 		    "device in use by HA, exiting\n");
5387 		return (DDI_FAILURE);
5388 	}
5389 
5390 	/*
5391 	 * Return failure if the device is in a resource wait
5392 	 * or power changing state.
5393 	 */
5394 	if ((un->un_state == SD_STATE_RWAIT) ||
5395 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5396 		mutex_exit(SD_MUTEX(un));
5397 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5398 		    "device in resource wait state, exiting\n");
5399 		return (DDI_FAILURE);
5400 	}
5401 
5402 
5403 	un->un_save_state = un->un_last_state;
5404 	New_state(un, SD_STATE_SUSPENDED);
5405 
5406 	/*
5407 	 * Wait for all commands that are in transport or queued to a timer
5408 	 * for retry to complete.
5409 	 *
5410 	 * While waiting, no new commands will be accepted or sent because of
5411 	 * the new state we set above.
5412 	 *
5413 	 * Wait till current operation has completed. If we are in the resource
5414 	 * wait state (with an intr outstanding) then we need to wait till the
5415 	 * intr completes and starts the next cmd. We want to wait for
5416 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5417 	 */
5418 	wait_cmds_complete = ddi_get_lbolt() +
5419 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5420 
5421 	while (un->un_ncmds_in_transport != 0) {
5422 		/*
5423 		 * Fail if commands do not finish in the specified time.
5424 		 */
5425 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5426 		    wait_cmds_complete) == -1) {
5427 			/*
5428 			 * Undo the state changes made above. Everything
5429 			 * must go back to it's original value.
5430 			 */
5431 			Restore_state(un);
5432 			un->un_last_state = un->un_save_state;
5433 			/* Wake up any threads that might be waiting. */
5434 			cv_broadcast(&un->un_suspend_cv);
5435 			mutex_exit(SD_MUTEX(un));
5436 			SD_ERROR(SD_LOG_IO_PM, un,
5437 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5438 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5439 			return (DDI_FAILURE);
5440 		}
5441 	}
5442 
5443 	/*
5444 	 * Cancel SCSI watch thread and timeouts, if any are active
5445 	 */
5446 
5447 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5448 		opaque_t temp_token = un->un_swr_token;
5449 		mutex_exit(SD_MUTEX(un));
5450 		scsi_watch_suspend(temp_token);
5451 		mutex_enter(SD_MUTEX(un));
5452 	}
5453 
5454 	if (un->un_reset_throttle_timeid != NULL) {
5455 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5456 		un->un_reset_throttle_timeid = NULL;
5457 		mutex_exit(SD_MUTEX(un));
5458 		(void) untimeout(temp_id);
5459 		mutex_enter(SD_MUTEX(un));
5460 	}
5461 
5462 	if (un->un_dcvb_timeid != NULL) {
5463 		timeout_id_t temp_id = un->un_dcvb_timeid;
5464 		un->un_dcvb_timeid = NULL;
5465 		mutex_exit(SD_MUTEX(un));
5466 		(void) untimeout(temp_id);
5467 		mutex_enter(SD_MUTEX(un));
5468 	}
5469 
5470 	mutex_enter(&un->un_pm_mutex);
5471 	if (un->un_pm_timeid != NULL) {
5472 		timeout_id_t temp_id = un->un_pm_timeid;
5473 		un->un_pm_timeid = NULL;
5474 		mutex_exit(&un->un_pm_mutex);
5475 		mutex_exit(SD_MUTEX(un));
5476 		(void) untimeout(temp_id);
5477 		mutex_enter(SD_MUTEX(un));
5478 	} else {
5479 		mutex_exit(&un->un_pm_mutex);
5480 	}
5481 
5482 	if (un->un_retry_timeid != NULL) {
5483 		timeout_id_t temp_id = un->un_retry_timeid;
5484 		un->un_retry_timeid = NULL;
5485 		mutex_exit(SD_MUTEX(un));
5486 		(void) untimeout(temp_id);
5487 		mutex_enter(SD_MUTEX(un));
5488 
5489 		if (un->un_retry_bp != NULL) {
5490 			un->un_retry_bp->av_forw = un->un_waitq_headp;
5491 			un->un_waitq_headp = un->un_retry_bp;
5492 			if (un->un_waitq_tailp == NULL) {
5493 				un->un_waitq_tailp = un->un_retry_bp;
5494 			}
5495 			un->un_retry_bp = NULL;
5496 			un->un_retry_statp = NULL;
5497 		}
5498 	}
5499 
5500 	if (un->un_direct_priority_timeid != NULL) {
5501 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5502 		un->un_direct_priority_timeid = NULL;
5503 		mutex_exit(SD_MUTEX(un));
5504 		(void) untimeout(temp_id);
5505 		mutex_enter(SD_MUTEX(un));
5506 	}
5507 
5508 	if (un->un_f_is_fibre == TRUE) {
5509 		/*
5510 		 * Remove callbacks for insert and remove events
5511 		 */
5512 		if (un->un_insert_event != NULL) {
5513 			mutex_exit(SD_MUTEX(un));
5514 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5515 			mutex_enter(SD_MUTEX(un));
5516 			un->un_insert_event = NULL;
5517 		}
5518 
5519 		if (un->un_remove_event != NULL) {
5520 			mutex_exit(SD_MUTEX(un));
5521 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5522 			mutex_enter(SD_MUTEX(un));
5523 			un->un_remove_event = NULL;
5524 		}
5525 	}
5526 
5527 	mutex_exit(SD_MUTEX(un));
5528 
5529 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5530 
5531 	return (DDI_SUCCESS);
5532 }
5533 
5534 
5535 /*
5536  *    Function: sd_ddi_pm_suspend
5537  *
5538  * Description: Set the drive state to low power.
5539  *		Someone else is required to actually change the drive
5540  *		power level.
5541  *
5542  *   Arguments: un - driver soft state (unit) structure
5543  *
5544  * Return Code: DDI_FAILURE or DDI_SUCCESS
5545  *
5546  *     Context: Kernel thread context
5547  */
5548 
5549 static int
5550 sd_ddi_pm_suspend(struct sd_lun *un)
5551 {
5552 	ASSERT(un != NULL);
5553 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5554 
5555 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5556 	mutex_enter(SD_MUTEX(un));
5557 
5558 	/*
5559 	 * Exit if power management is not enabled for this device, or if
5560 	 * the device is being used by HA.
5561 	 */
5562 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5563 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5564 		mutex_exit(SD_MUTEX(un));
5565 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5566 		return (DDI_SUCCESS);
5567 	}
5568 
5569 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5570 	    un->un_ncmds_in_driver);
5571 
5572 	/*
5573 	 * See if the device is not busy, ie.:
5574 	 *    - we have no commands in the driver for this device
5575 	 *    - not waiting for resources
5576 	 */
5577 	if ((un->un_ncmds_in_driver == 0) &&
5578 	    (un->un_state != SD_STATE_RWAIT)) {
5579 		/*
5580 		 * The device is not busy, so it is OK to go to low power state.
5581 		 * Indicate low power, but rely on someone else to actually
5582 		 * change it.
5583 		 */
5584 		mutex_enter(&un->un_pm_mutex);
5585 		un->un_pm_count = -1;
5586 		mutex_exit(&un->un_pm_mutex);
5587 		un->un_power_level = SD_SPINDLE_OFF;
5588 	}
5589 
5590 	mutex_exit(SD_MUTEX(un));
5591 
5592 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5593 
5594 	return (DDI_SUCCESS);
5595 }
5596 
5597 
5598 /*
5599  *    Function: sd_ddi_resume
5600  *
5601  * Description: Performs system power-up operations..
5602  *
5603  * Return Code: DDI_SUCCESS
5604  *		DDI_FAILURE
5605  *
5606  *     Context: Kernel thread context
5607  */
5608 
5609 static int
5610 sd_ddi_resume(dev_info_t *devi)
5611 {
5612 	struct	sd_lun	*un;
5613 
5614 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5615 	if (un == NULL) {
5616 		return (DDI_FAILURE);
5617 	}
5618 
5619 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
5620 
5621 	mutex_enter(SD_MUTEX(un));
5622 	Restore_state(un);
5623 
5624 	/*
5625 	 * Restore the state which was saved to give the
5626 	 * the right state in un_last_state
5627 	 */
5628 	un->un_last_state = un->un_save_state;
5629 	/*
5630 	 * Note: throttle comes back at full.
5631 	 * Also note: this MUST be done before calling pm_raise_power
5632 	 * otherwise the system can get hung in biowait. The scenario where
5633 	 * this'll happen is under cpr suspend. Writing of the system
5634 	 * state goes through sddump, which writes 0 to un_throttle. If
5635 	 * writing the system state then fails, example if the partition is
5636 	 * too small, then cpr attempts a resume. If throttle isn't restored
5637 	 * from the saved value until after calling pm_raise_power then
5638 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
5639 	 * in biowait.
5640 	 */
5641 	un->un_throttle = un->un_saved_throttle;
5642 
5643 	/*
5644 	 * The chance of failure is very rare as the only command done in power
5645 	 * entry point is START command when you transition from 0->1 or
5646 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
5647 	 * which suspend was done. Ignore the return value as the resume should
5648 	 * not be failed. In the case of removable media the media need not be
5649 	 * inserted and hence there is a chance that raise power will fail with
5650 	 * media not present.
5651 	 */
5652 	if (un->un_f_attach_spinup) {
5653 		mutex_exit(SD_MUTEX(un));
5654 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
5655 		mutex_enter(SD_MUTEX(un));
5656 	}
5657 
5658 	/*
5659 	 * Don't broadcast to the suspend cv and therefore possibly
5660 	 * start I/O until after power has been restored.
5661 	 */
5662 	cv_broadcast(&un->un_suspend_cv);
5663 	cv_broadcast(&un->un_state_cv);
5664 
5665 	/* restart thread */
5666 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
5667 		scsi_watch_resume(un->un_swr_token);
5668 	}
5669 
5670 #if (defined(__fibre))
5671 	if (un->un_f_is_fibre == TRUE) {
5672 		/*
5673 		 * Add callbacks for insert and remove events
5674 		 */
5675 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
5676 			sd_init_event_callbacks(un);
5677 		}
5678 	}
5679 #endif
5680 
5681 	/*
5682 	 * Transport any pending commands to the target.
5683 	 *
5684 	 * If this is a low-activity device commands in queue will have to wait
5685 	 * until new commands come in, which may take awhile. Also, we
5686 	 * specifically don't check un_ncmds_in_transport because we know that
5687 	 * there really are no commands in progress after the unit was
5688 	 * suspended and we could have reached the throttle level, been
5689 	 * suspended, and have no new commands coming in for awhile. Highly
5690 	 * unlikely, but so is the low-activity disk scenario.
5691 	 */
5692 	ddi_xbuf_dispatch(un->un_xbuf_attr);
5693 
5694 	sd_start_cmds(un, NULL);
5695 	mutex_exit(SD_MUTEX(un));
5696 
5697 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
5698 
5699 	return (DDI_SUCCESS);
5700 }
5701 
5702 
5703 /*
5704  *    Function: sd_ddi_pm_resume
5705  *
5706  * Description: Set the drive state to powered on.
5707  *		Someone else is required to actually change the drive
5708  *		power level.
5709  *
5710  *   Arguments: un - driver soft state (unit) structure
5711  *
5712  * Return Code: DDI_SUCCESS
5713  *
5714  *     Context: Kernel thread context
5715  */
5716 
5717 static int
5718 sd_ddi_pm_resume(struct sd_lun *un)
5719 {
5720 	ASSERT(un != NULL);
5721 
5722 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5723 	mutex_enter(SD_MUTEX(un));
5724 	un->un_power_level = SD_SPINDLE_ON;
5725 
5726 	ASSERT(!mutex_owned(&un->un_pm_mutex));
5727 	mutex_enter(&un->un_pm_mutex);
5728 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
5729 		un->un_pm_count++;
5730 		ASSERT(un->un_pm_count == 0);
5731 		/*
5732 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
5733 		 * un_suspend_cv is for a system resume, not a power management
5734 		 * device resume. (4297749)
5735 		 *	 cv_broadcast(&un->un_suspend_cv);
5736 		 */
5737 	}
5738 	mutex_exit(&un->un_pm_mutex);
5739 	mutex_exit(SD_MUTEX(un));
5740 
5741 	return (DDI_SUCCESS);
5742 }
5743 
5744 
5745 /*
5746  *    Function: sd_pm_idletimeout_handler
5747  *
5748  * Description: A timer routine that's active only while a device is busy.
5749  *		The purpose is to extend slightly the pm framework's busy
5750  *		view of the device to prevent busy/idle thrashing for
5751  *		back-to-back commands. Do this by comparing the current time
5752  *		to the time at which the last command completed and when the
5753  *		difference is greater than sd_pm_idletime, call
5754  *		pm_idle_component. In addition to indicating idle to the pm
5755  *		framework, update the chain type to again use the internal pm
5756  *		layers of the driver.
5757  *
5758  *   Arguments: arg - driver soft state (unit) structure
5759  *
5760  *     Context: Executes in a timeout(9F) thread context
5761  */
5762 
5763 static void
5764 sd_pm_idletimeout_handler(void *arg)
5765 {
5766 	struct sd_lun *un = arg;
5767 
5768 	time_t	now;
5769 
5770 	mutex_enter(&sd_detach_mutex);
5771 	if (un->un_detach_count != 0) {
5772 		/* Abort if the instance is detaching */
5773 		mutex_exit(&sd_detach_mutex);
5774 		return;
5775 	}
5776 	mutex_exit(&sd_detach_mutex);
5777 
5778 	now = ddi_get_time();
5779 	/*
5780 	 * Grab both mutexes, in the proper order, since we're accessing
5781 	 * both PM and softstate variables.
5782 	 */
5783 	mutex_enter(SD_MUTEX(un));
5784 	mutex_enter(&un->un_pm_mutex);
5785 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
5786 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
5787 		/*
5788 		 * Update the chain types.
5789 		 * This takes affect on the next new command received.
5790 		 */
5791 		if (un->un_f_non_devbsize_supported) {
5792 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
5793 		} else {
5794 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
5795 		}
5796 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
5797 
5798 		SD_TRACE(SD_LOG_IO_PM, un,
5799 		    "sd_pm_idletimeout_handler: idling device\n");
5800 		(void) pm_idle_component(SD_DEVINFO(un), 0);
5801 		un->un_pm_idle_timeid = NULL;
5802 	} else {
5803 		un->un_pm_idle_timeid =
5804 		    timeout(sd_pm_idletimeout_handler, un,
5805 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
5806 	}
5807 	mutex_exit(&un->un_pm_mutex);
5808 	mutex_exit(SD_MUTEX(un));
5809 }
5810 
5811 
5812 /*
5813  *    Function: sd_pm_timeout_handler
5814  *
5815  * Description: Callback to tell framework we are idle.
5816  *
5817  *     Context: timeout(9f) thread context.
5818  */
5819 
5820 static void
5821 sd_pm_timeout_handler(void *arg)
5822 {
5823 	struct sd_lun *un = arg;
5824 
5825 	(void) pm_idle_component(SD_DEVINFO(un), 0);
5826 	mutex_enter(&un->un_pm_mutex);
5827 	un->un_pm_timeid = NULL;
5828 	mutex_exit(&un->un_pm_mutex);
5829 }
5830 
5831 
5832 /*
5833  *    Function: sdpower
5834  *
5835  * Description: PM entry point.
5836  *
5837  * Return Code: DDI_SUCCESS
5838  *		DDI_FAILURE
5839  *
5840  *     Context: Kernel thread context
5841  */
5842 
5843 static int
5844 sdpower(dev_info_t *devi, int component, int level)
5845 {
5846 	struct sd_lun	*un;
5847 	int		instance;
5848 	int		rval = DDI_SUCCESS;
5849 	uint_t		i, log_page_size, maxcycles, ncycles;
5850 	uchar_t		*log_page_data;
5851 	int		log_sense_page;
5852 	int		medium_present;
5853 	time_t		intvlp;
5854 	dev_t		dev;
5855 	struct pm_trans_data	sd_pm_tran_data;
5856 	uchar_t		save_state;
5857 	int		sval;
5858 	uchar_t		state_before_pm;
5859 	int		got_semaphore_here;
5860 
5861 	instance = ddi_get_instance(devi);
5862 
5863 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
5864 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
5865 	    component != 0) {
5866 		return (DDI_FAILURE);
5867 	}
5868 
5869 	dev = sd_make_device(SD_DEVINFO(un));
5870 
5871 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
5872 
5873 	/*
5874 	 * Must synchronize power down with close.
5875 	 * Attempt to decrement/acquire the open/close semaphore,
5876 	 * but do NOT wait on it. If it's not greater than zero,
5877 	 * ie. it can't be decremented without waiting, then
5878 	 * someone else, either open or close, already has it
5879 	 * and the try returns 0. Use that knowledge here to determine
5880 	 * if it's OK to change the device power level.
5881 	 * Also, only increment it on exit if it was decremented, ie. gotten,
5882 	 * here.
5883 	 */
5884 	got_semaphore_here = sema_tryp(&un->un_semoclose);
5885 
5886 	mutex_enter(SD_MUTEX(un));
5887 
5888 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
5889 	    un->un_ncmds_in_driver);
5890 
5891 	/*
5892 	 * If un_ncmds_in_driver is non-zero it indicates commands are
5893 	 * already being processed in the driver, or if the semaphore was
5894 	 * not gotten here it indicates an open or close is being processed.
5895 	 * At the same time somebody is requesting to go low power which
5896 	 * can't happen, therefore we need to return failure.
5897 	 */
5898 	if ((level == SD_SPINDLE_OFF) &&
5899 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
5900 		mutex_exit(SD_MUTEX(un));
5901 
5902 		if (got_semaphore_here != 0) {
5903 			sema_v(&un->un_semoclose);
5904 		}
5905 		SD_TRACE(SD_LOG_IO_PM, un,
5906 		    "sdpower: exit, device has queued cmds.\n");
5907 		return (DDI_FAILURE);
5908 	}
5909 
5910 	/*
5911 	 * if it is OFFLINE that means the disk is completely dead
5912 	 * in our case we have to put the disk in on or off by sending commands
5913 	 * Of course that will fail anyway so return back here.
5914 	 *
5915 	 * Power changes to a device that's OFFLINE or SUSPENDED
5916 	 * are not allowed.
5917 	 */
5918 	if ((un->un_state == SD_STATE_OFFLINE) ||
5919 	    (un->un_state == SD_STATE_SUSPENDED)) {
5920 		mutex_exit(SD_MUTEX(un));
5921 
5922 		if (got_semaphore_here != 0) {
5923 			sema_v(&un->un_semoclose);
5924 		}
5925 		SD_TRACE(SD_LOG_IO_PM, un,
5926 		    "sdpower: exit, device is off-line.\n");
5927 		return (DDI_FAILURE);
5928 	}
5929 
5930 	/*
5931 	 * Change the device's state to indicate it's power level
5932 	 * is being changed. Do this to prevent a power off in the
5933 	 * middle of commands, which is especially bad on devices
5934 	 * that are really powered off instead of just spun down.
5935 	 */
5936 	state_before_pm = un->un_state;
5937 	un->un_state = SD_STATE_PM_CHANGING;
5938 
5939 	mutex_exit(SD_MUTEX(un));
5940 
5941 	/*
5942 	 * If "pm-capable" property is set to TRUE by HBA drivers,
5943 	 * bypass the following checking, otherwise, check the log
5944 	 * sense information for this device
5945 	 */
5946 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
5947 		/*
5948 		 * Get the log sense information to understand whether the
5949 		 * the powercycle counts have gone beyond the threshhold.
5950 		 */
5951 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5952 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5953 
5954 		mutex_enter(SD_MUTEX(un));
5955 		log_sense_page = un->un_start_stop_cycle_page;
5956 		mutex_exit(SD_MUTEX(un));
5957 
5958 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5959 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
5960 #ifdef	SDDEBUG
5961 		if (sd_force_pm_supported) {
5962 			/* Force a successful result */
5963 			rval = 0;
5964 		}
5965 #endif
5966 		if (rval != 0) {
5967 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5968 			    "Log Sense Failed\n");
5969 			kmem_free(log_page_data, log_page_size);
5970 			/* Cannot support power management on those drives */
5971 
5972 			if (got_semaphore_here != 0) {
5973 				sema_v(&un->un_semoclose);
5974 			}
5975 			/*
5976 			 * On exit put the state back to it's original value
5977 			 * and broadcast to anyone waiting for the power
5978 			 * change completion.
5979 			 */
5980 			mutex_enter(SD_MUTEX(un));
5981 			un->un_state = state_before_pm;
5982 			cv_broadcast(&un->un_suspend_cv);
5983 			mutex_exit(SD_MUTEX(un));
5984 			SD_TRACE(SD_LOG_IO_PM, un,
5985 			    "sdpower: exit, Log Sense Failed.\n");
5986 			return (DDI_FAILURE);
5987 		}
5988 
5989 		/*
5990 		 * From the page data - Convert the essential information to
5991 		 * pm_trans_data
5992 		 */
5993 		maxcycles =
5994 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
5995 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
5996 
5997 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
5998 
5999 		ncycles =
6000 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6001 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6002 
6003 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6004 
6005 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6006 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6007 			    log_page_data[8+i];
6008 		}
6009 
6010 		kmem_free(log_page_data, log_page_size);
6011 
6012 		/*
6013 		 * Call pm_trans_check routine to get the Ok from
6014 		 * the global policy
6015 		 */
6016 
6017 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
6018 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
6019 
6020 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6021 #ifdef	SDDEBUG
6022 		if (sd_force_pm_supported) {
6023 			/* Force a successful result */
6024 			rval = 1;
6025 		}
6026 #endif
6027 		switch (rval) {
6028 		case 0:
6029 			/*
6030 			 * Not Ok to Power cycle or error in parameters passed
6031 			 * Would have given the advised time to consider power
6032 			 * cycle. Based on the new intvlp parameter we are
6033 			 * supposed to pretend we are busy so that pm framework
6034 			 * will never call our power entry point. Because of
6035 			 * that install a timeout handler and wait for the
6036 			 * recommended time to elapse so that power management
6037 			 * can be effective again.
6038 			 *
6039 			 * To effect this behavior, call pm_busy_component to
6040 			 * indicate to the framework this device is busy.
6041 			 * By not adjusting un_pm_count the rest of PM in
6042 			 * the driver will function normally, and independant
6043 			 * of this but because the framework is told the device
6044 			 * is busy it won't attempt powering down until it gets
6045 			 * a matching idle. The timeout handler sends this.
6046 			 * Note: sd_pm_entry can't be called here to do this
6047 			 * because sdpower may have been called as a result
6048 			 * of a call to pm_raise_power from within sd_pm_entry.
6049 			 *
6050 			 * If a timeout handler is already active then
6051 			 * don't install another.
6052 			 */
6053 			mutex_enter(&un->un_pm_mutex);
6054 			if (un->un_pm_timeid == NULL) {
6055 				un->un_pm_timeid =
6056 				    timeout(sd_pm_timeout_handler,
6057 				    un, intvlp * drv_usectohz(1000000));
6058 				mutex_exit(&un->un_pm_mutex);
6059 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6060 			} else {
6061 				mutex_exit(&un->un_pm_mutex);
6062 			}
6063 			if (got_semaphore_here != 0) {
6064 				sema_v(&un->un_semoclose);
6065 			}
6066 			/*
6067 			 * On exit put the state back to it's original value
6068 			 * and broadcast to anyone waiting for the power
6069 			 * change completion.
6070 			 */
6071 			mutex_enter(SD_MUTEX(un));
6072 			un->un_state = state_before_pm;
6073 			cv_broadcast(&un->un_suspend_cv);
6074 			mutex_exit(SD_MUTEX(un));
6075 
6076 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6077 			    "trans check Failed, not ok to power cycle.\n");
6078 			return (DDI_FAILURE);
6079 
6080 		case -1:
6081 			if (got_semaphore_here != 0) {
6082 				sema_v(&un->un_semoclose);
6083 			}
6084 			/*
6085 			 * On exit put the state back to it's original value
6086 			 * and broadcast to anyone waiting for the power
6087 			 * change completion.
6088 			 */
6089 			mutex_enter(SD_MUTEX(un));
6090 			un->un_state = state_before_pm;
6091 			cv_broadcast(&un->un_suspend_cv);
6092 			mutex_exit(SD_MUTEX(un));
6093 			SD_TRACE(SD_LOG_IO_PM, un,
6094 			    "sdpower: exit, trans check command Failed.\n");
6095 			return (DDI_FAILURE);
6096 		}
6097 	}
6098 
6099 	if (level == SD_SPINDLE_OFF) {
6100 		/*
6101 		 * Save the last state... if the STOP FAILS we need it
6102 		 * for restoring
6103 		 */
6104 		mutex_enter(SD_MUTEX(un));
6105 		save_state = un->un_last_state;
6106 		/*
6107 		 * There must not be any cmds. getting processed
6108 		 * in the driver when we get here. Power to the
6109 		 * device is potentially going off.
6110 		 */
6111 		ASSERT(un->un_ncmds_in_driver == 0);
6112 		mutex_exit(SD_MUTEX(un));
6113 
6114 		/*
6115 		 * For now suspend the device completely before spindle is
6116 		 * turned off
6117 		 */
6118 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
6119 			if (got_semaphore_here != 0) {
6120 				sema_v(&un->un_semoclose);
6121 			}
6122 			/*
6123 			 * On exit put the state back to it's original value
6124 			 * and broadcast to anyone waiting for the power
6125 			 * change completion.
6126 			 */
6127 			mutex_enter(SD_MUTEX(un));
6128 			un->un_state = state_before_pm;
6129 			cv_broadcast(&un->un_suspend_cv);
6130 			mutex_exit(SD_MUTEX(un));
6131 			SD_TRACE(SD_LOG_IO_PM, un,
6132 			    "sdpower: exit, PM suspend Failed.\n");
6133 			return (DDI_FAILURE);
6134 		}
6135 	}
6136 
6137 	/*
6138 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6139 	 * close, or strategy. Dump no long uses this routine, it uses it's
6140 	 * own code so it can be done in polled mode.
6141 	 */
6142 
6143 	medium_present = TRUE;
6144 
6145 	/*
6146 	 * When powering up, issue a TUR in case the device is at unit
6147 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6148 	 * a deadlock on un_pm_busy_cv will occur.
6149 	 */
6150 	if (level == SD_SPINDLE_ON) {
6151 		(void) sd_send_scsi_TEST_UNIT_READY(un,
6152 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6153 	}
6154 
6155 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6156 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6157 
6158 	sval = sd_send_scsi_START_STOP_UNIT(un,
6159 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6160 	    SD_PATH_DIRECT);
6161 	/* Command failed, check for media present. */
6162 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6163 		medium_present = FALSE;
6164 	}
6165 
6166 	/*
6167 	 * The conditions of interest here are:
6168 	 *   if a spindle off with media present fails,
6169 	 *	then restore the state and return an error.
6170 	 *   else if a spindle on fails,
6171 	 *	then return an error (there's no state to restore).
6172 	 * In all other cases we setup for the new state
6173 	 * and return success.
6174 	 */
6175 	switch (level) {
6176 	case SD_SPINDLE_OFF:
6177 		if ((medium_present == TRUE) && (sval != 0)) {
6178 			/* The stop command from above failed */
6179 			rval = DDI_FAILURE;
6180 			/*
6181 			 * The stop command failed, and we have media
6182 			 * present. Put the level back by calling the
6183 			 * sd_pm_resume() and set the state back to
6184 			 * it's previous value.
6185 			 */
6186 			(void) sd_ddi_pm_resume(un);
6187 			mutex_enter(SD_MUTEX(un));
6188 			un->un_last_state = save_state;
6189 			mutex_exit(SD_MUTEX(un));
6190 			break;
6191 		}
6192 		/*
6193 		 * The stop command from above succeeded.
6194 		 */
6195 		if (un->un_f_monitor_media_state) {
6196 			/*
6197 			 * Terminate watch thread in case of removable media
6198 			 * devices going into low power state. This is as per
6199 			 * the requirements of pm framework, otherwise commands
6200 			 * will be generated for the device (through watch
6201 			 * thread), even when the device is in low power state.
6202 			 */
6203 			mutex_enter(SD_MUTEX(un));
6204 			un->un_f_watcht_stopped = FALSE;
6205 			if (un->un_swr_token != NULL) {
6206 				opaque_t temp_token = un->un_swr_token;
6207 				un->un_f_watcht_stopped = TRUE;
6208 				un->un_swr_token = NULL;
6209 				mutex_exit(SD_MUTEX(un));
6210 				(void) scsi_watch_request_terminate(temp_token,
6211 				    SCSI_WATCH_TERMINATE_WAIT);
6212 			} else {
6213 				mutex_exit(SD_MUTEX(un));
6214 			}
6215 		}
6216 		break;
6217 
6218 	default:	/* The level requested is spindle on... */
6219 		/*
6220 		 * Legacy behavior: return success on a failed spinup
6221 		 * if there is no media in the drive.
6222 		 * Do this by looking at medium_present here.
6223 		 */
6224 		if ((sval != 0) && medium_present) {
6225 			/* The start command from above failed */
6226 			rval = DDI_FAILURE;
6227 			break;
6228 		}
6229 		/*
6230 		 * The start command from above succeeded
6231 		 * Resume the devices now that we have
6232 		 * started the disks
6233 		 */
6234 		(void) sd_ddi_pm_resume(un);
6235 
6236 		/*
6237 		 * Resume the watch thread since it was suspended
6238 		 * when the device went into low power mode.
6239 		 */
6240 		if (un->un_f_monitor_media_state) {
6241 			mutex_enter(SD_MUTEX(un));
6242 			if (un->un_f_watcht_stopped == TRUE) {
6243 				opaque_t temp_token;
6244 
6245 				un->un_f_watcht_stopped = FALSE;
6246 				mutex_exit(SD_MUTEX(un));
6247 				temp_token = scsi_watch_request_submit(
6248 				    SD_SCSI_DEVP(un),
6249 				    sd_check_media_time,
6250 				    SENSE_LENGTH, sd_media_watch_cb,
6251 				    (caddr_t)dev);
6252 				mutex_enter(SD_MUTEX(un));
6253 				un->un_swr_token = temp_token;
6254 			}
6255 			mutex_exit(SD_MUTEX(un));
6256 		}
6257 	}
6258 	if (got_semaphore_here != 0) {
6259 		sema_v(&un->un_semoclose);
6260 	}
6261 	/*
6262 	 * On exit put the state back to it's original value
6263 	 * and broadcast to anyone waiting for the power
6264 	 * change completion.
6265 	 */
6266 	mutex_enter(SD_MUTEX(un));
6267 	un->un_state = state_before_pm;
6268 	cv_broadcast(&un->un_suspend_cv);
6269 	mutex_exit(SD_MUTEX(un));
6270 
6271 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6272 
6273 	return (rval);
6274 }
6275 
6276 
6277 
6278 /*
6279  *    Function: sdattach
6280  *
6281  * Description: Driver's attach(9e) entry point function.
6282  *
6283  *   Arguments: devi - opaque device info handle
6284  *		cmd  - attach  type
6285  *
6286  * Return Code: DDI_SUCCESS
6287  *		DDI_FAILURE
6288  *
6289  *     Context: Kernel thread context
6290  */
6291 
6292 static int
6293 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6294 {
6295 	switch (cmd) {
6296 	case DDI_ATTACH:
6297 		return (sd_unit_attach(devi));
6298 	case DDI_RESUME:
6299 		return (sd_ddi_resume(devi));
6300 	default:
6301 		break;
6302 	}
6303 	return (DDI_FAILURE);
6304 }
6305 
6306 
6307 /*
6308  *    Function: sddetach
6309  *
6310  * Description: Driver's detach(9E) entry point function.
6311  *
6312  *   Arguments: devi - opaque device info handle
6313  *		cmd  - detach  type
6314  *
6315  * Return Code: DDI_SUCCESS
6316  *		DDI_FAILURE
6317  *
6318  *     Context: Kernel thread context
6319  */
6320 
6321 static int
6322 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6323 {
6324 	switch (cmd) {
6325 	case DDI_DETACH:
6326 		return (sd_unit_detach(devi));
6327 	case DDI_SUSPEND:
6328 		return (sd_ddi_suspend(devi));
6329 	default:
6330 		break;
6331 	}
6332 	return (DDI_FAILURE);
6333 }
6334 
6335 
6336 /*
6337  *     Function: sd_sync_with_callback
6338  *
6339  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6340  *		 state while the callback routine is active.
6341  *
6342  *    Arguments: un: softstate structure for the instance
6343  *
6344  *	Context: Kernel thread context
6345  */
6346 
6347 static void
6348 sd_sync_with_callback(struct sd_lun *un)
6349 {
6350 	ASSERT(un != NULL);
6351 
6352 	mutex_enter(SD_MUTEX(un));
6353 
6354 	ASSERT(un->un_in_callback >= 0);
6355 
6356 	while (un->un_in_callback > 0) {
6357 		mutex_exit(SD_MUTEX(un));
6358 		delay(2);
6359 		mutex_enter(SD_MUTEX(un));
6360 	}
6361 
6362 	mutex_exit(SD_MUTEX(un));
6363 }
6364 
6365 /*
6366  *    Function: sd_unit_attach
6367  *
6368  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6369  *		the soft state structure for the device and performs
6370  *		all necessary structure and device initializations.
6371  *
6372  *   Arguments: devi: the system's dev_info_t for the device.
6373  *
6374  * Return Code: DDI_SUCCESS if attach is successful.
6375  *		DDI_FAILURE if any part of the attach fails.
6376  *
6377  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6378  *		Kernel thread context only.  Can sleep.
6379  */
6380 
6381 static int
6382 sd_unit_attach(dev_info_t *devi)
6383 {
6384 	struct	scsi_device	*devp;
6385 	struct	sd_lun		*un;
6386 	char			*variantp;
6387 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6388 	int	instance;
6389 	int	rval;
6390 	int	wc_enabled;
6391 	int	tgt;
6392 	uint64_t	capacity;
6393 	uint_t		lbasize = 0;
6394 	dev_info_t	*pdip = ddi_get_parent(devi);
6395 	int		offbyone = 0;
6396 	int		geom_label_valid = 0;
6397 #if defined(__sparc)
6398 	int		max_xfer_size;
6399 #endif
6400 
6401 	/*
6402 	 * Retrieve the target driver's private data area. This was set
6403 	 * up by the HBA.
6404 	 */
6405 	devp = ddi_get_driver_private(devi);
6406 
6407 	/*
6408 	 * Retrieve the target ID of the device.
6409 	 */
6410 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6411 	    SCSI_ADDR_PROP_TARGET, -1);
6412 
6413 	/*
6414 	 * Since we have no idea what state things were left in by the last
6415 	 * user of the device, set up some 'default' settings, ie. turn 'em
6416 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6417 	 * Do this before the scsi_probe, which sends an inquiry.
6418 	 * This is a fix for bug (4430280).
6419 	 * Of special importance is wide-xfer. The drive could have been left
6420 	 * in wide transfer mode by the last driver to communicate with it,
6421 	 * this includes us. If that's the case, and if the following is not
6422 	 * setup properly or we don't re-negotiate with the drive prior to
6423 	 * transferring data to/from the drive, it causes bus parity errors,
6424 	 * data overruns, and unexpected interrupts. This first occurred when
6425 	 * the fix for bug (4378686) was made.
6426 	 */
6427 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6428 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6429 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6430 
6431 	/*
6432 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6433 	 * on a target. Setting it per lun instance actually sets the
6434 	 * capability of this target, which affects those luns already
6435 	 * attached on the same target. So during attach, we can only disable
6436 	 * this capability only when no other lun has been attached on this
6437 	 * target. By doing this, we assume a target has the same tagged-qing
6438 	 * capability for every lun. The condition can be removed when HBA
6439 	 * is changed to support per lun based tagged-qing capability.
6440 	 */
6441 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6442 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6443 	}
6444 
6445 	/*
6446 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6447 	 * This call will allocate and fill in the scsi_inquiry structure
6448 	 * and point the sd_inq member of the scsi_device structure to it.
6449 	 * If the attach succeeds, then this memory will not be de-allocated
6450 	 * (via scsi_unprobe()) until the instance is detached.
6451 	 */
6452 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6453 		goto probe_failed;
6454 	}
6455 
6456 	/*
6457 	 * Check the device type as specified in the inquiry data and
6458 	 * claim it if it is of a type that we support.
6459 	 */
6460 	switch (devp->sd_inq->inq_dtype) {
6461 	case DTYPE_DIRECT:
6462 		break;
6463 	case DTYPE_RODIRECT:
6464 		break;
6465 	case DTYPE_OPTICAL:
6466 		break;
6467 	case DTYPE_NOTPRESENT:
6468 	default:
6469 		/* Unsupported device type; fail the attach. */
6470 		goto probe_failed;
6471 	}
6472 
6473 	/*
6474 	 * Allocate the soft state structure for this unit.
6475 	 *
6476 	 * We rely upon this memory being set to all zeroes by
6477 	 * ddi_soft_state_zalloc().  We assume that any member of the
6478 	 * soft state structure that is not explicitly initialized by
6479 	 * this routine will have a value of zero.
6480 	 */
6481 	instance = ddi_get_instance(devp->sd_dev);
6482 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6483 		goto probe_failed;
6484 	}
6485 
6486 	/*
6487 	 * Retrieve a pointer to the newly-allocated soft state.
6488 	 *
6489 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6490 	 * was successful, unless something has gone horribly wrong and the
6491 	 * ddi's soft state internals are corrupt (in which case it is
6492 	 * probably better to halt here than just fail the attach....)
6493 	 */
6494 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6495 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6496 		    instance);
6497 		/*NOTREACHED*/
6498 	}
6499 
6500 	/*
6501 	 * Link the back ptr of the driver soft state to the scsi_device
6502 	 * struct for this lun.
6503 	 * Save a pointer to the softstate in the driver-private area of
6504 	 * the scsi_device struct.
6505 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6506 	 * we first set un->un_sd below.
6507 	 */
6508 	un->un_sd = devp;
6509 	devp->sd_private = (opaque_t)un;
6510 
6511 	/*
6512 	 * The following must be after devp is stored in the soft state struct.
6513 	 */
6514 #ifdef SDDEBUG
6515 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6516 	    "%s_unit_attach: un:0x%p instance:%d\n",
6517 	    ddi_driver_name(devi), un, instance);
6518 #endif
6519 
6520 	/*
6521 	 * Set up the device type and node type (for the minor nodes).
6522 	 * By default we assume that the device can at least support the
6523 	 * Common Command Set. Call it a CD-ROM if it reports itself
6524 	 * as a RODIRECT device.
6525 	 */
6526 	switch (devp->sd_inq->inq_dtype) {
6527 	case DTYPE_RODIRECT:
6528 		un->un_node_type = DDI_NT_CD_CHAN;
6529 		un->un_ctype	 = CTYPE_CDROM;
6530 		break;
6531 	case DTYPE_OPTICAL:
6532 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6533 		un->un_ctype	 = CTYPE_ROD;
6534 		break;
6535 	default:
6536 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6537 		un->un_ctype	 = CTYPE_CCS;
6538 		break;
6539 	}
6540 
6541 	/*
6542 	 * Try to read the interconnect type from the HBA.
6543 	 *
6544 	 * Note: This driver is currently compiled as two binaries, a parallel
6545 	 * scsi version (sd) and a fibre channel version (ssd). All functional
6546 	 * differences are determined at compile time. In the future a single
6547 	 * binary will be provided and the inteconnect type will be used to
6548 	 * differentiate between fibre and parallel scsi behaviors. At that time
6549 	 * it will be necessary for all fibre channel HBAs to support this
6550 	 * property.
6551 	 *
6552 	 * set un_f_is_fiber to TRUE ( default fiber )
6553 	 */
6554 	un->un_f_is_fibre = TRUE;
6555 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6556 	case INTERCONNECT_SSA:
6557 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6558 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6559 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6560 		break;
6561 	case INTERCONNECT_PARALLEL:
6562 		un->un_f_is_fibre = FALSE;
6563 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6564 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6565 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
6566 		break;
6567 	case INTERCONNECT_SATA:
6568 		un->un_f_is_fibre = FALSE;
6569 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
6570 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6571 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
6572 		break;
6573 	case INTERCONNECT_FIBRE:
6574 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
6575 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6576 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
6577 		break;
6578 	case INTERCONNECT_FABRIC:
6579 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
6580 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
6581 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6582 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
6583 		break;
6584 	default:
6585 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
6586 		/*
6587 		 * The HBA does not support the "interconnect-type" property
6588 		 * (or did not provide a recognized type).
6589 		 *
6590 		 * Note: This will be obsoleted when a single fibre channel
6591 		 * and parallel scsi driver is delivered. In the meantime the
6592 		 * interconnect type will be set to the platform default.If that
6593 		 * type is not parallel SCSI, it means that we should be
6594 		 * assuming "ssd" semantics. However, here this also means that
6595 		 * the FC HBA is not supporting the "interconnect-type" property
6596 		 * like we expect it to, so log this occurrence.
6597 		 */
6598 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
6599 		if (!SD_IS_PARALLEL_SCSI(un)) {
6600 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6601 			    "sd_unit_attach: un:0x%p Assuming "
6602 			    "INTERCONNECT_FIBRE\n", un);
6603 		} else {
6604 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6605 			    "sd_unit_attach: un:0x%p Assuming "
6606 			    "INTERCONNECT_PARALLEL\n", un);
6607 			un->un_f_is_fibre = FALSE;
6608 		}
6609 #else
6610 		/*
6611 		 * Note: This source will be implemented when a single fibre
6612 		 * channel and parallel scsi driver is delivered. The default
6613 		 * will be to assume that if a device does not support the
6614 		 * "interconnect-type" property it is a parallel SCSI HBA and
6615 		 * we will set the interconnect type for parallel scsi.
6616 		 */
6617 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6618 		un->un_f_is_fibre = FALSE;
6619 #endif
6620 		break;
6621 	}
6622 
6623 	if (un->un_f_is_fibre == TRUE) {
6624 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
6625 		    SCSI_VERSION_3) {
6626 			switch (un->un_interconnect_type) {
6627 			case SD_INTERCONNECT_FIBRE:
6628 			case SD_INTERCONNECT_SSA:
6629 				un->un_node_type = DDI_NT_BLOCK_WWN;
6630 				break;
6631 			default:
6632 				break;
6633 			}
6634 		}
6635 	}
6636 
6637 	/*
6638 	 * Initialize the Request Sense command for the target
6639 	 */
6640 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
6641 		goto alloc_rqs_failed;
6642 	}
6643 
6644 	/*
6645 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
6646 	 * with separate binary for sd and ssd.
6647 	 *
6648 	 * x86 has 1 binary, un_retry_count is set base on connection type.
6649 	 * The hardcoded values will go away when Sparc uses 1 binary
6650 	 * for sd and ssd.  This hardcoded values need to match
6651 	 * SD_RETRY_COUNT in sddef.h
6652 	 * The value used is base on interconnect type.
6653 	 * fibre = 3, parallel = 5
6654 	 */
6655 #if defined(__i386) || defined(__amd64)
6656 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
6657 #else
6658 	un->un_retry_count = SD_RETRY_COUNT;
6659 #endif
6660 
6661 	/*
6662 	 * Set the per disk retry count to the default number of retries
6663 	 * for disks and CDROMs. This value can be overridden by the
6664 	 * disk property list or an entry in sd.conf.
6665 	 */
6666 	un->un_notready_retry_count =
6667 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
6668 	    : DISK_NOT_READY_RETRY_COUNT(un);
6669 
6670 	/*
6671 	 * Set the busy retry count to the default value of un_retry_count.
6672 	 * This can be overridden by entries in sd.conf or the device
6673 	 * config table.
6674 	 */
6675 	un->un_busy_retry_count = un->un_retry_count;
6676 
6677 	/*
6678 	 * Init the reset threshold for retries.  This number determines
6679 	 * how many retries must be performed before a reset can be issued
6680 	 * (for certain error conditions). This can be overridden by entries
6681 	 * in sd.conf or the device config table.
6682 	 */
6683 	un->un_reset_retry_count = (un->un_retry_count / 2);
6684 
6685 	/*
6686 	 * Set the victim_retry_count to the default un_retry_count
6687 	 */
6688 	un->un_victim_retry_count = (2 * un->un_retry_count);
6689 
6690 	/*
6691 	 * Set the reservation release timeout to the default value of
6692 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
6693 	 * device config table.
6694 	 */
6695 	un->un_reserve_release_time = 5;
6696 
6697 	/*
6698 	 * Set up the default maximum transfer size. Note that this may
6699 	 * get updated later in the attach, when setting up default wide
6700 	 * operations for disks.
6701 	 */
6702 #if defined(__i386) || defined(__amd64)
6703 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
6704 	un->un_partial_dma_supported = 1;
6705 #else
6706 	un->un_max_xfer_size = (uint_t)maxphys;
6707 #endif
6708 
6709 	/*
6710 	 * Get "allow bus device reset" property (defaults to "enabled" if
6711 	 * the property was not defined). This is to disable bus resets for
6712 	 * certain kinds of error recovery. Note: In the future when a run-time
6713 	 * fibre check is available the soft state flag should default to
6714 	 * enabled.
6715 	 */
6716 	if (un->un_f_is_fibre == TRUE) {
6717 		un->un_f_allow_bus_device_reset = TRUE;
6718 	} else {
6719 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6720 		    "allow-bus-device-reset", 1) != 0) {
6721 			un->un_f_allow_bus_device_reset = TRUE;
6722 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6723 			    "sd_unit_attach: un:0x%p Bus device reset "
6724 			    "enabled\n", un);
6725 		} else {
6726 			un->un_f_allow_bus_device_reset = FALSE;
6727 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6728 			    "sd_unit_attach: un:0x%p Bus device reset "
6729 			    "disabled\n", un);
6730 		}
6731 	}
6732 
6733 	/*
6734 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
6735 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
6736 	 *
6737 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
6738 	 * property. The new "variant" property with a value of "atapi" has been
6739 	 * introduced so that future 'variants' of standard SCSI behavior (like
6740 	 * atapi) could be specified by the underlying HBA drivers by supplying
6741 	 * a new value for the "variant" property, instead of having to define a
6742 	 * new property.
6743 	 */
6744 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
6745 		un->un_f_cfg_is_atapi = TRUE;
6746 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6747 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
6748 	}
6749 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
6750 	    &variantp) == DDI_PROP_SUCCESS) {
6751 		if (strcmp(variantp, "atapi") == 0) {
6752 			un->un_f_cfg_is_atapi = TRUE;
6753 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6754 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
6755 		}
6756 		ddi_prop_free(variantp);
6757 	}
6758 
6759 	un->un_cmd_timeout	= SD_IO_TIME;
6760 
6761 	/* Info on current states, statuses, etc. (Updated frequently) */
6762 	un->un_state		= SD_STATE_NORMAL;
6763 	un->un_last_state	= SD_STATE_NORMAL;
6764 
6765 	/* Control & status info for command throttling */
6766 	un->un_throttle		= sd_max_throttle;
6767 	un->un_saved_throttle	= sd_max_throttle;
6768 	un->un_min_throttle	= sd_min_throttle;
6769 
6770 	if (un->un_f_is_fibre == TRUE) {
6771 		un->un_f_use_adaptive_throttle = TRUE;
6772 	} else {
6773 		un->un_f_use_adaptive_throttle = FALSE;
6774 	}
6775 
6776 	/* Removable media support. */
6777 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
6778 	un->un_mediastate		= DKIO_NONE;
6779 	un->un_specified_mediastate	= DKIO_NONE;
6780 
6781 	/* CVs for suspend/resume (PM or DR) */
6782 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
6783 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
6784 
6785 	/* Power management support. */
6786 	un->un_power_level = SD_SPINDLE_UNINIT;
6787 
6788 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
6789 	un->un_f_wcc_inprog = 0;
6790 
6791 	/*
6792 	 * The open/close semaphore is used to serialize threads executing
6793 	 * in the driver's open & close entry point routines for a given
6794 	 * instance.
6795 	 */
6796 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
6797 
6798 	/*
6799 	 * The conf file entry and softstate variable is a forceful override,
6800 	 * meaning a non-zero value must be entered to change the default.
6801 	 */
6802 	un->un_f_disksort_disabled = FALSE;
6803 
6804 	/*
6805 	 * Retrieve the properties from the static driver table or the driver
6806 	 * configuration file (.conf) for this unit and update the soft state
6807 	 * for the device as needed for the indicated properties.
6808 	 * Note: the property configuration needs to occur here as some of the
6809 	 * following routines may have dependancies on soft state flags set
6810 	 * as part of the driver property configuration.
6811 	 */
6812 	sd_read_unit_properties(un);
6813 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6814 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
6815 
6816 	/*
6817 	 * Only if a device has "hotpluggable" property, it is
6818 	 * treated as hotpluggable device. Otherwise, it is
6819 	 * regarded as non-hotpluggable one.
6820 	 */
6821 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
6822 	    -1) != -1) {
6823 		un->un_f_is_hotpluggable = TRUE;
6824 	}
6825 
6826 	/*
6827 	 * set unit's attributes(flags) according to "hotpluggable" and
6828 	 * RMB bit in INQUIRY data.
6829 	 */
6830 	sd_set_unit_attributes(un, devi);
6831 
6832 	/*
6833 	 * By default, we mark the capacity, lbasize, and geometry
6834 	 * as invalid. Only if we successfully read a valid capacity
6835 	 * will we update the un_blockcount and un_tgt_blocksize with the
6836 	 * valid values (the geometry will be validated later).
6837 	 */
6838 	un->un_f_blockcount_is_valid	= FALSE;
6839 	un->un_f_tgt_blocksize_is_valid	= FALSE;
6840 
6841 	/*
6842 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
6843 	 * otherwise.
6844 	 */
6845 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
6846 	un->un_blockcount = 0;
6847 
6848 	/*
6849 	 * Set up the per-instance info needed to determine the correct
6850 	 * CDBs and other info for issuing commands to the target.
6851 	 */
6852 	sd_init_cdb_limits(un);
6853 
6854 	/*
6855 	 * Set up the IO chains to use, based upon the target type.
6856 	 */
6857 	if (un->un_f_non_devbsize_supported) {
6858 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6859 	} else {
6860 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6861 	}
6862 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6863 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
6864 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
6865 
6866 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
6867 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
6868 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
6869 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
6870 
6871 
6872 	if (ISCD(un)) {
6873 		un->un_additional_codes = sd_additional_codes;
6874 	} else {
6875 		un->un_additional_codes = NULL;
6876 	}
6877 
6878 	/*
6879 	 * Create the kstats here so they can be available for attach-time
6880 	 * routines that send commands to the unit (either polled or via
6881 	 * sd_send_scsi_cmd).
6882 	 *
6883 	 * Note: This is a critical sequence that needs to be maintained:
6884 	 *	1) Instantiate the kstats here, before any routines using the
6885 	 *	   iopath (i.e. sd_send_scsi_cmd).
6886 	 *	2) Instantiate and initialize the partition stats
6887 	 *	   (sd_set_pstats).
6888 	 *	3) Initialize the error stats (sd_set_errstats), following
6889 	 *	   sd_validate_geometry(),sd_register_devid(),
6890 	 *	   and sd_cache_control().
6891 	 */
6892 
6893 	un->un_stats = kstat_create(sd_label, instance,
6894 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
6895 	if (un->un_stats != NULL) {
6896 		un->un_stats->ks_lock = SD_MUTEX(un);
6897 		kstat_install(un->un_stats);
6898 	}
6899 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6900 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
6901 
6902 	sd_create_errstats(un, instance);
6903 	if (un->un_errstats == NULL) {
6904 		goto create_errstats_failed;
6905 	}
6906 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6907 	    "sd_unit_attach: un:0x%p errstats created\n", un);
6908 
6909 	/*
6910 	 * The following if/else code was relocated here from below as part
6911 	 * of the fix for bug (4430280). However with the default setup added
6912 	 * on entry to this routine, it's no longer absolutely necessary for
6913 	 * this to be before the call to sd_spin_up_unit.
6914 	 */
6915 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
6916 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
6917 		    (devp->sd_inq->inq_ansi == 5)) &&
6918 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
6919 
6920 		/*
6921 		 * If tagged queueing is supported by the target
6922 		 * and by the host adapter then we will enable it
6923 		 */
6924 		un->un_tagflags = 0;
6925 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
6926 		    (un->un_f_arq_enabled == TRUE)) {
6927 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
6928 			    1, 1) == 1) {
6929 				un->un_tagflags = FLAG_STAG;
6930 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6931 				    "sd_unit_attach: un:0x%p tag queueing "
6932 				    "enabled\n", un);
6933 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
6934 			    "untagged-qing", 0) == 1) {
6935 				un->un_f_opt_queueing = TRUE;
6936 				un->un_saved_throttle = un->un_throttle =
6937 				    min(un->un_throttle, 3);
6938 			} else {
6939 				un->un_f_opt_queueing = FALSE;
6940 				un->un_saved_throttle = un->un_throttle = 1;
6941 			}
6942 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
6943 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
6944 			/* The Host Adapter supports internal queueing. */
6945 			un->un_f_opt_queueing = TRUE;
6946 			un->un_saved_throttle = un->un_throttle =
6947 			    min(un->un_throttle, 3);
6948 		} else {
6949 			un->un_f_opt_queueing = FALSE;
6950 			un->un_saved_throttle = un->un_throttle = 1;
6951 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6952 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
6953 		}
6954 
6955 		/*
6956 		 * Enable large transfers for SATA/SAS drives
6957 		 */
6958 		if (SD_IS_SERIAL(un)) {
6959 			un->un_max_xfer_size =
6960 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6961 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6962 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6963 			    "sd_unit_attach: un:0x%p max transfer "
6964 			    "size=0x%x\n", un, un->un_max_xfer_size);
6965 
6966 		}
6967 
6968 		/* Setup or tear down default wide operations for disks */
6969 
6970 		/*
6971 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
6972 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
6973 		 * system and be set to different values. In the future this
6974 		 * code may need to be updated when the ssd module is
6975 		 * obsoleted and removed from the system. (4299588)
6976 		 */
6977 		if (SD_IS_PARALLEL_SCSI(un) &&
6978 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6979 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
6980 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6981 			    1, 1) == 1) {
6982 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6983 				    "sd_unit_attach: un:0x%p Wide Transfer "
6984 				    "enabled\n", un);
6985 			}
6986 
6987 			/*
6988 			 * If tagged queuing has also been enabled, then
6989 			 * enable large xfers
6990 			 */
6991 			if (un->un_saved_throttle == sd_max_throttle) {
6992 				un->un_max_xfer_size =
6993 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6994 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6995 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6996 				    "sd_unit_attach: un:0x%p max transfer "
6997 				    "size=0x%x\n", un, un->un_max_xfer_size);
6998 			}
6999 		} else {
7000 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7001 			    0, 1) == 1) {
7002 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7003 				    "sd_unit_attach: un:0x%p "
7004 				    "Wide Transfer disabled\n", un);
7005 			}
7006 		}
7007 	} else {
7008 		un->un_tagflags = FLAG_STAG;
7009 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7010 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7011 	}
7012 
7013 	/*
7014 	 * If this target supports LUN reset, try to enable it.
7015 	 */
7016 	if (un->un_f_lun_reset_enabled) {
7017 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7018 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7019 			    "un:0x%p lun_reset capability set\n", un);
7020 		} else {
7021 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7022 			    "un:0x%p lun-reset capability not set\n", un);
7023 		}
7024 	}
7025 
7026 	/*
7027 	 * Adjust the maximum transfer size. This is to fix
7028 	 * the problem of partial DMA support on SPARC. Some
7029 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7030 	 * size, which requires partial DMA support on SPARC.
7031 	 * In the future the SPARC pci nexus driver may solve
7032 	 * the problem instead of this fix.
7033 	 */
7034 #if defined(__sparc)
7035 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7036 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7037 		un->un_max_xfer_size = max_xfer_size;
7038 		un->un_partial_dma_supported = 1;
7039 	}
7040 #endif
7041 
7042 	/*
7043 	 * Set PKT_DMA_PARTIAL flag.
7044 	 */
7045 	if (un->un_partial_dma_supported == 1) {
7046 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7047 	} else {
7048 		un->un_pkt_flags = 0;
7049 	}
7050 
7051 	/*
7052 	 * At this point in the attach, we have enough info in the
7053 	 * soft state to be able to issue commands to the target.
7054 	 *
7055 	 * All command paths used below MUST issue their commands as
7056 	 * SD_PATH_DIRECT. This is important as intermediate layers
7057 	 * are not all initialized yet (such as PM).
7058 	 */
7059 
7060 	/*
7061 	 * Send a TEST UNIT READY command to the device. This should clear
7062 	 * any outstanding UNIT ATTENTION that may be present.
7063 	 *
7064 	 * Note: Don't check for success, just track if there is a reservation,
7065 	 * this is a throw away command to clear any unit attentions.
7066 	 *
7067 	 * Note: This MUST be the first command issued to the target during
7068 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7069 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7070 	 * with attempts at spinning up a device with no media.
7071 	 */
7072 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
7073 		reservation_flag = SD_TARGET_IS_RESERVED;
7074 	}
7075 
7076 	/*
7077 	 * If the device is NOT a removable media device, attempt to spin
7078 	 * it up (using the START_STOP_UNIT command) and read its capacity
7079 	 * (using the READ CAPACITY command).  Note, however, that either
7080 	 * of these could fail and in some cases we would continue with
7081 	 * the attach despite the failure (see below).
7082 	 */
7083 	if (un->un_f_descr_format_supported) {
7084 		switch (sd_spin_up_unit(un)) {
7085 		case 0:
7086 			/*
7087 			 * Spin-up was successful; now try to read the
7088 			 * capacity.  If successful then save the results
7089 			 * and mark the capacity & lbasize as valid.
7090 			 */
7091 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7092 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7093 
7094 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
7095 			    &lbasize, SD_PATH_DIRECT)) {
7096 			case 0: {
7097 				if (capacity > DK_MAX_BLOCKS) {
7098 #ifdef _LP64
7099 					if (capacity + 1 >
7100 					    SD_GROUP1_MAX_ADDRESS) {
7101 						/*
7102 						 * Enable descriptor format
7103 						 * sense data so that we can
7104 						 * get 64 bit sense data
7105 						 * fields.
7106 						 */
7107 						sd_enable_descr_sense(un);
7108 					}
7109 #else
7110 					/* 32-bit kernels can't handle this */
7111 					scsi_log(SD_DEVINFO(un),
7112 					    sd_label, CE_WARN,
7113 					    "disk has %llu blocks, which "
7114 					    "is too large for a 32-bit "
7115 					    "kernel", capacity);
7116 
7117 #if defined(__i386) || defined(__amd64)
7118 					/*
7119 					 * 1TB disk was treated as (1T - 512)B
7120 					 * in the past, so that it might have
7121 					 * valid VTOC and solaris partitions,
7122 					 * we have to allow it to continue to
7123 					 * work.
7124 					 */
7125 					if (capacity -1 > DK_MAX_BLOCKS)
7126 #endif
7127 					goto spinup_failed;
7128 #endif
7129 				}
7130 
7131 				/*
7132 				 * Here it's not necessary to check the case:
7133 				 * the capacity of the device is bigger than
7134 				 * what the max hba cdb can support. Because
7135 				 * sd_send_scsi_READ_CAPACITY will retrieve
7136 				 * the capacity by sending USCSI command, which
7137 				 * is constrained by the max hba cdb. Actually,
7138 				 * sd_send_scsi_READ_CAPACITY will return
7139 				 * EINVAL when using bigger cdb than required
7140 				 * cdb length. Will handle this case in
7141 				 * "case EINVAL".
7142 				 */
7143 
7144 				/*
7145 				 * The following relies on
7146 				 * sd_send_scsi_READ_CAPACITY never
7147 				 * returning 0 for capacity and/or lbasize.
7148 				 */
7149 				sd_update_block_info(un, lbasize, capacity);
7150 
7151 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7152 				    "sd_unit_attach: un:0x%p capacity = %ld "
7153 				    "blocks; lbasize= %ld.\n", un,
7154 				    un->un_blockcount, un->un_tgt_blocksize);
7155 
7156 				break;
7157 			}
7158 			case EINVAL:
7159 				/*
7160 				 * In the case where the max-cdb-length property
7161 				 * is smaller than the required CDB length for
7162 				 * a SCSI device, a target driver can fail to
7163 				 * attach to that device.
7164 				 */
7165 				scsi_log(SD_DEVINFO(un),
7166 				    sd_label, CE_WARN,
7167 				    "disk capacity is too large "
7168 				    "for current cdb length");
7169 				goto spinup_failed;
7170 			case EACCES:
7171 				/*
7172 				 * Should never get here if the spin-up
7173 				 * succeeded, but code it in anyway.
7174 				 * From here, just continue with the attach...
7175 				 */
7176 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7177 				    "sd_unit_attach: un:0x%p "
7178 				    "sd_send_scsi_READ_CAPACITY "
7179 				    "returned reservation conflict\n", un);
7180 				reservation_flag = SD_TARGET_IS_RESERVED;
7181 				break;
7182 			default:
7183 				/*
7184 				 * Likewise, should never get here if the
7185 				 * spin-up succeeded. Just continue with
7186 				 * the attach...
7187 				 */
7188 				break;
7189 			}
7190 			break;
7191 		case EACCES:
7192 			/*
7193 			 * Device is reserved by another host.  In this case
7194 			 * we could not spin it up or read the capacity, but
7195 			 * we continue with the attach anyway.
7196 			 */
7197 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7198 			    "sd_unit_attach: un:0x%p spin-up reservation "
7199 			    "conflict.\n", un);
7200 			reservation_flag = SD_TARGET_IS_RESERVED;
7201 			break;
7202 		default:
7203 			/* Fail the attach if the spin-up failed. */
7204 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7205 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7206 			goto spinup_failed;
7207 		}
7208 	}
7209 
7210 	/*
7211 	 * Check to see if this is a MMC drive
7212 	 */
7213 	if (ISCD(un)) {
7214 		sd_set_mmc_caps(un);
7215 	}
7216 
7217 
7218 	/*
7219 	 * Add a zero-length attribute to tell the world we support
7220 	 * kernel ioctls (for layered drivers)
7221 	 */
7222 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7223 	    DDI_KERNEL_IOCTL, NULL, 0);
7224 
7225 	/*
7226 	 * Add a boolean property to tell the world we support
7227 	 * the B_FAILFAST flag (for layered drivers)
7228 	 */
7229 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7230 	    "ddi-failfast-supported", NULL, 0);
7231 
7232 	/*
7233 	 * Initialize power management
7234 	 */
7235 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7236 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7237 	sd_setup_pm(un, devi);
7238 	if (un->un_f_pm_is_enabled == FALSE) {
7239 		/*
7240 		 * For performance, point to a jump table that does
7241 		 * not include pm.
7242 		 * The direct and priority chains don't change with PM.
7243 		 *
7244 		 * Note: this is currently done based on individual device
7245 		 * capabilities. When an interface for determining system
7246 		 * power enabled state becomes available, or when additional
7247 		 * layers are added to the command chain, these values will
7248 		 * have to be re-evaluated for correctness.
7249 		 */
7250 		if (un->un_f_non_devbsize_supported) {
7251 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7252 		} else {
7253 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7254 		}
7255 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7256 	}
7257 
7258 	/*
7259 	 * This property is set to 0 by HA software to avoid retries
7260 	 * on a reserved disk. (The preferred property name is
7261 	 * "retry-on-reservation-conflict") (1189689)
7262 	 *
7263 	 * Note: The use of a global here can have unintended consequences. A
7264 	 * per instance variable is preferrable to match the capabilities of
7265 	 * different underlying hba's (4402600)
7266 	 */
7267 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7268 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7269 	    sd_retry_on_reservation_conflict);
7270 	if (sd_retry_on_reservation_conflict != 0) {
7271 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7272 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7273 		    sd_retry_on_reservation_conflict);
7274 	}
7275 
7276 	/* Set up options for QFULL handling. */
7277 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7278 	    "qfull-retries", -1)) != -1) {
7279 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7280 		    rval, 1);
7281 	}
7282 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7283 	    "qfull-retry-interval", -1)) != -1) {
7284 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7285 		    rval, 1);
7286 	}
7287 
7288 	/*
7289 	 * This just prints a message that announces the existence of the
7290 	 * device. The message is always printed in the system logfile, but
7291 	 * only appears on the console if the system is booted with the
7292 	 * -v (verbose) argument.
7293 	 */
7294 	ddi_report_dev(devi);
7295 
7296 	un->un_mediastate = DKIO_NONE;
7297 
7298 	cmlb_alloc_handle(&un->un_cmlbhandle);
7299 
7300 #if defined(__i386) || defined(__amd64)
7301 	/*
7302 	 * On x86, compensate for off-by-1 legacy error
7303 	 */
7304 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7305 	    (lbasize == un->un_sys_blocksize))
7306 		offbyone = CMLB_OFF_BY_ONE;
7307 #endif
7308 
7309 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7310 	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7311 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7312 	    (void *)SD_PATH_DIRECT) != 0) {
7313 		goto cmlb_attach_failed;
7314 	}
7315 
7316 
7317 	/*
7318 	 * Read and validate the device's geometry (ie, disk label)
7319 	 * A new unformatted drive will not have a valid geometry, but
7320 	 * the driver needs to successfully attach to this device so
7321 	 * the drive can be formatted via ioctls.
7322 	 */
7323 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7324 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7325 
7326 	mutex_enter(SD_MUTEX(un));
7327 
7328 	/*
7329 	 * Read and initialize the devid for the unit.
7330 	 */
7331 	if (un->un_f_devid_supported) {
7332 		sd_register_devid(un, devi, reservation_flag);
7333 	}
7334 	mutex_exit(SD_MUTEX(un));
7335 
7336 #if (defined(__fibre))
7337 	/*
7338 	 * Register callbacks for fibre only.  You can't do this soley
7339 	 * on the basis of the devid_type because this is hba specific.
7340 	 * We need to query our hba capabilities to find out whether to
7341 	 * register or not.
7342 	 */
7343 	if (un->un_f_is_fibre) {
7344 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7345 			sd_init_event_callbacks(un);
7346 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7347 			    "sd_unit_attach: un:0x%p event callbacks inserted",
7348 			    un);
7349 		}
7350 	}
7351 #endif
7352 
7353 	if (un->un_f_opt_disable_cache == TRUE) {
7354 		/*
7355 		 * Disable both read cache and write cache.  This is
7356 		 * the historic behavior of the keywords in the config file.
7357 		 */
7358 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7359 		    0) {
7360 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7361 			    "sd_unit_attach: un:0x%p Could not disable "
7362 			    "caching", un);
7363 			goto devid_failed;
7364 		}
7365 	}
7366 
7367 	/*
7368 	 * Check the value of the WCE bit now and
7369 	 * set un_f_write_cache_enabled accordingly.
7370 	 */
7371 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
7372 	mutex_enter(SD_MUTEX(un));
7373 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7374 	mutex_exit(SD_MUTEX(un));
7375 
7376 	/*
7377 	 * Check the value of the NV_SUP bit and set
7378 	 * un_f_suppress_cache_flush accordingly.
7379 	 */
7380 	sd_get_nv_sup(un);
7381 
7382 	/*
7383 	 * Find out what type of reservation this disk supports.
7384 	 */
7385 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
7386 	case 0:
7387 		/*
7388 		 * SCSI-3 reservations are supported.
7389 		 */
7390 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7391 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7392 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7393 		break;
7394 	case ENOTSUP:
7395 		/*
7396 		 * The PERSISTENT RESERVE IN command would not be recognized by
7397 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7398 		 */
7399 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7400 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7401 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7402 		break;
7403 	default:
7404 		/*
7405 		 * default to SCSI-3 reservations
7406 		 */
7407 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7408 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7409 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7410 		break;
7411 	}
7412 
7413 	/*
7414 	 * Set the pstat and error stat values here, so data obtained during the
7415 	 * previous attach-time routines is available.
7416 	 *
7417 	 * Note: This is a critical sequence that needs to be maintained:
7418 	 *	1) Instantiate the kstats before any routines using the iopath
7419 	 *	   (i.e. sd_send_scsi_cmd).
7420 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7421 	 *	   stats (sd_set_pstats)here, following
7422 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7423 	 *	   sd_cache_control().
7424 	 */
7425 
7426 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7427 		sd_set_pstats(un);
7428 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7429 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7430 	}
7431 
7432 	sd_set_errstats(un);
7433 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7434 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7435 
7436 
7437 	/*
7438 	 * After successfully attaching an instance, we record the information
7439 	 * of how many luns have been attached on the relative target and
7440 	 * controller for parallel SCSI. This information is used when sd tries
7441 	 * to set the tagged queuing capability in HBA.
7442 	 */
7443 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7444 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7445 	}
7446 
7447 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7448 	    "sd_unit_attach: un:0x%p exit success\n", un);
7449 
7450 	return (DDI_SUCCESS);
7451 
7452 	/*
7453 	 * An error occurred during the attach; clean up & return failure.
7454 	 */
7455 
7456 devid_failed:
7457 
7458 setup_pm_failed:
7459 	ddi_remove_minor_node(devi, NULL);
7460 
7461 cmlb_attach_failed:
7462 	/*
7463 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7464 	 */
7465 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7466 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7467 
7468 	/*
7469 	 * Refer to the comments of setting tagged-qing in the beginning of
7470 	 * sd_unit_attach. We can only disable tagged queuing when there is
7471 	 * no lun attached on the target.
7472 	 */
7473 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7474 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7475 	}
7476 
7477 	if (un->un_f_is_fibre == FALSE) {
7478 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7479 	}
7480 
7481 spinup_failed:
7482 
7483 	mutex_enter(SD_MUTEX(un));
7484 
7485 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7486 	if (un->un_direct_priority_timeid != NULL) {
7487 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7488 		un->un_direct_priority_timeid = NULL;
7489 		mutex_exit(SD_MUTEX(un));
7490 		(void) untimeout(temp_id);
7491 		mutex_enter(SD_MUTEX(un));
7492 	}
7493 
7494 	/* Cancel any pending start/stop timeouts */
7495 	if (un->un_startstop_timeid != NULL) {
7496 		timeout_id_t temp_id = un->un_startstop_timeid;
7497 		un->un_startstop_timeid = NULL;
7498 		mutex_exit(SD_MUTEX(un));
7499 		(void) untimeout(temp_id);
7500 		mutex_enter(SD_MUTEX(un));
7501 	}
7502 
7503 	/* Cancel any pending reset-throttle timeouts */
7504 	if (un->un_reset_throttle_timeid != NULL) {
7505 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7506 		un->un_reset_throttle_timeid = NULL;
7507 		mutex_exit(SD_MUTEX(un));
7508 		(void) untimeout(temp_id);
7509 		mutex_enter(SD_MUTEX(un));
7510 	}
7511 
7512 	/* Cancel any pending retry timeouts */
7513 	if (un->un_retry_timeid != NULL) {
7514 		timeout_id_t temp_id = un->un_retry_timeid;
7515 		un->un_retry_timeid = NULL;
7516 		mutex_exit(SD_MUTEX(un));
7517 		(void) untimeout(temp_id);
7518 		mutex_enter(SD_MUTEX(un));
7519 	}
7520 
7521 	/* Cancel any pending delayed cv broadcast timeouts */
7522 	if (un->un_dcvb_timeid != NULL) {
7523 		timeout_id_t temp_id = un->un_dcvb_timeid;
7524 		un->un_dcvb_timeid = NULL;
7525 		mutex_exit(SD_MUTEX(un));
7526 		(void) untimeout(temp_id);
7527 		mutex_enter(SD_MUTEX(un));
7528 	}
7529 
7530 	mutex_exit(SD_MUTEX(un));
7531 
7532 	/* There should not be any in-progress I/O so ASSERT this check */
7533 	ASSERT(un->un_ncmds_in_transport == 0);
7534 	ASSERT(un->un_ncmds_in_driver == 0);
7535 
7536 	/* Do not free the softstate if the callback routine is active */
7537 	sd_sync_with_callback(un);
7538 
7539 	/*
7540 	 * Partition stats apparently are not used with removables. These would
7541 	 * not have been created during attach, so no need to clean them up...
7542 	 */
7543 	if (un->un_errstats != NULL) {
7544 		kstat_delete(un->un_errstats);
7545 		un->un_errstats = NULL;
7546 	}
7547 
7548 create_errstats_failed:
7549 
7550 	if (un->un_stats != NULL) {
7551 		kstat_delete(un->un_stats);
7552 		un->un_stats = NULL;
7553 	}
7554 
7555 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7556 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7557 
7558 	ddi_prop_remove_all(devi);
7559 	sema_destroy(&un->un_semoclose);
7560 	cv_destroy(&un->un_state_cv);
7561 
7562 getrbuf_failed:
7563 
7564 	sd_free_rqs(un);
7565 
7566 alloc_rqs_failed:
7567 
7568 	devp->sd_private = NULL;
7569 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
7570 
7571 get_softstate_failed:
7572 	/*
7573 	 * Note: the man pages are unclear as to whether or not doing a
7574 	 * ddi_soft_state_free(sd_state, instance) is the right way to
7575 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
7576 	 * ddi_get_soft_state() fails.  The implication seems to be
7577 	 * that the get_soft_state cannot fail if the zalloc succeeds.
7578 	 */
7579 	ddi_soft_state_free(sd_state, instance);
7580 
7581 probe_failed:
7582 	scsi_unprobe(devp);
7583 
7584 	return (DDI_FAILURE);
7585 }
7586 
7587 
7588 /*
7589  *    Function: sd_unit_detach
7590  *
7591  * Description: Performs DDI_DETACH processing for sddetach().
7592  *
7593  * Return Code: DDI_SUCCESS
7594  *		DDI_FAILURE
7595  *
7596  *     Context: Kernel thread context
7597  */
7598 
7599 static int
7600 sd_unit_detach(dev_info_t *devi)
7601 {
7602 	struct scsi_device	*devp;
7603 	struct sd_lun		*un;
7604 	int			i;
7605 	int			tgt;
7606 	dev_t			dev;
7607 	dev_info_t		*pdip = ddi_get_parent(devi);
7608 	int			instance = ddi_get_instance(devi);
7609 
7610 	mutex_enter(&sd_detach_mutex);
7611 
7612 	/*
7613 	 * Fail the detach for any of the following:
7614 	 *  - Unable to get the sd_lun struct for the instance
7615 	 *  - A layered driver has an outstanding open on the instance
7616 	 *  - Another thread is already detaching this instance
7617 	 *  - Another thread is currently performing an open
7618 	 */
7619 	devp = ddi_get_driver_private(devi);
7620 	if ((devp == NULL) ||
7621 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
7622 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
7623 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
7624 		mutex_exit(&sd_detach_mutex);
7625 		return (DDI_FAILURE);
7626 	}
7627 
7628 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
7629 
7630 	/*
7631 	 * Mark this instance as currently in a detach, to inhibit any
7632 	 * opens from a layered driver.
7633 	 */
7634 	un->un_detach_count++;
7635 	mutex_exit(&sd_detach_mutex);
7636 
7637 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7638 	    SCSI_ADDR_PROP_TARGET, -1);
7639 
7640 	dev = sd_make_device(SD_DEVINFO(un));
7641 
7642 #ifndef lint
7643 	_NOTE(COMPETING_THREADS_NOW);
7644 #endif
7645 
7646 	mutex_enter(SD_MUTEX(un));
7647 
7648 	/*
7649 	 * Fail the detach if there are any outstanding layered
7650 	 * opens on this device.
7651 	 */
7652 	for (i = 0; i < NDKMAP; i++) {
7653 		if (un->un_ocmap.lyropen[i] != 0) {
7654 			goto err_notclosed;
7655 		}
7656 	}
7657 
7658 	/*
7659 	 * Verify there are NO outstanding commands issued to this device.
7660 	 * ie, un_ncmds_in_transport == 0.
7661 	 * It's possible to have outstanding commands through the physio
7662 	 * code path, even though everything's closed.
7663 	 */
7664 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
7665 	    (un->un_direct_priority_timeid != NULL) ||
7666 	    (un->un_state == SD_STATE_RWAIT)) {
7667 		mutex_exit(SD_MUTEX(un));
7668 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7669 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
7670 		goto err_stillbusy;
7671 	}
7672 
7673 	/*
7674 	 * If we have the device reserved, release the reservation.
7675 	 */
7676 	if ((un->un_resvd_status & SD_RESERVE) &&
7677 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
7678 		mutex_exit(SD_MUTEX(un));
7679 		/*
7680 		 * Note: sd_reserve_release sends a command to the device
7681 		 * via the sd_ioctlcmd() path, and can sleep.
7682 		 */
7683 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
7684 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7685 			    "sd_dr_detach: Cannot release reservation \n");
7686 		}
7687 	} else {
7688 		mutex_exit(SD_MUTEX(un));
7689 	}
7690 
7691 	/*
7692 	 * Untimeout any reserve recover, throttle reset, restart unit
7693 	 * and delayed broadcast timeout threads. Protect the timeout pointer
7694 	 * from getting nulled by their callback functions.
7695 	 */
7696 	mutex_enter(SD_MUTEX(un));
7697 	if (un->un_resvd_timeid != NULL) {
7698 		timeout_id_t temp_id = un->un_resvd_timeid;
7699 		un->un_resvd_timeid = NULL;
7700 		mutex_exit(SD_MUTEX(un));
7701 		(void) untimeout(temp_id);
7702 		mutex_enter(SD_MUTEX(un));
7703 	}
7704 
7705 	if (un->un_reset_throttle_timeid != NULL) {
7706 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7707 		un->un_reset_throttle_timeid = NULL;
7708 		mutex_exit(SD_MUTEX(un));
7709 		(void) untimeout(temp_id);
7710 		mutex_enter(SD_MUTEX(un));
7711 	}
7712 
7713 	if (un->un_startstop_timeid != NULL) {
7714 		timeout_id_t temp_id = un->un_startstop_timeid;
7715 		un->un_startstop_timeid = NULL;
7716 		mutex_exit(SD_MUTEX(un));
7717 		(void) untimeout(temp_id);
7718 		mutex_enter(SD_MUTEX(un));
7719 	}
7720 
7721 	if (un->un_dcvb_timeid != NULL) {
7722 		timeout_id_t temp_id = un->un_dcvb_timeid;
7723 		un->un_dcvb_timeid = NULL;
7724 		mutex_exit(SD_MUTEX(un));
7725 		(void) untimeout(temp_id);
7726 	} else {
7727 		mutex_exit(SD_MUTEX(un));
7728 	}
7729 
7730 	/* Remove any pending reservation reclaim requests for this device */
7731 	sd_rmv_resv_reclaim_req(dev);
7732 
7733 	mutex_enter(SD_MUTEX(un));
7734 
7735 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
7736 	if (un->un_direct_priority_timeid != NULL) {
7737 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7738 		un->un_direct_priority_timeid = NULL;
7739 		mutex_exit(SD_MUTEX(un));
7740 		(void) untimeout(temp_id);
7741 		mutex_enter(SD_MUTEX(un));
7742 	}
7743 
7744 	/* Cancel any active multi-host disk watch thread requests */
7745 	if (un->un_mhd_token != NULL) {
7746 		mutex_exit(SD_MUTEX(un));
7747 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
7748 		if (scsi_watch_request_terminate(un->un_mhd_token,
7749 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7750 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7751 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
7752 			/*
7753 			 * Note: We are returning here after having removed
7754 			 * some driver timeouts above. This is consistent with
7755 			 * the legacy implementation but perhaps the watch
7756 			 * terminate call should be made with the wait flag set.
7757 			 */
7758 			goto err_stillbusy;
7759 		}
7760 		mutex_enter(SD_MUTEX(un));
7761 		un->un_mhd_token = NULL;
7762 	}
7763 
7764 	if (un->un_swr_token != NULL) {
7765 		mutex_exit(SD_MUTEX(un));
7766 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
7767 		if (scsi_watch_request_terminate(un->un_swr_token,
7768 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7769 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7770 			    "sd_dr_detach: Cannot cancel swr watch request\n");
7771 			/*
7772 			 * Note: We are returning here after having removed
7773 			 * some driver timeouts above. This is consistent with
7774 			 * the legacy implementation but perhaps the watch
7775 			 * terminate call should be made with the wait flag set.
7776 			 */
7777 			goto err_stillbusy;
7778 		}
7779 		mutex_enter(SD_MUTEX(un));
7780 		un->un_swr_token = NULL;
7781 	}
7782 
7783 	mutex_exit(SD_MUTEX(un));
7784 
7785 	/*
7786 	 * Clear any scsi_reset_notifies. We clear the reset notifies
7787 	 * if we have not registered one.
7788 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
7789 	 */
7790 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
7791 	    sd_mhd_reset_notify_cb, (caddr_t)un);
7792 
7793 	/*
7794 	 * protect the timeout pointers from getting nulled by
7795 	 * their callback functions during the cancellation process.
7796 	 * In such a scenario untimeout can be invoked with a null value.
7797 	 */
7798 	_NOTE(NO_COMPETING_THREADS_NOW);
7799 
7800 	mutex_enter(&un->un_pm_mutex);
7801 	if (un->un_pm_idle_timeid != NULL) {
7802 		timeout_id_t temp_id = un->un_pm_idle_timeid;
7803 		un->un_pm_idle_timeid = NULL;
7804 		mutex_exit(&un->un_pm_mutex);
7805 
7806 		/*
7807 		 * Timeout is active; cancel it.
7808 		 * Note that it'll never be active on a device
7809 		 * that does not support PM therefore we don't
7810 		 * have to check before calling pm_idle_component.
7811 		 */
7812 		(void) untimeout(temp_id);
7813 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7814 		mutex_enter(&un->un_pm_mutex);
7815 	}
7816 
7817 	/*
7818 	 * Check whether there is already a timeout scheduled for power
7819 	 * management. If yes then don't lower the power here, that's.
7820 	 * the timeout handler's job.
7821 	 */
7822 	if (un->un_pm_timeid != NULL) {
7823 		timeout_id_t temp_id = un->un_pm_timeid;
7824 		un->un_pm_timeid = NULL;
7825 		mutex_exit(&un->un_pm_mutex);
7826 		/*
7827 		 * Timeout is active; cancel it.
7828 		 * Note that it'll never be active on a device
7829 		 * that does not support PM therefore we don't
7830 		 * have to check before calling pm_idle_component.
7831 		 */
7832 		(void) untimeout(temp_id);
7833 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7834 
7835 	} else {
7836 		mutex_exit(&un->un_pm_mutex);
7837 		if ((un->un_f_pm_is_enabled == TRUE) &&
7838 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
7839 		    DDI_SUCCESS)) {
7840 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7841 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
7842 			/*
7843 			 * Fix for bug: 4297749, item # 13
7844 			 * The above test now includes a check to see if PM is
7845 			 * supported by this device before call
7846 			 * pm_lower_power().
7847 			 * Note, the following is not dead code. The call to
7848 			 * pm_lower_power above will generate a call back into
7849 			 * our sdpower routine which might result in a timeout
7850 			 * handler getting activated. Therefore the following
7851 			 * code is valid and necessary.
7852 			 */
7853 			mutex_enter(&un->un_pm_mutex);
7854 			if (un->un_pm_timeid != NULL) {
7855 				timeout_id_t temp_id = un->un_pm_timeid;
7856 				un->un_pm_timeid = NULL;
7857 				mutex_exit(&un->un_pm_mutex);
7858 				(void) untimeout(temp_id);
7859 				(void) pm_idle_component(SD_DEVINFO(un), 0);
7860 			} else {
7861 				mutex_exit(&un->un_pm_mutex);
7862 			}
7863 		}
7864 	}
7865 
7866 	/*
7867 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7868 	 * Relocated here from above to be after the call to
7869 	 * pm_lower_power, which was getting errors.
7870 	 */
7871 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7872 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7873 
7874 	/*
7875 	 * Currently, tagged queuing is supported per target based by HBA.
7876 	 * Setting this per lun instance actually sets the capability of this
7877 	 * target in HBA, which affects those luns already attached on the
7878 	 * same target. So during detach, we can only disable this capability
7879 	 * only when this is the only lun left on this target. By doing
7880 	 * this, we assume a target has the same tagged queuing capability
7881 	 * for every lun. The condition can be removed when HBA is changed to
7882 	 * support per lun based tagged queuing capability.
7883 	 */
7884 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
7885 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7886 	}
7887 
7888 	if (un->un_f_is_fibre == FALSE) {
7889 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7890 	}
7891 
7892 	/*
7893 	 * Remove any event callbacks, fibre only
7894 	 */
7895 	if (un->un_f_is_fibre == TRUE) {
7896 		if ((un->un_insert_event != NULL) &&
7897 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
7898 		    DDI_SUCCESS)) {
7899 			/*
7900 			 * Note: We are returning here after having done
7901 			 * substantial cleanup above. This is consistent
7902 			 * with the legacy implementation but this may not
7903 			 * be the right thing to do.
7904 			 */
7905 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7906 			    "sd_dr_detach: Cannot cancel insert event\n");
7907 			goto err_remove_event;
7908 		}
7909 		un->un_insert_event = NULL;
7910 
7911 		if ((un->un_remove_event != NULL) &&
7912 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
7913 		    DDI_SUCCESS)) {
7914 			/*
7915 			 * Note: We are returning here after having done
7916 			 * substantial cleanup above. This is consistent
7917 			 * with the legacy implementation but this may not
7918 			 * be the right thing to do.
7919 			 */
7920 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7921 			    "sd_dr_detach: Cannot cancel remove event\n");
7922 			goto err_remove_event;
7923 		}
7924 		un->un_remove_event = NULL;
7925 	}
7926 
7927 	/* Do not free the softstate if the callback routine is active */
7928 	sd_sync_with_callback(un);
7929 
7930 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
7931 	cmlb_free_handle(&un->un_cmlbhandle);
7932 
7933 	/*
7934 	 * Hold the detach mutex here, to make sure that no other threads ever
7935 	 * can access a (partially) freed soft state structure.
7936 	 */
7937 	mutex_enter(&sd_detach_mutex);
7938 
7939 	/*
7940 	 * Clean up the soft state struct.
7941 	 * Cleanup is done in reverse order of allocs/inits.
7942 	 * At this point there should be no competing threads anymore.
7943 	 */
7944 
7945 	/* Unregister and free device id. */
7946 	ddi_devid_unregister(devi);
7947 	if (un->un_devid) {
7948 		ddi_devid_free(un->un_devid);
7949 		un->un_devid = NULL;
7950 	}
7951 
7952 	/*
7953 	 * Destroy wmap cache if it exists.
7954 	 */
7955 	if (un->un_wm_cache != NULL) {
7956 		kmem_cache_destroy(un->un_wm_cache);
7957 		un->un_wm_cache = NULL;
7958 	}
7959 
7960 	/*
7961 	 * kstat cleanup is done in detach for all device types (4363169).
7962 	 * We do not want to fail detach if the device kstats are not deleted
7963 	 * since there is a confusion about the devo_refcnt for the device.
7964 	 * We just delete the kstats and let detach complete successfully.
7965 	 */
7966 	if (un->un_stats != NULL) {
7967 		kstat_delete(un->un_stats);
7968 		un->un_stats = NULL;
7969 	}
7970 	if (un->un_errstats != NULL) {
7971 		kstat_delete(un->un_errstats);
7972 		un->un_errstats = NULL;
7973 	}
7974 
7975 	/* Remove partition stats */
7976 	if (un->un_f_pkstats_enabled) {
7977 		for (i = 0; i < NSDMAP; i++) {
7978 			if (un->un_pstats[i] != NULL) {
7979 				kstat_delete(un->un_pstats[i]);
7980 				un->un_pstats[i] = NULL;
7981 			}
7982 		}
7983 	}
7984 
7985 	/* Remove xbuf registration */
7986 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7987 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7988 
7989 	/* Remove driver properties */
7990 	ddi_prop_remove_all(devi);
7991 
7992 	mutex_destroy(&un->un_pm_mutex);
7993 	cv_destroy(&un->un_pm_busy_cv);
7994 
7995 	cv_destroy(&un->un_wcc_cv);
7996 
7997 	/* Open/close semaphore */
7998 	sema_destroy(&un->un_semoclose);
7999 
8000 	/* Removable media condvar. */
8001 	cv_destroy(&un->un_state_cv);
8002 
8003 	/* Suspend/resume condvar. */
8004 	cv_destroy(&un->un_suspend_cv);
8005 	cv_destroy(&un->un_disk_busy_cv);
8006 
8007 	sd_free_rqs(un);
8008 
8009 	/* Free up soft state */
8010 	devp->sd_private = NULL;
8011 
8012 	bzero(un, sizeof (struct sd_lun));
8013 	ddi_soft_state_free(sd_state, instance);
8014 
8015 	mutex_exit(&sd_detach_mutex);
8016 
8017 	/* This frees up the INQUIRY data associated with the device. */
8018 	scsi_unprobe(devp);
8019 
8020 	/*
8021 	 * After successfully detaching an instance, we update the information
8022 	 * of how many luns have been attached in the relative target and
8023 	 * controller for parallel SCSI. This information is used when sd tries
8024 	 * to set the tagged queuing capability in HBA.
8025 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
8026 	 * check if the device is parallel SCSI. However, we don't need to
8027 	 * check here because we've already checked during attach. No device
8028 	 * that is not parallel SCSI is in the chain.
8029 	 */
8030 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8031 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
8032 	}
8033 
8034 	return (DDI_SUCCESS);
8035 
8036 err_notclosed:
8037 	mutex_exit(SD_MUTEX(un));
8038 
8039 err_stillbusy:
8040 	_NOTE(NO_COMPETING_THREADS_NOW);
8041 
8042 err_remove_event:
8043 	mutex_enter(&sd_detach_mutex);
8044 	un->un_detach_count--;
8045 	mutex_exit(&sd_detach_mutex);
8046 
8047 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
8048 	return (DDI_FAILURE);
8049 }
8050 
8051 
8052 /*
8053  *    Function: sd_create_errstats
8054  *
8055  * Description: This routine instantiates the device error stats.
8056  *
8057  *		Note: During attach the stats are instantiated first so they are
8058  *		available for attach-time routines that utilize the driver
8059  *		iopath to send commands to the device. The stats are initialized
8060  *		separately so data obtained during some attach-time routines is
8061  *		available. (4362483)
8062  *
8063  *   Arguments: un - driver soft state (unit) structure
8064  *		instance - driver instance
8065  *
8066  *     Context: Kernel thread context
8067  */
8068 
8069 static void
8070 sd_create_errstats(struct sd_lun *un, int instance)
8071 {
8072 	struct	sd_errstats	*stp;
8073 	char	kstatmodule_err[KSTAT_STRLEN];
8074 	char	kstatname[KSTAT_STRLEN];
8075 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
8076 
8077 	ASSERT(un != NULL);
8078 
8079 	if (un->un_errstats != NULL) {
8080 		return;
8081 	}
8082 
8083 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
8084 	    "%serr", sd_label);
8085 	(void) snprintf(kstatname, sizeof (kstatname),
8086 	    "%s%d,err", sd_label, instance);
8087 
8088 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
8089 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
8090 
8091 	if (un->un_errstats == NULL) {
8092 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8093 		    "sd_create_errstats: Failed kstat_create\n");
8094 		return;
8095 	}
8096 
8097 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8098 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
8099 	    KSTAT_DATA_UINT32);
8100 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
8101 	    KSTAT_DATA_UINT32);
8102 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
8103 	    KSTAT_DATA_UINT32);
8104 	kstat_named_init(&stp->sd_vid,		"Vendor",
8105 	    KSTAT_DATA_CHAR);
8106 	kstat_named_init(&stp->sd_pid,		"Product",
8107 	    KSTAT_DATA_CHAR);
8108 	kstat_named_init(&stp->sd_revision,	"Revision",
8109 	    KSTAT_DATA_CHAR);
8110 	kstat_named_init(&stp->sd_serial,	"Serial No",
8111 	    KSTAT_DATA_CHAR);
8112 	kstat_named_init(&stp->sd_capacity,	"Size",
8113 	    KSTAT_DATA_ULONGLONG);
8114 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
8115 	    KSTAT_DATA_UINT32);
8116 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
8117 	    KSTAT_DATA_UINT32);
8118 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
8119 	    KSTAT_DATA_UINT32);
8120 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
8121 	    KSTAT_DATA_UINT32);
8122 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
8123 	    KSTAT_DATA_UINT32);
8124 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
8125 	    KSTAT_DATA_UINT32);
8126 
8127 	un->un_errstats->ks_private = un;
8128 	un->un_errstats->ks_update  = nulldev;
8129 
8130 	kstat_install(un->un_errstats);
8131 }
8132 
8133 
8134 /*
8135  *    Function: sd_set_errstats
8136  *
8137  * Description: This routine sets the value of the vendor id, product id,
8138  *		revision, serial number, and capacity device error stats.
8139  *
8140  *		Note: During attach the stats are instantiated first so they are
8141  *		available for attach-time routines that utilize the driver
8142  *		iopath to send commands to the device. The stats are initialized
8143  *		separately so data obtained during some attach-time routines is
8144  *		available. (4362483)
8145  *
8146  *   Arguments: un - driver soft state (unit) structure
8147  *
8148  *     Context: Kernel thread context
8149  */
8150 
8151 static void
8152 sd_set_errstats(struct sd_lun *un)
8153 {
8154 	struct	sd_errstats	*stp;
8155 
8156 	ASSERT(un != NULL);
8157 	ASSERT(un->un_errstats != NULL);
8158 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8159 	ASSERT(stp != NULL);
8160 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8161 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8162 	(void) strncpy(stp->sd_revision.value.c,
8163 	    un->un_sd->sd_inq->inq_revision, 4);
8164 
8165 	/*
8166 	 * All the errstats are persistent across detach/attach,
8167 	 * so reset all the errstats here in case of the hot
8168 	 * replacement of disk drives, except for not changed
8169 	 * Sun qualified drives.
8170 	 */
8171 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8172 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8173 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8174 		stp->sd_softerrs.value.ui32 = 0;
8175 		stp->sd_harderrs.value.ui32 = 0;
8176 		stp->sd_transerrs.value.ui32 = 0;
8177 		stp->sd_rq_media_err.value.ui32 = 0;
8178 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8179 		stp->sd_rq_nodev_err.value.ui32 = 0;
8180 		stp->sd_rq_recov_err.value.ui32 = 0;
8181 		stp->sd_rq_illrq_err.value.ui32 = 0;
8182 		stp->sd_rq_pfa_err.value.ui32 = 0;
8183 	}
8184 
8185 	/*
8186 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8187 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8188 	 * (4376302))
8189 	 */
8190 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8191 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8192 		    sizeof (SD_INQUIRY(un)->inq_serial));
8193 	}
8194 
8195 	if (un->un_f_blockcount_is_valid != TRUE) {
8196 		/*
8197 		 * Set capacity error stat to 0 for no media. This ensures
8198 		 * a valid capacity is displayed in response to 'iostat -E'
8199 		 * when no media is present in the device.
8200 		 */
8201 		stp->sd_capacity.value.ui64 = 0;
8202 	} else {
8203 		/*
8204 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8205 		 * capacity.
8206 		 *
8207 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8208 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8209 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8210 		 */
8211 		stp->sd_capacity.value.ui64 = (uint64_t)
8212 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8213 	}
8214 }
8215 
8216 
8217 /*
8218  *    Function: sd_set_pstats
8219  *
8220  * Description: This routine instantiates and initializes the partition
8221  *              stats for each partition with more than zero blocks.
8222  *		(4363169)
8223  *
8224  *   Arguments: un - driver soft state (unit) structure
8225  *
8226  *     Context: Kernel thread context
8227  */
8228 
8229 static void
8230 sd_set_pstats(struct sd_lun *un)
8231 {
8232 	char	kstatname[KSTAT_STRLEN];
8233 	int	instance;
8234 	int	i;
8235 	diskaddr_t	nblks = 0;
8236 	char	*partname = NULL;
8237 
8238 	ASSERT(un != NULL);
8239 
8240 	instance = ddi_get_instance(SD_DEVINFO(un));
8241 
8242 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8243 	for (i = 0; i < NSDMAP; i++) {
8244 
8245 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8246 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8247 			continue;
8248 		mutex_enter(SD_MUTEX(un));
8249 
8250 		if ((un->un_pstats[i] == NULL) &&
8251 		    (nblks != 0)) {
8252 
8253 			(void) snprintf(kstatname, sizeof (kstatname),
8254 			    "%s%d,%s", sd_label, instance,
8255 			    partname);
8256 
8257 			un->un_pstats[i] = kstat_create(sd_label,
8258 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8259 			    1, KSTAT_FLAG_PERSISTENT);
8260 			if (un->un_pstats[i] != NULL) {
8261 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8262 				kstat_install(un->un_pstats[i]);
8263 			}
8264 		}
8265 		mutex_exit(SD_MUTEX(un));
8266 	}
8267 }
8268 
8269 
8270 #if (defined(__fibre))
8271 /*
8272  *    Function: sd_init_event_callbacks
8273  *
8274  * Description: This routine initializes the insertion and removal event
8275  *		callbacks. (fibre only)
8276  *
8277  *   Arguments: un - driver soft state (unit) structure
8278  *
8279  *     Context: Kernel thread context
8280  */
8281 
8282 static void
8283 sd_init_event_callbacks(struct sd_lun *un)
8284 {
8285 	ASSERT(un != NULL);
8286 
8287 	if ((un->un_insert_event == NULL) &&
8288 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8289 	    &un->un_insert_event) == DDI_SUCCESS)) {
8290 		/*
8291 		 * Add the callback for an insertion event
8292 		 */
8293 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8294 		    un->un_insert_event, sd_event_callback, (void *)un,
8295 		    &(un->un_insert_cb_id));
8296 	}
8297 
8298 	if ((un->un_remove_event == NULL) &&
8299 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8300 	    &un->un_remove_event) == DDI_SUCCESS)) {
8301 		/*
8302 		 * Add the callback for a removal event
8303 		 */
8304 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8305 		    un->un_remove_event, sd_event_callback, (void *)un,
8306 		    &(un->un_remove_cb_id));
8307 	}
8308 }
8309 
8310 
8311 /*
8312  *    Function: sd_event_callback
8313  *
8314  * Description: This routine handles insert/remove events (photon). The
8315  *		state is changed to OFFLINE which can be used to supress
8316  *		error msgs. (fibre only)
8317  *
8318  *   Arguments: un - driver soft state (unit) structure
8319  *
8320  *     Context: Callout thread context
8321  */
8322 /* ARGSUSED */
8323 static void
8324 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8325     void *bus_impldata)
8326 {
8327 	struct sd_lun *un = (struct sd_lun *)arg;
8328 
8329 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8330 	if (event == un->un_insert_event) {
8331 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8332 		mutex_enter(SD_MUTEX(un));
8333 		if (un->un_state == SD_STATE_OFFLINE) {
8334 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8335 				un->un_state = un->un_last_state;
8336 			} else {
8337 				/*
8338 				 * We have gone through SUSPEND/RESUME while
8339 				 * we were offline. Restore the last state
8340 				 */
8341 				un->un_state = un->un_save_state;
8342 			}
8343 		}
8344 		mutex_exit(SD_MUTEX(un));
8345 
8346 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8347 	} else if (event == un->un_remove_event) {
8348 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8349 		mutex_enter(SD_MUTEX(un));
8350 		/*
8351 		 * We need to handle an event callback that occurs during
8352 		 * the suspend operation, since we don't prevent it.
8353 		 */
8354 		if (un->un_state != SD_STATE_OFFLINE) {
8355 			if (un->un_state != SD_STATE_SUSPENDED) {
8356 				New_state(un, SD_STATE_OFFLINE);
8357 			} else {
8358 				un->un_last_state = SD_STATE_OFFLINE;
8359 			}
8360 		}
8361 		mutex_exit(SD_MUTEX(un));
8362 	} else {
8363 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8364 		    "!Unknown event\n");
8365 	}
8366 
8367 }
8368 #endif
8369 
8370 /*
8371  *    Function: sd_cache_control()
8372  *
8373  * Description: This routine is the driver entry point for setting
8374  *		read and write caching by modifying the WCE (write cache
8375  *		enable) and RCD (read cache disable) bits of mode
8376  *		page 8 (MODEPAGE_CACHING).
8377  *
8378  *   Arguments: un - driver soft state (unit) structure
8379  *		rcd_flag - flag for controlling the read cache
8380  *		wce_flag - flag for controlling the write cache
8381  *
8382  * Return Code: EIO
8383  *		code returned by sd_send_scsi_MODE_SENSE and
8384  *		sd_send_scsi_MODE_SELECT
8385  *
8386  *     Context: Kernel Thread
8387  */
8388 
8389 static int
8390 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
8391 {
8392 	struct mode_caching	*mode_caching_page;
8393 	uchar_t			*header;
8394 	size_t			buflen;
8395 	int			hdrlen;
8396 	int			bd_len;
8397 	int			rval = 0;
8398 	struct mode_header_grp2	*mhp;
8399 
8400 	ASSERT(un != NULL);
8401 
8402 	/*
8403 	 * Do a test unit ready, otherwise a mode sense may not work if this
8404 	 * is the first command sent to the device after boot.
8405 	 */
8406 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8407 
8408 	if (un->un_f_cfg_is_atapi == TRUE) {
8409 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8410 	} else {
8411 		hdrlen = MODE_HEADER_LENGTH;
8412 	}
8413 
8414 	/*
8415 	 * Allocate memory for the retrieved mode page and its headers.  Set
8416 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8417 	 * we get all of the mode sense data otherwise, the mode select
8418 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8419 	 */
8420 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8421 	    sizeof (struct mode_cache_scsi3);
8422 
8423 	header = kmem_zalloc(buflen, KM_SLEEP);
8424 
8425 	/* Get the information from the device. */
8426 	if (un->un_f_cfg_is_atapi == TRUE) {
8427 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8428 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8429 	} else {
8430 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8431 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8432 	}
8433 	if (rval != 0) {
8434 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8435 		    "sd_cache_control: Mode Sense Failed\n");
8436 		kmem_free(header, buflen);
8437 		return (rval);
8438 	}
8439 
8440 	/*
8441 	 * Determine size of Block Descriptors in order to locate
8442 	 * the mode page data. ATAPI devices return 0, SCSI devices
8443 	 * should return MODE_BLK_DESC_LENGTH.
8444 	 */
8445 	if (un->un_f_cfg_is_atapi == TRUE) {
8446 		mhp	= (struct mode_header_grp2 *)header;
8447 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8448 	} else {
8449 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8450 	}
8451 
8452 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8453 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8454 		    "sd_cache_control: Mode Sense returned invalid "
8455 		    "block descriptor length\n");
8456 		kmem_free(header, buflen);
8457 		return (EIO);
8458 	}
8459 
8460 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8461 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8462 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8463 		    " caching page code mismatch %d\n",
8464 		    mode_caching_page->mode_page.code);
8465 		kmem_free(header, buflen);
8466 		return (EIO);
8467 	}
8468 
8469 	/* Check the relevant bits on successful mode sense. */
8470 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8471 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8472 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8473 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8474 
8475 		size_t sbuflen;
8476 		uchar_t save_pg;
8477 
8478 		/*
8479 		 * Construct select buffer length based on the
8480 		 * length of the sense data returned.
8481 		 */
8482 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
8483 		    sizeof (struct mode_page) +
8484 		    (int)mode_caching_page->mode_page.length;
8485 
8486 		/*
8487 		 * Set the caching bits as requested.
8488 		 */
8489 		if (rcd_flag == SD_CACHE_ENABLE)
8490 			mode_caching_page->rcd = 0;
8491 		else if (rcd_flag == SD_CACHE_DISABLE)
8492 			mode_caching_page->rcd = 1;
8493 
8494 		if (wce_flag == SD_CACHE_ENABLE)
8495 			mode_caching_page->wce = 1;
8496 		else if (wce_flag == SD_CACHE_DISABLE)
8497 			mode_caching_page->wce = 0;
8498 
8499 		/*
8500 		 * Save the page if the mode sense says the
8501 		 * drive supports it.
8502 		 */
8503 		save_pg = mode_caching_page->mode_page.ps ?
8504 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
8505 
8506 		/* Clear reserved bits before mode select. */
8507 		mode_caching_page->mode_page.ps = 0;
8508 
8509 		/*
8510 		 * Clear out mode header for mode select.
8511 		 * The rest of the retrieved page will be reused.
8512 		 */
8513 		bzero(header, hdrlen);
8514 
8515 		if (un->un_f_cfg_is_atapi == TRUE) {
8516 			mhp = (struct mode_header_grp2 *)header;
8517 			mhp->bdesc_length_hi = bd_len >> 8;
8518 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
8519 		} else {
8520 			((struct mode_header *)header)->bdesc_length = bd_len;
8521 		}
8522 
8523 		/* Issue mode select to change the cache settings */
8524 		if (un->un_f_cfg_is_atapi == TRUE) {
8525 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
8526 			    sbuflen, save_pg, SD_PATH_DIRECT);
8527 		} else {
8528 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
8529 			    sbuflen, save_pg, SD_PATH_DIRECT);
8530 		}
8531 	}
8532 
8533 	kmem_free(header, buflen);
8534 	return (rval);
8535 }
8536 
8537 
8538 /*
8539  *    Function: sd_get_write_cache_enabled()
8540  *
8541  * Description: This routine is the driver entry point for determining if
8542  *		write caching is enabled.  It examines the WCE (write cache
8543  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
8544  *
8545  *   Arguments: un - driver soft state (unit) structure
8546  *		is_enabled - pointer to int where write cache enabled state
8547  *		is returned (non-zero -> write cache enabled)
8548  *
8549  *
8550  * Return Code: EIO
8551  *		code returned by sd_send_scsi_MODE_SENSE
8552  *
8553  *     Context: Kernel Thread
8554  *
8555  * NOTE: If ioctl is added to disable write cache, this sequence should
8556  * be followed so that no locking is required for accesses to
8557  * un->un_f_write_cache_enabled:
8558  * 	do mode select to clear wce
8559  * 	do synchronize cache to flush cache
8560  * 	set un->un_f_write_cache_enabled = FALSE
8561  *
8562  * Conversely, an ioctl to enable the write cache should be done
8563  * in this order:
8564  * 	set un->un_f_write_cache_enabled = TRUE
8565  * 	do mode select to set wce
8566  */
8567 
8568 static int
8569 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
8570 {
8571 	struct mode_caching	*mode_caching_page;
8572 	uchar_t			*header;
8573 	size_t			buflen;
8574 	int			hdrlen;
8575 	int			bd_len;
8576 	int			rval = 0;
8577 
8578 	ASSERT(un != NULL);
8579 	ASSERT(is_enabled != NULL);
8580 
8581 	/* in case of error, flag as enabled */
8582 	*is_enabled = TRUE;
8583 
8584 	/*
8585 	 * Do a test unit ready, otherwise a mode sense may not work if this
8586 	 * is the first command sent to the device after boot.
8587 	 */
8588 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8589 
8590 	if (un->un_f_cfg_is_atapi == TRUE) {
8591 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8592 	} else {
8593 		hdrlen = MODE_HEADER_LENGTH;
8594 	}
8595 
8596 	/*
8597 	 * Allocate memory for the retrieved mode page and its headers.  Set
8598 	 * a pointer to the page itself.
8599 	 */
8600 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
8601 	header = kmem_zalloc(buflen, KM_SLEEP);
8602 
8603 	/* Get the information from the device. */
8604 	if (un->un_f_cfg_is_atapi == TRUE) {
8605 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8606 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8607 	} else {
8608 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8609 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8610 	}
8611 	if (rval != 0) {
8612 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8613 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
8614 		kmem_free(header, buflen);
8615 		return (rval);
8616 	}
8617 
8618 	/*
8619 	 * Determine size of Block Descriptors in order to locate
8620 	 * the mode page data. ATAPI devices return 0, SCSI devices
8621 	 * should return MODE_BLK_DESC_LENGTH.
8622 	 */
8623 	if (un->un_f_cfg_is_atapi == TRUE) {
8624 		struct mode_header_grp2	*mhp;
8625 		mhp	= (struct mode_header_grp2 *)header;
8626 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8627 	} else {
8628 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8629 	}
8630 
8631 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8632 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8633 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
8634 		    "block descriptor length\n");
8635 		kmem_free(header, buflen);
8636 		return (EIO);
8637 	}
8638 
8639 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8640 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8641 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8642 		    " caching page code mismatch %d\n",
8643 		    mode_caching_page->mode_page.code);
8644 		kmem_free(header, buflen);
8645 		return (EIO);
8646 	}
8647 	*is_enabled = mode_caching_page->wce;
8648 
8649 	kmem_free(header, buflen);
8650 	return (0);
8651 }
8652 
8653 /*
8654  *    Function: sd_get_nv_sup()
8655  *
8656  * Description: This routine is the driver entry point for
8657  * determining whether non-volatile cache is supported. This
8658  * determination process works as follows:
8659  *
8660  * 1. sd first queries sd.conf on whether
8661  * suppress_cache_flush bit is set for this device.
8662  *
8663  * 2. if not there, then queries the internal disk table.
8664  *
8665  * 3. if either sd.conf or internal disk table specifies
8666  * cache flush be suppressed, we don't bother checking
8667  * NV_SUP bit.
8668  *
8669  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
8670  * the optional INQUIRY VPD page 0x86. If the device
8671  * supports VPD page 0x86, sd examines the NV_SUP
8672  * (non-volatile cache support) bit in the INQUIRY VPD page
8673  * 0x86:
8674  *   o If NV_SUP bit is set, sd assumes the device has a
8675  *   non-volatile cache and set the
8676  *   un_f_sync_nv_supported to TRUE.
8677  *   o Otherwise cache is not non-volatile,
8678  *   un_f_sync_nv_supported is set to FALSE.
8679  *
8680  * Arguments: un - driver soft state (unit) structure
8681  *
8682  * Return Code:
8683  *
8684  *     Context: Kernel Thread
8685  */
8686 
8687 static void
8688 sd_get_nv_sup(struct sd_lun *un)
8689 {
8690 	int		rval		= 0;
8691 	uchar_t		*inq86		= NULL;
8692 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
8693 	size_t		inq86_resid	= 0;
8694 	struct		dk_callback *dkc;
8695 
8696 	ASSERT(un != NULL);
8697 
8698 	mutex_enter(SD_MUTEX(un));
8699 
8700 	/*
8701 	 * Be conservative on the device's support of
8702 	 * SYNC_NV bit: un_f_sync_nv_supported is
8703 	 * initialized to be false.
8704 	 */
8705 	un->un_f_sync_nv_supported = FALSE;
8706 
8707 	/*
8708 	 * If either sd.conf or internal disk table
8709 	 * specifies cache flush be suppressed, then
8710 	 * we don't bother checking NV_SUP bit.
8711 	 */
8712 	if (un->un_f_suppress_cache_flush == TRUE) {
8713 		mutex_exit(SD_MUTEX(un));
8714 		return;
8715 	}
8716 
8717 	if (sd_check_vpd_page_support(un) == 0 &&
8718 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
8719 		mutex_exit(SD_MUTEX(un));
8720 		/* collect page 86 data if available */
8721 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
8722 		rval = sd_send_scsi_INQUIRY(un, inq86, inq86_len,
8723 		    0x01, 0x86, &inq86_resid);
8724 
8725 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
8726 			SD_TRACE(SD_LOG_COMMON, un,
8727 			    "sd_get_nv_sup: \
8728 			    successfully get VPD page: %x \
8729 			    PAGE LENGTH: %x BYTE 6: %x\n",
8730 			    inq86[1], inq86[3], inq86[6]);
8731 
8732 			mutex_enter(SD_MUTEX(un));
8733 			/*
8734 			 * check the value of NV_SUP bit: only if the device
8735 			 * reports NV_SUP bit to be 1, the
8736 			 * un_f_sync_nv_supported bit will be set to true.
8737 			 */
8738 			if (inq86[6] & SD_VPD_NV_SUP) {
8739 				un->un_f_sync_nv_supported = TRUE;
8740 			}
8741 			mutex_exit(SD_MUTEX(un));
8742 		}
8743 		kmem_free(inq86, inq86_len);
8744 	} else {
8745 		mutex_exit(SD_MUTEX(un));
8746 	}
8747 
8748 	/*
8749 	 * Send a SYNC CACHE command to check whether
8750 	 * SYNC_NV bit is supported. This command should have
8751 	 * un_f_sync_nv_supported set to correct value.
8752 	 */
8753 	mutex_enter(SD_MUTEX(un));
8754 	if (un->un_f_sync_nv_supported) {
8755 		mutex_exit(SD_MUTEX(un));
8756 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
8757 		dkc->dkc_flag = FLUSH_VOLATILE;
8758 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
8759 
8760 		/*
8761 		 * Send a TEST UNIT READY command to the device. This should
8762 		 * clear any outstanding UNIT ATTENTION that may be present.
8763 		 */
8764 		(void) sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR);
8765 
8766 		kmem_free(dkc, sizeof (struct dk_callback));
8767 	} else {
8768 		mutex_exit(SD_MUTEX(un));
8769 	}
8770 
8771 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
8772 	    un_f_suppress_cache_flush is set to %d\n",
8773 	    un->un_f_suppress_cache_flush);
8774 }
8775 
8776 /*
8777  *    Function: sd_make_device
8778  *
8779  * Description: Utility routine to return the Solaris device number from
8780  *		the data in the device's dev_info structure.
8781  *
8782  * Return Code: The Solaris device number
8783  *
8784  *     Context: Any
8785  */
8786 
8787 static dev_t
8788 sd_make_device(dev_info_t *devi)
8789 {
8790 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
8791 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
8792 }
8793 
8794 
8795 /*
8796  *    Function: sd_pm_entry
8797  *
8798  * Description: Called at the start of a new command to manage power
8799  *		and busy status of a device. This includes determining whether
8800  *		the current power state of the device is sufficient for
8801  *		performing the command or whether it must be changed.
8802  *		The PM framework is notified appropriately.
8803  *		Only with a return status of DDI_SUCCESS will the
8804  *		component be busy to the framework.
8805  *
8806  *		All callers of sd_pm_entry must check the return status
8807  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
8808  *		of DDI_FAILURE indicates the device failed to power up.
8809  *		In this case un_pm_count has been adjusted so the result
8810  *		on exit is still powered down, ie. count is less than 0.
8811  *		Calling sd_pm_exit with this count value hits an ASSERT.
8812  *
8813  * Return Code: DDI_SUCCESS or DDI_FAILURE
8814  *
8815  *     Context: Kernel thread context.
8816  */
8817 
8818 static int
8819 sd_pm_entry(struct sd_lun *un)
8820 {
8821 	int return_status = DDI_SUCCESS;
8822 
8823 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8824 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8825 
8826 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
8827 
8828 	if (un->un_f_pm_is_enabled == FALSE) {
8829 		SD_TRACE(SD_LOG_IO_PM, un,
8830 		    "sd_pm_entry: exiting, PM not enabled\n");
8831 		return (return_status);
8832 	}
8833 
8834 	/*
8835 	 * Just increment a counter if PM is enabled. On the transition from
8836 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
8837 	 * the count with each IO and mark the device as idle when the count
8838 	 * hits 0.
8839 	 *
8840 	 * If the count is less than 0 the device is powered down. If a powered
8841 	 * down device is successfully powered up then the count must be
8842 	 * incremented to reflect the power up. Note that it'll get incremented
8843 	 * a second time to become busy.
8844 	 *
8845 	 * Because the following has the potential to change the device state
8846 	 * and must release the un_pm_mutex to do so, only one thread can be
8847 	 * allowed through at a time.
8848 	 */
8849 
8850 	mutex_enter(&un->un_pm_mutex);
8851 	while (un->un_pm_busy == TRUE) {
8852 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
8853 	}
8854 	un->un_pm_busy = TRUE;
8855 
8856 	if (un->un_pm_count < 1) {
8857 
8858 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
8859 
8860 		/*
8861 		 * Indicate we are now busy so the framework won't attempt to
8862 		 * power down the device. This call will only fail if either
8863 		 * we passed a bad component number or the device has no
8864 		 * components. Neither of these should ever happen.
8865 		 */
8866 		mutex_exit(&un->un_pm_mutex);
8867 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
8868 		ASSERT(return_status == DDI_SUCCESS);
8869 
8870 		mutex_enter(&un->un_pm_mutex);
8871 
8872 		if (un->un_pm_count < 0) {
8873 			mutex_exit(&un->un_pm_mutex);
8874 
8875 			SD_TRACE(SD_LOG_IO_PM, un,
8876 			    "sd_pm_entry: power up component\n");
8877 
8878 			/*
8879 			 * pm_raise_power will cause sdpower to be called
8880 			 * which brings the device power level to the
8881 			 * desired state, ON in this case. If successful,
8882 			 * un_pm_count and un_power_level will be updated
8883 			 * appropriately.
8884 			 */
8885 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
8886 			    SD_SPINDLE_ON);
8887 
8888 			mutex_enter(&un->un_pm_mutex);
8889 
8890 			if (return_status != DDI_SUCCESS) {
8891 				/*
8892 				 * Power up failed.
8893 				 * Idle the device and adjust the count
8894 				 * so the result on exit is that we're
8895 				 * still powered down, ie. count is less than 0.
8896 				 */
8897 				SD_TRACE(SD_LOG_IO_PM, un,
8898 				    "sd_pm_entry: power up failed,"
8899 				    " idle the component\n");
8900 
8901 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8902 				un->un_pm_count--;
8903 			} else {
8904 				/*
8905 				 * Device is powered up, verify the
8906 				 * count is non-negative.
8907 				 * This is debug only.
8908 				 */
8909 				ASSERT(un->un_pm_count == 0);
8910 			}
8911 		}
8912 
8913 		if (return_status == DDI_SUCCESS) {
8914 			/*
8915 			 * For performance, now that the device has been tagged
8916 			 * as busy, and it's known to be powered up, update the
8917 			 * chain types to use jump tables that do not include
8918 			 * pm. This significantly lowers the overhead and
8919 			 * therefore improves performance.
8920 			 */
8921 
8922 			mutex_exit(&un->un_pm_mutex);
8923 			mutex_enter(SD_MUTEX(un));
8924 			SD_TRACE(SD_LOG_IO_PM, un,
8925 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
8926 			    un->un_uscsi_chain_type);
8927 
8928 			if (un->un_f_non_devbsize_supported) {
8929 				un->un_buf_chain_type =
8930 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
8931 			} else {
8932 				un->un_buf_chain_type =
8933 				    SD_CHAIN_INFO_DISK_NO_PM;
8934 			}
8935 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8936 
8937 			SD_TRACE(SD_LOG_IO_PM, un,
8938 			    "             changed  uscsi_chain_type to   %d\n",
8939 			    un->un_uscsi_chain_type);
8940 			mutex_exit(SD_MUTEX(un));
8941 			mutex_enter(&un->un_pm_mutex);
8942 
8943 			if (un->un_pm_idle_timeid == NULL) {
8944 				/* 300 ms. */
8945 				un->un_pm_idle_timeid =
8946 				    timeout(sd_pm_idletimeout_handler, un,
8947 				    (drv_usectohz((clock_t)300000)));
8948 				/*
8949 				 * Include an extra call to busy which keeps the
8950 				 * device busy with-respect-to the PM layer
8951 				 * until the timer fires, at which time it'll
8952 				 * get the extra idle call.
8953 				 */
8954 				(void) pm_busy_component(SD_DEVINFO(un), 0);
8955 			}
8956 		}
8957 	}
8958 	un->un_pm_busy = FALSE;
8959 	/* Next... */
8960 	cv_signal(&un->un_pm_busy_cv);
8961 
8962 	un->un_pm_count++;
8963 
8964 	SD_TRACE(SD_LOG_IO_PM, un,
8965 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
8966 
8967 	mutex_exit(&un->un_pm_mutex);
8968 
8969 	return (return_status);
8970 }
8971 
8972 
8973 /*
8974  *    Function: sd_pm_exit
8975  *
8976  * Description: Called at the completion of a command to manage busy
8977  *		status for the device. If the device becomes idle the
8978  *		PM framework is notified.
8979  *
8980  *     Context: Kernel thread context
8981  */
8982 
8983 static void
8984 sd_pm_exit(struct sd_lun *un)
8985 {
8986 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8987 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8988 
8989 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
8990 
8991 	/*
8992 	 * After attach the following flag is only read, so don't
8993 	 * take the penalty of acquiring a mutex for it.
8994 	 */
8995 	if (un->un_f_pm_is_enabled == TRUE) {
8996 
8997 		mutex_enter(&un->un_pm_mutex);
8998 		un->un_pm_count--;
8999 
9000 		SD_TRACE(SD_LOG_IO_PM, un,
9001 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
9002 
9003 		ASSERT(un->un_pm_count >= 0);
9004 		if (un->un_pm_count == 0) {
9005 			mutex_exit(&un->un_pm_mutex);
9006 
9007 			SD_TRACE(SD_LOG_IO_PM, un,
9008 			    "sd_pm_exit: idle component\n");
9009 
9010 			(void) pm_idle_component(SD_DEVINFO(un), 0);
9011 
9012 		} else {
9013 			mutex_exit(&un->un_pm_mutex);
9014 		}
9015 	}
9016 
9017 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
9018 }
9019 
9020 
9021 /*
9022  *    Function: sdopen
9023  *
9024  * Description: Driver's open(9e) entry point function.
9025  *
9026  *   Arguments: dev_i   - pointer to device number
9027  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9028  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9029  *		cred_p  - user credential pointer
9030  *
9031  * Return Code: EINVAL
9032  *		ENXIO
9033  *		EIO
9034  *		EROFS
9035  *		EBUSY
9036  *
9037  *     Context: Kernel thread context
9038  */
9039 /* ARGSUSED */
9040 static int
9041 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9042 {
9043 	struct sd_lun	*un;
9044 	int		nodelay;
9045 	int		part;
9046 	uint64_t	partmask;
9047 	int		instance;
9048 	dev_t		dev;
9049 	int		rval = EIO;
9050 	diskaddr_t	nblks = 0;
9051 	diskaddr_t	label_cap;
9052 
9053 	/* Validate the open type */
9054 	if (otyp >= OTYPCNT) {
9055 		return (EINVAL);
9056 	}
9057 
9058 	dev = *dev_p;
9059 	instance = SDUNIT(dev);
9060 	mutex_enter(&sd_detach_mutex);
9061 
9062 	/*
9063 	 * Fail the open if there is no softstate for the instance, or
9064 	 * if another thread somewhere is trying to detach the instance.
9065 	 */
9066 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
9067 	    (un->un_detach_count != 0)) {
9068 		mutex_exit(&sd_detach_mutex);
9069 		/*
9070 		 * The probe cache only needs to be cleared when open (9e) fails
9071 		 * with ENXIO (4238046).
9072 		 */
9073 		/*
9074 		 * un-conditionally clearing probe cache is ok with
9075 		 * separate sd/ssd binaries
9076 		 * x86 platform can be an issue with both parallel
9077 		 * and fibre in 1 binary
9078 		 */
9079 		sd_scsi_clear_probe_cache();
9080 		return (ENXIO);
9081 	}
9082 
9083 	/*
9084 	 * The un_layer_count is to prevent another thread in specfs from
9085 	 * trying to detach the instance, which can happen when we are
9086 	 * called from a higher-layer driver instead of thru specfs.
9087 	 * This will not be needed when DDI provides a layered driver
9088 	 * interface that allows specfs to know that an instance is in
9089 	 * use by a layered driver & should not be detached.
9090 	 *
9091 	 * Note: the semantics for layered driver opens are exactly one
9092 	 * close for every open.
9093 	 */
9094 	if (otyp == OTYP_LYR) {
9095 		un->un_layer_count++;
9096 	}
9097 
9098 	/*
9099 	 * Keep a count of the current # of opens in progress. This is because
9100 	 * some layered drivers try to call us as a regular open. This can
9101 	 * cause problems that we cannot prevent, however by keeping this count
9102 	 * we can at least keep our open and detach routines from racing against
9103 	 * each other under such conditions.
9104 	 */
9105 	un->un_opens_in_progress++;
9106 	mutex_exit(&sd_detach_mutex);
9107 
9108 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
9109 	part	 = SDPART(dev);
9110 	partmask = 1 << part;
9111 
9112 	/*
9113 	 * We use a semaphore here in order to serialize
9114 	 * open and close requests on the device.
9115 	 */
9116 	sema_p(&un->un_semoclose);
9117 
9118 	mutex_enter(SD_MUTEX(un));
9119 
9120 	/*
9121 	 * All device accesses go thru sdstrategy() where we check
9122 	 * on suspend status but there could be a scsi_poll command,
9123 	 * which bypasses sdstrategy(), so we need to check pm
9124 	 * status.
9125 	 */
9126 
9127 	if (!nodelay) {
9128 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9129 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9130 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9131 		}
9132 
9133 		mutex_exit(SD_MUTEX(un));
9134 		if (sd_pm_entry(un) != DDI_SUCCESS) {
9135 			rval = EIO;
9136 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
9137 			    "sdopen: sd_pm_entry failed\n");
9138 			goto open_failed_with_pm;
9139 		}
9140 		mutex_enter(SD_MUTEX(un));
9141 	}
9142 
9143 	/* check for previous exclusive open */
9144 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
9145 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9146 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
9147 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
9148 
9149 	if (un->un_exclopen & (partmask)) {
9150 		goto excl_open_fail;
9151 	}
9152 
9153 	if (flag & FEXCL) {
9154 		int i;
9155 		if (un->un_ocmap.lyropen[part]) {
9156 			goto excl_open_fail;
9157 		}
9158 		for (i = 0; i < (OTYPCNT - 1); i++) {
9159 			if (un->un_ocmap.regopen[i] & (partmask)) {
9160 				goto excl_open_fail;
9161 			}
9162 		}
9163 	}
9164 
9165 	/*
9166 	 * Check the write permission if this is a removable media device,
9167 	 * NDELAY has not been set, and writable permission is requested.
9168 	 *
9169 	 * Note: If NDELAY was set and this is write-protected media the WRITE
9170 	 * attempt will fail with EIO as part of the I/O processing. This is a
9171 	 * more permissive implementation that allows the open to succeed and
9172 	 * WRITE attempts to fail when appropriate.
9173 	 */
9174 	if (un->un_f_chk_wp_open) {
9175 		if ((flag & FWRITE) && (!nodelay)) {
9176 			mutex_exit(SD_MUTEX(un));
9177 			/*
9178 			 * Defer the check for write permission on writable
9179 			 * DVD drive till sdstrategy and will not fail open even
9180 			 * if FWRITE is set as the device can be writable
9181 			 * depending upon the media and the media can change
9182 			 * after the call to open().
9183 			 */
9184 			if (un->un_f_dvdram_writable_device == FALSE) {
9185 				if (ISCD(un) || sr_check_wp(dev)) {
9186 				rval = EROFS;
9187 				mutex_enter(SD_MUTEX(un));
9188 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9189 				    "write to cd or write protected media\n");
9190 				goto open_fail;
9191 				}
9192 			}
9193 			mutex_enter(SD_MUTEX(un));
9194 		}
9195 	}
9196 
9197 	/*
9198 	 * If opening in NDELAY/NONBLOCK mode, just return.
9199 	 * Check if disk is ready and has a valid geometry later.
9200 	 */
9201 	if (!nodelay) {
9202 		mutex_exit(SD_MUTEX(un));
9203 		rval = sd_ready_and_valid(un);
9204 		mutex_enter(SD_MUTEX(un));
9205 		/*
9206 		 * Fail if device is not ready or if the number of disk
9207 		 * blocks is zero or negative for non CD devices.
9208 		 */
9209 
9210 		nblks = 0;
9211 
9212 		if (rval == SD_READY_VALID && (!ISCD(un))) {
9213 			/* if cmlb_partinfo fails, nblks remains 0 */
9214 			mutex_exit(SD_MUTEX(un));
9215 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
9216 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
9217 			mutex_enter(SD_MUTEX(un));
9218 		}
9219 
9220 		if ((rval != SD_READY_VALID) ||
9221 		    (!ISCD(un) && nblks <= 0)) {
9222 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
9223 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9224 			    "device not ready or invalid disk block value\n");
9225 			goto open_fail;
9226 		}
9227 #if defined(__i386) || defined(__amd64)
9228 	} else {
9229 		uchar_t *cp;
9230 		/*
9231 		 * x86 requires special nodelay handling, so that p0 is
9232 		 * always defined and accessible.
9233 		 * Invalidate geometry only if device is not already open.
9234 		 */
9235 		cp = &un->un_ocmap.chkd[0];
9236 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9237 			if (*cp != (uchar_t)0) {
9238 				break;
9239 			}
9240 			cp++;
9241 		}
9242 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9243 			mutex_exit(SD_MUTEX(un));
9244 			cmlb_invalidate(un->un_cmlbhandle,
9245 			    (void *)SD_PATH_DIRECT);
9246 			mutex_enter(SD_MUTEX(un));
9247 		}
9248 
9249 #endif
9250 	}
9251 
9252 	if (otyp == OTYP_LYR) {
9253 		un->un_ocmap.lyropen[part]++;
9254 	} else {
9255 		un->un_ocmap.regopen[otyp] |= partmask;
9256 	}
9257 
9258 	/* Set up open and exclusive open flags */
9259 	if (flag & FEXCL) {
9260 		un->un_exclopen |= (partmask);
9261 	}
9262 
9263 	/*
9264 	 * If the lun is EFI labeled and lun capacity is greater than the
9265 	 * capacity contained in the label, log a sys-event to notify the
9266 	 * interested module.
9267 	 * To avoid an infinite loop of logging sys-event, we only log the
9268 	 * event when the lun is not opened in NDELAY mode. The event handler
9269 	 * should open the lun in NDELAY mode.
9270 	 */
9271 	if (!(flag & FNDELAY)) {
9272 		mutex_exit(SD_MUTEX(un));
9273 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
9274 		    (void*)SD_PATH_DIRECT) == 0) {
9275 			mutex_enter(SD_MUTEX(un));
9276 			if (un->un_f_blockcount_is_valid &&
9277 			    un->un_blockcount > label_cap) {
9278 				mutex_exit(SD_MUTEX(un));
9279 				sd_log_lun_expansion_event(un,
9280 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
9281 				mutex_enter(SD_MUTEX(un));
9282 			}
9283 		} else {
9284 			mutex_enter(SD_MUTEX(un));
9285 		}
9286 	}
9287 
9288 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9289 	    "open of part %d type %d\n", part, otyp);
9290 
9291 	mutex_exit(SD_MUTEX(un));
9292 	if (!nodelay) {
9293 		sd_pm_exit(un);
9294 	}
9295 
9296 	sema_v(&un->un_semoclose);
9297 
9298 	mutex_enter(&sd_detach_mutex);
9299 	un->un_opens_in_progress--;
9300 	mutex_exit(&sd_detach_mutex);
9301 
9302 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
9303 	return (DDI_SUCCESS);
9304 
9305 excl_open_fail:
9306 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
9307 	rval = EBUSY;
9308 
9309 open_fail:
9310 	mutex_exit(SD_MUTEX(un));
9311 
9312 	/*
9313 	 * On a failed open we must exit the pm management.
9314 	 */
9315 	if (!nodelay) {
9316 		sd_pm_exit(un);
9317 	}
9318 open_failed_with_pm:
9319 	sema_v(&un->un_semoclose);
9320 
9321 	mutex_enter(&sd_detach_mutex);
9322 	un->un_opens_in_progress--;
9323 	if (otyp == OTYP_LYR) {
9324 		un->un_layer_count--;
9325 	}
9326 	mutex_exit(&sd_detach_mutex);
9327 
9328 	return (rval);
9329 }
9330 
9331 
9332 /*
9333  *    Function: sdclose
9334  *
9335  * Description: Driver's close(9e) entry point function.
9336  *
9337  *   Arguments: dev    - device number
9338  *		flag   - file status flag, informational only
9339  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9340  *		cred_p - user credential pointer
9341  *
9342  * Return Code: ENXIO
9343  *
9344  *     Context: Kernel thread context
9345  */
9346 /* ARGSUSED */
9347 static int
9348 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9349 {
9350 	struct sd_lun	*un;
9351 	uchar_t		*cp;
9352 	int		part;
9353 	int		nodelay;
9354 	int		rval = 0;
9355 
9356 	/* Validate the open type */
9357 	if (otyp >= OTYPCNT) {
9358 		return (ENXIO);
9359 	}
9360 
9361 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9362 		return (ENXIO);
9363 	}
9364 
9365 	part = SDPART(dev);
9366 	nodelay = flag & (FNDELAY | FNONBLOCK);
9367 
9368 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9369 	    "sdclose: close of part %d type %d\n", part, otyp);
9370 
9371 	/*
9372 	 * We use a semaphore here in order to serialize
9373 	 * open and close requests on the device.
9374 	 */
9375 	sema_p(&un->un_semoclose);
9376 
9377 	mutex_enter(SD_MUTEX(un));
9378 
9379 	/* Don't proceed if power is being changed. */
9380 	while (un->un_state == SD_STATE_PM_CHANGING) {
9381 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9382 	}
9383 
9384 	if (un->un_exclopen & (1 << part)) {
9385 		un->un_exclopen &= ~(1 << part);
9386 	}
9387 
9388 	/* Update the open partition map */
9389 	if (otyp == OTYP_LYR) {
9390 		un->un_ocmap.lyropen[part] -= 1;
9391 	} else {
9392 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9393 	}
9394 
9395 	cp = &un->un_ocmap.chkd[0];
9396 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9397 		if (*cp != NULL) {
9398 			break;
9399 		}
9400 		cp++;
9401 	}
9402 
9403 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9404 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9405 
9406 		/*
9407 		 * We avoid persistance upon the last close, and set
9408 		 * the throttle back to the maximum.
9409 		 */
9410 		un->un_throttle = un->un_saved_throttle;
9411 
9412 		if (un->un_state == SD_STATE_OFFLINE) {
9413 			if (un->un_f_is_fibre == FALSE) {
9414 				scsi_log(SD_DEVINFO(un), sd_label,
9415 				    CE_WARN, "offline\n");
9416 			}
9417 			mutex_exit(SD_MUTEX(un));
9418 			cmlb_invalidate(un->un_cmlbhandle,
9419 			    (void *)SD_PATH_DIRECT);
9420 			mutex_enter(SD_MUTEX(un));
9421 
9422 		} else {
9423 			/*
9424 			 * Flush any outstanding writes in NVRAM cache.
9425 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
9426 			 * cmd, it may not work for non-Pluto devices.
9427 			 * SYNCHRONIZE CACHE is not required for removables,
9428 			 * except DVD-RAM drives.
9429 			 *
9430 			 * Also note: because SYNCHRONIZE CACHE is currently
9431 			 * the only command issued here that requires the
9432 			 * drive be powered up, only do the power up before
9433 			 * sending the Sync Cache command. If additional
9434 			 * commands are added which require a powered up
9435 			 * drive, the following sequence may have to change.
9436 			 *
9437 			 * And finally, note that parallel SCSI on SPARC
9438 			 * only issues a Sync Cache to DVD-RAM, a newly
9439 			 * supported device.
9440 			 */
9441 #if defined(__i386) || defined(__amd64)
9442 			if (un->un_f_sync_cache_supported ||
9443 			    un->un_f_dvdram_writable_device == TRUE) {
9444 #else
9445 			if (un->un_f_dvdram_writable_device == TRUE) {
9446 #endif
9447 				mutex_exit(SD_MUTEX(un));
9448 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9449 					rval =
9450 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
9451 					    NULL);
9452 					/* ignore error if not supported */
9453 					if (rval == ENOTSUP) {
9454 						rval = 0;
9455 					} else if (rval != 0) {
9456 						rval = EIO;
9457 					}
9458 					sd_pm_exit(un);
9459 				} else {
9460 					rval = EIO;
9461 				}
9462 				mutex_enter(SD_MUTEX(un));
9463 			}
9464 
9465 			/*
9466 			 * For devices which supports DOOR_LOCK, send an ALLOW
9467 			 * MEDIA REMOVAL command, but don't get upset if it
9468 			 * fails. We need to raise the power of the drive before
9469 			 * we can call sd_send_scsi_DOORLOCK()
9470 			 */
9471 			if (un->un_f_doorlock_supported) {
9472 				mutex_exit(SD_MUTEX(un));
9473 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9474 					rval = sd_send_scsi_DOORLOCK(un,
9475 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
9476 
9477 					sd_pm_exit(un);
9478 					if (ISCD(un) && (rval != 0) &&
9479 					    (nodelay != 0)) {
9480 						rval = ENXIO;
9481 					}
9482 				} else {
9483 					rval = EIO;
9484 				}
9485 				mutex_enter(SD_MUTEX(un));
9486 			}
9487 
9488 			/*
9489 			 * If a device has removable media, invalidate all
9490 			 * parameters related to media, such as geometry,
9491 			 * blocksize, and blockcount.
9492 			 */
9493 			if (un->un_f_has_removable_media) {
9494 				sr_ejected(un);
9495 			}
9496 
9497 			/*
9498 			 * Destroy the cache (if it exists) which was
9499 			 * allocated for the write maps since this is
9500 			 * the last close for this media.
9501 			 */
9502 			if (un->un_wm_cache) {
9503 				/*
9504 				 * Check if there are pending commands.
9505 				 * and if there are give a warning and
9506 				 * do not destroy the cache.
9507 				 */
9508 				if (un->un_ncmds_in_driver > 0) {
9509 					scsi_log(SD_DEVINFO(un),
9510 					    sd_label, CE_WARN,
9511 					    "Unable to clean up memory "
9512 					    "because of pending I/O\n");
9513 				} else {
9514 					kmem_cache_destroy(
9515 					    un->un_wm_cache);
9516 					un->un_wm_cache = NULL;
9517 				}
9518 			}
9519 		}
9520 	}
9521 
9522 	mutex_exit(SD_MUTEX(un));
9523 	sema_v(&un->un_semoclose);
9524 
9525 	if (otyp == OTYP_LYR) {
9526 		mutex_enter(&sd_detach_mutex);
9527 		/*
9528 		 * The detach routine may run when the layer count
9529 		 * drops to zero.
9530 		 */
9531 		un->un_layer_count--;
9532 		mutex_exit(&sd_detach_mutex);
9533 	}
9534 
9535 	return (rval);
9536 }
9537 
9538 
9539 /*
9540  *    Function: sd_ready_and_valid
9541  *
9542  * Description: Test if device is ready and has a valid geometry.
9543  *
9544  *   Arguments: dev - device number
9545  *		un  - driver soft state (unit) structure
9546  *
9547  * Return Code: SD_READY_VALID		ready and valid label
9548  *		SD_NOT_READY_VALID	not ready, no label
9549  *		SD_RESERVED_BY_OTHERS	reservation conflict
9550  *
9551  *     Context: Never called at interrupt context.
9552  */
9553 
9554 static int
9555 sd_ready_and_valid(struct sd_lun *un)
9556 {
9557 	struct sd_errstats	*stp;
9558 	uint64_t		capacity;
9559 	uint_t			lbasize;
9560 	int			rval = SD_READY_VALID;
9561 	char			name_str[48];
9562 	int			is_valid;
9563 
9564 	ASSERT(un != NULL);
9565 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9566 
9567 	mutex_enter(SD_MUTEX(un));
9568 	/*
9569 	 * If a device has removable media, we must check if media is
9570 	 * ready when checking if this device is ready and valid.
9571 	 */
9572 	if (un->un_f_has_removable_media) {
9573 		mutex_exit(SD_MUTEX(un));
9574 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
9575 			rval = SD_NOT_READY_VALID;
9576 			mutex_enter(SD_MUTEX(un));
9577 			goto done;
9578 		}
9579 
9580 		is_valid = SD_IS_VALID_LABEL(un);
9581 		mutex_enter(SD_MUTEX(un));
9582 		if (!is_valid ||
9583 		    (un->un_f_blockcount_is_valid == FALSE) ||
9584 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
9585 
9586 			/* capacity has to be read every open. */
9587 			mutex_exit(SD_MUTEX(un));
9588 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
9589 			    &lbasize, SD_PATH_DIRECT) != 0) {
9590 				cmlb_invalidate(un->un_cmlbhandle,
9591 				    (void *)SD_PATH_DIRECT);
9592 				mutex_enter(SD_MUTEX(un));
9593 				rval = SD_NOT_READY_VALID;
9594 				goto done;
9595 			} else {
9596 				mutex_enter(SD_MUTEX(un));
9597 				sd_update_block_info(un, lbasize, capacity);
9598 			}
9599 		}
9600 
9601 		/*
9602 		 * Check if the media in the device is writable or not.
9603 		 */
9604 		if (!is_valid && ISCD(un)) {
9605 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
9606 		}
9607 
9608 	} else {
9609 		/*
9610 		 * Do a test unit ready to clear any unit attention from non-cd
9611 		 * devices.
9612 		 */
9613 		mutex_exit(SD_MUTEX(un));
9614 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9615 		mutex_enter(SD_MUTEX(un));
9616 	}
9617 
9618 
9619 	/*
9620 	 * If this is a non 512 block device, allocate space for
9621 	 * the wmap cache. This is being done here since every time
9622 	 * a media is changed this routine will be called and the
9623 	 * block size is a function of media rather than device.
9624 	 */
9625 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
9626 		if (!(un->un_wm_cache)) {
9627 			(void) snprintf(name_str, sizeof (name_str),
9628 			    "%s%d_cache",
9629 			    ddi_driver_name(SD_DEVINFO(un)),
9630 			    ddi_get_instance(SD_DEVINFO(un)));
9631 			un->un_wm_cache = kmem_cache_create(
9632 			    name_str, sizeof (struct sd_w_map),
9633 			    8, sd_wm_cache_constructor,
9634 			    sd_wm_cache_destructor, NULL,
9635 			    (void *)un, NULL, 0);
9636 			if (!(un->un_wm_cache)) {
9637 					rval = ENOMEM;
9638 					goto done;
9639 			}
9640 		}
9641 	}
9642 
9643 	if (un->un_state == SD_STATE_NORMAL) {
9644 		/*
9645 		 * If the target is not yet ready here (defined by a TUR
9646 		 * failure), invalidate the geometry and print an 'offline'
9647 		 * message. This is a legacy message, as the state of the
9648 		 * target is not actually changed to SD_STATE_OFFLINE.
9649 		 *
9650 		 * If the TUR fails for EACCES (Reservation Conflict),
9651 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
9652 		 * reservation conflict. If the TUR fails for other
9653 		 * reasons, SD_NOT_READY_VALID will be returned.
9654 		 */
9655 		int err;
9656 
9657 		mutex_exit(SD_MUTEX(un));
9658 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
9659 		mutex_enter(SD_MUTEX(un));
9660 
9661 		if (err != 0) {
9662 			mutex_exit(SD_MUTEX(un));
9663 			cmlb_invalidate(un->un_cmlbhandle,
9664 			    (void *)SD_PATH_DIRECT);
9665 			mutex_enter(SD_MUTEX(un));
9666 			if (err == EACCES) {
9667 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9668 				    "reservation conflict\n");
9669 				rval = SD_RESERVED_BY_OTHERS;
9670 			} else {
9671 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9672 				    "drive offline\n");
9673 				rval = SD_NOT_READY_VALID;
9674 			}
9675 			goto done;
9676 		}
9677 	}
9678 
9679 	if (un->un_f_format_in_progress == FALSE) {
9680 		mutex_exit(SD_MUTEX(un));
9681 		if (cmlb_validate(un->un_cmlbhandle, 0,
9682 		    (void *)SD_PATH_DIRECT) != 0) {
9683 			rval = SD_NOT_READY_VALID;
9684 			mutex_enter(SD_MUTEX(un));
9685 			goto done;
9686 		}
9687 		if (un->un_f_pkstats_enabled) {
9688 			sd_set_pstats(un);
9689 			SD_TRACE(SD_LOG_IO_PARTITION, un,
9690 			    "sd_ready_and_valid: un:0x%p pstats created and "
9691 			    "set\n", un);
9692 		}
9693 		mutex_enter(SD_MUTEX(un));
9694 	}
9695 
9696 	/*
9697 	 * If this device supports DOOR_LOCK command, try and send
9698 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
9699 	 * if it fails. For a CD, however, it is an error
9700 	 */
9701 	if (un->un_f_doorlock_supported) {
9702 		mutex_exit(SD_MUTEX(un));
9703 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
9704 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
9705 			rval = SD_NOT_READY_VALID;
9706 			mutex_enter(SD_MUTEX(un));
9707 			goto done;
9708 		}
9709 		mutex_enter(SD_MUTEX(un));
9710 	}
9711 
9712 	/* The state has changed, inform the media watch routines */
9713 	un->un_mediastate = DKIO_INSERTED;
9714 	cv_broadcast(&un->un_state_cv);
9715 	rval = SD_READY_VALID;
9716 
9717 done:
9718 
9719 	/*
9720 	 * Initialize the capacity kstat value, if no media previously
9721 	 * (capacity kstat is 0) and a media has been inserted
9722 	 * (un_blockcount > 0).
9723 	 */
9724 	if (un->un_errstats != NULL) {
9725 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
9726 		if ((stp->sd_capacity.value.ui64 == 0) &&
9727 		    (un->un_f_blockcount_is_valid == TRUE)) {
9728 			stp->sd_capacity.value.ui64 =
9729 			    (uint64_t)((uint64_t)un->un_blockcount *
9730 			    un->un_sys_blocksize);
9731 		}
9732 	}
9733 
9734 	mutex_exit(SD_MUTEX(un));
9735 	return (rval);
9736 }
9737 
9738 
9739 /*
9740  *    Function: sdmin
9741  *
9742  * Description: Routine to limit the size of a data transfer. Used in
9743  *		conjunction with physio(9F).
9744  *
9745  *   Arguments: bp - pointer to the indicated buf(9S) struct.
9746  *
9747  *     Context: Kernel thread context.
9748  */
9749 
9750 static void
9751 sdmin(struct buf *bp)
9752 {
9753 	struct sd_lun	*un;
9754 	int		instance;
9755 
9756 	instance = SDUNIT(bp->b_edev);
9757 
9758 	un = ddi_get_soft_state(sd_state, instance);
9759 	ASSERT(un != NULL);
9760 
9761 	if (bp->b_bcount > un->un_max_xfer_size) {
9762 		bp->b_bcount = un->un_max_xfer_size;
9763 	}
9764 }
9765 
9766 
9767 /*
9768  *    Function: sdread
9769  *
9770  * Description: Driver's read(9e) entry point function.
9771  *
9772  *   Arguments: dev   - device number
9773  *		uio   - structure pointer describing where data is to be stored
9774  *			in user's space
9775  *		cred_p  - user credential pointer
9776  *
9777  * Return Code: ENXIO
9778  *		EIO
9779  *		EINVAL
9780  *		value returned by physio
9781  *
9782  *     Context: Kernel thread context.
9783  */
9784 /* ARGSUSED */
9785 static int
9786 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
9787 {
9788 	struct sd_lun	*un = NULL;
9789 	int		secmask;
9790 	int		err;
9791 
9792 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9793 		return (ENXIO);
9794 	}
9795 
9796 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9797 
9798 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9799 		mutex_enter(SD_MUTEX(un));
9800 		/*
9801 		 * Because the call to sd_ready_and_valid will issue I/O we
9802 		 * must wait here if either the device is suspended or
9803 		 * if it's power level is changing.
9804 		 */
9805 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9806 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9807 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9808 		}
9809 		un->un_ncmds_in_driver++;
9810 		mutex_exit(SD_MUTEX(un));
9811 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9812 			mutex_enter(SD_MUTEX(un));
9813 			un->un_ncmds_in_driver--;
9814 			ASSERT(un->un_ncmds_in_driver >= 0);
9815 			mutex_exit(SD_MUTEX(un));
9816 			return (EIO);
9817 		}
9818 		mutex_enter(SD_MUTEX(un));
9819 		un->un_ncmds_in_driver--;
9820 		ASSERT(un->un_ncmds_in_driver >= 0);
9821 		mutex_exit(SD_MUTEX(un));
9822 	}
9823 
9824 	/*
9825 	 * Read requests are restricted to multiples of the system block size.
9826 	 */
9827 	secmask = un->un_sys_blocksize - 1;
9828 
9829 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9830 		SD_ERROR(SD_LOG_READ_WRITE, un,
9831 		    "sdread: file offset not modulo %d\n",
9832 		    un->un_sys_blocksize);
9833 		err = EINVAL;
9834 	} else if (uio->uio_iov->iov_len & (secmask)) {
9835 		SD_ERROR(SD_LOG_READ_WRITE, un,
9836 		    "sdread: transfer length not modulo %d\n",
9837 		    un->un_sys_blocksize);
9838 		err = EINVAL;
9839 	} else {
9840 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
9841 	}
9842 	return (err);
9843 }
9844 
9845 
9846 /*
9847  *    Function: sdwrite
9848  *
9849  * Description: Driver's write(9e) entry point function.
9850  *
9851  *   Arguments: dev   - device number
9852  *		uio   - structure pointer describing where data is stored in
9853  *			user's space
9854  *		cred_p  - user credential pointer
9855  *
9856  * Return Code: ENXIO
9857  *		EIO
9858  *		EINVAL
9859  *		value returned by physio
9860  *
9861  *     Context: Kernel thread context.
9862  */
9863 /* ARGSUSED */
9864 static int
9865 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
9866 {
9867 	struct sd_lun	*un = NULL;
9868 	int		secmask;
9869 	int		err;
9870 
9871 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9872 		return (ENXIO);
9873 	}
9874 
9875 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9876 
9877 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9878 		mutex_enter(SD_MUTEX(un));
9879 		/*
9880 		 * Because the call to sd_ready_and_valid will issue I/O we
9881 		 * must wait here if either the device is suspended or
9882 		 * if it's power level is changing.
9883 		 */
9884 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9885 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9886 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9887 		}
9888 		un->un_ncmds_in_driver++;
9889 		mutex_exit(SD_MUTEX(un));
9890 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9891 			mutex_enter(SD_MUTEX(un));
9892 			un->un_ncmds_in_driver--;
9893 			ASSERT(un->un_ncmds_in_driver >= 0);
9894 			mutex_exit(SD_MUTEX(un));
9895 			return (EIO);
9896 		}
9897 		mutex_enter(SD_MUTEX(un));
9898 		un->un_ncmds_in_driver--;
9899 		ASSERT(un->un_ncmds_in_driver >= 0);
9900 		mutex_exit(SD_MUTEX(un));
9901 	}
9902 
9903 	/*
9904 	 * Write requests are restricted to multiples of the system block size.
9905 	 */
9906 	secmask = un->un_sys_blocksize - 1;
9907 
9908 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9909 		SD_ERROR(SD_LOG_READ_WRITE, un,
9910 		    "sdwrite: file offset not modulo %d\n",
9911 		    un->un_sys_blocksize);
9912 		err = EINVAL;
9913 	} else if (uio->uio_iov->iov_len & (secmask)) {
9914 		SD_ERROR(SD_LOG_READ_WRITE, un,
9915 		    "sdwrite: transfer length not modulo %d\n",
9916 		    un->un_sys_blocksize);
9917 		err = EINVAL;
9918 	} else {
9919 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
9920 	}
9921 	return (err);
9922 }
9923 
9924 
9925 /*
9926  *    Function: sdaread
9927  *
9928  * Description: Driver's aread(9e) entry point function.
9929  *
9930  *   Arguments: dev   - device number
9931  *		aio   - structure pointer describing where data is to be stored
9932  *		cred_p  - user credential pointer
9933  *
9934  * Return Code: ENXIO
9935  *		EIO
9936  *		EINVAL
9937  *		value returned by aphysio
9938  *
9939  *     Context: Kernel thread context.
9940  */
9941 /* ARGSUSED */
9942 static int
9943 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9944 {
9945 	struct sd_lun	*un = NULL;
9946 	struct uio	*uio = aio->aio_uio;
9947 	int		secmask;
9948 	int		err;
9949 
9950 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9951 		return (ENXIO);
9952 	}
9953 
9954 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9955 
9956 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9957 		mutex_enter(SD_MUTEX(un));
9958 		/*
9959 		 * Because the call to sd_ready_and_valid will issue I/O we
9960 		 * must wait here if either the device is suspended or
9961 		 * if it's power level is changing.
9962 		 */
9963 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9964 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9965 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9966 		}
9967 		un->un_ncmds_in_driver++;
9968 		mutex_exit(SD_MUTEX(un));
9969 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9970 			mutex_enter(SD_MUTEX(un));
9971 			un->un_ncmds_in_driver--;
9972 			ASSERT(un->un_ncmds_in_driver >= 0);
9973 			mutex_exit(SD_MUTEX(un));
9974 			return (EIO);
9975 		}
9976 		mutex_enter(SD_MUTEX(un));
9977 		un->un_ncmds_in_driver--;
9978 		ASSERT(un->un_ncmds_in_driver >= 0);
9979 		mutex_exit(SD_MUTEX(un));
9980 	}
9981 
9982 	/*
9983 	 * Read requests are restricted to multiples of the system block size.
9984 	 */
9985 	secmask = un->un_sys_blocksize - 1;
9986 
9987 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9988 		SD_ERROR(SD_LOG_READ_WRITE, un,
9989 		    "sdaread: file offset not modulo %d\n",
9990 		    un->un_sys_blocksize);
9991 		err = EINVAL;
9992 	} else if (uio->uio_iov->iov_len & (secmask)) {
9993 		SD_ERROR(SD_LOG_READ_WRITE, un,
9994 		    "sdaread: transfer length not modulo %d\n",
9995 		    un->un_sys_blocksize);
9996 		err = EINVAL;
9997 	} else {
9998 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
9999 	}
10000 	return (err);
10001 }
10002 
10003 
10004 /*
10005  *    Function: sdawrite
10006  *
10007  * Description: Driver's awrite(9e) entry point function.
10008  *
10009  *   Arguments: dev   - device number
10010  *		aio   - structure pointer describing where data is stored
10011  *		cred_p  - user credential pointer
10012  *
10013  * Return Code: ENXIO
10014  *		EIO
10015  *		EINVAL
10016  *		value returned by aphysio
10017  *
10018  *     Context: Kernel thread context.
10019  */
10020 /* ARGSUSED */
10021 static int
10022 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10023 {
10024 	struct sd_lun	*un = NULL;
10025 	struct uio	*uio = aio->aio_uio;
10026 	int		secmask;
10027 	int		err;
10028 
10029 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10030 		return (ENXIO);
10031 	}
10032 
10033 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10034 
10035 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10036 		mutex_enter(SD_MUTEX(un));
10037 		/*
10038 		 * Because the call to sd_ready_and_valid will issue I/O we
10039 		 * must wait here if either the device is suspended or
10040 		 * if it's power level is changing.
10041 		 */
10042 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10043 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10044 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10045 		}
10046 		un->un_ncmds_in_driver++;
10047 		mutex_exit(SD_MUTEX(un));
10048 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10049 			mutex_enter(SD_MUTEX(un));
10050 			un->un_ncmds_in_driver--;
10051 			ASSERT(un->un_ncmds_in_driver >= 0);
10052 			mutex_exit(SD_MUTEX(un));
10053 			return (EIO);
10054 		}
10055 		mutex_enter(SD_MUTEX(un));
10056 		un->un_ncmds_in_driver--;
10057 		ASSERT(un->un_ncmds_in_driver >= 0);
10058 		mutex_exit(SD_MUTEX(un));
10059 	}
10060 
10061 	/*
10062 	 * Write requests are restricted to multiples of the system block size.
10063 	 */
10064 	secmask = un->un_sys_blocksize - 1;
10065 
10066 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10067 		SD_ERROR(SD_LOG_READ_WRITE, un,
10068 		    "sdawrite: file offset not modulo %d\n",
10069 		    un->un_sys_blocksize);
10070 		err = EINVAL;
10071 	} else if (uio->uio_iov->iov_len & (secmask)) {
10072 		SD_ERROR(SD_LOG_READ_WRITE, un,
10073 		    "sdawrite: transfer length not modulo %d\n",
10074 		    un->un_sys_blocksize);
10075 		err = EINVAL;
10076 	} else {
10077 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10078 	}
10079 	return (err);
10080 }
10081 
10082 
10083 
10084 
10085 
10086 /*
10087  * Driver IO processing follows the following sequence:
10088  *
10089  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10090  *         |                |                     ^
10091  *         v                v                     |
10092  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10093  *         |                |                     |                   |
10094  *         v                |                     |                   |
10095  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10096  *         |                |                     ^                   ^
10097  *         v                v                     |                   |
10098  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10099  *         |                |                     |                   |
10100  *     +---+                |                     +------------+      +-------+
10101  *     |                    |                                  |              |
10102  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10103  *     |                    v                                  |              |
10104  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
10105  *     |                    |                                  ^              |
10106  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10107  *     |                    v                                  |              |
10108  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
10109  *     |                    |                                  ^              |
10110  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10111  *     |                    v                                  |              |
10112  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
10113  *     |                    |                                  ^              |
10114  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
10115  *     |                    v                                  |              |
10116  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
10117  *     |                    |                                  ^              |
10118  *     |                    |                                  |              |
10119  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
10120  *                          |                           ^
10121  *                          v                           |
10122  *                   sd_core_iostart()                  |
10123  *                          |                           |
10124  *                          |                           +------>(*destroypkt)()
10125  *                          +-> sd_start_cmds() <-+     |           |
10126  *                          |                     |     |           v
10127  *                          |                     |     |  scsi_destroy_pkt(9F)
10128  *                          |                     |     |
10129  *                          +->(*initpkt)()       +- sdintr()
10130  *                          |  |                        |  |
10131  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
10132  *                          |  +-> scsi_setup_cdb(9F)   |
10133  *                          |                           |
10134  *                          +--> scsi_transport(9F)     |
10135  *                                     |                |
10136  *                                     +----> SCSA ---->+
10137  *
10138  *
10139  * This code is based upon the following presumptions:
10140  *
10141  *   - iostart and iodone functions operate on buf(9S) structures. These
10142  *     functions perform the necessary operations on the buf(9S) and pass
10143  *     them along to the next function in the chain by using the macros
10144  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
10145  *     (for iodone side functions).
10146  *
10147  *   - The iostart side functions may sleep. The iodone side functions
10148  *     are called under interrupt context and may NOT sleep. Therefore
10149  *     iodone side functions also may not call iostart side functions.
10150  *     (NOTE: iostart side functions should NOT sleep for memory, as
10151  *     this could result in deadlock.)
10152  *
10153  *   - An iostart side function may call its corresponding iodone side
10154  *     function directly (if necessary).
10155  *
10156  *   - In the event of an error, an iostart side function can return a buf(9S)
10157  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
10158  *     b_error in the usual way of course).
10159  *
10160  *   - The taskq mechanism may be used by the iodone side functions to dispatch
10161  *     requests to the iostart side functions.  The iostart side functions in
10162  *     this case would be called under the context of a taskq thread, so it's
10163  *     OK for them to block/sleep/spin in this case.
10164  *
10165  *   - iostart side functions may allocate "shadow" buf(9S) structs and
10166  *     pass them along to the next function in the chain.  The corresponding
10167  *     iodone side functions must coalesce the "shadow" bufs and return
10168  *     the "original" buf to the next higher layer.
10169  *
10170  *   - The b_private field of the buf(9S) struct holds a pointer to
10171  *     an sd_xbuf struct, which contains information needed to
10172  *     construct the scsi_pkt for the command.
10173  *
10174  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
10175  *     layer must acquire & release the SD_MUTEX(un) as needed.
10176  */
10177 
10178 
10179 /*
10180  * Create taskq for all targets in the system. This is created at
10181  * _init(9E) and destroyed at _fini(9E).
10182  *
10183  * Note: here we set the minalloc to a reasonably high number to ensure that
10184  * we will have an adequate supply of task entries available at interrupt time.
10185  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
10186  * sd_create_taskq().  Since we do not want to sleep for allocations at
10187  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
10188  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
10189  * requests any one instant in time.
10190  */
10191 #define	SD_TASKQ_NUMTHREADS	8
10192 #define	SD_TASKQ_MINALLOC	256
10193 #define	SD_TASKQ_MAXALLOC	256
10194 
10195 static taskq_t	*sd_tq = NULL;
10196 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
10197 
10198 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
10199 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
10200 
10201 /*
10202  * The following task queue is being created for the write part of
10203  * read-modify-write of non-512 block size devices.
10204  * Limit the number of threads to 1 for now. This number has been chosen
10205  * considering the fact that it applies only to dvd ram drives/MO drives
10206  * currently. Performance for which is not main criteria at this stage.
10207  * Note: It needs to be explored if we can use a single taskq in future
10208  */
10209 #define	SD_WMR_TASKQ_NUMTHREADS	1
10210 static taskq_t	*sd_wmr_tq = NULL;
10211 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
10212 
10213 /*
10214  *    Function: sd_taskq_create
10215  *
10216  * Description: Create taskq thread(s) and preallocate task entries
10217  *
10218  * Return Code: Returns a pointer to the allocated taskq_t.
10219  *
10220  *     Context: Can sleep. Requires blockable context.
10221  *
10222  *       Notes: - The taskq() facility currently is NOT part of the DDI.
10223  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
10224  *		- taskq_create() will block for memory, also it will panic
10225  *		  if it cannot create the requested number of threads.
10226  *		- Currently taskq_create() creates threads that cannot be
10227  *		  swapped.
10228  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10229  *		  supply of taskq entries at interrupt time (ie, so that we
10230  *		  do not have to sleep for memory)
10231  */
10232 
10233 static void
10234 sd_taskq_create(void)
10235 {
10236 	char	taskq_name[TASKQ_NAMELEN];
10237 
10238 	ASSERT(sd_tq == NULL);
10239 	ASSERT(sd_wmr_tq == NULL);
10240 
10241 	(void) snprintf(taskq_name, sizeof (taskq_name),
10242 	    "%s_drv_taskq", sd_label);
10243 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
10244 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10245 	    TASKQ_PREPOPULATE));
10246 
10247 	(void) snprintf(taskq_name, sizeof (taskq_name),
10248 	    "%s_rmw_taskq", sd_label);
10249 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
10250 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10251 	    TASKQ_PREPOPULATE));
10252 }
10253 
10254 
10255 /*
10256  *    Function: sd_taskq_delete
10257  *
10258  * Description: Complementary cleanup routine for sd_taskq_create().
10259  *
10260  *     Context: Kernel thread context.
10261  */
10262 
10263 static void
10264 sd_taskq_delete(void)
10265 {
10266 	ASSERT(sd_tq != NULL);
10267 	ASSERT(sd_wmr_tq != NULL);
10268 	taskq_destroy(sd_tq);
10269 	taskq_destroy(sd_wmr_tq);
10270 	sd_tq = NULL;
10271 	sd_wmr_tq = NULL;
10272 }
10273 
10274 
10275 /*
10276  *    Function: sdstrategy
10277  *
10278  * Description: Driver's strategy (9E) entry point function.
10279  *
10280  *   Arguments: bp - pointer to buf(9S)
10281  *
10282  * Return Code: Always returns zero
10283  *
10284  *     Context: Kernel thread context.
10285  */
10286 
10287 static int
10288 sdstrategy(struct buf *bp)
10289 {
10290 	struct sd_lun *un;
10291 
10292 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10293 	if (un == NULL) {
10294 		bioerror(bp, EIO);
10295 		bp->b_resid = bp->b_bcount;
10296 		biodone(bp);
10297 		return (0);
10298 	}
10299 	/* As was done in the past, fail new cmds. if state is dumping. */
10300 	if (un->un_state == SD_STATE_DUMPING) {
10301 		bioerror(bp, ENXIO);
10302 		bp->b_resid = bp->b_bcount;
10303 		biodone(bp);
10304 		return (0);
10305 	}
10306 
10307 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10308 
10309 	/*
10310 	 * Commands may sneak in while we released the mutex in
10311 	 * DDI_SUSPEND, we should block new commands. However, old
10312 	 * commands that are still in the driver at this point should
10313 	 * still be allowed to drain.
10314 	 */
10315 	mutex_enter(SD_MUTEX(un));
10316 	/*
10317 	 * Must wait here if either the device is suspended or
10318 	 * if it's power level is changing.
10319 	 */
10320 	while ((un->un_state == SD_STATE_SUSPENDED) ||
10321 	    (un->un_state == SD_STATE_PM_CHANGING)) {
10322 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10323 	}
10324 
10325 	un->un_ncmds_in_driver++;
10326 
10327 	/*
10328 	 * atapi: Since we are running the CD for now in PIO mode we need to
10329 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10330 	 * the HBA's init_pkt routine.
10331 	 */
10332 	if (un->un_f_cfg_is_atapi == TRUE) {
10333 		mutex_exit(SD_MUTEX(un));
10334 		bp_mapin(bp);
10335 		mutex_enter(SD_MUTEX(un));
10336 	}
10337 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10338 	    un->un_ncmds_in_driver);
10339 
10340 	mutex_exit(SD_MUTEX(un));
10341 
10342 	/*
10343 	 * This will (eventually) allocate the sd_xbuf area and
10344 	 * call sd_xbuf_strategy().  We just want to return the
10345 	 * result of ddi_xbuf_qstrategy so that we have an opt-
10346 	 * imized tail call which saves us a stack frame.
10347 	 */
10348 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
10349 }
10350 
10351 
10352 /*
10353  *    Function: sd_xbuf_strategy
10354  *
10355  * Description: Function for initiating IO operations via the
10356  *		ddi_xbuf_qstrategy() mechanism.
10357  *
10358  *     Context: Kernel thread context.
10359  */
10360 
10361 static void
10362 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
10363 {
10364 	struct sd_lun *un = arg;
10365 
10366 	ASSERT(bp != NULL);
10367 	ASSERT(xp != NULL);
10368 	ASSERT(un != NULL);
10369 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10370 
10371 	/*
10372 	 * Initialize the fields in the xbuf and save a pointer to the
10373 	 * xbuf in bp->b_private.
10374 	 */
10375 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
10376 
10377 	/* Send the buf down the iostart chain */
10378 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
10379 }
10380 
10381 
10382 /*
10383  *    Function: sd_xbuf_init
10384  *
10385  * Description: Prepare the given sd_xbuf struct for use.
10386  *
10387  *   Arguments: un - ptr to softstate
10388  *		bp - ptr to associated buf(9S)
10389  *		xp - ptr to associated sd_xbuf
10390  *		chain_type - IO chain type to use:
10391  *			SD_CHAIN_NULL
10392  *			SD_CHAIN_BUFIO
10393  *			SD_CHAIN_USCSI
10394  *			SD_CHAIN_DIRECT
10395  *			SD_CHAIN_DIRECT_PRIORITY
10396  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
10397  *			initialization; may be NULL if none.
10398  *
10399  *     Context: Kernel thread context
10400  */
10401 
10402 static void
10403 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
10404 	uchar_t chain_type, void *pktinfop)
10405 {
10406 	int index;
10407 
10408 	ASSERT(un != NULL);
10409 	ASSERT(bp != NULL);
10410 	ASSERT(xp != NULL);
10411 
10412 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
10413 	    bp, chain_type);
10414 
10415 	xp->xb_un	= un;
10416 	xp->xb_pktp	= NULL;
10417 	xp->xb_pktinfo	= pktinfop;
10418 	xp->xb_private	= bp->b_private;
10419 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
10420 
10421 	/*
10422 	 * Set up the iostart and iodone chain indexes in the xbuf, based
10423 	 * upon the specified chain type to use.
10424 	 */
10425 	switch (chain_type) {
10426 	case SD_CHAIN_NULL:
10427 		/*
10428 		 * Fall thru to just use the values for the buf type, even
10429 		 * tho for the NULL chain these values will never be used.
10430 		 */
10431 		/* FALLTHRU */
10432 	case SD_CHAIN_BUFIO:
10433 		index = un->un_buf_chain_type;
10434 		break;
10435 	case SD_CHAIN_USCSI:
10436 		index = un->un_uscsi_chain_type;
10437 		break;
10438 	case SD_CHAIN_DIRECT:
10439 		index = un->un_direct_chain_type;
10440 		break;
10441 	case SD_CHAIN_DIRECT_PRIORITY:
10442 		index = un->un_priority_chain_type;
10443 		break;
10444 	default:
10445 		/* We're really broken if we ever get here... */
10446 		panic("sd_xbuf_init: illegal chain type!");
10447 		/*NOTREACHED*/
10448 	}
10449 
10450 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
10451 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
10452 
10453 	/*
10454 	 * It might be a bit easier to simply bzero the entire xbuf above,
10455 	 * but it turns out that since we init a fair number of members anyway,
10456 	 * we save a fair number cycles by doing explicit assignment of zero.
10457 	 */
10458 	xp->xb_pkt_flags	= 0;
10459 	xp->xb_dma_resid	= 0;
10460 	xp->xb_retry_count	= 0;
10461 	xp->xb_victim_retry_count = 0;
10462 	xp->xb_ua_retry_count	= 0;
10463 	xp->xb_nr_retry_count	= 0;
10464 	xp->xb_sense_bp		= NULL;
10465 	xp->xb_sense_status	= 0;
10466 	xp->xb_sense_state	= 0;
10467 	xp->xb_sense_resid	= 0;
10468 
10469 	bp->b_private	= xp;
10470 	bp->b_flags	&= ~(B_DONE | B_ERROR);
10471 	bp->b_resid	= 0;
10472 	bp->av_forw	= NULL;
10473 	bp->av_back	= NULL;
10474 	bioerror(bp, 0);
10475 
10476 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
10477 }
10478 
10479 
10480 /*
10481  *    Function: sd_uscsi_strategy
10482  *
10483  * Description: Wrapper for calling into the USCSI chain via physio(9F)
10484  *
10485  *   Arguments: bp - buf struct ptr
10486  *
10487  * Return Code: Always returns 0
10488  *
10489  *     Context: Kernel thread context
10490  */
10491 
10492 static int
10493 sd_uscsi_strategy(struct buf *bp)
10494 {
10495 	struct sd_lun		*un;
10496 	struct sd_uscsi_info	*uip;
10497 	struct sd_xbuf		*xp;
10498 	uchar_t			chain_type;
10499 
10500 	ASSERT(bp != NULL);
10501 
10502 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10503 	if (un == NULL) {
10504 		bioerror(bp, EIO);
10505 		bp->b_resid = bp->b_bcount;
10506 		biodone(bp);
10507 		return (0);
10508 	}
10509 
10510 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10511 
10512 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
10513 
10514 	mutex_enter(SD_MUTEX(un));
10515 	/*
10516 	 * atapi: Since we are running the CD for now in PIO mode we need to
10517 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10518 	 * the HBA's init_pkt routine.
10519 	 */
10520 	if (un->un_f_cfg_is_atapi == TRUE) {
10521 		mutex_exit(SD_MUTEX(un));
10522 		bp_mapin(bp);
10523 		mutex_enter(SD_MUTEX(un));
10524 	}
10525 	un->un_ncmds_in_driver++;
10526 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
10527 	    un->un_ncmds_in_driver);
10528 	mutex_exit(SD_MUTEX(un));
10529 
10530 	/*
10531 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
10532 	 */
10533 	ASSERT(bp->b_private != NULL);
10534 	uip = (struct sd_uscsi_info *)bp->b_private;
10535 
10536 	switch (uip->ui_flags) {
10537 	case SD_PATH_DIRECT:
10538 		chain_type = SD_CHAIN_DIRECT;
10539 		break;
10540 	case SD_PATH_DIRECT_PRIORITY:
10541 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
10542 		break;
10543 	default:
10544 		chain_type = SD_CHAIN_USCSI;
10545 		break;
10546 	}
10547 
10548 	/*
10549 	 * We may allocate extra buf for external USCSI commands. If the
10550 	 * application asks for bigger than 20-byte sense data via USCSI,
10551 	 * SCSA layer will allocate 252 bytes sense buf for that command.
10552 	 */
10553 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
10554 	    SENSE_LENGTH) {
10555 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
10556 		    MAX_SENSE_LENGTH, KM_SLEEP);
10557 	} else {
10558 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
10559 	}
10560 
10561 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
10562 
10563 	/* Use the index obtained within xbuf_init */
10564 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
10565 
10566 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
10567 
10568 	return (0);
10569 }
10570 
10571 /*
10572  *    Function: sd_send_scsi_cmd
10573  *
10574  * Description: Runs a USCSI command for user (when called thru sdioctl),
10575  *		or for the driver
10576  *
10577  *   Arguments: dev - the dev_t for the device
10578  *		incmd - ptr to a valid uscsi_cmd struct
10579  *		flag - bit flag, indicating open settings, 32/64 bit type
10580  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
10581  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
10582  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
10583  *			to use the USCSI "direct" chain and bypass the normal
10584  *			command waitq.
10585  *
10586  * Return Code: 0 -  successful completion of the given command
10587  *		EIO - scsi_uscsi_handle_command() failed
10588  *		ENXIO  - soft state not found for specified dev
10589  *		EINVAL
10590  *		EFAULT - copyin/copyout error
10591  *		return code of scsi_uscsi_handle_command():
10592  *			EIO
10593  *			ENXIO
10594  *			EACCES
10595  *
10596  *     Context: Waits for command to complete. Can sleep.
10597  */
10598 
10599 static int
10600 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
10601 	enum uio_seg dataspace, int path_flag)
10602 {
10603 	struct sd_uscsi_info	*uip;
10604 	struct uscsi_cmd	*uscmd;
10605 	struct sd_lun	*un;
10606 	int	format = 0;
10607 	int	rval;
10608 
10609 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
10610 	if (un == NULL) {
10611 		return (ENXIO);
10612 	}
10613 
10614 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10615 
10616 #ifdef SDDEBUG
10617 	switch (dataspace) {
10618 	case UIO_USERSPACE:
10619 		SD_TRACE(SD_LOG_IO, un,
10620 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
10621 		break;
10622 	case UIO_SYSSPACE:
10623 		SD_TRACE(SD_LOG_IO, un,
10624 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
10625 		break;
10626 	default:
10627 		SD_TRACE(SD_LOG_IO, un,
10628 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
10629 		break;
10630 	}
10631 #endif
10632 
10633 	rval = scsi_uscsi_alloc_and_copyin((intptr_t)incmd, flag,
10634 	    SD_ADDRESS(un), &uscmd);
10635 	if (rval != 0) {
10636 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
10637 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
10638 		return (rval);
10639 	}
10640 
10641 	if ((uscmd->uscsi_cdb != NULL) &&
10642 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
10643 		mutex_enter(SD_MUTEX(un));
10644 		un->un_f_format_in_progress = TRUE;
10645 		mutex_exit(SD_MUTEX(un));
10646 		format = 1;
10647 	}
10648 
10649 	/*
10650 	 * Allocate an sd_uscsi_info struct and fill it with the info
10651 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
10652 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
10653 	 * since we allocate the buf here in this function, we do not
10654 	 * need to preserve the prior contents of b_private.
10655 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
10656 	 */
10657 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
10658 	uip->ui_flags = path_flag;
10659 	uip->ui_cmdp = uscmd;
10660 
10661 	/*
10662 	 * Commands sent with priority are intended for error recovery
10663 	 * situations, and do not have retries performed.
10664 	 */
10665 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
10666 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
10667 	}
10668 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
10669 
10670 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
10671 	    sd_uscsi_strategy, NULL, uip);
10672 
10673 #ifdef SDDEBUG
10674 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10675 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
10676 	    uscmd->uscsi_status, uscmd->uscsi_resid);
10677 	if (uscmd->uscsi_bufaddr != NULL) {
10678 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10679 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
10680 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
10681 		if (dataspace == UIO_SYSSPACE) {
10682 			SD_DUMP_MEMORY(un, SD_LOG_IO,
10683 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
10684 			    uscmd->uscsi_buflen, SD_LOG_HEX);
10685 		}
10686 	}
10687 #endif
10688 
10689 	if (format == 1) {
10690 		mutex_enter(SD_MUTEX(un));
10691 		un->un_f_format_in_progress = FALSE;
10692 		mutex_exit(SD_MUTEX(un));
10693 	}
10694 
10695 	(void) scsi_uscsi_copyout_and_free((intptr_t)incmd, uscmd);
10696 	kmem_free(uip, sizeof (struct sd_uscsi_info));
10697 
10698 	return (rval);
10699 }
10700 
10701 
10702 /*
10703  *    Function: sd_buf_iodone
10704  *
10705  * Description: Frees the sd_xbuf & returns the buf to its originator.
10706  *
10707  *     Context: May be called from interrupt context.
10708  */
10709 /* ARGSUSED */
10710 static void
10711 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
10712 {
10713 	struct sd_xbuf *xp;
10714 
10715 	ASSERT(un != NULL);
10716 	ASSERT(bp != NULL);
10717 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10718 
10719 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
10720 
10721 	xp = SD_GET_XBUF(bp);
10722 	ASSERT(xp != NULL);
10723 
10724 	mutex_enter(SD_MUTEX(un));
10725 
10726 	/*
10727 	 * Grab time when the cmd completed.
10728 	 * This is used for determining if the system has been
10729 	 * idle long enough to make it idle to the PM framework.
10730 	 * This is for lowering the overhead, and therefore improving
10731 	 * performance per I/O operation.
10732 	 */
10733 	un->un_pm_idle_time = ddi_get_time();
10734 
10735 	un->un_ncmds_in_driver--;
10736 	ASSERT(un->un_ncmds_in_driver >= 0);
10737 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
10738 	    un->un_ncmds_in_driver);
10739 
10740 	mutex_exit(SD_MUTEX(un));
10741 
10742 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
10743 	biodone(bp);				/* bp is gone after this */
10744 
10745 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
10746 }
10747 
10748 
10749 /*
10750  *    Function: sd_uscsi_iodone
10751  *
10752  * Description: Frees the sd_xbuf & returns the buf to its originator.
10753  *
10754  *     Context: May be called from interrupt context.
10755  */
10756 /* ARGSUSED */
10757 static void
10758 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
10759 {
10760 	struct sd_xbuf *xp;
10761 
10762 	ASSERT(un != NULL);
10763 	ASSERT(bp != NULL);
10764 
10765 	xp = SD_GET_XBUF(bp);
10766 	ASSERT(xp != NULL);
10767 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10768 
10769 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
10770 
10771 	bp->b_private = xp->xb_private;
10772 
10773 	mutex_enter(SD_MUTEX(un));
10774 
10775 	/*
10776 	 * Grab time when the cmd completed.
10777 	 * This is used for determining if the system has been
10778 	 * idle long enough to make it idle to the PM framework.
10779 	 * This is for lowering the overhead, and therefore improving
10780 	 * performance per I/O operation.
10781 	 */
10782 	un->un_pm_idle_time = ddi_get_time();
10783 
10784 	un->un_ncmds_in_driver--;
10785 	ASSERT(un->un_ncmds_in_driver >= 0);
10786 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
10787 	    un->un_ncmds_in_driver);
10788 
10789 	mutex_exit(SD_MUTEX(un));
10790 
10791 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
10792 	    SENSE_LENGTH) {
10793 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
10794 		    MAX_SENSE_LENGTH);
10795 	} else {
10796 		kmem_free(xp, sizeof (struct sd_xbuf));
10797 	}
10798 
10799 	biodone(bp);
10800 
10801 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
10802 }
10803 
10804 
10805 /*
10806  *    Function: sd_mapblockaddr_iostart
10807  *
10808  * Description: Verify request lies within the partition limits for
10809  *		the indicated minor device.  Issue "overrun" buf if
10810  *		request would exceed partition range.  Converts
10811  *		partition-relative block address to absolute.
10812  *
10813  *     Context: Can sleep
10814  *
10815  *      Issues: This follows what the old code did, in terms of accessing
10816  *		some of the partition info in the unit struct without holding
10817  *		the mutext.  This is a general issue, if the partition info
10818  *		can be altered while IO is in progress... as soon as we send
10819  *		a buf, its partitioning can be invalid before it gets to the
10820  *		device.  Probably the right fix is to move partitioning out
10821  *		of the driver entirely.
10822  */
10823 
10824 static void
10825 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
10826 {
10827 	diskaddr_t	nblocks;	/* #blocks in the given partition */
10828 	daddr_t	blocknum;	/* Block number specified by the buf */
10829 	size_t	requested_nblocks;
10830 	size_t	available_nblocks;
10831 	int	partition;
10832 	diskaddr_t	partition_offset;
10833 	struct sd_xbuf *xp;
10834 
10835 
10836 	ASSERT(un != NULL);
10837 	ASSERT(bp != NULL);
10838 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10839 
10840 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10841 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
10842 
10843 	xp = SD_GET_XBUF(bp);
10844 	ASSERT(xp != NULL);
10845 
10846 	/*
10847 	 * If the geometry is not indicated as valid, attempt to access
10848 	 * the unit & verify the geometry/label. This can be the case for
10849 	 * removable-media devices, of if the device was opened in
10850 	 * NDELAY/NONBLOCK mode.
10851 	 */
10852 	if (!SD_IS_VALID_LABEL(un) &&
10853 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
10854 		/*
10855 		 * For removable devices it is possible to start an I/O
10856 		 * without a media by opening the device in nodelay mode.
10857 		 * Also for writable CDs there can be many scenarios where
10858 		 * there is no geometry yet but volume manager is trying to
10859 		 * issue a read() just because it can see TOC on the CD. So
10860 		 * do not print a message for removables.
10861 		 */
10862 		if (!un->un_f_has_removable_media) {
10863 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10864 			    "i/o to invalid geometry\n");
10865 		}
10866 		bioerror(bp, EIO);
10867 		bp->b_resid = bp->b_bcount;
10868 		SD_BEGIN_IODONE(index, un, bp);
10869 		return;
10870 	}
10871 
10872 	partition = SDPART(bp->b_edev);
10873 
10874 	nblocks = 0;
10875 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
10876 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
10877 
10878 	/*
10879 	 * blocknum is the starting block number of the request. At this
10880 	 * point it is still relative to the start of the minor device.
10881 	 */
10882 	blocknum = xp->xb_blkno;
10883 
10884 	/*
10885 	 * Legacy: If the starting block number is one past the last block
10886 	 * in the partition, do not set B_ERROR in the buf.
10887 	 */
10888 	if (blocknum == nblocks)  {
10889 		goto error_exit;
10890 	}
10891 
10892 	/*
10893 	 * Confirm that the first block of the request lies within the
10894 	 * partition limits. Also the requested number of bytes must be
10895 	 * a multiple of the system block size.
10896 	 */
10897 	if ((blocknum < 0) || (blocknum >= nblocks) ||
10898 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
10899 		bp->b_flags |= B_ERROR;
10900 		goto error_exit;
10901 	}
10902 
10903 	/*
10904 	 * If the requsted # blocks exceeds the available # blocks, that
10905 	 * is an overrun of the partition.
10906 	 */
10907 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
10908 	available_nblocks = (size_t)(nblocks - blocknum);
10909 	ASSERT(nblocks >= blocknum);
10910 
10911 	if (requested_nblocks > available_nblocks) {
10912 		/*
10913 		 * Allocate an "overrun" buf to allow the request to proceed
10914 		 * for the amount of space available in the partition. The
10915 		 * amount not transferred will be added into the b_resid
10916 		 * when the operation is complete. The overrun buf
10917 		 * replaces the original buf here, and the original buf
10918 		 * is saved inside the overrun buf, for later use.
10919 		 */
10920 		size_t resid = SD_SYSBLOCKS2BYTES(un,
10921 		    (offset_t)(requested_nblocks - available_nblocks));
10922 		size_t count = bp->b_bcount - resid;
10923 		/*
10924 		 * Note: count is an unsigned entity thus it'll NEVER
10925 		 * be less than 0 so ASSERT the original values are
10926 		 * correct.
10927 		 */
10928 		ASSERT(bp->b_bcount >= resid);
10929 
10930 		bp = sd_bioclone_alloc(bp, count, blocknum,
10931 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
10932 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
10933 		ASSERT(xp != NULL);
10934 	}
10935 
10936 	/* At this point there should be no residual for this buf. */
10937 	ASSERT(bp->b_resid == 0);
10938 
10939 	/* Convert the block number to an absolute address. */
10940 	xp->xb_blkno += partition_offset;
10941 
10942 	SD_NEXT_IOSTART(index, un, bp);
10943 
10944 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10945 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
10946 
10947 	return;
10948 
10949 error_exit:
10950 	bp->b_resid = bp->b_bcount;
10951 	SD_BEGIN_IODONE(index, un, bp);
10952 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10953 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
10954 }
10955 
10956 
10957 /*
10958  *    Function: sd_mapblockaddr_iodone
10959  *
10960  * Description: Completion-side processing for partition management.
10961  *
10962  *     Context: May be called under interrupt context
10963  */
10964 
10965 static void
10966 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
10967 {
10968 	/* int	partition; */	/* Not used, see below. */
10969 	ASSERT(un != NULL);
10970 	ASSERT(bp != NULL);
10971 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10972 
10973 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10974 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
10975 
10976 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
10977 		/*
10978 		 * We have an "overrun" buf to deal with...
10979 		 */
10980 		struct sd_xbuf	*xp;
10981 		struct buf	*obp;	/* ptr to the original buf */
10982 
10983 		xp = SD_GET_XBUF(bp);
10984 		ASSERT(xp != NULL);
10985 
10986 		/* Retrieve the pointer to the original buf */
10987 		obp = (struct buf *)xp->xb_private;
10988 		ASSERT(obp != NULL);
10989 
10990 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
10991 		bioerror(obp, bp->b_error);
10992 
10993 		sd_bioclone_free(bp);
10994 
10995 		/*
10996 		 * Get back the original buf.
10997 		 * Note that since the restoration of xb_blkno below
10998 		 * was removed, the sd_xbuf is not needed.
10999 		 */
11000 		bp = obp;
11001 		/*
11002 		 * xp = SD_GET_XBUF(bp);
11003 		 * ASSERT(xp != NULL);
11004 		 */
11005 	}
11006 
11007 	/*
11008 	 * Convert sd->xb_blkno back to a minor-device relative value.
11009 	 * Note: this has been commented out, as it is not needed in the
11010 	 * current implementation of the driver (ie, since this function
11011 	 * is at the top of the layering chains, so the info will be
11012 	 * discarded) and it is in the "hot" IO path.
11013 	 *
11014 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
11015 	 * xp->xb_blkno -= un->un_offset[partition];
11016 	 */
11017 
11018 	SD_NEXT_IODONE(index, un, bp);
11019 
11020 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11021 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
11022 }
11023 
11024 
11025 /*
11026  *    Function: sd_mapblocksize_iostart
11027  *
11028  * Description: Convert between system block size (un->un_sys_blocksize)
11029  *		and target block size (un->un_tgt_blocksize).
11030  *
11031  *     Context: Can sleep to allocate resources.
11032  *
11033  * Assumptions: A higher layer has already performed any partition validation,
11034  *		and converted the xp->xb_blkno to an absolute value relative
11035  *		to the start of the device.
11036  *
11037  *		It is also assumed that the higher layer has implemented
11038  *		an "overrun" mechanism for the case where the request would
11039  *		read/write beyond the end of a partition.  In this case we
11040  *		assume (and ASSERT) that bp->b_resid == 0.
11041  *
11042  *		Note: The implementation for this routine assumes the target
11043  *		block size remains constant between allocation and transport.
11044  */
11045 
11046 static void
11047 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
11048 {
11049 	struct sd_mapblocksize_info	*bsp;
11050 	struct sd_xbuf			*xp;
11051 	offset_t first_byte;
11052 	daddr_t	start_block, end_block;
11053 	daddr_t	request_bytes;
11054 	ushort_t is_aligned = FALSE;
11055 
11056 	ASSERT(un != NULL);
11057 	ASSERT(bp != NULL);
11058 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11059 	ASSERT(bp->b_resid == 0);
11060 
11061 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11062 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
11063 
11064 	/*
11065 	 * For a non-writable CD, a write request is an error
11066 	 */
11067 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
11068 	    (un->un_f_mmc_writable_media == FALSE)) {
11069 		bioerror(bp, EIO);
11070 		bp->b_resid = bp->b_bcount;
11071 		SD_BEGIN_IODONE(index, un, bp);
11072 		return;
11073 	}
11074 
11075 	/*
11076 	 * We do not need a shadow buf if the device is using
11077 	 * un->un_sys_blocksize as its block size or if bcount == 0.
11078 	 * In this case there is no layer-private data block allocated.
11079 	 */
11080 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
11081 	    (bp->b_bcount == 0)) {
11082 		goto done;
11083 	}
11084 
11085 #if defined(__i386) || defined(__amd64)
11086 	/* We do not support non-block-aligned transfers for ROD devices */
11087 	ASSERT(!ISROD(un));
11088 #endif
11089 
11090 	xp = SD_GET_XBUF(bp);
11091 	ASSERT(xp != NULL);
11092 
11093 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11094 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
11095 	    un->un_tgt_blocksize, un->un_sys_blocksize);
11096 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11097 	    "request start block:0x%x\n", xp->xb_blkno);
11098 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11099 	    "request len:0x%x\n", bp->b_bcount);
11100 
11101 	/*
11102 	 * Allocate the layer-private data area for the mapblocksize layer.
11103 	 * Layers are allowed to use the xp_private member of the sd_xbuf
11104 	 * struct to store the pointer to their layer-private data block, but
11105 	 * each layer also has the responsibility of restoring the prior
11106 	 * contents of xb_private before returning the buf/xbuf to the
11107 	 * higher layer that sent it.
11108 	 *
11109 	 * Here we save the prior contents of xp->xb_private into the
11110 	 * bsp->mbs_oprivate field of our layer-private data area. This value
11111 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
11112 	 * the layer-private area and returning the buf/xbuf to the layer
11113 	 * that sent it.
11114 	 *
11115 	 * Note that here we use kmem_zalloc for the allocation as there are
11116 	 * parts of the mapblocksize code that expect certain fields to be
11117 	 * zero unless explicitly set to a required value.
11118 	 */
11119 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
11120 	bsp->mbs_oprivate = xp->xb_private;
11121 	xp->xb_private = bsp;
11122 
11123 	/*
11124 	 * This treats the data on the disk (target) as an array of bytes.
11125 	 * first_byte is the byte offset, from the beginning of the device,
11126 	 * to the location of the request. This is converted from a
11127 	 * un->un_sys_blocksize block address to a byte offset, and then back
11128 	 * to a block address based upon a un->un_tgt_blocksize block size.
11129 	 *
11130 	 * xp->xb_blkno should be absolute upon entry into this function,
11131 	 * but, but it is based upon partitions that use the "system"
11132 	 * block size. It must be adjusted to reflect the block size of
11133 	 * the target.
11134 	 *
11135 	 * Note that end_block is actually the block that follows the last
11136 	 * block of the request, but that's what is needed for the computation.
11137 	 */
11138 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11139 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
11140 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
11141 	    un->un_tgt_blocksize;
11142 
11143 	/* request_bytes is rounded up to a multiple of the target block size */
11144 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
11145 
11146 	/*
11147 	 * See if the starting address of the request and the request
11148 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
11149 	 * then we do not need to allocate a shadow buf to handle the request.
11150 	 */
11151 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
11152 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
11153 		is_aligned = TRUE;
11154 	}
11155 
11156 	if ((bp->b_flags & B_READ) == 0) {
11157 		/*
11158 		 * Lock the range for a write operation. An aligned request is
11159 		 * considered a simple write; otherwise the request must be a
11160 		 * read-modify-write.
11161 		 */
11162 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
11163 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
11164 	}
11165 
11166 	/*
11167 	 * Alloc a shadow buf if the request is not aligned. Also, this is
11168 	 * where the READ command is generated for a read-modify-write. (The
11169 	 * write phase is deferred until after the read completes.)
11170 	 */
11171 	if (is_aligned == FALSE) {
11172 
11173 		struct sd_mapblocksize_info	*shadow_bsp;
11174 		struct sd_xbuf	*shadow_xp;
11175 		struct buf	*shadow_bp;
11176 
11177 		/*
11178 		 * Allocate the shadow buf and it associated xbuf. Note that
11179 		 * after this call the xb_blkno value in both the original
11180 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
11181 		 * same: absolute relative to the start of the device, and
11182 		 * adjusted for the target block size. The b_blkno in the
11183 		 * shadow buf will also be set to this value. We should never
11184 		 * change b_blkno in the original bp however.
11185 		 *
11186 		 * Note also that the shadow buf will always need to be a
11187 		 * READ command, regardless of whether the incoming command
11188 		 * is a READ or a WRITE.
11189 		 */
11190 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
11191 		    xp->xb_blkno,
11192 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
11193 
11194 		shadow_xp = SD_GET_XBUF(shadow_bp);
11195 
11196 		/*
11197 		 * Allocate the layer-private data for the shadow buf.
11198 		 * (No need to preserve xb_private in the shadow xbuf.)
11199 		 */
11200 		shadow_xp->xb_private = shadow_bsp =
11201 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
11202 
11203 		/*
11204 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
11205 		 * to figure out where the start of the user data is (based upon
11206 		 * the system block size) in the data returned by the READ
11207 		 * command (which will be based upon the target blocksize). Note
11208 		 * that this is only really used if the request is unaligned.
11209 		 */
11210 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
11211 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
11212 		ASSERT((bsp->mbs_copy_offset >= 0) &&
11213 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
11214 
11215 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
11216 
11217 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
11218 
11219 		/* Transfer the wmap (if any) to the shadow buf */
11220 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
11221 		bsp->mbs_wmp = NULL;
11222 
11223 		/*
11224 		 * The shadow buf goes on from here in place of the
11225 		 * original buf.
11226 		 */
11227 		shadow_bsp->mbs_orig_bp = bp;
11228 		bp = shadow_bp;
11229 	}
11230 
11231 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11232 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
11233 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11234 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
11235 	    request_bytes);
11236 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11237 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
11238 
11239 done:
11240 	SD_NEXT_IOSTART(index, un, bp);
11241 
11242 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11243 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
11244 }
11245 
11246 
11247 /*
11248  *    Function: sd_mapblocksize_iodone
11249  *
11250  * Description: Completion side processing for block-size mapping.
11251  *
11252  *     Context: May be called under interrupt context
11253  */
11254 
11255 static void
11256 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
11257 {
11258 	struct sd_mapblocksize_info	*bsp;
11259 	struct sd_xbuf	*xp;
11260 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
11261 	struct buf	*orig_bp;	/* ptr to the original buf */
11262 	offset_t	shadow_end;
11263 	offset_t	request_end;
11264 	offset_t	shadow_start;
11265 	ssize_t		copy_offset;
11266 	size_t		copy_length;
11267 	size_t		shortfall;
11268 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
11269 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
11270 
11271 	ASSERT(un != NULL);
11272 	ASSERT(bp != NULL);
11273 
11274 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11275 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
11276 
11277 	/*
11278 	 * There is no shadow buf or layer-private data if the target is
11279 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
11280 	 */
11281 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
11282 	    (bp->b_bcount == 0)) {
11283 		goto exit;
11284 	}
11285 
11286 	xp = SD_GET_XBUF(bp);
11287 	ASSERT(xp != NULL);
11288 
11289 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
11290 	bsp = xp->xb_private;
11291 
11292 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
11293 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
11294 
11295 	if (is_write) {
11296 		/*
11297 		 * For a WRITE request we must free up the block range that
11298 		 * we have locked up.  This holds regardless of whether this is
11299 		 * an aligned write request or a read-modify-write request.
11300 		 */
11301 		sd_range_unlock(un, bsp->mbs_wmp);
11302 		bsp->mbs_wmp = NULL;
11303 	}
11304 
11305 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
11306 		/*
11307 		 * An aligned read or write command will have no shadow buf;
11308 		 * there is not much else to do with it.
11309 		 */
11310 		goto done;
11311 	}
11312 
11313 	orig_bp = bsp->mbs_orig_bp;
11314 	ASSERT(orig_bp != NULL);
11315 	orig_xp = SD_GET_XBUF(orig_bp);
11316 	ASSERT(orig_xp != NULL);
11317 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11318 
11319 	if (!is_write && has_wmap) {
11320 		/*
11321 		 * A READ with a wmap means this is the READ phase of a
11322 		 * read-modify-write. If an error occurred on the READ then
11323 		 * we do not proceed with the WRITE phase or copy any data.
11324 		 * Just release the write maps and return with an error.
11325 		 */
11326 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
11327 			orig_bp->b_resid = orig_bp->b_bcount;
11328 			bioerror(orig_bp, bp->b_error);
11329 			sd_range_unlock(un, bsp->mbs_wmp);
11330 			goto freebuf_done;
11331 		}
11332 	}
11333 
11334 	/*
11335 	 * Here is where we set up to copy the data from the shadow buf
11336 	 * into the space associated with the original buf.
11337 	 *
11338 	 * To deal with the conversion between block sizes, these
11339 	 * computations treat the data as an array of bytes, with the
11340 	 * first byte (byte 0) corresponding to the first byte in the
11341 	 * first block on the disk.
11342 	 */
11343 
11344 	/*
11345 	 * shadow_start and shadow_len indicate the location and size of
11346 	 * the data returned with the shadow IO request.
11347 	 */
11348 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11349 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
11350 
11351 	/*
11352 	 * copy_offset gives the offset (in bytes) from the start of the first
11353 	 * block of the READ request to the beginning of the data.  We retrieve
11354 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
11355 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
11356 	 * data to be copied (in bytes).
11357 	 */
11358 	copy_offset  = bsp->mbs_copy_offset;
11359 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
11360 	copy_length  = orig_bp->b_bcount;
11361 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
11362 
11363 	/*
11364 	 * Set up the resid and error fields of orig_bp as appropriate.
11365 	 */
11366 	if (shadow_end >= request_end) {
11367 		/* We got all the requested data; set resid to zero */
11368 		orig_bp->b_resid = 0;
11369 	} else {
11370 		/*
11371 		 * We failed to get enough data to fully satisfy the original
11372 		 * request. Just copy back whatever data we got and set
11373 		 * up the residual and error code as required.
11374 		 *
11375 		 * 'shortfall' is the amount by which the data received with the
11376 		 * shadow buf has "fallen short" of the requested amount.
11377 		 */
11378 		shortfall = (size_t)(request_end - shadow_end);
11379 
11380 		if (shortfall > orig_bp->b_bcount) {
11381 			/*
11382 			 * We did not get enough data to even partially
11383 			 * fulfill the original request.  The residual is
11384 			 * equal to the amount requested.
11385 			 */
11386 			orig_bp->b_resid = orig_bp->b_bcount;
11387 		} else {
11388 			/*
11389 			 * We did not get all the data that we requested
11390 			 * from the device, but we will try to return what
11391 			 * portion we did get.
11392 			 */
11393 			orig_bp->b_resid = shortfall;
11394 		}
11395 		ASSERT(copy_length >= orig_bp->b_resid);
11396 		copy_length  -= orig_bp->b_resid;
11397 	}
11398 
11399 	/* Propagate the error code from the shadow buf to the original buf */
11400 	bioerror(orig_bp, bp->b_error);
11401 
11402 	if (is_write) {
11403 		goto freebuf_done;	/* No data copying for a WRITE */
11404 	}
11405 
11406 	if (has_wmap) {
11407 		/*
11408 		 * This is a READ command from the READ phase of a
11409 		 * read-modify-write request. We have to copy the data given
11410 		 * by the user OVER the data returned by the READ command,
11411 		 * then convert the command from a READ to a WRITE and send
11412 		 * it back to the target.
11413 		 */
11414 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
11415 		    copy_length);
11416 
11417 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
11418 
11419 		/*
11420 		 * Dispatch the WRITE command to the taskq thread, which
11421 		 * will in turn send the command to the target. When the
11422 		 * WRITE command completes, we (sd_mapblocksize_iodone())
11423 		 * will get called again as part of the iodone chain
11424 		 * processing for it. Note that we will still be dealing
11425 		 * with the shadow buf at that point.
11426 		 */
11427 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
11428 		    KM_NOSLEEP) != 0) {
11429 			/*
11430 			 * Dispatch was successful so we are done. Return
11431 			 * without going any higher up the iodone chain. Do
11432 			 * not free up any layer-private data until after the
11433 			 * WRITE completes.
11434 			 */
11435 			return;
11436 		}
11437 
11438 		/*
11439 		 * Dispatch of the WRITE command failed; set up the error
11440 		 * condition and send this IO back up the iodone chain.
11441 		 */
11442 		bioerror(orig_bp, EIO);
11443 		orig_bp->b_resid = orig_bp->b_bcount;
11444 
11445 	} else {
11446 		/*
11447 		 * This is a regular READ request (ie, not a RMW). Copy the
11448 		 * data from the shadow buf into the original buf. The
11449 		 * copy_offset compensates for any "misalignment" between the
11450 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
11451 		 * original buf (with its un->un_sys_blocksize blocks).
11452 		 */
11453 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
11454 		    copy_length);
11455 	}
11456 
11457 freebuf_done:
11458 
11459 	/*
11460 	 * At this point we still have both the shadow buf AND the original
11461 	 * buf to deal with, as well as the layer-private data area in each.
11462 	 * Local variables are as follows:
11463 	 *
11464 	 * bp -- points to shadow buf
11465 	 * xp -- points to xbuf of shadow buf
11466 	 * bsp -- points to layer-private data area of shadow buf
11467 	 * orig_bp -- points to original buf
11468 	 *
11469 	 * First free the shadow buf and its associated xbuf, then free the
11470 	 * layer-private data area from the shadow buf. There is no need to
11471 	 * restore xb_private in the shadow xbuf.
11472 	 */
11473 	sd_shadow_buf_free(bp);
11474 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11475 
11476 	/*
11477 	 * Now update the local variables to point to the original buf, xbuf,
11478 	 * and layer-private area.
11479 	 */
11480 	bp = orig_bp;
11481 	xp = SD_GET_XBUF(bp);
11482 	ASSERT(xp != NULL);
11483 	ASSERT(xp == orig_xp);
11484 	bsp = xp->xb_private;
11485 	ASSERT(bsp != NULL);
11486 
11487 done:
11488 	/*
11489 	 * Restore xb_private to whatever it was set to by the next higher
11490 	 * layer in the chain, then free the layer-private data area.
11491 	 */
11492 	xp->xb_private = bsp->mbs_oprivate;
11493 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11494 
11495 exit:
11496 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
11497 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
11498 
11499 	SD_NEXT_IODONE(index, un, bp);
11500 }
11501 
11502 
11503 /*
11504  *    Function: sd_checksum_iostart
11505  *
11506  * Description: A stub function for a layer that's currently not used.
11507  *		For now just a placeholder.
11508  *
11509  *     Context: Kernel thread context
11510  */
11511 
11512 static void
11513 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
11514 {
11515 	ASSERT(un != NULL);
11516 	ASSERT(bp != NULL);
11517 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11518 	SD_NEXT_IOSTART(index, un, bp);
11519 }
11520 
11521 
11522 /*
11523  *    Function: sd_checksum_iodone
11524  *
11525  * Description: A stub function for a layer that's currently not used.
11526  *		For now just a placeholder.
11527  *
11528  *     Context: May be called under interrupt context
11529  */
11530 
11531 static void
11532 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
11533 {
11534 	ASSERT(un != NULL);
11535 	ASSERT(bp != NULL);
11536 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11537 	SD_NEXT_IODONE(index, un, bp);
11538 }
11539 
11540 
11541 /*
11542  *    Function: sd_checksum_uscsi_iostart
11543  *
11544  * Description: A stub function for a layer that's currently not used.
11545  *		For now just a placeholder.
11546  *
11547  *     Context: Kernel thread context
11548  */
11549 
11550 static void
11551 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
11552 {
11553 	ASSERT(un != NULL);
11554 	ASSERT(bp != NULL);
11555 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11556 	SD_NEXT_IOSTART(index, un, bp);
11557 }
11558 
11559 
11560 /*
11561  *    Function: sd_checksum_uscsi_iodone
11562  *
11563  * Description: A stub function for a layer that's currently not used.
11564  *		For now just a placeholder.
11565  *
11566  *     Context: May be called under interrupt context
11567  */
11568 
11569 static void
11570 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11571 {
11572 	ASSERT(un != NULL);
11573 	ASSERT(bp != NULL);
11574 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11575 	SD_NEXT_IODONE(index, un, bp);
11576 }
11577 
11578 
11579 /*
11580  *    Function: sd_pm_iostart
11581  *
11582  * Description: iostart-side routine for Power mangement.
11583  *
11584  *     Context: Kernel thread context
11585  */
11586 
11587 static void
11588 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
11589 {
11590 	ASSERT(un != NULL);
11591 	ASSERT(bp != NULL);
11592 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11593 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11594 
11595 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
11596 
11597 	if (sd_pm_entry(un) != DDI_SUCCESS) {
11598 		/*
11599 		 * Set up to return the failed buf back up the 'iodone'
11600 		 * side of the calling chain.
11601 		 */
11602 		bioerror(bp, EIO);
11603 		bp->b_resid = bp->b_bcount;
11604 
11605 		SD_BEGIN_IODONE(index, un, bp);
11606 
11607 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11608 		return;
11609 	}
11610 
11611 	SD_NEXT_IOSTART(index, un, bp);
11612 
11613 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11614 }
11615 
11616 
11617 /*
11618  *    Function: sd_pm_iodone
11619  *
11620  * Description: iodone-side routine for power mangement.
11621  *
11622  *     Context: may be called from interrupt context
11623  */
11624 
11625 static void
11626 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
11627 {
11628 	ASSERT(un != NULL);
11629 	ASSERT(bp != NULL);
11630 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11631 
11632 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
11633 
11634 	/*
11635 	 * After attach the following flag is only read, so don't
11636 	 * take the penalty of acquiring a mutex for it.
11637 	 */
11638 	if (un->un_f_pm_is_enabled == TRUE) {
11639 		sd_pm_exit(un);
11640 	}
11641 
11642 	SD_NEXT_IODONE(index, un, bp);
11643 
11644 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
11645 }
11646 
11647 
11648 /*
11649  *    Function: sd_core_iostart
11650  *
11651  * Description: Primary driver function for enqueuing buf(9S) structs from
11652  *		the system and initiating IO to the target device
11653  *
11654  *     Context: Kernel thread context. Can sleep.
11655  *
11656  * Assumptions:  - The given xp->xb_blkno is absolute
11657  *		   (ie, relative to the start of the device).
11658  *		 - The IO is to be done using the native blocksize of
11659  *		   the device, as specified in un->un_tgt_blocksize.
11660  */
11661 /* ARGSUSED */
11662 static void
11663 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
11664 {
11665 	struct sd_xbuf *xp;
11666 
11667 	ASSERT(un != NULL);
11668 	ASSERT(bp != NULL);
11669 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11670 	ASSERT(bp->b_resid == 0);
11671 
11672 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
11673 
11674 	xp = SD_GET_XBUF(bp);
11675 	ASSERT(xp != NULL);
11676 
11677 	mutex_enter(SD_MUTEX(un));
11678 
11679 	/*
11680 	 * If we are currently in the failfast state, fail any new IO
11681 	 * that has B_FAILFAST set, then return.
11682 	 */
11683 	if ((bp->b_flags & B_FAILFAST) &&
11684 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
11685 		mutex_exit(SD_MUTEX(un));
11686 		bioerror(bp, EIO);
11687 		bp->b_resid = bp->b_bcount;
11688 		SD_BEGIN_IODONE(index, un, bp);
11689 		return;
11690 	}
11691 
11692 	if (SD_IS_DIRECT_PRIORITY(xp)) {
11693 		/*
11694 		 * Priority command -- transport it immediately.
11695 		 *
11696 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
11697 		 * because all direct priority commands should be associated
11698 		 * with error recovery actions which we don't want to retry.
11699 		 */
11700 		sd_start_cmds(un, bp);
11701 	} else {
11702 		/*
11703 		 * Normal command -- add it to the wait queue, then start
11704 		 * transporting commands from the wait queue.
11705 		 */
11706 		sd_add_buf_to_waitq(un, bp);
11707 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
11708 		sd_start_cmds(un, NULL);
11709 	}
11710 
11711 	mutex_exit(SD_MUTEX(un));
11712 
11713 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
11714 }
11715 
11716 
11717 /*
11718  *    Function: sd_init_cdb_limits
11719  *
11720  * Description: This is to handle scsi_pkt initialization differences
11721  *		between the driver platforms.
11722  *
11723  *		Legacy behaviors:
11724  *
11725  *		If the block number or the sector count exceeds the
11726  *		capabilities of a Group 0 command, shift over to a
11727  *		Group 1 command. We don't blindly use Group 1
11728  *		commands because a) some drives (CDC Wren IVs) get a
11729  *		bit confused, and b) there is probably a fair amount
11730  *		of speed difference for a target to receive and decode
11731  *		a 10 byte command instead of a 6 byte command.
11732  *
11733  *		The xfer time difference of 6 vs 10 byte CDBs is
11734  *		still significant so this code is still worthwhile.
11735  *		10 byte CDBs are very inefficient with the fas HBA driver
11736  *		and older disks. Each CDB byte took 1 usec with some
11737  *		popular disks.
11738  *
11739  *     Context: Must be called at attach time
11740  */
11741 
11742 static void
11743 sd_init_cdb_limits(struct sd_lun *un)
11744 {
11745 	int hba_cdb_limit;
11746 
11747 	/*
11748 	 * Use CDB_GROUP1 commands for most devices except for
11749 	 * parallel SCSI fixed drives in which case we get better
11750 	 * performance using CDB_GROUP0 commands (where applicable).
11751 	 */
11752 	un->un_mincdb = SD_CDB_GROUP1;
11753 #if !defined(__fibre)
11754 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
11755 	    !un->un_f_has_removable_media) {
11756 		un->un_mincdb = SD_CDB_GROUP0;
11757 	}
11758 #endif
11759 
11760 	/*
11761 	 * Try to read the max-cdb-length supported by HBA.
11762 	 */
11763 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
11764 	if (0 >= un->un_max_hba_cdb) {
11765 		un->un_max_hba_cdb = CDB_GROUP4;
11766 		hba_cdb_limit = SD_CDB_GROUP4;
11767 	} else if (0 < un->un_max_hba_cdb &&
11768 	    un->un_max_hba_cdb < CDB_GROUP1) {
11769 		hba_cdb_limit = SD_CDB_GROUP0;
11770 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
11771 	    un->un_max_hba_cdb < CDB_GROUP5) {
11772 		hba_cdb_limit = SD_CDB_GROUP1;
11773 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
11774 	    un->un_max_hba_cdb < CDB_GROUP4) {
11775 		hba_cdb_limit = SD_CDB_GROUP5;
11776 	} else {
11777 		hba_cdb_limit = SD_CDB_GROUP4;
11778 	}
11779 
11780 	/*
11781 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
11782 	 * commands for fixed disks unless we are building for a 32 bit
11783 	 * kernel.
11784 	 */
11785 #ifdef _LP64
11786 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11787 	    min(hba_cdb_limit, SD_CDB_GROUP4);
11788 #else
11789 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11790 	    min(hba_cdb_limit, SD_CDB_GROUP1);
11791 #endif
11792 
11793 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
11794 	    ? sizeof (struct scsi_arq_status) : 1);
11795 	un->un_cmd_timeout = (ushort_t)sd_io_time;
11796 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
11797 }
11798 
11799 
11800 /*
11801  *    Function: sd_initpkt_for_buf
11802  *
11803  * Description: Allocate and initialize for transport a scsi_pkt struct,
11804  *		based upon the info specified in the given buf struct.
11805  *
11806  *		Assumes the xb_blkno in the request is absolute (ie,
11807  *		relative to the start of the device (NOT partition!).
11808  *		Also assumes that the request is using the native block
11809  *		size of the device (as returned by the READ CAPACITY
11810  *		command).
11811  *
11812  * Return Code: SD_PKT_ALLOC_SUCCESS
11813  *		SD_PKT_ALLOC_FAILURE
11814  *		SD_PKT_ALLOC_FAILURE_NO_DMA
11815  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11816  *
11817  *     Context: Kernel thread and may be called from software interrupt context
11818  *		as part of a sdrunout callback. This function may not block or
11819  *		call routines that block
11820  */
11821 
11822 static int
11823 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
11824 {
11825 	struct sd_xbuf	*xp;
11826 	struct scsi_pkt *pktp = NULL;
11827 	struct sd_lun	*un;
11828 	size_t		blockcount;
11829 	daddr_t		startblock;
11830 	int		rval;
11831 	int		cmd_flags;
11832 
11833 	ASSERT(bp != NULL);
11834 	ASSERT(pktpp != NULL);
11835 	xp = SD_GET_XBUF(bp);
11836 	ASSERT(xp != NULL);
11837 	un = SD_GET_UN(bp);
11838 	ASSERT(un != NULL);
11839 	ASSERT(mutex_owned(SD_MUTEX(un)));
11840 	ASSERT(bp->b_resid == 0);
11841 
11842 	SD_TRACE(SD_LOG_IO_CORE, un,
11843 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
11844 
11845 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11846 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
11847 		/*
11848 		 * Already have a scsi_pkt -- just need DMA resources.
11849 		 * We must recompute the CDB in case the mapping returns
11850 		 * a nonzero pkt_resid.
11851 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
11852 		 * that is being retried, the unmap/remap of the DMA resouces
11853 		 * will result in the entire transfer starting over again
11854 		 * from the very first block.
11855 		 */
11856 		ASSERT(xp->xb_pktp != NULL);
11857 		pktp = xp->xb_pktp;
11858 	} else {
11859 		pktp = NULL;
11860 	}
11861 #endif /* __i386 || __amd64 */
11862 
11863 	startblock = xp->xb_blkno;	/* Absolute block num. */
11864 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
11865 
11866 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11867 
11868 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
11869 
11870 #else
11871 
11872 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
11873 
11874 #endif
11875 
11876 	/*
11877 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
11878 	 * call scsi_init_pkt, and build the CDB.
11879 	 */
11880 	rval = sd_setup_rw_pkt(un, &pktp, bp,
11881 	    cmd_flags, sdrunout, (caddr_t)un,
11882 	    startblock, blockcount);
11883 
11884 	if (rval == 0) {
11885 		/*
11886 		 * Success.
11887 		 *
11888 		 * If partial DMA is being used and required for this transfer.
11889 		 * set it up here.
11890 		 */
11891 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
11892 		    (pktp->pkt_resid != 0)) {
11893 
11894 			/*
11895 			 * Save the CDB length and pkt_resid for the
11896 			 * next xfer
11897 			 */
11898 			xp->xb_dma_resid = pktp->pkt_resid;
11899 
11900 			/* rezero resid */
11901 			pktp->pkt_resid = 0;
11902 
11903 		} else {
11904 			xp->xb_dma_resid = 0;
11905 		}
11906 
11907 		pktp->pkt_flags = un->un_tagflags;
11908 		pktp->pkt_time  = un->un_cmd_timeout;
11909 		pktp->pkt_comp  = sdintr;
11910 
11911 		pktp->pkt_private = bp;
11912 		*pktpp = pktp;
11913 
11914 		SD_TRACE(SD_LOG_IO_CORE, un,
11915 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
11916 
11917 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11918 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
11919 #endif
11920 
11921 		return (SD_PKT_ALLOC_SUCCESS);
11922 
11923 	}
11924 
11925 	/*
11926 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
11927 	 * from sd_setup_rw_pkt.
11928 	 */
11929 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
11930 
11931 	if (rval == SD_PKT_ALLOC_FAILURE) {
11932 		*pktpp = NULL;
11933 		/*
11934 		 * Set the driver state to RWAIT to indicate the driver
11935 		 * is waiting on resource allocations. The driver will not
11936 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
11937 		 */
11938 		New_state(un, SD_STATE_RWAIT);
11939 
11940 		SD_ERROR(SD_LOG_IO_CORE, un,
11941 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
11942 
11943 		if ((bp->b_flags & B_ERROR) != 0) {
11944 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
11945 		}
11946 		return (SD_PKT_ALLOC_FAILURE);
11947 	} else {
11948 		/*
11949 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11950 		 *
11951 		 * This should never happen.  Maybe someone messed with the
11952 		 * kernel's minphys?
11953 		 */
11954 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11955 		    "Request rejected: too large for CDB: "
11956 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
11957 		SD_ERROR(SD_LOG_IO_CORE, un,
11958 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
11959 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11960 
11961 	}
11962 }
11963 
11964 
11965 /*
11966  *    Function: sd_destroypkt_for_buf
11967  *
11968  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
11969  *
11970  *     Context: Kernel thread or interrupt context
11971  */
11972 
11973 static void
11974 sd_destroypkt_for_buf(struct buf *bp)
11975 {
11976 	ASSERT(bp != NULL);
11977 	ASSERT(SD_GET_UN(bp) != NULL);
11978 
11979 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11980 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
11981 
11982 	ASSERT(SD_GET_PKTP(bp) != NULL);
11983 	scsi_destroy_pkt(SD_GET_PKTP(bp));
11984 
11985 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11986 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
11987 }
11988 
11989 /*
11990  *    Function: sd_setup_rw_pkt
11991  *
11992  * Description: Determines appropriate CDB group for the requested LBA
11993  *		and transfer length, calls scsi_init_pkt, and builds
11994  *		the CDB.  Do not use for partial DMA transfers except
11995  *		for the initial transfer since the CDB size must
11996  *		remain constant.
11997  *
11998  *     Context: Kernel thread and may be called from software interrupt
11999  *		context as part of a sdrunout callback. This function may not
12000  *		block or call routines that block
12001  */
12002 
12003 
12004 int
12005 sd_setup_rw_pkt(struct sd_lun *un,
12006     struct scsi_pkt **pktpp, struct buf *bp, int flags,
12007     int (*callback)(caddr_t), caddr_t callback_arg,
12008     diskaddr_t lba, uint32_t blockcount)
12009 {
12010 	struct scsi_pkt *return_pktp;
12011 	union scsi_cdb *cdbp;
12012 	struct sd_cdbinfo *cp = NULL;
12013 	int i;
12014 
12015 	/*
12016 	 * See which size CDB to use, based upon the request.
12017 	 */
12018 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
12019 
12020 		/*
12021 		 * Check lba and block count against sd_cdbtab limits.
12022 		 * In the partial DMA case, we have to use the same size
12023 		 * CDB for all the transfers.  Check lba + blockcount
12024 		 * against the max LBA so we know that segment of the
12025 		 * transfer can use the CDB we select.
12026 		 */
12027 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
12028 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
12029 
12030 			/*
12031 			 * The command will fit into the CDB type
12032 			 * specified by sd_cdbtab[i].
12033 			 */
12034 			cp = sd_cdbtab + i;
12035 
12036 			/*
12037 			 * Call scsi_init_pkt so we can fill in the
12038 			 * CDB.
12039 			 */
12040 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
12041 			    bp, cp->sc_grpcode, un->un_status_len, 0,
12042 			    flags, callback, callback_arg);
12043 
12044 			if (return_pktp != NULL) {
12045 
12046 				/*
12047 				 * Return new value of pkt
12048 				 */
12049 				*pktpp = return_pktp;
12050 
12051 				/*
12052 				 * To be safe, zero the CDB insuring there is
12053 				 * no leftover data from a previous command.
12054 				 */
12055 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
12056 
12057 				/*
12058 				 * Handle partial DMA mapping
12059 				 */
12060 				if (return_pktp->pkt_resid != 0) {
12061 
12062 					/*
12063 					 * Not going to xfer as many blocks as
12064 					 * originally expected
12065 					 */
12066 					blockcount -=
12067 					    SD_BYTES2TGTBLOCKS(un,
12068 					    return_pktp->pkt_resid);
12069 				}
12070 
12071 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
12072 
12073 				/*
12074 				 * Set command byte based on the CDB
12075 				 * type we matched.
12076 				 */
12077 				cdbp->scc_cmd = cp->sc_grpmask |
12078 				    ((bp->b_flags & B_READ) ?
12079 				    SCMD_READ : SCMD_WRITE);
12080 
12081 				SD_FILL_SCSI1_LUN(un, return_pktp);
12082 
12083 				/*
12084 				 * Fill in LBA and length
12085 				 */
12086 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
12087 				    (cp->sc_grpcode == CDB_GROUP4) ||
12088 				    (cp->sc_grpcode == CDB_GROUP0) ||
12089 				    (cp->sc_grpcode == CDB_GROUP5));
12090 
12091 				if (cp->sc_grpcode == CDB_GROUP1) {
12092 					FORMG1ADDR(cdbp, lba);
12093 					FORMG1COUNT(cdbp, blockcount);
12094 					return (0);
12095 				} else if (cp->sc_grpcode == CDB_GROUP4) {
12096 					FORMG4LONGADDR(cdbp, lba);
12097 					FORMG4COUNT(cdbp, blockcount);
12098 					return (0);
12099 				} else if (cp->sc_grpcode == CDB_GROUP0) {
12100 					FORMG0ADDR(cdbp, lba);
12101 					FORMG0COUNT(cdbp, blockcount);
12102 					return (0);
12103 				} else if (cp->sc_grpcode == CDB_GROUP5) {
12104 					FORMG5ADDR(cdbp, lba);
12105 					FORMG5COUNT(cdbp, blockcount);
12106 					return (0);
12107 				}
12108 
12109 				/*
12110 				 * It should be impossible to not match one
12111 				 * of the CDB types above, so we should never
12112 				 * reach this point.  Set the CDB command byte
12113 				 * to test-unit-ready to avoid writing
12114 				 * to somewhere we don't intend.
12115 				 */
12116 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
12117 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12118 			} else {
12119 				/*
12120 				 * Couldn't get scsi_pkt
12121 				 */
12122 				return (SD_PKT_ALLOC_FAILURE);
12123 			}
12124 		}
12125 	}
12126 
12127 	/*
12128 	 * None of the available CDB types were suitable.  This really
12129 	 * should never happen:  on a 64 bit system we support
12130 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
12131 	 * and on a 32 bit system we will refuse to bind to a device
12132 	 * larger than 2TB so addresses will never be larger than 32 bits.
12133 	 */
12134 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12135 }
12136 
12137 /*
12138  *    Function: sd_setup_next_rw_pkt
12139  *
12140  * Description: Setup packet for partial DMA transfers, except for the
12141  * 		initial transfer.  sd_setup_rw_pkt should be used for
12142  *		the initial transfer.
12143  *
12144  *     Context: Kernel thread and may be called from interrupt context.
12145  */
12146 
12147 int
12148 sd_setup_next_rw_pkt(struct sd_lun *un,
12149     struct scsi_pkt *pktp, struct buf *bp,
12150     diskaddr_t lba, uint32_t blockcount)
12151 {
12152 	uchar_t com;
12153 	union scsi_cdb *cdbp;
12154 	uchar_t cdb_group_id;
12155 
12156 	ASSERT(pktp != NULL);
12157 	ASSERT(pktp->pkt_cdbp != NULL);
12158 
12159 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
12160 	com = cdbp->scc_cmd;
12161 	cdb_group_id = CDB_GROUPID(com);
12162 
12163 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
12164 	    (cdb_group_id == CDB_GROUPID_1) ||
12165 	    (cdb_group_id == CDB_GROUPID_4) ||
12166 	    (cdb_group_id == CDB_GROUPID_5));
12167 
12168 	/*
12169 	 * Move pkt to the next portion of the xfer.
12170 	 * func is NULL_FUNC so we do not have to release
12171 	 * the disk mutex here.
12172 	 */
12173 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
12174 	    NULL_FUNC, NULL) == pktp) {
12175 		/* Success.  Handle partial DMA */
12176 		if (pktp->pkt_resid != 0) {
12177 			blockcount -=
12178 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
12179 		}
12180 
12181 		cdbp->scc_cmd = com;
12182 		SD_FILL_SCSI1_LUN(un, pktp);
12183 		if (cdb_group_id == CDB_GROUPID_1) {
12184 			FORMG1ADDR(cdbp, lba);
12185 			FORMG1COUNT(cdbp, blockcount);
12186 			return (0);
12187 		} else if (cdb_group_id == CDB_GROUPID_4) {
12188 			FORMG4LONGADDR(cdbp, lba);
12189 			FORMG4COUNT(cdbp, blockcount);
12190 			return (0);
12191 		} else if (cdb_group_id == CDB_GROUPID_0) {
12192 			FORMG0ADDR(cdbp, lba);
12193 			FORMG0COUNT(cdbp, blockcount);
12194 			return (0);
12195 		} else if (cdb_group_id == CDB_GROUPID_5) {
12196 			FORMG5ADDR(cdbp, lba);
12197 			FORMG5COUNT(cdbp, blockcount);
12198 			return (0);
12199 		}
12200 
12201 		/* Unreachable */
12202 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12203 	}
12204 
12205 	/*
12206 	 * Error setting up next portion of cmd transfer.
12207 	 * Something is definitely very wrong and this
12208 	 * should not happen.
12209 	 */
12210 	return (SD_PKT_ALLOC_FAILURE);
12211 }
12212 
12213 /*
12214  *    Function: sd_initpkt_for_uscsi
12215  *
12216  * Description: Allocate and initialize for transport a scsi_pkt struct,
12217  *		based upon the info specified in the given uscsi_cmd struct.
12218  *
12219  * Return Code: SD_PKT_ALLOC_SUCCESS
12220  *		SD_PKT_ALLOC_FAILURE
12221  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12222  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12223  *
12224  *     Context: Kernel thread and may be called from software interrupt context
12225  *		as part of a sdrunout callback. This function may not block or
12226  *		call routines that block
12227  */
12228 
12229 static int
12230 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
12231 {
12232 	struct uscsi_cmd *uscmd;
12233 	struct sd_xbuf	*xp;
12234 	struct scsi_pkt	*pktp;
12235 	struct sd_lun	*un;
12236 	uint32_t	flags = 0;
12237 
12238 	ASSERT(bp != NULL);
12239 	ASSERT(pktpp != NULL);
12240 	xp = SD_GET_XBUF(bp);
12241 	ASSERT(xp != NULL);
12242 	un = SD_GET_UN(bp);
12243 	ASSERT(un != NULL);
12244 	ASSERT(mutex_owned(SD_MUTEX(un)));
12245 
12246 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12247 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12248 	ASSERT(uscmd != NULL);
12249 
12250 	SD_TRACE(SD_LOG_IO_CORE, un,
12251 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
12252 
12253 	/*
12254 	 * Allocate the scsi_pkt for the command.
12255 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
12256 	 *	 during scsi_init_pkt time and will continue to use the
12257 	 *	 same path as long as the same scsi_pkt is used without
12258 	 *	 intervening scsi_dma_free(). Since uscsi command does
12259 	 *	 not call scsi_dmafree() before retry failed command, it
12260 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
12261 	 *	 set such that scsi_vhci can use other available path for
12262 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
12263 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
12264 	 */
12265 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
12266 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
12267 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
12268 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
12269 		    - sizeof (struct scsi_extended_sense)), 0,
12270 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
12271 		    sdrunout, (caddr_t)un);
12272 	} else {
12273 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
12274 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
12275 		    sizeof (struct scsi_arq_status), 0,
12276 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
12277 		    sdrunout, (caddr_t)un);
12278 	}
12279 
12280 	if (pktp == NULL) {
12281 		*pktpp = NULL;
12282 		/*
12283 		 * Set the driver state to RWAIT to indicate the driver
12284 		 * is waiting on resource allocations. The driver will not
12285 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
12286 		 */
12287 		New_state(un, SD_STATE_RWAIT);
12288 
12289 		SD_ERROR(SD_LOG_IO_CORE, un,
12290 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
12291 
12292 		if ((bp->b_flags & B_ERROR) != 0) {
12293 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
12294 		}
12295 		return (SD_PKT_ALLOC_FAILURE);
12296 	}
12297 
12298 	/*
12299 	 * We do not do DMA breakup for USCSI commands, so return failure
12300 	 * here if all the needed DMA resources were not allocated.
12301 	 */
12302 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
12303 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
12304 		scsi_destroy_pkt(pktp);
12305 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
12306 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
12307 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
12308 	}
12309 
12310 	/* Init the cdb from the given uscsi struct */
12311 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
12312 	    uscmd->uscsi_cdb[0], 0, 0, 0);
12313 
12314 	SD_FILL_SCSI1_LUN(un, pktp);
12315 
12316 	/*
12317 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
12318 	 * for listing of the supported flags.
12319 	 */
12320 
12321 	if (uscmd->uscsi_flags & USCSI_SILENT) {
12322 		flags |= FLAG_SILENT;
12323 	}
12324 
12325 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
12326 		flags |= FLAG_DIAGNOSE;
12327 	}
12328 
12329 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
12330 		flags |= FLAG_ISOLATE;
12331 	}
12332 
12333 	if (un->un_f_is_fibre == FALSE) {
12334 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
12335 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
12336 		}
12337 	}
12338 
12339 	/*
12340 	 * Set the pkt flags here so we save time later.
12341 	 * Note: These flags are NOT in the uscsi man page!!!
12342 	 */
12343 	if (uscmd->uscsi_flags & USCSI_HEAD) {
12344 		flags |= FLAG_HEAD;
12345 	}
12346 
12347 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
12348 		flags |= FLAG_NOINTR;
12349 	}
12350 
12351 	/*
12352 	 * For tagged queueing, things get a bit complicated.
12353 	 * Check first for head of queue and last for ordered queue.
12354 	 * If neither head nor order, use the default driver tag flags.
12355 	 */
12356 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
12357 		if (uscmd->uscsi_flags & USCSI_HTAG) {
12358 			flags |= FLAG_HTAG;
12359 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
12360 			flags |= FLAG_OTAG;
12361 		} else {
12362 			flags |= un->un_tagflags & FLAG_TAGMASK;
12363 		}
12364 	}
12365 
12366 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
12367 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
12368 	}
12369 
12370 	pktp->pkt_flags = flags;
12371 
12372 	/* Transfer uscsi information to scsi_pkt */
12373 	(void) scsi_uscsi_pktinit(uscmd, pktp);
12374 
12375 	/* Copy the caller's CDB into the pkt... */
12376 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
12377 
12378 	if (uscmd->uscsi_timeout == 0) {
12379 		pktp->pkt_time = un->un_uscsi_timeout;
12380 	} else {
12381 		pktp->pkt_time = uscmd->uscsi_timeout;
12382 	}
12383 
12384 	/* need it later to identify USCSI request in sdintr */
12385 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
12386 
12387 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
12388 
12389 	pktp->pkt_private = bp;
12390 	pktp->pkt_comp = sdintr;
12391 	*pktpp = pktp;
12392 
12393 	SD_TRACE(SD_LOG_IO_CORE, un,
12394 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
12395 
12396 	return (SD_PKT_ALLOC_SUCCESS);
12397 }
12398 
12399 
12400 /*
12401  *    Function: sd_destroypkt_for_uscsi
12402  *
12403  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
12404  *		IOs.. Also saves relevant info into the associated uscsi_cmd
12405  *		struct.
12406  *
12407  *     Context: May be called under interrupt context
12408  */
12409 
12410 static void
12411 sd_destroypkt_for_uscsi(struct buf *bp)
12412 {
12413 	struct uscsi_cmd *uscmd;
12414 	struct sd_xbuf	*xp;
12415 	struct scsi_pkt	*pktp;
12416 	struct sd_lun	*un;
12417 
12418 	ASSERT(bp != NULL);
12419 	xp = SD_GET_XBUF(bp);
12420 	ASSERT(xp != NULL);
12421 	un = SD_GET_UN(bp);
12422 	ASSERT(un != NULL);
12423 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12424 	pktp = SD_GET_PKTP(bp);
12425 	ASSERT(pktp != NULL);
12426 
12427 	SD_TRACE(SD_LOG_IO_CORE, un,
12428 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
12429 
12430 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12431 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12432 	ASSERT(uscmd != NULL);
12433 
12434 	/* Save the status and the residual into the uscsi_cmd struct */
12435 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
12436 	uscmd->uscsi_resid  = bp->b_resid;
12437 
12438 	/* Transfer scsi_pkt information to uscsi */
12439 	(void) scsi_uscsi_pktfini(pktp, uscmd);
12440 
12441 	/*
12442 	 * If enabled, copy any saved sense data into the area specified
12443 	 * by the uscsi command.
12444 	 */
12445 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12446 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12447 		/*
12448 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
12449 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
12450 		 */
12451 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
12452 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
12453 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
12454 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
12455 			    MAX_SENSE_LENGTH);
12456 		} else {
12457 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
12458 			    SENSE_LENGTH);
12459 		}
12460 	}
12461 
12462 	/* We are done with the scsi_pkt; free it now */
12463 	ASSERT(SD_GET_PKTP(bp) != NULL);
12464 	scsi_destroy_pkt(SD_GET_PKTP(bp));
12465 
12466 	SD_TRACE(SD_LOG_IO_CORE, un,
12467 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
12468 }
12469 
12470 
12471 /*
12472  *    Function: sd_bioclone_alloc
12473  *
12474  * Description: Allocate a buf(9S) and init it as per the given buf
12475  *		and the various arguments.  The associated sd_xbuf
12476  *		struct is (nearly) duplicated.  The struct buf *bp
12477  *		argument is saved in new_xp->xb_private.
12478  *
12479  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12480  *		datalen - size of data area for the shadow bp
12481  *		blkno - starting LBA
12482  *		func - function pointer for b_iodone in the shadow buf. (May
12483  *			be NULL if none.)
12484  *
12485  * Return Code: Pointer to allocates buf(9S) struct
12486  *
12487  *     Context: Can sleep.
12488  */
12489 
12490 static struct buf *
12491 sd_bioclone_alloc(struct buf *bp, size_t datalen,
12492 	daddr_t blkno, int (*func)(struct buf *))
12493 {
12494 	struct	sd_lun	*un;
12495 	struct	sd_xbuf	*xp;
12496 	struct	sd_xbuf	*new_xp;
12497 	struct	buf	*new_bp;
12498 
12499 	ASSERT(bp != NULL);
12500 	xp = SD_GET_XBUF(bp);
12501 	ASSERT(xp != NULL);
12502 	un = SD_GET_UN(bp);
12503 	ASSERT(un != NULL);
12504 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12505 
12506 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
12507 	    NULL, KM_SLEEP);
12508 
12509 	new_bp->b_lblkno	= blkno;
12510 
12511 	/*
12512 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12513 	 * original xbuf into it.
12514 	 */
12515 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12516 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12517 
12518 	/*
12519 	 * The given bp is automatically saved in the xb_private member
12520 	 * of the new xbuf.  Callers are allowed to depend on this.
12521 	 */
12522 	new_xp->xb_private = bp;
12523 
12524 	new_bp->b_private  = new_xp;
12525 
12526 	return (new_bp);
12527 }
12528 
12529 /*
12530  *    Function: sd_shadow_buf_alloc
12531  *
12532  * Description: Allocate a buf(9S) and init it as per the given buf
12533  *		and the various arguments.  The associated sd_xbuf
12534  *		struct is (nearly) duplicated.  The struct buf *bp
12535  *		argument is saved in new_xp->xb_private.
12536  *
12537  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12538  *		datalen - size of data area for the shadow bp
12539  *		bflags - B_READ or B_WRITE (pseudo flag)
12540  *		blkno - starting LBA
12541  *		func - function pointer for b_iodone in the shadow buf. (May
12542  *			be NULL if none.)
12543  *
12544  * Return Code: Pointer to allocates buf(9S) struct
12545  *
12546  *     Context: Can sleep.
12547  */
12548 
12549 static struct buf *
12550 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
12551 	daddr_t blkno, int (*func)(struct buf *))
12552 {
12553 	struct	sd_lun	*un;
12554 	struct	sd_xbuf	*xp;
12555 	struct	sd_xbuf	*new_xp;
12556 	struct	buf	*new_bp;
12557 
12558 	ASSERT(bp != NULL);
12559 	xp = SD_GET_XBUF(bp);
12560 	ASSERT(xp != NULL);
12561 	un = SD_GET_UN(bp);
12562 	ASSERT(un != NULL);
12563 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12564 
12565 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
12566 		bp_mapin(bp);
12567 	}
12568 
12569 	bflags &= (B_READ | B_WRITE);
12570 #if defined(__i386) || defined(__amd64)
12571 	new_bp = getrbuf(KM_SLEEP);
12572 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
12573 	new_bp->b_bcount = datalen;
12574 	new_bp->b_flags = bflags |
12575 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
12576 #else
12577 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
12578 	    datalen, bflags, SLEEP_FUNC, NULL);
12579 #endif
12580 	new_bp->av_forw	= NULL;
12581 	new_bp->av_back	= NULL;
12582 	new_bp->b_dev	= bp->b_dev;
12583 	new_bp->b_blkno	= blkno;
12584 	new_bp->b_iodone = func;
12585 	new_bp->b_edev	= bp->b_edev;
12586 	new_bp->b_resid	= 0;
12587 
12588 	/* We need to preserve the B_FAILFAST flag */
12589 	if (bp->b_flags & B_FAILFAST) {
12590 		new_bp->b_flags |= B_FAILFAST;
12591 	}
12592 
12593 	/*
12594 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12595 	 * original xbuf into it.
12596 	 */
12597 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12598 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12599 
12600 	/* Need later to copy data between the shadow buf & original buf! */
12601 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
12602 
12603 	/*
12604 	 * The given bp is automatically saved in the xb_private member
12605 	 * of the new xbuf.  Callers are allowed to depend on this.
12606 	 */
12607 	new_xp->xb_private = bp;
12608 
12609 	new_bp->b_private  = new_xp;
12610 
12611 	return (new_bp);
12612 }
12613 
12614 /*
12615  *    Function: sd_bioclone_free
12616  *
12617  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
12618  *		in the larger than partition operation.
12619  *
12620  *     Context: May be called under interrupt context
12621  */
12622 
12623 static void
12624 sd_bioclone_free(struct buf *bp)
12625 {
12626 	struct sd_xbuf	*xp;
12627 
12628 	ASSERT(bp != NULL);
12629 	xp = SD_GET_XBUF(bp);
12630 	ASSERT(xp != NULL);
12631 
12632 	/*
12633 	 * Call bp_mapout() before freeing the buf,  in case a lower
12634 	 * layer or HBA  had done a bp_mapin().  we must do this here
12635 	 * as we are the "originator" of the shadow buf.
12636 	 */
12637 	bp_mapout(bp);
12638 
12639 	/*
12640 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12641 	 * never gets confused by a stale value in this field. (Just a little
12642 	 * extra defensiveness here.)
12643 	 */
12644 	bp->b_iodone = NULL;
12645 
12646 	freerbuf(bp);
12647 
12648 	kmem_free(xp, sizeof (struct sd_xbuf));
12649 }
12650 
12651 /*
12652  *    Function: sd_shadow_buf_free
12653  *
12654  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
12655  *
12656  *     Context: May be called under interrupt context
12657  */
12658 
12659 static void
12660 sd_shadow_buf_free(struct buf *bp)
12661 {
12662 	struct sd_xbuf	*xp;
12663 
12664 	ASSERT(bp != NULL);
12665 	xp = SD_GET_XBUF(bp);
12666 	ASSERT(xp != NULL);
12667 
12668 #if defined(__sparc)
12669 	/*
12670 	 * Call bp_mapout() before freeing the buf,  in case a lower
12671 	 * layer or HBA  had done a bp_mapin().  we must do this here
12672 	 * as we are the "originator" of the shadow buf.
12673 	 */
12674 	bp_mapout(bp);
12675 #endif
12676 
12677 	/*
12678 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12679 	 * never gets confused by a stale value in this field. (Just a little
12680 	 * extra defensiveness here.)
12681 	 */
12682 	bp->b_iodone = NULL;
12683 
12684 #if defined(__i386) || defined(__amd64)
12685 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
12686 	freerbuf(bp);
12687 #else
12688 	scsi_free_consistent_buf(bp);
12689 #endif
12690 
12691 	kmem_free(xp, sizeof (struct sd_xbuf));
12692 }
12693 
12694 
12695 /*
12696  *    Function: sd_print_transport_rejected_message
12697  *
12698  * Description: This implements the ludicrously complex rules for printing
12699  *		a "transport rejected" message.  This is to address the
12700  *		specific problem of having a flood of this error message
12701  *		produced when a failover occurs.
12702  *
12703  *     Context: Any.
12704  */
12705 
12706 static void
12707 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
12708 	int code)
12709 {
12710 	ASSERT(un != NULL);
12711 	ASSERT(mutex_owned(SD_MUTEX(un)));
12712 	ASSERT(xp != NULL);
12713 
12714 	/*
12715 	 * Print the "transport rejected" message under the following
12716 	 * conditions:
12717 	 *
12718 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
12719 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
12720 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
12721 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
12722 	 *   scsi_transport(9F) (which indicates that the target might have
12723 	 *   gone off-line).  This uses the un->un_tran_fatal_count
12724 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
12725 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
12726 	 *   from scsi_transport().
12727 	 *
12728 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
12729 	 * the preceeding cases in order for the message to be printed.
12730 	 */
12731 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
12732 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
12733 		    (code != TRAN_FATAL_ERROR) ||
12734 		    (un->un_tran_fatal_count == 1)) {
12735 			switch (code) {
12736 			case TRAN_BADPKT:
12737 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12738 				    "transport rejected bad packet\n");
12739 				break;
12740 			case TRAN_FATAL_ERROR:
12741 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12742 				    "transport rejected fatal error\n");
12743 				break;
12744 			default:
12745 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12746 				    "transport rejected (%d)\n", code);
12747 				break;
12748 			}
12749 		}
12750 	}
12751 }
12752 
12753 
12754 /*
12755  *    Function: sd_add_buf_to_waitq
12756  *
12757  * Description: Add the given buf(9S) struct to the wait queue for the
12758  *		instance.  If sorting is enabled, then the buf is added
12759  *		to the queue via an elevator sort algorithm (a la
12760  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
12761  *		If sorting is not enabled, then the buf is just added
12762  *		to the end of the wait queue.
12763  *
12764  * Return Code: void
12765  *
12766  *     Context: Does not sleep/block, therefore technically can be called
12767  *		from any context.  However if sorting is enabled then the
12768  *		execution time is indeterminate, and may take long if
12769  *		the wait queue grows large.
12770  */
12771 
12772 static void
12773 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
12774 {
12775 	struct buf *ap;
12776 
12777 	ASSERT(bp != NULL);
12778 	ASSERT(un != NULL);
12779 	ASSERT(mutex_owned(SD_MUTEX(un)));
12780 
12781 	/* If the queue is empty, add the buf as the only entry & return. */
12782 	if (un->un_waitq_headp == NULL) {
12783 		ASSERT(un->un_waitq_tailp == NULL);
12784 		un->un_waitq_headp = un->un_waitq_tailp = bp;
12785 		bp->av_forw = NULL;
12786 		return;
12787 	}
12788 
12789 	ASSERT(un->un_waitq_tailp != NULL);
12790 
12791 	/*
12792 	 * If sorting is disabled, just add the buf to the tail end of
12793 	 * the wait queue and return.
12794 	 */
12795 	if (un->un_f_disksort_disabled) {
12796 		un->un_waitq_tailp->av_forw = bp;
12797 		un->un_waitq_tailp = bp;
12798 		bp->av_forw = NULL;
12799 		return;
12800 	}
12801 
12802 	/*
12803 	 * Sort thru the list of requests currently on the wait queue
12804 	 * and add the new buf request at the appropriate position.
12805 	 *
12806 	 * The un->un_waitq_headp is an activity chain pointer on which
12807 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
12808 	 * first queue holds those requests which are positioned after
12809 	 * the current SD_GET_BLKNO() (in the first request); the second holds
12810 	 * requests which came in after their SD_GET_BLKNO() number was passed.
12811 	 * Thus we implement a one way scan, retracting after reaching
12812 	 * the end of the drive to the first request on the second
12813 	 * queue, at which time it becomes the first queue.
12814 	 * A one-way scan is natural because of the way UNIX read-ahead
12815 	 * blocks are allocated.
12816 	 *
12817 	 * If we lie after the first request, then we must locate the
12818 	 * second request list and add ourselves to it.
12819 	 */
12820 	ap = un->un_waitq_headp;
12821 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
12822 		while (ap->av_forw != NULL) {
12823 			/*
12824 			 * Look for an "inversion" in the (normally
12825 			 * ascending) block numbers. This indicates
12826 			 * the start of the second request list.
12827 			 */
12828 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
12829 				/*
12830 				 * Search the second request list for the
12831 				 * first request at a larger block number.
12832 				 * We go before that; however if there is
12833 				 * no such request, we go at the end.
12834 				 */
12835 				do {
12836 					if (SD_GET_BLKNO(bp) <
12837 					    SD_GET_BLKNO(ap->av_forw)) {
12838 						goto insert;
12839 					}
12840 					ap = ap->av_forw;
12841 				} while (ap->av_forw != NULL);
12842 				goto insert;		/* after last */
12843 			}
12844 			ap = ap->av_forw;
12845 		}
12846 
12847 		/*
12848 		 * No inversions... we will go after the last, and
12849 		 * be the first request in the second request list.
12850 		 */
12851 		goto insert;
12852 	}
12853 
12854 	/*
12855 	 * Request is at/after the current request...
12856 	 * sort in the first request list.
12857 	 */
12858 	while (ap->av_forw != NULL) {
12859 		/*
12860 		 * We want to go after the current request (1) if
12861 		 * there is an inversion after it (i.e. it is the end
12862 		 * of the first request list), or (2) if the next
12863 		 * request is a larger block no. than our request.
12864 		 */
12865 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
12866 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
12867 			goto insert;
12868 		}
12869 		ap = ap->av_forw;
12870 	}
12871 
12872 	/*
12873 	 * Neither a second list nor a larger request, therefore
12874 	 * we go at the end of the first list (which is the same
12875 	 * as the end of the whole schebang).
12876 	 */
12877 insert:
12878 	bp->av_forw = ap->av_forw;
12879 	ap->av_forw = bp;
12880 
12881 	/*
12882 	 * If we inserted onto the tail end of the waitq, make sure the
12883 	 * tail pointer is updated.
12884 	 */
12885 	if (ap == un->un_waitq_tailp) {
12886 		un->un_waitq_tailp = bp;
12887 	}
12888 }
12889 
12890 
12891 /*
12892  *    Function: sd_start_cmds
12893  *
12894  * Description: Remove and transport cmds from the driver queues.
12895  *
12896  *   Arguments: un - pointer to the unit (soft state) struct for the target.
12897  *
12898  *		immed_bp - ptr to a buf to be transported immediately. Only
12899  *		the immed_bp is transported; bufs on the waitq are not
12900  *		processed and the un_retry_bp is not checked.  If immed_bp is
12901  *		NULL, then normal queue processing is performed.
12902  *
12903  *     Context: May be called from kernel thread context, interrupt context,
12904  *		or runout callback context. This function may not block or
12905  *		call routines that block.
12906  */
12907 
12908 static void
12909 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
12910 {
12911 	struct	sd_xbuf	*xp;
12912 	struct	buf	*bp;
12913 	void	(*statp)(kstat_io_t *);
12914 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12915 	void	(*saved_statp)(kstat_io_t *);
12916 #endif
12917 	int	rval;
12918 
12919 	ASSERT(un != NULL);
12920 	ASSERT(mutex_owned(SD_MUTEX(un)));
12921 	ASSERT(un->un_ncmds_in_transport >= 0);
12922 	ASSERT(un->un_throttle >= 0);
12923 
12924 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
12925 
12926 	do {
12927 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12928 		saved_statp = NULL;
12929 #endif
12930 
12931 		/*
12932 		 * If we are syncing or dumping, fail the command to
12933 		 * avoid recursively calling back into scsi_transport().
12934 		 * The dump I/O itself uses a separate code path so this
12935 		 * only prevents non-dump I/O from being sent while dumping.
12936 		 * File system sync takes place before dumping begins.
12937 		 * During panic, filesystem I/O is allowed provided
12938 		 * un_in_callback is <= 1.  This is to prevent recursion
12939 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
12940 		 * sd_start_cmds and so on.  See panic.c for more information
12941 		 * about the states the system can be in during panic.
12942 		 */
12943 		if ((un->un_state == SD_STATE_DUMPING) ||
12944 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
12945 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12946 			    "sd_start_cmds: panicking\n");
12947 			goto exit;
12948 		}
12949 
12950 		if ((bp = immed_bp) != NULL) {
12951 			/*
12952 			 * We have a bp that must be transported immediately.
12953 			 * It's OK to transport the immed_bp here without doing
12954 			 * the throttle limit check because the immed_bp is
12955 			 * always used in a retry/recovery case. This means
12956 			 * that we know we are not at the throttle limit by
12957 			 * virtue of the fact that to get here we must have
12958 			 * already gotten a command back via sdintr(). This also
12959 			 * relies on (1) the command on un_retry_bp preventing
12960 			 * further commands from the waitq from being issued;
12961 			 * and (2) the code in sd_retry_command checking the
12962 			 * throttle limit before issuing a delayed or immediate
12963 			 * retry. This holds even if the throttle limit is
12964 			 * currently ratcheted down from its maximum value.
12965 			 */
12966 			statp = kstat_runq_enter;
12967 			if (bp == un->un_retry_bp) {
12968 				ASSERT((un->un_retry_statp == NULL) ||
12969 				    (un->un_retry_statp == kstat_waitq_enter) ||
12970 				    (un->un_retry_statp ==
12971 				    kstat_runq_back_to_waitq));
12972 				/*
12973 				 * If the waitq kstat was incremented when
12974 				 * sd_set_retry_bp() queued this bp for a retry,
12975 				 * then we must set up statp so that the waitq
12976 				 * count will get decremented correctly below.
12977 				 * Also we must clear un->un_retry_statp to
12978 				 * ensure that we do not act on a stale value
12979 				 * in this field.
12980 				 */
12981 				if ((un->un_retry_statp == kstat_waitq_enter) ||
12982 				    (un->un_retry_statp ==
12983 				    kstat_runq_back_to_waitq)) {
12984 					statp = kstat_waitq_to_runq;
12985 				}
12986 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12987 				saved_statp = un->un_retry_statp;
12988 #endif
12989 				un->un_retry_statp = NULL;
12990 
12991 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
12992 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
12993 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
12994 				    un, un->un_retry_bp, un->un_throttle,
12995 				    un->un_ncmds_in_transport);
12996 			} else {
12997 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
12998 				    "processing priority bp:0x%p\n", bp);
12999 			}
13000 
13001 		} else if ((bp = un->un_waitq_headp) != NULL) {
13002 			/*
13003 			 * A command on the waitq is ready to go, but do not
13004 			 * send it if:
13005 			 *
13006 			 * (1) the throttle limit has been reached, or
13007 			 * (2) a retry is pending, or
13008 			 * (3) a START_STOP_UNIT callback pending, or
13009 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
13010 			 *	command is pending.
13011 			 *
13012 			 * For all of these conditions, IO processing will
13013 			 * restart after the condition is cleared.
13014 			 */
13015 			if (un->un_ncmds_in_transport >= un->un_throttle) {
13016 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13017 				    "sd_start_cmds: exiting, "
13018 				    "throttle limit reached!\n");
13019 				goto exit;
13020 			}
13021 			if (un->un_retry_bp != NULL) {
13022 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13023 				    "sd_start_cmds: exiting, retry pending!\n");
13024 				goto exit;
13025 			}
13026 			if (un->un_startstop_timeid != NULL) {
13027 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13028 				    "sd_start_cmds: exiting, "
13029 				    "START_STOP pending!\n");
13030 				goto exit;
13031 			}
13032 			if (un->un_direct_priority_timeid != NULL) {
13033 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13034 				    "sd_start_cmds: exiting, "
13035 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
13036 				goto exit;
13037 			}
13038 
13039 			/* Dequeue the command */
13040 			un->un_waitq_headp = bp->av_forw;
13041 			if (un->un_waitq_headp == NULL) {
13042 				un->un_waitq_tailp = NULL;
13043 			}
13044 			bp->av_forw = NULL;
13045 			statp = kstat_waitq_to_runq;
13046 			SD_TRACE(SD_LOG_IO_CORE, un,
13047 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
13048 
13049 		} else {
13050 			/* No work to do so bail out now */
13051 			SD_TRACE(SD_LOG_IO_CORE, un,
13052 			    "sd_start_cmds: no more work, exiting!\n");
13053 			goto exit;
13054 		}
13055 
13056 		/*
13057 		 * Reset the state to normal. This is the mechanism by which
13058 		 * the state transitions from either SD_STATE_RWAIT or
13059 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
13060 		 * If state is SD_STATE_PM_CHANGING then this command is
13061 		 * part of the device power control and the state must
13062 		 * not be put back to normal. Doing so would would
13063 		 * allow new commands to proceed when they shouldn't,
13064 		 * the device may be going off.
13065 		 */
13066 		if ((un->un_state != SD_STATE_SUSPENDED) &&
13067 		    (un->un_state != SD_STATE_PM_CHANGING)) {
13068 			New_state(un, SD_STATE_NORMAL);
13069 		}
13070 
13071 		xp = SD_GET_XBUF(bp);
13072 		ASSERT(xp != NULL);
13073 
13074 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13075 		/*
13076 		 * Allocate the scsi_pkt if we need one, or attach DMA
13077 		 * resources if we have a scsi_pkt that needs them. The
13078 		 * latter should only occur for commands that are being
13079 		 * retried.
13080 		 */
13081 		if ((xp->xb_pktp == NULL) ||
13082 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
13083 #else
13084 		if (xp->xb_pktp == NULL) {
13085 #endif
13086 			/*
13087 			 * There is no scsi_pkt allocated for this buf. Call
13088 			 * the initpkt function to allocate & init one.
13089 			 *
13090 			 * The scsi_init_pkt runout callback functionality is
13091 			 * implemented as follows:
13092 			 *
13093 			 * 1) The initpkt function always calls
13094 			 *    scsi_init_pkt(9F) with sdrunout specified as the
13095 			 *    callback routine.
13096 			 * 2) A successful packet allocation is initialized and
13097 			 *    the I/O is transported.
13098 			 * 3) The I/O associated with an allocation resource
13099 			 *    failure is left on its queue to be retried via
13100 			 *    runout or the next I/O.
13101 			 * 4) The I/O associated with a DMA error is removed
13102 			 *    from the queue and failed with EIO. Processing of
13103 			 *    the transport queues is also halted to be
13104 			 *    restarted via runout or the next I/O.
13105 			 * 5) The I/O associated with a CDB size or packet
13106 			 *    size error is removed from the queue and failed
13107 			 *    with EIO. Processing of the transport queues is
13108 			 *    continued.
13109 			 *
13110 			 * Note: there is no interface for canceling a runout
13111 			 * callback. To prevent the driver from detaching or
13112 			 * suspending while a runout is pending the driver
13113 			 * state is set to SD_STATE_RWAIT
13114 			 *
13115 			 * Note: using the scsi_init_pkt callback facility can
13116 			 * result in an I/O request persisting at the head of
13117 			 * the list which cannot be satisfied even after
13118 			 * multiple retries. In the future the driver may
13119 			 * implement some kind of maximum runout count before
13120 			 * failing an I/O.
13121 			 *
13122 			 * Note: the use of funcp below may seem superfluous,
13123 			 * but it helps warlock figure out the correct
13124 			 * initpkt function calls (see [s]sd.wlcmd).
13125 			 */
13126 			struct scsi_pkt	*pktp;
13127 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
13128 
13129 			ASSERT(bp != un->un_rqs_bp);
13130 
13131 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
13132 			switch ((*funcp)(bp, &pktp)) {
13133 			case  SD_PKT_ALLOC_SUCCESS:
13134 				xp->xb_pktp = pktp;
13135 				SD_TRACE(SD_LOG_IO_CORE, un,
13136 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
13137 				    pktp);
13138 				goto got_pkt;
13139 
13140 			case SD_PKT_ALLOC_FAILURE:
13141 				/*
13142 				 * Temporary (hopefully) resource depletion.
13143 				 * Since retries and RQS commands always have a
13144 				 * scsi_pkt allocated, these cases should never
13145 				 * get here. So the only cases this needs to
13146 				 * handle is a bp from the waitq (which we put
13147 				 * back onto the waitq for sdrunout), or a bp
13148 				 * sent as an immed_bp (which we just fail).
13149 				 */
13150 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13151 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
13152 
13153 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13154 
13155 				if (bp == immed_bp) {
13156 					/*
13157 					 * If SD_XB_DMA_FREED is clear, then
13158 					 * this is a failure to allocate a
13159 					 * scsi_pkt, and we must fail the
13160 					 * command.
13161 					 */
13162 					if ((xp->xb_pkt_flags &
13163 					    SD_XB_DMA_FREED) == 0) {
13164 						break;
13165 					}
13166 
13167 					/*
13168 					 * If this immediate command is NOT our
13169 					 * un_retry_bp, then we must fail it.
13170 					 */
13171 					if (bp != un->un_retry_bp) {
13172 						break;
13173 					}
13174 
13175 					/*
13176 					 * We get here if this cmd is our
13177 					 * un_retry_bp that was DMAFREED, but
13178 					 * scsi_init_pkt() failed to reallocate
13179 					 * DMA resources when we attempted to
13180 					 * retry it. This can happen when an
13181 					 * mpxio failover is in progress, but
13182 					 * we don't want to just fail the
13183 					 * command in this case.
13184 					 *
13185 					 * Use timeout(9F) to restart it after
13186 					 * a 100ms delay.  We don't want to
13187 					 * let sdrunout() restart it, because
13188 					 * sdrunout() is just supposed to start
13189 					 * commands that are sitting on the
13190 					 * wait queue.  The un_retry_bp stays
13191 					 * set until the command completes, but
13192 					 * sdrunout can be called many times
13193 					 * before that happens.  Since sdrunout
13194 					 * cannot tell if the un_retry_bp is
13195 					 * already in the transport, it could
13196 					 * end up calling scsi_transport() for
13197 					 * the un_retry_bp multiple times.
13198 					 *
13199 					 * Also: don't schedule the callback
13200 					 * if some other callback is already
13201 					 * pending.
13202 					 */
13203 					if (un->un_retry_statp == NULL) {
13204 						/*
13205 						 * restore the kstat pointer to
13206 						 * keep kstat counts coherent
13207 						 * when we do retry the command.
13208 						 */
13209 						un->un_retry_statp =
13210 						    saved_statp;
13211 					}
13212 
13213 					if ((un->un_startstop_timeid == NULL) &&
13214 					    (un->un_retry_timeid == NULL) &&
13215 					    (un->un_direct_priority_timeid ==
13216 					    NULL)) {
13217 
13218 						un->un_retry_timeid =
13219 						    timeout(
13220 						    sd_start_retry_command,
13221 						    un, SD_RESTART_TIMEOUT);
13222 					}
13223 					goto exit;
13224 				}
13225 
13226 #else
13227 				if (bp == immed_bp) {
13228 					break;	/* Just fail the command */
13229 				}
13230 #endif
13231 
13232 				/* Add the buf back to the head of the waitq */
13233 				bp->av_forw = un->un_waitq_headp;
13234 				un->un_waitq_headp = bp;
13235 				if (un->un_waitq_tailp == NULL) {
13236 					un->un_waitq_tailp = bp;
13237 				}
13238 				goto exit;
13239 
13240 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
13241 				/*
13242 				 * HBA DMA resource failure. Fail the command
13243 				 * and continue processing of the queues.
13244 				 */
13245 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13246 				    "sd_start_cmds: "
13247 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
13248 				break;
13249 
13250 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
13251 				/*
13252 				 * Note:x86: Partial DMA mapping not supported
13253 				 * for USCSI commands, and all the needed DMA
13254 				 * resources were not allocated.
13255 				 */
13256 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13257 				    "sd_start_cmds: "
13258 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
13259 				break;
13260 
13261 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
13262 				/*
13263 				 * Note:x86: Request cannot fit into CDB based
13264 				 * on lba and len.
13265 				 */
13266 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13267 				    "sd_start_cmds: "
13268 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
13269 				break;
13270 
13271 			default:
13272 				/* Should NEVER get here! */
13273 				panic("scsi_initpkt error");
13274 				/*NOTREACHED*/
13275 			}
13276 
13277 			/*
13278 			 * Fatal error in allocating a scsi_pkt for this buf.
13279 			 * Update kstats & return the buf with an error code.
13280 			 * We must use sd_return_failed_command_no_restart() to
13281 			 * avoid a recursive call back into sd_start_cmds().
13282 			 * However this also means that we must keep processing
13283 			 * the waitq here in order to avoid stalling.
13284 			 */
13285 			if (statp == kstat_waitq_to_runq) {
13286 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
13287 			}
13288 			sd_return_failed_command_no_restart(un, bp, EIO);
13289 			if (bp == immed_bp) {
13290 				/* immed_bp is gone by now, so clear this */
13291 				immed_bp = NULL;
13292 			}
13293 			continue;
13294 		}
13295 got_pkt:
13296 		if (bp == immed_bp) {
13297 			/* goto the head of the class.... */
13298 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13299 		}
13300 
13301 		un->un_ncmds_in_transport++;
13302 		SD_UPDATE_KSTATS(un, statp, bp);
13303 
13304 		/*
13305 		 * Call scsi_transport() to send the command to the target.
13306 		 * According to SCSA architecture, we must drop the mutex here
13307 		 * before calling scsi_transport() in order to avoid deadlock.
13308 		 * Note that the scsi_pkt's completion routine can be executed
13309 		 * (from interrupt context) even before the call to
13310 		 * scsi_transport() returns.
13311 		 */
13312 		SD_TRACE(SD_LOG_IO_CORE, un,
13313 		    "sd_start_cmds: calling scsi_transport()\n");
13314 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
13315 
13316 		mutex_exit(SD_MUTEX(un));
13317 		rval = scsi_transport(xp->xb_pktp);
13318 		mutex_enter(SD_MUTEX(un));
13319 
13320 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13321 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
13322 
13323 		switch (rval) {
13324 		case TRAN_ACCEPT:
13325 			/* Clear this with every pkt accepted by the HBA */
13326 			un->un_tran_fatal_count = 0;
13327 			break;	/* Success; try the next cmd (if any) */
13328 
13329 		case TRAN_BUSY:
13330 			un->un_ncmds_in_transport--;
13331 			ASSERT(un->un_ncmds_in_transport >= 0);
13332 
13333 			/*
13334 			 * Don't retry request sense, the sense data
13335 			 * is lost when another request is sent.
13336 			 * Free up the rqs buf and retry
13337 			 * the original failed cmd.  Update kstat.
13338 			 */
13339 			if (bp == un->un_rqs_bp) {
13340 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13341 				bp = sd_mark_rqs_idle(un, xp);
13342 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
13343 				    NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
13344 				    kstat_waitq_enter);
13345 				goto exit;
13346 			}
13347 
13348 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13349 			/*
13350 			 * Free the DMA resources for the  scsi_pkt. This will
13351 			 * allow mpxio to select another path the next time
13352 			 * we call scsi_transport() with this scsi_pkt.
13353 			 * See sdintr() for the rationalization behind this.
13354 			 */
13355 			if ((un->un_f_is_fibre == TRUE) &&
13356 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
13357 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
13358 				scsi_dmafree(xp->xb_pktp);
13359 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
13360 			}
13361 #endif
13362 
13363 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
13364 				/*
13365 				 * Commands that are SD_PATH_DIRECT_PRIORITY
13366 				 * are for error recovery situations. These do
13367 				 * not use the normal command waitq, so if they
13368 				 * get a TRAN_BUSY we cannot put them back onto
13369 				 * the waitq for later retry. One possible
13370 				 * problem is that there could already be some
13371 				 * other command on un_retry_bp that is waiting
13372 				 * for this one to complete, so we would be
13373 				 * deadlocked if we put this command back onto
13374 				 * the waitq for later retry (since un_retry_bp
13375 				 * must complete before the driver gets back to
13376 				 * commands on the waitq).
13377 				 *
13378 				 * To avoid deadlock we must schedule a callback
13379 				 * that will restart this command after a set
13380 				 * interval.  This should keep retrying for as
13381 				 * long as the underlying transport keeps
13382 				 * returning TRAN_BUSY (just like for other
13383 				 * commands).  Use the same timeout interval as
13384 				 * for the ordinary TRAN_BUSY retry.
13385 				 */
13386 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13387 				    "sd_start_cmds: scsi_transport() returned "
13388 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
13389 
13390 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13391 				un->un_direct_priority_timeid =
13392 				    timeout(sd_start_direct_priority_command,
13393 				    bp, SD_BSY_TIMEOUT / 500);
13394 
13395 				goto exit;
13396 			}
13397 
13398 			/*
13399 			 * For TRAN_BUSY, we want to reduce the throttle value,
13400 			 * unless we are retrying a command.
13401 			 */
13402 			if (bp != un->un_retry_bp) {
13403 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
13404 			}
13405 
13406 			/*
13407 			 * Set up the bp to be tried again 10 ms later.
13408 			 * Note:x86: Is there a timeout value in the sd_lun
13409 			 * for this condition?
13410 			 */
13411 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
13412 			    kstat_runq_back_to_waitq);
13413 			goto exit;
13414 
13415 		case TRAN_FATAL_ERROR:
13416 			un->un_tran_fatal_count++;
13417 			/* FALLTHRU */
13418 
13419 		case TRAN_BADPKT:
13420 		default:
13421 			un->un_ncmds_in_transport--;
13422 			ASSERT(un->un_ncmds_in_transport >= 0);
13423 
13424 			/*
13425 			 * If this is our REQUEST SENSE command with a
13426 			 * transport error, we must get back the pointers
13427 			 * to the original buf, and mark the REQUEST
13428 			 * SENSE command as "available".
13429 			 */
13430 			if (bp == un->un_rqs_bp) {
13431 				bp = sd_mark_rqs_idle(un, xp);
13432 				xp = SD_GET_XBUF(bp);
13433 			} else {
13434 				/*
13435 				 * Legacy behavior: do not update transport
13436 				 * error count for request sense commands.
13437 				 */
13438 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
13439 			}
13440 
13441 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13442 			sd_print_transport_rejected_message(un, xp, rval);
13443 
13444 			/*
13445 			 * We must use sd_return_failed_command_no_restart() to
13446 			 * avoid a recursive call back into sd_start_cmds().
13447 			 * However this also means that we must keep processing
13448 			 * the waitq here in order to avoid stalling.
13449 			 */
13450 			sd_return_failed_command_no_restart(un, bp, EIO);
13451 
13452 			/*
13453 			 * Notify any threads waiting in sd_ddi_suspend() that
13454 			 * a command completion has occurred.
13455 			 */
13456 			if (un->un_state == SD_STATE_SUSPENDED) {
13457 				cv_broadcast(&un->un_disk_busy_cv);
13458 			}
13459 
13460 			if (bp == immed_bp) {
13461 				/* immed_bp is gone by now, so clear this */
13462 				immed_bp = NULL;
13463 			}
13464 			break;
13465 		}
13466 
13467 	} while (immed_bp == NULL);
13468 
13469 exit:
13470 	ASSERT(mutex_owned(SD_MUTEX(un)));
13471 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
13472 }
13473 
13474 
13475 /*
13476  *    Function: sd_return_command
13477  *
13478  * Description: Returns a command to its originator (with or without an
13479  *		error).  Also starts commands waiting to be transported
13480  *		to the target.
13481  *
13482  *     Context: May be called from interrupt, kernel, or timeout context
13483  */
13484 
13485 static void
13486 sd_return_command(struct sd_lun *un, struct buf *bp)
13487 {
13488 	struct sd_xbuf *xp;
13489 	struct scsi_pkt *pktp;
13490 
13491 	ASSERT(bp != NULL);
13492 	ASSERT(un != NULL);
13493 	ASSERT(mutex_owned(SD_MUTEX(un)));
13494 	ASSERT(bp != un->un_rqs_bp);
13495 	xp = SD_GET_XBUF(bp);
13496 	ASSERT(xp != NULL);
13497 
13498 	pktp = SD_GET_PKTP(bp);
13499 
13500 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
13501 
13502 	/*
13503 	 * Note: check for the "sdrestart failed" case.
13504 	 */
13505 	if ((un->un_partial_dma_supported == 1) &&
13506 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
13507 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
13508 	    (xp->xb_pktp->pkt_resid == 0)) {
13509 
13510 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
13511 			/*
13512 			 * Successfully set up next portion of cmd
13513 			 * transfer, try sending it
13514 			 */
13515 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
13516 			    NULL, NULL, 0, (clock_t)0, NULL);
13517 			sd_start_cmds(un, NULL);
13518 			return;	/* Note:x86: need a return here? */
13519 		}
13520 	}
13521 
13522 	/*
13523 	 * If this is the failfast bp, clear it from un_failfast_bp. This
13524 	 * can happen if upon being re-tried the failfast bp either
13525 	 * succeeded or encountered another error (possibly even a different
13526 	 * error than the one that precipitated the failfast state, but in
13527 	 * that case it would have had to exhaust retries as well). Regardless,
13528 	 * this should not occur whenever the instance is in the active
13529 	 * failfast state.
13530 	 */
13531 	if (bp == un->un_failfast_bp) {
13532 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13533 		un->un_failfast_bp = NULL;
13534 	}
13535 
13536 	/*
13537 	 * Clear the failfast state upon successful completion of ANY cmd.
13538 	 */
13539 	if (bp->b_error == 0) {
13540 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13541 	}
13542 
13543 	/*
13544 	 * This is used if the command was retried one or more times. Show that
13545 	 * we are done with it, and allow processing of the waitq to resume.
13546 	 */
13547 	if (bp == un->un_retry_bp) {
13548 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13549 		    "sd_return_command: un:0x%p: "
13550 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13551 		un->un_retry_bp = NULL;
13552 		un->un_retry_statp = NULL;
13553 	}
13554 
13555 	SD_UPDATE_RDWR_STATS(un, bp);
13556 	SD_UPDATE_PARTITION_STATS(un, bp);
13557 
13558 	switch (un->un_state) {
13559 	case SD_STATE_SUSPENDED:
13560 		/*
13561 		 * Notify any threads waiting in sd_ddi_suspend() that
13562 		 * a command completion has occurred.
13563 		 */
13564 		cv_broadcast(&un->un_disk_busy_cv);
13565 		break;
13566 	default:
13567 		sd_start_cmds(un, NULL);
13568 		break;
13569 	}
13570 
13571 	/* Return this command up the iodone chain to its originator. */
13572 	mutex_exit(SD_MUTEX(un));
13573 
13574 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13575 	xp->xb_pktp = NULL;
13576 
13577 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13578 
13579 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13580 	mutex_enter(SD_MUTEX(un));
13581 
13582 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
13583 }
13584 
13585 
13586 /*
13587  *    Function: sd_return_failed_command
13588  *
13589  * Description: Command completion when an error occurred.
13590  *
13591  *     Context: May be called from interrupt context
13592  */
13593 
13594 static void
13595 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
13596 {
13597 	ASSERT(bp != NULL);
13598 	ASSERT(un != NULL);
13599 	ASSERT(mutex_owned(SD_MUTEX(un)));
13600 
13601 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13602 	    "sd_return_failed_command: entry\n");
13603 
13604 	/*
13605 	 * b_resid could already be nonzero due to a partial data
13606 	 * transfer, so do not change it here.
13607 	 */
13608 	SD_BIOERROR(bp, errcode);
13609 
13610 	sd_return_command(un, bp);
13611 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13612 	    "sd_return_failed_command: exit\n");
13613 }
13614 
13615 
13616 /*
13617  *    Function: sd_return_failed_command_no_restart
13618  *
13619  * Description: Same as sd_return_failed_command, but ensures that no
13620  *		call back into sd_start_cmds will be issued.
13621  *
13622  *     Context: May be called from interrupt context
13623  */
13624 
13625 static void
13626 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
13627 	int errcode)
13628 {
13629 	struct sd_xbuf *xp;
13630 
13631 	ASSERT(bp != NULL);
13632 	ASSERT(un != NULL);
13633 	ASSERT(mutex_owned(SD_MUTEX(un)));
13634 	xp = SD_GET_XBUF(bp);
13635 	ASSERT(xp != NULL);
13636 	ASSERT(errcode != 0);
13637 
13638 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13639 	    "sd_return_failed_command_no_restart: entry\n");
13640 
13641 	/*
13642 	 * b_resid could already be nonzero due to a partial data
13643 	 * transfer, so do not change it here.
13644 	 */
13645 	SD_BIOERROR(bp, errcode);
13646 
13647 	/*
13648 	 * If this is the failfast bp, clear it. This can happen if the
13649 	 * failfast bp encounterd a fatal error when we attempted to
13650 	 * re-try it (such as a scsi_transport(9F) failure).  However
13651 	 * we should NOT be in an active failfast state if the failfast
13652 	 * bp is not NULL.
13653 	 */
13654 	if (bp == un->un_failfast_bp) {
13655 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13656 		un->un_failfast_bp = NULL;
13657 	}
13658 
13659 	if (bp == un->un_retry_bp) {
13660 		/*
13661 		 * This command was retried one or more times. Show that we are
13662 		 * done with it, and allow processing of the waitq to resume.
13663 		 */
13664 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13665 		    "sd_return_failed_command_no_restart: "
13666 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13667 		un->un_retry_bp = NULL;
13668 		un->un_retry_statp = NULL;
13669 	}
13670 
13671 	SD_UPDATE_RDWR_STATS(un, bp);
13672 	SD_UPDATE_PARTITION_STATS(un, bp);
13673 
13674 	mutex_exit(SD_MUTEX(un));
13675 
13676 	if (xp->xb_pktp != NULL) {
13677 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13678 		xp->xb_pktp = NULL;
13679 	}
13680 
13681 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13682 
13683 	mutex_enter(SD_MUTEX(un));
13684 
13685 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13686 	    "sd_return_failed_command_no_restart: exit\n");
13687 }
13688 
13689 
13690 /*
13691  *    Function: sd_retry_command
13692  *
13693  * Description: queue up a command for retry, or (optionally) fail it
13694  *		if retry counts are exhausted.
13695  *
13696  *   Arguments: un - Pointer to the sd_lun struct for the target.
13697  *
13698  *		bp - Pointer to the buf for the command to be retried.
13699  *
13700  *		retry_check_flag - Flag to see which (if any) of the retry
13701  *		   counts should be decremented/checked. If the indicated
13702  *		   retry count is exhausted, then the command will not be
13703  *		   retried; it will be failed instead. This should use a
13704  *		   value equal to one of the following:
13705  *
13706  *			SD_RETRIES_NOCHECK
13707  *			SD_RESD_RETRIES_STANDARD
13708  *			SD_RETRIES_VICTIM
13709  *
13710  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
13711  *		   if the check should be made to see of FLAG_ISOLATE is set
13712  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
13713  *		   not retried, it is simply failed.
13714  *
13715  *		user_funcp - Ptr to function to call before dispatching the
13716  *		   command. May be NULL if no action needs to be performed.
13717  *		   (Primarily intended for printing messages.)
13718  *
13719  *		user_arg - Optional argument to be passed along to
13720  *		   the user_funcp call.
13721  *
13722  *		failure_code - errno return code to set in the bp if the
13723  *		   command is going to be failed.
13724  *
13725  *		retry_delay - Retry delay interval in (clock_t) units. May
13726  *		   be zero which indicates that the retry should be retried
13727  *		   immediately (ie, without an intervening delay).
13728  *
13729  *		statp - Ptr to kstat function to be updated if the command
13730  *		   is queued for a delayed retry. May be NULL if no kstat
13731  *		   update is desired.
13732  *
13733  *     Context: May be called from interrupt context.
13734  */
13735 
13736 static void
13737 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
13738 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
13739 	code), void *user_arg, int failure_code,  clock_t retry_delay,
13740 	void (*statp)(kstat_io_t *))
13741 {
13742 	struct sd_xbuf	*xp;
13743 	struct scsi_pkt	*pktp;
13744 
13745 	ASSERT(un != NULL);
13746 	ASSERT(mutex_owned(SD_MUTEX(un)));
13747 	ASSERT(bp != NULL);
13748 	xp = SD_GET_XBUF(bp);
13749 	ASSERT(xp != NULL);
13750 	pktp = SD_GET_PKTP(bp);
13751 	ASSERT(pktp != NULL);
13752 
13753 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13754 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
13755 
13756 	/*
13757 	 * If we are syncing or dumping, fail the command to avoid
13758 	 * recursively calling back into scsi_transport().
13759 	 */
13760 	if (ddi_in_panic()) {
13761 		goto fail_command_no_log;
13762 	}
13763 
13764 	/*
13765 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
13766 	 * log an error and fail the command.
13767 	 */
13768 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
13769 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
13770 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
13771 		sd_dump_memory(un, SD_LOG_IO, "CDB",
13772 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
13773 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
13774 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
13775 		goto fail_command;
13776 	}
13777 
13778 	/*
13779 	 * If we are suspended, then put the command onto head of the
13780 	 * wait queue since we don't want to start more commands, and
13781 	 * clear the un_retry_bp. Next time when we are resumed, will
13782 	 * handle the command in the wait queue.
13783 	 */
13784 	switch (un->un_state) {
13785 	case SD_STATE_SUSPENDED:
13786 	case SD_STATE_DUMPING:
13787 		bp->av_forw = un->un_waitq_headp;
13788 		un->un_waitq_headp = bp;
13789 		if (un->un_waitq_tailp == NULL) {
13790 			un->un_waitq_tailp = bp;
13791 		}
13792 		if (bp == un->un_retry_bp) {
13793 			un->un_retry_bp = NULL;
13794 			un->un_retry_statp = NULL;
13795 		}
13796 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13797 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
13798 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
13799 		return;
13800 	default:
13801 		break;
13802 	}
13803 
13804 	/*
13805 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
13806 	 * is set; if it is then we do not want to retry the command.
13807 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
13808 	 */
13809 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
13810 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
13811 			goto fail_command;
13812 		}
13813 	}
13814 
13815 
13816 	/*
13817 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
13818 	 * command timeout or a selection timeout has occurred. This means
13819 	 * that we were unable to establish an kind of communication with
13820 	 * the target, and subsequent retries and/or commands are likely
13821 	 * to encounter similar results and take a long time to complete.
13822 	 *
13823 	 * If this is a failfast error condition, we need to update the
13824 	 * failfast state, even if this bp does not have B_FAILFAST set.
13825 	 */
13826 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
13827 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
13828 			ASSERT(un->un_failfast_bp == NULL);
13829 			/*
13830 			 * If we are already in the active failfast state, and
13831 			 * another failfast error condition has been detected,
13832 			 * then fail this command if it has B_FAILFAST set.
13833 			 * If B_FAILFAST is clear, then maintain the legacy
13834 			 * behavior of retrying heroically, even tho this will
13835 			 * take a lot more time to fail the command.
13836 			 */
13837 			if (bp->b_flags & B_FAILFAST) {
13838 				goto fail_command;
13839 			}
13840 		} else {
13841 			/*
13842 			 * We're not in the active failfast state, but we
13843 			 * have a failfast error condition, so we must begin
13844 			 * transition to the next state. We do this regardless
13845 			 * of whether or not this bp has B_FAILFAST set.
13846 			 */
13847 			if (un->un_failfast_bp == NULL) {
13848 				/*
13849 				 * This is the first bp to meet a failfast
13850 				 * condition so save it on un_failfast_bp &
13851 				 * do normal retry processing. Do not enter
13852 				 * active failfast state yet. This marks
13853 				 * entry into the "failfast pending" state.
13854 				 */
13855 				un->un_failfast_bp = bp;
13856 
13857 			} else if (un->un_failfast_bp == bp) {
13858 				/*
13859 				 * This is the second time *this* bp has
13860 				 * encountered a failfast error condition,
13861 				 * so enter active failfast state & flush
13862 				 * queues as appropriate.
13863 				 */
13864 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
13865 				un->un_failfast_bp = NULL;
13866 				sd_failfast_flushq(un);
13867 
13868 				/*
13869 				 * Fail this bp now if B_FAILFAST set;
13870 				 * otherwise continue with retries. (It would
13871 				 * be pretty ironic if this bp succeeded on a
13872 				 * subsequent retry after we just flushed all
13873 				 * the queues).
13874 				 */
13875 				if (bp->b_flags & B_FAILFAST) {
13876 					goto fail_command;
13877 				}
13878 
13879 #if !defined(lint) && !defined(__lint)
13880 			} else {
13881 				/*
13882 				 * If neither of the preceeding conditionals
13883 				 * was true, it means that there is some
13884 				 * *other* bp that has met an inital failfast
13885 				 * condition and is currently either being
13886 				 * retried or is waiting to be retried. In
13887 				 * that case we should perform normal retry
13888 				 * processing on *this* bp, since there is a
13889 				 * chance that the current failfast condition
13890 				 * is transient and recoverable. If that does
13891 				 * not turn out to be the case, then retries
13892 				 * will be cleared when the wait queue is
13893 				 * flushed anyway.
13894 				 */
13895 #endif
13896 			}
13897 		}
13898 	} else {
13899 		/*
13900 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
13901 		 * likely were able to at least establish some level of
13902 		 * communication with the target and subsequent commands
13903 		 * and/or retries are likely to get through to the target,
13904 		 * In this case we want to be aggressive about clearing
13905 		 * the failfast state. Note that this does not affect
13906 		 * the "failfast pending" condition.
13907 		 */
13908 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13909 	}
13910 
13911 
13912 	/*
13913 	 * Check the specified retry count to see if we can still do
13914 	 * any retries with this pkt before we should fail it.
13915 	 */
13916 	switch (retry_check_flag & SD_RETRIES_MASK) {
13917 	case SD_RETRIES_VICTIM:
13918 		/*
13919 		 * Check the victim retry count. If exhausted, then fall
13920 		 * thru & check against the standard retry count.
13921 		 */
13922 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
13923 			/* Increment count & proceed with the retry */
13924 			xp->xb_victim_retry_count++;
13925 			break;
13926 		}
13927 		/* Victim retries exhausted, fall back to std. retries... */
13928 		/* FALLTHRU */
13929 
13930 	case SD_RETRIES_STANDARD:
13931 		if (xp->xb_retry_count >= un->un_retry_count) {
13932 			/* Retries exhausted, fail the command */
13933 			SD_TRACE(SD_LOG_IO_CORE, un,
13934 			    "sd_retry_command: retries exhausted!\n");
13935 			/*
13936 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
13937 			 * commands with nonzero pkt_resid.
13938 			 */
13939 			if ((pktp->pkt_reason == CMD_CMPLT) &&
13940 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
13941 			    (pktp->pkt_resid != 0)) {
13942 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
13943 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
13944 					SD_UPDATE_B_RESID(bp, pktp);
13945 				}
13946 			}
13947 			goto fail_command;
13948 		}
13949 		xp->xb_retry_count++;
13950 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13951 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13952 		break;
13953 
13954 	case SD_RETRIES_UA:
13955 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
13956 			/* Retries exhausted, fail the command */
13957 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13958 			    "Unit Attention retries exhausted. "
13959 			    "Check the target.\n");
13960 			goto fail_command;
13961 		}
13962 		xp->xb_ua_retry_count++;
13963 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13964 		    "sd_retry_command: retry count:%d\n",
13965 		    xp->xb_ua_retry_count);
13966 		break;
13967 
13968 	case SD_RETRIES_BUSY:
13969 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
13970 			/* Retries exhausted, fail the command */
13971 			SD_TRACE(SD_LOG_IO_CORE, un,
13972 			    "sd_retry_command: retries exhausted!\n");
13973 			goto fail_command;
13974 		}
13975 		xp->xb_retry_count++;
13976 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13977 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13978 		break;
13979 
13980 	case SD_RETRIES_NOCHECK:
13981 	default:
13982 		/* No retry count to check. Just proceed with the retry */
13983 		break;
13984 	}
13985 
13986 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13987 
13988 	/*
13989 	 * If we were given a zero timeout, we must attempt to retry the
13990 	 * command immediately (ie, without a delay).
13991 	 */
13992 	if (retry_delay == 0) {
13993 		/*
13994 		 * Check some limiting conditions to see if we can actually
13995 		 * do the immediate retry.  If we cannot, then we must
13996 		 * fall back to queueing up a delayed retry.
13997 		 */
13998 		if (un->un_ncmds_in_transport >= un->un_throttle) {
13999 			/*
14000 			 * We are at the throttle limit for the target,
14001 			 * fall back to delayed retry.
14002 			 */
14003 			retry_delay = SD_BSY_TIMEOUT;
14004 			statp = kstat_waitq_enter;
14005 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14006 			    "sd_retry_command: immed. retry hit "
14007 			    "throttle!\n");
14008 		} else {
14009 			/*
14010 			 * We're clear to proceed with the immediate retry.
14011 			 * First call the user-provided function (if any)
14012 			 */
14013 			if (user_funcp != NULL) {
14014 				(*user_funcp)(un, bp, user_arg,
14015 				    SD_IMMEDIATE_RETRY_ISSUED);
14016 #ifdef __lock_lint
14017 				sd_print_incomplete_msg(un, bp, user_arg,
14018 				    SD_IMMEDIATE_RETRY_ISSUED);
14019 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
14020 				    SD_IMMEDIATE_RETRY_ISSUED);
14021 				sd_print_sense_failed_msg(un, bp, user_arg,
14022 				    SD_IMMEDIATE_RETRY_ISSUED);
14023 #endif
14024 			}
14025 
14026 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14027 			    "sd_retry_command: issuing immediate retry\n");
14028 
14029 			/*
14030 			 * Call sd_start_cmds() to transport the command to
14031 			 * the target.
14032 			 */
14033 			sd_start_cmds(un, bp);
14034 
14035 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14036 			    "sd_retry_command exit\n");
14037 			return;
14038 		}
14039 	}
14040 
14041 	/*
14042 	 * Set up to retry the command after a delay.
14043 	 * First call the user-provided function (if any)
14044 	 */
14045 	if (user_funcp != NULL) {
14046 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
14047 	}
14048 
14049 	sd_set_retry_bp(un, bp, retry_delay, statp);
14050 
14051 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
14052 	return;
14053 
14054 fail_command:
14055 
14056 	if (user_funcp != NULL) {
14057 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
14058 	}
14059 
14060 fail_command_no_log:
14061 
14062 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14063 	    "sd_retry_command: returning failed command\n");
14064 
14065 	sd_return_failed_command(un, bp, failure_code);
14066 
14067 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
14068 }
14069 
14070 
14071 /*
14072  *    Function: sd_set_retry_bp
14073  *
14074  * Description: Set up the given bp for retry.
14075  *
14076  *   Arguments: un - ptr to associated softstate
14077  *		bp - ptr to buf(9S) for the command
14078  *		retry_delay - time interval before issuing retry (may be 0)
14079  *		statp - optional pointer to kstat function
14080  *
14081  *     Context: May be called under interrupt context
14082  */
14083 
14084 static void
14085 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
14086 	void (*statp)(kstat_io_t *))
14087 {
14088 	ASSERT(un != NULL);
14089 	ASSERT(mutex_owned(SD_MUTEX(un)));
14090 	ASSERT(bp != NULL);
14091 
14092 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14093 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
14094 
14095 	/*
14096 	 * Indicate that the command is being retried. This will not allow any
14097 	 * other commands on the wait queue to be transported to the target
14098 	 * until this command has been completed (success or failure). The
14099 	 * "retry command" is not transported to the target until the given
14100 	 * time delay expires, unless the user specified a 0 retry_delay.
14101 	 *
14102 	 * Note: the timeout(9F) callback routine is what actually calls
14103 	 * sd_start_cmds() to transport the command, with the exception of a
14104 	 * zero retry_delay. The only current implementor of a zero retry delay
14105 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
14106 	 */
14107 	if (un->un_retry_bp == NULL) {
14108 		ASSERT(un->un_retry_statp == NULL);
14109 		un->un_retry_bp = bp;
14110 
14111 		/*
14112 		 * If the user has not specified a delay the command should
14113 		 * be queued and no timeout should be scheduled.
14114 		 */
14115 		if (retry_delay == 0) {
14116 			/*
14117 			 * Save the kstat pointer that will be used in the
14118 			 * call to SD_UPDATE_KSTATS() below, so that
14119 			 * sd_start_cmds() can correctly decrement the waitq
14120 			 * count when it is time to transport this command.
14121 			 */
14122 			un->un_retry_statp = statp;
14123 			goto done;
14124 		}
14125 	}
14126 
14127 	if (un->un_retry_bp == bp) {
14128 		/*
14129 		 * Save the kstat pointer that will be used in the call to
14130 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
14131 		 * correctly decrement the waitq count when it is time to
14132 		 * transport this command.
14133 		 */
14134 		un->un_retry_statp = statp;
14135 
14136 		/*
14137 		 * Schedule a timeout if:
14138 		 *   1) The user has specified a delay.
14139 		 *   2) There is not a START_STOP_UNIT callback pending.
14140 		 *
14141 		 * If no delay has been specified, then it is up to the caller
14142 		 * to ensure that IO processing continues without stalling.
14143 		 * Effectively, this means that the caller will issue the
14144 		 * required call to sd_start_cmds(). The START_STOP_UNIT
14145 		 * callback does this after the START STOP UNIT command has
14146 		 * completed. In either of these cases we should not schedule
14147 		 * a timeout callback here.  Also don't schedule the timeout if
14148 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
14149 		 */
14150 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
14151 		    (un->un_direct_priority_timeid == NULL)) {
14152 			un->un_retry_timeid =
14153 			    timeout(sd_start_retry_command, un, retry_delay);
14154 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14155 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
14156 			    " bp:0x%p un_retry_timeid:0x%p\n",
14157 			    un, bp, un->un_retry_timeid);
14158 		}
14159 	} else {
14160 		/*
14161 		 * We only get in here if there is already another command
14162 		 * waiting to be retried.  In this case, we just put the
14163 		 * given command onto the wait queue, so it can be transported
14164 		 * after the current retry command has completed.
14165 		 *
14166 		 * Also we have to make sure that if the command at the head
14167 		 * of the wait queue is the un_failfast_bp, that we do not
14168 		 * put ahead of it any other commands that are to be retried.
14169 		 */
14170 		if ((un->un_failfast_bp != NULL) &&
14171 		    (un->un_failfast_bp == un->un_waitq_headp)) {
14172 			/*
14173 			 * Enqueue this command AFTER the first command on
14174 			 * the wait queue (which is also un_failfast_bp).
14175 			 */
14176 			bp->av_forw = un->un_waitq_headp->av_forw;
14177 			un->un_waitq_headp->av_forw = bp;
14178 			if (un->un_waitq_headp == un->un_waitq_tailp) {
14179 				un->un_waitq_tailp = bp;
14180 			}
14181 		} else {
14182 			/* Enqueue this command at the head of the waitq. */
14183 			bp->av_forw = un->un_waitq_headp;
14184 			un->un_waitq_headp = bp;
14185 			if (un->un_waitq_tailp == NULL) {
14186 				un->un_waitq_tailp = bp;
14187 			}
14188 		}
14189 
14190 		if (statp == NULL) {
14191 			statp = kstat_waitq_enter;
14192 		}
14193 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14194 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
14195 	}
14196 
14197 done:
14198 	if (statp != NULL) {
14199 		SD_UPDATE_KSTATS(un, statp, bp);
14200 	}
14201 
14202 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14203 	    "sd_set_retry_bp: exit un:0x%p\n", un);
14204 }
14205 
14206 
14207 /*
14208  *    Function: sd_start_retry_command
14209  *
14210  * Description: Start the command that has been waiting on the target's
14211  *		retry queue.  Called from timeout(9F) context after the
14212  *		retry delay interval has expired.
14213  *
14214  *   Arguments: arg - pointer to associated softstate for the device.
14215  *
14216  *     Context: timeout(9F) thread context.  May not sleep.
14217  */
14218 
14219 static void
14220 sd_start_retry_command(void *arg)
14221 {
14222 	struct sd_lun *un = arg;
14223 
14224 	ASSERT(un != NULL);
14225 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14226 
14227 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14228 	    "sd_start_retry_command: entry\n");
14229 
14230 	mutex_enter(SD_MUTEX(un));
14231 
14232 	un->un_retry_timeid = NULL;
14233 
14234 	if (un->un_retry_bp != NULL) {
14235 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14236 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
14237 		    un, un->un_retry_bp);
14238 		sd_start_cmds(un, un->un_retry_bp);
14239 	}
14240 
14241 	mutex_exit(SD_MUTEX(un));
14242 
14243 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14244 	    "sd_start_retry_command: exit\n");
14245 }
14246 
14247 
14248 /*
14249  *    Function: sd_start_direct_priority_command
14250  *
14251  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
14252  *		received TRAN_BUSY when we called scsi_transport() to send it
14253  *		to the underlying HBA. This function is called from timeout(9F)
14254  *		context after the delay interval has expired.
14255  *
14256  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
14257  *
14258  *     Context: timeout(9F) thread context.  May not sleep.
14259  */
14260 
14261 static void
14262 sd_start_direct_priority_command(void *arg)
14263 {
14264 	struct buf	*priority_bp = arg;
14265 	struct sd_lun	*un;
14266 
14267 	ASSERT(priority_bp != NULL);
14268 	un = SD_GET_UN(priority_bp);
14269 	ASSERT(un != NULL);
14270 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14271 
14272 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14273 	    "sd_start_direct_priority_command: entry\n");
14274 
14275 	mutex_enter(SD_MUTEX(un));
14276 	un->un_direct_priority_timeid = NULL;
14277 	sd_start_cmds(un, priority_bp);
14278 	mutex_exit(SD_MUTEX(un));
14279 
14280 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14281 	    "sd_start_direct_priority_command: exit\n");
14282 }
14283 
14284 
14285 /*
14286  *    Function: sd_send_request_sense_command
14287  *
14288  * Description: Sends a REQUEST SENSE command to the target
14289  *
14290  *     Context: May be called from interrupt context.
14291  */
14292 
14293 static void
14294 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
14295 	struct scsi_pkt *pktp)
14296 {
14297 	ASSERT(bp != NULL);
14298 	ASSERT(un != NULL);
14299 	ASSERT(mutex_owned(SD_MUTEX(un)));
14300 
14301 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
14302 	    "entry: buf:0x%p\n", bp);
14303 
14304 	/*
14305 	 * If we are syncing or dumping, then fail the command to avoid a
14306 	 * recursive callback into scsi_transport(). Also fail the command
14307 	 * if we are suspended (legacy behavior).
14308 	 */
14309 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
14310 	    (un->un_state == SD_STATE_DUMPING)) {
14311 		sd_return_failed_command(un, bp, EIO);
14312 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14313 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
14314 		return;
14315 	}
14316 
14317 	/*
14318 	 * Retry the failed command and don't issue the request sense if:
14319 	 *    1) the sense buf is busy
14320 	 *    2) we have 1 or more outstanding commands on the target
14321 	 *    (the sense data will be cleared or invalidated any way)
14322 	 *
14323 	 * Note: There could be an issue with not checking a retry limit here,
14324 	 * the problem is determining which retry limit to check.
14325 	 */
14326 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
14327 		/* Don't retry if the command is flagged as non-retryable */
14328 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
14329 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14330 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
14331 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14332 			    "sd_send_request_sense_command: "
14333 			    "at full throttle, retrying exit\n");
14334 		} else {
14335 			sd_return_failed_command(un, bp, EIO);
14336 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14337 			    "sd_send_request_sense_command: "
14338 			    "at full throttle, non-retryable exit\n");
14339 		}
14340 		return;
14341 	}
14342 
14343 	sd_mark_rqs_busy(un, bp);
14344 	sd_start_cmds(un, un->un_rqs_bp);
14345 
14346 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14347 	    "sd_send_request_sense_command: exit\n");
14348 }
14349 
14350 
14351 /*
14352  *    Function: sd_mark_rqs_busy
14353  *
14354  * Description: Indicate that the request sense bp for this instance is
14355  *		in use.
14356  *
14357  *     Context: May be called under interrupt context
14358  */
14359 
14360 static void
14361 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
14362 {
14363 	struct sd_xbuf	*sense_xp;
14364 
14365 	ASSERT(un != NULL);
14366 	ASSERT(bp != NULL);
14367 	ASSERT(mutex_owned(SD_MUTEX(un)));
14368 	ASSERT(un->un_sense_isbusy == 0);
14369 
14370 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
14371 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
14372 
14373 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
14374 	ASSERT(sense_xp != NULL);
14375 
14376 	SD_INFO(SD_LOG_IO, un,
14377 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
14378 
14379 	ASSERT(sense_xp->xb_pktp != NULL);
14380 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
14381 	    == (FLAG_SENSING | FLAG_HEAD));
14382 
14383 	un->un_sense_isbusy = 1;
14384 	un->un_rqs_bp->b_resid = 0;
14385 	sense_xp->xb_pktp->pkt_resid  = 0;
14386 	sense_xp->xb_pktp->pkt_reason = 0;
14387 
14388 	/* So we can get back the bp at interrupt time! */
14389 	sense_xp->xb_sense_bp = bp;
14390 
14391 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
14392 
14393 	/*
14394 	 * Mark this buf as awaiting sense data. (This is already set in
14395 	 * the pkt_flags for the RQS packet.)
14396 	 */
14397 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
14398 
14399 	sense_xp->xb_retry_count	= 0;
14400 	sense_xp->xb_victim_retry_count = 0;
14401 	sense_xp->xb_ua_retry_count	= 0;
14402 	sense_xp->xb_nr_retry_count 	= 0;
14403 	sense_xp->xb_dma_resid  = 0;
14404 
14405 	/* Clean up the fields for auto-request sense */
14406 	sense_xp->xb_sense_status = 0;
14407 	sense_xp->xb_sense_state  = 0;
14408 	sense_xp->xb_sense_resid  = 0;
14409 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
14410 
14411 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
14412 }
14413 
14414 
14415 /*
14416  *    Function: sd_mark_rqs_idle
14417  *
14418  * Description: SD_MUTEX must be held continuously through this routine
14419  *		to prevent reuse of the rqs struct before the caller can
14420  *		complete it's processing.
14421  *
14422  * Return Code: Pointer to the RQS buf
14423  *
14424  *     Context: May be called under interrupt context
14425  */
14426 
14427 static struct buf *
14428 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
14429 {
14430 	struct buf *bp;
14431 	ASSERT(un != NULL);
14432 	ASSERT(sense_xp != NULL);
14433 	ASSERT(mutex_owned(SD_MUTEX(un)));
14434 	ASSERT(un->un_sense_isbusy != 0);
14435 
14436 	un->un_sense_isbusy = 0;
14437 	bp = sense_xp->xb_sense_bp;
14438 	sense_xp->xb_sense_bp = NULL;
14439 
14440 	/* This pkt is no longer interested in getting sense data */
14441 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
14442 
14443 	return (bp);
14444 }
14445 
14446 
14447 
14448 /*
14449  *    Function: sd_alloc_rqs
14450  *
14451  * Description: Set up the unit to receive auto request sense data
14452  *
14453  * Return Code: DDI_SUCCESS or DDI_FAILURE
14454  *
14455  *     Context: Called under attach(9E) context
14456  */
14457 
14458 static int
14459 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
14460 {
14461 	struct sd_xbuf *xp;
14462 
14463 	ASSERT(un != NULL);
14464 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14465 	ASSERT(un->un_rqs_bp == NULL);
14466 	ASSERT(un->un_rqs_pktp == NULL);
14467 
14468 	/*
14469 	 * First allocate the required buf and scsi_pkt structs, then set up
14470 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
14471 	 */
14472 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
14473 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
14474 	if (un->un_rqs_bp == NULL) {
14475 		return (DDI_FAILURE);
14476 	}
14477 
14478 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
14479 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
14480 
14481 	if (un->un_rqs_pktp == NULL) {
14482 		sd_free_rqs(un);
14483 		return (DDI_FAILURE);
14484 	}
14485 
14486 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
14487 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
14488 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
14489 
14490 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
14491 
14492 	/* Set up the other needed members in the ARQ scsi_pkt. */
14493 	un->un_rqs_pktp->pkt_comp   = sdintr;
14494 	un->un_rqs_pktp->pkt_time   = sd_io_time;
14495 	un->un_rqs_pktp->pkt_flags |=
14496 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
14497 
14498 	/*
14499 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
14500 	 * provide any intpkt, destroypkt routines as we take care of
14501 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
14502 	 */
14503 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14504 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
14505 	xp->xb_pktp = un->un_rqs_pktp;
14506 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
14507 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
14508 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
14509 
14510 	/*
14511 	 * Save the pointer to the request sense private bp so it can
14512 	 * be retrieved in sdintr.
14513 	 */
14514 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
14515 	ASSERT(un->un_rqs_bp->b_private == xp);
14516 
14517 	/*
14518 	 * See if the HBA supports auto-request sense for the specified
14519 	 * target/lun. If it does, then try to enable it (if not already
14520 	 * enabled).
14521 	 *
14522 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
14523 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
14524 	 * return success.  However, in both of these cases ARQ is always
14525 	 * enabled and scsi_ifgetcap will always return true. The best approach
14526 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
14527 	 *
14528 	 * The 3rd case is the HBA (adp) always return enabled on
14529 	 * scsi_ifgetgetcap even when it's not enable, the best approach
14530 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
14531 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
14532 	 */
14533 
14534 	if (un->un_f_is_fibre == TRUE) {
14535 		un->un_f_arq_enabled = TRUE;
14536 	} else {
14537 #if defined(__i386) || defined(__amd64)
14538 		/*
14539 		 * Circumvent the Adaptec bug, remove this code when
14540 		 * the bug is fixed
14541 		 */
14542 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
14543 #endif
14544 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
14545 		case 0:
14546 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14547 			    "sd_alloc_rqs: HBA supports ARQ\n");
14548 			/*
14549 			 * ARQ is supported by this HBA but currently is not
14550 			 * enabled. Attempt to enable it and if successful then
14551 			 * mark this instance as ARQ enabled.
14552 			 */
14553 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
14554 			    == 1) {
14555 				/* Successfully enabled ARQ in the HBA */
14556 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14557 				    "sd_alloc_rqs: ARQ enabled\n");
14558 				un->un_f_arq_enabled = TRUE;
14559 			} else {
14560 				/* Could not enable ARQ in the HBA */
14561 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14562 				    "sd_alloc_rqs: failed ARQ enable\n");
14563 				un->un_f_arq_enabled = FALSE;
14564 			}
14565 			break;
14566 		case 1:
14567 			/*
14568 			 * ARQ is supported by this HBA and is already enabled.
14569 			 * Just mark ARQ as enabled for this instance.
14570 			 */
14571 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14572 			    "sd_alloc_rqs: ARQ already enabled\n");
14573 			un->un_f_arq_enabled = TRUE;
14574 			break;
14575 		default:
14576 			/*
14577 			 * ARQ is not supported by this HBA; disable it for this
14578 			 * instance.
14579 			 */
14580 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14581 			    "sd_alloc_rqs: HBA does not support ARQ\n");
14582 			un->un_f_arq_enabled = FALSE;
14583 			break;
14584 		}
14585 	}
14586 
14587 	return (DDI_SUCCESS);
14588 }
14589 
14590 
14591 /*
14592  *    Function: sd_free_rqs
14593  *
14594  * Description: Cleanup for the pre-instance RQS command.
14595  *
14596  *     Context: Kernel thread context
14597  */
14598 
14599 static void
14600 sd_free_rqs(struct sd_lun *un)
14601 {
14602 	ASSERT(un != NULL);
14603 
14604 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
14605 
14606 	/*
14607 	 * If consistent memory is bound to a scsi_pkt, the pkt
14608 	 * has to be destroyed *before* freeing the consistent memory.
14609 	 * Don't change the sequence of this operations.
14610 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
14611 	 * after it was freed in scsi_free_consistent_buf().
14612 	 */
14613 	if (un->un_rqs_pktp != NULL) {
14614 		scsi_destroy_pkt(un->un_rqs_pktp);
14615 		un->un_rqs_pktp = NULL;
14616 	}
14617 
14618 	if (un->un_rqs_bp != NULL) {
14619 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
14620 		if (xp != NULL) {
14621 			kmem_free(xp, sizeof (struct sd_xbuf));
14622 		}
14623 		scsi_free_consistent_buf(un->un_rqs_bp);
14624 		un->un_rqs_bp = NULL;
14625 	}
14626 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
14627 }
14628 
14629 
14630 
14631 /*
14632  *    Function: sd_reduce_throttle
14633  *
14634  * Description: Reduces the maximum # of outstanding commands on a
14635  *		target to the current number of outstanding commands.
14636  *		Queues a tiemout(9F) callback to restore the limit
14637  *		after a specified interval has elapsed.
14638  *		Typically used when we get a TRAN_BUSY return code
14639  *		back from scsi_transport().
14640  *
14641  *   Arguments: un - ptr to the sd_lun softstate struct
14642  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
14643  *
14644  *     Context: May be called from interrupt context
14645  */
14646 
14647 static void
14648 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
14649 {
14650 	ASSERT(un != NULL);
14651 	ASSERT(mutex_owned(SD_MUTEX(un)));
14652 	ASSERT(un->un_ncmds_in_transport >= 0);
14653 
14654 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14655 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
14656 	    un, un->un_throttle, un->un_ncmds_in_transport);
14657 
14658 	if (un->un_throttle > 1) {
14659 		if (un->un_f_use_adaptive_throttle == TRUE) {
14660 			switch (throttle_type) {
14661 			case SD_THROTTLE_TRAN_BUSY:
14662 				if (un->un_busy_throttle == 0) {
14663 					un->un_busy_throttle = un->un_throttle;
14664 				}
14665 				break;
14666 			case SD_THROTTLE_QFULL:
14667 				un->un_busy_throttle = 0;
14668 				break;
14669 			default:
14670 				ASSERT(FALSE);
14671 			}
14672 
14673 			if (un->un_ncmds_in_transport > 0) {
14674 				un->un_throttle = un->un_ncmds_in_transport;
14675 			}
14676 
14677 		} else {
14678 			if (un->un_ncmds_in_transport == 0) {
14679 				un->un_throttle = 1;
14680 			} else {
14681 				un->un_throttle = un->un_ncmds_in_transport;
14682 			}
14683 		}
14684 	}
14685 
14686 	/* Reschedule the timeout if none is currently active */
14687 	if (un->un_reset_throttle_timeid == NULL) {
14688 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
14689 		    un, SD_THROTTLE_RESET_INTERVAL);
14690 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14691 		    "sd_reduce_throttle: timeout scheduled!\n");
14692 	}
14693 
14694 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14695 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14696 }
14697 
14698 
14699 
14700 /*
14701  *    Function: sd_restore_throttle
14702  *
14703  * Description: Callback function for timeout(9F).  Resets the current
14704  *		value of un->un_throttle to its default.
14705  *
14706  *   Arguments: arg - pointer to associated softstate for the device.
14707  *
14708  *     Context: May be called from interrupt context
14709  */
14710 
14711 static void
14712 sd_restore_throttle(void *arg)
14713 {
14714 	struct sd_lun	*un = arg;
14715 
14716 	ASSERT(un != NULL);
14717 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14718 
14719 	mutex_enter(SD_MUTEX(un));
14720 
14721 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14722 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14723 
14724 	un->un_reset_throttle_timeid = NULL;
14725 
14726 	if (un->un_f_use_adaptive_throttle == TRUE) {
14727 		/*
14728 		 * If un_busy_throttle is nonzero, then it contains the
14729 		 * value that un_throttle was when we got a TRAN_BUSY back
14730 		 * from scsi_transport(). We want to revert back to this
14731 		 * value.
14732 		 *
14733 		 * In the QFULL case, the throttle limit will incrementally
14734 		 * increase until it reaches max throttle.
14735 		 */
14736 		if (un->un_busy_throttle > 0) {
14737 			un->un_throttle = un->un_busy_throttle;
14738 			un->un_busy_throttle = 0;
14739 		} else {
14740 			/*
14741 			 * increase throttle by 10% open gate slowly, schedule
14742 			 * another restore if saved throttle has not been
14743 			 * reached
14744 			 */
14745 			short throttle;
14746 			if (sd_qfull_throttle_enable) {
14747 				throttle = un->un_throttle +
14748 				    max((un->un_throttle / 10), 1);
14749 				un->un_throttle =
14750 				    (throttle < un->un_saved_throttle) ?
14751 				    throttle : un->un_saved_throttle;
14752 				if (un->un_throttle < un->un_saved_throttle) {
14753 					un->un_reset_throttle_timeid =
14754 					    timeout(sd_restore_throttle,
14755 					    un,
14756 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
14757 				}
14758 			}
14759 		}
14760 
14761 		/*
14762 		 * If un_throttle has fallen below the low-water mark, we
14763 		 * restore the maximum value here (and allow it to ratchet
14764 		 * down again if necessary).
14765 		 */
14766 		if (un->un_throttle < un->un_min_throttle) {
14767 			un->un_throttle = un->un_saved_throttle;
14768 		}
14769 	} else {
14770 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14771 		    "restoring limit from 0x%x to 0x%x\n",
14772 		    un->un_throttle, un->un_saved_throttle);
14773 		un->un_throttle = un->un_saved_throttle;
14774 	}
14775 
14776 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14777 	    "sd_restore_throttle: calling sd_start_cmds!\n");
14778 
14779 	sd_start_cmds(un, NULL);
14780 
14781 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14782 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
14783 	    un, un->un_throttle);
14784 
14785 	mutex_exit(SD_MUTEX(un));
14786 
14787 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
14788 }
14789 
14790 /*
14791  *    Function: sdrunout
14792  *
14793  * Description: Callback routine for scsi_init_pkt when a resource allocation
14794  *		fails.
14795  *
14796  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
14797  *		soft state instance.
14798  *
14799  * Return Code: The scsi_init_pkt routine allows for the callback function to
14800  *		return a 0 indicating the callback should be rescheduled or a 1
14801  *		indicating not to reschedule. This routine always returns 1
14802  *		because the driver always provides a callback function to
14803  *		scsi_init_pkt. This results in a callback always being scheduled
14804  *		(via the scsi_init_pkt callback implementation) if a resource
14805  *		failure occurs.
14806  *
14807  *     Context: This callback function may not block or call routines that block
14808  *
14809  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
14810  *		request persisting at the head of the list which cannot be
14811  *		satisfied even after multiple retries. In the future the driver
14812  *		may implement some time of maximum runout count before failing
14813  *		an I/O.
14814  */
14815 
14816 static int
14817 sdrunout(caddr_t arg)
14818 {
14819 	struct sd_lun	*un = (struct sd_lun *)arg;
14820 
14821 	ASSERT(un != NULL);
14822 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14823 
14824 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
14825 
14826 	mutex_enter(SD_MUTEX(un));
14827 	sd_start_cmds(un, NULL);
14828 	mutex_exit(SD_MUTEX(un));
14829 	/*
14830 	 * This callback routine always returns 1 (i.e. do not reschedule)
14831 	 * because we always specify sdrunout as the callback handler for
14832 	 * scsi_init_pkt inside the call to sd_start_cmds.
14833 	 */
14834 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
14835 	return (1);
14836 }
14837 
14838 
14839 /*
14840  *    Function: sdintr
14841  *
14842  * Description: Completion callback routine for scsi_pkt(9S) structs
14843  *		sent to the HBA driver via scsi_transport(9F).
14844  *
14845  *     Context: Interrupt context
14846  */
14847 
14848 static void
14849 sdintr(struct scsi_pkt *pktp)
14850 {
14851 	struct buf	*bp;
14852 	struct sd_xbuf	*xp;
14853 	struct sd_lun	*un;
14854 	size_t		actual_len;
14855 
14856 	ASSERT(pktp != NULL);
14857 	bp = (struct buf *)pktp->pkt_private;
14858 	ASSERT(bp != NULL);
14859 	xp = SD_GET_XBUF(bp);
14860 	ASSERT(xp != NULL);
14861 	ASSERT(xp->xb_pktp != NULL);
14862 	un = SD_GET_UN(bp);
14863 	ASSERT(un != NULL);
14864 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14865 
14866 #ifdef SD_FAULT_INJECTION
14867 
14868 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
14869 	/* SD FaultInjection */
14870 	sd_faultinjection(pktp);
14871 
14872 #endif /* SD_FAULT_INJECTION */
14873 
14874 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
14875 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
14876 
14877 	mutex_enter(SD_MUTEX(un));
14878 
14879 	/* Reduce the count of the #commands currently in transport */
14880 	un->un_ncmds_in_transport--;
14881 	ASSERT(un->un_ncmds_in_transport >= 0);
14882 
14883 	/* Increment counter to indicate that the callback routine is active */
14884 	un->un_in_callback++;
14885 
14886 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14887 
14888 #ifdef	SDDEBUG
14889 	if (bp == un->un_retry_bp) {
14890 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
14891 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
14892 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
14893 	}
14894 #endif
14895 
14896 	/*
14897 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
14898 	 * state if needed.
14899 	 */
14900 	if (pktp->pkt_reason == CMD_DEV_GONE) {
14901 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14902 		    "Command failed to complete...Device is gone\n");
14903 		if (un->un_mediastate != DKIO_DEV_GONE) {
14904 			un->un_mediastate = DKIO_DEV_GONE;
14905 			cv_broadcast(&un->un_state_cv);
14906 		}
14907 		sd_return_failed_command(un, bp, EIO);
14908 		goto exit;
14909 	}
14910 
14911 	if (pktp->pkt_state & STATE_XARQ_DONE) {
14912 		SD_TRACE(SD_LOG_COMMON, un,
14913 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
14914 	}
14915 
14916 	/*
14917 	 * First see if the pkt has auto-request sense data with it....
14918 	 * Look at the packet state first so we don't take a performance
14919 	 * hit looking at the arq enabled flag unless absolutely necessary.
14920 	 */
14921 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
14922 	    (un->un_f_arq_enabled == TRUE)) {
14923 		/*
14924 		 * The HBA did an auto request sense for this command so check
14925 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14926 		 * driver command that should not be retried.
14927 		 */
14928 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14929 			/*
14930 			 * Save the relevant sense info into the xp for the
14931 			 * original cmd.
14932 			 */
14933 			struct scsi_arq_status *asp;
14934 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
14935 			xp->xb_sense_status =
14936 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
14937 			xp->xb_sense_state  = asp->sts_rqpkt_state;
14938 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
14939 			if (pktp->pkt_state & STATE_XARQ_DONE) {
14940 				actual_len = MAX_SENSE_LENGTH -
14941 				    xp->xb_sense_resid;
14942 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14943 				    MAX_SENSE_LENGTH);
14944 			} else {
14945 				if (xp->xb_sense_resid > SENSE_LENGTH) {
14946 					actual_len = MAX_SENSE_LENGTH -
14947 					    xp->xb_sense_resid;
14948 				} else {
14949 					actual_len = SENSE_LENGTH -
14950 					    xp->xb_sense_resid;
14951 				}
14952 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
14953 					if ((((struct uscsi_cmd *)
14954 					    (xp->xb_pktinfo))->uscsi_rqlen) >
14955 					    actual_len) {
14956 						xp->xb_sense_resid =
14957 						    (((struct uscsi_cmd *)
14958 						    (xp->xb_pktinfo))->
14959 						    uscsi_rqlen) - actual_len;
14960 					} else {
14961 						xp->xb_sense_resid = 0;
14962 					}
14963 				}
14964 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14965 				    SENSE_LENGTH);
14966 			}
14967 
14968 			/* fail the command */
14969 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14970 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
14971 			sd_return_failed_command(un, bp, EIO);
14972 			goto exit;
14973 		}
14974 
14975 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14976 		/*
14977 		 * We want to either retry or fail this command, so free
14978 		 * the DMA resources here.  If we retry the command then
14979 		 * the DMA resources will be reallocated in sd_start_cmds().
14980 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
14981 		 * causes the *entire* transfer to start over again from the
14982 		 * beginning of the request, even for PARTIAL chunks that
14983 		 * have already transferred successfully.
14984 		 */
14985 		if ((un->un_f_is_fibre == TRUE) &&
14986 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14987 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14988 			scsi_dmafree(pktp);
14989 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14990 		}
14991 #endif
14992 
14993 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14994 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
14995 
14996 		sd_handle_auto_request_sense(un, bp, xp, pktp);
14997 		goto exit;
14998 	}
14999 
15000 	/* Next see if this is the REQUEST SENSE pkt for the instance */
15001 	if (pktp->pkt_flags & FLAG_SENSING)  {
15002 		/* This pktp is from the unit's REQUEST_SENSE command */
15003 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15004 		    "sdintr: sd_handle_request_sense\n");
15005 		sd_handle_request_sense(un, bp, xp, pktp);
15006 		goto exit;
15007 	}
15008 
15009 	/*
15010 	 * Check to see if the command successfully completed as requested;
15011 	 * this is the most common case (and also the hot performance path).
15012 	 *
15013 	 * Requirements for successful completion are:
15014 	 * pkt_reason is CMD_CMPLT and packet status is status good.
15015 	 * In addition:
15016 	 * - A residual of zero indicates successful completion no matter what
15017 	 *   the command is.
15018 	 * - If the residual is not zero and the command is not a read or
15019 	 *   write, then it's still defined as successful completion. In other
15020 	 *   words, if the command is a read or write the residual must be
15021 	 *   zero for successful completion.
15022 	 * - If the residual is not zero and the command is a read or
15023 	 *   write, and it's a USCSICMD, then it's still defined as
15024 	 *   successful completion.
15025 	 */
15026 	if ((pktp->pkt_reason == CMD_CMPLT) &&
15027 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
15028 
15029 		/*
15030 		 * Since this command is returned with a good status, we
15031 		 * can reset the count for Sonoma failover.
15032 		 */
15033 		un->un_sonoma_failure_count = 0;
15034 
15035 		/*
15036 		 * Return all USCSI commands on good status
15037 		 */
15038 		if (pktp->pkt_resid == 0) {
15039 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15040 			    "sdintr: returning command for resid == 0\n");
15041 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
15042 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
15043 			SD_UPDATE_B_RESID(bp, pktp);
15044 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15045 			    "sdintr: returning command for resid != 0\n");
15046 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
15047 			SD_UPDATE_B_RESID(bp, pktp);
15048 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15049 			    "sdintr: returning uscsi command\n");
15050 		} else {
15051 			goto not_successful;
15052 		}
15053 		sd_return_command(un, bp);
15054 
15055 		/*
15056 		 * Decrement counter to indicate that the callback routine
15057 		 * is done.
15058 		 */
15059 		un->un_in_callback--;
15060 		ASSERT(un->un_in_callback >= 0);
15061 		mutex_exit(SD_MUTEX(un));
15062 
15063 		return;
15064 	}
15065 
15066 not_successful:
15067 
15068 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
15069 	/*
15070 	 * The following is based upon knowledge of the underlying transport
15071 	 * and its use of DMA resources.  This code should be removed when
15072 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
15073 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
15074 	 * and sd_start_cmds().
15075 	 *
15076 	 * Free any DMA resources associated with this command if there
15077 	 * is a chance it could be retried or enqueued for later retry.
15078 	 * If we keep the DMA binding then mpxio cannot reissue the
15079 	 * command on another path whenever a path failure occurs.
15080 	 *
15081 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
15082 	 * causes the *entire* transfer to start over again from the
15083 	 * beginning of the request, even for PARTIAL chunks that
15084 	 * have already transferred successfully.
15085 	 *
15086 	 * This is only done for non-uscsi commands (and also skipped for the
15087 	 * driver's internal RQS command). Also just do this for Fibre Channel
15088 	 * devices as these are the only ones that support mpxio.
15089 	 */
15090 	if ((un->un_f_is_fibre == TRUE) &&
15091 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15092 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
15093 		scsi_dmafree(pktp);
15094 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15095 	}
15096 #endif
15097 
15098 	/*
15099 	 * The command did not successfully complete as requested so check
15100 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
15101 	 * driver command that should not be retried so just return. If
15102 	 * FLAG_DIAGNOSE is not set the error will be processed below.
15103 	 */
15104 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15105 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15106 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
15107 		/*
15108 		 * Issue a request sense if a check condition caused the error
15109 		 * (we handle the auto request sense case above), otherwise
15110 		 * just fail the command.
15111 		 */
15112 		if ((pktp->pkt_reason == CMD_CMPLT) &&
15113 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
15114 			sd_send_request_sense_command(un, bp, pktp);
15115 		} else {
15116 			sd_return_failed_command(un, bp, EIO);
15117 		}
15118 		goto exit;
15119 	}
15120 
15121 	/*
15122 	 * The command did not successfully complete as requested so process
15123 	 * the error, retry, and/or attempt recovery.
15124 	 */
15125 	switch (pktp->pkt_reason) {
15126 	case CMD_CMPLT:
15127 		switch (SD_GET_PKT_STATUS(pktp)) {
15128 		case STATUS_GOOD:
15129 			/*
15130 			 * The command completed successfully with a non-zero
15131 			 * residual
15132 			 */
15133 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15134 			    "sdintr: STATUS_GOOD \n");
15135 			sd_pkt_status_good(un, bp, xp, pktp);
15136 			break;
15137 
15138 		case STATUS_CHECK:
15139 		case STATUS_TERMINATED:
15140 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15141 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
15142 			sd_pkt_status_check_condition(un, bp, xp, pktp);
15143 			break;
15144 
15145 		case STATUS_BUSY:
15146 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15147 			    "sdintr: STATUS_BUSY\n");
15148 			sd_pkt_status_busy(un, bp, xp, pktp);
15149 			break;
15150 
15151 		case STATUS_RESERVATION_CONFLICT:
15152 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15153 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
15154 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15155 			break;
15156 
15157 		case STATUS_QFULL:
15158 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15159 			    "sdintr: STATUS_QFULL\n");
15160 			sd_pkt_status_qfull(un, bp, xp, pktp);
15161 			break;
15162 
15163 		case STATUS_MET:
15164 		case STATUS_INTERMEDIATE:
15165 		case STATUS_SCSI2:
15166 		case STATUS_INTERMEDIATE_MET:
15167 		case STATUS_ACA_ACTIVE:
15168 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15169 			    "Unexpected SCSI status received: 0x%x\n",
15170 			    SD_GET_PKT_STATUS(pktp));
15171 			sd_return_failed_command(un, bp, EIO);
15172 			break;
15173 
15174 		default:
15175 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15176 			    "Invalid SCSI status received: 0x%x\n",
15177 			    SD_GET_PKT_STATUS(pktp));
15178 			sd_return_failed_command(un, bp, EIO);
15179 			break;
15180 
15181 		}
15182 		break;
15183 
15184 	case CMD_INCOMPLETE:
15185 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15186 		    "sdintr:  CMD_INCOMPLETE\n");
15187 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
15188 		break;
15189 	case CMD_TRAN_ERR:
15190 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15191 		    "sdintr: CMD_TRAN_ERR\n");
15192 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
15193 		break;
15194 	case CMD_RESET:
15195 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15196 		    "sdintr: CMD_RESET \n");
15197 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
15198 		break;
15199 	case CMD_ABORTED:
15200 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15201 		    "sdintr: CMD_ABORTED \n");
15202 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
15203 		break;
15204 	case CMD_TIMEOUT:
15205 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15206 		    "sdintr: CMD_TIMEOUT\n");
15207 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
15208 		break;
15209 	case CMD_UNX_BUS_FREE:
15210 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15211 		    "sdintr: CMD_UNX_BUS_FREE \n");
15212 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
15213 		break;
15214 	case CMD_TAG_REJECT:
15215 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15216 		    "sdintr: CMD_TAG_REJECT\n");
15217 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
15218 		break;
15219 	default:
15220 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15221 		    "sdintr: default\n");
15222 		sd_pkt_reason_default(un, bp, xp, pktp);
15223 		break;
15224 	}
15225 
15226 exit:
15227 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
15228 
15229 	/* Decrement counter to indicate that the callback routine is done. */
15230 	un->un_in_callback--;
15231 	ASSERT(un->un_in_callback >= 0);
15232 
15233 	/*
15234 	 * At this point, the pkt has been dispatched, ie, it is either
15235 	 * being re-tried or has been returned to its caller and should
15236 	 * not be referenced.
15237 	 */
15238 
15239 	mutex_exit(SD_MUTEX(un));
15240 }
15241 
15242 
15243 /*
15244  *    Function: sd_print_incomplete_msg
15245  *
15246  * Description: Prints the error message for a CMD_INCOMPLETE error.
15247  *
15248  *   Arguments: un - ptr to associated softstate for the device.
15249  *		bp - ptr to the buf(9S) for the command.
15250  *		arg - message string ptr
15251  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
15252  *			or SD_NO_RETRY_ISSUED.
15253  *
15254  *     Context: May be called under interrupt context
15255  */
15256 
15257 static void
15258 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15259 {
15260 	struct scsi_pkt	*pktp;
15261 	char	*msgp;
15262 	char	*cmdp = arg;
15263 
15264 	ASSERT(un != NULL);
15265 	ASSERT(mutex_owned(SD_MUTEX(un)));
15266 	ASSERT(bp != NULL);
15267 	ASSERT(arg != NULL);
15268 	pktp = SD_GET_PKTP(bp);
15269 	ASSERT(pktp != NULL);
15270 
15271 	switch (code) {
15272 	case SD_DELAYED_RETRY_ISSUED:
15273 	case SD_IMMEDIATE_RETRY_ISSUED:
15274 		msgp = "retrying";
15275 		break;
15276 	case SD_NO_RETRY_ISSUED:
15277 	default:
15278 		msgp = "giving up";
15279 		break;
15280 	}
15281 
15282 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15283 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15284 		    "incomplete %s- %s\n", cmdp, msgp);
15285 	}
15286 }
15287 
15288 
15289 
15290 /*
15291  *    Function: sd_pkt_status_good
15292  *
15293  * Description: Processing for a STATUS_GOOD code in pkt_status.
15294  *
15295  *     Context: May be called under interrupt context
15296  */
15297 
15298 static void
15299 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
15300 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15301 {
15302 	char	*cmdp;
15303 
15304 	ASSERT(un != NULL);
15305 	ASSERT(mutex_owned(SD_MUTEX(un)));
15306 	ASSERT(bp != NULL);
15307 	ASSERT(xp != NULL);
15308 	ASSERT(pktp != NULL);
15309 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
15310 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
15311 	ASSERT(pktp->pkt_resid != 0);
15312 
15313 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
15314 
15315 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
15316 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
15317 	case SCMD_READ:
15318 		cmdp = "read";
15319 		break;
15320 	case SCMD_WRITE:
15321 		cmdp = "write";
15322 		break;
15323 	default:
15324 		SD_UPDATE_B_RESID(bp, pktp);
15325 		sd_return_command(un, bp);
15326 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15327 		return;
15328 	}
15329 
15330 	/*
15331 	 * See if we can retry the read/write, preferrably immediately.
15332 	 * If retries are exhaused, then sd_retry_command() will update
15333 	 * the b_resid count.
15334 	 */
15335 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
15336 	    cmdp, EIO, (clock_t)0, NULL);
15337 
15338 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15339 }
15340 
15341 
15342 
15343 
15344 
15345 /*
15346  *    Function: sd_handle_request_sense
15347  *
15348  * Description: Processing for non-auto Request Sense command.
15349  *
15350  *   Arguments: un - ptr to associated softstate
15351  *		sense_bp - ptr to buf(9S) for the RQS command
15352  *		sense_xp - ptr to the sd_xbuf for the RQS command
15353  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
15354  *
15355  *     Context: May be called under interrupt context
15356  */
15357 
15358 static void
15359 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
15360 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
15361 {
15362 	struct buf	*cmd_bp;	/* buf for the original command */
15363 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
15364 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
15365 	size_t		actual_len;	/* actual sense data length */
15366 
15367 	ASSERT(un != NULL);
15368 	ASSERT(mutex_owned(SD_MUTEX(un)));
15369 	ASSERT(sense_bp != NULL);
15370 	ASSERT(sense_xp != NULL);
15371 	ASSERT(sense_pktp != NULL);
15372 
15373 	/*
15374 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
15375 	 * RQS command and not the original command.
15376 	 */
15377 	ASSERT(sense_pktp == un->un_rqs_pktp);
15378 	ASSERT(sense_bp   == un->un_rqs_bp);
15379 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
15380 	    (FLAG_SENSING | FLAG_HEAD));
15381 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
15382 	    FLAG_SENSING) == FLAG_SENSING);
15383 
15384 	/* These are the bp, xp, and pktp for the original command */
15385 	cmd_bp = sense_xp->xb_sense_bp;
15386 	cmd_xp = SD_GET_XBUF(cmd_bp);
15387 	cmd_pktp = SD_GET_PKTP(cmd_bp);
15388 
15389 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
15390 		/*
15391 		 * The REQUEST SENSE command failed.  Release the REQUEST
15392 		 * SENSE command for re-use, get back the bp for the original
15393 		 * command, and attempt to re-try the original command if
15394 		 * FLAG_DIAGNOSE is not set in the original packet.
15395 		 */
15396 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15397 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15398 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
15399 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
15400 			    NULL, NULL, EIO, (clock_t)0, NULL);
15401 			return;
15402 		}
15403 	}
15404 
15405 	/*
15406 	 * Save the relevant sense info into the xp for the original cmd.
15407 	 *
15408 	 * Note: if the request sense failed the state info will be zero
15409 	 * as set in sd_mark_rqs_busy()
15410 	 */
15411 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
15412 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
15413 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
15414 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
15415 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
15416 	    SENSE_LENGTH)) {
15417 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
15418 		    MAX_SENSE_LENGTH);
15419 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
15420 	} else {
15421 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
15422 		    SENSE_LENGTH);
15423 		if (actual_len < SENSE_LENGTH) {
15424 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
15425 		} else {
15426 			cmd_xp->xb_sense_resid = 0;
15427 		}
15428 	}
15429 
15430 	/*
15431 	 *  Free up the RQS command....
15432 	 *  NOTE:
15433 	 *	Must do this BEFORE calling sd_validate_sense_data!
15434 	 *	sd_validate_sense_data may return the original command in
15435 	 *	which case the pkt will be freed and the flags can no
15436 	 *	longer be touched.
15437 	 *	SD_MUTEX is held through this process until the command
15438 	 *	is dispatched based upon the sense data, so there are
15439 	 *	no race conditions.
15440 	 */
15441 	(void) sd_mark_rqs_idle(un, sense_xp);
15442 
15443 	/*
15444 	 * For a retryable command see if we have valid sense data, if so then
15445 	 * turn it over to sd_decode_sense() to figure out the right course of
15446 	 * action. Just fail a non-retryable command.
15447 	 */
15448 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15449 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
15450 		    SD_SENSE_DATA_IS_VALID) {
15451 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
15452 		}
15453 	} else {
15454 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
15455 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15456 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
15457 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15458 		sd_return_failed_command(un, cmd_bp, EIO);
15459 	}
15460 }
15461 
15462 
15463 
15464 
15465 /*
15466  *    Function: sd_handle_auto_request_sense
15467  *
15468  * Description: Processing for auto-request sense information.
15469  *
15470  *   Arguments: un - ptr to associated softstate
15471  *		bp - ptr to buf(9S) for the command
15472  *		xp - ptr to the sd_xbuf for the command
15473  *		pktp - ptr to the scsi_pkt(9S) for the command
15474  *
15475  *     Context: May be called under interrupt context
15476  */
15477 
15478 static void
15479 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
15480 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15481 {
15482 	struct scsi_arq_status *asp;
15483 	size_t actual_len;
15484 
15485 	ASSERT(un != NULL);
15486 	ASSERT(mutex_owned(SD_MUTEX(un)));
15487 	ASSERT(bp != NULL);
15488 	ASSERT(xp != NULL);
15489 	ASSERT(pktp != NULL);
15490 	ASSERT(pktp != un->un_rqs_pktp);
15491 	ASSERT(bp   != un->un_rqs_bp);
15492 
15493 	/*
15494 	 * For auto-request sense, we get a scsi_arq_status back from
15495 	 * the HBA, with the sense data in the sts_sensedata member.
15496 	 * The pkt_scbp of the packet points to this scsi_arq_status.
15497 	 */
15498 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15499 
15500 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
15501 		/*
15502 		 * The auto REQUEST SENSE failed; see if we can re-try
15503 		 * the original command.
15504 		 */
15505 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15506 		    "auto request sense failed (reason=%s)\n",
15507 		    scsi_rname(asp->sts_rqpkt_reason));
15508 
15509 		sd_reset_target(un, pktp);
15510 
15511 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15512 		    NULL, NULL, EIO, (clock_t)0, NULL);
15513 		return;
15514 	}
15515 
15516 	/* Save the relevant sense info into the xp for the original cmd. */
15517 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
15518 	xp->xb_sense_state  = asp->sts_rqpkt_state;
15519 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15520 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
15521 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
15522 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15523 		    MAX_SENSE_LENGTH);
15524 	} else {
15525 		if (xp->xb_sense_resid > SENSE_LENGTH) {
15526 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
15527 		} else {
15528 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
15529 		}
15530 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
15531 			if ((((struct uscsi_cmd *)
15532 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
15533 				xp->xb_sense_resid = (((struct uscsi_cmd *)
15534 				    (xp->xb_pktinfo))->uscsi_rqlen) -
15535 				    actual_len;
15536 			} else {
15537 				xp->xb_sense_resid = 0;
15538 			}
15539 		}
15540 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
15541 	}
15542 
15543 	/*
15544 	 * See if we have valid sense data, if so then turn it over to
15545 	 * sd_decode_sense() to figure out the right course of action.
15546 	 */
15547 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
15548 	    SD_SENSE_DATA_IS_VALID) {
15549 		sd_decode_sense(un, bp, xp, pktp);
15550 	}
15551 }
15552 
15553 
15554 /*
15555  *    Function: sd_print_sense_failed_msg
15556  *
15557  * Description: Print log message when RQS has failed.
15558  *
15559  *   Arguments: un - ptr to associated softstate
15560  *		bp - ptr to buf(9S) for the command
15561  *		arg - generic message string ptr
15562  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15563  *			or SD_NO_RETRY_ISSUED
15564  *
15565  *     Context: May be called from interrupt context
15566  */
15567 
15568 static void
15569 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
15570 	int code)
15571 {
15572 	char	*msgp = arg;
15573 
15574 	ASSERT(un != NULL);
15575 	ASSERT(mutex_owned(SD_MUTEX(un)));
15576 	ASSERT(bp != NULL);
15577 
15578 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
15579 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
15580 	}
15581 }
15582 
15583 
15584 /*
15585  *    Function: sd_validate_sense_data
15586  *
15587  * Description: Check the given sense data for validity.
15588  *		If the sense data is not valid, the command will
15589  *		be either failed or retried!
15590  *
15591  * Return Code: SD_SENSE_DATA_IS_INVALID
15592  *		SD_SENSE_DATA_IS_VALID
15593  *
15594  *     Context: May be called from interrupt context
15595  */
15596 
15597 static int
15598 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15599 	size_t actual_len)
15600 {
15601 	struct scsi_extended_sense *esp;
15602 	struct	scsi_pkt *pktp;
15603 	char	*msgp = NULL;
15604 
15605 	ASSERT(un != NULL);
15606 	ASSERT(mutex_owned(SD_MUTEX(un)));
15607 	ASSERT(bp != NULL);
15608 	ASSERT(bp != un->un_rqs_bp);
15609 	ASSERT(xp != NULL);
15610 
15611 	pktp = SD_GET_PKTP(bp);
15612 	ASSERT(pktp != NULL);
15613 
15614 	/*
15615 	 * Check the status of the RQS command (auto or manual).
15616 	 */
15617 	switch (xp->xb_sense_status & STATUS_MASK) {
15618 	case STATUS_GOOD:
15619 		break;
15620 
15621 	case STATUS_RESERVATION_CONFLICT:
15622 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15623 		return (SD_SENSE_DATA_IS_INVALID);
15624 
15625 	case STATUS_BUSY:
15626 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15627 		    "Busy Status on REQUEST SENSE\n");
15628 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
15629 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15630 		return (SD_SENSE_DATA_IS_INVALID);
15631 
15632 	case STATUS_QFULL:
15633 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15634 		    "QFULL Status on REQUEST SENSE\n");
15635 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
15636 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15637 		return (SD_SENSE_DATA_IS_INVALID);
15638 
15639 	case STATUS_CHECK:
15640 	case STATUS_TERMINATED:
15641 		msgp = "Check Condition on REQUEST SENSE\n";
15642 		goto sense_failed;
15643 
15644 	default:
15645 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
15646 		goto sense_failed;
15647 	}
15648 
15649 	/*
15650 	 * See if we got the minimum required amount of sense data.
15651 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
15652 	 * or less.
15653 	 */
15654 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
15655 	    (actual_len == 0)) {
15656 		msgp = "Request Sense couldn't get sense data\n";
15657 		goto sense_failed;
15658 	}
15659 
15660 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
15661 		msgp = "Not enough sense information\n";
15662 		goto sense_failed;
15663 	}
15664 
15665 	/*
15666 	 * We require the extended sense data
15667 	 */
15668 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
15669 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
15670 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15671 			static char tmp[8];
15672 			static char buf[148];
15673 			char *p = (char *)(xp->xb_sense_data);
15674 			int i;
15675 
15676 			mutex_enter(&sd_sense_mutex);
15677 			(void) strcpy(buf, "undecodable sense information:");
15678 			for (i = 0; i < actual_len; i++) {
15679 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
15680 				(void) strcpy(&buf[strlen(buf)], tmp);
15681 			}
15682 			i = strlen(buf);
15683 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
15684 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
15685 			mutex_exit(&sd_sense_mutex);
15686 		}
15687 		/* Note: Legacy behavior, fail the command with no retry */
15688 		sd_return_failed_command(un, bp, EIO);
15689 		return (SD_SENSE_DATA_IS_INVALID);
15690 	}
15691 
15692 	/*
15693 	 * Check that es_code is valid (es_class concatenated with es_code
15694 	 * make up the "response code" field.  es_class will always be 7, so
15695 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
15696 	 * format.
15697 	 */
15698 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
15699 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
15700 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
15701 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
15702 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
15703 		goto sense_failed;
15704 	}
15705 
15706 	return (SD_SENSE_DATA_IS_VALID);
15707 
15708 sense_failed:
15709 	/*
15710 	 * If the request sense failed (for whatever reason), attempt
15711 	 * to retry the original command.
15712 	 */
15713 #if defined(__i386) || defined(__amd64)
15714 	/*
15715 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
15716 	 * sddef.h for Sparc platform, and x86 uses 1 binary
15717 	 * for both SCSI/FC.
15718 	 * The SD_RETRY_DELAY value need to be adjusted here
15719 	 * when SD_RETRY_DELAY change in sddef.h
15720 	 */
15721 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15722 	    sd_print_sense_failed_msg, msgp, EIO,
15723 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
15724 #else
15725 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15726 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
15727 #endif
15728 
15729 	return (SD_SENSE_DATA_IS_INVALID);
15730 }
15731 
15732 
15733 
15734 /*
15735  *    Function: sd_decode_sense
15736  *
15737  * Description: Take recovery action(s) when SCSI Sense Data is received.
15738  *
15739  *     Context: Interrupt context.
15740  */
15741 
15742 static void
15743 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15744 	struct scsi_pkt *pktp)
15745 {
15746 	uint8_t sense_key;
15747 
15748 	ASSERT(un != NULL);
15749 	ASSERT(mutex_owned(SD_MUTEX(un)));
15750 	ASSERT(bp != NULL);
15751 	ASSERT(bp != un->un_rqs_bp);
15752 	ASSERT(xp != NULL);
15753 	ASSERT(pktp != NULL);
15754 
15755 	sense_key = scsi_sense_key(xp->xb_sense_data);
15756 
15757 	switch (sense_key) {
15758 	case KEY_NO_SENSE:
15759 		sd_sense_key_no_sense(un, bp, xp, pktp);
15760 		break;
15761 	case KEY_RECOVERABLE_ERROR:
15762 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
15763 		    bp, xp, pktp);
15764 		break;
15765 	case KEY_NOT_READY:
15766 		sd_sense_key_not_ready(un, xp->xb_sense_data,
15767 		    bp, xp, pktp);
15768 		break;
15769 	case KEY_MEDIUM_ERROR:
15770 	case KEY_HARDWARE_ERROR:
15771 		sd_sense_key_medium_or_hardware_error(un,
15772 		    xp->xb_sense_data, bp, xp, pktp);
15773 		break;
15774 	case KEY_ILLEGAL_REQUEST:
15775 		sd_sense_key_illegal_request(un, bp, xp, pktp);
15776 		break;
15777 	case KEY_UNIT_ATTENTION:
15778 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
15779 		    bp, xp, pktp);
15780 		break;
15781 	case KEY_WRITE_PROTECT:
15782 	case KEY_VOLUME_OVERFLOW:
15783 	case KEY_MISCOMPARE:
15784 		sd_sense_key_fail_command(un, bp, xp, pktp);
15785 		break;
15786 	case KEY_BLANK_CHECK:
15787 		sd_sense_key_blank_check(un, bp, xp, pktp);
15788 		break;
15789 	case KEY_ABORTED_COMMAND:
15790 		sd_sense_key_aborted_command(un, bp, xp, pktp);
15791 		break;
15792 	case KEY_VENDOR_UNIQUE:
15793 	case KEY_COPY_ABORTED:
15794 	case KEY_EQUAL:
15795 	case KEY_RESERVED:
15796 	default:
15797 		sd_sense_key_default(un, xp->xb_sense_data,
15798 		    bp, xp, pktp);
15799 		break;
15800 	}
15801 }
15802 
15803 
15804 /*
15805  *    Function: sd_dump_memory
15806  *
15807  * Description: Debug logging routine to print the contents of a user provided
15808  *		buffer. The output of the buffer is broken up into 256 byte
15809  *		segments due to a size constraint of the scsi_log.
15810  *		implementation.
15811  *
15812  *   Arguments: un - ptr to softstate
15813  *		comp - component mask
15814  *		title - "title" string to preceed data when printed
15815  *		data - ptr to data block to be printed
15816  *		len - size of data block to be printed
15817  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
15818  *
15819  *     Context: May be called from interrupt context
15820  */
15821 
15822 #define	SD_DUMP_MEMORY_BUF_SIZE	256
15823 
15824 static char *sd_dump_format_string[] = {
15825 		" 0x%02x",
15826 		" %c"
15827 };
15828 
15829 static void
15830 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
15831     int len, int fmt)
15832 {
15833 	int	i, j;
15834 	int	avail_count;
15835 	int	start_offset;
15836 	int	end_offset;
15837 	size_t	entry_len;
15838 	char	*bufp;
15839 	char	*local_buf;
15840 	char	*format_string;
15841 
15842 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
15843 
15844 	/*
15845 	 * In the debug version of the driver, this function is called from a
15846 	 * number of places which are NOPs in the release driver.
15847 	 * The debug driver therefore has additional methods of filtering
15848 	 * debug output.
15849 	 */
15850 #ifdef SDDEBUG
15851 	/*
15852 	 * In the debug version of the driver we can reduce the amount of debug
15853 	 * messages by setting sd_error_level to something other than
15854 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
15855 	 * sd_component_mask.
15856 	 */
15857 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
15858 	    (sd_error_level != SCSI_ERR_ALL)) {
15859 		return;
15860 	}
15861 	if (((sd_component_mask & comp) == 0) ||
15862 	    (sd_error_level != SCSI_ERR_ALL)) {
15863 		return;
15864 	}
15865 #else
15866 	if (sd_error_level != SCSI_ERR_ALL) {
15867 		return;
15868 	}
15869 #endif
15870 
15871 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
15872 	bufp = local_buf;
15873 	/*
15874 	 * Available length is the length of local_buf[], minus the
15875 	 * length of the title string, minus one for the ":", minus
15876 	 * one for the newline, minus one for the NULL terminator.
15877 	 * This gives the #bytes available for holding the printed
15878 	 * values from the given data buffer.
15879 	 */
15880 	if (fmt == SD_LOG_HEX) {
15881 		format_string = sd_dump_format_string[0];
15882 	} else /* SD_LOG_CHAR */ {
15883 		format_string = sd_dump_format_string[1];
15884 	}
15885 	/*
15886 	 * Available count is the number of elements from the given
15887 	 * data buffer that we can fit into the available length.
15888 	 * This is based upon the size of the format string used.
15889 	 * Make one entry and find it's size.
15890 	 */
15891 	(void) sprintf(bufp, format_string, data[0]);
15892 	entry_len = strlen(bufp);
15893 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
15894 
15895 	j = 0;
15896 	while (j < len) {
15897 		bufp = local_buf;
15898 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
15899 		start_offset = j;
15900 
15901 		end_offset = start_offset + avail_count;
15902 
15903 		(void) sprintf(bufp, "%s:", title);
15904 		bufp += strlen(bufp);
15905 		for (i = start_offset; ((i < end_offset) && (j < len));
15906 		    i++, j++) {
15907 			(void) sprintf(bufp, format_string, data[i]);
15908 			bufp += entry_len;
15909 		}
15910 		(void) sprintf(bufp, "\n");
15911 
15912 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
15913 	}
15914 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
15915 }
15916 
15917 /*
15918  *    Function: sd_print_sense_msg
15919  *
15920  * Description: Log a message based upon the given sense data.
15921  *
15922  *   Arguments: un - ptr to associated softstate
15923  *		bp - ptr to buf(9S) for the command
15924  *		arg - ptr to associate sd_sense_info struct
15925  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15926  *			or SD_NO_RETRY_ISSUED
15927  *
15928  *     Context: May be called from interrupt context
15929  */
15930 
15931 static void
15932 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15933 {
15934 	struct sd_xbuf	*xp;
15935 	struct scsi_pkt	*pktp;
15936 	uint8_t *sensep;
15937 	daddr_t request_blkno;
15938 	diskaddr_t err_blkno;
15939 	int severity;
15940 	int pfa_flag;
15941 	extern struct scsi_key_strings scsi_cmds[];
15942 
15943 	ASSERT(un != NULL);
15944 	ASSERT(mutex_owned(SD_MUTEX(un)));
15945 	ASSERT(bp != NULL);
15946 	xp = SD_GET_XBUF(bp);
15947 	ASSERT(xp != NULL);
15948 	pktp = SD_GET_PKTP(bp);
15949 	ASSERT(pktp != NULL);
15950 	ASSERT(arg != NULL);
15951 
15952 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
15953 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
15954 
15955 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
15956 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
15957 		severity = SCSI_ERR_RETRYABLE;
15958 	}
15959 
15960 	/* Use absolute block number for the request block number */
15961 	request_blkno = xp->xb_blkno;
15962 
15963 	/*
15964 	 * Now try to get the error block number from the sense data
15965 	 */
15966 	sensep = xp->xb_sense_data;
15967 
15968 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
15969 	    (uint64_t *)&err_blkno)) {
15970 		/*
15971 		 * We retrieved the error block number from the information
15972 		 * portion of the sense data.
15973 		 *
15974 		 * For USCSI commands we are better off using the error
15975 		 * block no. as the requested block no. (This is the best
15976 		 * we can estimate.)
15977 		 */
15978 		if ((SD_IS_BUFIO(xp) == FALSE) &&
15979 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
15980 			request_blkno = err_blkno;
15981 		}
15982 	} else {
15983 		/*
15984 		 * Without the es_valid bit set (for fixed format) or an
15985 		 * information descriptor (for descriptor format) we cannot
15986 		 * be certain of the error blkno, so just use the
15987 		 * request_blkno.
15988 		 */
15989 		err_blkno = (diskaddr_t)request_blkno;
15990 	}
15991 
15992 	/*
15993 	 * The following will log the buffer contents for the release driver
15994 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
15995 	 * level is set to verbose.
15996 	 */
15997 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
15998 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15999 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
16000 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
16001 
16002 	if (pfa_flag == FALSE) {
16003 		/* This is normally only set for USCSI */
16004 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
16005 			return;
16006 		}
16007 
16008 		if ((SD_IS_BUFIO(xp) == TRUE) &&
16009 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
16010 		    (severity < sd_error_level))) {
16011 			return;
16012 		}
16013 	}
16014 
16015 	/*
16016 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
16017 	 */
16018 	if ((SD_IS_LSI(un)) &&
16019 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
16020 	    (scsi_sense_asc(sensep) == 0x94) &&
16021 	    (scsi_sense_ascq(sensep) == 0x01)) {
16022 		un->un_sonoma_failure_count++;
16023 		if (un->un_sonoma_failure_count > 1) {
16024 			return;
16025 		}
16026 	}
16027 
16028 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
16029 	    request_blkno, err_blkno, scsi_cmds,
16030 	    (struct scsi_extended_sense *)sensep,
16031 	    un->un_additional_codes, NULL);
16032 }
16033 
16034 /*
16035  *    Function: sd_sense_key_no_sense
16036  *
16037  * Description: Recovery action when sense data was not received.
16038  *
16039  *     Context: May be called from interrupt context
16040  */
16041 
16042 static void
16043 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
16044 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16045 {
16046 	struct sd_sense_info	si;
16047 
16048 	ASSERT(un != NULL);
16049 	ASSERT(mutex_owned(SD_MUTEX(un)));
16050 	ASSERT(bp != NULL);
16051 	ASSERT(xp != NULL);
16052 	ASSERT(pktp != NULL);
16053 
16054 	si.ssi_severity = SCSI_ERR_FATAL;
16055 	si.ssi_pfa_flag = FALSE;
16056 
16057 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
16058 
16059 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16060 	    &si, EIO, (clock_t)0, NULL);
16061 }
16062 
16063 
16064 /*
16065  *    Function: sd_sense_key_recoverable_error
16066  *
16067  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
16068  *
16069  *     Context: May be called from interrupt context
16070  */
16071 
16072 static void
16073 sd_sense_key_recoverable_error(struct sd_lun *un,
16074 	uint8_t *sense_datap,
16075 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16076 {
16077 	struct sd_sense_info	si;
16078 	uint8_t asc = scsi_sense_asc(sense_datap);
16079 
16080 	ASSERT(un != NULL);
16081 	ASSERT(mutex_owned(SD_MUTEX(un)));
16082 	ASSERT(bp != NULL);
16083 	ASSERT(xp != NULL);
16084 	ASSERT(pktp != NULL);
16085 
16086 	/*
16087 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
16088 	 */
16089 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
16090 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16091 		si.ssi_severity = SCSI_ERR_INFO;
16092 		si.ssi_pfa_flag = TRUE;
16093 	} else {
16094 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
16095 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
16096 		si.ssi_severity = SCSI_ERR_RECOVERED;
16097 		si.ssi_pfa_flag = FALSE;
16098 	}
16099 
16100 	if (pktp->pkt_resid == 0) {
16101 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16102 		sd_return_command(un, bp);
16103 		return;
16104 	}
16105 
16106 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16107 	    &si, EIO, (clock_t)0, NULL);
16108 }
16109 
16110 
16111 
16112 
16113 /*
16114  *    Function: sd_sense_key_not_ready
16115  *
16116  * Description: Recovery actions for a SCSI "Not Ready" sense key.
16117  *
16118  *     Context: May be called from interrupt context
16119  */
16120 
16121 static void
16122 sd_sense_key_not_ready(struct sd_lun *un,
16123 	uint8_t *sense_datap,
16124 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16125 {
16126 	struct sd_sense_info	si;
16127 	uint8_t asc = scsi_sense_asc(sense_datap);
16128 	uint8_t ascq = scsi_sense_ascq(sense_datap);
16129 
16130 	ASSERT(un != NULL);
16131 	ASSERT(mutex_owned(SD_MUTEX(un)));
16132 	ASSERT(bp != NULL);
16133 	ASSERT(xp != NULL);
16134 	ASSERT(pktp != NULL);
16135 
16136 	si.ssi_severity = SCSI_ERR_FATAL;
16137 	si.ssi_pfa_flag = FALSE;
16138 
16139 	/*
16140 	 * Update error stats after first NOT READY error. Disks may have
16141 	 * been powered down and may need to be restarted.  For CDROMs,
16142 	 * report NOT READY errors only if media is present.
16143 	 */
16144 	if ((ISCD(un) && (asc == 0x3A)) ||
16145 	    (xp->xb_nr_retry_count > 0)) {
16146 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16147 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
16148 	}
16149 
16150 	/*
16151 	 * Just fail if the "not ready" retry limit has been reached.
16152 	 */
16153 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
16154 		/* Special check for error message printing for removables. */
16155 		if (un->un_f_has_removable_media && (asc == 0x04) &&
16156 		    (ascq >= 0x04)) {
16157 			si.ssi_severity = SCSI_ERR_ALL;
16158 		}
16159 		goto fail_command;
16160 	}
16161 
16162 	/*
16163 	 * Check the ASC and ASCQ in the sense data as needed, to determine
16164 	 * what to do.
16165 	 */
16166 	switch (asc) {
16167 	case 0x04:	/* LOGICAL UNIT NOT READY */
16168 		/*
16169 		 * disk drives that don't spin up result in a very long delay
16170 		 * in format without warning messages. We will log a message
16171 		 * if the error level is set to verbose.
16172 		 */
16173 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16174 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16175 			    "logical unit not ready, resetting disk\n");
16176 		}
16177 
16178 		/*
16179 		 * There are different requirements for CDROMs and disks for
16180 		 * the number of retries.  If a CD-ROM is giving this, it is
16181 		 * probably reading TOC and is in the process of getting
16182 		 * ready, so we should keep on trying for a long time to make
16183 		 * sure that all types of media are taken in account (for
16184 		 * some media the drive takes a long time to read TOC).  For
16185 		 * disks we do not want to retry this too many times as this
16186 		 * can cause a long hang in format when the drive refuses to
16187 		 * spin up (a very common failure).
16188 		 */
16189 		switch (ascq) {
16190 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
16191 			/*
16192 			 * Disk drives frequently refuse to spin up which
16193 			 * results in a very long hang in format without
16194 			 * warning messages.
16195 			 *
16196 			 * Note: This code preserves the legacy behavior of
16197 			 * comparing xb_nr_retry_count against zero for fibre
16198 			 * channel targets instead of comparing against the
16199 			 * un_reset_retry_count value.  The reason for this
16200 			 * discrepancy has been so utterly lost beneath the
16201 			 * Sands of Time that even Indiana Jones could not
16202 			 * find it.
16203 			 */
16204 			if (un->un_f_is_fibre == TRUE) {
16205 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
16206 				    (xp->xb_nr_retry_count > 0)) &&
16207 				    (un->un_startstop_timeid == NULL)) {
16208 					scsi_log(SD_DEVINFO(un), sd_label,
16209 					    CE_WARN, "logical unit not ready, "
16210 					    "resetting disk\n");
16211 					sd_reset_target(un, pktp);
16212 				}
16213 			} else {
16214 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
16215 				    (xp->xb_nr_retry_count >
16216 				    un->un_reset_retry_count)) &&
16217 				    (un->un_startstop_timeid == NULL)) {
16218 					scsi_log(SD_DEVINFO(un), sd_label,
16219 					    CE_WARN, "logical unit not ready, "
16220 					    "resetting disk\n");
16221 					sd_reset_target(un, pktp);
16222 				}
16223 			}
16224 			break;
16225 
16226 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
16227 			/*
16228 			 * If the target is in the process of becoming
16229 			 * ready, just proceed with the retry. This can
16230 			 * happen with CD-ROMs that take a long time to
16231 			 * read TOC after a power cycle or reset.
16232 			 */
16233 			goto do_retry;
16234 
16235 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
16236 			break;
16237 
16238 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
16239 			/*
16240 			 * Retries cannot help here so just fail right away.
16241 			 */
16242 			goto fail_command;
16243 
16244 		case 0x88:
16245 			/*
16246 			 * Vendor-unique code for T3/T4: it indicates a
16247 			 * path problem in a mutipathed config, but as far as
16248 			 * the target driver is concerned it equates to a fatal
16249 			 * error, so we should just fail the command right away
16250 			 * (without printing anything to the console). If this
16251 			 * is not a T3/T4, fall thru to the default recovery
16252 			 * action.
16253 			 * T3/T4 is FC only, don't need to check is_fibre
16254 			 */
16255 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
16256 				sd_return_failed_command(un, bp, EIO);
16257 				return;
16258 			}
16259 			/* FALLTHRU */
16260 
16261 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
16262 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
16263 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
16264 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
16265 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
16266 		default:    /* Possible future codes in SCSI spec? */
16267 			/*
16268 			 * For removable-media devices, do not retry if
16269 			 * ASCQ > 2 as these result mostly from USCSI commands
16270 			 * on MMC devices issued to check status of an
16271 			 * operation initiated in immediate mode.  Also for
16272 			 * ASCQ >= 4 do not print console messages as these
16273 			 * mainly represent a user-initiated operation
16274 			 * instead of a system failure.
16275 			 */
16276 			if (un->un_f_has_removable_media) {
16277 				si.ssi_severity = SCSI_ERR_ALL;
16278 				goto fail_command;
16279 			}
16280 			break;
16281 		}
16282 
16283 		/*
16284 		 * As part of our recovery attempt for the NOT READY
16285 		 * condition, we issue a START STOP UNIT command. However
16286 		 * we want to wait for a short delay before attempting this
16287 		 * as there may still be more commands coming back from the
16288 		 * target with the check condition. To do this we use
16289 		 * timeout(9F) to call sd_start_stop_unit_callback() after
16290 		 * the delay interval expires. (sd_start_stop_unit_callback()
16291 		 * dispatches sd_start_stop_unit_task(), which will issue
16292 		 * the actual START STOP UNIT command. The delay interval
16293 		 * is one-half of the delay that we will use to retry the
16294 		 * command that generated the NOT READY condition.
16295 		 *
16296 		 * Note that we could just dispatch sd_start_stop_unit_task()
16297 		 * from here and allow it to sleep for the delay interval,
16298 		 * but then we would be tying up the taskq thread
16299 		 * uncesessarily for the duration of the delay.
16300 		 *
16301 		 * Do not issue the START STOP UNIT if the current command
16302 		 * is already a START STOP UNIT.
16303 		 */
16304 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
16305 			break;
16306 		}
16307 
16308 		/*
16309 		 * Do not schedule the timeout if one is already pending.
16310 		 */
16311 		if (un->un_startstop_timeid != NULL) {
16312 			SD_INFO(SD_LOG_ERROR, un,
16313 			    "sd_sense_key_not_ready: restart already issued to"
16314 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
16315 			    ddi_get_instance(SD_DEVINFO(un)));
16316 			break;
16317 		}
16318 
16319 		/*
16320 		 * Schedule the START STOP UNIT command, then queue the command
16321 		 * for a retry.
16322 		 *
16323 		 * Note: A timeout is not scheduled for this retry because we
16324 		 * want the retry to be serial with the START_STOP_UNIT. The
16325 		 * retry will be started when the START_STOP_UNIT is completed
16326 		 * in sd_start_stop_unit_task.
16327 		 */
16328 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
16329 		    un, SD_BSY_TIMEOUT / 2);
16330 		xp->xb_nr_retry_count++;
16331 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
16332 		return;
16333 
16334 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
16335 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16336 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16337 			    "unit does not respond to selection\n");
16338 		}
16339 		break;
16340 
16341 	case 0x3A:	/* MEDIUM NOT PRESENT */
16342 		if (sd_error_level >= SCSI_ERR_FATAL) {
16343 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16344 			    "Caddy not inserted in drive\n");
16345 		}
16346 
16347 		sr_ejected(un);
16348 		un->un_mediastate = DKIO_EJECTED;
16349 		/* The state has changed, inform the media watch routines */
16350 		cv_broadcast(&un->un_state_cv);
16351 		/* Just fail if no media is present in the drive. */
16352 		goto fail_command;
16353 
16354 	default:
16355 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16356 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
16357 			    "Unit not Ready. Additional sense code 0x%x\n",
16358 			    asc);
16359 		}
16360 		break;
16361 	}
16362 
16363 do_retry:
16364 
16365 	/*
16366 	 * Retry the command, as some targets may report NOT READY for
16367 	 * several seconds after being reset.
16368 	 */
16369 	xp->xb_nr_retry_count++;
16370 	si.ssi_severity = SCSI_ERR_RETRYABLE;
16371 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
16372 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
16373 
16374 	return;
16375 
16376 fail_command:
16377 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16378 	sd_return_failed_command(un, bp, EIO);
16379 }
16380 
16381 
16382 
16383 /*
16384  *    Function: sd_sense_key_medium_or_hardware_error
16385  *
16386  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
16387  *		sense key.
16388  *
16389  *     Context: May be called from interrupt context
16390  */
16391 
16392 static void
16393 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
16394 	uint8_t *sense_datap,
16395 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16396 {
16397 	struct sd_sense_info	si;
16398 	uint8_t sense_key = scsi_sense_key(sense_datap);
16399 	uint8_t asc = scsi_sense_asc(sense_datap);
16400 
16401 	ASSERT(un != NULL);
16402 	ASSERT(mutex_owned(SD_MUTEX(un)));
16403 	ASSERT(bp != NULL);
16404 	ASSERT(xp != NULL);
16405 	ASSERT(pktp != NULL);
16406 
16407 	si.ssi_severity = SCSI_ERR_FATAL;
16408 	si.ssi_pfa_flag = FALSE;
16409 
16410 	if (sense_key == KEY_MEDIUM_ERROR) {
16411 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
16412 	}
16413 
16414 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16415 
16416 	if ((un->un_reset_retry_count != 0) &&
16417 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
16418 		mutex_exit(SD_MUTEX(un));
16419 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
16420 		if (un->un_f_allow_bus_device_reset == TRUE) {
16421 
16422 			boolean_t try_resetting_target = B_TRUE;
16423 
16424 			/*
16425 			 * We need to be able to handle specific ASC when we are
16426 			 * handling a KEY_HARDWARE_ERROR. In particular
16427 			 * taking the default action of resetting the target may
16428 			 * not be the appropriate way to attempt recovery.
16429 			 * Resetting a target because of a single LUN failure
16430 			 * victimizes all LUNs on that target.
16431 			 *
16432 			 * This is true for the LSI arrays, if an LSI
16433 			 * array controller returns an ASC of 0x84 (LUN Dead) we
16434 			 * should trust it.
16435 			 */
16436 
16437 			if (sense_key == KEY_HARDWARE_ERROR) {
16438 				switch (asc) {
16439 				case 0x84:
16440 					if (SD_IS_LSI(un)) {
16441 						try_resetting_target = B_FALSE;
16442 					}
16443 					break;
16444 				default:
16445 					break;
16446 				}
16447 			}
16448 
16449 			if (try_resetting_target == B_TRUE) {
16450 				int reset_retval = 0;
16451 				if (un->un_f_lun_reset_enabled == TRUE) {
16452 					SD_TRACE(SD_LOG_IO_CORE, un,
16453 					    "sd_sense_key_medium_or_hardware_"
16454 					    "error: issuing RESET_LUN\n");
16455 					reset_retval =
16456 					    scsi_reset(SD_ADDRESS(un),
16457 					    RESET_LUN);
16458 				}
16459 				if (reset_retval == 0) {
16460 					SD_TRACE(SD_LOG_IO_CORE, un,
16461 					    "sd_sense_key_medium_or_hardware_"
16462 					    "error: issuing RESET_TARGET\n");
16463 					(void) scsi_reset(SD_ADDRESS(un),
16464 					    RESET_TARGET);
16465 				}
16466 			}
16467 		}
16468 		mutex_enter(SD_MUTEX(un));
16469 	}
16470 
16471 	/*
16472 	 * This really ought to be a fatal error, but we will retry anyway
16473 	 * as some drives report this as a spurious error.
16474 	 */
16475 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16476 	    &si, EIO, (clock_t)0, NULL);
16477 }
16478 
16479 
16480 
16481 /*
16482  *    Function: sd_sense_key_illegal_request
16483  *
16484  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
16485  *
16486  *     Context: May be called from interrupt context
16487  */
16488 
16489 static void
16490 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
16491 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16492 {
16493 	struct sd_sense_info	si;
16494 
16495 	ASSERT(un != NULL);
16496 	ASSERT(mutex_owned(SD_MUTEX(un)));
16497 	ASSERT(bp != NULL);
16498 	ASSERT(xp != NULL);
16499 	ASSERT(pktp != NULL);
16500 
16501 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
16502 
16503 	si.ssi_severity = SCSI_ERR_INFO;
16504 	si.ssi_pfa_flag = FALSE;
16505 
16506 	/* Pointless to retry if the target thinks it's an illegal request */
16507 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16508 	sd_return_failed_command(un, bp, EIO);
16509 }
16510 
16511 
16512 
16513 
16514 /*
16515  *    Function: sd_sense_key_unit_attention
16516  *
16517  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
16518  *
16519  *     Context: May be called from interrupt context
16520  */
16521 
16522 static void
16523 sd_sense_key_unit_attention(struct sd_lun *un,
16524 	uint8_t *sense_datap,
16525 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16526 {
16527 	/*
16528 	 * For UNIT ATTENTION we allow retries for one minute. Devices
16529 	 * like Sonoma can return UNIT ATTENTION close to a minute
16530 	 * under certain conditions.
16531 	 */
16532 	int	retry_check_flag = SD_RETRIES_UA;
16533 	boolean_t	kstat_updated = B_FALSE;
16534 	struct	sd_sense_info		si;
16535 	uint8_t asc = scsi_sense_asc(sense_datap);
16536 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
16537 
16538 	ASSERT(un != NULL);
16539 	ASSERT(mutex_owned(SD_MUTEX(un)));
16540 	ASSERT(bp != NULL);
16541 	ASSERT(xp != NULL);
16542 	ASSERT(pktp != NULL);
16543 
16544 	si.ssi_severity = SCSI_ERR_INFO;
16545 	si.ssi_pfa_flag = FALSE;
16546 
16547 
16548 	switch (asc) {
16549 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
16550 		if (sd_report_pfa != 0) {
16551 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16552 			si.ssi_pfa_flag = TRUE;
16553 			retry_check_flag = SD_RETRIES_STANDARD;
16554 			goto do_retry;
16555 		}
16556 
16557 		break;
16558 
16559 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
16560 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
16561 			un->un_resvd_status |=
16562 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
16563 		}
16564 #ifdef _LP64
16565 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
16566 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
16567 			    un, KM_NOSLEEP) == 0) {
16568 				/*
16569 				 * If we can't dispatch the task we'll just
16570 				 * live without descriptor sense.  We can
16571 				 * try again on the next "unit attention"
16572 				 */
16573 				SD_ERROR(SD_LOG_ERROR, un,
16574 				    "sd_sense_key_unit_attention: "
16575 				    "Could not dispatch "
16576 				    "sd_reenable_dsense_task\n");
16577 			}
16578 		}
16579 #endif /* _LP64 */
16580 		/* FALLTHRU */
16581 
16582 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
16583 		if (!un->un_f_has_removable_media) {
16584 			break;
16585 		}
16586 
16587 		/*
16588 		 * When we get a unit attention from a removable-media device,
16589 		 * it may be in a state that will take a long time to recover
16590 		 * (e.g., from a reset).  Since we are executing in interrupt
16591 		 * context here, we cannot wait around for the device to come
16592 		 * back. So hand this command off to sd_media_change_task()
16593 		 * for deferred processing under taskq thread context. (Note
16594 		 * that the command still may be failed if a problem is
16595 		 * encountered at a later time.)
16596 		 */
16597 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
16598 		    KM_NOSLEEP) == 0) {
16599 			/*
16600 			 * Cannot dispatch the request so fail the command.
16601 			 */
16602 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
16603 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16604 			si.ssi_severity = SCSI_ERR_FATAL;
16605 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16606 			sd_return_failed_command(un, bp, EIO);
16607 		}
16608 
16609 		/*
16610 		 * If failed to dispatch sd_media_change_task(), we already
16611 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
16612 		 * we should update kstat later if it encounters an error. So,
16613 		 * we update kstat_updated flag here.
16614 		 */
16615 		kstat_updated = B_TRUE;
16616 
16617 		/*
16618 		 * Either the command has been successfully dispatched to a
16619 		 * task Q for retrying, or the dispatch failed. In either case
16620 		 * do NOT retry again by calling sd_retry_command. This sets up
16621 		 * two retries of the same command and when one completes and
16622 		 * frees the resources the other will access freed memory,
16623 		 * a bad thing.
16624 		 */
16625 		return;
16626 
16627 	default:
16628 		break;
16629 	}
16630 
16631 	/*
16632 	 * ASC  ASCQ
16633 	 *  2A   09	Capacity data has changed
16634 	 *  2A   01	Mode parameters changed
16635 	 *  3F   0E	Reported luns data has changed
16636 	 * Arrays that support logical unit expansion should report
16637 	 * capacity changes(2Ah/09). Mode parameters changed and
16638 	 * reported luns data has changed are the approximation.
16639 	 */
16640 	if (((asc == 0x2a) && (ascq == 0x09)) ||
16641 	    ((asc == 0x2a) && (ascq == 0x01)) ||
16642 	    ((asc == 0x3f) && (ascq == 0x0e))) {
16643 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
16644 		    KM_NOSLEEP) == 0) {
16645 			SD_ERROR(SD_LOG_ERROR, un,
16646 			    "sd_sense_key_unit_attention: "
16647 			    "Could not dispatch sd_target_change_task\n");
16648 		}
16649 	}
16650 
16651 	/*
16652 	 * Update kstat if we haven't done that.
16653 	 */
16654 	if (!kstat_updated) {
16655 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16656 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16657 	}
16658 
16659 do_retry:
16660 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
16661 	    EIO, SD_UA_RETRY_DELAY, NULL);
16662 }
16663 
16664 
16665 
16666 /*
16667  *    Function: sd_sense_key_fail_command
16668  *
16669  * Description: Use to fail a command when we don't like the sense key that
16670  *		was returned.
16671  *
16672  *     Context: May be called from interrupt context
16673  */
16674 
16675 static void
16676 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
16677 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16678 {
16679 	struct sd_sense_info	si;
16680 
16681 	ASSERT(un != NULL);
16682 	ASSERT(mutex_owned(SD_MUTEX(un)));
16683 	ASSERT(bp != NULL);
16684 	ASSERT(xp != NULL);
16685 	ASSERT(pktp != NULL);
16686 
16687 	si.ssi_severity = SCSI_ERR_FATAL;
16688 	si.ssi_pfa_flag = FALSE;
16689 
16690 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16691 	sd_return_failed_command(un, bp, EIO);
16692 }
16693 
16694 
16695 
16696 /*
16697  *    Function: sd_sense_key_blank_check
16698  *
16699  * Description: Recovery actions for a SCSI "Blank Check" sense key.
16700  *		Has no monetary connotation.
16701  *
16702  *     Context: May be called from interrupt context
16703  */
16704 
16705 static void
16706 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
16707 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16708 {
16709 	struct sd_sense_info	si;
16710 
16711 	ASSERT(un != NULL);
16712 	ASSERT(mutex_owned(SD_MUTEX(un)));
16713 	ASSERT(bp != NULL);
16714 	ASSERT(xp != NULL);
16715 	ASSERT(pktp != NULL);
16716 
16717 	/*
16718 	 * Blank check is not fatal for removable devices, therefore
16719 	 * it does not require a console message.
16720 	 */
16721 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
16722 	    SCSI_ERR_FATAL;
16723 	si.ssi_pfa_flag = FALSE;
16724 
16725 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16726 	sd_return_failed_command(un, bp, EIO);
16727 }
16728 
16729 
16730 
16731 
16732 /*
16733  *    Function: sd_sense_key_aborted_command
16734  *
16735  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
16736  *
16737  *     Context: May be called from interrupt context
16738  */
16739 
16740 static void
16741 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
16742 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16743 {
16744 	struct sd_sense_info	si;
16745 
16746 	ASSERT(un != NULL);
16747 	ASSERT(mutex_owned(SD_MUTEX(un)));
16748 	ASSERT(bp != NULL);
16749 	ASSERT(xp != NULL);
16750 	ASSERT(pktp != NULL);
16751 
16752 	si.ssi_severity = SCSI_ERR_FATAL;
16753 	si.ssi_pfa_flag = FALSE;
16754 
16755 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16756 
16757 	/*
16758 	 * This really ought to be a fatal error, but we will retry anyway
16759 	 * as some drives report this as a spurious error.
16760 	 */
16761 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16762 	    &si, EIO, drv_usectohz(100000), NULL);
16763 }
16764 
16765 
16766 
16767 /*
16768  *    Function: sd_sense_key_default
16769  *
16770  * Description: Default recovery action for several SCSI sense keys (basically
16771  *		attempts a retry).
16772  *
16773  *     Context: May be called from interrupt context
16774  */
16775 
16776 static void
16777 sd_sense_key_default(struct sd_lun *un,
16778 	uint8_t *sense_datap,
16779 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16780 {
16781 	struct sd_sense_info	si;
16782 	uint8_t sense_key = scsi_sense_key(sense_datap);
16783 
16784 	ASSERT(un != NULL);
16785 	ASSERT(mutex_owned(SD_MUTEX(un)));
16786 	ASSERT(bp != NULL);
16787 	ASSERT(xp != NULL);
16788 	ASSERT(pktp != NULL);
16789 
16790 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16791 
16792 	/*
16793 	 * Undecoded sense key.	Attempt retries and hope that will fix
16794 	 * the problem.  Otherwise, we're dead.
16795 	 */
16796 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16797 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16798 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
16799 	}
16800 
16801 	si.ssi_severity = SCSI_ERR_FATAL;
16802 	si.ssi_pfa_flag = FALSE;
16803 
16804 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16805 	    &si, EIO, (clock_t)0, NULL);
16806 }
16807 
16808 
16809 
16810 /*
16811  *    Function: sd_print_retry_msg
16812  *
16813  * Description: Print a message indicating the retry action being taken.
16814  *
16815  *   Arguments: un - ptr to associated softstate
16816  *		bp - ptr to buf(9S) for the command
16817  *		arg - not used.
16818  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16819  *			or SD_NO_RETRY_ISSUED
16820  *
16821  *     Context: May be called from interrupt context
16822  */
16823 /* ARGSUSED */
16824 static void
16825 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
16826 {
16827 	struct sd_xbuf	*xp;
16828 	struct scsi_pkt *pktp;
16829 	char *reasonp;
16830 	char *msgp;
16831 
16832 	ASSERT(un != NULL);
16833 	ASSERT(mutex_owned(SD_MUTEX(un)));
16834 	ASSERT(bp != NULL);
16835 	pktp = SD_GET_PKTP(bp);
16836 	ASSERT(pktp != NULL);
16837 	xp = SD_GET_XBUF(bp);
16838 	ASSERT(xp != NULL);
16839 
16840 	ASSERT(!mutex_owned(&un->un_pm_mutex));
16841 	mutex_enter(&un->un_pm_mutex);
16842 	if ((un->un_state == SD_STATE_SUSPENDED) ||
16843 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
16844 	    (pktp->pkt_flags & FLAG_SILENT)) {
16845 		mutex_exit(&un->un_pm_mutex);
16846 		goto update_pkt_reason;
16847 	}
16848 	mutex_exit(&un->un_pm_mutex);
16849 
16850 	/*
16851 	 * Suppress messages if they are all the same pkt_reason; with
16852 	 * TQ, many (up to 256) are returned with the same pkt_reason.
16853 	 * If we are in panic, then suppress the retry messages.
16854 	 */
16855 	switch (flag) {
16856 	case SD_NO_RETRY_ISSUED:
16857 		msgp = "giving up";
16858 		break;
16859 	case SD_IMMEDIATE_RETRY_ISSUED:
16860 	case SD_DELAYED_RETRY_ISSUED:
16861 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
16862 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
16863 		    (sd_error_level != SCSI_ERR_ALL))) {
16864 			return;
16865 		}
16866 		msgp = "retrying command";
16867 		break;
16868 	default:
16869 		goto update_pkt_reason;
16870 	}
16871 
16872 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
16873 	    scsi_rname(pktp->pkt_reason));
16874 
16875 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16876 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
16877 
16878 update_pkt_reason:
16879 	/*
16880 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
16881 	 * This is to prevent multiple console messages for the same failure
16882 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
16883 	 * when the command is retried successfully because there still may be
16884 	 * more commands coming back with the same value of pktp->pkt_reason.
16885 	 */
16886 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
16887 		un->un_last_pkt_reason = pktp->pkt_reason;
16888 	}
16889 }
16890 
16891 
16892 /*
16893  *    Function: sd_print_cmd_incomplete_msg
16894  *
16895  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
16896  *
16897  *   Arguments: un - ptr to associated softstate
16898  *		bp - ptr to buf(9S) for the command
16899  *		arg - passed to sd_print_retry_msg()
16900  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16901  *			or SD_NO_RETRY_ISSUED
16902  *
16903  *     Context: May be called from interrupt context
16904  */
16905 
16906 static void
16907 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
16908 	int code)
16909 {
16910 	dev_info_t	*dip;
16911 
16912 	ASSERT(un != NULL);
16913 	ASSERT(mutex_owned(SD_MUTEX(un)));
16914 	ASSERT(bp != NULL);
16915 
16916 	switch (code) {
16917 	case SD_NO_RETRY_ISSUED:
16918 		/* Command was failed. Someone turned off this target? */
16919 		if (un->un_state != SD_STATE_OFFLINE) {
16920 			/*
16921 			 * Suppress message if we are detaching and
16922 			 * device has been disconnected
16923 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
16924 			 * private interface and not part of the DDI
16925 			 */
16926 			dip = un->un_sd->sd_dev;
16927 			if (!(DEVI_IS_DETACHING(dip) &&
16928 			    DEVI_IS_DEVICE_REMOVED(dip))) {
16929 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16930 				"disk not responding to selection\n");
16931 			}
16932 			New_state(un, SD_STATE_OFFLINE);
16933 		}
16934 		break;
16935 
16936 	case SD_DELAYED_RETRY_ISSUED:
16937 	case SD_IMMEDIATE_RETRY_ISSUED:
16938 	default:
16939 		/* Command was successfully queued for retry */
16940 		sd_print_retry_msg(un, bp, arg, code);
16941 		break;
16942 	}
16943 }
16944 
16945 
16946 /*
16947  *    Function: sd_pkt_reason_cmd_incomplete
16948  *
16949  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
16950  *
16951  *     Context: May be called from interrupt context
16952  */
16953 
16954 static void
16955 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
16956 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16957 {
16958 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
16959 
16960 	ASSERT(un != NULL);
16961 	ASSERT(mutex_owned(SD_MUTEX(un)));
16962 	ASSERT(bp != NULL);
16963 	ASSERT(xp != NULL);
16964 	ASSERT(pktp != NULL);
16965 
16966 	/* Do not do a reset if selection did not complete */
16967 	/* Note: Should this not just check the bit? */
16968 	if (pktp->pkt_state != STATE_GOT_BUS) {
16969 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16970 		sd_reset_target(un, pktp);
16971 	}
16972 
16973 	/*
16974 	 * If the target was not successfully selected, then set
16975 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
16976 	 * with the target, and further retries and/or commands are
16977 	 * likely to take a long time.
16978 	 */
16979 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
16980 		flag |= SD_RETRIES_FAILFAST;
16981 	}
16982 
16983 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16984 
16985 	sd_retry_command(un, bp, flag,
16986 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16987 }
16988 
16989 
16990 
16991 /*
16992  *    Function: sd_pkt_reason_cmd_tran_err
16993  *
16994  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
16995  *
16996  *     Context: May be called from interrupt context
16997  */
16998 
16999 static void
17000 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
17001 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17002 {
17003 	ASSERT(un != NULL);
17004 	ASSERT(mutex_owned(SD_MUTEX(un)));
17005 	ASSERT(bp != NULL);
17006 	ASSERT(xp != NULL);
17007 	ASSERT(pktp != NULL);
17008 
17009 	/*
17010 	 * Do not reset if we got a parity error, or if
17011 	 * selection did not complete.
17012 	 */
17013 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17014 	/* Note: Should this not just check the bit for pkt_state? */
17015 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
17016 	    (pktp->pkt_state != STATE_GOT_BUS)) {
17017 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
17018 		sd_reset_target(un, pktp);
17019 	}
17020 
17021 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17022 
17023 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17024 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17025 }
17026 
17027 
17028 
17029 /*
17030  *    Function: sd_pkt_reason_cmd_reset
17031  *
17032  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
17033  *
17034  *     Context: May be called from interrupt context
17035  */
17036 
17037 static void
17038 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
17039 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17040 {
17041 	ASSERT(un != NULL);
17042 	ASSERT(mutex_owned(SD_MUTEX(un)));
17043 	ASSERT(bp != NULL);
17044 	ASSERT(xp != NULL);
17045 	ASSERT(pktp != NULL);
17046 
17047 	/* The target may still be running the command, so try to reset. */
17048 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17049 	sd_reset_target(un, pktp);
17050 
17051 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17052 
17053 	/*
17054 	 * If pkt_reason is CMD_RESET chances are that this pkt got
17055 	 * reset because another target on this bus caused it. The target
17056 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
17057 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
17058 	 */
17059 
17060 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
17061 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17062 }
17063 
17064 
17065 
17066 
17067 /*
17068  *    Function: sd_pkt_reason_cmd_aborted
17069  *
17070  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
17071  *
17072  *     Context: May be called from interrupt context
17073  */
17074 
17075 static void
17076 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
17077 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17078 {
17079 	ASSERT(un != NULL);
17080 	ASSERT(mutex_owned(SD_MUTEX(un)));
17081 	ASSERT(bp != NULL);
17082 	ASSERT(xp != NULL);
17083 	ASSERT(pktp != NULL);
17084 
17085 	/* The target may still be running the command, so try to reset. */
17086 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17087 	sd_reset_target(un, pktp);
17088 
17089 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17090 
17091 	/*
17092 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
17093 	 * aborted because another target on this bus caused it. The target
17094 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
17095 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
17096 	 */
17097 
17098 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
17099 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17100 }
17101 
17102 
17103 
17104 /*
17105  *    Function: sd_pkt_reason_cmd_timeout
17106  *
17107  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
17108  *
17109  *     Context: May be called from interrupt context
17110  */
17111 
17112 static void
17113 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
17114 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17115 {
17116 	ASSERT(un != NULL);
17117 	ASSERT(mutex_owned(SD_MUTEX(un)));
17118 	ASSERT(bp != NULL);
17119 	ASSERT(xp != NULL);
17120 	ASSERT(pktp != NULL);
17121 
17122 
17123 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17124 	sd_reset_target(un, pktp);
17125 
17126 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17127 
17128 	/*
17129 	 * A command timeout indicates that we could not establish
17130 	 * communication with the target, so set SD_RETRIES_FAILFAST
17131 	 * as further retries/commands are likely to take a long time.
17132 	 */
17133 	sd_retry_command(un, bp,
17134 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
17135 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17136 }
17137 
17138 
17139 
17140 /*
17141  *    Function: sd_pkt_reason_cmd_unx_bus_free
17142  *
17143  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
17144  *
17145  *     Context: May be called from interrupt context
17146  */
17147 
17148 static void
17149 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
17150 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17151 {
17152 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
17153 
17154 	ASSERT(un != NULL);
17155 	ASSERT(mutex_owned(SD_MUTEX(un)));
17156 	ASSERT(bp != NULL);
17157 	ASSERT(xp != NULL);
17158 	ASSERT(pktp != NULL);
17159 
17160 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17161 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17162 
17163 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
17164 	    sd_print_retry_msg : NULL;
17165 
17166 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17167 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17168 }
17169 
17170 
17171 /*
17172  *    Function: sd_pkt_reason_cmd_tag_reject
17173  *
17174  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
17175  *
17176  *     Context: May be called from interrupt context
17177  */
17178 
17179 static void
17180 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
17181 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17182 {
17183 	ASSERT(un != NULL);
17184 	ASSERT(mutex_owned(SD_MUTEX(un)));
17185 	ASSERT(bp != NULL);
17186 	ASSERT(xp != NULL);
17187 	ASSERT(pktp != NULL);
17188 
17189 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17190 	pktp->pkt_flags = 0;
17191 	un->un_tagflags = 0;
17192 	if (un->un_f_opt_queueing == TRUE) {
17193 		un->un_throttle = min(un->un_throttle, 3);
17194 	} else {
17195 		un->un_throttle = 1;
17196 	}
17197 	mutex_exit(SD_MUTEX(un));
17198 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
17199 	mutex_enter(SD_MUTEX(un));
17200 
17201 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17202 
17203 	/* Legacy behavior not to check retry counts here. */
17204 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
17205 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17206 }
17207 
17208 
17209 /*
17210  *    Function: sd_pkt_reason_default
17211  *
17212  * Description: Default recovery actions for SCSA pkt_reason values that
17213  *		do not have more explicit recovery actions.
17214  *
17215  *     Context: May be called from interrupt context
17216  */
17217 
17218 static void
17219 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
17220 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17221 {
17222 	ASSERT(un != NULL);
17223 	ASSERT(mutex_owned(SD_MUTEX(un)));
17224 	ASSERT(bp != NULL);
17225 	ASSERT(xp != NULL);
17226 	ASSERT(pktp != NULL);
17227 
17228 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17229 	sd_reset_target(un, pktp);
17230 
17231 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17232 
17233 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17234 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17235 }
17236 
17237 
17238 
17239 /*
17240  *    Function: sd_pkt_status_check_condition
17241  *
17242  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
17243  *
17244  *     Context: May be called from interrupt context
17245  */
17246 
17247 static void
17248 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
17249 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17250 {
17251 	ASSERT(un != NULL);
17252 	ASSERT(mutex_owned(SD_MUTEX(un)));
17253 	ASSERT(bp != NULL);
17254 	ASSERT(xp != NULL);
17255 	ASSERT(pktp != NULL);
17256 
17257 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
17258 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
17259 
17260 	/*
17261 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
17262 	 * command will be retried after the request sense). Otherwise, retry
17263 	 * the command. Note: we are issuing the request sense even though the
17264 	 * retry limit may have been reached for the failed command.
17265 	 */
17266 	if (un->un_f_arq_enabled == FALSE) {
17267 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
17268 		    "no ARQ, sending request sense command\n");
17269 		sd_send_request_sense_command(un, bp, pktp);
17270 	} else {
17271 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
17272 		    "ARQ,retrying request sense command\n");
17273 #if defined(__i386) || defined(__amd64)
17274 		/*
17275 		 * The SD_RETRY_DELAY value need to be adjusted here
17276 		 * when SD_RETRY_DELAY change in sddef.h
17277 		 */
17278 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17279 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
17280 		    NULL);
17281 #else
17282 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
17283 		    EIO, SD_RETRY_DELAY, NULL);
17284 #endif
17285 	}
17286 
17287 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
17288 }
17289 
17290 
17291 /*
17292  *    Function: sd_pkt_status_busy
17293  *
17294  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
17295  *
17296  *     Context: May be called from interrupt context
17297  */
17298 
17299 static void
17300 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17301 	struct scsi_pkt *pktp)
17302 {
17303 	ASSERT(un != NULL);
17304 	ASSERT(mutex_owned(SD_MUTEX(un)));
17305 	ASSERT(bp != NULL);
17306 	ASSERT(xp != NULL);
17307 	ASSERT(pktp != NULL);
17308 
17309 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17310 	    "sd_pkt_status_busy: entry\n");
17311 
17312 	/* If retries are exhausted, just fail the command. */
17313 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
17314 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17315 		    "device busy too long\n");
17316 		sd_return_failed_command(un, bp, EIO);
17317 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17318 		    "sd_pkt_status_busy: exit\n");
17319 		return;
17320 	}
17321 	xp->xb_retry_count++;
17322 
17323 	/*
17324 	 * Try to reset the target. However, we do not want to perform
17325 	 * more than one reset if the device continues to fail. The reset
17326 	 * will be performed when the retry count reaches the reset
17327 	 * threshold.  This threshold should be set such that at least
17328 	 * one retry is issued before the reset is performed.
17329 	 */
17330 	if (xp->xb_retry_count ==
17331 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
17332 		int rval = 0;
17333 		mutex_exit(SD_MUTEX(un));
17334 		if (un->un_f_allow_bus_device_reset == TRUE) {
17335 			/*
17336 			 * First try to reset the LUN; if we cannot then
17337 			 * try to reset the target.
17338 			 */
17339 			if (un->un_f_lun_reset_enabled == TRUE) {
17340 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17341 				    "sd_pkt_status_busy: RESET_LUN\n");
17342 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17343 			}
17344 			if (rval == 0) {
17345 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17346 				    "sd_pkt_status_busy: RESET_TARGET\n");
17347 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17348 			}
17349 		}
17350 		if (rval == 0) {
17351 			/*
17352 			 * If the RESET_LUN and/or RESET_TARGET failed,
17353 			 * try RESET_ALL
17354 			 */
17355 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17356 			    "sd_pkt_status_busy: RESET_ALL\n");
17357 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
17358 		}
17359 		mutex_enter(SD_MUTEX(un));
17360 		if (rval == 0) {
17361 			/*
17362 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
17363 			 * At this point we give up & fail the command.
17364 			 */
17365 			sd_return_failed_command(un, bp, EIO);
17366 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17367 			    "sd_pkt_status_busy: exit (failed cmd)\n");
17368 			return;
17369 		}
17370 	}
17371 
17372 	/*
17373 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
17374 	 * we have already checked the retry counts above.
17375 	 */
17376 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
17377 	    EIO, SD_BSY_TIMEOUT, NULL);
17378 
17379 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17380 	    "sd_pkt_status_busy: exit\n");
17381 }
17382 
17383 
17384 /*
17385  *    Function: sd_pkt_status_reservation_conflict
17386  *
17387  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
17388  *		command status.
17389  *
17390  *     Context: May be called from interrupt context
17391  */
17392 
17393 static void
17394 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
17395 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17396 {
17397 	ASSERT(un != NULL);
17398 	ASSERT(mutex_owned(SD_MUTEX(un)));
17399 	ASSERT(bp != NULL);
17400 	ASSERT(xp != NULL);
17401 	ASSERT(pktp != NULL);
17402 
17403 	/*
17404 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
17405 	 * conflict could be due to various reasons like incorrect keys, not
17406 	 * registered or not reserved etc. So, we return EACCES to the caller.
17407 	 */
17408 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
17409 		int cmd = SD_GET_PKT_OPCODE(pktp);
17410 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
17411 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
17412 			sd_return_failed_command(un, bp, EACCES);
17413 			return;
17414 		}
17415 	}
17416 
17417 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
17418 
17419 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
17420 		if (sd_failfast_enable != 0) {
17421 			/* By definition, we must panic here.... */
17422 			sd_panic_for_res_conflict(un);
17423 			/*NOTREACHED*/
17424 		}
17425 		SD_ERROR(SD_LOG_IO, un,
17426 		    "sd_handle_resv_conflict: Disk Reserved\n");
17427 		sd_return_failed_command(un, bp, EACCES);
17428 		return;
17429 	}
17430 
17431 	/*
17432 	 * 1147670: retry only if sd_retry_on_reservation_conflict
17433 	 * property is set (default is 1). Retries will not succeed
17434 	 * on a disk reserved by another initiator. HA systems
17435 	 * may reset this via sd.conf to avoid these retries.
17436 	 *
17437 	 * Note: The legacy return code for this failure is EIO, however EACCES
17438 	 * seems more appropriate for a reservation conflict.
17439 	 */
17440 	if (sd_retry_on_reservation_conflict == 0) {
17441 		SD_ERROR(SD_LOG_IO, un,
17442 		    "sd_handle_resv_conflict: Device Reserved\n");
17443 		sd_return_failed_command(un, bp, EIO);
17444 		return;
17445 	}
17446 
17447 	/*
17448 	 * Retry the command if we can.
17449 	 *
17450 	 * Note: The legacy return code for this failure is EIO, however EACCES
17451 	 * seems more appropriate for a reservation conflict.
17452 	 */
17453 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17454 	    (clock_t)2, NULL);
17455 }
17456 
17457 
17458 
17459 /*
17460  *    Function: sd_pkt_status_qfull
17461  *
17462  * Description: Handle a QUEUE FULL condition from the target.  This can
17463  *		occur if the HBA does not handle the queue full condition.
17464  *		(Basically this means third-party HBAs as Sun HBAs will
17465  *		handle the queue full condition.)  Note that if there are
17466  *		some commands already in the transport, then the queue full
17467  *		has occurred because the queue for this nexus is actually
17468  *		full. If there are no commands in the transport, then the
17469  *		queue full is resulting from some other initiator or lun
17470  *		consuming all the resources at the target.
17471  *
17472  *     Context: May be called from interrupt context
17473  */
17474 
17475 static void
17476 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
17477 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17478 {
17479 	ASSERT(un != NULL);
17480 	ASSERT(mutex_owned(SD_MUTEX(un)));
17481 	ASSERT(bp != NULL);
17482 	ASSERT(xp != NULL);
17483 	ASSERT(pktp != NULL);
17484 
17485 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17486 	    "sd_pkt_status_qfull: entry\n");
17487 
17488 	/*
17489 	 * Just lower the QFULL throttle and retry the command.  Note that
17490 	 * we do not limit the number of retries here.
17491 	 */
17492 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
17493 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
17494 	    SD_RESTART_TIMEOUT, NULL);
17495 
17496 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17497 	    "sd_pkt_status_qfull: exit\n");
17498 }
17499 
17500 
17501 /*
17502  *    Function: sd_reset_target
17503  *
17504  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
17505  *		RESET_TARGET, or RESET_ALL.
17506  *
17507  *     Context: May be called under interrupt context.
17508  */
17509 
17510 static void
17511 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
17512 {
17513 	int rval = 0;
17514 
17515 	ASSERT(un != NULL);
17516 	ASSERT(mutex_owned(SD_MUTEX(un)));
17517 	ASSERT(pktp != NULL);
17518 
17519 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
17520 
17521 	/*
17522 	 * No need to reset if the transport layer has already done so.
17523 	 */
17524 	if ((pktp->pkt_statistics &
17525 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
17526 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17527 		    "sd_reset_target: no reset\n");
17528 		return;
17529 	}
17530 
17531 	mutex_exit(SD_MUTEX(un));
17532 
17533 	if (un->un_f_allow_bus_device_reset == TRUE) {
17534 		if (un->un_f_lun_reset_enabled == TRUE) {
17535 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17536 			    "sd_reset_target: RESET_LUN\n");
17537 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17538 		}
17539 		if (rval == 0) {
17540 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17541 			    "sd_reset_target: RESET_TARGET\n");
17542 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17543 		}
17544 	}
17545 
17546 	if (rval == 0) {
17547 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17548 		    "sd_reset_target: RESET_ALL\n");
17549 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
17550 	}
17551 
17552 	mutex_enter(SD_MUTEX(un));
17553 
17554 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
17555 }
17556 
17557 /*
17558  *    Function: sd_target_change_task
17559  *
17560  * Description: Handle dynamic target change
17561  *
17562  *     Context: Executes in a taskq() thread context
17563  */
17564 static void
17565 sd_target_change_task(void *arg)
17566 {
17567 	struct sd_lun		*un = arg;
17568 	uint64_t		capacity;
17569 	diskaddr_t		label_cap;
17570 	uint_t			lbasize;
17571 
17572 	ASSERT(un != NULL);
17573 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17574 
17575 	if ((un->un_f_blockcount_is_valid == FALSE) ||
17576 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
17577 		return;
17578 	}
17579 
17580 	if (sd_send_scsi_READ_CAPACITY(un, &capacity,
17581 	    &lbasize, SD_PATH_DIRECT) != 0) {
17582 		SD_ERROR(SD_LOG_ERROR, un,
17583 		    "sd_target_change_task: fail to read capacity\n");
17584 		return;
17585 	}
17586 
17587 	mutex_enter(SD_MUTEX(un));
17588 	if (capacity <= un->un_blockcount) {
17589 		mutex_exit(SD_MUTEX(un));
17590 		return;
17591 	}
17592 
17593 	sd_update_block_info(un, lbasize, capacity);
17594 	mutex_exit(SD_MUTEX(un));
17595 
17596 	/*
17597 	 * If lun is EFI labeled and lun capacity is greater than the
17598 	 * capacity contained in the label, log a sys event.
17599 	 */
17600 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
17601 	    (void*)SD_PATH_DIRECT) == 0) {
17602 		mutex_enter(SD_MUTEX(un));
17603 		if (un->un_f_blockcount_is_valid &&
17604 		    un->un_blockcount > label_cap) {
17605 			mutex_exit(SD_MUTEX(un));
17606 			sd_log_lun_expansion_event(un, KM_SLEEP);
17607 		} else {
17608 			mutex_exit(SD_MUTEX(un));
17609 		}
17610 	}
17611 }
17612 
17613 /*
17614  *    Function: sd_log_lun_expansion_event
17615  *
17616  * Description: Log lun expansion sys event
17617  *
17618  *     Context: Never called from interrupt context
17619  */
17620 static void
17621 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
17622 {
17623 	int err;
17624 	char			*path;
17625 	nvlist_t		*dle_attr_list;
17626 
17627 	/* Allocate and build sysevent attribute list */
17628 	err = nvlist_alloc(&dle_attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
17629 	if (err != 0) {
17630 		SD_ERROR(SD_LOG_ERROR, un,
17631 		    "sd_log_lun_expansion_event: fail to allocate space\n");
17632 		return;
17633 	}
17634 
17635 	path = kmem_alloc(MAXPATHLEN, km_flag);
17636 	if (path == NULL) {
17637 		nvlist_free(dle_attr_list);
17638 		SD_ERROR(SD_LOG_ERROR, un,
17639 		    "sd_log_lun_expansion_event: fail to allocate space\n");
17640 		return;
17641 	}
17642 	/*
17643 	 * Add path attribute to identify the lun.
17644 	 * We are using minor node 'a' as the sysevent attribute.
17645 	 */
17646 	(void) snprintf(path, MAXPATHLEN, "/devices");
17647 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
17648 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
17649 	    ":a");
17650 
17651 	err = nvlist_add_string(dle_attr_list, DEV_PHYS_PATH, path);
17652 	if (err != 0) {
17653 		nvlist_free(dle_attr_list);
17654 		kmem_free(path, MAXPATHLEN);
17655 		SD_ERROR(SD_LOG_ERROR, un,
17656 		    "sd_log_lun_expansion_event: fail to add attribute\n");
17657 		return;
17658 	}
17659 
17660 	/* Log dynamic lun expansion sysevent */
17661 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
17662 	    ESC_DEV_DLE, dle_attr_list, NULL, km_flag);
17663 	if (err != DDI_SUCCESS) {
17664 		SD_ERROR(SD_LOG_ERROR, un,
17665 		    "sd_log_lun_expansion_event: fail to log sysevent\n");
17666 	}
17667 
17668 	nvlist_free(dle_attr_list);
17669 	kmem_free(path, MAXPATHLEN);
17670 }
17671 
17672 /*
17673  *    Function: sd_media_change_task
17674  *
17675  * Description: Recovery action for CDROM to become available.
17676  *
17677  *     Context: Executes in a taskq() thread context
17678  */
17679 
17680 static void
17681 sd_media_change_task(void *arg)
17682 {
17683 	struct	scsi_pkt	*pktp = arg;
17684 	struct	sd_lun		*un;
17685 	struct	buf		*bp;
17686 	struct	sd_xbuf		*xp;
17687 	int	err		= 0;
17688 	int	retry_count	= 0;
17689 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
17690 	struct	sd_sense_info	si;
17691 
17692 	ASSERT(pktp != NULL);
17693 	bp = (struct buf *)pktp->pkt_private;
17694 	ASSERT(bp != NULL);
17695 	xp = SD_GET_XBUF(bp);
17696 	ASSERT(xp != NULL);
17697 	un = SD_GET_UN(bp);
17698 	ASSERT(un != NULL);
17699 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17700 	ASSERT(un->un_f_monitor_media_state);
17701 
17702 	si.ssi_severity = SCSI_ERR_INFO;
17703 	si.ssi_pfa_flag = FALSE;
17704 
17705 	/*
17706 	 * When a reset is issued on a CDROM, it takes a long time to
17707 	 * recover. First few attempts to read capacity and other things
17708 	 * related to handling unit attention fail (with a ASC 0x4 and
17709 	 * ASCQ 0x1). In that case we want to do enough retries and we want
17710 	 * to limit the retries in other cases of genuine failures like
17711 	 * no media in drive.
17712 	 */
17713 	while (retry_count++ < retry_limit) {
17714 		if ((err = sd_handle_mchange(un)) == 0) {
17715 			break;
17716 		}
17717 		if (err == EAGAIN) {
17718 			retry_limit = SD_UNIT_ATTENTION_RETRY;
17719 		}
17720 		/* Sleep for 0.5 sec. & try again */
17721 		delay(drv_usectohz(500000));
17722 	}
17723 
17724 	/*
17725 	 * Dispatch (retry or fail) the original command here,
17726 	 * along with appropriate console messages....
17727 	 *
17728 	 * Must grab the mutex before calling sd_retry_command,
17729 	 * sd_print_sense_msg and sd_return_failed_command.
17730 	 */
17731 	mutex_enter(SD_MUTEX(un));
17732 	if (err != SD_CMD_SUCCESS) {
17733 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17734 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17735 		si.ssi_severity = SCSI_ERR_FATAL;
17736 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17737 		sd_return_failed_command(un, bp, EIO);
17738 	} else {
17739 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17740 		    &si, EIO, (clock_t)0, NULL);
17741 	}
17742 	mutex_exit(SD_MUTEX(un));
17743 }
17744 
17745 
17746 
17747 /*
17748  *    Function: sd_handle_mchange
17749  *
17750  * Description: Perform geometry validation & other recovery when CDROM
17751  *		has been removed from drive.
17752  *
17753  * Return Code: 0 for success
17754  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
17755  *		sd_send_scsi_READ_CAPACITY()
17756  *
17757  *     Context: Executes in a taskq() thread context
17758  */
17759 
17760 static int
17761 sd_handle_mchange(struct sd_lun *un)
17762 {
17763 	uint64_t	capacity;
17764 	uint32_t	lbasize;
17765 	int		rval;
17766 
17767 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17768 	ASSERT(un->un_f_monitor_media_state);
17769 
17770 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
17771 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
17772 		return (rval);
17773 	}
17774 
17775 	mutex_enter(SD_MUTEX(un));
17776 	sd_update_block_info(un, lbasize, capacity);
17777 
17778 	if (un->un_errstats != NULL) {
17779 		struct	sd_errstats *stp =
17780 		    (struct sd_errstats *)un->un_errstats->ks_data;
17781 		stp->sd_capacity.value.ui64 = (uint64_t)
17782 		    ((uint64_t)un->un_blockcount *
17783 		    (uint64_t)un->un_tgt_blocksize);
17784 	}
17785 
17786 
17787 	/*
17788 	 * Check if the media in the device is writable or not
17789 	 */
17790 	if (ISCD(un))
17791 		sd_check_for_writable_cd(un, SD_PATH_DIRECT_PRIORITY);
17792 
17793 	/*
17794 	 * Note: Maybe let the strategy/partitioning chain worry about getting
17795 	 * valid geometry.
17796 	 */
17797 	mutex_exit(SD_MUTEX(un));
17798 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
17799 
17800 
17801 	if (cmlb_validate(un->un_cmlbhandle, 0,
17802 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
17803 		return (EIO);
17804 	} else {
17805 		if (un->un_f_pkstats_enabled) {
17806 			sd_set_pstats(un);
17807 			SD_TRACE(SD_LOG_IO_PARTITION, un,
17808 			    "sd_handle_mchange: un:0x%p pstats created and "
17809 			    "set\n", un);
17810 		}
17811 	}
17812 
17813 
17814 	/*
17815 	 * Try to lock the door
17816 	 */
17817 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
17818 	    SD_PATH_DIRECT_PRIORITY));
17819 }
17820 
17821 
17822 /*
17823  *    Function: sd_send_scsi_DOORLOCK
17824  *
17825  * Description: Issue the scsi DOOR LOCK command
17826  *
17827  *   Arguments: un    - pointer to driver soft state (unit) structure for
17828  *			this target.
17829  *		flag  - SD_REMOVAL_ALLOW
17830  *			SD_REMOVAL_PREVENT
17831  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17832  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17833  *			to use the USCSI "direct" chain and bypass the normal
17834  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17835  *			command is issued as part of an error recovery action.
17836  *
17837  * Return Code: 0   - Success
17838  *		errno return code from sd_send_scsi_cmd()
17839  *
17840  *     Context: Can sleep.
17841  */
17842 
17843 static int
17844 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
17845 {
17846 	union scsi_cdb		cdb;
17847 	struct uscsi_cmd	ucmd_buf;
17848 	struct scsi_extended_sense	sense_buf;
17849 	int			status;
17850 
17851 	ASSERT(un != NULL);
17852 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17853 
17854 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
17855 
17856 	/* already determined doorlock is not supported, fake success */
17857 	if (un->un_f_doorlock_supported == FALSE) {
17858 		return (0);
17859 	}
17860 
17861 	/*
17862 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
17863 	 * ignore the command so we can complete the eject
17864 	 * operation.
17865 	 */
17866 	if (flag == SD_REMOVAL_PREVENT) {
17867 		mutex_enter(SD_MUTEX(un));
17868 		if (un->un_f_ejecting == TRUE) {
17869 			mutex_exit(SD_MUTEX(un));
17870 			return (EAGAIN);
17871 		}
17872 		mutex_exit(SD_MUTEX(un));
17873 	}
17874 
17875 	bzero(&cdb, sizeof (cdb));
17876 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17877 
17878 	cdb.scc_cmd = SCMD_DOORLOCK;
17879 	cdb.cdb_opaque[4] = (uchar_t)flag;
17880 
17881 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17882 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17883 	ucmd_buf.uscsi_bufaddr	= NULL;
17884 	ucmd_buf.uscsi_buflen	= 0;
17885 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17886 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17887 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17888 	ucmd_buf.uscsi_timeout	= 15;
17889 
17890 	SD_TRACE(SD_LOG_IO, un,
17891 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
17892 
17893 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17894 	    UIO_SYSSPACE, path_flag);
17895 
17896 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
17897 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17898 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
17899 		/* fake success and skip subsequent doorlock commands */
17900 		un->un_f_doorlock_supported = FALSE;
17901 		return (0);
17902 	}
17903 
17904 	return (status);
17905 }
17906 
17907 /*
17908  *    Function: sd_send_scsi_READ_CAPACITY
17909  *
17910  * Description: This routine uses the scsi READ CAPACITY command to determine
17911  *		the device capacity in number of blocks and the device native
17912  *		block size. If this function returns a failure, then the
17913  *		values in *capp and *lbap are undefined.  If the capacity
17914  *		returned is 0xffffffff then the lun is too large for a
17915  *		normal READ CAPACITY command and the results of a
17916  *		READ CAPACITY 16 will be used instead.
17917  *
17918  *   Arguments: un   - ptr to soft state struct for the target
17919  *		capp - ptr to unsigned 64-bit variable to receive the
17920  *			capacity value from the command.
17921  *		lbap - ptr to unsigned 32-bit varaible to receive the
17922  *			block size value from the command
17923  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17924  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17925  *			to use the USCSI "direct" chain and bypass the normal
17926  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17927  *			command is issued as part of an error recovery action.
17928  *
17929  * Return Code: 0   - Success
17930  *		EIO - IO error
17931  *		EACCES - Reservation conflict detected
17932  *		EAGAIN - Device is becoming ready
17933  *		errno return code from sd_send_scsi_cmd()
17934  *
17935  *     Context: Can sleep.  Blocks until command completes.
17936  */
17937 
17938 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
17939 
17940 static int
17941 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
17942 	int path_flag)
17943 {
17944 	struct	scsi_extended_sense	sense_buf;
17945 	struct	uscsi_cmd	ucmd_buf;
17946 	union	scsi_cdb	cdb;
17947 	uint32_t		*capacity_buf;
17948 	uint64_t		capacity;
17949 	uint32_t		lbasize;
17950 	int			status;
17951 
17952 	ASSERT(un != NULL);
17953 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17954 	ASSERT(capp != NULL);
17955 	ASSERT(lbap != NULL);
17956 
17957 	SD_TRACE(SD_LOG_IO, un,
17958 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17959 
17960 	/*
17961 	 * First send a READ_CAPACITY command to the target.
17962 	 * (This command is mandatory under SCSI-2.)
17963 	 *
17964 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
17965 	 * Medium Indicator bit is cleared.  The address field must be
17966 	 * zero if the PMI bit is zero.
17967 	 */
17968 	bzero(&cdb, sizeof (cdb));
17969 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17970 
17971 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
17972 
17973 	cdb.scc_cmd = SCMD_READ_CAPACITY;
17974 
17975 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17976 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
17977 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
17978 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
17979 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17980 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17981 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17982 	ucmd_buf.uscsi_timeout	= 60;
17983 
17984 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17985 	    UIO_SYSSPACE, path_flag);
17986 
17987 	switch (status) {
17988 	case 0:
17989 		/* Return failure if we did not get valid capacity data. */
17990 		if (ucmd_buf.uscsi_resid != 0) {
17991 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17992 			return (EIO);
17993 		}
17994 
17995 		/*
17996 		 * Read capacity and block size from the READ CAPACITY 10 data.
17997 		 * This data may be adjusted later due to device specific
17998 		 * issues.
17999 		 *
18000 		 * According to the SCSI spec, the READ CAPACITY 10
18001 		 * command returns the following:
18002 		 *
18003 		 *  bytes 0-3: Maximum logical block address available.
18004 		 *		(MSB in byte:0 & LSB in byte:3)
18005 		 *
18006 		 *  bytes 4-7: Block length in bytes
18007 		 *		(MSB in byte:4 & LSB in byte:7)
18008 		 *
18009 		 */
18010 		capacity = BE_32(capacity_buf[0]);
18011 		lbasize = BE_32(capacity_buf[1]);
18012 
18013 		/*
18014 		 * Done with capacity_buf
18015 		 */
18016 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18017 
18018 		/*
18019 		 * if the reported capacity is set to all 0xf's, then
18020 		 * this disk is too large and requires SBC-2 commands.
18021 		 * Reissue the request using READ CAPACITY 16.
18022 		 */
18023 		if (capacity == 0xffffffff) {
18024 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
18025 			    &lbasize, path_flag);
18026 			if (status != 0) {
18027 				return (status);
18028 			}
18029 		}
18030 		break;	/* Success! */
18031 	case EIO:
18032 		switch (ucmd_buf.uscsi_status) {
18033 		case STATUS_RESERVATION_CONFLICT:
18034 			status = EACCES;
18035 			break;
18036 		case STATUS_CHECK:
18037 			/*
18038 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
18039 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
18040 			 */
18041 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18042 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
18043 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
18044 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18045 				return (EAGAIN);
18046 			}
18047 			break;
18048 		default:
18049 			break;
18050 		}
18051 		/* FALLTHRU */
18052 	default:
18053 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18054 		return (status);
18055 	}
18056 
18057 	/*
18058 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
18059 	 * (2352 and 0 are common) so for these devices always force the value
18060 	 * to 2048 as required by the ATAPI specs.
18061 	 */
18062 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
18063 		lbasize = 2048;
18064 	}
18065 
18066 	/*
18067 	 * Get the maximum LBA value from the READ CAPACITY data.
18068 	 * Here we assume that the Partial Medium Indicator (PMI) bit
18069 	 * was cleared when issuing the command. This means that the LBA
18070 	 * returned from the device is the LBA of the last logical block
18071 	 * on the logical unit.  The actual logical block count will be
18072 	 * this value plus one.
18073 	 *
18074 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
18075 	 * so scale the capacity value to reflect this.
18076 	 */
18077 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
18078 
18079 	/*
18080 	 * Copy the values from the READ CAPACITY command into the space
18081 	 * provided by the caller.
18082 	 */
18083 	*capp = capacity;
18084 	*lbap = lbasize;
18085 
18086 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
18087 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
18088 
18089 	/*
18090 	 * Both the lbasize and capacity from the device must be nonzero,
18091 	 * otherwise we assume that the values are not valid and return
18092 	 * failure to the caller. (4203735)
18093 	 */
18094 	if ((capacity == 0) || (lbasize == 0)) {
18095 		return (EIO);
18096 	}
18097 
18098 	return (0);
18099 }
18100 
18101 /*
18102  *    Function: sd_send_scsi_READ_CAPACITY_16
18103  *
18104  * Description: This routine uses the scsi READ CAPACITY 16 command to
18105  *		determine the device capacity in number of blocks and the
18106  *		device native block size.  If this function returns a failure,
18107  *		then the values in *capp and *lbap are undefined.
18108  *		This routine should always be called by
18109  *		sd_send_scsi_READ_CAPACITY which will appy any device
18110  *		specific adjustments to capacity and lbasize.
18111  *
18112  *   Arguments: un   - ptr to soft state struct for the target
18113  *		capp - ptr to unsigned 64-bit variable to receive the
18114  *			capacity value from the command.
18115  *		lbap - ptr to unsigned 32-bit varaible to receive the
18116  *			block size value from the command
18117  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18118  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18119  *			to use the USCSI "direct" chain and bypass the normal
18120  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
18121  *			this command is issued as part of an error recovery
18122  *			action.
18123  *
18124  * Return Code: 0   - Success
18125  *		EIO - IO error
18126  *		EACCES - Reservation conflict detected
18127  *		EAGAIN - Device is becoming ready
18128  *		errno return code from sd_send_scsi_cmd()
18129  *
18130  *     Context: Can sleep.  Blocks until command completes.
18131  */
18132 
18133 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
18134 
18135 static int
18136 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
18137 	uint32_t *lbap, int path_flag)
18138 {
18139 	struct	scsi_extended_sense	sense_buf;
18140 	struct	uscsi_cmd	ucmd_buf;
18141 	union	scsi_cdb	cdb;
18142 	uint64_t		*capacity16_buf;
18143 	uint64_t		capacity;
18144 	uint32_t		lbasize;
18145 	int			status;
18146 
18147 	ASSERT(un != NULL);
18148 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18149 	ASSERT(capp != NULL);
18150 	ASSERT(lbap != NULL);
18151 
18152 	SD_TRACE(SD_LOG_IO, un,
18153 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
18154 
18155 	/*
18156 	 * First send a READ_CAPACITY_16 command to the target.
18157 	 *
18158 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
18159 	 * Medium Indicator bit is cleared.  The address field must be
18160 	 * zero if the PMI bit is zero.
18161 	 */
18162 	bzero(&cdb, sizeof (cdb));
18163 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18164 
18165 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
18166 
18167 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18168 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
18169 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
18170 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
18171 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18172 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18173 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18174 	ucmd_buf.uscsi_timeout	= 60;
18175 
18176 	/*
18177 	 * Read Capacity (16) is a Service Action In command.  One
18178 	 * command byte (0x9E) is overloaded for multiple operations,
18179 	 * with the second CDB byte specifying the desired operation
18180 	 */
18181 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
18182 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
18183 
18184 	/*
18185 	 * Fill in allocation length field
18186 	 */
18187 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
18188 
18189 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18190 	    UIO_SYSSPACE, path_flag);
18191 
18192 	switch (status) {
18193 	case 0:
18194 		/* Return failure if we did not get valid capacity data. */
18195 		if (ucmd_buf.uscsi_resid > 20) {
18196 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18197 			return (EIO);
18198 		}
18199 
18200 		/*
18201 		 * Read capacity and block size from the READ CAPACITY 10 data.
18202 		 * This data may be adjusted later due to device specific
18203 		 * issues.
18204 		 *
18205 		 * According to the SCSI spec, the READ CAPACITY 10
18206 		 * command returns the following:
18207 		 *
18208 		 *  bytes 0-7: Maximum logical block address available.
18209 		 *		(MSB in byte:0 & LSB in byte:7)
18210 		 *
18211 		 *  bytes 8-11: Block length in bytes
18212 		 *		(MSB in byte:8 & LSB in byte:11)
18213 		 *
18214 		 */
18215 		capacity = BE_64(capacity16_buf[0]);
18216 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
18217 
18218 		/*
18219 		 * Done with capacity16_buf
18220 		 */
18221 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18222 
18223 		/*
18224 		 * if the reported capacity is set to all 0xf's, then
18225 		 * this disk is too large.  This could only happen with
18226 		 * a device that supports LBAs larger than 64 bits which
18227 		 * are not defined by any current T10 standards.
18228 		 */
18229 		if (capacity == 0xffffffffffffffff) {
18230 			return (EIO);
18231 		}
18232 		break;	/* Success! */
18233 	case EIO:
18234 		switch (ucmd_buf.uscsi_status) {
18235 		case STATUS_RESERVATION_CONFLICT:
18236 			status = EACCES;
18237 			break;
18238 		case STATUS_CHECK:
18239 			/*
18240 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
18241 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
18242 			 */
18243 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18244 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
18245 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
18246 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18247 				return (EAGAIN);
18248 			}
18249 			break;
18250 		default:
18251 			break;
18252 		}
18253 		/* FALLTHRU */
18254 	default:
18255 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18256 		return (status);
18257 	}
18258 
18259 	*capp = capacity;
18260 	*lbap = lbasize;
18261 
18262 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
18263 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
18264 
18265 	return (0);
18266 }
18267 
18268 
18269 /*
18270  *    Function: sd_send_scsi_START_STOP_UNIT
18271  *
18272  * Description: Issue a scsi START STOP UNIT command to the target.
18273  *
18274  *   Arguments: un    - pointer to driver soft state (unit) structure for
18275  *			this target.
18276  *		flag  - SD_TARGET_START
18277  *			SD_TARGET_STOP
18278  *			SD_TARGET_EJECT
18279  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18280  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18281  *			to use the USCSI "direct" chain and bypass the normal
18282  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18283  *			command is issued as part of an error recovery action.
18284  *
18285  * Return Code: 0   - Success
18286  *		EIO - IO error
18287  *		EACCES - Reservation conflict detected
18288  *		ENXIO  - Not Ready, medium not present
18289  *		errno return code from sd_send_scsi_cmd()
18290  *
18291  *     Context: Can sleep.
18292  */
18293 
18294 static int
18295 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
18296 {
18297 	struct	scsi_extended_sense	sense_buf;
18298 	union scsi_cdb		cdb;
18299 	struct uscsi_cmd	ucmd_buf;
18300 	int			status;
18301 
18302 	ASSERT(un != NULL);
18303 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18304 
18305 	SD_TRACE(SD_LOG_IO, un,
18306 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
18307 
18308 	if (un->un_f_check_start_stop &&
18309 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
18310 	    (un->un_f_start_stop_supported != TRUE)) {
18311 		return (0);
18312 	}
18313 
18314 	/*
18315 	 * If we are performing an eject operation and
18316 	 * we receive any command other than SD_TARGET_EJECT
18317 	 * we should immediately return.
18318 	 */
18319 	if (flag != SD_TARGET_EJECT) {
18320 		mutex_enter(SD_MUTEX(un));
18321 		if (un->un_f_ejecting == TRUE) {
18322 			mutex_exit(SD_MUTEX(un));
18323 			return (EAGAIN);
18324 		}
18325 		mutex_exit(SD_MUTEX(un));
18326 	}
18327 
18328 	bzero(&cdb, sizeof (cdb));
18329 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18330 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18331 
18332 	cdb.scc_cmd = SCMD_START_STOP;
18333 	cdb.cdb_opaque[4] = (uchar_t)flag;
18334 
18335 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18336 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18337 	ucmd_buf.uscsi_bufaddr	= NULL;
18338 	ucmd_buf.uscsi_buflen	= 0;
18339 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18340 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18341 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18342 	ucmd_buf.uscsi_timeout	= 200;
18343 
18344 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18345 	    UIO_SYSSPACE, path_flag);
18346 
18347 	switch (status) {
18348 	case 0:
18349 		break;	/* Success! */
18350 	case EIO:
18351 		switch (ucmd_buf.uscsi_status) {
18352 		case STATUS_RESERVATION_CONFLICT:
18353 			status = EACCES;
18354 			break;
18355 		case STATUS_CHECK:
18356 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
18357 				switch (scsi_sense_key(
18358 				    (uint8_t *)&sense_buf)) {
18359 				case KEY_ILLEGAL_REQUEST:
18360 					status = ENOTSUP;
18361 					break;
18362 				case KEY_NOT_READY:
18363 					if (scsi_sense_asc(
18364 					    (uint8_t *)&sense_buf)
18365 					    == 0x3A) {
18366 						status = ENXIO;
18367 					}
18368 					break;
18369 				default:
18370 					break;
18371 				}
18372 			}
18373 			break;
18374 		default:
18375 			break;
18376 		}
18377 		break;
18378 	default:
18379 		break;
18380 	}
18381 
18382 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
18383 
18384 	return (status);
18385 }
18386 
18387 
18388 /*
18389  *    Function: sd_start_stop_unit_callback
18390  *
18391  * Description: timeout(9F) callback to begin recovery process for a
18392  *		device that has spun down.
18393  *
18394  *   Arguments: arg - pointer to associated softstate struct.
18395  *
18396  *     Context: Executes in a timeout(9F) thread context
18397  */
18398 
18399 static void
18400 sd_start_stop_unit_callback(void *arg)
18401 {
18402 	struct sd_lun	*un = arg;
18403 	ASSERT(un != NULL);
18404 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18405 
18406 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
18407 
18408 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
18409 }
18410 
18411 
18412 /*
18413  *    Function: sd_start_stop_unit_task
18414  *
18415  * Description: Recovery procedure when a drive is spun down.
18416  *
18417  *   Arguments: arg - pointer to associated softstate struct.
18418  *
18419  *     Context: Executes in a taskq() thread context
18420  */
18421 
18422 static void
18423 sd_start_stop_unit_task(void *arg)
18424 {
18425 	struct sd_lun	*un = arg;
18426 
18427 	ASSERT(un != NULL);
18428 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18429 
18430 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
18431 
18432 	/*
18433 	 * Some unformatted drives report not ready error, no need to
18434 	 * restart if format has been initiated.
18435 	 */
18436 	mutex_enter(SD_MUTEX(un));
18437 	if (un->un_f_format_in_progress == TRUE) {
18438 		mutex_exit(SD_MUTEX(un));
18439 		return;
18440 	}
18441 	mutex_exit(SD_MUTEX(un));
18442 
18443 	/*
18444 	 * When a START STOP command is issued from here, it is part of a
18445 	 * failure recovery operation and must be issued before any other
18446 	 * commands, including any pending retries. Thus it must be sent
18447 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
18448 	 * succeeds or not, we will start I/O after the attempt.
18449 	 */
18450 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
18451 	    SD_PATH_DIRECT_PRIORITY);
18452 
18453 	/*
18454 	 * The above call blocks until the START_STOP_UNIT command completes.
18455 	 * Now that it has completed, we must re-try the original IO that
18456 	 * received the NOT READY condition in the first place. There are
18457 	 * three possible conditions here:
18458 	 *
18459 	 *  (1) The original IO is on un_retry_bp.
18460 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
18461 	 *	is NULL.
18462 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
18463 	 *	points to some other, unrelated bp.
18464 	 *
18465 	 * For each case, we must call sd_start_cmds() with un_retry_bp
18466 	 * as the argument. If un_retry_bp is NULL, this will initiate
18467 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
18468 	 * then this will process the bp on un_retry_bp. That may or may not
18469 	 * be the original IO, but that does not matter: the important thing
18470 	 * is to keep the IO processing going at this point.
18471 	 *
18472 	 * Note: This is a very specific error recovery sequence associated
18473 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
18474 	 * serialize the I/O with completion of the spin-up.
18475 	 */
18476 	mutex_enter(SD_MUTEX(un));
18477 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18478 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
18479 	    un, un->un_retry_bp);
18480 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
18481 	sd_start_cmds(un, un->un_retry_bp);
18482 	mutex_exit(SD_MUTEX(un));
18483 
18484 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
18485 }
18486 
18487 
18488 /*
18489  *    Function: sd_send_scsi_INQUIRY
18490  *
18491  * Description: Issue the scsi INQUIRY command.
18492  *
18493  *   Arguments: un
18494  *		bufaddr
18495  *		buflen
18496  *		evpd
18497  *		page_code
18498  *		page_length
18499  *
18500  * Return Code: 0   - Success
18501  *		errno return code from sd_send_scsi_cmd()
18502  *
18503  *     Context: Can sleep. Does not return until command is completed.
18504  */
18505 
18506 static int
18507 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
18508 	uchar_t evpd, uchar_t page_code, size_t *residp)
18509 {
18510 	union scsi_cdb		cdb;
18511 	struct uscsi_cmd	ucmd_buf;
18512 	int			status;
18513 
18514 	ASSERT(un != NULL);
18515 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18516 	ASSERT(bufaddr != NULL);
18517 
18518 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
18519 
18520 	bzero(&cdb, sizeof (cdb));
18521 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18522 	bzero(bufaddr, buflen);
18523 
18524 	cdb.scc_cmd = SCMD_INQUIRY;
18525 	cdb.cdb_opaque[1] = evpd;
18526 	cdb.cdb_opaque[2] = page_code;
18527 	FORMG0COUNT(&cdb, buflen);
18528 
18529 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18530 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18531 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18532 	ucmd_buf.uscsi_buflen	= buflen;
18533 	ucmd_buf.uscsi_rqbuf	= NULL;
18534 	ucmd_buf.uscsi_rqlen	= 0;
18535 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
18536 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
18537 
18538 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18539 	    UIO_SYSSPACE, SD_PATH_DIRECT);
18540 
18541 	if ((status == 0) && (residp != NULL)) {
18542 		*residp = ucmd_buf.uscsi_resid;
18543 	}
18544 
18545 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
18546 
18547 	return (status);
18548 }
18549 
18550 
18551 /*
18552  *    Function: sd_send_scsi_TEST_UNIT_READY
18553  *
18554  * Description: Issue the scsi TEST UNIT READY command.
18555  *		This routine can be told to set the flag USCSI_DIAGNOSE to
18556  *		prevent retrying failed commands. Use this when the intent
18557  *		is either to check for device readiness, to clear a Unit
18558  *		Attention, or to clear any outstanding sense data.
18559  *		However under specific conditions the expected behavior
18560  *		is for retries to bring a device ready, so use the flag
18561  *		with caution.
18562  *
18563  *   Arguments: un
18564  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
18565  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
18566  *			0: dont check for media present, do retries on cmd.
18567  *
18568  * Return Code: 0   - Success
18569  *		EIO - IO error
18570  *		EACCES - Reservation conflict detected
18571  *		ENXIO  - Not Ready, medium not present
18572  *		errno return code from sd_send_scsi_cmd()
18573  *
18574  *     Context: Can sleep. Does not return until command is completed.
18575  */
18576 
18577 static int
18578 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
18579 {
18580 	struct	scsi_extended_sense	sense_buf;
18581 	union scsi_cdb		cdb;
18582 	struct uscsi_cmd	ucmd_buf;
18583 	int			status;
18584 
18585 	ASSERT(un != NULL);
18586 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18587 
18588 	SD_TRACE(SD_LOG_IO, un,
18589 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
18590 
18591 	/*
18592 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
18593 	 * timeouts when they receive a TUR and the queue is not empty. Check
18594 	 * the configuration flag set during attach (indicating the drive has
18595 	 * this firmware bug) and un_ncmds_in_transport before issuing the
18596 	 * TUR. If there are
18597 	 * pending commands return success, this is a bit arbitrary but is ok
18598 	 * for non-removables (i.e. the eliteI disks) and non-clustering
18599 	 * configurations.
18600 	 */
18601 	if (un->un_f_cfg_tur_check == TRUE) {
18602 		mutex_enter(SD_MUTEX(un));
18603 		if (un->un_ncmds_in_transport != 0) {
18604 			mutex_exit(SD_MUTEX(un));
18605 			return (0);
18606 		}
18607 		mutex_exit(SD_MUTEX(un));
18608 	}
18609 
18610 	bzero(&cdb, sizeof (cdb));
18611 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18612 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18613 
18614 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
18615 
18616 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18617 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18618 	ucmd_buf.uscsi_bufaddr	= NULL;
18619 	ucmd_buf.uscsi_buflen	= 0;
18620 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18621 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18622 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18623 
18624 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
18625 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
18626 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
18627 	}
18628 	ucmd_buf.uscsi_timeout	= 60;
18629 
18630 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18631 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
18632 	    SD_PATH_STANDARD));
18633 
18634 	switch (status) {
18635 	case 0:
18636 		break;	/* Success! */
18637 	case EIO:
18638 		switch (ucmd_buf.uscsi_status) {
18639 		case STATUS_RESERVATION_CONFLICT:
18640 			status = EACCES;
18641 			break;
18642 		case STATUS_CHECK:
18643 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
18644 				break;
18645 			}
18646 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18647 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18648 			    KEY_NOT_READY) &&
18649 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
18650 				status = ENXIO;
18651 			}
18652 			break;
18653 		default:
18654 			break;
18655 		}
18656 		break;
18657 	default:
18658 		break;
18659 	}
18660 
18661 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
18662 
18663 	return (status);
18664 }
18665 
18666 
18667 /*
18668  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
18669  *
18670  * Description: Issue the scsi PERSISTENT RESERVE IN command.
18671  *
18672  *   Arguments: un
18673  *
18674  * Return Code: 0   - Success
18675  *		EACCES
18676  *		ENOTSUP
18677  *		errno return code from sd_send_scsi_cmd()
18678  *
18679  *     Context: Can sleep. Does not return until command is completed.
18680  */
18681 
18682 static int
18683 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
18684 	uint16_t data_len, uchar_t *data_bufp)
18685 {
18686 	struct scsi_extended_sense	sense_buf;
18687 	union scsi_cdb		cdb;
18688 	struct uscsi_cmd	ucmd_buf;
18689 	int			status;
18690 	int			no_caller_buf = FALSE;
18691 
18692 	ASSERT(un != NULL);
18693 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18694 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
18695 
18696 	SD_TRACE(SD_LOG_IO, un,
18697 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
18698 
18699 	bzero(&cdb, sizeof (cdb));
18700 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18701 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18702 	if (data_bufp == NULL) {
18703 		/* Allocate a default buf if the caller did not give one */
18704 		ASSERT(data_len == 0);
18705 		data_len  = MHIOC_RESV_KEY_SIZE;
18706 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
18707 		no_caller_buf = TRUE;
18708 	}
18709 
18710 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
18711 	cdb.cdb_opaque[1] = usr_cmd;
18712 	FORMG1COUNT(&cdb, data_len);
18713 
18714 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18715 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18716 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
18717 	ucmd_buf.uscsi_buflen	= data_len;
18718 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18719 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18720 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18721 	ucmd_buf.uscsi_timeout	= 60;
18722 
18723 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18724 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18725 
18726 	switch (status) {
18727 	case 0:
18728 		break;	/* Success! */
18729 	case EIO:
18730 		switch (ucmd_buf.uscsi_status) {
18731 		case STATUS_RESERVATION_CONFLICT:
18732 			status = EACCES;
18733 			break;
18734 		case STATUS_CHECK:
18735 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18736 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18737 			    KEY_ILLEGAL_REQUEST)) {
18738 				status = ENOTSUP;
18739 			}
18740 			break;
18741 		default:
18742 			break;
18743 		}
18744 		break;
18745 	default:
18746 		break;
18747 	}
18748 
18749 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
18750 
18751 	if (no_caller_buf == TRUE) {
18752 		kmem_free(data_bufp, data_len);
18753 	}
18754 
18755 	return (status);
18756 }
18757 
18758 
18759 /*
18760  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
18761  *
18762  * Description: This routine is the driver entry point for handling CD-ROM
18763  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
18764  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
18765  *		device.
18766  *
18767  *   Arguments: un  -   Pointer to soft state struct for the target.
18768  *		usr_cmd SCSI-3 reservation facility command (one of
18769  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
18770  *			SD_SCSI3_PREEMPTANDABORT)
18771  *		usr_bufp - user provided pointer register, reserve descriptor or
18772  *			preempt and abort structure (mhioc_register_t,
18773  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
18774  *
18775  * Return Code: 0   - Success
18776  *		EACCES
18777  *		ENOTSUP
18778  *		errno return code from sd_send_scsi_cmd()
18779  *
18780  *     Context: Can sleep. Does not return until command is completed.
18781  */
18782 
18783 static int
18784 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
18785 	uchar_t	*usr_bufp)
18786 {
18787 	struct scsi_extended_sense	sense_buf;
18788 	union scsi_cdb		cdb;
18789 	struct uscsi_cmd	ucmd_buf;
18790 	int			status;
18791 	uchar_t			data_len = sizeof (sd_prout_t);
18792 	sd_prout_t		*prp;
18793 
18794 	ASSERT(un != NULL);
18795 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18796 	ASSERT(data_len == 24);	/* required by scsi spec */
18797 
18798 	SD_TRACE(SD_LOG_IO, un,
18799 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
18800 
18801 	if (usr_bufp == NULL) {
18802 		return (EINVAL);
18803 	}
18804 
18805 	bzero(&cdb, sizeof (cdb));
18806 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18807 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18808 	prp = kmem_zalloc(data_len, KM_SLEEP);
18809 
18810 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
18811 	cdb.cdb_opaque[1] = usr_cmd;
18812 	FORMG1COUNT(&cdb, data_len);
18813 
18814 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18815 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18816 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
18817 	ucmd_buf.uscsi_buflen	= data_len;
18818 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18819 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18820 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18821 	ucmd_buf.uscsi_timeout	= 60;
18822 
18823 	switch (usr_cmd) {
18824 	case SD_SCSI3_REGISTER: {
18825 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
18826 
18827 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18828 		bcopy(ptr->newkey.key, prp->service_key,
18829 		    MHIOC_RESV_KEY_SIZE);
18830 		prp->aptpl = ptr->aptpl;
18831 		break;
18832 	}
18833 	case SD_SCSI3_RESERVE:
18834 	case SD_SCSI3_RELEASE: {
18835 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
18836 
18837 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18838 		prp->scope_address = BE_32(ptr->scope_specific_addr);
18839 		cdb.cdb_opaque[2] = ptr->type;
18840 		break;
18841 	}
18842 	case SD_SCSI3_PREEMPTANDABORT: {
18843 		mhioc_preemptandabort_t *ptr =
18844 		    (mhioc_preemptandabort_t *)usr_bufp;
18845 
18846 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18847 		bcopy(ptr->victim_key.key, prp->service_key,
18848 		    MHIOC_RESV_KEY_SIZE);
18849 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
18850 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
18851 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
18852 		break;
18853 	}
18854 	case SD_SCSI3_REGISTERANDIGNOREKEY:
18855 	{
18856 		mhioc_registerandignorekey_t *ptr;
18857 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
18858 		bcopy(ptr->newkey.key,
18859 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
18860 		prp->aptpl = ptr->aptpl;
18861 		break;
18862 	}
18863 	default:
18864 		ASSERT(FALSE);
18865 		break;
18866 	}
18867 
18868 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18869 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18870 
18871 	switch (status) {
18872 	case 0:
18873 		break;	/* Success! */
18874 	case EIO:
18875 		switch (ucmd_buf.uscsi_status) {
18876 		case STATUS_RESERVATION_CONFLICT:
18877 			status = EACCES;
18878 			break;
18879 		case STATUS_CHECK:
18880 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18881 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18882 			    KEY_ILLEGAL_REQUEST)) {
18883 				status = ENOTSUP;
18884 			}
18885 			break;
18886 		default:
18887 			break;
18888 		}
18889 		break;
18890 	default:
18891 		break;
18892 	}
18893 
18894 	kmem_free(prp, data_len);
18895 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
18896 	return (status);
18897 }
18898 
18899 
18900 /*
18901  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
18902  *
18903  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
18904  *
18905  *   Arguments: un - pointer to the target's soft state struct
18906  *              dkc - pointer to the callback structure
18907  *
18908  * Return Code: 0 - success
18909  *		errno-type error code
18910  *
18911  *     Context: kernel thread context only.
18912  *
18913  *  _______________________________________________________________
18914  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
18915  * |FLUSH_VOLATILE|              | operation                       |
18916  * |______________|______________|_________________________________|
18917  * | 0            | NULL         | Synchronous flush on both       |
18918  * |              |              | volatile and non-volatile cache |
18919  * |______________|______________|_________________________________|
18920  * | 1            | NULL         | Synchronous flush on volatile   |
18921  * |              |              | cache; disk drivers may suppress|
18922  * |              |              | flush if disk table indicates   |
18923  * |              |              | non-volatile cache              |
18924  * |______________|______________|_________________________________|
18925  * | 0            | !NULL        | Asynchronous flush on both      |
18926  * |              |              | volatile and non-volatile cache;|
18927  * |______________|______________|_________________________________|
18928  * | 1            | !NULL        | Asynchronous flush on volatile  |
18929  * |              |              | cache; disk drivers may suppress|
18930  * |              |              | flush if disk table indicates   |
18931  * |              |              | non-volatile cache              |
18932  * |______________|______________|_________________________________|
18933  *
18934  */
18935 
18936 static int
18937 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
18938 {
18939 	struct sd_uscsi_info	*uip;
18940 	struct uscsi_cmd	*uscmd;
18941 	union scsi_cdb		*cdb;
18942 	struct buf		*bp;
18943 	int			rval = 0;
18944 	int			is_async;
18945 
18946 	SD_TRACE(SD_LOG_IO, un,
18947 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
18948 
18949 	ASSERT(un != NULL);
18950 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18951 
18952 	if (dkc == NULL || dkc->dkc_callback == NULL) {
18953 		is_async = FALSE;
18954 	} else {
18955 		is_async = TRUE;
18956 	}
18957 
18958 	mutex_enter(SD_MUTEX(un));
18959 	/* check whether cache flush should be suppressed */
18960 	if (un->un_f_suppress_cache_flush == TRUE) {
18961 		mutex_exit(SD_MUTEX(un));
18962 		/*
18963 		 * suppress the cache flush if the device is told to do
18964 		 * so by sd.conf or disk table
18965 		 */
18966 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
18967 		    skip the cache flush since suppress_cache_flush is %d!\n",
18968 		    un->un_f_suppress_cache_flush);
18969 
18970 		if (is_async == TRUE) {
18971 			/* invoke callback for asynchronous flush */
18972 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
18973 		}
18974 		return (rval);
18975 	}
18976 	mutex_exit(SD_MUTEX(un));
18977 
18978 	/*
18979 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
18980 	 * set properly
18981 	 */
18982 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
18983 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
18984 
18985 	mutex_enter(SD_MUTEX(un));
18986 	if (dkc != NULL && un->un_f_sync_nv_supported &&
18987 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
18988 		/*
18989 		 * if the device supports SYNC_NV bit, turn on
18990 		 * the SYNC_NV bit to only flush volatile cache
18991 		 */
18992 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
18993 	}
18994 	mutex_exit(SD_MUTEX(un));
18995 
18996 	/*
18997 	 * First get some memory for the uscsi_cmd struct and cdb
18998 	 * and initialize for SYNCHRONIZE_CACHE cmd.
18999 	 */
19000 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
19001 	uscmd->uscsi_cdblen = CDB_GROUP1;
19002 	uscmd->uscsi_cdb = (caddr_t)cdb;
19003 	uscmd->uscsi_bufaddr = NULL;
19004 	uscmd->uscsi_buflen = 0;
19005 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
19006 	uscmd->uscsi_rqlen = SENSE_LENGTH;
19007 	uscmd->uscsi_rqresid = SENSE_LENGTH;
19008 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
19009 	uscmd->uscsi_timeout = sd_io_time;
19010 
19011 	/*
19012 	 * Allocate an sd_uscsi_info struct and fill it with the info
19013 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
19014 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
19015 	 * since we allocate the buf here in this function, we do not
19016 	 * need to preserve the prior contents of b_private.
19017 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
19018 	 */
19019 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
19020 	uip->ui_flags = SD_PATH_DIRECT;
19021 	uip->ui_cmdp  = uscmd;
19022 
19023 	bp = getrbuf(KM_SLEEP);
19024 	bp->b_private = uip;
19025 
19026 	/*
19027 	 * Setup buffer to carry uscsi request.
19028 	 */
19029 	bp->b_flags  = B_BUSY;
19030 	bp->b_bcount = 0;
19031 	bp->b_blkno  = 0;
19032 
19033 	if (is_async == TRUE) {
19034 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
19035 		uip->ui_dkc = *dkc;
19036 	}
19037 
19038 	bp->b_edev = SD_GET_DEV(un);
19039 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
19040 
19041 	(void) sd_uscsi_strategy(bp);
19042 
19043 	/*
19044 	 * If synchronous request, wait for completion
19045 	 * If async just return and let b_iodone callback
19046 	 * cleanup.
19047 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
19048 	 * but it was also incremented in sd_uscsi_strategy(), so
19049 	 * we should be ok.
19050 	 */
19051 	if (is_async == FALSE) {
19052 		(void) biowait(bp);
19053 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
19054 	}
19055 
19056 	return (rval);
19057 }
19058 
19059 
19060 static int
19061 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
19062 {
19063 	struct sd_uscsi_info *uip;
19064 	struct uscsi_cmd *uscmd;
19065 	uint8_t *sense_buf;
19066 	struct sd_lun *un;
19067 	int status;
19068 	union scsi_cdb *cdb;
19069 
19070 	uip = (struct sd_uscsi_info *)(bp->b_private);
19071 	ASSERT(uip != NULL);
19072 
19073 	uscmd = uip->ui_cmdp;
19074 	ASSERT(uscmd != NULL);
19075 
19076 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
19077 	ASSERT(sense_buf != NULL);
19078 
19079 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
19080 	ASSERT(un != NULL);
19081 
19082 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
19083 
19084 	status = geterror(bp);
19085 	switch (status) {
19086 	case 0:
19087 		break;	/* Success! */
19088 	case EIO:
19089 		switch (uscmd->uscsi_status) {
19090 		case STATUS_RESERVATION_CONFLICT:
19091 			/* Ignore reservation conflict */
19092 			status = 0;
19093 			goto done;
19094 
19095 		case STATUS_CHECK:
19096 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
19097 			    (scsi_sense_key(sense_buf) ==
19098 			    KEY_ILLEGAL_REQUEST)) {
19099 				/* Ignore Illegal Request error */
19100 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
19101 					mutex_enter(SD_MUTEX(un));
19102 					un->un_f_sync_nv_supported = FALSE;
19103 					mutex_exit(SD_MUTEX(un));
19104 					status = 0;
19105 					SD_TRACE(SD_LOG_IO, un,
19106 					    "un_f_sync_nv_supported \
19107 					    is set to false.\n");
19108 					goto done;
19109 				}
19110 
19111 				mutex_enter(SD_MUTEX(un));
19112 				un->un_f_sync_cache_supported = FALSE;
19113 				mutex_exit(SD_MUTEX(un));
19114 				SD_TRACE(SD_LOG_IO, un,
19115 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
19116 				    un_f_sync_cache_supported set to false \
19117 				    with asc = %x, ascq = %x\n",
19118 				    scsi_sense_asc(sense_buf),
19119 				    scsi_sense_ascq(sense_buf));
19120 				status = ENOTSUP;
19121 				goto done;
19122 			}
19123 			break;
19124 		default:
19125 			break;
19126 		}
19127 		/* FALLTHRU */
19128 	default:
19129 		/*
19130 		 * Don't log an error message if this device
19131 		 * has removable media.
19132 		 */
19133 		if (!un->un_f_has_removable_media) {
19134 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19135 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
19136 		}
19137 		break;
19138 	}
19139 
19140 done:
19141 	if (uip->ui_dkc.dkc_callback != NULL) {
19142 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
19143 	}
19144 
19145 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
19146 	freerbuf(bp);
19147 	kmem_free(uip, sizeof (struct sd_uscsi_info));
19148 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
19149 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
19150 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
19151 
19152 	return (status);
19153 }
19154 
19155 
19156 /*
19157  *    Function: sd_send_scsi_GET_CONFIGURATION
19158  *
19159  * Description: Issues the get configuration command to the device.
19160  *		Called from sd_check_for_writable_cd & sd_get_media_info
19161  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
19162  *   Arguments: un
19163  *		ucmdbuf
19164  *		rqbuf
19165  *		rqbuflen
19166  *		bufaddr
19167  *		buflen
19168  *		path_flag
19169  *
19170  * Return Code: 0   - Success
19171  *		errno return code from sd_send_scsi_cmd()
19172  *
19173  *     Context: Can sleep. Does not return until command is completed.
19174  *
19175  */
19176 
19177 static int
19178 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
19179 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
19180 	int path_flag)
19181 {
19182 	char	cdb[CDB_GROUP1];
19183 	int	status;
19184 
19185 	ASSERT(un != NULL);
19186 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19187 	ASSERT(bufaddr != NULL);
19188 	ASSERT(ucmdbuf != NULL);
19189 	ASSERT(rqbuf != NULL);
19190 
19191 	SD_TRACE(SD_LOG_IO, un,
19192 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
19193 
19194 	bzero(cdb, sizeof (cdb));
19195 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19196 	bzero(rqbuf, rqbuflen);
19197 	bzero(bufaddr, buflen);
19198 
19199 	/*
19200 	 * Set up cdb field for the get configuration command.
19201 	 */
19202 	cdb[0] = SCMD_GET_CONFIGURATION;
19203 	cdb[1] = 0x02;  /* Requested Type */
19204 	cdb[8] = SD_PROFILE_HEADER_LEN;
19205 	ucmdbuf->uscsi_cdb = cdb;
19206 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19207 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19208 	ucmdbuf->uscsi_buflen = buflen;
19209 	ucmdbuf->uscsi_timeout = sd_io_time;
19210 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19211 	ucmdbuf->uscsi_rqlen = rqbuflen;
19212 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19213 
19214 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
19215 	    UIO_SYSSPACE, path_flag);
19216 
19217 	switch (status) {
19218 	case 0:
19219 		break;  /* Success! */
19220 	case EIO:
19221 		switch (ucmdbuf->uscsi_status) {
19222 		case STATUS_RESERVATION_CONFLICT:
19223 			status = EACCES;
19224 			break;
19225 		default:
19226 			break;
19227 		}
19228 		break;
19229 	default:
19230 		break;
19231 	}
19232 
19233 	if (status == 0) {
19234 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19235 		    "sd_send_scsi_GET_CONFIGURATION: data",
19236 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19237 	}
19238 
19239 	SD_TRACE(SD_LOG_IO, un,
19240 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
19241 
19242 	return (status);
19243 }
19244 
19245 /*
19246  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
19247  *
19248  * Description: Issues the get configuration command to the device to
19249  *              retrieve a specific feature. Called from
19250  *		sd_check_for_writable_cd & sd_set_mmc_caps.
19251  *   Arguments: un
19252  *              ucmdbuf
19253  *              rqbuf
19254  *              rqbuflen
19255  *              bufaddr
19256  *              buflen
19257  *		feature
19258  *
19259  * Return Code: 0   - Success
19260  *              errno return code from sd_send_scsi_cmd()
19261  *
19262  *     Context: Can sleep. Does not return until command is completed.
19263  *
19264  */
19265 static int
19266 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
19267 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
19268 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
19269 {
19270 	char    cdb[CDB_GROUP1];
19271 	int	status;
19272 
19273 	ASSERT(un != NULL);
19274 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19275 	ASSERT(bufaddr != NULL);
19276 	ASSERT(ucmdbuf != NULL);
19277 	ASSERT(rqbuf != NULL);
19278 
19279 	SD_TRACE(SD_LOG_IO, un,
19280 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
19281 
19282 	bzero(cdb, sizeof (cdb));
19283 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19284 	bzero(rqbuf, rqbuflen);
19285 	bzero(bufaddr, buflen);
19286 
19287 	/*
19288 	 * Set up cdb field for the get configuration command.
19289 	 */
19290 	cdb[0] = SCMD_GET_CONFIGURATION;
19291 	cdb[1] = 0x02;  /* Requested Type */
19292 	cdb[3] = feature;
19293 	cdb[8] = buflen;
19294 	ucmdbuf->uscsi_cdb = cdb;
19295 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19296 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19297 	ucmdbuf->uscsi_buflen = buflen;
19298 	ucmdbuf->uscsi_timeout = sd_io_time;
19299 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19300 	ucmdbuf->uscsi_rqlen = rqbuflen;
19301 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19302 
19303 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
19304 	    UIO_SYSSPACE, path_flag);
19305 
19306 	switch (status) {
19307 	case 0:
19308 		break;  /* Success! */
19309 	case EIO:
19310 		switch (ucmdbuf->uscsi_status) {
19311 		case STATUS_RESERVATION_CONFLICT:
19312 			status = EACCES;
19313 			break;
19314 		default:
19315 			break;
19316 		}
19317 		break;
19318 	default:
19319 		break;
19320 	}
19321 
19322 	if (status == 0) {
19323 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19324 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
19325 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19326 	}
19327 
19328 	SD_TRACE(SD_LOG_IO, un,
19329 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
19330 
19331 	return (status);
19332 }
19333 
19334 
19335 /*
19336  *    Function: sd_send_scsi_MODE_SENSE
19337  *
19338  * Description: Utility function for issuing a scsi MODE SENSE command.
19339  *		Note: This routine uses a consistent implementation for Group0,
19340  *		Group1, and Group2 commands across all platforms. ATAPI devices
19341  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19342  *
19343  *   Arguments: un - pointer to the softstate struct for the target.
19344  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19345  *			  CDB_GROUP[1|2] (10 byte).
19346  *		bufaddr - buffer for page data retrieved from the target.
19347  *		buflen - size of page to be retrieved.
19348  *		page_code - page code of data to be retrieved from the target.
19349  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19350  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19351  *			to use the USCSI "direct" chain and bypass the normal
19352  *			command waitq.
19353  *
19354  * Return Code: 0   - Success
19355  *		errno return code from sd_send_scsi_cmd()
19356  *
19357  *     Context: Can sleep. Does not return until command is completed.
19358  */
19359 
19360 static int
19361 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19362 	size_t buflen,  uchar_t page_code, int path_flag)
19363 {
19364 	struct	scsi_extended_sense	sense_buf;
19365 	union scsi_cdb		cdb;
19366 	struct uscsi_cmd	ucmd_buf;
19367 	int			status;
19368 	int			headlen;
19369 
19370 	ASSERT(un != NULL);
19371 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19372 	ASSERT(bufaddr != NULL);
19373 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19374 	    (cdbsize == CDB_GROUP2));
19375 
19376 	SD_TRACE(SD_LOG_IO, un,
19377 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
19378 
19379 	bzero(&cdb, sizeof (cdb));
19380 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19381 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19382 	bzero(bufaddr, buflen);
19383 
19384 	if (cdbsize == CDB_GROUP0) {
19385 		cdb.scc_cmd = SCMD_MODE_SENSE;
19386 		cdb.cdb_opaque[2] = page_code;
19387 		FORMG0COUNT(&cdb, buflen);
19388 		headlen = MODE_HEADER_LENGTH;
19389 	} else {
19390 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
19391 		cdb.cdb_opaque[2] = page_code;
19392 		FORMG1COUNT(&cdb, buflen);
19393 		headlen = MODE_HEADER_LENGTH_GRP2;
19394 	}
19395 
19396 	ASSERT(headlen <= buflen);
19397 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19398 
19399 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19400 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19401 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19402 	ucmd_buf.uscsi_buflen	= buflen;
19403 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19404 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19405 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19406 	ucmd_buf.uscsi_timeout	= 60;
19407 
19408 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19409 	    UIO_SYSSPACE, path_flag);
19410 
19411 	switch (status) {
19412 	case 0:
19413 		/*
19414 		 * sr_check_wp() uses 0x3f page code and check the header of
19415 		 * mode page to determine if target device is write-protected.
19416 		 * But some USB devices return 0 bytes for 0x3f page code. For
19417 		 * this case, make sure that mode page header is returned at
19418 		 * least.
19419 		 */
19420 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
19421 			status = EIO;
19422 		break;	/* Success! */
19423 	case EIO:
19424 		switch (ucmd_buf.uscsi_status) {
19425 		case STATUS_RESERVATION_CONFLICT:
19426 			status = EACCES;
19427 			break;
19428 		default:
19429 			break;
19430 		}
19431 		break;
19432 	default:
19433 		break;
19434 	}
19435 
19436 	if (status == 0) {
19437 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
19438 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19439 	}
19440 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
19441 
19442 	return (status);
19443 }
19444 
19445 
19446 /*
19447  *    Function: sd_send_scsi_MODE_SELECT
19448  *
19449  * Description: Utility function for issuing a scsi MODE SELECT command.
19450  *		Note: This routine uses a consistent implementation for Group0,
19451  *		Group1, and Group2 commands across all platforms. ATAPI devices
19452  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19453  *
19454  *   Arguments: un - pointer to the softstate struct for the target.
19455  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19456  *			  CDB_GROUP[1|2] (10 byte).
19457  *		bufaddr - buffer for page data retrieved from the target.
19458  *		buflen - size of page to be retrieved.
19459  *		save_page - boolean to determin if SP bit should be set.
19460  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19461  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19462  *			to use the USCSI "direct" chain and bypass the normal
19463  *			command waitq.
19464  *
19465  * Return Code: 0   - Success
19466  *		errno return code from sd_send_scsi_cmd()
19467  *
19468  *     Context: Can sleep. Does not return until command is completed.
19469  */
19470 
19471 static int
19472 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19473 	size_t buflen,  uchar_t save_page, int path_flag)
19474 {
19475 	struct	scsi_extended_sense	sense_buf;
19476 	union scsi_cdb		cdb;
19477 	struct uscsi_cmd	ucmd_buf;
19478 	int			status;
19479 
19480 	ASSERT(un != NULL);
19481 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19482 	ASSERT(bufaddr != NULL);
19483 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19484 	    (cdbsize == CDB_GROUP2));
19485 
19486 	SD_TRACE(SD_LOG_IO, un,
19487 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
19488 
19489 	bzero(&cdb, sizeof (cdb));
19490 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19491 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19492 
19493 	/* Set the PF bit for many third party drives */
19494 	cdb.cdb_opaque[1] = 0x10;
19495 
19496 	/* Set the savepage(SP) bit if given */
19497 	if (save_page == SD_SAVE_PAGE) {
19498 		cdb.cdb_opaque[1] |= 0x01;
19499 	}
19500 
19501 	if (cdbsize == CDB_GROUP0) {
19502 		cdb.scc_cmd = SCMD_MODE_SELECT;
19503 		FORMG0COUNT(&cdb, buflen);
19504 	} else {
19505 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
19506 		FORMG1COUNT(&cdb, buflen);
19507 	}
19508 
19509 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19510 
19511 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19512 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19513 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19514 	ucmd_buf.uscsi_buflen	= buflen;
19515 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19516 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19517 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
19518 	ucmd_buf.uscsi_timeout	= 60;
19519 
19520 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19521 	    UIO_SYSSPACE, path_flag);
19522 
19523 	switch (status) {
19524 	case 0:
19525 		break;	/* Success! */
19526 	case EIO:
19527 		switch (ucmd_buf.uscsi_status) {
19528 		case STATUS_RESERVATION_CONFLICT:
19529 			status = EACCES;
19530 			break;
19531 		default:
19532 			break;
19533 		}
19534 		break;
19535 	default:
19536 		break;
19537 	}
19538 
19539 	if (status == 0) {
19540 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
19541 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19542 	}
19543 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
19544 
19545 	return (status);
19546 }
19547 
19548 
19549 /*
19550  *    Function: sd_send_scsi_RDWR
19551  *
19552  * Description: Issue a scsi READ or WRITE command with the given parameters.
19553  *
19554  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19555  *		cmd:	 SCMD_READ or SCMD_WRITE
19556  *		bufaddr: Address of caller's buffer to receive the RDWR data
19557  *		buflen:  Length of caller's buffer receive the RDWR data.
19558  *		start_block: Block number for the start of the RDWR operation.
19559  *			 (Assumes target-native block size.)
19560  *		residp:  Pointer to variable to receive the redisual of the
19561  *			 RDWR operation (may be NULL of no residual requested).
19562  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19563  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19564  *			to use the USCSI "direct" chain and bypass the normal
19565  *			command waitq.
19566  *
19567  * Return Code: 0   - Success
19568  *		errno return code from sd_send_scsi_cmd()
19569  *
19570  *     Context: Can sleep. Does not return until command is completed.
19571  */
19572 
19573 static int
19574 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
19575 	size_t buflen, daddr_t start_block, int path_flag)
19576 {
19577 	struct	scsi_extended_sense	sense_buf;
19578 	union scsi_cdb		cdb;
19579 	struct uscsi_cmd	ucmd_buf;
19580 	uint32_t		block_count;
19581 	int			status;
19582 	int			cdbsize;
19583 	uchar_t			flag;
19584 
19585 	ASSERT(un != NULL);
19586 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19587 	ASSERT(bufaddr != NULL);
19588 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
19589 
19590 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
19591 
19592 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
19593 		return (EINVAL);
19594 	}
19595 
19596 	mutex_enter(SD_MUTEX(un));
19597 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
19598 	mutex_exit(SD_MUTEX(un));
19599 
19600 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
19601 
19602 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
19603 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
19604 	    bufaddr, buflen, start_block, block_count);
19605 
19606 	bzero(&cdb, sizeof (cdb));
19607 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19608 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19609 
19610 	/* Compute CDB size to use */
19611 	if (start_block > 0xffffffff)
19612 		cdbsize = CDB_GROUP4;
19613 	else if ((start_block & 0xFFE00000) ||
19614 	    (un->un_f_cfg_is_atapi == TRUE))
19615 		cdbsize = CDB_GROUP1;
19616 	else
19617 		cdbsize = CDB_GROUP0;
19618 
19619 	switch (cdbsize) {
19620 	case CDB_GROUP0:	/* 6-byte CDBs */
19621 		cdb.scc_cmd = cmd;
19622 		FORMG0ADDR(&cdb, start_block);
19623 		FORMG0COUNT(&cdb, block_count);
19624 		break;
19625 	case CDB_GROUP1:	/* 10-byte CDBs */
19626 		cdb.scc_cmd = cmd | SCMD_GROUP1;
19627 		FORMG1ADDR(&cdb, start_block);
19628 		FORMG1COUNT(&cdb, block_count);
19629 		break;
19630 	case CDB_GROUP4:	/* 16-byte CDBs */
19631 		cdb.scc_cmd = cmd | SCMD_GROUP4;
19632 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
19633 		FORMG4COUNT(&cdb, block_count);
19634 		break;
19635 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
19636 	default:
19637 		/* All others reserved */
19638 		return (EINVAL);
19639 	}
19640 
19641 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
19642 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19643 
19644 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19645 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19646 	ucmd_buf.uscsi_bufaddr	= bufaddr;
19647 	ucmd_buf.uscsi_buflen	= buflen;
19648 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19649 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19650 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
19651 	ucmd_buf.uscsi_timeout	= 60;
19652 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19653 	    UIO_SYSSPACE, path_flag);
19654 	switch (status) {
19655 	case 0:
19656 		break;	/* Success! */
19657 	case EIO:
19658 		switch (ucmd_buf.uscsi_status) {
19659 		case STATUS_RESERVATION_CONFLICT:
19660 			status = EACCES;
19661 			break;
19662 		default:
19663 			break;
19664 		}
19665 		break;
19666 	default:
19667 		break;
19668 	}
19669 
19670 	if (status == 0) {
19671 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
19672 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19673 	}
19674 
19675 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
19676 
19677 	return (status);
19678 }
19679 
19680 
19681 /*
19682  *    Function: sd_send_scsi_LOG_SENSE
19683  *
19684  * Description: Issue a scsi LOG_SENSE command with the given parameters.
19685  *
19686  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19687  *
19688  * Return Code: 0   - Success
19689  *		errno return code from sd_send_scsi_cmd()
19690  *
19691  *     Context: Can sleep. Does not return until command is completed.
19692  */
19693 
19694 static int
19695 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
19696 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
19697 	int path_flag)
19698 
19699 {
19700 	struct	scsi_extended_sense	sense_buf;
19701 	union scsi_cdb		cdb;
19702 	struct uscsi_cmd	ucmd_buf;
19703 	int			status;
19704 
19705 	ASSERT(un != NULL);
19706 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19707 
19708 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
19709 
19710 	bzero(&cdb, sizeof (cdb));
19711 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19712 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19713 
19714 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
19715 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
19716 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
19717 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
19718 	FORMG1COUNT(&cdb, buflen);
19719 
19720 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19721 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19722 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19723 	ucmd_buf.uscsi_buflen	= buflen;
19724 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19725 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19726 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19727 	ucmd_buf.uscsi_timeout	= 60;
19728 
19729 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19730 	    UIO_SYSSPACE, path_flag);
19731 
19732 	switch (status) {
19733 	case 0:
19734 		break;
19735 	case EIO:
19736 		switch (ucmd_buf.uscsi_status) {
19737 		case STATUS_RESERVATION_CONFLICT:
19738 			status = EACCES;
19739 			break;
19740 		case STATUS_CHECK:
19741 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19742 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19743 				KEY_ILLEGAL_REQUEST) &&
19744 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
19745 				/*
19746 				 * ASC 0x24: INVALID FIELD IN CDB
19747 				 */
19748 				switch (page_code) {
19749 				case START_STOP_CYCLE_PAGE:
19750 					/*
19751 					 * The start stop cycle counter is
19752 					 * implemented as page 0x31 in earlier
19753 					 * generation disks. In new generation
19754 					 * disks the start stop cycle counter is
19755 					 * implemented as page 0xE. To properly
19756 					 * handle this case if an attempt for
19757 					 * log page 0xE is made and fails we
19758 					 * will try again using page 0x31.
19759 					 *
19760 					 * Network storage BU committed to
19761 					 * maintain the page 0x31 for this
19762 					 * purpose and will not have any other
19763 					 * page implemented with page code 0x31
19764 					 * until all disks transition to the
19765 					 * standard page.
19766 					 */
19767 					mutex_enter(SD_MUTEX(un));
19768 					un->un_start_stop_cycle_page =
19769 					    START_STOP_CYCLE_VU_PAGE;
19770 					cdb.cdb_opaque[2] =
19771 					    (char)(page_control << 6) |
19772 					    un->un_start_stop_cycle_page;
19773 					mutex_exit(SD_MUTEX(un));
19774 					status = sd_send_scsi_cmd(
19775 					    SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19776 					    UIO_SYSSPACE, path_flag);
19777 
19778 					break;
19779 				case TEMPERATURE_PAGE:
19780 					status = ENOTTY;
19781 					break;
19782 				default:
19783 					break;
19784 				}
19785 			}
19786 			break;
19787 		default:
19788 			break;
19789 		}
19790 		break;
19791 	default:
19792 		break;
19793 	}
19794 
19795 	if (status == 0) {
19796 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
19797 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19798 	}
19799 
19800 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
19801 
19802 	return (status);
19803 }
19804 
19805 
19806 /*
19807  *    Function: sdioctl
19808  *
19809  * Description: Driver's ioctl(9e) entry point function.
19810  *
19811  *   Arguments: dev     - device number
19812  *		cmd     - ioctl operation to be performed
19813  *		arg     - user argument, contains data to be set or reference
19814  *			  parameter for get
19815  *		flag    - bit flag, indicating open settings, 32/64 bit type
19816  *		cred_p  - user credential pointer
19817  *		rval_p  - calling process return value (OPT)
19818  *
19819  * Return Code: EINVAL
19820  *		ENOTTY
19821  *		ENXIO
19822  *		EIO
19823  *		EFAULT
19824  *		ENOTSUP
19825  *		EPERM
19826  *
19827  *     Context: Called from the device switch at normal priority.
19828  */
19829 
19830 static int
19831 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
19832 {
19833 	struct sd_lun	*un = NULL;
19834 	int		err = 0;
19835 	int		i = 0;
19836 	cred_t		*cr;
19837 	int		tmprval = EINVAL;
19838 	int 		is_valid;
19839 
19840 	/*
19841 	 * All device accesses go thru sdstrategy where we check on suspend
19842 	 * status
19843 	 */
19844 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
19845 		return (ENXIO);
19846 	}
19847 
19848 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19849 
19850 
19851 	is_valid = SD_IS_VALID_LABEL(un);
19852 
19853 	/*
19854 	 * Moved this wait from sd_uscsi_strategy to here for
19855 	 * reasons of deadlock prevention. Internal driver commands,
19856 	 * specifically those to change a devices power level, result
19857 	 * in a call to sd_uscsi_strategy.
19858 	 */
19859 	mutex_enter(SD_MUTEX(un));
19860 	while ((un->un_state == SD_STATE_SUSPENDED) ||
19861 	    (un->un_state == SD_STATE_PM_CHANGING)) {
19862 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
19863 	}
19864 	/*
19865 	 * Twiddling the counter here protects commands from now
19866 	 * through to the top of sd_uscsi_strategy. Without the
19867 	 * counter inc. a power down, for example, could get in
19868 	 * after the above check for state is made and before
19869 	 * execution gets to the top of sd_uscsi_strategy.
19870 	 * That would cause problems.
19871 	 */
19872 	un->un_ncmds_in_driver++;
19873 
19874 	if (!is_valid &&
19875 	    (flag & (FNDELAY | FNONBLOCK))) {
19876 		switch (cmd) {
19877 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
19878 		case DKIOCGVTOC:
19879 		case DKIOCGAPART:
19880 		case DKIOCPARTINFO:
19881 		case DKIOCSGEOM:
19882 		case DKIOCSAPART:
19883 		case DKIOCGETEFI:
19884 		case DKIOCPARTITION:
19885 		case DKIOCSVTOC:
19886 		case DKIOCSETEFI:
19887 		case DKIOCGMBOOT:
19888 		case DKIOCSMBOOT:
19889 		case DKIOCG_PHYGEOM:
19890 		case DKIOCG_VIRTGEOM:
19891 			/* let cmlb handle it */
19892 			goto skip_ready_valid;
19893 
19894 		case CDROMPAUSE:
19895 		case CDROMRESUME:
19896 		case CDROMPLAYMSF:
19897 		case CDROMPLAYTRKIND:
19898 		case CDROMREADTOCHDR:
19899 		case CDROMREADTOCENTRY:
19900 		case CDROMSTOP:
19901 		case CDROMSTART:
19902 		case CDROMVOLCTRL:
19903 		case CDROMSUBCHNL:
19904 		case CDROMREADMODE2:
19905 		case CDROMREADMODE1:
19906 		case CDROMREADOFFSET:
19907 		case CDROMSBLKMODE:
19908 		case CDROMGBLKMODE:
19909 		case CDROMGDRVSPEED:
19910 		case CDROMSDRVSPEED:
19911 		case CDROMCDDA:
19912 		case CDROMCDXA:
19913 		case CDROMSUBCODE:
19914 			if (!ISCD(un)) {
19915 				un->un_ncmds_in_driver--;
19916 				ASSERT(un->un_ncmds_in_driver >= 0);
19917 				mutex_exit(SD_MUTEX(un));
19918 				return (ENOTTY);
19919 			}
19920 			break;
19921 		case FDEJECT:
19922 		case DKIOCEJECT:
19923 		case CDROMEJECT:
19924 			if (!un->un_f_eject_media_supported) {
19925 				un->un_ncmds_in_driver--;
19926 				ASSERT(un->un_ncmds_in_driver >= 0);
19927 				mutex_exit(SD_MUTEX(un));
19928 				return (ENOTTY);
19929 			}
19930 			break;
19931 		case DKIOCFLUSHWRITECACHE:
19932 			mutex_exit(SD_MUTEX(un));
19933 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19934 			if (err != 0) {
19935 				mutex_enter(SD_MUTEX(un));
19936 				un->un_ncmds_in_driver--;
19937 				ASSERT(un->un_ncmds_in_driver >= 0);
19938 				mutex_exit(SD_MUTEX(un));
19939 				return (EIO);
19940 			}
19941 			mutex_enter(SD_MUTEX(un));
19942 			/* FALLTHROUGH */
19943 		case DKIOCREMOVABLE:
19944 		case DKIOCHOTPLUGGABLE:
19945 		case DKIOCINFO:
19946 		case DKIOCGMEDIAINFO:
19947 		case MHIOCENFAILFAST:
19948 		case MHIOCSTATUS:
19949 		case MHIOCTKOWN:
19950 		case MHIOCRELEASE:
19951 		case MHIOCGRP_INKEYS:
19952 		case MHIOCGRP_INRESV:
19953 		case MHIOCGRP_REGISTER:
19954 		case MHIOCGRP_RESERVE:
19955 		case MHIOCGRP_PREEMPTANDABORT:
19956 		case MHIOCGRP_REGISTERANDIGNOREKEY:
19957 		case CDROMCLOSETRAY:
19958 		case USCSICMD:
19959 			goto skip_ready_valid;
19960 		default:
19961 			break;
19962 		}
19963 
19964 		mutex_exit(SD_MUTEX(un));
19965 		err = sd_ready_and_valid(un);
19966 		mutex_enter(SD_MUTEX(un));
19967 
19968 		if (err != SD_READY_VALID) {
19969 			switch (cmd) {
19970 			case DKIOCSTATE:
19971 			case CDROMGDRVSPEED:
19972 			case CDROMSDRVSPEED:
19973 			case FDEJECT:	/* for eject command */
19974 			case DKIOCEJECT:
19975 			case CDROMEJECT:
19976 			case DKIOCREMOVABLE:
19977 			case DKIOCHOTPLUGGABLE:
19978 				break;
19979 			default:
19980 				if (un->un_f_has_removable_media) {
19981 					err = ENXIO;
19982 				} else {
19983 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
19984 					if (err == SD_RESERVED_BY_OTHERS) {
19985 						err = EACCES;
19986 					} else {
19987 						err = EIO;
19988 					}
19989 				}
19990 				un->un_ncmds_in_driver--;
19991 				ASSERT(un->un_ncmds_in_driver >= 0);
19992 				mutex_exit(SD_MUTEX(un));
19993 				return (err);
19994 			}
19995 		}
19996 	}
19997 
19998 skip_ready_valid:
19999 	mutex_exit(SD_MUTEX(un));
20000 
20001 	switch (cmd) {
20002 	case DKIOCINFO:
20003 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
20004 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
20005 		break;
20006 
20007 	case DKIOCGMEDIAINFO:
20008 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
20009 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
20010 		break;
20011 
20012 	case DKIOCGGEOM:
20013 	case DKIOCGVTOC:
20014 	case DKIOCGAPART:
20015 	case DKIOCPARTINFO:
20016 	case DKIOCSGEOM:
20017 	case DKIOCSAPART:
20018 	case DKIOCGETEFI:
20019 	case DKIOCPARTITION:
20020 	case DKIOCSVTOC:
20021 	case DKIOCSETEFI:
20022 	case DKIOCGMBOOT:
20023 	case DKIOCSMBOOT:
20024 	case DKIOCG_PHYGEOM:
20025 	case DKIOCG_VIRTGEOM:
20026 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
20027 
20028 		/* TUR should spin up */
20029 
20030 		if (un->un_f_has_removable_media)
20031 			err = sd_send_scsi_TEST_UNIT_READY(un,
20032 			    SD_CHECK_FOR_MEDIA);
20033 		else
20034 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
20035 
20036 		if (err != 0)
20037 			break;
20038 
20039 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
20040 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
20041 
20042 		if ((err == 0) &&
20043 		    ((cmd == DKIOCSETEFI) ||
20044 		    (un->un_f_pkstats_enabled) &&
20045 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC))) {
20046 
20047 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
20048 			    (void *)SD_PATH_DIRECT);
20049 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
20050 				sd_set_pstats(un);
20051 				SD_TRACE(SD_LOG_IO_PARTITION, un,
20052 				    "sd_ioctl: un:0x%p pstats created and "
20053 				    "set\n", un);
20054 			}
20055 		}
20056 
20057 		if ((cmd == DKIOCSVTOC) ||
20058 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
20059 
20060 			mutex_enter(SD_MUTEX(un));
20061 			if (un->un_f_devid_supported &&
20062 			    (un->un_f_opt_fab_devid == TRUE)) {
20063 				if (un->un_devid == NULL) {
20064 					sd_register_devid(un, SD_DEVINFO(un),
20065 					    SD_TARGET_IS_UNRESERVED);
20066 				} else {
20067 					/*
20068 					 * The device id for this disk
20069 					 * has been fabricated. The
20070 					 * device id must be preserved
20071 					 * by writing it back out to
20072 					 * disk.
20073 					 */
20074 					if (sd_write_deviceid(un) != 0) {
20075 						ddi_devid_free(un->un_devid);
20076 						un->un_devid = NULL;
20077 					}
20078 				}
20079 			}
20080 			mutex_exit(SD_MUTEX(un));
20081 		}
20082 
20083 		break;
20084 
20085 	case DKIOCLOCK:
20086 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
20087 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
20088 		    SD_PATH_STANDARD);
20089 		break;
20090 
20091 	case DKIOCUNLOCK:
20092 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
20093 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
20094 		    SD_PATH_STANDARD);
20095 		break;
20096 
20097 	case DKIOCSTATE: {
20098 		enum dkio_state		state;
20099 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
20100 
20101 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
20102 			err = EFAULT;
20103 		} else {
20104 			err = sd_check_media(dev, state);
20105 			if (err == 0) {
20106 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
20107 				    sizeof (int), flag) != 0)
20108 					err = EFAULT;
20109 			}
20110 		}
20111 		break;
20112 	}
20113 
20114 	case DKIOCREMOVABLE:
20115 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
20116 		i = un->un_f_has_removable_media ? 1 : 0;
20117 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
20118 			err = EFAULT;
20119 		} else {
20120 			err = 0;
20121 		}
20122 		break;
20123 
20124 	case DKIOCHOTPLUGGABLE:
20125 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
20126 		i = un->un_f_is_hotpluggable ? 1 : 0;
20127 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
20128 			err = EFAULT;
20129 		} else {
20130 			err = 0;
20131 		}
20132 		break;
20133 
20134 	case DKIOCGTEMPERATURE:
20135 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
20136 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
20137 		break;
20138 
20139 	case MHIOCENFAILFAST:
20140 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
20141 		if ((err = drv_priv(cred_p)) == 0) {
20142 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
20143 		}
20144 		break;
20145 
20146 	case MHIOCTKOWN:
20147 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
20148 		if ((err = drv_priv(cred_p)) == 0) {
20149 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
20150 		}
20151 		break;
20152 
20153 	case MHIOCRELEASE:
20154 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
20155 		if ((err = drv_priv(cred_p)) == 0) {
20156 			err = sd_mhdioc_release(dev);
20157 		}
20158 		break;
20159 
20160 	case MHIOCSTATUS:
20161 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
20162 		if ((err = drv_priv(cred_p)) == 0) {
20163 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
20164 			case 0:
20165 				err = 0;
20166 				break;
20167 			case EACCES:
20168 				*rval_p = 1;
20169 				err = 0;
20170 				break;
20171 			default:
20172 				err = EIO;
20173 				break;
20174 			}
20175 		}
20176 		break;
20177 
20178 	case MHIOCQRESERVE:
20179 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
20180 		if ((err = drv_priv(cred_p)) == 0) {
20181 			err = sd_reserve_release(dev, SD_RESERVE);
20182 		}
20183 		break;
20184 
20185 	case MHIOCREREGISTERDEVID:
20186 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
20187 		if (drv_priv(cred_p) == EPERM) {
20188 			err = EPERM;
20189 		} else if (!un->un_f_devid_supported) {
20190 			err = ENOTTY;
20191 		} else {
20192 			err = sd_mhdioc_register_devid(dev);
20193 		}
20194 		break;
20195 
20196 	case MHIOCGRP_INKEYS:
20197 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
20198 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20199 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20200 				err = ENOTSUP;
20201 			} else {
20202 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
20203 				    flag);
20204 			}
20205 		}
20206 		break;
20207 
20208 	case MHIOCGRP_INRESV:
20209 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
20210 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20211 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20212 				err = ENOTSUP;
20213 			} else {
20214 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
20215 			}
20216 		}
20217 		break;
20218 
20219 	case MHIOCGRP_REGISTER:
20220 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
20221 		if ((err = drv_priv(cred_p)) != EPERM) {
20222 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20223 				err = ENOTSUP;
20224 			} else if (arg != NULL) {
20225 				mhioc_register_t reg;
20226 				if (ddi_copyin((void *)arg, &reg,
20227 				    sizeof (mhioc_register_t), flag) != 0) {
20228 					err = EFAULT;
20229 				} else {
20230 					err =
20231 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20232 					    un, SD_SCSI3_REGISTER,
20233 					    (uchar_t *)&reg);
20234 				}
20235 			}
20236 		}
20237 		break;
20238 
20239 	case MHIOCGRP_RESERVE:
20240 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
20241 		if ((err = drv_priv(cred_p)) != EPERM) {
20242 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20243 				err = ENOTSUP;
20244 			} else if (arg != NULL) {
20245 				mhioc_resv_desc_t resv_desc;
20246 				if (ddi_copyin((void *)arg, &resv_desc,
20247 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
20248 					err = EFAULT;
20249 				} else {
20250 					err =
20251 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20252 					    un, SD_SCSI3_RESERVE,
20253 					    (uchar_t *)&resv_desc);
20254 				}
20255 			}
20256 		}
20257 		break;
20258 
20259 	case MHIOCGRP_PREEMPTANDABORT:
20260 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
20261 		if ((err = drv_priv(cred_p)) != EPERM) {
20262 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20263 				err = ENOTSUP;
20264 			} else if (arg != NULL) {
20265 				mhioc_preemptandabort_t preempt_abort;
20266 				if (ddi_copyin((void *)arg, &preempt_abort,
20267 				    sizeof (mhioc_preemptandabort_t),
20268 				    flag) != 0) {
20269 					err = EFAULT;
20270 				} else {
20271 					err =
20272 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20273 					    un, SD_SCSI3_PREEMPTANDABORT,
20274 					    (uchar_t *)&preempt_abort);
20275 				}
20276 			}
20277 		}
20278 		break;
20279 
20280 	case MHIOCGRP_REGISTERANDIGNOREKEY:
20281 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
20282 		if ((err = drv_priv(cred_p)) != EPERM) {
20283 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20284 				err = ENOTSUP;
20285 			} else if (arg != NULL) {
20286 				mhioc_registerandignorekey_t r_and_i;
20287 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
20288 				    sizeof (mhioc_registerandignorekey_t),
20289 				    flag) != 0) {
20290 					err = EFAULT;
20291 				} else {
20292 					err =
20293 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20294 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
20295 					    (uchar_t *)&r_and_i);
20296 				}
20297 			}
20298 		}
20299 		break;
20300 
20301 	case USCSICMD:
20302 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
20303 		cr = ddi_get_cred();
20304 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
20305 			err = EPERM;
20306 		} else {
20307 			enum uio_seg	uioseg;
20308 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
20309 			    UIO_USERSPACE;
20310 			if (un->un_f_format_in_progress == TRUE) {
20311 				err = EAGAIN;
20312 				break;
20313 			}
20314 			err = sd_send_scsi_cmd(dev, (struct uscsi_cmd *)arg,
20315 			    flag, uioseg, SD_PATH_STANDARD);
20316 		}
20317 		break;
20318 
20319 	case CDROMPAUSE:
20320 	case CDROMRESUME:
20321 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
20322 		if (!ISCD(un)) {
20323 			err = ENOTTY;
20324 		} else {
20325 			err = sr_pause_resume(dev, cmd);
20326 		}
20327 		break;
20328 
20329 	case CDROMPLAYMSF:
20330 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
20331 		if (!ISCD(un)) {
20332 			err = ENOTTY;
20333 		} else {
20334 			err = sr_play_msf(dev, (caddr_t)arg, flag);
20335 		}
20336 		break;
20337 
20338 	case CDROMPLAYTRKIND:
20339 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
20340 #if defined(__i386) || defined(__amd64)
20341 		/*
20342 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
20343 		 */
20344 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20345 #else
20346 		if (!ISCD(un)) {
20347 #endif
20348 			err = ENOTTY;
20349 		} else {
20350 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
20351 		}
20352 		break;
20353 
20354 	case CDROMREADTOCHDR:
20355 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
20356 		if (!ISCD(un)) {
20357 			err = ENOTTY;
20358 		} else {
20359 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
20360 		}
20361 		break;
20362 
20363 	case CDROMREADTOCENTRY:
20364 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
20365 		if (!ISCD(un)) {
20366 			err = ENOTTY;
20367 		} else {
20368 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
20369 		}
20370 		break;
20371 
20372 	case CDROMSTOP:
20373 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
20374 		if (!ISCD(un)) {
20375 			err = ENOTTY;
20376 		} else {
20377 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
20378 			    SD_PATH_STANDARD);
20379 		}
20380 		break;
20381 
20382 	case CDROMSTART:
20383 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
20384 		if (!ISCD(un)) {
20385 			err = ENOTTY;
20386 		} else {
20387 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
20388 			    SD_PATH_STANDARD);
20389 		}
20390 		break;
20391 
20392 	case CDROMCLOSETRAY:
20393 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
20394 		if (!ISCD(un)) {
20395 			err = ENOTTY;
20396 		} else {
20397 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
20398 			    SD_PATH_STANDARD);
20399 		}
20400 		break;
20401 
20402 	case FDEJECT:	/* for eject command */
20403 	case DKIOCEJECT:
20404 	case CDROMEJECT:
20405 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
20406 		if (!un->un_f_eject_media_supported) {
20407 			err = ENOTTY;
20408 		} else {
20409 			err = sr_eject(dev);
20410 		}
20411 		break;
20412 
20413 	case CDROMVOLCTRL:
20414 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
20415 		if (!ISCD(un)) {
20416 			err = ENOTTY;
20417 		} else {
20418 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
20419 		}
20420 		break;
20421 
20422 	case CDROMSUBCHNL:
20423 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
20424 		if (!ISCD(un)) {
20425 			err = ENOTTY;
20426 		} else {
20427 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
20428 		}
20429 		break;
20430 
20431 	case CDROMREADMODE2:
20432 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
20433 		if (!ISCD(un)) {
20434 			err = ENOTTY;
20435 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20436 			/*
20437 			 * If the drive supports READ CD, use that instead of
20438 			 * switching the LBA size via a MODE SELECT
20439 			 * Block Descriptor
20440 			 */
20441 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
20442 		} else {
20443 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
20444 		}
20445 		break;
20446 
20447 	case CDROMREADMODE1:
20448 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
20449 		if (!ISCD(un)) {
20450 			err = ENOTTY;
20451 		} else {
20452 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
20453 		}
20454 		break;
20455 
20456 	case CDROMREADOFFSET:
20457 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
20458 		if (!ISCD(un)) {
20459 			err = ENOTTY;
20460 		} else {
20461 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
20462 			    flag);
20463 		}
20464 		break;
20465 
20466 	case CDROMSBLKMODE:
20467 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
20468 		/*
20469 		 * There is no means of changing block size in case of atapi
20470 		 * drives, thus return ENOTTY if drive type is atapi
20471 		 */
20472 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20473 			err = ENOTTY;
20474 		} else if (un->un_f_mmc_cap == TRUE) {
20475 
20476 			/*
20477 			 * MMC Devices do not support changing the
20478 			 * logical block size
20479 			 *
20480 			 * Note: EINVAL is being returned instead of ENOTTY to
20481 			 * maintain consistancy with the original mmc
20482 			 * driver update.
20483 			 */
20484 			err = EINVAL;
20485 		} else {
20486 			mutex_enter(SD_MUTEX(un));
20487 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
20488 			    (un->un_ncmds_in_transport > 0)) {
20489 				mutex_exit(SD_MUTEX(un));
20490 				err = EINVAL;
20491 			} else {
20492 				mutex_exit(SD_MUTEX(un));
20493 				err = sr_change_blkmode(dev, cmd, arg, flag);
20494 			}
20495 		}
20496 		break;
20497 
20498 	case CDROMGBLKMODE:
20499 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
20500 		if (!ISCD(un)) {
20501 			err = ENOTTY;
20502 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
20503 		    (un->un_f_blockcount_is_valid != FALSE)) {
20504 			/*
20505 			 * Drive is an ATAPI drive so return target block
20506 			 * size for ATAPI drives since we cannot change the
20507 			 * blocksize on ATAPI drives. Used primarily to detect
20508 			 * if an ATAPI cdrom is present.
20509 			 */
20510 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
20511 			    sizeof (int), flag) != 0) {
20512 				err = EFAULT;
20513 			} else {
20514 				err = 0;
20515 			}
20516 
20517 		} else {
20518 			/*
20519 			 * Drive supports changing block sizes via a Mode
20520 			 * Select.
20521 			 */
20522 			err = sr_change_blkmode(dev, cmd, arg, flag);
20523 		}
20524 		break;
20525 
20526 	case CDROMGDRVSPEED:
20527 	case CDROMSDRVSPEED:
20528 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
20529 		if (!ISCD(un)) {
20530 			err = ENOTTY;
20531 		} else if (un->un_f_mmc_cap == TRUE) {
20532 			/*
20533 			 * Note: In the future the driver implementation
20534 			 * for getting and
20535 			 * setting cd speed should entail:
20536 			 * 1) If non-mmc try the Toshiba mode page
20537 			 *    (sr_change_speed)
20538 			 * 2) If mmc but no support for Real Time Streaming try
20539 			 *    the SET CD SPEED (0xBB) command
20540 			 *   (sr_atapi_change_speed)
20541 			 * 3) If mmc and support for Real Time Streaming
20542 			 *    try the GET PERFORMANCE and SET STREAMING
20543 			 *    commands (not yet implemented, 4380808)
20544 			 */
20545 			/*
20546 			 * As per recent MMC spec, CD-ROM speed is variable
20547 			 * and changes with LBA. Since there is no such
20548 			 * things as drive speed now, fail this ioctl.
20549 			 *
20550 			 * Note: EINVAL is returned for consistancy of original
20551 			 * implementation which included support for getting
20552 			 * the drive speed of mmc devices but not setting
20553 			 * the drive speed. Thus EINVAL would be returned
20554 			 * if a set request was made for an mmc device.
20555 			 * We no longer support get or set speed for
20556 			 * mmc but need to remain consistent with regard
20557 			 * to the error code returned.
20558 			 */
20559 			err = EINVAL;
20560 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20561 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
20562 		} else {
20563 			err = sr_change_speed(dev, cmd, arg, flag);
20564 		}
20565 		break;
20566 
20567 	case CDROMCDDA:
20568 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
20569 		if (!ISCD(un)) {
20570 			err = ENOTTY;
20571 		} else {
20572 			err = sr_read_cdda(dev, (void *)arg, flag);
20573 		}
20574 		break;
20575 
20576 	case CDROMCDXA:
20577 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
20578 		if (!ISCD(un)) {
20579 			err = ENOTTY;
20580 		} else {
20581 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
20582 		}
20583 		break;
20584 
20585 	case CDROMSUBCODE:
20586 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
20587 		if (!ISCD(un)) {
20588 			err = ENOTTY;
20589 		} else {
20590 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
20591 		}
20592 		break;
20593 
20594 
20595 #ifdef SDDEBUG
20596 /* RESET/ABORTS testing ioctls */
20597 	case DKIOCRESET: {
20598 		int	reset_level;
20599 
20600 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
20601 			err = EFAULT;
20602 		} else {
20603 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
20604 			    "reset_level = 0x%lx\n", reset_level);
20605 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
20606 				err = 0;
20607 			} else {
20608 				err = EIO;
20609 			}
20610 		}
20611 		break;
20612 	}
20613 
20614 	case DKIOCABORT:
20615 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
20616 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
20617 			err = 0;
20618 		} else {
20619 			err = EIO;
20620 		}
20621 		break;
20622 #endif
20623 
20624 #ifdef SD_FAULT_INJECTION
20625 /* SDIOC FaultInjection testing ioctls */
20626 	case SDIOCSTART:
20627 	case SDIOCSTOP:
20628 	case SDIOCINSERTPKT:
20629 	case SDIOCINSERTXB:
20630 	case SDIOCINSERTUN:
20631 	case SDIOCINSERTARQ:
20632 	case SDIOCPUSH:
20633 	case SDIOCRETRIEVE:
20634 	case SDIOCRUN:
20635 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
20636 		    "SDIOC detected cmd:0x%X:\n", cmd);
20637 		/* call error generator */
20638 		sd_faultinjection_ioctl(cmd, arg, un);
20639 		err = 0;
20640 		break;
20641 
20642 #endif /* SD_FAULT_INJECTION */
20643 
20644 	case DKIOCFLUSHWRITECACHE:
20645 		{
20646 			struct dk_callback *dkc = (struct dk_callback *)arg;
20647 
20648 			mutex_enter(SD_MUTEX(un));
20649 			if (!un->un_f_sync_cache_supported ||
20650 			    !un->un_f_write_cache_enabled) {
20651 				err = un->un_f_sync_cache_supported ?
20652 				    0 : ENOTSUP;
20653 				mutex_exit(SD_MUTEX(un));
20654 				if ((flag & FKIOCTL) && dkc != NULL &&
20655 				    dkc->dkc_callback != NULL) {
20656 					(*dkc->dkc_callback)(dkc->dkc_cookie,
20657 					    err);
20658 					/*
20659 					 * Did callback and reported error.
20660 					 * Since we did a callback, ioctl
20661 					 * should return 0.
20662 					 */
20663 					err = 0;
20664 				}
20665 				break;
20666 			}
20667 			mutex_exit(SD_MUTEX(un));
20668 
20669 			if ((flag & FKIOCTL) && dkc != NULL &&
20670 			    dkc->dkc_callback != NULL) {
20671 				/* async SYNC CACHE request */
20672 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
20673 			} else {
20674 				/* synchronous SYNC CACHE request */
20675 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20676 			}
20677 		}
20678 		break;
20679 
20680 	case DKIOCGETWCE: {
20681 
20682 		int wce;
20683 
20684 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
20685 			break;
20686 		}
20687 
20688 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
20689 			err = EFAULT;
20690 		}
20691 		break;
20692 	}
20693 
20694 	case DKIOCSETWCE: {
20695 
20696 		int wce, sync_supported;
20697 
20698 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
20699 			err = EFAULT;
20700 			break;
20701 		}
20702 
20703 		/*
20704 		 * Synchronize multiple threads trying to enable
20705 		 * or disable the cache via the un_f_wcc_cv
20706 		 * condition variable.
20707 		 */
20708 		mutex_enter(SD_MUTEX(un));
20709 
20710 		/*
20711 		 * Don't allow the cache to be enabled if the
20712 		 * config file has it disabled.
20713 		 */
20714 		if (un->un_f_opt_disable_cache && wce) {
20715 			mutex_exit(SD_MUTEX(un));
20716 			err = EINVAL;
20717 			break;
20718 		}
20719 
20720 		/*
20721 		 * Wait for write cache change in progress
20722 		 * bit to be clear before proceeding.
20723 		 */
20724 		while (un->un_f_wcc_inprog)
20725 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
20726 
20727 		un->un_f_wcc_inprog = 1;
20728 
20729 		if (un->un_f_write_cache_enabled && wce == 0) {
20730 			/*
20731 			 * Disable the write cache.  Don't clear
20732 			 * un_f_write_cache_enabled until after
20733 			 * the mode select and flush are complete.
20734 			 */
20735 			sync_supported = un->un_f_sync_cache_supported;
20736 
20737 			/*
20738 			 * If cache flush is suppressed, we assume that the
20739 			 * controller firmware will take care of managing the
20740 			 * write cache for us: no need to explicitly
20741 			 * disable it.
20742 			 */
20743 			if (!un->un_f_suppress_cache_flush) {
20744 				mutex_exit(SD_MUTEX(un));
20745 				if ((err = sd_cache_control(un,
20746 				    SD_CACHE_NOCHANGE,
20747 				    SD_CACHE_DISABLE)) == 0 &&
20748 				    sync_supported) {
20749 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
20750 					    NULL);
20751 				}
20752 			} else {
20753 				mutex_exit(SD_MUTEX(un));
20754 			}
20755 
20756 			mutex_enter(SD_MUTEX(un));
20757 			if (err == 0) {
20758 				un->un_f_write_cache_enabled = 0;
20759 			}
20760 
20761 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
20762 			/*
20763 			 * Set un_f_write_cache_enabled first, so there is
20764 			 * no window where the cache is enabled, but the
20765 			 * bit says it isn't.
20766 			 */
20767 			un->un_f_write_cache_enabled = 1;
20768 
20769 			/*
20770 			 * If cache flush is suppressed, we assume that the
20771 			 * controller firmware will take care of managing the
20772 			 * write cache for us: no need to explicitly
20773 			 * enable it.
20774 			 */
20775 			if (!un->un_f_suppress_cache_flush) {
20776 				mutex_exit(SD_MUTEX(un));
20777 				err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20778 				    SD_CACHE_ENABLE);
20779 			} else {
20780 				mutex_exit(SD_MUTEX(un));
20781 			}
20782 
20783 			mutex_enter(SD_MUTEX(un));
20784 
20785 			if (err) {
20786 				un->un_f_write_cache_enabled = 0;
20787 			}
20788 		}
20789 
20790 		un->un_f_wcc_inprog = 0;
20791 		cv_broadcast(&un->un_wcc_cv);
20792 		mutex_exit(SD_MUTEX(un));
20793 		break;
20794 	}
20795 
20796 	default:
20797 		err = ENOTTY;
20798 		break;
20799 	}
20800 	mutex_enter(SD_MUTEX(un));
20801 	un->un_ncmds_in_driver--;
20802 	ASSERT(un->un_ncmds_in_driver >= 0);
20803 	mutex_exit(SD_MUTEX(un));
20804 
20805 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
20806 	return (err);
20807 }
20808 
20809 
20810 /*
20811  *    Function: sd_dkio_ctrl_info
20812  *
20813  * Description: This routine is the driver entry point for handling controller
20814  *		information ioctl requests (DKIOCINFO).
20815  *
20816  *   Arguments: dev  - the device number
20817  *		arg  - pointer to user provided dk_cinfo structure
20818  *		       specifying the controller type and attributes.
20819  *		flag - this argument is a pass through to ddi_copyxxx()
20820  *		       directly from the mode argument of ioctl().
20821  *
20822  * Return Code: 0
20823  *		EFAULT
20824  *		ENXIO
20825  */
20826 
20827 static int
20828 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
20829 {
20830 	struct sd_lun	*un = NULL;
20831 	struct dk_cinfo	*info;
20832 	dev_info_t	*pdip;
20833 	int		lun, tgt;
20834 
20835 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20836 		return (ENXIO);
20837 	}
20838 
20839 	info = (struct dk_cinfo *)
20840 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
20841 
20842 	switch (un->un_ctype) {
20843 	case CTYPE_CDROM:
20844 		info->dki_ctype = DKC_CDROM;
20845 		break;
20846 	default:
20847 		info->dki_ctype = DKC_SCSI_CCS;
20848 		break;
20849 	}
20850 	pdip = ddi_get_parent(SD_DEVINFO(un));
20851 	info->dki_cnum = ddi_get_instance(pdip);
20852 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
20853 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
20854 	} else {
20855 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
20856 		    DK_DEVLEN - 1);
20857 	}
20858 
20859 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20860 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
20861 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20862 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
20863 
20864 	/* Unit Information */
20865 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
20866 	info->dki_slave = ((tgt << 3) | lun);
20867 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
20868 	    DK_DEVLEN - 1);
20869 	info->dki_flags = DKI_FMTVOL;
20870 	info->dki_partition = SDPART(dev);
20871 
20872 	/* Max Transfer size of this device in blocks */
20873 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
20874 	info->dki_addr = 0;
20875 	info->dki_space = 0;
20876 	info->dki_prio = 0;
20877 	info->dki_vec = 0;
20878 
20879 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
20880 		kmem_free(info, sizeof (struct dk_cinfo));
20881 		return (EFAULT);
20882 	} else {
20883 		kmem_free(info, sizeof (struct dk_cinfo));
20884 		return (0);
20885 	}
20886 }
20887 
20888 
20889 /*
20890  *    Function: sd_get_media_info
20891  *
20892  * Description: This routine is the driver entry point for handling ioctl
20893  *		requests for the media type or command set profile used by the
20894  *		drive to operate on the media (DKIOCGMEDIAINFO).
20895  *
20896  *   Arguments: dev	- the device number
20897  *		arg	- pointer to user provided dk_minfo structure
20898  *			  specifying the media type, logical block size and
20899  *			  drive capacity.
20900  *		flag	- this argument is a pass through to ddi_copyxxx()
20901  *			  directly from the mode argument of ioctl().
20902  *
20903  * Return Code: 0
20904  *		EACCESS
20905  *		EFAULT
20906  *		ENXIO
20907  *		EIO
20908  */
20909 
20910 static int
20911 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
20912 {
20913 	struct sd_lun		*un = NULL;
20914 	struct uscsi_cmd	com;
20915 	struct scsi_inquiry	*sinq;
20916 	struct dk_minfo		media_info;
20917 	u_longlong_t		media_capacity;
20918 	uint64_t		capacity;
20919 	uint_t			lbasize;
20920 	uchar_t			*out_data;
20921 	uchar_t			*rqbuf;
20922 	int			rval = 0;
20923 	int			rtn;
20924 
20925 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
20926 	    (un->un_state == SD_STATE_OFFLINE)) {
20927 		return (ENXIO);
20928 	}
20929 
20930 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
20931 
20932 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
20933 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20934 
20935 	/* Issue a TUR to determine if the drive is ready with media present */
20936 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
20937 	if (rval == ENXIO) {
20938 		goto done;
20939 	}
20940 
20941 	/* Now get configuration data */
20942 	if (ISCD(un)) {
20943 		media_info.dki_media_type = DK_CDROM;
20944 
20945 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
20946 		if (un->un_f_mmc_cap == TRUE) {
20947 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
20948 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
20949 			    SD_PATH_STANDARD);
20950 
20951 			if (rtn) {
20952 				/*
20953 				 * Failed for other than an illegal request
20954 				 * or command not supported
20955 				 */
20956 				if ((com.uscsi_status == STATUS_CHECK) &&
20957 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
20958 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
20959 					    (rqbuf[12] != 0x20)) {
20960 						rval = EIO;
20961 						goto done;
20962 					}
20963 				}
20964 			} else {
20965 				/*
20966 				 * The GET CONFIGURATION command succeeded
20967 				 * so set the media type according to the
20968 				 * returned data
20969 				 */
20970 				media_info.dki_media_type = out_data[6];
20971 				media_info.dki_media_type <<= 8;
20972 				media_info.dki_media_type |= out_data[7];
20973 			}
20974 		}
20975 	} else {
20976 		/*
20977 		 * The profile list is not available, so we attempt to identify
20978 		 * the media type based on the inquiry data
20979 		 */
20980 		sinq = un->un_sd->sd_inq;
20981 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
20982 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
20983 			/* This is a direct access device  or optical disk */
20984 			media_info.dki_media_type = DK_FIXED_DISK;
20985 
20986 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
20987 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
20988 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
20989 					media_info.dki_media_type = DK_ZIP;
20990 				} else if (
20991 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
20992 					media_info.dki_media_type = DK_JAZ;
20993 				}
20994 			}
20995 		} else {
20996 			/*
20997 			 * Not a CD, direct access or optical disk so return
20998 			 * unknown media
20999 			 */
21000 			media_info.dki_media_type = DK_UNKNOWN;
21001 		}
21002 	}
21003 
21004 	/* Now read the capacity so we can provide the lbasize and capacity */
21005 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
21006 	    SD_PATH_DIRECT)) {
21007 	case 0:
21008 		break;
21009 	case EACCES:
21010 		rval = EACCES;
21011 		goto done;
21012 	default:
21013 		rval = EIO;
21014 		goto done;
21015 	}
21016 
21017 	/*
21018 	 * If lun is expanded dynamically, update the un structure.
21019 	 */
21020 	mutex_enter(SD_MUTEX(un));
21021 	if ((un->un_f_blockcount_is_valid == TRUE) &&
21022 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
21023 	    (capacity > un->un_blockcount)) {
21024 		sd_update_block_info(un, lbasize, capacity);
21025 	}
21026 	mutex_exit(SD_MUTEX(un));
21027 
21028 	media_info.dki_lbsize = lbasize;
21029 	media_capacity = capacity;
21030 
21031 	/*
21032 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
21033 	 * un->un_sys_blocksize chunks. So we need to convert it into
21034 	 * cap.lbasize chunks.
21035 	 */
21036 	media_capacity *= un->un_sys_blocksize;
21037 	media_capacity /= lbasize;
21038 	media_info.dki_capacity = media_capacity;
21039 
21040 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
21041 		rval = EFAULT;
21042 		/* Put goto. Anybody might add some code below in future */
21043 		goto done;
21044 	}
21045 done:
21046 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
21047 	kmem_free(rqbuf, SENSE_LENGTH);
21048 	return (rval);
21049 }
21050 
21051 
21052 /*
21053  *    Function: sd_check_media
21054  *
21055  * Description: This utility routine implements the functionality for the
21056  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
21057  *		driver state changes from that specified by the user
21058  *		(inserted or ejected). For example, if the user specifies
21059  *		DKIO_EJECTED and the current media state is inserted this
21060  *		routine will immediately return DKIO_INSERTED. However, if the
21061  *		current media state is not inserted the user thread will be
21062  *		blocked until the drive state changes. If DKIO_NONE is specified
21063  *		the user thread will block until a drive state change occurs.
21064  *
21065  *   Arguments: dev  - the device number
21066  *		state  - user pointer to a dkio_state, updated with the current
21067  *			drive state at return.
21068  *
21069  * Return Code: ENXIO
21070  *		EIO
21071  *		EAGAIN
21072  *		EINTR
21073  */
21074 
21075 static int
21076 sd_check_media(dev_t dev, enum dkio_state state)
21077 {
21078 	struct sd_lun		*un = NULL;
21079 	enum dkio_state		prev_state;
21080 	opaque_t		token = NULL;
21081 	int			rval = 0;
21082 
21083 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21084 		return (ENXIO);
21085 	}
21086 
21087 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
21088 
21089 	mutex_enter(SD_MUTEX(un));
21090 
21091 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
21092 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
21093 
21094 	prev_state = un->un_mediastate;
21095 
21096 	/* is there anything to do? */
21097 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
21098 		/*
21099 		 * submit the request to the scsi_watch service;
21100 		 * scsi_media_watch_cb() does the real work
21101 		 */
21102 		mutex_exit(SD_MUTEX(un));
21103 
21104 		/*
21105 		 * This change handles the case where a scsi watch request is
21106 		 * added to a device that is powered down. To accomplish this
21107 		 * we power up the device before adding the scsi watch request,
21108 		 * since the scsi watch sends a TUR directly to the device
21109 		 * which the device cannot handle if it is powered down.
21110 		 */
21111 		if (sd_pm_entry(un) != DDI_SUCCESS) {
21112 			mutex_enter(SD_MUTEX(un));
21113 			goto done;
21114 		}
21115 
21116 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
21117 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
21118 		    (caddr_t)dev);
21119 
21120 		sd_pm_exit(un);
21121 
21122 		mutex_enter(SD_MUTEX(un));
21123 		if (token == NULL) {
21124 			rval = EAGAIN;
21125 			goto done;
21126 		}
21127 
21128 		/*
21129 		 * This is a special case IOCTL that doesn't return
21130 		 * until the media state changes. Routine sdpower
21131 		 * knows about and handles this so don't count it
21132 		 * as an active cmd in the driver, which would
21133 		 * keep the device busy to the pm framework.
21134 		 * If the count isn't decremented the device can't
21135 		 * be powered down.
21136 		 */
21137 		un->un_ncmds_in_driver--;
21138 		ASSERT(un->un_ncmds_in_driver >= 0);
21139 
21140 		/*
21141 		 * if a prior request had been made, this will be the same
21142 		 * token, as scsi_watch was designed that way.
21143 		 */
21144 		un->un_swr_token = token;
21145 		un->un_specified_mediastate = state;
21146 
21147 		/*
21148 		 * now wait for media change
21149 		 * we will not be signalled unless mediastate == state but it is
21150 		 * still better to test for this condition, since there is a
21151 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
21152 		 */
21153 		SD_TRACE(SD_LOG_COMMON, un,
21154 		    "sd_check_media: waiting for media state change\n");
21155 		while (un->un_mediastate == state) {
21156 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
21157 				SD_TRACE(SD_LOG_COMMON, un,
21158 				    "sd_check_media: waiting for media state "
21159 				    "was interrupted\n");
21160 				un->un_ncmds_in_driver++;
21161 				rval = EINTR;
21162 				goto done;
21163 			}
21164 			SD_TRACE(SD_LOG_COMMON, un,
21165 			    "sd_check_media: received signal, state=%x\n",
21166 			    un->un_mediastate);
21167 		}
21168 		/*
21169 		 * Inc the counter to indicate the device once again
21170 		 * has an active outstanding cmd.
21171 		 */
21172 		un->un_ncmds_in_driver++;
21173 	}
21174 
21175 	/* invalidate geometry */
21176 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
21177 		sr_ejected(un);
21178 	}
21179 
21180 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
21181 		uint64_t	capacity;
21182 		uint_t		lbasize;
21183 
21184 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
21185 		mutex_exit(SD_MUTEX(un));
21186 		/*
21187 		 * Since the following routines use SD_PATH_DIRECT, we must
21188 		 * call PM directly before the upcoming disk accesses. This
21189 		 * may cause the disk to be power/spin up.
21190 		 */
21191 
21192 		if (sd_pm_entry(un) == DDI_SUCCESS) {
21193 			rval = sd_send_scsi_READ_CAPACITY(un,
21194 			    &capacity,
21195 			    &lbasize, SD_PATH_DIRECT);
21196 			if (rval != 0) {
21197 				sd_pm_exit(un);
21198 				mutex_enter(SD_MUTEX(un));
21199 				goto done;
21200 			}
21201 		} else {
21202 			rval = EIO;
21203 			mutex_enter(SD_MUTEX(un));
21204 			goto done;
21205 		}
21206 		mutex_enter(SD_MUTEX(un));
21207 
21208 		sd_update_block_info(un, lbasize, capacity);
21209 
21210 		/*
21211 		 *  Check if the media in the device is writable or not
21212 		 */
21213 		if (ISCD(un))
21214 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
21215 
21216 		mutex_exit(SD_MUTEX(un));
21217 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
21218 		if ((cmlb_validate(un->un_cmlbhandle, 0,
21219 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
21220 			sd_set_pstats(un);
21221 			SD_TRACE(SD_LOG_IO_PARTITION, un,
21222 			    "sd_check_media: un:0x%p pstats created and "
21223 			    "set\n", un);
21224 		}
21225 
21226 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
21227 		    SD_PATH_DIRECT);
21228 		sd_pm_exit(un);
21229 
21230 		mutex_enter(SD_MUTEX(un));
21231 	}
21232 done:
21233 	un->un_f_watcht_stopped = FALSE;
21234 	if (un->un_swr_token) {
21235 		/*
21236 		 * Use of this local token and the mutex ensures that we avoid
21237 		 * some race conditions associated with terminating the
21238 		 * scsi watch.
21239 		 */
21240 		token = un->un_swr_token;
21241 		un->un_swr_token = (opaque_t)NULL;
21242 		mutex_exit(SD_MUTEX(un));
21243 		(void) scsi_watch_request_terminate(token,
21244 		    SCSI_WATCH_TERMINATE_WAIT);
21245 		mutex_enter(SD_MUTEX(un));
21246 	}
21247 
21248 	/*
21249 	 * Update the capacity kstat value, if no media previously
21250 	 * (capacity kstat is 0) and a media has been inserted
21251 	 * (un_f_blockcount_is_valid == TRUE)
21252 	 */
21253 	if (un->un_errstats) {
21254 		struct sd_errstats	*stp = NULL;
21255 
21256 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
21257 		if ((stp->sd_capacity.value.ui64 == 0) &&
21258 		    (un->un_f_blockcount_is_valid == TRUE)) {
21259 			stp->sd_capacity.value.ui64 =
21260 			    (uint64_t)((uint64_t)un->un_blockcount *
21261 			    un->un_sys_blocksize);
21262 		}
21263 	}
21264 	mutex_exit(SD_MUTEX(un));
21265 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
21266 	return (rval);
21267 }
21268 
21269 
21270 /*
21271  *    Function: sd_delayed_cv_broadcast
21272  *
21273  * Description: Delayed cv_broadcast to allow for target to recover from media
21274  *		insertion.
21275  *
21276  *   Arguments: arg - driver soft state (unit) structure
21277  */
21278 
21279 static void
21280 sd_delayed_cv_broadcast(void *arg)
21281 {
21282 	struct sd_lun *un = arg;
21283 
21284 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
21285 
21286 	mutex_enter(SD_MUTEX(un));
21287 	un->un_dcvb_timeid = NULL;
21288 	cv_broadcast(&un->un_state_cv);
21289 	mutex_exit(SD_MUTEX(un));
21290 }
21291 
21292 
21293 /*
21294  *    Function: sd_media_watch_cb
21295  *
21296  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
21297  *		routine processes the TUR sense data and updates the driver
21298  *		state if a transition has occurred. The user thread
21299  *		(sd_check_media) is then signalled.
21300  *
21301  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21302  *			among multiple watches that share this callback function
21303  *		resultp - scsi watch facility result packet containing scsi
21304  *			  packet, status byte and sense data
21305  *
21306  * Return Code: 0 for success, -1 for failure
21307  */
21308 
21309 static int
21310 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
21311 {
21312 	struct sd_lun			*un;
21313 	struct scsi_status		*statusp = resultp->statusp;
21314 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
21315 	enum dkio_state			state = DKIO_NONE;
21316 	dev_t				dev = (dev_t)arg;
21317 	uchar_t				actual_sense_length;
21318 	uint8_t				skey, asc, ascq;
21319 
21320 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21321 		return (-1);
21322 	}
21323 	actual_sense_length = resultp->actual_sense_length;
21324 
21325 	mutex_enter(SD_MUTEX(un));
21326 	SD_TRACE(SD_LOG_COMMON, un,
21327 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
21328 	    *((char *)statusp), (void *)sensep, actual_sense_length);
21329 
21330 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
21331 		un->un_mediastate = DKIO_DEV_GONE;
21332 		cv_broadcast(&un->un_state_cv);
21333 		mutex_exit(SD_MUTEX(un));
21334 
21335 		return (0);
21336 	}
21337 
21338 	/*
21339 	 * If there was a check condition then sensep points to valid sense data
21340 	 * If status was not a check condition but a reservation or busy status
21341 	 * then the new state is DKIO_NONE
21342 	 */
21343 	if (sensep != NULL) {
21344 		skey = scsi_sense_key(sensep);
21345 		asc = scsi_sense_asc(sensep);
21346 		ascq = scsi_sense_ascq(sensep);
21347 
21348 		SD_INFO(SD_LOG_COMMON, un,
21349 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
21350 		    skey, asc, ascq);
21351 		/* This routine only uses up to 13 bytes of sense data. */
21352 		if (actual_sense_length >= 13) {
21353 			if (skey == KEY_UNIT_ATTENTION) {
21354 				if (asc == 0x28) {
21355 					state = DKIO_INSERTED;
21356 				}
21357 			} else if (skey == KEY_NOT_READY) {
21358 				/*
21359 				 * if 02/04/02  means that the host
21360 				 * should send start command. Explicitly
21361 				 * leave the media state as is
21362 				 * (inserted) as the media is inserted
21363 				 * and host has stopped device for PM
21364 				 * reasons. Upon next true read/write
21365 				 * to this media will bring the
21366 				 * device to the right state good for
21367 				 * media access.
21368 				 */
21369 				if (asc == 0x3a) {
21370 					state = DKIO_EJECTED;
21371 				} else {
21372 					/*
21373 					 * If the drive is busy with an
21374 					 * operation or long write, keep the
21375 					 * media in an inserted state.
21376 					 */
21377 
21378 					if ((asc == 0x04) &&
21379 					    ((ascq == 0x02) ||
21380 					    (ascq == 0x07) ||
21381 					    (ascq == 0x08))) {
21382 						state = DKIO_INSERTED;
21383 					}
21384 				}
21385 			} else if (skey == KEY_NO_SENSE) {
21386 				if ((asc == 0x00) && (ascq == 0x00)) {
21387 					/*
21388 					 * Sense Data 00/00/00 does not provide
21389 					 * any information about the state of
21390 					 * the media. Ignore it.
21391 					 */
21392 					mutex_exit(SD_MUTEX(un));
21393 					return (0);
21394 				}
21395 			}
21396 		}
21397 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
21398 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
21399 		state = DKIO_INSERTED;
21400 	}
21401 
21402 	SD_TRACE(SD_LOG_COMMON, un,
21403 	    "sd_media_watch_cb: state=%x, specified=%x\n",
21404 	    state, un->un_specified_mediastate);
21405 
21406 	/*
21407 	 * now signal the waiting thread if this is *not* the specified state;
21408 	 * delay the signal if the state is DKIO_INSERTED to allow the target
21409 	 * to recover
21410 	 */
21411 	if (state != un->un_specified_mediastate) {
21412 		un->un_mediastate = state;
21413 		if (state == DKIO_INSERTED) {
21414 			/*
21415 			 * delay the signal to give the drive a chance
21416 			 * to do what it apparently needs to do
21417 			 */
21418 			SD_TRACE(SD_LOG_COMMON, un,
21419 			    "sd_media_watch_cb: delayed cv_broadcast\n");
21420 			if (un->un_dcvb_timeid == NULL) {
21421 				un->un_dcvb_timeid =
21422 				    timeout(sd_delayed_cv_broadcast, un,
21423 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
21424 			}
21425 		} else {
21426 			SD_TRACE(SD_LOG_COMMON, un,
21427 			    "sd_media_watch_cb: immediate cv_broadcast\n");
21428 			cv_broadcast(&un->un_state_cv);
21429 		}
21430 	}
21431 	mutex_exit(SD_MUTEX(un));
21432 	return (0);
21433 }
21434 
21435 
21436 /*
21437  *    Function: sd_dkio_get_temp
21438  *
21439  * Description: This routine is the driver entry point for handling ioctl
21440  *		requests to get the disk temperature.
21441  *
21442  *   Arguments: dev  - the device number
21443  *		arg  - pointer to user provided dk_temperature structure.
21444  *		flag - this argument is a pass through to ddi_copyxxx()
21445  *		       directly from the mode argument of ioctl().
21446  *
21447  * Return Code: 0
21448  *		EFAULT
21449  *		ENXIO
21450  *		EAGAIN
21451  */
21452 
21453 static int
21454 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
21455 {
21456 	struct sd_lun		*un = NULL;
21457 	struct dk_temperature	*dktemp = NULL;
21458 	uchar_t			*temperature_page;
21459 	int			rval = 0;
21460 	int			path_flag = SD_PATH_STANDARD;
21461 
21462 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21463 		return (ENXIO);
21464 	}
21465 
21466 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
21467 
21468 	/* copyin the disk temp argument to get the user flags */
21469 	if (ddi_copyin((void *)arg, dktemp,
21470 	    sizeof (struct dk_temperature), flag) != 0) {
21471 		rval = EFAULT;
21472 		goto done;
21473 	}
21474 
21475 	/* Initialize the temperature to invalid. */
21476 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
21477 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
21478 
21479 	/*
21480 	 * Note: Investigate removing the "bypass pm" semantic.
21481 	 * Can we just bypass PM always?
21482 	 */
21483 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
21484 		path_flag = SD_PATH_DIRECT;
21485 		ASSERT(!mutex_owned(&un->un_pm_mutex));
21486 		mutex_enter(&un->un_pm_mutex);
21487 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
21488 			/*
21489 			 * If DKT_BYPASS_PM is set, and the drive happens to be
21490 			 * in low power mode, we can not wake it up, Need to
21491 			 * return EAGAIN.
21492 			 */
21493 			mutex_exit(&un->un_pm_mutex);
21494 			rval = EAGAIN;
21495 			goto done;
21496 		} else {
21497 			/*
21498 			 * Indicate to PM the device is busy. This is required
21499 			 * to avoid a race - i.e. the ioctl is issuing a
21500 			 * command and the pm framework brings down the device
21501 			 * to low power mode (possible power cut-off on some
21502 			 * platforms).
21503 			 */
21504 			mutex_exit(&un->un_pm_mutex);
21505 			if (sd_pm_entry(un) != DDI_SUCCESS) {
21506 				rval = EAGAIN;
21507 				goto done;
21508 			}
21509 		}
21510 	}
21511 
21512 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
21513 
21514 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
21515 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
21516 		goto done2;
21517 	}
21518 
21519 	/*
21520 	 * For the current temperature verify that the parameter length is 0x02
21521 	 * and the parameter code is 0x00
21522 	 */
21523 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
21524 	    (temperature_page[5] == 0x00)) {
21525 		if (temperature_page[9] == 0xFF) {
21526 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
21527 		} else {
21528 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
21529 		}
21530 	}
21531 
21532 	/*
21533 	 * For the reference temperature verify that the parameter
21534 	 * length is 0x02 and the parameter code is 0x01
21535 	 */
21536 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
21537 	    (temperature_page[11] == 0x01)) {
21538 		if (temperature_page[15] == 0xFF) {
21539 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
21540 		} else {
21541 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
21542 		}
21543 	}
21544 
21545 	/* Do the copyout regardless of the temperature commands status. */
21546 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
21547 	    flag) != 0) {
21548 		rval = EFAULT;
21549 	}
21550 
21551 done2:
21552 	if (path_flag == SD_PATH_DIRECT) {
21553 		sd_pm_exit(un);
21554 	}
21555 
21556 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
21557 done:
21558 	if (dktemp != NULL) {
21559 		kmem_free(dktemp, sizeof (struct dk_temperature));
21560 	}
21561 
21562 	return (rval);
21563 }
21564 
21565 
21566 /*
21567  *    Function: sd_log_page_supported
21568  *
21569  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
21570  *		supported log pages.
21571  *
21572  *   Arguments: un -
21573  *		log_page -
21574  *
21575  * Return Code: -1 - on error (log sense is optional and may not be supported).
21576  *		0  - log page not found.
21577  *  		1  - log page found.
21578  */
21579 
21580 static int
21581 sd_log_page_supported(struct sd_lun *un, int log_page)
21582 {
21583 	uchar_t *log_page_data;
21584 	int	i;
21585 	int	match = 0;
21586 	int	log_size;
21587 
21588 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
21589 
21590 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
21591 	    SD_PATH_DIRECT) != 0) {
21592 		SD_ERROR(SD_LOG_COMMON, un,
21593 		    "sd_log_page_supported: failed log page retrieval\n");
21594 		kmem_free(log_page_data, 0xFF);
21595 		return (-1);
21596 	}
21597 	log_size = log_page_data[3];
21598 
21599 	/*
21600 	 * The list of supported log pages start from the fourth byte. Check
21601 	 * until we run out of log pages or a match is found.
21602 	 */
21603 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
21604 		if (log_page_data[i] == log_page) {
21605 			match++;
21606 		}
21607 	}
21608 	kmem_free(log_page_data, 0xFF);
21609 	return (match);
21610 }
21611 
21612 
21613 /*
21614  *    Function: sd_mhdioc_failfast
21615  *
21616  * Description: This routine is the driver entry point for handling ioctl
21617  *		requests to enable/disable the multihost failfast option.
21618  *		(MHIOCENFAILFAST)
21619  *
21620  *   Arguments: dev	- the device number
21621  *		arg	- user specified probing interval.
21622  *		flag	- this argument is a pass through to ddi_copyxxx()
21623  *			  directly from the mode argument of ioctl().
21624  *
21625  * Return Code: 0
21626  *		EFAULT
21627  *		ENXIO
21628  */
21629 
21630 static int
21631 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
21632 {
21633 	struct sd_lun	*un = NULL;
21634 	int		mh_time;
21635 	int		rval = 0;
21636 
21637 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21638 		return (ENXIO);
21639 	}
21640 
21641 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
21642 		return (EFAULT);
21643 
21644 	if (mh_time) {
21645 		mutex_enter(SD_MUTEX(un));
21646 		un->un_resvd_status |= SD_FAILFAST;
21647 		mutex_exit(SD_MUTEX(un));
21648 		/*
21649 		 * If mh_time is INT_MAX, then this ioctl is being used for
21650 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
21651 		 */
21652 		if (mh_time != INT_MAX) {
21653 			rval = sd_check_mhd(dev, mh_time);
21654 		}
21655 	} else {
21656 		(void) sd_check_mhd(dev, 0);
21657 		mutex_enter(SD_MUTEX(un));
21658 		un->un_resvd_status &= ~SD_FAILFAST;
21659 		mutex_exit(SD_MUTEX(un));
21660 	}
21661 	return (rval);
21662 }
21663 
21664 
21665 /*
21666  *    Function: sd_mhdioc_takeown
21667  *
21668  * Description: This routine is the driver entry point for handling ioctl
21669  *		requests to forcefully acquire exclusive access rights to the
21670  *		multihost disk (MHIOCTKOWN).
21671  *
21672  *   Arguments: dev	- the device number
21673  *		arg	- user provided structure specifying the delay
21674  *			  parameters in milliseconds
21675  *		flag	- this argument is a pass through to ddi_copyxxx()
21676  *			  directly from the mode argument of ioctl().
21677  *
21678  * Return Code: 0
21679  *		EFAULT
21680  *		ENXIO
21681  */
21682 
21683 static int
21684 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
21685 {
21686 	struct sd_lun		*un = NULL;
21687 	struct mhioctkown	*tkown = NULL;
21688 	int			rval = 0;
21689 
21690 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21691 		return (ENXIO);
21692 	}
21693 
21694 	if (arg != NULL) {
21695 		tkown = (struct mhioctkown *)
21696 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
21697 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
21698 		if (rval != 0) {
21699 			rval = EFAULT;
21700 			goto error;
21701 		}
21702 	}
21703 
21704 	rval = sd_take_ownership(dev, tkown);
21705 	mutex_enter(SD_MUTEX(un));
21706 	if (rval == 0) {
21707 		un->un_resvd_status |= SD_RESERVE;
21708 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
21709 			sd_reinstate_resv_delay =
21710 			    tkown->reinstate_resv_delay * 1000;
21711 		} else {
21712 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
21713 		}
21714 		/*
21715 		 * Give the scsi_watch routine interval set by
21716 		 * the MHIOCENFAILFAST ioctl precedence here.
21717 		 */
21718 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
21719 			mutex_exit(SD_MUTEX(un));
21720 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
21721 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
21722 			    "sd_mhdioc_takeown : %d\n",
21723 			    sd_reinstate_resv_delay);
21724 		} else {
21725 			mutex_exit(SD_MUTEX(un));
21726 		}
21727 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
21728 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21729 	} else {
21730 		un->un_resvd_status &= ~SD_RESERVE;
21731 		mutex_exit(SD_MUTEX(un));
21732 	}
21733 
21734 error:
21735 	if (tkown != NULL) {
21736 		kmem_free(tkown, sizeof (struct mhioctkown));
21737 	}
21738 	return (rval);
21739 }
21740 
21741 
21742 /*
21743  *    Function: sd_mhdioc_release
21744  *
21745  * Description: This routine is the driver entry point for handling ioctl
21746  *		requests to release exclusive access rights to the multihost
21747  *		disk (MHIOCRELEASE).
21748  *
21749  *   Arguments: dev	- the device number
21750  *
21751  * Return Code: 0
21752  *		ENXIO
21753  */
21754 
21755 static int
21756 sd_mhdioc_release(dev_t dev)
21757 {
21758 	struct sd_lun		*un = NULL;
21759 	timeout_id_t		resvd_timeid_save;
21760 	int			resvd_status_save;
21761 	int			rval = 0;
21762 
21763 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21764 		return (ENXIO);
21765 	}
21766 
21767 	mutex_enter(SD_MUTEX(un));
21768 	resvd_status_save = un->un_resvd_status;
21769 	un->un_resvd_status &=
21770 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
21771 	if (un->un_resvd_timeid) {
21772 		resvd_timeid_save = un->un_resvd_timeid;
21773 		un->un_resvd_timeid = NULL;
21774 		mutex_exit(SD_MUTEX(un));
21775 		(void) untimeout(resvd_timeid_save);
21776 	} else {
21777 		mutex_exit(SD_MUTEX(un));
21778 	}
21779 
21780 	/*
21781 	 * destroy any pending timeout thread that may be attempting to
21782 	 * reinstate reservation on this device.
21783 	 */
21784 	sd_rmv_resv_reclaim_req(dev);
21785 
21786 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
21787 		mutex_enter(SD_MUTEX(un));
21788 		if ((un->un_mhd_token) &&
21789 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
21790 			mutex_exit(SD_MUTEX(un));
21791 			(void) sd_check_mhd(dev, 0);
21792 		} else {
21793 			mutex_exit(SD_MUTEX(un));
21794 		}
21795 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
21796 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21797 	} else {
21798 		/*
21799 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
21800 		 */
21801 		mutex_enter(SD_MUTEX(un));
21802 		un->un_resvd_status = resvd_status_save;
21803 		mutex_exit(SD_MUTEX(un));
21804 	}
21805 	return (rval);
21806 }
21807 
21808 
21809 /*
21810  *    Function: sd_mhdioc_register_devid
21811  *
21812  * Description: This routine is the driver entry point for handling ioctl
21813  *		requests to register the device id (MHIOCREREGISTERDEVID).
21814  *
21815  *		Note: The implementation for this ioctl has been updated to
21816  *		be consistent with the original PSARC case (1999/357)
21817  *		(4375899, 4241671, 4220005)
21818  *
21819  *   Arguments: dev	- the device number
21820  *
21821  * Return Code: 0
21822  *		ENXIO
21823  */
21824 
21825 static int
21826 sd_mhdioc_register_devid(dev_t dev)
21827 {
21828 	struct sd_lun	*un = NULL;
21829 	int		rval = 0;
21830 
21831 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21832 		return (ENXIO);
21833 	}
21834 
21835 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21836 
21837 	mutex_enter(SD_MUTEX(un));
21838 
21839 	/* If a devid already exists, de-register it */
21840 	if (un->un_devid != NULL) {
21841 		ddi_devid_unregister(SD_DEVINFO(un));
21842 		/*
21843 		 * After unregister devid, needs to free devid memory
21844 		 */
21845 		ddi_devid_free(un->un_devid);
21846 		un->un_devid = NULL;
21847 	}
21848 
21849 	/* Check for reservation conflict */
21850 	mutex_exit(SD_MUTEX(un));
21851 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
21852 	mutex_enter(SD_MUTEX(un));
21853 
21854 	switch (rval) {
21855 	case 0:
21856 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
21857 		break;
21858 	case EACCES:
21859 		break;
21860 	default:
21861 		rval = EIO;
21862 	}
21863 
21864 	mutex_exit(SD_MUTEX(un));
21865 	return (rval);
21866 }
21867 
21868 
21869 /*
21870  *    Function: sd_mhdioc_inkeys
21871  *
21872  * Description: This routine is the driver entry point for handling ioctl
21873  *		requests to issue the SCSI-3 Persistent In Read Keys command
21874  *		to the device (MHIOCGRP_INKEYS).
21875  *
21876  *   Arguments: dev	- the device number
21877  *		arg	- user provided in_keys structure
21878  *		flag	- this argument is a pass through to ddi_copyxxx()
21879  *			  directly from the mode argument of ioctl().
21880  *
21881  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
21882  *		ENXIO
21883  *		EFAULT
21884  */
21885 
21886 static int
21887 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
21888 {
21889 	struct sd_lun		*un;
21890 	mhioc_inkeys_t		inkeys;
21891 	int			rval = 0;
21892 
21893 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21894 		return (ENXIO);
21895 	}
21896 
21897 #ifdef _MULTI_DATAMODEL
21898 	switch (ddi_model_convert_from(flag & FMODELS)) {
21899 	case DDI_MODEL_ILP32: {
21900 		struct mhioc_inkeys32	inkeys32;
21901 
21902 		if (ddi_copyin(arg, &inkeys32,
21903 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
21904 			return (EFAULT);
21905 		}
21906 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
21907 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21908 		    &inkeys, flag)) != 0) {
21909 			return (rval);
21910 		}
21911 		inkeys32.generation = inkeys.generation;
21912 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
21913 		    flag) != 0) {
21914 			return (EFAULT);
21915 		}
21916 		break;
21917 	}
21918 	case DDI_MODEL_NONE:
21919 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
21920 		    flag) != 0) {
21921 			return (EFAULT);
21922 		}
21923 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21924 		    &inkeys, flag)) != 0) {
21925 			return (rval);
21926 		}
21927 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
21928 		    flag) != 0) {
21929 			return (EFAULT);
21930 		}
21931 		break;
21932 	}
21933 
21934 #else /* ! _MULTI_DATAMODEL */
21935 
21936 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
21937 		return (EFAULT);
21938 	}
21939 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
21940 	if (rval != 0) {
21941 		return (rval);
21942 	}
21943 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
21944 		return (EFAULT);
21945 	}
21946 
21947 #endif /* _MULTI_DATAMODEL */
21948 
21949 	return (rval);
21950 }
21951 
21952 
21953 /*
21954  *    Function: sd_mhdioc_inresv
21955  *
21956  * Description: This routine is the driver entry point for handling ioctl
21957  *		requests to issue the SCSI-3 Persistent In Read Reservations
21958  *		command to the device (MHIOCGRP_INKEYS).
21959  *
21960  *   Arguments: dev	- the device number
21961  *		arg	- user provided in_resv structure
21962  *		flag	- this argument is a pass through to ddi_copyxxx()
21963  *			  directly from the mode argument of ioctl().
21964  *
21965  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
21966  *		ENXIO
21967  *		EFAULT
21968  */
21969 
21970 static int
21971 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
21972 {
21973 	struct sd_lun		*un;
21974 	mhioc_inresvs_t		inresvs;
21975 	int			rval = 0;
21976 
21977 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21978 		return (ENXIO);
21979 	}
21980 
21981 #ifdef _MULTI_DATAMODEL
21982 
21983 	switch (ddi_model_convert_from(flag & FMODELS)) {
21984 	case DDI_MODEL_ILP32: {
21985 		struct mhioc_inresvs32	inresvs32;
21986 
21987 		if (ddi_copyin(arg, &inresvs32,
21988 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21989 			return (EFAULT);
21990 		}
21991 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
21992 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21993 		    &inresvs, flag)) != 0) {
21994 			return (rval);
21995 		}
21996 		inresvs32.generation = inresvs.generation;
21997 		if (ddi_copyout(&inresvs32, arg,
21998 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21999 			return (EFAULT);
22000 		}
22001 		break;
22002 	}
22003 	case DDI_MODEL_NONE:
22004 		if (ddi_copyin(arg, &inresvs,
22005 		    sizeof (mhioc_inresvs_t), flag) != 0) {
22006 			return (EFAULT);
22007 		}
22008 		if ((rval = sd_persistent_reservation_in_read_resv(un,
22009 		    &inresvs, flag)) != 0) {
22010 			return (rval);
22011 		}
22012 		if (ddi_copyout(&inresvs, arg,
22013 		    sizeof (mhioc_inresvs_t), flag) != 0) {
22014 			return (EFAULT);
22015 		}
22016 		break;
22017 	}
22018 
22019 #else /* ! _MULTI_DATAMODEL */
22020 
22021 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
22022 		return (EFAULT);
22023 	}
22024 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
22025 	if (rval != 0) {
22026 		return (rval);
22027 	}
22028 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
22029 		return (EFAULT);
22030 	}
22031 
22032 #endif /* ! _MULTI_DATAMODEL */
22033 
22034 	return (rval);
22035 }
22036 
22037 
22038 /*
22039  * The following routines support the clustering functionality described below
22040  * and implement lost reservation reclaim functionality.
22041  *
22042  * Clustering
22043  * ----------
22044  * The clustering code uses two different, independent forms of SCSI
22045  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
22046  * Persistent Group Reservations. For any particular disk, it will use either
22047  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
22048  *
22049  * SCSI-2
22050  * The cluster software takes ownership of a multi-hosted disk by issuing the
22051  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
22052  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
22053  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
22054  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
22055  * driver. The meaning of failfast is that if the driver (on this host) ever
22056  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
22057  * it should immediately panic the host. The motivation for this ioctl is that
22058  * if this host does encounter reservation conflict, the underlying cause is
22059  * that some other host of the cluster has decided that this host is no longer
22060  * in the cluster and has seized control of the disks for itself. Since this
22061  * host is no longer in the cluster, it ought to panic itself. The
22062  * MHIOCENFAILFAST ioctl does two things:
22063  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
22064  *      error to panic the host
22065  *      (b) it sets up a periodic timer to test whether this host still has
22066  *      "access" (in that no other host has reserved the device):  if the
22067  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
22068  *      purpose of that periodic timer is to handle scenarios where the host is
22069  *      otherwise temporarily quiescent, temporarily doing no real i/o.
22070  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
22071  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
22072  * the device itself.
22073  *
22074  * SCSI-3 PGR
22075  * A direct semantic implementation of the SCSI-3 Persistent Reservation
22076  * facility is supported through the shared multihost disk ioctls
22077  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
22078  * MHIOCGRP_PREEMPTANDABORT)
22079  *
22080  * Reservation Reclaim:
22081  * --------------------
22082  * To support the lost reservation reclaim operations this driver creates a
22083  * single thread to handle reinstating reservations on all devices that have
22084  * lost reservations sd_resv_reclaim_requests are logged for all devices that
22085  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
22086  * and the reservation reclaim thread loops through the requests to regain the
22087  * lost reservations.
22088  */
22089 
22090 /*
22091  *    Function: sd_check_mhd()
22092  *
22093  * Description: This function sets up and submits a scsi watch request or
22094  *		terminates an existing watch request. This routine is used in
22095  *		support of reservation reclaim.
22096  *
22097  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
22098  *			 among multiple watches that share the callback function
22099  *		interval - the number of microseconds specifying the watch
22100  *			   interval for issuing TEST UNIT READY commands. If
22101  *			   set to 0 the watch should be terminated. If the
22102  *			   interval is set to 0 and if the device is required
22103  *			   to hold reservation while disabling failfast, the
22104  *			   watch is restarted with an interval of
22105  *			   reinstate_resv_delay.
22106  *
22107  * Return Code: 0	   - Successful submit/terminate of scsi watch request
22108  *		ENXIO      - Indicates an invalid device was specified
22109  *		EAGAIN     - Unable to submit the scsi watch request
22110  */
22111 
22112 static int
22113 sd_check_mhd(dev_t dev, int interval)
22114 {
22115 	struct sd_lun	*un;
22116 	opaque_t	token;
22117 
22118 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22119 		return (ENXIO);
22120 	}
22121 
22122 	/* is this a watch termination request? */
22123 	if (interval == 0) {
22124 		mutex_enter(SD_MUTEX(un));
22125 		/* if there is an existing watch task then terminate it */
22126 		if (un->un_mhd_token) {
22127 			token = un->un_mhd_token;
22128 			un->un_mhd_token = NULL;
22129 			mutex_exit(SD_MUTEX(un));
22130 			(void) scsi_watch_request_terminate(token,
22131 			    SCSI_WATCH_TERMINATE_WAIT);
22132 			mutex_enter(SD_MUTEX(un));
22133 		} else {
22134 			mutex_exit(SD_MUTEX(un));
22135 			/*
22136 			 * Note: If we return here we don't check for the
22137 			 * failfast case. This is the original legacy
22138 			 * implementation but perhaps we should be checking
22139 			 * the failfast case.
22140 			 */
22141 			return (0);
22142 		}
22143 		/*
22144 		 * If the device is required to hold reservation while
22145 		 * disabling failfast, we need to restart the scsi_watch
22146 		 * routine with an interval of reinstate_resv_delay.
22147 		 */
22148 		if (un->un_resvd_status & SD_RESERVE) {
22149 			interval = sd_reinstate_resv_delay/1000;
22150 		} else {
22151 			/* no failfast so bail */
22152 			mutex_exit(SD_MUTEX(un));
22153 			return (0);
22154 		}
22155 		mutex_exit(SD_MUTEX(un));
22156 	}
22157 
22158 	/*
22159 	 * adjust minimum time interval to 1 second,
22160 	 * and convert from msecs to usecs
22161 	 */
22162 	if (interval > 0 && interval < 1000) {
22163 		interval = 1000;
22164 	}
22165 	interval *= 1000;
22166 
22167 	/*
22168 	 * submit the request to the scsi_watch service
22169 	 */
22170 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
22171 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
22172 	if (token == NULL) {
22173 		return (EAGAIN);
22174 	}
22175 
22176 	/*
22177 	 * save token for termination later on
22178 	 */
22179 	mutex_enter(SD_MUTEX(un));
22180 	un->un_mhd_token = token;
22181 	mutex_exit(SD_MUTEX(un));
22182 	return (0);
22183 }
22184 
22185 
22186 /*
22187  *    Function: sd_mhd_watch_cb()
22188  *
22189  * Description: This function is the call back function used by the scsi watch
22190  *		facility. The scsi watch facility sends the "Test Unit Ready"
22191  *		and processes the status. If applicable (i.e. a "Unit Attention"
22192  *		status and automatic "Request Sense" not used) the scsi watch
22193  *		facility will send a "Request Sense" and retrieve the sense data
22194  *		to be passed to this callback function. In either case the
22195  *		automatic "Request Sense" or the facility submitting one, this
22196  *		callback is passed the status and sense data.
22197  *
22198  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22199  *			among multiple watches that share this callback function
22200  *		resultp - scsi watch facility result packet containing scsi
22201  *			  packet, status byte and sense data
22202  *
22203  * Return Code: 0 - continue the watch task
22204  *		non-zero - terminate the watch task
22205  */
22206 
22207 static int
22208 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
22209 {
22210 	struct sd_lun			*un;
22211 	struct scsi_status		*statusp;
22212 	uint8_t				*sensep;
22213 	struct scsi_pkt			*pkt;
22214 	uchar_t				actual_sense_length;
22215 	dev_t  				dev = (dev_t)arg;
22216 
22217 	ASSERT(resultp != NULL);
22218 	statusp			= resultp->statusp;
22219 	sensep			= (uint8_t *)resultp->sensep;
22220 	pkt			= resultp->pkt;
22221 	actual_sense_length	= resultp->actual_sense_length;
22222 
22223 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22224 		return (ENXIO);
22225 	}
22226 
22227 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22228 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
22229 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
22230 
22231 	/* Begin processing of the status and/or sense data */
22232 	if (pkt->pkt_reason != CMD_CMPLT) {
22233 		/* Handle the incomplete packet */
22234 		sd_mhd_watch_incomplete(un, pkt);
22235 		return (0);
22236 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
22237 		if (*((unsigned char *)statusp)
22238 		    == STATUS_RESERVATION_CONFLICT) {
22239 			/*
22240 			 * Handle a reservation conflict by panicking if
22241 			 * configured for failfast or by logging the conflict
22242 			 * and updating the reservation status
22243 			 */
22244 			mutex_enter(SD_MUTEX(un));
22245 			if ((un->un_resvd_status & SD_FAILFAST) &&
22246 			    (sd_failfast_enable)) {
22247 				sd_panic_for_res_conflict(un);
22248 				/*NOTREACHED*/
22249 			}
22250 			SD_INFO(SD_LOG_IOCTL_MHD, un,
22251 			    "sd_mhd_watch_cb: Reservation Conflict\n");
22252 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
22253 			mutex_exit(SD_MUTEX(un));
22254 		}
22255 	}
22256 
22257 	if (sensep != NULL) {
22258 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
22259 			mutex_enter(SD_MUTEX(un));
22260 			if ((scsi_sense_asc(sensep) ==
22261 			    SD_SCSI_RESET_SENSE_CODE) &&
22262 			    (un->un_resvd_status & SD_RESERVE)) {
22263 				/*
22264 				 * The additional sense code indicates a power
22265 				 * on or bus device reset has occurred; update
22266 				 * the reservation status.
22267 				 */
22268 				un->un_resvd_status |=
22269 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
22270 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22271 				    "sd_mhd_watch_cb: Lost Reservation\n");
22272 			}
22273 		} else {
22274 			return (0);
22275 		}
22276 	} else {
22277 		mutex_enter(SD_MUTEX(un));
22278 	}
22279 
22280 	if ((un->un_resvd_status & SD_RESERVE) &&
22281 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
22282 		if (un->un_resvd_status & SD_WANT_RESERVE) {
22283 			/*
22284 			 * A reset occurred in between the last probe and this
22285 			 * one so if a timeout is pending cancel it.
22286 			 */
22287 			if (un->un_resvd_timeid) {
22288 				timeout_id_t temp_id = un->un_resvd_timeid;
22289 				un->un_resvd_timeid = NULL;
22290 				mutex_exit(SD_MUTEX(un));
22291 				(void) untimeout(temp_id);
22292 				mutex_enter(SD_MUTEX(un));
22293 			}
22294 			un->un_resvd_status &= ~SD_WANT_RESERVE;
22295 		}
22296 		if (un->un_resvd_timeid == 0) {
22297 			/* Schedule a timeout to handle the lost reservation */
22298 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
22299 			    (void *)dev,
22300 			    drv_usectohz(sd_reinstate_resv_delay));
22301 		}
22302 	}
22303 	mutex_exit(SD_MUTEX(un));
22304 	return (0);
22305 }
22306 
22307 
22308 /*
22309  *    Function: sd_mhd_watch_incomplete()
22310  *
22311  * Description: This function is used to find out why a scsi pkt sent by the
22312  *		scsi watch facility was not completed. Under some scenarios this
22313  *		routine will return. Otherwise it will send a bus reset to see
22314  *		if the drive is still online.
22315  *
22316  *   Arguments: un  - driver soft state (unit) structure
22317  *		pkt - incomplete scsi pkt
22318  */
22319 
22320 static void
22321 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
22322 {
22323 	int	be_chatty;
22324 	int	perr;
22325 
22326 	ASSERT(pkt != NULL);
22327 	ASSERT(un != NULL);
22328 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
22329 	perr		= (pkt->pkt_statistics & STAT_PERR);
22330 
22331 	mutex_enter(SD_MUTEX(un));
22332 	if (un->un_state == SD_STATE_DUMPING) {
22333 		mutex_exit(SD_MUTEX(un));
22334 		return;
22335 	}
22336 
22337 	switch (pkt->pkt_reason) {
22338 	case CMD_UNX_BUS_FREE:
22339 		/*
22340 		 * If we had a parity error that caused the target to drop BSY*,
22341 		 * don't be chatty about it.
22342 		 */
22343 		if (perr && be_chatty) {
22344 			be_chatty = 0;
22345 		}
22346 		break;
22347 	case CMD_TAG_REJECT:
22348 		/*
22349 		 * The SCSI-2 spec states that a tag reject will be sent by the
22350 		 * target if tagged queuing is not supported. A tag reject may
22351 		 * also be sent during certain initialization periods or to
22352 		 * control internal resources. For the latter case the target
22353 		 * may also return Queue Full.
22354 		 *
22355 		 * If this driver receives a tag reject from a target that is
22356 		 * going through an init period or controlling internal
22357 		 * resources tagged queuing will be disabled. This is a less
22358 		 * than optimal behavior but the driver is unable to determine
22359 		 * the target state and assumes tagged queueing is not supported
22360 		 */
22361 		pkt->pkt_flags = 0;
22362 		un->un_tagflags = 0;
22363 
22364 		if (un->un_f_opt_queueing == TRUE) {
22365 			un->un_throttle = min(un->un_throttle, 3);
22366 		} else {
22367 			un->un_throttle = 1;
22368 		}
22369 		mutex_exit(SD_MUTEX(un));
22370 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
22371 		mutex_enter(SD_MUTEX(un));
22372 		break;
22373 	case CMD_INCOMPLETE:
22374 		/*
22375 		 * The transport stopped with an abnormal state, fallthrough and
22376 		 * reset the target and/or bus unless selection did not complete
22377 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
22378 		 * go through a target/bus reset
22379 		 */
22380 		if (pkt->pkt_state == STATE_GOT_BUS) {
22381 			break;
22382 		}
22383 		/*FALLTHROUGH*/
22384 
22385 	case CMD_TIMEOUT:
22386 	default:
22387 		/*
22388 		 * The lun may still be running the command, so a lun reset
22389 		 * should be attempted. If the lun reset fails or cannot be
22390 		 * issued, than try a target reset. Lastly try a bus reset.
22391 		 */
22392 		if ((pkt->pkt_statistics &
22393 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
22394 			int reset_retval = 0;
22395 			mutex_exit(SD_MUTEX(un));
22396 			if (un->un_f_allow_bus_device_reset == TRUE) {
22397 				if (un->un_f_lun_reset_enabled == TRUE) {
22398 					reset_retval =
22399 					    scsi_reset(SD_ADDRESS(un),
22400 					    RESET_LUN);
22401 				}
22402 				if (reset_retval == 0) {
22403 					reset_retval =
22404 					    scsi_reset(SD_ADDRESS(un),
22405 					    RESET_TARGET);
22406 				}
22407 			}
22408 			if (reset_retval == 0) {
22409 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
22410 			}
22411 			mutex_enter(SD_MUTEX(un));
22412 		}
22413 		break;
22414 	}
22415 
22416 	/* A device/bus reset has occurred; update the reservation status. */
22417 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
22418 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
22419 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22420 			un->un_resvd_status |=
22421 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
22422 			SD_INFO(SD_LOG_IOCTL_MHD, un,
22423 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
22424 		}
22425 	}
22426 
22427 	/*
22428 	 * The disk has been turned off; Update the device state.
22429 	 *
22430 	 * Note: Should we be offlining the disk here?
22431 	 */
22432 	if (pkt->pkt_state == STATE_GOT_BUS) {
22433 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
22434 		    "Disk not responding to selection\n");
22435 		if (un->un_state != SD_STATE_OFFLINE) {
22436 			New_state(un, SD_STATE_OFFLINE);
22437 		}
22438 	} else if (be_chatty) {
22439 		/*
22440 		 * suppress messages if they are all the same pkt reason;
22441 		 * with TQ, many (up to 256) are returned with the same
22442 		 * pkt_reason
22443 		 */
22444 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
22445 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
22446 			    "sd_mhd_watch_incomplete: "
22447 			    "SCSI transport failed: reason '%s'\n",
22448 			    scsi_rname(pkt->pkt_reason));
22449 		}
22450 	}
22451 	un->un_last_pkt_reason = pkt->pkt_reason;
22452 	mutex_exit(SD_MUTEX(un));
22453 }
22454 
22455 
22456 /*
22457  *    Function: sd_sname()
22458  *
22459  * Description: This is a simple little routine to return a string containing
22460  *		a printable description of command status byte for use in
22461  *		logging.
22462  *
22463  *   Arguments: status - pointer to a status byte
22464  *
22465  * Return Code: char * - string containing status description.
22466  */
22467 
22468 static char *
22469 sd_sname(uchar_t status)
22470 {
22471 	switch (status & STATUS_MASK) {
22472 	case STATUS_GOOD:
22473 		return ("good status");
22474 	case STATUS_CHECK:
22475 		return ("check condition");
22476 	case STATUS_MET:
22477 		return ("condition met");
22478 	case STATUS_BUSY:
22479 		return ("busy");
22480 	case STATUS_INTERMEDIATE:
22481 		return ("intermediate");
22482 	case STATUS_INTERMEDIATE_MET:
22483 		return ("intermediate - condition met");
22484 	case STATUS_RESERVATION_CONFLICT:
22485 		return ("reservation_conflict");
22486 	case STATUS_TERMINATED:
22487 		return ("command terminated");
22488 	case STATUS_QFULL:
22489 		return ("queue full");
22490 	default:
22491 		return ("<unknown status>");
22492 	}
22493 }
22494 
22495 
22496 /*
22497  *    Function: sd_mhd_resvd_recover()
22498  *
22499  * Description: This function adds a reservation entry to the
22500  *		sd_resv_reclaim_request list and signals the reservation
22501  *		reclaim thread that there is work pending. If the reservation
22502  *		reclaim thread has not been previously created this function
22503  *		will kick it off.
22504  *
22505  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22506  *			among multiple watches that share this callback function
22507  *
22508  *     Context: This routine is called by timeout() and is run in interrupt
22509  *		context. It must not sleep or call other functions which may
22510  *		sleep.
22511  */
22512 
22513 static void
22514 sd_mhd_resvd_recover(void *arg)
22515 {
22516 	dev_t			dev = (dev_t)arg;
22517 	struct sd_lun		*un;
22518 	struct sd_thr_request	*sd_treq = NULL;
22519 	struct sd_thr_request	*sd_cur = NULL;
22520 	struct sd_thr_request	*sd_prev = NULL;
22521 	int			already_there = 0;
22522 
22523 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22524 		return;
22525 	}
22526 
22527 	mutex_enter(SD_MUTEX(un));
22528 	un->un_resvd_timeid = NULL;
22529 	if (un->un_resvd_status & SD_WANT_RESERVE) {
22530 		/*
22531 		 * There was a reset so don't issue the reserve, allow the
22532 		 * sd_mhd_watch_cb callback function to notice this and
22533 		 * reschedule the timeout for reservation.
22534 		 */
22535 		mutex_exit(SD_MUTEX(un));
22536 		return;
22537 	}
22538 	mutex_exit(SD_MUTEX(un));
22539 
22540 	/*
22541 	 * Add this device to the sd_resv_reclaim_request list and the
22542 	 * sd_resv_reclaim_thread should take care of the rest.
22543 	 *
22544 	 * Note: We can't sleep in this context so if the memory allocation
22545 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
22546 	 * reschedule the timeout for reservation.  (4378460)
22547 	 */
22548 	sd_treq = (struct sd_thr_request *)
22549 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
22550 	if (sd_treq == NULL) {
22551 		return;
22552 	}
22553 
22554 	sd_treq->sd_thr_req_next = NULL;
22555 	sd_treq->dev = dev;
22556 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22557 	if (sd_tr.srq_thr_req_head == NULL) {
22558 		sd_tr.srq_thr_req_head = sd_treq;
22559 	} else {
22560 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
22561 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
22562 			if (sd_cur->dev == dev) {
22563 				/*
22564 				 * already in Queue so don't log
22565 				 * another request for the device
22566 				 */
22567 				already_there = 1;
22568 				break;
22569 			}
22570 			sd_prev = sd_cur;
22571 		}
22572 		if (!already_there) {
22573 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
22574 			    "logging request for %lx\n", dev);
22575 			sd_prev->sd_thr_req_next = sd_treq;
22576 		} else {
22577 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
22578 		}
22579 	}
22580 
22581 	/*
22582 	 * Create a kernel thread to do the reservation reclaim and free up this
22583 	 * thread. We cannot block this thread while we go away to do the
22584 	 * reservation reclaim
22585 	 */
22586 	if (sd_tr.srq_resv_reclaim_thread == NULL)
22587 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
22588 		    sd_resv_reclaim_thread, NULL,
22589 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
22590 
22591 	/* Tell the reservation reclaim thread that it has work to do */
22592 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
22593 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22594 }
22595 
22596 /*
22597  *    Function: sd_resv_reclaim_thread()
22598  *
22599  * Description: This function implements the reservation reclaim operations
22600  *
22601  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
22602  *		      among multiple watches that share this callback function
22603  */
22604 
22605 static void
22606 sd_resv_reclaim_thread()
22607 {
22608 	struct sd_lun		*un;
22609 	struct sd_thr_request	*sd_mhreq;
22610 
22611 	/* Wait for work */
22612 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22613 	if (sd_tr.srq_thr_req_head == NULL) {
22614 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
22615 		    &sd_tr.srq_resv_reclaim_mutex);
22616 	}
22617 
22618 	/* Loop while we have work */
22619 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
22620 		un = ddi_get_soft_state(sd_state,
22621 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
22622 		if (un == NULL) {
22623 			/*
22624 			 * softstate structure is NULL so just
22625 			 * dequeue the request and continue
22626 			 */
22627 			sd_tr.srq_thr_req_head =
22628 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22629 			kmem_free(sd_tr.srq_thr_cur_req,
22630 			    sizeof (struct sd_thr_request));
22631 			continue;
22632 		}
22633 
22634 		/* dequeue the request */
22635 		sd_mhreq = sd_tr.srq_thr_cur_req;
22636 		sd_tr.srq_thr_req_head =
22637 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22638 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22639 
22640 		/*
22641 		 * Reclaim reservation only if SD_RESERVE is still set. There
22642 		 * may have been a call to MHIOCRELEASE before we got here.
22643 		 */
22644 		mutex_enter(SD_MUTEX(un));
22645 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22646 			/*
22647 			 * Note: The SD_LOST_RESERVE flag is cleared before
22648 			 * reclaiming the reservation. If this is done after the
22649 			 * call to sd_reserve_release a reservation loss in the
22650 			 * window between pkt completion of reserve cmd and
22651 			 * mutex_enter below may not be recognized
22652 			 */
22653 			un->un_resvd_status &= ~SD_LOST_RESERVE;
22654 			mutex_exit(SD_MUTEX(un));
22655 
22656 			if (sd_reserve_release(sd_mhreq->dev,
22657 			    SD_RESERVE) == 0) {
22658 				mutex_enter(SD_MUTEX(un));
22659 				un->un_resvd_status |= SD_RESERVE;
22660 				mutex_exit(SD_MUTEX(un));
22661 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22662 				    "sd_resv_reclaim_thread: "
22663 				    "Reservation Recovered\n");
22664 			} else {
22665 				mutex_enter(SD_MUTEX(un));
22666 				un->un_resvd_status |= SD_LOST_RESERVE;
22667 				mutex_exit(SD_MUTEX(un));
22668 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22669 				    "sd_resv_reclaim_thread: Failed "
22670 				    "Reservation Recovery\n");
22671 			}
22672 		} else {
22673 			mutex_exit(SD_MUTEX(un));
22674 		}
22675 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22676 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
22677 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22678 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
22679 		/*
22680 		 * wakeup the destroy thread if anyone is waiting on
22681 		 * us to complete.
22682 		 */
22683 		cv_signal(&sd_tr.srq_inprocess_cv);
22684 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
22685 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
22686 	}
22687 
22688 	/*
22689 	 * cleanup the sd_tr structure now that this thread will not exist
22690 	 */
22691 	ASSERT(sd_tr.srq_thr_req_head == NULL);
22692 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
22693 	sd_tr.srq_resv_reclaim_thread = NULL;
22694 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22695 	thread_exit();
22696 }
22697 
22698 
22699 /*
22700  *    Function: sd_rmv_resv_reclaim_req()
22701  *
22702  * Description: This function removes any pending reservation reclaim requests
22703  *		for the specified device.
22704  *
22705  *   Arguments: dev - the device 'dev_t'
22706  */
22707 
22708 static void
22709 sd_rmv_resv_reclaim_req(dev_t dev)
22710 {
22711 	struct sd_thr_request *sd_mhreq;
22712 	struct sd_thr_request *sd_prev;
22713 
22714 	/* Remove a reservation reclaim request from the list */
22715 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22716 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
22717 		/*
22718 		 * We are attempting to reinstate reservation for
22719 		 * this device. We wait for sd_reserve_release()
22720 		 * to return before we return.
22721 		 */
22722 		cv_wait(&sd_tr.srq_inprocess_cv,
22723 		    &sd_tr.srq_resv_reclaim_mutex);
22724 	} else {
22725 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
22726 		if (sd_mhreq && sd_mhreq->dev == dev) {
22727 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
22728 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22729 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22730 			return;
22731 		}
22732 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
22733 			if (sd_mhreq && sd_mhreq->dev == dev) {
22734 				break;
22735 			}
22736 			sd_prev = sd_mhreq;
22737 		}
22738 		if (sd_mhreq != NULL) {
22739 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
22740 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22741 		}
22742 	}
22743 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22744 }
22745 
22746 
22747 /*
22748  *    Function: sd_mhd_reset_notify_cb()
22749  *
22750  * Description: This is a call back function for scsi_reset_notify. This
22751  *		function updates the softstate reserved status and logs the
22752  *		reset. The driver scsi watch facility callback function
22753  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
22754  *		will reclaim the reservation.
22755  *
22756  *   Arguments: arg  - driver soft state (unit) structure
22757  */
22758 
22759 static void
22760 sd_mhd_reset_notify_cb(caddr_t arg)
22761 {
22762 	struct sd_lun *un = (struct sd_lun *)arg;
22763 
22764 	mutex_enter(SD_MUTEX(un));
22765 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22766 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
22767 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22768 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
22769 	}
22770 	mutex_exit(SD_MUTEX(un));
22771 }
22772 
22773 
22774 /*
22775  *    Function: sd_take_ownership()
22776  *
22777  * Description: This routine implements an algorithm to achieve a stable
22778  *		reservation on disks which don't implement priority reserve,
22779  *		and makes sure that other host lose re-reservation attempts.
22780  *		This algorithm contains of a loop that keeps issuing the RESERVE
22781  *		for some period of time (min_ownership_delay, default 6 seconds)
22782  *		During that loop, it looks to see if there has been a bus device
22783  *		reset or bus reset (both of which cause an existing reservation
22784  *		to be lost). If the reservation is lost issue RESERVE until a
22785  *		period of min_ownership_delay with no resets has gone by, or
22786  *		until max_ownership_delay has expired. This loop ensures that
22787  *		the host really did manage to reserve the device, in spite of
22788  *		resets. The looping for min_ownership_delay (default six
22789  *		seconds) is important to early generation clustering products,
22790  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
22791  *		MHIOCENFAILFAST periodic timer of two seconds. By having
22792  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
22793  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
22794  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
22795  *		have already noticed, via the MHIOCENFAILFAST polling, that it
22796  *		no longer "owns" the disk and will have panicked itself.  Thus,
22797  *		the host issuing the MHIOCTKOWN is assured (with timing
22798  *		dependencies) that by the time it actually starts to use the
22799  *		disk for real work, the old owner is no longer accessing it.
22800  *
22801  *		min_ownership_delay is the minimum amount of time for which the
22802  *		disk must be reserved continuously devoid of resets before the
22803  *		MHIOCTKOWN ioctl will return success.
22804  *
22805  *		max_ownership_delay indicates the amount of time by which the
22806  *		take ownership should succeed or timeout with an error.
22807  *
22808  *   Arguments: dev - the device 'dev_t'
22809  *		*p  - struct containing timing info.
22810  *
22811  * Return Code: 0 for success or error code
22812  */
22813 
22814 static int
22815 sd_take_ownership(dev_t dev, struct mhioctkown *p)
22816 {
22817 	struct sd_lun	*un;
22818 	int		rval;
22819 	int		err;
22820 	int		reservation_count   = 0;
22821 	int		min_ownership_delay =  6000000; /* in usec */
22822 	int		max_ownership_delay = 30000000; /* in usec */
22823 	clock_t		start_time;	/* starting time of this algorithm */
22824 	clock_t		end_time;	/* time limit for giving up */
22825 	clock_t		ownership_time;	/* time limit for stable ownership */
22826 	clock_t		current_time;
22827 	clock_t		previous_current_time;
22828 
22829 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22830 		return (ENXIO);
22831 	}
22832 
22833 	/*
22834 	 * Attempt a device reservation. A priority reservation is requested.
22835 	 */
22836 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
22837 	    != SD_SUCCESS) {
22838 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
22839 		    "sd_take_ownership: return(1)=%d\n", rval);
22840 		return (rval);
22841 	}
22842 
22843 	/* Update the softstate reserved status to indicate the reservation */
22844 	mutex_enter(SD_MUTEX(un));
22845 	un->un_resvd_status |= SD_RESERVE;
22846 	un->un_resvd_status &=
22847 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
22848 	mutex_exit(SD_MUTEX(un));
22849 
22850 	if (p != NULL) {
22851 		if (p->min_ownership_delay != 0) {
22852 			min_ownership_delay = p->min_ownership_delay * 1000;
22853 		}
22854 		if (p->max_ownership_delay != 0) {
22855 			max_ownership_delay = p->max_ownership_delay * 1000;
22856 		}
22857 	}
22858 	SD_INFO(SD_LOG_IOCTL_MHD, un,
22859 	    "sd_take_ownership: min, max delays: %d, %d\n",
22860 	    min_ownership_delay, max_ownership_delay);
22861 
22862 	start_time = ddi_get_lbolt();
22863 	current_time	= start_time;
22864 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
22865 	end_time	= start_time + drv_usectohz(max_ownership_delay);
22866 
22867 	while (current_time - end_time < 0) {
22868 		delay(drv_usectohz(500000));
22869 
22870 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
22871 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
22872 				mutex_enter(SD_MUTEX(un));
22873 				rval = (un->un_resvd_status &
22874 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
22875 				mutex_exit(SD_MUTEX(un));
22876 				break;
22877 			}
22878 		}
22879 		previous_current_time = current_time;
22880 		current_time = ddi_get_lbolt();
22881 		mutex_enter(SD_MUTEX(un));
22882 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
22883 			ownership_time = ddi_get_lbolt() +
22884 			    drv_usectohz(min_ownership_delay);
22885 			reservation_count = 0;
22886 		} else {
22887 			reservation_count++;
22888 		}
22889 		un->un_resvd_status |= SD_RESERVE;
22890 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
22891 		mutex_exit(SD_MUTEX(un));
22892 
22893 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22894 		    "sd_take_ownership: ticks for loop iteration=%ld, "
22895 		    "reservation=%s\n", (current_time - previous_current_time),
22896 		    reservation_count ? "ok" : "reclaimed");
22897 
22898 		if (current_time - ownership_time >= 0 &&
22899 		    reservation_count >= 4) {
22900 			rval = 0; /* Achieved a stable ownership */
22901 			break;
22902 		}
22903 		if (current_time - end_time >= 0) {
22904 			rval = EACCES; /* No ownership in max possible time */
22905 			break;
22906 		}
22907 	}
22908 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22909 	    "sd_take_ownership: return(2)=%d\n", rval);
22910 	return (rval);
22911 }
22912 
22913 
22914 /*
22915  *    Function: sd_reserve_release()
22916  *
22917  * Description: This function builds and sends scsi RESERVE, RELEASE, and
22918  *		PRIORITY RESERVE commands based on a user specified command type
22919  *
22920  *   Arguments: dev - the device 'dev_t'
22921  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
22922  *		      SD_RESERVE, SD_RELEASE
22923  *
22924  * Return Code: 0 or Error Code
22925  */
22926 
22927 static int
22928 sd_reserve_release(dev_t dev, int cmd)
22929 {
22930 	struct uscsi_cmd	*com = NULL;
22931 	struct sd_lun		*un = NULL;
22932 	char			cdb[CDB_GROUP0];
22933 	int			rval;
22934 
22935 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
22936 	    (cmd == SD_PRIORITY_RESERVE));
22937 
22938 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22939 		return (ENXIO);
22940 	}
22941 
22942 	/* instantiate and initialize the command and cdb */
22943 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
22944 	bzero(cdb, CDB_GROUP0);
22945 	com->uscsi_flags   = USCSI_SILENT;
22946 	com->uscsi_timeout = un->un_reserve_release_time;
22947 	com->uscsi_cdblen  = CDB_GROUP0;
22948 	com->uscsi_cdb	   = cdb;
22949 	if (cmd == SD_RELEASE) {
22950 		cdb[0] = SCMD_RELEASE;
22951 	} else {
22952 		cdb[0] = SCMD_RESERVE;
22953 	}
22954 
22955 	/* Send the command. */
22956 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22957 	    SD_PATH_STANDARD);
22958 
22959 	/*
22960 	 * "break" a reservation that is held by another host, by issuing a
22961 	 * reset if priority reserve is desired, and we could not get the
22962 	 * device.
22963 	 */
22964 	if ((cmd == SD_PRIORITY_RESERVE) &&
22965 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22966 		/*
22967 		 * First try to reset the LUN. If we cannot, then try a target
22968 		 * reset, followed by a bus reset if the target reset fails.
22969 		 */
22970 		int reset_retval = 0;
22971 		if (un->un_f_lun_reset_enabled == TRUE) {
22972 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
22973 		}
22974 		if (reset_retval == 0) {
22975 			/* The LUN reset either failed or was not issued */
22976 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22977 		}
22978 		if ((reset_retval == 0) &&
22979 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
22980 			rval = EIO;
22981 			kmem_free(com, sizeof (*com));
22982 			return (rval);
22983 		}
22984 
22985 		bzero(com, sizeof (struct uscsi_cmd));
22986 		com->uscsi_flags   = USCSI_SILENT;
22987 		com->uscsi_cdb	   = cdb;
22988 		com->uscsi_cdblen  = CDB_GROUP0;
22989 		com->uscsi_timeout = 5;
22990 
22991 		/*
22992 		 * Reissue the last reserve command, this time without request
22993 		 * sense.  Assume that it is just a regular reserve command.
22994 		 */
22995 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22996 		    SD_PATH_STANDARD);
22997 	}
22998 
22999 	/* Return an error if still getting a reservation conflict. */
23000 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
23001 		rval = EACCES;
23002 	}
23003 
23004 	kmem_free(com, sizeof (*com));
23005 	return (rval);
23006 }
23007 
23008 
23009 #define	SD_NDUMP_RETRIES	12
23010 /*
23011  *	System Crash Dump routine
23012  */
23013 
23014 static int
23015 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
23016 {
23017 	int		instance;
23018 	int		partition;
23019 	int		i;
23020 	int		err;
23021 	struct sd_lun	*un;
23022 	struct scsi_pkt *wr_pktp;
23023 	struct buf	*wr_bp;
23024 	struct buf	wr_buf;
23025 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
23026 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
23027 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
23028 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
23029 	size_t		io_start_offset;
23030 	int		doing_rmw = FALSE;
23031 	int		rval;
23032 	ssize_t		dma_resid;
23033 	daddr_t		oblkno;
23034 	diskaddr_t	nblks = 0;
23035 	diskaddr_t	start_block;
23036 
23037 	instance = SDUNIT(dev);
23038 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
23039 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
23040 		return (ENXIO);
23041 	}
23042 
23043 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
23044 
23045 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
23046 
23047 	partition = SDPART(dev);
23048 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
23049 
23050 	/* Validate blocks to dump at against partition size. */
23051 
23052 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
23053 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
23054 
23055 	if ((blkno + nblk) > nblks) {
23056 		SD_TRACE(SD_LOG_DUMP, un,
23057 		    "sddump: dump range larger than partition: "
23058 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
23059 		    blkno, nblk, nblks);
23060 		return (EINVAL);
23061 	}
23062 
23063 	mutex_enter(&un->un_pm_mutex);
23064 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
23065 		struct scsi_pkt *start_pktp;
23066 
23067 		mutex_exit(&un->un_pm_mutex);
23068 
23069 		/*
23070 		 * use pm framework to power on HBA 1st
23071 		 */
23072 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
23073 
23074 		/*
23075 		 * Dump no long uses sdpower to power on a device, it's
23076 		 * in-line here so it can be done in polled mode.
23077 		 */
23078 
23079 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
23080 
23081 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
23082 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
23083 
23084 		if (start_pktp == NULL) {
23085 			/* We were not given a SCSI packet, fail. */
23086 			return (EIO);
23087 		}
23088 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
23089 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
23090 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
23091 		start_pktp->pkt_flags = FLAG_NOINTR;
23092 
23093 		mutex_enter(SD_MUTEX(un));
23094 		SD_FILL_SCSI1_LUN(un, start_pktp);
23095 		mutex_exit(SD_MUTEX(un));
23096 		/*
23097 		 * Scsi_poll returns 0 (success) if the command completes and
23098 		 * the status block is STATUS_GOOD.
23099 		 */
23100 		if (sd_scsi_poll(un, start_pktp) != 0) {
23101 			scsi_destroy_pkt(start_pktp);
23102 			return (EIO);
23103 		}
23104 		scsi_destroy_pkt(start_pktp);
23105 		(void) sd_ddi_pm_resume(un);
23106 	} else {
23107 		mutex_exit(&un->un_pm_mutex);
23108 	}
23109 
23110 	mutex_enter(SD_MUTEX(un));
23111 	un->un_throttle = 0;
23112 
23113 	/*
23114 	 * The first time through, reset the specific target device.
23115 	 * However, when cpr calls sddump we know that sd is in a
23116 	 * a good state so no bus reset is required.
23117 	 * Clear sense data via Request Sense cmd.
23118 	 * In sddump we don't care about allow_bus_device_reset anymore
23119 	 */
23120 
23121 	if ((un->un_state != SD_STATE_SUSPENDED) &&
23122 	    (un->un_state != SD_STATE_DUMPING)) {
23123 
23124 		New_state(un, SD_STATE_DUMPING);
23125 
23126 		if (un->un_f_is_fibre == FALSE) {
23127 			mutex_exit(SD_MUTEX(un));
23128 			/*
23129 			 * Attempt a bus reset for parallel scsi.
23130 			 *
23131 			 * Note: A bus reset is required because on some host
23132 			 * systems (i.e. E420R) a bus device reset is
23133 			 * insufficient to reset the state of the target.
23134 			 *
23135 			 * Note: Don't issue the reset for fibre-channel,
23136 			 * because this tends to hang the bus (loop) for
23137 			 * too long while everyone is logging out and in
23138 			 * and the deadman timer for dumping will fire
23139 			 * before the dump is complete.
23140 			 */
23141 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
23142 				mutex_enter(SD_MUTEX(un));
23143 				Restore_state(un);
23144 				mutex_exit(SD_MUTEX(un));
23145 				return (EIO);
23146 			}
23147 
23148 			/* Delay to give the device some recovery time. */
23149 			drv_usecwait(10000);
23150 
23151 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
23152 				SD_INFO(SD_LOG_DUMP, un,
23153 				    "sddump: sd_send_polled_RQS failed\n");
23154 			}
23155 			mutex_enter(SD_MUTEX(un));
23156 		}
23157 	}
23158 
23159 	/*
23160 	 * Convert the partition-relative block number to a
23161 	 * disk physical block number.
23162 	 */
23163 	blkno += start_block;
23164 
23165 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
23166 
23167 
23168 	/*
23169 	 * Check if the device has a non-512 block size.
23170 	 */
23171 	wr_bp = NULL;
23172 	if (NOT_DEVBSIZE(un)) {
23173 		tgt_byte_offset = blkno * un->un_sys_blocksize;
23174 		tgt_byte_count = nblk * un->un_sys_blocksize;
23175 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
23176 		    (tgt_byte_count % un->un_tgt_blocksize)) {
23177 			doing_rmw = TRUE;
23178 			/*
23179 			 * Calculate the block number and number of block
23180 			 * in terms of the media block size.
23181 			 */
23182 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
23183 			tgt_nblk =
23184 			    ((tgt_byte_offset + tgt_byte_count +
23185 			    (un->un_tgt_blocksize - 1)) /
23186 			    un->un_tgt_blocksize) - tgt_blkno;
23187 
23188 			/*
23189 			 * Invoke the routine which is going to do read part
23190 			 * of read-modify-write.
23191 			 * Note that this routine returns a pointer to
23192 			 * a valid bp in wr_bp.
23193 			 */
23194 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
23195 			    &wr_bp);
23196 			if (err) {
23197 				mutex_exit(SD_MUTEX(un));
23198 				return (err);
23199 			}
23200 			/*
23201 			 * Offset is being calculated as -
23202 			 * (original block # * system block size) -
23203 			 * (new block # * target block size)
23204 			 */
23205 			io_start_offset =
23206 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
23207 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
23208 
23209 			ASSERT((io_start_offset >= 0) &&
23210 			    (io_start_offset < un->un_tgt_blocksize));
23211 			/*
23212 			 * Do the modify portion of read modify write.
23213 			 */
23214 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
23215 			    (size_t)nblk * un->un_sys_blocksize);
23216 		} else {
23217 			doing_rmw = FALSE;
23218 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
23219 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
23220 		}
23221 
23222 		/* Convert blkno and nblk to target blocks */
23223 		blkno = tgt_blkno;
23224 		nblk = tgt_nblk;
23225 	} else {
23226 		wr_bp = &wr_buf;
23227 		bzero(wr_bp, sizeof (struct buf));
23228 		wr_bp->b_flags		= B_BUSY;
23229 		wr_bp->b_un.b_addr	= addr;
23230 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
23231 		wr_bp->b_resid		= 0;
23232 	}
23233 
23234 	mutex_exit(SD_MUTEX(un));
23235 
23236 	/*
23237 	 * Obtain a SCSI packet for the write command.
23238 	 * It should be safe to call the allocator here without
23239 	 * worrying about being locked for DVMA mapping because
23240 	 * the address we're passed is already a DVMA mapping
23241 	 *
23242 	 * We are also not going to worry about semaphore ownership
23243 	 * in the dump buffer. Dumping is single threaded at present.
23244 	 */
23245 
23246 	wr_pktp = NULL;
23247 
23248 	dma_resid = wr_bp->b_bcount;
23249 	oblkno = blkno;
23250 
23251 	while (dma_resid != 0) {
23252 
23253 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
23254 		wr_bp->b_flags &= ~B_ERROR;
23255 
23256 		if (un->un_partial_dma_supported == 1) {
23257 			blkno = oblkno +
23258 			    ((wr_bp->b_bcount - dma_resid) /
23259 			    un->un_tgt_blocksize);
23260 			nblk = dma_resid / un->un_tgt_blocksize;
23261 
23262 			if (wr_pktp) {
23263 				/*
23264 				 * Partial DMA transfers after initial transfer
23265 				 */
23266 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
23267 				    blkno, nblk);
23268 			} else {
23269 				/* Initial transfer */
23270 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
23271 				    un->un_pkt_flags, NULL_FUNC, NULL,
23272 				    blkno, nblk);
23273 			}
23274 		} else {
23275 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
23276 			    0, NULL_FUNC, NULL, blkno, nblk);
23277 		}
23278 
23279 		if (rval == 0) {
23280 			/* We were given a SCSI packet, continue. */
23281 			break;
23282 		}
23283 
23284 		if (i == 0) {
23285 			if (wr_bp->b_flags & B_ERROR) {
23286 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23287 				    "no resources for dumping; "
23288 				    "error code: 0x%x, retrying",
23289 				    geterror(wr_bp));
23290 			} else {
23291 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23292 				    "no resources for dumping; retrying");
23293 			}
23294 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
23295 			if (wr_bp->b_flags & B_ERROR) {
23296 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23297 				    "no resources for dumping; error code: "
23298 				    "0x%x, retrying\n", geterror(wr_bp));
23299 			}
23300 		} else {
23301 			if (wr_bp->b_flags & B_ERROR) {
23302 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23303 				    "no resources for dumping; "
23304 				    "error code: 0x%x, retries failed, "
23305 				    "giving up.\n", geterror(wr_bp));
23306 			} else {
23307 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23308 				    "no resources for dumping; "
23309 				    "retries failed, giving up.\n");
23310 			}
23311 			mutex_enter(SD_MUTEX(un));
23312 			Restore_state(un);
23313 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
23314 				mutex_exit(SD_MUTEX(un));
23315 				scsi_free_consistent_buf(wr_bp);
23316 			} else {
23317 				mutex_exit(SD_MUTEX(un));
23318 			}
23319 			return (EIO);
23320 		}
23321 		drv_usecwait(10000);
23322 	}
23323 
23324 	if (un->un_partial_dma_supported == 1) {
23325 		/*
23326 		 * save the resid from PARTIAL_DMA
23327 		 */
23328 		dma_resid = wr_pktp->pkt_resid;
23329 		if (dma_resid != 0)
23330 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
23331 		wr_pktp->pkt_resid = 0;
23332 	} else {
23333 		dma_resid = 0;
23334 	}
23335 
23336 	/* SunBug 1222170 */
23337 	wr_pktp->pkt_flags = FLAG_NOINTR;
23338 
23339 	err = EIO;
23340 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
23341 
23342 		/*
23343 		 * Scsi_poll returns 0 (success) if the command completes and
23344 		 * the status block is STATUS_GOOD.  We should only check
23345 		 * errors if this condition is not true.  Even then we should
23346 		 * send our own request sense packet only if we have a check
23347 		 * condition and auto request sense has not been performed by
23348 		 * the hba.
23349 		 */
23350 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
23351 
23352 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
23353 		    (wr_pktp->pkt_resid == 0)) {
23354 			err = SD_SUCCESS;
23355 			break;
23356 		}
23357 
23358 		/*
23359 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
23360 		 */
23361 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
23362 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23363 			    "Error while dumping state...Device is gone\n");
23364 			break;
23365 		}
23366 
23367 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
23368 			SD_INFO(SD_LOG_DUMP, un,
23369 			    "sddump: write failed with CHECK, try # %d\n", i);
23370 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
23371 				(void) sd_send_polled_RQS(un);
23372 			}
23373 
23374 			continue;
23375 		}
23376 
23377 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
23378 			int reset_retval = 0;
23379 
23380 			SD_INFO(SD_LOG_DUMP, un,
23381 			    "sddump: write failed with BUSY, try # %d\n", i);
23382 
23383 			if (un->un_f_lun_reset_enabled == TRUE) {
23384 				reset_retval = scsi_reset(SD_ADDRESS(un),
23385 				    RESET_LUN);
23386 			}
23387 			if (reset_retval == 0) {
23388 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
23389 			}
23390 			(void) sd_send_polled_RQS(un);
23391 
23392 		} else {
23393 			SD_INFO(SD_LOG_DUMP, un,
23394 			    "sddump: write failed with 0x%x, try # %d\n",
23395 			    SD_GET_PKT_STATUS(wr_pktp), i);
23396 			mutex_enter(SD_MUTEX(un));
23397 			sd_reset_target(un, wr_pktp);
23398 			mutex_exit(SD_MUTEX(un));
23399 		}
23400 
23401 		/*
23402 		 * If we are not getting anywhere with lun/target resets,
23403 		 * let's reset the bus.
23404 		 */
23405 		if (i == SD_NDUMP_RETRIES/2) {
23406 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
23407 			(void) sd_send_polled_RQS(un);
23408 		}
23409 	}
23410 	}
23411 
23412 	scsi_destroy_pkt(wr_pktp);
23413 	mutex_enter(SD_MUTEX(un));
23414 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
23415 		mutex_exit(SD_MUTEX(un));
23416 		scsi_free_consistent_buf(wr_bp);
23417 	} else {
23418 		mutex_exit(SD_MUTEX(un));
23419 	}
23420 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
23421 	return (err);
23422 }
23423 
23424 /*
23425  *    Function: sd_scsi_poll()
23426  *
23427  * Description: This is a wrapper for the scsi_poll call.
23428  *
23429  *   Arguments: sd_lun - The unit structure
23430  *              scsi_pkt - The scsi packet being sent to the device.
23431  *
23432  * Return Code: 0 - Command completed successfully with good status
23433  *             -1 - Command failed.  This could indicate a check condition
23434  *                  or other status value requiring recovery action.
23435  *
23436  * NOTE: This code is only called off sddump().
23437  */
23438 
23439 static int
23440 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
23441 {
23442 	int status;
23443 
23444 	ASSERT(un != NULL);
23445 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23446 	ASSERT(pktp != NULL);
23447 
23448 	status = SD_SUCCESS;
23449 
23450 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
23451 		pktp->pkt_flags |= un->un_tagflags;
23452 		pktp->pkt_flags &= ~FLAG_NODISCON;
23453 	}
23454 
23455 	status = sd_ddi_scsi_poll(pktp);
23456 	/*
23457 	 * Scsi_poll returns 0 (success) if the command completes and the
23458 	 * status block is STATUS_GOOD.  We should only check errors if this
23459 	 * condition is not true.  Even then we should send our own request
23460 	 * sense packet only if we have a check condition and auto
23461 	 * request sense has not been performed by the hba.
23462 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
23463 	 */
23464 	if ((status != SD_SUCCESS) &&
23465 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
23466 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
23467 	    (pktp->pkt_reason != CMD_DEV_GONE))
23468 		(void) sd_send_polled_RQS(un);
23469 
23470 	return (status);
23471 }
23472 
23473 /*
23474  *    Function: sd_send_polled_RQS()
23475  *
23476  * Description: This sends the request sense command to a device.
23477  *
23478  *   Arguments: sd_lun - The unit structure
23479  *
23480  * Return Code: 0 - Command completed successfully with good status
23481  *             -1 - Command failed.
23482  *
23483  */
23484 
23485 static int
23486 sd_send_polled_RQS(struct sd_lun *un)
23487 {
23488 	int	ret_val;
23489 	struct	scsi_pkt	*rqs_pktp;
23490 	struct	buf		*rqs_bp;
23491 
23492 	ASSERT(un != NULL);
23493 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23494 
23495 	ret_val = SD_SUCCESS;
23496 
23497 	rqs_pktp = un->un_rqs_pktp;
23498 	rqs_bp	 = un->un_rqs_bp;
23499 
23500 	mutex_enter(SD_MUTEX(un));
23501 
23502 	if (un->un_sense_isbusy) {
23503 		ret_val = SD_FAILURE;
23504 		mutex_exit(SD_MUTEX(un));
23505 		return (ret_val);
23506 	}
23507 
23508 	/*
23509 	 * If the request sense buffer (and packet) is not in use,
23510 	 * let's set the un_sense_isbusy and send our packet
23511 	 */
23512 	un->un_sense_isbusy 	= 1;
23513 	rqs_pktp->pkt_resid  	= 0;
23514 	rqs_pktp->pkt_reason 	= 0;
23515 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
23516 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
23517 
23518 	mutex_exit(SD_MUTEX(un));
23519 
23520 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
23521 	    " 0x%p\n", rqs_bp->b_un.b_addr);
23522 
23523 	/*
23524 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
23525 	 * axle - it has a call into us!
23526 	 */
23527 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
23528 		SD_INFO(SD_LOG_COMMON, un,
23529 		    "sd_send_polled_RQS: RQS failed\n");
23530 	}
23531 
23532 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
23533 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
23534 
23535 	mutex_enter(SD_MUTEX(un));
23536 	un->un_sense_isbusy = 0;
23537 	mutex_exit(SD_MUTEX(un));
23538 
23539 	return (ret_val);
23540 }
23541 
23542 /*
23543  * Defines needed for localized version of the scsi_poll routine.
23544  */
23545 #define	CSEC		10000			/* usecs */
23546 #define	SEC_TO_CSEC	(1000000/CSEC)
23547 
23548 /*
23549  *    Function: sd_ddi_scsi_poll()
23550  *
23551  * Description: Localized version of the scsi_poll routine.  The purpose is to
23552  *		send a scsi_pkt to a device as a polled command.  This version
23553  *		is to ensure more robust handling of transport errors.
23554  *		Specifically this routine cures not ready, coming ready
23555  *		transition for power up and reset of sonoma's.  This can take
23556  *		up to 45 seconds for power-on and 20 seconds for reset of a
23557  * 		sonoma lun.
23558  *
23559  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
23560  *
23561  * Return Code: 0 - Command completed successfully with good status
23562  *             -1 - Command failed.
23563  *
23564  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
23565  * be fixed (removing this code), we need to determine how to handle the
23566  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
23567  *
23568  * NOTE: This code is only called off sddump().
23569  */
23570 static int
23571 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
23572 {
23573 	int			rval = -1;
23574 	int			savef;
23575 	long			savet;
23576 	void			(*savec)();
23577 	int			timeout;
23578 	int			busy_count;
23579 	int			poll_delay;
23580 	int			rc;
23581 	uint8_t			*sensep;
23582 	struct scsi_arq_status	*arqstat;
23583 	extern int		do_polled_io;
23584 
23585 	ASSERT(pkt->pkt_scbp);
23586 
23587 	/*
23588 	 * save old flags..
23589 	 */
23590 	savef = pkt->pkt_flags;
23591 	savec = pkt->pkt_comp;
23592 	savet = pkt->pkt_time;
23593 
23594 	pkt->pkt_flags |= FLAG_NOINTR;
23595 
23596 	/*
23597 	 * XXX there is nothing in the SCSA spec that states that we should not
23598 	 * do a callback for polled cmds; however, removing this will break sd
23599 	 * and probably other target drivers
23600 	 */
23601 	pkt->pkt_comp = NULL;
23602 
23603 	/*
23604 	 * we don't like a polled command without timeout.
23605 	 * 60 seconds seems long enough.
23606 	 */
23607 	if (pkt->pkt_time == 0)
23608 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
23609 
23610 	/*
23611 	 * Send polled cmd.
23612 	 *
23613 	 * We do some error recovery for various errors.  Tran_busy,
23614 	 * queue full, and non-dispatched commands are retried every 10 msec.
23615 	 * as they are typically transient failures.  Busy status and Not
23616 	 * Ready are retried every second as this status takes a while to
23617 	 * change.
23618 	 */
23619 	timeout = pkt->pkt_time * SEC_TO_CSEC;
23620 
23621 	for (busy_count = 0; busy_count < timeout; busy_count++) {
23622 		/*
23623 		 * Initialize pkt status variables.
23624 		 */
23625 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
23626 
23627 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
23628 			if (rc != TRAN_BUSY) {
23629 				/* Transport failed - give up. */
23630 				break;
23631 			} else {
23632 				/* Transport busy - try again. */
23633 				poll_delay = 1 * CSEC;		/* 10 msec. */
23634 			}
23635 		} else {
23636 			/*
23637 			 * Transport accepted - check pkt status.
23638 			 */
23639 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
23640 			if ((pkt->pkt_reason == CMD_CMPLT) &&
23641 			    (rc == STATUS_CHECK) &&
23642 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
23643 				arqstat =
23644 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
23645 				sensep = (uint8_t *)&arqstat->sts_sensedata;
23646 			} else {
23647 				sensep = NULL;
23648 			}
23649 
23650 			if ((pkt->pkt_reason == CMD_CMPLT) &&
23651 			    (rc == STATUS_GOOD)) {
23652 				/* No error - we're done */
23653 				rval = 0;
23654 				break;
23655 
23656 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
23657 				/* Lost connection - give up */
23658 				break;
23659 
23660 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
23661 			    (pkt->pkt_state == 0)) {
23662 				/* Pkt not dispatched - try again. */
23663 				poll_delay = 1 * CSEC;		/* 10 msec. */
23664 
23665 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23666 			    (rc == STATUS_QFULL)) {
23667 				/* Queue full - try again. */
23668 				poll_delay = 1 * CSEC;		/* 10 msec. */
23669 
23670 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23671 			    (rc == STATUS_BUSY)) {
23672 				/* Busy - try again. */
23673 				poll_delay = 100 * CSEC;	/* 1 sec. */
23674 				busy_count += (SEC_TO_CSEC - 1);
23675 
23676 			} else if ((sensep != NULL) &&
23677 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
23678 				/*
23679 				 * Unit Attention - try again.
23680 				 * Pretend it took 1 sec.
23681 				 * NOTE: 'continue' avoids poll_delay
23682 				 */
23683 				busy_count += (SEC_TO_CSEC - 1);
23684 				continue;
23685 
23686 			} else if ((sensep != NULL) &&
23687 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
23688 			    (scsi_sense_asc(sensep) == 0x04) &&
23689 			    (scsi_sense_ascq(sensep) == 0x01)) {
23690 				/*
23691 				 * Not ready -> ready - try again.
23692 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
23693 				 * ...same as STATUS_BUSY
23694 				 */
23695 				poll_delay = 100 * CSEC;	/* 1 sec. */
23696 				busy_count += (SEC_TO_CSEC - 1);
23697 
23698 			} else {
23699 				/* BAD status - give up. */
23700 				break;
23701 			}
23702 		}
23703 
23704 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
23705 		    !do_polled_io) {
23706 			delay(drv_usectohz(poll_delay));
23707 		} else {
23708 			/* we busy wait during cpr_dump or interrupt threads */
23709 			drv_usecwait(poll_delay);
23710 		}
23711 	}
23712 
23713 	pkt->pkt_flags = savef;
23714 	pkt->pkt_comp = savec;
23715 	pkt->pkt_time = savet;
23716 
23717 	/* return on error */
23718 	if (rval)
23719 		return (rval);
23720 
23721 	/*
23722 	 * This is not a performance critical code path.
23723 	 *
23724 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
23725 	 * issues associated with looking at DMA memory prior to
23726 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
23727 	 */
23728 	scsi_sync_pkt(pkt);
23729 	return (0);
23730 }
23731 
23732 
23733 
23734 /*
23735  *    Function: sd_persistent_reservation_in_read_keys
23736  *
23737  * Description: This routine is the driver entry point for handling CD-ROM
23738  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
23739  *		by sending the SCSI-3 PRIN commands to the device.
23740  *		Processes the read keys command response by copying the
23741  *		reservation key information into the user provided buffer.
23742  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
23743  *
23744  *   Arguments: un   -  Pointer to soft state struct for the target.
23745  *		usrp -	user provided pointer to multihost Persistent In Read
23746  *			Keys structure (mhioc_inkeys_t)
23747  *		flag -	this argument is a pass through to ddi_copyxxx()
23748  *			directly from the mode argument of ioctl().
23749  *
23750  * Return Code: 0   - Success
23751  *		EACCES
23752  *		ENOTSUP
23753  *		errno return code from sd_send_scsi_cmd()
23754  *
23755  *     Context: Can sleep. Does not return until command is completed.
23756  */
23757 
23758 static int
23759 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
23760     mhioc_inkeys_t *usrp, int flag)
23761 {
23762 #ifdef _MULTI_DATAMODEL
23763 	struct mhioc_key_list32	li32;
23764 #endif
23765 	sd_prin_readkeys_t	*in;
23766 	mhioc_inkeys_t		*ptr;
23767 	mhioc_key_list_t	li;
23768 	uchar_t			*data_bufp;
23769 	int 			data_len;
23770 	int			rval;
23771 	size_t			copysz;
23772 
23773 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
23774 		return (EINVAL);
23775 	}
23776 	bzero(&li, sizeof (mhioc_key_list_t));
23777 
23778 	/*
23779 	 * Get the listsize from user
23780 	 */
23781 #ifdef _MULTI_DATAMODEL
23782 
23783 	switch (ddi_model_convert_from(flag & FMODELS)) {
23784 	case DDI_MODEL_ILP32:
23785 		copysz = sizeof (struct mhioc_key_list32);
23786 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
23787 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23788 			    "sd_persistent_reservation_in_read_keys: "
23789 			    "failed ddi_copyin: mhioc_key_list32_t\n");
23790 			rval = EFAULT;
23791 			goto done;
23792 		}
23793 		li.listsize = li32.listsize;
23794 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
23795 		break;
23796 
23797 	case DDI_MODEL_NONE:
23798 		copysz = sizeof (mhioc_key_list_t);
23799 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23800 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23801 			    "sd_persistent_reservation_in_read_keys: "
23802 			    "failed ddi_copyin: mhioc_key_list_t\n");
23803 			rval = EFAULT;
23804 			goto done;
23805 		}
23806 		break;
23807 	}
23808 
23809 #else /* ! _MULTI_DATAMODEL */
23810 	copysz = sizeof (mhioc_key_list_t);
23811 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23812 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23813 		    "sd_persistent_reservation_in_read_keys: "
23814 		    "failed ddi_copyin: mhioc_key_list_t\n");
23815 		rval = EFAULT;
23816 		goto done;
23817 	}
23818 #endif
23819 
23820 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
23821 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
23822 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23823 
23824 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
23825 	    data_len, data_bufp)) != 0) {
23826 		goto done;
23827 	}
23828 	in = (sd_prin_readkeys_t *)data_bufp;
23829 	ptr->generation = BE_32(in->generation);
23830 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
23831 
23832 	/*
23833 	 * Return the min(listsize, listlen) keys
23834 	 */
23835 #ifdef _MULTI_DATAMODEL
23836 
23837 	switch (ddi_model_convert_from(flag & FMODELS)) {
23838 	case DDI_MODEL_ILP32:
23839 		li32.listlen = li.listlen;
23840 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
23841 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23842 			    "sd_persistent_reservation_in_read_keys: "
23843 			    "failed ddi_copyout: mhioc_key_list32_t\n");
23844 			rval = EFAULT;
23845 			goto done;
23846 		}
23847 		break;
23848 
23849 	case DDI_MODEL_NONE:
23850 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23851 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23852 			    "sd_persistent_reservation_in_read_keys: "
23853 			    "failed ddi_copyout: mhioc_key_list_t\n");
23854 			rval = EFAULT;
23855 			goto done;
23856 		}
23857 		break;
23858 	}
23859 
23860 #else /* ! _MULTI_DATAMODEL */
23861 
23862 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23863 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23864 		    "sd_persistent_reservation_in_read_keys: "
23865 		    "failed ddi_copyout: mhioc_key_list_t\n");
23866 		rval = EFAULT;
23867 		goto done;
23868 	}
23869 
23870 #endif /* _MULTI_DATAMODEL */
23871 
23872 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
23873 	    li.listsize * MHIOC_RESV_KEY_SIZE);
23874 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
23875 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23876 		    "sd_persistent_reservation_in_read_keys: "
23877 		    "failed ddi_copyout: keylist\n");
23878 		rval = EFAULT;
23879 	}
23880 done:
23881 	kmem_free(data_bufp, data_len);
23882 	return (rval);
23883 }
23884 
23885 
23886 /*
23887  *    Function: sd_persistent_reservation_in_read_resv
23888  *
23889  * Description: This routine is the driver entry point for handling CD-ROM
23890  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
23891  *		by sending the SCSI-3 PRIN commands to the device.
23892  *		Process the read persistent reservations command response by
23893  *		copying the reservation information into the user provided
23894  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
23895  *
23896  *   Arguments: un   -  Pointer to soft state struct for the target.
23897  *		usrp -	user provided pointer to multihost Persistent In Read
23898  *			Keys structure (mhioc_inkeys_t)
23899  *		flag -	this argument is a pass through to ddi_copyxxx()
23900  *			directly from the mode argument of ioctl().
23901  *
23902  * Return Code: 0   - Success
23903  *		EACCES
23904  *		ENOTSUP
23905  *		errno return code from sd_send_scsi_cmd()
23906  *
23907  *     Context: Can sleep. Does not return until command is completed.
23908  */
23909 
23910 static int
23911 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
23912     mhioc_inresvs_t *usrp, int flag)
23913 {
23914 #ifdef _MULTI_DATAMODEL
23915 	struct mhioc_resv_desc_list32 resvlist32;
23916 #endif
23917 	sd_prin_readresv_t	*in;
23918 	mhioc_inresvs_t		*ptr;
23919 	sd_readresv_desc_t	*readresv_ptr;
23920 	mhioc_resv_desc_list_t	resvlist;
23921 	mhioc_resv_desc_t 	resvdesc;
23922 	uchar_t			*data_bufp;
23923 	int 			data_len;
23924 	int			rval;
23925 	int			i;
23926 	size_t			copysz;
23927 	mhioc_resv_desc_t	*bufp;
23928 
23929 	if ((ptr = usrp) == NULL) {
23930 		return (EINVAL);
23931 	}
23932 
23933 	/*
23934 	 * Get the listsize from user
23935 	 */
23936 #ifdef _MULTI_DATAMODEL
23937 	switch (ddi_model_convert_from(flag & FMODELS)) {
23938 	case DDI_MODEL_ILP32:
23939 		copysz = sizeof (struct mhioc_resv_desc_list32);
23940 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
23941 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23942 			    "sd_persistent_reservation_in_read_resv: "
23943 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23944 			rval = EFAULT;
23945 			goto done;
23946 		}
23947 		resvlist.listsize = resvlist32.listsize;
23948 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
23949 		break;
23950 
23951 	case DDI_MODEL_NONE:
23952 		copysz = sizeof (mhioc_resv_desc_list_t);
23953 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23954 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23955 			    "sd_persistent_reservation_in_read_resv: "
23956 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23957 			rval = EFAULT;
23958 			goto done;
23959 		}
23960 		break;
23961 	}
23962 #else /* ! _MULTI_DATAMODEL */
23963 	copysz = sizeof (mhioc_resv_desc_list_t);
23964 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23965 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23966 		    "sd_persistent_reservation_in_read_resv: "
23967 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23968 		rval = EFAULT;
23969 		goto done;
23970 	}
23971 #endif /* ! _MULTI_DATAMODEL */
23972 
23973 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
23974 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
23975 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23976 
23977 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
23978 	    data_len, data_bufp)) != 0) {
23979 		goto done;
23980 	}
23981 	in = (sd_prin_readresv_t *)data_bufp;
23982 	ptr->generation = BE_32(in->generation);
23983 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
23984 
23985 	/*
23986 	 * Return the min(listsize, listlen( keys
23987 	 */
23988 #ifdef _MULTI_DATAMODEL
23989 
23990 	switch (ddi_model_convert_from(flag & FMODELS)) {
23991 	case DDI_MODEL_ILP32:
23992 		resvlist32.listlen = resvlist.listlen;
23993 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
23994 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23995 			    "sd_persistent_reservation_in_read_resv: "
23996 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23997 			rval = EFAULT;
23998 			goto done;
23999 		}
24000 		break;
24001 
24002 	case DDI_MODEL_NONE:
24003 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
24004 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
24005 			    "sd_persistent_reservation_in_read_resv: "
24006 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
24007 			rval = EFAULT;
24008 			goto done;
24009 		}
24010 		break;
24011 	}
24012 
24013 #else /* ! _MULTI_DATAMODEL */
24014 
24015 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
24016 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
24017 		    "sd_persistent_reservation_in_read_resv: "
24018 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
24019 		rval = EFAULT;
24020 		goto done;
24021 	}
24022 
24023 #endif /* ! _MULTI_DATAMODEL */
24024 
24025 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
24026 	bufp = resvlist.list;
24027 	copysz = sizeof (mhioc_resv_desc_t);
24028 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
24029 	    i++, readresv_ptr++, bufp++) {
24030 
24031 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
24032 		    MHIOC_RESV_KEY_SIZE);
24033 		resvdesc.type  = readresv_ptr->type;
24034 		resvdesc.scope = readresv_ptr->scope;
24035 		resvdesc.scope_specific_addr =
24036 		    BE_32(readresv_ptr->scope_specific_addr);
24037 
24038 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
24039 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
24040 			    "sd_persistent_reservation_in_read_resv: "
24041 			    "failed ddi_copyout: resvlist\n");
24042 			rval = EFAULT;
24043 			goto done;
24044 		}
24045 	}
24046 done:
24047 	kmem_free(data_bufp, data_len);
24048 	return (rval);
24049 }
24050 
24051 
24052 /*
24053  *    Function: sr_change_blkmode()
24054  *
24055  * Description: This routine is the driver entry point for handling CD-ROM
24056  *		block mode ioctl requests. Support for returning and changing
24057  *		the current block size in use by the device is implemented. The
24058  *		LBA size is changed via a MODE SELECT Block Descriptor.
24059  *
24060  *		This routine issues a mode sense with an allocation length of
24061  *		12 bytes for the mode page header and a single block descriptor.
24062  *
24063  *   Arguments: dev - the device 'dev_t'
24064  *		cmd - the request type; one of CDROMGBLKMODE (get) or
24065  *		      CDROMSBLKMODE (set)
24066  *		data - current block size or requested block size
24067  *		flag - this argument is a pass through to ddi_copyxxx() directly
24068  *		       from the mode argument of ioctl().
24069  *
24070  * Return Code: the code returned by sd_send_scsi_cmd()
24071  *		EINVAL if invalid arguments are provided
24072  *		EFAULT if ddi_copyxxx() fails
24073  *		ENXIO if fail ddi_get_soft_state
24074  *		EIO if invalid mode sense block descriptor length
24075  *
24076  */
24077 
24078 static int
24079 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
24080 {
24081 	struct sd_lun			*un = NULL;
24082 	struct mode_header		*sense_mhp, *select_mhp;
24083 	struct block_descriptor		*sense_desc, *select_desc;
24084 	int				current_bsize;
24085 	int				rval = EINVAL;
24086 	uchar_t				*sense = NULL;
24087 	uchar_t				*select = NULL;
24088 
24089 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
24090 
24091 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24092 		return (ENXIO);
24093 	}
24094 
24095 	/*
24096 	 * The block length is changed via the Mode Select block descriptor, the
24097 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
24098 	 * required as part of this routine. Therefore the mode sense allocation
24099 	 * length is specified to be the length of a mode page header and a
24100 	 * block descriptor.
24101 	 */
24102 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
24103 
24104 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
24105 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
24106 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24107 		    "sr_change_blkmode: Mode Sense Failed\n");
24108 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
24109 		return (rval);
24110 	}
24111 
24112 	/* Check the block descriptor len to handle only 1 block descriptor */
24113 	sense_mhp = (struct mode_header *)sense;
24114 	if ((sense_mhp->bdesc_length == 0) ||
24115 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
24116 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24117 		    "sr_change_blkmode: Mode Sense returned invalid block"
24118 		    " descriptor length\n");
24119 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
24120 		return (EIO);
24121 	}
24122 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
24123 	current_bsize = ((sense_desc->blksize_hi << 16) |
24124 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
24125 
24126 	/* Process command */
24127 	switch (cmd) {
24128 	case CDROMGBLKMODE:
24129 		/* Return the block size obtained during the mode sense */
24130 		if (ddi_copyout(&current_bsize, (void *)data,
24131 		    sizeof (int), flag) != 0)
24132 			rval = EFAULT;
24133 		break;
24134 	case CDROMSBLKMODE:
24135 		/* Validate the requested block size */
24136 		switch (data) {
24137 		case CDROM_BLK_512:
24138 		case CDROM_BLK_1024:
24139 		case CDROM_BLK_2048:
24140 		case CDROM_BLK_2056:
24141 		case CDROM_BLK_2336:
24142 		case CDROM_BLK_2340:
24143 		case CDROM_BLK_2352:
24144 		case CDROM_BLK_2368:
24145 		case CDROM_BLK_2448:
24146 		case CDROM_BLK_2646:
24147 		case CDROM_BLK_2647:
24148 			break;
24149 		default:
24150 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24151 			    "sr_change_blkmode: "
24152 			    "Block Size '%ld' Not Supported\n", data);
24153 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
24154 			return (EINVAL);
24155 		}
24156 
24157 		/*
24158 		 * The current block size matches the requested block size so
24159 		 * there is no need to send the mode select to change the size
24160 		 */
24161 		if (current_bsize == data) {
24162 			break;
24163 		}
24164 
24165 		/* Build the select data for the requested block size */
24166 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
24167 		select_mhp = (struct mode_header *)select;
24168 		select_desc =
24169 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
24170 		/*
24171 		 * The LBA size is changed via the block descriptor, so the
24172 		 * descriptor is built according to the user data
24173 		 */
24174 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
24175 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
24176 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
24177 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
24178 
24179 		/* Send the mode select for the requested block size */
24180 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
24181 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
24182 		    SD_PATH_STANDARD)) != 0) {
24183 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24184 			    "sr_change_blkmode: Mode Select Failed\n");
24185 			/*
24186 			 * The mode select failed for the requested block size,
24187 			 * so reset the data for the original block size and
24188 			 * send it to the target. The error is indicated by the
24189 			 * return value for the failed mode select.
24190 			 */
24191 			select_desc->blksize_hi  = sense_desc->blksize_hi;
24192 			select_desc->blksize_mid = sense_desc->blksize_mid;
24193 			select_desc->blksize_lo  = sense_desc->blksize_lo;
24194 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
24195 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
24196 			    SD_PATH_STANDARD);
24197 		} else {
24198 			ASSERT(!mutex_owned(SD_MUTEX(un)));
24199 			mutex_enter(SD_MUTEX(un));
24200 			sd_update_block_info(un, (uint32_t)data, 0);
24201 			mutex_exit(SD_MUTEX(un));
24202 		}
24203 		break;
24204 	default:
24205 		/* should not reach here, but check anyway */
24206 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24207 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
24208 		rval = EINVAL;
24209 		break;
24210 	}
24211 
24212 	if (select) {
24213 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
24214 	}
24215 	if (sense) {
24216 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
24217 	}
24218 	return (rval);
24219 }
24220 
24221 
24222 /*
24223  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
24224  * implement driver support for getting and setting the CD speed. The command
24225  * set used will be based on the device type. If the device has not been
24226  * identified as MMC the Toshiba vendor specific mode page will be used. If
24227  * the device is MMC but does not support the Real Time Streaming feature
24228  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
24229  * be used to read the speed.
24230  */
24231 
24232 /*
24233  *    Function: sr_change_speed()
24234  *
24235  * Description: This routine is the driver entry point for handling CD-ROM
24236  *		drive speed ioctl requests for devices supporting the Toshiba
24237  *		vendor specific drive speed mode page. Support for returning
24238  *		and changing the current drive speed in use by the device is
24239  *		implemented.
24240  *
24241  *   Arguments: dev - the device 'dev_t'
24242  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
24243  *		      CDROMSDRVSPEED (set)
24244  *		data - current drive speed or requested drive speed
24245  *		flag - this argument is a pass through to ddi_copyxxx() directly
24246  *		       from the mode argument of ioctl().
24247  *
24248  * Return Code: the code returned by sd_send_scsi_cmd()
24249  *		EINVAL if invalid arguments are provided
24250  *		EFAULT if ddi_copyxxx() fails
24251  *		ENXIO if fail ddi_get_soft_state
24252  *		EIO if invalid mode sense block descriptor length
24253  */
24254 
24255 static int
24256 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
24257 {
24258 	struct sd_lun			*un = NULL;
24259 	struct mode_header		*sense_mhp, *select_mhp;
24260 	struct mode_speed		*sense_page, *select_page;
24261 	int				current_speed;
24262 	int				rval = EINVAL;
24263 	int				bd_len;
24264 	uchar_t				*sense = NULL;
24265 	uchar_t				*select = NULL;
24266 
24267 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
24268 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24269 		return (ENXIO);
24270 	}
24271 
24272 	/*
24273 	 * Note: The drive speed is being modified here according to a Toshiba
24274 	 * vendor specific mode page (0x31).
24275 	 */
24276 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
24277 
24278 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
24279 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
24280 	    SD_PATH_STANDARD)) != 0) {
24281 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24282 		    "sr_change_speed: Mode Sense Failed\n");
24283 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24284 		return (rval);
24285 	}
24286 	sense_mhp  = (struct mode_header *)sense;
24287 
24288 	/* Check the block descriptor len to handle only 1 block descriptor */
24289 	bd_len = sense_mhp->bdesc_length;
24290 	if (bd_len > MODE_BLK_DESC_LENGTH) {
24291 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24292 		    "sr_change_speed: Mode Sense returned invalid block "
24293 		    "descriptor length\n");
24294 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24295 		return (EIO);
24296 	}
24297 
24298 	sense_page = (struct mode_speed *)
24299 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
24300 	current_speed = sense_page->speed;
24301 
24302 	/* Process command */
24303 	switch (cmd) {
24304 	case CDROMGDRVSPEED:
24305 		/* Return the drive speed obtained during the mode sense */
24306 		if (current_speed == 0x2) {
24307 			current_speed = CDROM_TWELVE_SPEED;
24308 		}
24309 		if (ddi_copyout(&current_speed, (void *)data,
24310 		    sizeof (int), flag) != 0) {
24311 			rval = EFAULT;
24312 		}
24313 		break;
24314 	case CDROMSDRVSPEED:
24315 		/* Validate the requested drive speed */
24316 		switch ((uchar_t)data) {
24317 		case CDROM_TWELVE_SPEED:
24318 			data = 0x2;
24319 			/*FALLTHROUGH*/
24320 		case CDROM_NORMAL_SPEED:
24321 		case CDROM_DOUBLE_SPEED:
24322 		case CDROM_QUAD_SPEED:
24323 		case CDROM_MAXIMUM_SPEED:
24324 			break;
24325 		default:
24326 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24327 			    "sr_change_speed: "
24328 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
24329 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24330 			return (EINVAL);
24331 		}
24332 
24333 		/*
24334 		 * The current drive speed matches the requested drive speed so
24335 		 * there is no need to send the mode select to change the speed
24336 		 */
24337 		if (current_speed == data) {
24338 			break;
24339 		}
24340 
24341 		/* Build the select data for the requested drive speed */
24342 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
24343 		select_mhp = (struct mode_header *)select;
24344 		select_mhp->bdesc_length = 0;
24345 		select_page =
24346 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
24347 		select_page =
24348 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
24349 		select_page->mode_page.code = CDROM_MODE_SPEED;
24350 		select_page->mode_page.length = 2;
24351 		select_page->speed = (uchar_t)data;
24352 
24353 		/* Send the mode select for the requested block size */
24354 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
24355 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
24356 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
24357 			/*
24358 			 * The mode select failed for the requested drive speed,
24359 			 * so reset the data for the original drive speed and
24360 			 * send it to the target. The error is indicated by the
24361 			 * return value for the failed mode select.
24362 			 */
24363 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24364 			    "sr_drive_speed: Mode Select Failed\n");
24365 			select_page->speed = sense_page->speed;
24366 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
24367 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
24368 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
24369 		}
24370 		break;
24371 	default:
24372 		/* should not reach here, but check anyway */
24373 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24374 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
24375 		rval = EINVAL;
24376 		break;
24377 	}
24378 
24379 	if (select) {
24380 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
24381 	}
24382 	if (sense) {
24383 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24384 	}
24385 
24386 	return (rval);
24387 }
24388 
24389 
24390 /*
24391  *    Function: sr_atapi_change_speed()
24392  *
24393  * Description: This routine is the driver entry point for handling CD-ROM
24394  *		drive speed ioctl requests for MMC devices that do not support
24395  *		the Real Time Streaming feature (0x107).
24396  *
24397  *		Note: This routine will use the SET SPEED command which may not
24398  *		be supported by all devices.
24399  *
24400  *   Arguments: dev- the device 'dev_t'
24401  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
24402  *		     CDROMSDRVSPEED (set)
24403  *		data- current drive speed or requested drive speed
24404  *		flag- this argument is a pass through to ddi_copyxxx() directly
24405  *		      from the mode argument of ioctl().
24406  *
24407  * Return Code: the code returned by sd_send_scsi_cmd()
24408  *		EINVAL if invalid arguments are provided
24409  *		EFAULT if ddi_copyxxx() fails
24410  *		ENXIO if fail ddi_get_soft_state
24411  *		EIO if invalid mode sense block descriptor length
24412  */
24413 
24414 static int
24415 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
24416 {
24417 	struct sd_lun			*un;
24418 	struct uscsi_cmd		*com = NULL;
24419 	struct mode_header_grp2		*sense_mhp;
24420 	uchar_t				*sense_page;
24421 	uchar_t				*sense = NULL;
24422 	char				cdb[CDB_GROUP5];
24423 	int				bd_len;
24424 	int				current_speed = 0;
24425 	int				max_speed = 0;
24426 	int				rval;
24427 
24428 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
24429 
24430 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24431 		return (ENXIO);
24432 	}
24433 
24434 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
24435 
24436 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
24437 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
24438 	    SD_PATH_STANDARD)) != 0) {
24439 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24440 		    "sr_atapi_change_speed: Mode Sense Failed\n");
24441 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24442 		return (rval);
24443 	}
24444 
24445 	/* Check the block descriptor len to handle only 1 block descriptor */
24446 	sense_mhp = (struct mode_header_grp2 *)sense;
24447 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
24448 	if (bd_len > MODE_BLK_DESC_LENGTH) {
24449 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24450 		    "sr_atapi_change_speed: Mode Sense returned invalid "
24451 		    "block descriptor length\n");
24452 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24453 		return (EIO);
24454 	}
24455 
24456 	/* Calculate the current and maximum drive speeds */
24457 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
24458 	current_speed = (sense_page[14] << 8) | sense_page[15];
24459 	max_speed = (sense_page[8] << 8) | sense_page[9];
24460 
24461 	/* Process the command */
24462 	switch (cmd) {
24463 	case CDROMGDRVSPEED:
24464 		current_speed /= SD_SPEED_1X;
24465 		if (ddi_copyout(&current_speed, (void *)data,
24466 		    sizeof (int), flag) != 0)
24467 			rval = EFAULT;
24468 		break;
24469 	case CDROMSDRVSPEED:
24470 		/* Convert the speed code to KB/sec */
24471 		switch ((uchar_t)data) {
24472 		case CDROM_NORMAL_SPEED:
24473 			current_speed = SD_SPEED_1X;
24474 			break;
24475 		case CDROM_DOUBLE_SPEED:
24476 			current_speed = 2 * SD_SPEED_1X;
24477 			break;
24478 		case CDROM_QUAD_SPEED:
24479 			current_speed = 4 * SD_SPEED_1X;
24480 			break;
24481 		case CDROM_TWELVE_SPEED:
24482 			current_speed = 12 * SD_SPEED_1X;
24483 			break;
24484 		case CDROM_MAXIMUM_SPEED:
24485 			current_speed = 0xffff;
24486 			break;
24487 		default:
24488 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24489 			    "sr_atapi_change_speed: invalid drive speed %d\n",
24490 			    (uchar_t)data);
24491 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24492 			return (EINVAL);
24493 		}
24494 
24495 		/* Check the request against the drive's max speed. */
24496 		if (current_speed != 0xffff) {
24497 			if (current_speed > max_speed) {
24498 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24499 				return (EINVAL);
24500 			}
24501 		}
24502 
24503 		/*
24504 		 * Build and send the SET SPEED command
24505 		 *
24506 		 * Note: The SET SPEED (0xBB) command used in this routine is
24507 		 * obsolete per the SCSI MMC spec but still supported in the
24508 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24509 		 * therefore the command is still implemented in this routine.
24510 		 */
24511 		bzero(cdb, sizeof (cdb));
24512 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
24513 		cdb[2] = (uchar_t)(current_speed >> 8);
24514 		cdb[3] = (uchar_t)current_speed;
24515 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24516 		com->uscsi_cdb	   = (caddr_t)cdb;
24517 		com->uscsi_cdblen  = CDB_GROUP5;
24518 		com->uscsi_bufaddr = NULL;
24519 		com->uscsi_buflen  = 0;
24520 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
24521 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
24522 		break;
24523 	default:
24524 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24525 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
24526 		rval = EINVAL;
24527 	}
24528 
24529 	if (sense) {
24530 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24531 	}
24532 	if (com) {
24533 		kmem_free(com, sizeof (*com));
24534 	}
24535 	return (rval);
24536 }
24537 
24538 
24539 /*
24540  *    Function: sr_pause_resume()
24541  *
24542  * Description: This routine is the driver entry point for handling CD-ROM
24543  *		pause/resume ioctl requests. This only affects the audio play
24544  *		operation.
24545  *
24546  *   Arguments: dev - the device 'dev_t'
24547  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
24548  *		      for setting the resume bit of the cdb.
24549  *
24550  * Return Code: the code returned by sd_send_scsi_cmd()
24551  *		EINVAL if invalid mode specified
24552  *
24553  */
24554 
24555 static int
24556 sr_pause_resume(dev_t dev, int cmd)
24557 {
24558 	struct sd_lun		*un;
24559 	struct uscsi_cmd	*com;
24560 	char			cdb[CDB_GROUP1];
24561 	int			rval;
24562 
24563 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24564 		return (ENXIO);
24565 	}
24566 
24567 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24568 	bzero(cdb, CDB_GROUP1);
24569 	cdb[0] = SCMD_PAUSE_RESUME;
24570 	switch (cmd) {
24571 	case CDROMRESUME:
24572 		cdb[8] = 1;
24573 		break;
24574 	case CDROMPAUSE:
24575 		cdb[8] = 0;
24576 		break;
24577 	default:
24578 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
24579 		    " Command '%x' Not Supported\n", cmd);
24580 		rval = EINVAL;
24581 		goto done;
24582 	}
24583 
24584 	com->uscsi_cdb    = cdb;
24585 	com->uscsi_cdblen = CDB_GROUP1;
24586 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24587 
24588 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24589 	    SD_PATH_STANDARD);
24590 
24591 done:
24592 	kmem_free(com, sizeof (*com));
24593 	return (rval);
24594 }
24595 
24596 
24597 /*
24598  *    Function: sr_play_msf()
24599  *
24600  * Description: This routine is the driver entry point for handling CD-ROM
24601  *		ioctl requests to output the audio signals at the specified
24602  *		starting address and continue the audio play until the specified
24603  *		ending address (CDROMPLAYMSF) The address is in Minute Second
24604  *		Frame (MSF) format.
24605  *
24606  *   Arguments: dev	- the device 'dev_t'
24607  *		data	- pointer to user provided audio msf structure,
24608  *		          specifying start/end addresses.
24609  *		flag	- this argument is a pass through to ddi_copyxxx()
24610  *		          directly from the mode argument of ioctl().
24611  *
24612  * Return Code: the code returned by sd_send_scsi_cmd()
24613  *		EFAULT if ddi_copyxxx() fails
24614  *		ENXIO if fail ddi_get_soft_state
24615  *		EINVAL if data pointer is NULL
24616  */
24617 
24618 static int
24619 sr_play_msf(dev_t dev, caddr_t data, int flag)
24620 {
24621 	struct sd_lun		*un;
24622 	struct uscsi_cmd	*com;
24623 	struct cdrom_msf	msf_struct;
24624 	struct cdrom_msf	*msf = &msf_struct;
24625 	char			cdb[CDB_GROUP1];
24626 	int			rval;
24627 
24628 	if (data == NULL) {
24629 		return (EINVAL);
24630 	}
24631 
24632 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24633 		return (ENXIO);
24634 	}
24635 
24636 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
24637 		return (EFAULT);
24638 	}
24639 
24640 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24641 	bzero(cdb, CDB_GROUP1);
24642 	cdb[0] = SCMD_PLAYAUDIO_MSF;
24643 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
24644 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
24645 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
24646 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
24647 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
24648 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
24649 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
24650 	} else {
24651 		cdb[3] = msf->cdmsf_min0;
24652 		cdb[4] = msf->cdmsf_sec0;
24653 		cdb[5] = msf->cdmsf_frame0;
24654 		cdb[6] = msf->cdmsf_min1;
24655 		cdb[7] = msf->cdmsf_sec1;
24656 		cdb[8] = msf->cdmsf_frame1;
24657 	}
24658 	com->uscsi_cdb    = cdb;
24659 	com->uscsi_cdblen = CDB_GROUP1;
24660 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24661 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24662 	    SD_PATH_STANDARD);
24663 	kmem_free(com, sizeof (*com));
24664 	return (rval);
24665 }
24666 
24667 
24668 /*
24669  *    Function: sr_play_trkind()
24670  *
24671  * Description: This routine is the driver entry point for handling CD-ROM
24672  *		ioctl requests to output the audio signals at the specified
24673  *		starting address and continue the audio play until the specified
24674  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
24675  *		format.
24676  *
24677  *   Arguments: dev	- the device 'dev_t'
24678  *		data	- pointer to user provided audio track/index structure,
24679  *		          specifying start/end addresses.
24680  *		flag	- this argument is a pass through to ddi_copyxxx()
24681  *		          directly from the mode argument of ioctl().
24682  *
24683  * Return Code: the code returned by sd_send_scsi_cmd()
24684  *		EFAULT if ddi_copyxxx() fails
24685  *		ENXIO if fail ddi_get_soft_state
24686  *		EINVAL if data pointer is NULL
24687  */
24688 
24689 static int
24690 sr_play_trkind(dev_t dev, caddr_t data, int flag)
24691 {
24692 	struct cdrom_ti		ti_struct;
24693 	struct cdrom_ti		*ti = &ti_struct;
24694 	struct uscsi_cmd	*com = NULL;
24695 	char			cdb[CDB_GROUP1];
24696 	int			rval;
24697 
24698 	if (data == NULL) {
24699 		return (EINVAL);
24700 	}
24701 
24702 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
24703 		return (EFAULT);
24704 	}
24705 
24706 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24707 	bzero(cdb, CDB_GROUP1);
24708 	cdb[0] = SCMD_PLAYAUDIO_TI;
24709 	cdb[4] = ti->cdti_trk0;
24710 	cdb[5] = ti->cdti_ind0;
24711 	cdb[7] = ti->cdti_trk1;
24712 	cdb[8] = ti->cdti_ind1;
24713 	com->uscsi_cdb    = cdb;
24714 	com->uscsi_cdblen = CDB_GROUP1;
24715 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24716 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24717 	    SD_PATH_STANDARD);
24718 	kmem_free(com, sizeof (*com));
24719 	return (rval);
24720 }
24721 
24722 
24723 /*
24724  *    Function: sr_read_all_subcodes()
24725  *
24726  * Description: This routine is the driver entry point for handling CD-ROM
24727  *		ioctl requests to return raw subcode data while the target is
24728  *		playing audio (CDROMSUBCODE).
24729  *
24730  *   Arguments: dev	- the device 'dev_t'
24731  *		data	- pointer to user provided cdrom subcode structure,
24732  *		          specifying the transfer length and address.
24733  *		flag	- this argument is a pass through to ddi_copyxxx()
24734  *		          directly from the mode argument of ioctl().
24735  *
24736  * Return Code: the code returned by sd_send_scsi_cmd()
24737  *		EFAULT if ddi_copyxxx() fails
24738  *		ENXIO if fail ddi_get_soft_state
24739  *		EINVAL if data pointer is NULL
24740  */
24741 
24742 static int
24743 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
24744 {
24745 	struct sd_lun		*un = NULL;
24746 	struct uscsi_cmd	*com = NULL;
24747 	struct cdrom_subcode	*subcode = NULL;
24748 	int			rval;
24749 	size_t			buflen;
24750 	char			cdb[CDB_GROUP5];
24751 
24752 #ifdef _MULTI_DATAMODEL
24753 	/* To support ILP32 applications in an LP64 world */
24754 	struct cdrom_subcode32		cdrom_subcode32;
24755 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
24756 #endif
24757 	if (data == NULL) {
24758 		return (EINVAL);
24759 	}
24760 
24761 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24762 		return (ENXIO);
24763 	}
24764 
24765 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
24766 
24767 #ifdef _MULTI_DATAMODEL
24768 	switch (ddi_model_convert_from(flag & FMODELS)) {
24769 	case DDI_MODEL_ILP32:
24770 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
24771 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24772 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24773 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24774 			return (EFAULT);
24775 		}
24776 		/* Convert the ILP32 uscsi data from the application to LP64 */
24777 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
24778 		break;
24779 	case DDI_MODEL_NONE:
24780 		if (ddi_copyin(data, subcode,
24781 		    sizeof (struct cdrom_subcode), flag)) {
24782 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24783 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24784 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24785 			return (EFAULT);
24786 		}
24787 		break;
24788 	}
24789 #else /* ! _MULTI_DATAMODEL */
24790 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
24791 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24792 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
24793 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24794 		return (EFAULT);
24795 	}
24796 #endif /* _MULTI_DATAMODEL */
24797 
24798 	/*
24799 	 * Since MMC-2 expects max 3 bytes for length, check if the
24800 	 * length input is greater than 3 bytes
24801 	 */
24802 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
24803 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24804 		    "sr_read_all_subcodes: "
24805 		    "cdrom transfer length too large: %d (limit %d)\n",
24806 		    subcode->cdsc_length, 0xFFFFFF);
24807 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24808 		return (EINVAL);
24809 	}
24810 
24811 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
24812 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24813 	bzero(cdb, CDB_GROUP5);
24814 
24815 	if (un->un_f_mmc_cap == TRUE) {
24816 		cdb[0] = (char)SCMD_READ_CD;
24817 		cdb[2] = (char)0xff;
24818 		cdb[3] = (char)0xff;
24819 		cdb[4] = (char)0xff;
24820 		cdb[5] = (char)0xff;
24821 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24822 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24823 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
24824 		cdb[10] = 1;
24825 	} else {
24826 		/*
24827 		 * Note: A vendor specific command (0xDF) is being used her to
24828 		 * request a read of all subcodes.
24829 		 */
24830 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
24831 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
24832 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24833 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24834 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
24835 	}
24836 	com->uscsi_cdb	   = cdb;
24837 	com->uscsi_cdblen  = CDB_GROUP5;
24838 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
24839 	com->uscsi_buflen  = buflen;
24840 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24841 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24842 	    SD_PATH_STANDARD);
24843 	kmem_free(subcode, sizeof (struct cdrom_subcode));
24844 	kmem_free(com, sizeof (*com));
24845 	return (rval);
24846 }
24847 
24848 
24849 /*
24850  *    Function: sr_read_subchannel()
24851  *
24852  * Description: This routine is the driver entry point for handling CD-ROM
24853  *		ioctl requests to return the Q sub-channel data of the CD
24854  *		current position block. (CDROMSUBCHNL) The data includes the
24855  *		track number, index number, absolute CD-ROM address (LBA or MSF
24856  *		format per the user) , track relative CD-ROM address (LBA or MSF
24857  *		format per the user), control data and audio status.
24858  *
24859  *   Arguments: dev	- the device 'dev_t'
24860  *		data	- pointer to user provided cdrom sub-channel structure
24861  *		flag	- this argument is a pass through to ddi_copyxxx()
24862  *		          directly from the mode argument of ioctl().
24863  *
24864  * Return Code: the code returned by sd_send_scsi_cmd()
24865  *		EFAULT if ddi_copyxxx() fails
24866  *		ENXIO if fail ddi_get_soft_state
24867  *		EINVAL if data pointer is NULL
24868  */
24869 
24870 static int
24871 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
24872 {
24873 	struct sd_lun		*un;
24874 	struct uscsi_cmd	*com;
24875 	struct cdrom_subchnl	subchanel;
24876 	struct cdrom_subchnl	*subchnl = &subchanel;
24877 	char			cdb[CDB_GROUP1];
24878 	caddr_t			buffer;
24879 	int			rval;
24880 
24881 	if (data == NULL) {
24882 		return (EINVAL);
24883 	}
24884 
24885 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24886 	    (un->un_state == SD_STATE_OFFLINE)) {
24887 		return (ENXIO);
24888 	}
24889 
24890 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
24891 		return (EFAULT);
24892 	}
24893 
24894 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
24895 	bzero(cdb, CDB_GROUP1);
24896 	cdb[0] = SCMD_READ_SUBCHANNEL;
24897 	/* Set the MSF bit based on the user requested address format */
24898 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
24899 	/*
24900 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
24901 	 * returned
24902 	 */
24903 	cdb[2] = 0x40;
24904 	/*
24905 	 * Set byte 3 to specify the return data format. A value of 0x01
24906 	 * indicates that the CD-ROM current position should be returned.
24907 	 */
24908 	cdb[3] = 0x01;
24909 	cdb[8] = 0x10;
24910 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24911 	com->uscsi_cdb	   = cdb;
24912 	com->uscsi_cdblen  = CDB_GROUP1;
24913 	com->uscsi_bufaddr = buffer;
24914 	com->uscsi_buflen  = 16;
24915 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24916 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24917 	    SD_PATH_STANDARD);
24918 	if (rval != 0) {
24919 		kmem_free(buffer, 16);
24920 		kmem_free(com, sizeof (*com));
24921 		return (rval);
24922 	}
24923 
24924 	/* Process the returned Q sub-channel data */
24925 	subchnl->cdsc_audiostatus = buffer[1];
24926 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
24927 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
24928 	subchnl->cdsc_trk	= buffer[6];
24929 	subchnl->cdsc_ind	= buffer[7];
24930 	if (subchnl->cdsc_format & CDROM_LBA) {
24931 		subchnl->cdsc_absaddr.lba =
24932 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24933 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24934 		subchnl->cdsc_reladdr.lba =
24935 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
24936 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
24937 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
24938 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
24939 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
24940 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
24941 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
24942 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
24943 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
24944 	} else {
24945 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
24946 		subchnl->cdsc_absaddr.msf.second = buffer[10];
24947 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
24948 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
24949 		subchnl->cdsc_reladdr.msf.second = buffer[14];
24950 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
24951 	}
24952 	kmem_free(buffer, 16);
24953 	kmem_free(com, sizeof (*com));
24954 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
24955 	    != 0) {
24956 		return (EFAULT);
24957 	}
24958 	return (rval);
24959 }
24960 
24961 
24962 /*
24963  *    Function: sr_read_tocentry()
24964  *
24965  * Description: This routine is the driver entry point for handling CD-ROM
24966  *		ioctl requests to read from the Table of Contents (TOC)
24967  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
24968  *		fields, the starting address (LBA or MSF format per the user)
24969  *		and the data mode if the user specified track is a data track.
24970  *
24971  *		Note: The READ HEADER (0x44) command used in this routine is
24972  *		obsolete per the SCSI MMC spec but still supported in the
24973  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24974  *		therefore the command is still implemented in this routine.
24975  *
24976  *   Arguments: dev	- the device 'dev_t'
24977  *		data	- pointer to user provided toc entry structure,
24978  *			  specifying the track # and the address format
24979  *			  (LBA or MSF).
24980  *		flag	- this argument is a pass through to ddi_copyxxx()
24981  *		          directly from the mode argument of ioctl().
24982  *
24983  * Return Code: the code returned by sd_send_scsi_cmd()
24984  *		EFAULT if ddi_copyxxx() fails
24985  *		ENXIO if fail ddi_get_soft_state
24986  *		EINVAL if data pointer is NULL
24987  */
24988 
24989 static int
24990 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
24991 {
24992 	struct sd_lun		*un = NULL;
24993 	struct uscsi_cmd	*com;
24994 	struct cdrom_tocentry	toc_entry;
24995 	struct cdrom_tocentry	*entry = &toc_entry;
24996 	caddr_t			buffer;
24997 	int			rval;
24998 	char			cdb[CDB_GROUP1];
24999 
25000 	if (data == NULL) {
25001 		return (EINVAL);
25002 	}
25003 
25004 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25005 	    (un->un_state == SD_STATE_OFFLINE)) {
25006 		return (ENXIO);
25007 	}
25008 
25009 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
25010 		return (EFAULT);
25011 	}
25012 
25013 	/* Validate the requested track and address format */
25014 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
25015 		return (EINVAL);
25016 	}
25017 
25018 	if (entry->cdte_track == 0) {
25019 		return (EINVAL);
25020 	}
25021 
25022 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
25023 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25024 	bzero(cdb, CDB_GROUP1);
25025 
25026 	cdb[0] = SCMD_READ_TOC;
25027 	/* Set the MSF bit based on the user requested address format  */
25028 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
25029 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
25030 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
25031 	} else {
25032 		cdb[6] = entry->cdte_track;
25033 	}
25034 
25035 	/*
25036 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
25037 	 * (4 byte TOC response header + 8 byte track descriptor)
25038 	 */
25039 	cdb[8] = 12;
25040 	com->uscsi_cdb	   = cdb;
25041 	com->uscsi_cdblen  = CDB_GROUP1;
25042 	com->uscsi_bufaddr = buffer;
25043 	com->uscsi_buflen  = 0x0C;
25044 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
25045 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25046 	    SD_PATH_STANDARD);
25047 	if (rval != 0) {
25048 		kmem_free(buffer, 12);
25049 		kmem_free(com, sizeof (*com));
25050 		return (rval);
25051 	}
25052 
25053 	/* Process the toc entry */
25054 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
25055 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
25056 	if (entry->cdte_format & CDROM_LBA) {
25057 		entry->cdte_addr.lba =
25058 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
25059 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
25060 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
25061 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
25062 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
25063 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
25064 		/*
25065 		 * Send a READ TOC command using the LBA address format to get
25066 		 * the LBA for the track requested so it can be used in the
25067 		 * READ HEADER request
25068 		 *
25069 		 * Note: The MSF bit of the READ HEADER command specifies the
25070 		 * output format. The block address specified in that command
25071 		 * must be in LBA format.
25072 		 */
25073 		cdb[1] = 0;
25074 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25075 		    SD_PATH_STANDARD);
25076 		if (rval != 0) {
25077 			kmem_free(buffer, 12);
25078 			kmem_free(com, sizeof (*com));
25079 			return (rval);
25080 		}
25081 	} else {
25082 		entry->cdte_addr.msf.minute	= buffer[9];
25083 		entry->cdte_addr.msf.second	= buffer[10];
25084 		entry->cdte_addr.msf.frame	= buffer[11];
25085 		/*
25086 		 * Send a READ TOC command using the LBA address format to get
25087 		 * the LBA for the track requested so it can be used in the
25088 		 * READ HEADER request
25089 		 *
25090 		 * Note: The MSF bit of the READ HEADER command specifies the
25091 		 * output format. The block address specified in that command
25092 		 * must be in LBA format.
25093 		 */
25094 		cdb[1] = 0;
25095 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25096 		    SD_PATH_STANDARD);
25097 		if (rval != 0) {
25098 			kmem_free(buffer, 12);
25099 			kmem_free(com, sizeof (*com));
25100 			return (rval);
25101 		}
25102 	}
25103 
25104 	/*
25105 	 * Build and send the READ HEADER command to determine the data mode of
25106 	 * the user specified track.
25107 	 */
25108 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
25109 	    (entry->cdte_track != CDROM_LEADOUT)) {
25110 		bzero(cdb, CDB_GROUP1);
25111 		cdb[0] = SCMD_READ_HEADER;
25112 		cdb[2] = buffer[8];
25113 		cdb[3] = buffer[9];
25114 		cdb[4] = buffer[10];
25115 		cdb[5] = buffer[11];
25116 		cdb[8] = 0x08;
25117 		com->uscsi_buflen = 0x08;
25118 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25119 		    SD_PATH_STANDARD);
25120 		if (rval == 0) {
25121 			entry->cdte_datamode = buffer[0];
25122 		} else {
25123 			/*
25124 			 * READ HEADER command failed, since this is
25125 			 * obsoleted in one spec, its better to return
25126 			 * -1 for an invlid track so that we can still
25127 			 * receive the rest of the TOC data.
25128 			 */
25129 			entry->cdte_datamode = (uchar_t)-1;
25130 		}
25131 	} else {
25132 		entry->cdte_datamode = (uchar_t)-1;
25133 	}
25134 
25135 	kmem_free(buffer, 12);
25136 	kmem_free(com, sizeof (*com));
25137 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
25138 		return (EFAULT);
25139 
25140 	return (rval);
25141 }
25142 
25143 
25144 /*
25145  *    Function: sr_read_tochdr()
25146  *
25147  * Description: This routine is the driver entry point for handling CD-ROM
25148  * 		ioctl requests to read the Table of Contents (TOC) header
25149  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
25150  *		and ending track numbers
25151  *
25152  *   Arguments: dev	- the device 'dev_t'
25153  *		data	- pointer to user provided toc header structure,
25154  *			  specifying the starting and ending track numbers.
25155  *		flag	- this argument is a pass through to ddi_copyxxx()
25156  *			  directly from the mode argument of ioctl().
25157  *
25158  * Return Code: the code returned by sd_send_scsi_cmd()
25159  *		EFAULT if ddi_copyxxx() fails
25160  *		ENXIO if fail ddi_get_soft_state
25161  *		EINVAL if data pointer is NULL
25162  */
25163 
25164 static int
25165 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
25166 {
25167 	struct sd_lun		*un;
25168 	struct uscsi_cmd	*com;
25169 	struct cdrom_tochdr	toc_header;
25170 	struct cdrom_tochdr	*hdr = &toc_header;
25171 	char			cdb[CDB_GROUP1];
25172 	int			rval;
25173 	caddr_t			buffer;
25174 
25175 	if (data == NULL) {
25176 		return (EINVAL);
25177 	}
25178 
25179 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25180 	    (un->un_state == SD_STATE_OFFLINE)) {
25181 		return (ENXIO);
25182 	}
25183 
25184 	buffer = kmem_zalloc(4, KM_SLEEP);
25185 	bzero(cdb, CDB_GROUP1);
25186 	cdb[0] = SCMD_READ_TOC;
25187 	/*
25188 	 * Specifying a track number of 0x00 in the READ TOC command indicates
25189 	 * that the TOC header should be returned
25190 	 */
25191 	cdb[6] = 0x00;
25192 	/*
25193 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
25194 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
25195 	 */
25196 	cdb[8] = 0x04;
25197 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25198 	com->uscsi_cdb	   = cdb;
25199 	com->uscsi_cdblen  = CDB_GROUP1;
25200 	com->uscsi_bufaddr = buffer;
25201 	com->uscsi_buflen  = 0x04;
25202 	com->uscsi_timeout = 300;
25203 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25204 
25205 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25206 	    SD_PATH_STANDARD);
25207 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
25208 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
25209 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
25210 	} else {
25211 		hdr->cdth_trk0 = buffer[2];
25212 		hdr->cdth_trk1 = buffer[3];
25213 	}
25214 	kmem_free(buffer, 4);
25215 	kmem_free(com, sizeof (*com));
25216 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
25217 		return (EFAULT);
25218 	}
25219 	return (rval);
25220 }
25221 
25222 
25223 /*
25224  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
25225  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
25226  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
25227  * digital audio and extended architecture digital audio. These modes are
25228  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
25229  * MMC specs.
25230  *
25231  * In addition to support for the various data formats these routines also
25232  * include support for devices that implement only the direct access READ
25233  * commands (0x08, 0x28), devices that implement the READ_CD commands
25234  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
25235  * READ CDXA commands (0xD8, 0xDB)
25236  */
25237 
25238 /*
25239  *    Function: sr_read_mode1()
25240  *
25241  * Description: This routine is the driver entry point for handling CD-ROM
25242  *		ioctl read mode1 requests (CDROMREADMODE1).
25243  *
25244  *   Arguments: dev	- the device 'dev_t'
25245  *		data	- pointer to user provided cd read structure specifying
25246  *			  the lba buffer address and length.
25247  *		flag	- this argument is a pass through to ddi_copyxxx()
25248  *			  directly from the mode argument of ioctl().
25249  *
25250  * Return Code: the code returned by sd_send_scsi_cmd()
25251  *		EFAULT if ddi_copyxxx() fails
25252  *		ENXIO if fail ddi_get_soft_state
25253  *		EINVAL if data pointer is NULL
25254  */
25255 
25256 static int
25257 sr_read_mode1(dev_t dev, caddr_t data, int flag)
25258 {
25259 	struct sd_lun		*un;
25260 	struct cdrom_read	mode1_struct;
25261 	struct cdrom_read	*mode1 = &mode1_struct;
25262 	int			rval;
25263 #ifdef _MULTI_DATAMODEL
25264 	/* To support ILP32 applications in an LP64 world */
25265 	struct cdrom_read32	cdrom_read32;
25266 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25267 #endif /* _MULTI_DATAMODEL */
25268 
25269 	if (data == NULL) {
25270 		return (EINVAL);
25271 	}
25272 
25273 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25274 	    (un->un_state == SD_STATE_OFFLINE)) {
25275 		return (ENXIO);
25276 	}
25277 
25278 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25279 	    "sd_read_mode1: entry: un:0x%p\n", un);
25280 
25281 #ifdef _MULTI_DATAMODEL
25282 	switch (ddi_model_convert_from(flag & FMODELS)) {
25283 	case DDI_MODEL_ILP32:
25284 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25285 			return (EFAULT);
25286 		}
25287 		/* Convert the ILP32 uscsi data from the application to LP64 */
25288 		cdrom_read32tocdrom_read(cdrd32, mode1);
25289 		break;
25290 	case DDI_MODEL_NONE:
25291 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
25292 			return (EFAULT);
25293 		}
25294 	}
25295 #else /* ! _MULTI_DATAMODEL */
25296 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
25297 		return (EFAULT);
25298 	}
25299 #endif /* _MULTI_DATAMODEL */
25300 
25301 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
25302 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
25303 
25304 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25305 	    "sd_read_mode1: exit: un:0x%p\n", un);
25306 
25307 	return (rval);
25308 }
25309 
25310 
25311 /*
25312  *    Function: sr_read_cd_mode2()
25313  *
25314  * Description: This routine is the driver entry point for handling CD-ROM
25315  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
25316  *		support the READ CD (0xBE) command or the 1st generation
25317  *		READ CD (0xD4) command.
25318  *
25319  *   Arguments: dev	- the device 'dev_t'
25320  *		data	- pointer to user provided cd read structure specifying
25321  *			  the lba buffer address and length.
25322  *		flag	- this argument is a pass through to ddi_copyxxx()
25323  *			  directly from the mode argument of ioctl().
25324  *
25325  * Return Code: the code returned by sd_send_scsi_cmd()
25326  *		EFAULT if ddi_copyxxx() fails
25327  *		ENXIO if fail ddi_get_soft_state
25328  *		EINVAL if data pointer is NULL
25329  */
25330 
25331 static int
25332 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
25333 {
25334 	struct sd_lun		*un;
25335 	struct uscsi_cmd	*com;
25336 	struct cdrom_read	mode2_struct;
25337 	struct cdrom_read	*mode2 = &mode2_struct;
25338 	uchar_t			cdb[CDB_GROUP5];
25339 	int			nblocks;
25340 	int			rval;
25341 #ifdef _MULTI_DATAMODEL
25342 	/*  To support ILP32 applications in an LP64 world */
25343 	struct cdrom_read32	cdrom_read32;
25344 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25345 #endif /* _MULTI_DATAMODEL */
25346 
25347 	if (data == NULL) {
25348 		return (EINVAL);
25349 	}
25350 
25351 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25352 	    (un->un_state == SD_STATE_OFFLINE)) {
25353 		return (ENXIO);
25354 	}
25355 
25356 #ifdef _MULTI_DATAMODEL
25357 	switch (ddi_model_convert_from(flag & FMODELS)) {
25358 	case DDI_MODEL_ILP32:
25359 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25360 			return (EFAULT);
25361 		}
25362 		/* Convert the ILP32 uscsi data from the application to LP64 */
25363 		cdrom_read32tocdrom_read(cdrd32, mode2);
25364 		break;
25365 	case DDI_MODEL_NONE:
25366 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25367 			return (EFAULT);
25368 		}
25369 		break;
25370 	}
25371 
25372 #else /* ! _MULTI_DATAMODEL */
25373 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25374 		return (EFAULT);
25375 	}
25376 #endif /* _MULTI_DATAMODEL */
25377 
25378 	bzero(cdb, sizeof (cdb));
25379 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
25380 		/* Read command supported by 1st generation atapi drives */
25381 		cdb[0] = SCMD_READ_CDD4;
25382 	} else {
25383 		/* Universal CD Access Command */
25384 		cdb[0] = SCMD_READ_CD;
25385 	}
25386 
25387 	/*
25388 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
25389 	 */
25390 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
25391 
25392 	/* set the start address */
25393 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
25394 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
25395 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
25396 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
25397 
25398 	/* set the transfer length */
25399 	nblocks = mode2->cdread_buflen / 2336;
25400 	cdb[6] = (uchar_t)(nblocks >> 16);
25401 	cdb[7] = (uchar_t)(nblocks >> 8);
25402 	cdb[8] = (uchar_t)nblocks;
25403 
25404 	/* set the filter bits */
25405 	cdb[9] = CDROM_READ_CD_USERDATA;
25406 
25407 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25408 	com->uscsi_cdb = (caddr_t)cdb;
25409 	com->uscsi_cdblen = sizeof (cdb);
25410 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
25411 	com->uscsi_buflen = mode2->cdread_buflen;
25412 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25413 
25414 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25415 	    SD_PATH_STANDARD);
25416 	kmem_free(com, sizeof (*com));
25417 	return (rval);
25418 }
25419 
25420 
25421 /*
25422  *    Function: sr_read_mode2()
25423  *
25424  * Description: This routine is the driver entry point for handling CD-ROM
25425  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
25426  *		do not support the READ CD (0xBE) command.
25427  *
25428  *   Arguments: dev	- the device 'dev_t'
25429  *		data	- pointer to user provided cd read structure specifying
25430  *			  the lba buffer address and length.
25431  *		flag	- this argument is a pass through to ddi_copyxxx()
25432  *			  directly from the mode argument of ioctl().
25433  *
25434  * Return Code: the code returned by sd_send_scsi_cmd()
25435  *		EFAULT if ddi_copyxxx() fails
25436  *		ENXIO if fail ddi_get_soft_state
25437  *		EINVAL if data pointer is NULL
25438  *		EIO if fail to reset block size
25439  *		EAGAIN if commands are in progress in the driver
25440  */
25441 
25442 static int
25443 sr_read_mode2(dev_t dev, caddr_t data, int flag)
25444 {
25445 	struct sd_lun		*un;
25446 	struct cdrom_read	mode2_struct;
25447 	struct cdrom_read	*mode2 = &mode2_struct;
25448 	int			rval;
25449 	uint32_t		restore_blksize;
25450 	struct uscsi_cmd	*com;
25451 	uchar_t			cdb[CDB_GROUP0];
25452 	int			nblocks;
25453 
25454 #ifdef _MULTI_DATAMODEL
25455 	/* To support ILP32 applications in an LP64 world */
25456 	struct cdrom_read32	cdrom_read32;
25457 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25458 #endif /* _MULTI_DATAMODEL */
25459 
25460 	if (data == NULL) {
25461 		return (EINVAL);
25462 	}
25463 
25464 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25465 	    (un->un_state == SD_STATE_OFFLINE)) {
25466 		return (ENXIO);
25467 	}
25468 
25469 	/*
25470 	 * Because this routine will update the device and driver block size
25471 	 * being used we want to make sure there are no commands in progress.
25472 	 * If commands are in progress the user will have to try again.
25473 	 *
25474 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
25475 	 * in sdioctl to protect commands from sdioctl through to the top of
25476 	 * sd_uscsi_strategy. See sdioctl for details.
25477 	 */
25478 	mutex_enter(SD_MUTEX(un));
25479 	if (un->un_ncmds_in_driver != 1) {
25480 		mutex_exit(SD_MUTEX(un));
25481 		return (EAGAIN);
25482 	}
25483 	mutex_exit(SD_MUTEX(un));
25484 
25485 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25486 	    "sd_read_mode2: entry: un:0x%p\n", un);
25487 
25488 #ifdef _MULTI_DATAMODEL
25489 	switch (ddi_model_convert_from(flag & FMODELS)) {
25490 	case DDI_MODEL_ILP32:
25491 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25492 			return (EFAULT);
25493 		}
25494 		/* Convert the ILP32 uscsi data from the application to LP64 */
25495 		cdrom_read32tocdrom_read(cdrd32, mode2);
25496 		break;
25497 	case DDI_MODEL_NONE:
25498 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25499 			return (EFAULT);
25500 		}
25501 		break;
25502 	}
25503 #else /* ! _MULTI_DATAMODEL */
25504 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
25505 		return (EFAULT);
25506 	}
25507 #endif /* _MULTI_DATAMODEL */
25508 
25509 	/* Store the current target block size for restoration later */
25510 	restore_blksize = un->un_tgt_blocksize;
25511 
25512 	/* Change the device and soft state target block size to 2336 */
25513 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
25514 		rval = EIO;
25515 		goto done;
25516 	}
25517 
25518 
25519 	bzero(cdb, sizeof (cdb));
25520 
25521 	/* set READ operation */
25522 	cdb[0] = SCMD_READ;
25523 
25524 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
25525 	mode2->cdread_lba >>= 2;
25526 
25527 	/* set the start address */
25528 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
25529 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
25530 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
25531 
25532 	/* set the transfer length */
25533 	nblocks = mode2->cdread_buflen / 2336;
25534 	cdb[4] = (uchar_t)nblocks & 0xFF;
25535 
25536 	/* build command */
25537 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25538 	com->uscsi_cdb = (caddr_t)cdb;
25539 	com->uscsi_cdblen = sizeof (cdb);
25540 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
25541 	com->uscsi_buflen = mode2->cdread_buflen;
25542 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25543 
25544 	/*
25545 	 * Issue SCSI command with user space address for read buffer.
25546 	 *
25547 	 * This sends the command through main channel in the driver.
25548 	 *
25549 	 * Since this is accessed via an IOCTL call, we go through the
25550 	 * standard path, so that if the device was powered down, then
25551 	 * it would be 'awakened' to handle the command.
25552 	 */
25553 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25554 	    SD_PATH_STANDARD);
25555 
25556 	kmem_free(com, sizeof (*com));
25557 
25558 	/* Restore the device and soft state target block size */
25559 	if (sr_sector_mode(dev, restore_blksize) != 0) {
25560 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25561 		    "can't do switch back to mode 1\n");
25562 		/*
25563 		 * If sd_send_scsi_READ succeeded we still need to report
25564 		 * an error because we failed to reset the block size
25565 		 */
25566 		if (rval == 0) {
25567 			rval = EIO;
25568 		}
25569 	}
25570 
25571 done:
25572 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25573 	    "sd_read_mode2: exit: un:0x%p\n", un);
25574 
25575 	return (rval);
25576 }
25577 
25578 
25579 /*
25580  *    Function: sr_sector_mode()
25581  *
25582  * Description: This utility function is used by sr_read_mode2 to set the target
25583  *		block size based on the user specified size. This is a legacy
25584  *		implementation based upon a vendor specific mode page
25585  *
25586  *   Arguments: dev	- the device 'dev_t'
25587  *		data	- flag indicating if block size is being set to 2336 or
25588  *			  512.
25589  *
25590  * Return Code: the code returned by sd_send_scsi_cmd()
25591  *		EFAULT if ddi_copyxxx() fails
25592  *		ENXIO if fail ddi_get_soft_state
25593  *		EINVAL if data pointer is NULL
25594  */
25595 
25596 static int
25597 sr_sector_mode(dev_t dev, uint32_t blksize)
25598 {
25599 	struct sd_lun	*un;
25600 	uchar_t		*sense;
25601 	uchar_t		*select;
25602 	int		rval;
25603 
25604 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25605 	    (un->un_state == SD_STATE_OFFLINE)) {
25606 		return (ENXIO);
25607 	}
25608 
25609 	sense = kmem_zalloc(20, KM_SLEEP);
25610 
25611 	/* Note: This is a vendor specific mode page (0x81) */
25612 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
25613 	    SD_PATH_STANDARD)) != 0) {
25614 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25615 		    "sr_sector_mode: Mode Sense failed\n");
25616 		kmem_free(sense, 20);
25617 		return (rval);
25618 	}
25619 	select = kmem_zalloc(20, KM_SLEEP);
25620 	select[3] = 0x08;
25621 	select[10] = ((blksize >> 8) & 0xff);
25622 	select[11] = (blksize & 0xff);
25623 	select[12] = 0x01;
25624 	select[13] = 0x06;
25625 	select[14] = sense[14];
25626 	select[15] = sense[15];
25627 	if (blksize == SD_MODE2_BLKSIZE) {
25628 		select[14] |= 0x01;
25629 	}
25630 
25631 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
25632 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
25633 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25634 		    "sr_sector_mode: Mode Select failed\n");
25635 	} else {
25636 		/*
25637 		 * Only update the softstate block size if we successfully
25638 		 * changed the device block mode.
25639 		 */
25640 		mutex_enter(SD_MUTEX(un));
25641 		sd_update_block_info(un, blksize, 0);
25642 		mutex_exit(SD_MUTEX(un));
25643 	}
25644 	kmem_free(sense, 20);
25645 	kmem_free(select, 20);
25646 	return (rval);
25647 }
25648 
25649 
25650 /*
25651  *    Function: sr_read_cdda()
25652  *
25653  * Description: This routine is the driver entry point for handling CD-ROM
25654  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
25655  *		the target supports CDDA these requests are handled via a vendor
25656  *		specific command (0xD8) If the target does not support CDDA
25657  *		these requests are handled via the READ CD command (0xBE).
25658  *
25659  *   Arguments: dev	- the device 'dev_t'
25660  *		data	- pointer to user provided CD-DA structure specifying
25661  *			  the track starting address, transfer length, and
25662  *			  subcode options.
25663  *		flag	- this argument is a pass through to ddi_copyxxx()
25664  *			  directly from the mode argument of ioctl().
25665  *
25666  * Return Code: the code returned by sd_send_scsi_cmd()
25667  *		EFAULT if ddi_copyxxx() fails
25668  *		ENXIO if fail ddi_get_soft_state
25669  *		EINVAL if invalid arguments are provided
25670  *		ENOTTY
25671  */
25672 
25673 static int
25674 sr_read_cdda(dev_t dev, caddr_t data, int flag)
25675 {
25676 	struct sd_lun			*un;
25677 	struct uscsi_cmd		*com;
25678 	struct cdrom_cdda		*cdda;
25679 	int				rval;
25680 	size_t				buflen;
25681 	char				cdb[CDB_GROUP5];
25682 
25683 #ifdef _MULTI_DATAMODEL
25684 	/* To support ILP32 applications in an LP64 world */
25685 	struct cdrom_cdda32	cdrom_cdda32;
25686 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
25687 #endif /* _MULTI_DATAMODEL */
25688 
25689 	if (data == NULL) {
25690 		return (EINVAL);
25691 	}
25692 
25693 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25694 		return (ENXIO);
25695 	}
25696 
25697 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
25698 
25699 #ifdef _MULTI_DATAMODEL
25700 	switch (ddi_model_convert_from(flag & FMODELS)) {
25701 	case DDI_MODEL_ILP32:
25702 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
25703 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25704 			    "sr_read_cdda: ddi_copyin Failed\n");
25705 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25706 			return (EFAULT);
25707 		}
25708 		/* Convert the ILP32 uscsi data from the application to LP64 */
25709 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
25710 		break;
25711 	case DDI_MODEL_NONE:
25712 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25713 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25714 			    "sr_read_cdda: ddi_copyin Failed\n");
25715 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25716 			return (EFAULT);
25717 		}
25718 		break;
25719 	}
25720 #else /* ! _MULTI_DATAMODEL */
25721 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25722 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25723 		    "sr_read_cdda: ddi_copyin Failed\n");
25724 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25725 		return (EFAULT);
25726 	}
25727 #endif /* _MULTI_DATAMODEL */
25728 
25729 	/*
25730 	 * Since MMC-2 expects max 3 bytes for length, check if the
25731 	 * length input is greater than 3 bytes
25732 	 */
25733 	if ((cdda->cdda_length & 0xFF000000) != 0) {
25734 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
25735 		    "cdrom transfer length too large: %d (limit %d)\n",
25736 		    cdda->cdda_length, 0xFFFFFF);
25737 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25738 		return (EINVAL);
25739 	}
25740 
25741 	switch (cdda->cdda_subcode) {
25742 	case CDROM_DA_NO_SUBCODE:
25743 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
25744 		break;
25745 	case CDROM_DA_SUBQ:
25746 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
25747 		break;
25748 	case CDROM_DA_ALL_SUBCODE:
25749 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
25750 		break;
25751 	case CDROM_DA_SUBCODE_ONLY:
25752 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
25753 		break;
25754 	default:
25755 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25756 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
25757 		    cdda->cdda_subcode);
25758 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25759 		return (EINVAL);
25760 	}
25761 
25762 	/* Build and send the command */
25763 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25764 	bzero(cdb, CDB_GROUP5);
25765 
25766 	if (un->un_f_cfg_cdda == TRUE) {
25767 		cdb[0] = (char)SCMD_READ_CD;
25768 		cdb[1] = 0x04;
25769 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25770 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25771 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25772 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25773 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25774 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25775 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
25776 		cdb[9] = 0x10;
25777 		switch (cdda->cdda_subcode) {
25778 		case CDROM_DA_NO_SUBCODE :
25779 			cdb[10] = 0x0;
25780 			break;
25781 		case CDROM_DA_SUBQ :
25782 			cdb[10] = 0x2;
25783 			break;
25784 		case CDROM_DA_ALL_SUBCODE :
25785 			cdb[10] = 0x1;
25786 			break;
25787 		case CDROM_DA_SUBCODE_ONLY :
25788 			/* FALLTHROUGH */
25789 		default :
25790 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25791 			kmem_free(com, sizeof (*com));
25792 			return (ENOTTY);
25793 		}
25794 	} else {
25795 		cdb[0] = (char)SCMD_READ_CDDA;
25796 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25797 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25798 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25799 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25800 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
25801 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25802 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25803 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
25804 		cdb[10] = cdda->cdda_subcode;
25805 	}
25806 
25807 	com->uscsi_cdb = cdb;
25808 	com->uscsi_cdblen = CDB_GROUP5;
25809 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
25810 	com->uscsi_buflen = buflen;
25811 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25812 
25813 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25814 	    SD_PATH_STANDARD);
25815 
25816 	kmem_free(cdda, sizeof (struct cdrom_cdda));
25817 	kmem_free(com, sizeof (*com));
25818 	return (rval);
25819 }
25820 
25821 
25822 /*
25823  *    Function: sr_read_cdxa()
25824  *
25825  * Description: This routine is the driver entry point for handling CD-ROM
25826  *		ioctl requests to return CD-XA (Extended Architecture) data.
25827  *		(CDROMCDXA).
25828  *
25829  *   Arguments: dev	- the device 'dev_t'
25830  *		data	- pointer to user provided CD-XA structure specifying
25831  *			  the data starting address, transfer length, and format
25832  *		flag	- this argument is a pass through to ddi_copyxxx()
25833  *			  directly from the mode argument of ioctl().
25834  *
25835  * Return Code: the code returned by sd_send_scsi_cmd()
25836  *		EFAULT if ddi_copyxxx() fails
25837  *		ENXIO if fail ddi_get_soft_state
25838  *		EINVAL if data pointer is NULL
25839  */
25840 
25841 static int
25842 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
25843 {
25844 	struct sd_lun		*un;
25845 	struct uscsi_cmd	*com;
25846 	struct cdrom_cdxa	*cdxa;
25847 	int			rval;
25848 	size_t			buflen;
25849 	char			cdb[CDB_GROUP5];
25850 	uchar_t			read_flags;
25851 
25852 #ifdef _MULTI_DATAMODEL
25853 	/* To support ILP32 applications in an LP64 world */
25854 	struct cdrom_cdxa32		cdrom_cdxa32;
25855 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
25856 #endif /* _MULTI_DATAMODEL */
25857 
25858 	if (data == NULL) {
25859 		return (EINVAL);
25860 	}
25861 
25862 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25863 		return (ENXIO);
25864 	}
25865 
25866 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
25867 
25868 #ifdef _MULTI_DATAMODEL
25869 	switch (ddi_model_convert_from(flag & FMODELS)) {
25870 	case DDI_MODEL_ILP32:
25871 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
25872 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25873 			return (EFAULT);
25874 		}
25875 		/*
25876 		 * Convert the ILP32 uscsi data from the
25877 		 * application to LP64 for internal use.
25878 		 */
25879 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
25880 		break;
25881 	case DDI_MODEL_NONE:
25882 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25883 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25884 			return (EFAULT);
25885 		}
25886 		break;
25887 	}
25888 #else /* ! _MULTI_DATAMODEL */
25889 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25890 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25891 		return (EFAULT);
25892 	}
25893 #endif /* _MULTI_DATAMODEL */
25894 
25895 	/*
25896 	 * Since MMC-2 expects max 3 bytes for length, check if the
25897 	 * length input is greater than 3 bytes
25898 	 */
25899 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
25900 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
25901 		    "cdrom transfer length too large: %d (limit %d)\n",
25902 		    cdxa->cdxa_length, 0xFFFFFF);
25903 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25904 		return (EINVAL);
25905 	}
25906 
25907 	switch (cdxa->cdxa_format) {
25908 	case CDROM_XA_DATA:
25909 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
25910 		read_flags = 0x10;
25911 		break;
25912 	case CDROM_XA_SECTOR_DATA:
25913 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
25914 		read_flags = 0xf8;
25915 		break;
25916 	case CDROM_XA_DATA_W_ERROR:
25917 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
25918 		read_flags = 0xfc;
25919 		break;
25920 	default:
25921 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25922 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
25923 		    cdxa->cdxa_format);
25924 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25925 		return (EINVAL);
25926 	}
25927 
25928 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25929 	bzero(cdb, CDB_GROUP5);
25930 	if (un->un_f_mmc_cap == TRUE) {
25931 		cdb[0] = (char)SCMD_READ_CD;
25932 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25933 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25934 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25935 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25936 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25937 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25938 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
25939 		cdb[9] = (char)read_flags;
25940 	} else {
25941 		/*
25942 		 * Note: A vendor specific command (0xDB) is being used her to
25943 		 * request a read of all subcodes.
25944 		 */
25945 		cdb[0] = (char)SCMD_READ_CDXA;
25946 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25947 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25948 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25949 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25950 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
25951 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25952 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25953 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
25954 		cdb[10] = cdxa->cdxa_format;
25955 	}
25956 	com->uscsi_cdb	   = cdb;
25957 	com->uscsi_cdblen  = CDB_GROUP5;
25958 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
25959 	com->uscsi_buflen  = buflen;
25960 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25961 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25962 	    SD_PATH_STANDARD);
25963 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25964 	kmem_free(com, sizeof (*com));
25965 	return (rval);
25966 }
25967 
25968 
25969 /*
25970  *    Function: sr_eject()
25971  *
25972  * Description: This routine is the driver entry point for handling CD-ROM
25973  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
25974  *
25975  *   Arguments: dev	- the device 'dev_t'
25976  *
25977  * Return Code: the code returned by sd_send_scsi_cmd()
25978  */
25979 
25980 static int
25981 sr_eject(dev_t dev)
25982 {
25983 	struct sd_lun	*un;
25984 	int		rval;
25985 
25986 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25987 	    (un->un_state == SD_STATE_OFFLINE)) {
25988 		return (ENXIO);
25989 	}
25990 
25991 	/*
25992 	 * To prevent race conditions with the eject
25993 	 * command, keep track of an eject command as
25994 	 * it progresses. If we are already handling
25995 	 * an eject command in the driver for the given
25996 	 * unit and another request to eject is received
25997 	 * immediately return EAGAIN so we don't lose
25998 	 * the command if the current eject command fails.
25999 	 */
26000 	mutex_enter(SD_MUTEX(un));
26001 	if (un->un_f_ejecting == TRUE) {
26002 		mutex_exit(SD_MUTEX(un));
26003 		return (EAGAIN);
26004 	}
26005 	un->un_f_ejecting = TRUE;
26006 	mutex_exit(SD_MUTEX(un));
26007 
26008 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
26009 	    SD_PATH_STANDARD)) != 0) {
26010 		mutex_enter(SD_MUTEX(un));
26011 		un->un_f_ejecting = FALSE;
26012 		mutex_exit(SD_MUTEX(un));
26013 		return (rval);
26014 	}
26015 
26016 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
26017 	    SD_PATH_STANDARD);
26018 
26019 	if (rval == 0) {
26020 		mutex_enter(SD_MUTEX(un));
26021 		sr_ejected(un);
26022 		un->un_mediastate = DKIO_EJECTED;
26023 		un->un_f_ejecting = FALSE;
26024 		cv_broadcast(&un->un_state_cv);
26025 		mutex_exit(SD_MUTEX(un));
26026 	} else {
26027 		mutex_enter(SD_MUTEX(un));
26028 		un->un_f_ejecting = FALSE;
26029 		mutex_exit(SD_MUTEX(un));
26030 	}
26031 	return (rval);
26032 }
26033 
26034 
26035 /*
26036  *    Function: sr_ejected()
26037  *
26038  * Description: This routine updates the soft state structure to invalidate the
26039  *		geometry information after the media has been ejected or a
26040  *		media eject has been detected.
26041  *
26042  *   Arguments: un - driver soft state (unit) structure
26043  */
26044 
26045 static void
26046 sr_ejected(struct sd_lun *un)
26047 {
26048 	struct sd_errstats *stp;
26049 
26050 	ASSERT(un != NULL);
26051 	ASSERT(mutex_owned(SD_MUTEX(un)));
26052 
26053 	un->un_f_blockcount_is_valid	= FALSE;
26054 	un->un_f_tgt_blocksize_is_valid	= FALSE;
26055 	mutex_exit(SD_MUTEX(un));
26056 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
26057 	mutex_enter(SD_MUTEX(un));
26058 
26059 	if (un->un_errstats != NULL) {
26060 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
26061 		stp->sd_capacity.value.ui64 = 0;
26062 	}
26063 
26064 	/* remove "capacity-of-device" properties */
26065 	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
26066 	    "device-nblocks");
26067 	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
26068 	    "device-blksize");
26069 }
26070 
26071 
26072 /*
26073  *    Function: sr_check_wp()
26074  *
26075  * Description: This routine checks the write protection of a removable
26076  *      media disk and hotpluggable devices via the write protect bit of
26077  *      the Mode Page Header device specific field. Some devices choke
26078  *      on unsupported mode page. In order to workaround this issue,
26079  *      this routine has been implemented to use 0x3f mode page(request
26080  *      for all pages) for all device types.
26081  *
26082  *   Arguments: dev		- the device 'dev_t'
26083  *
26084  * Return Code: int indicating if the device is write protected (1) or not (0)
26085  *
26086  *     Context: Kernel thread.
26087  *
26088  */
26089 
26090 static int
26091 sr_check_wp(dev_t dev)
26092 {
26093 	struct sd_lun	*un;
26094 	uchar_t		device_specific;
26095 	uchar_t		*sense;
26096 	int		hdrlen;
26097 	int		rval = FALSE;
26098 
26099 	/*
26100 	 * Note: The return codes for this routine should be reworked to
26101 	 * properly handle the case of a NULL softstate.
26102 	 */
26103 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26104 		return (FALSE);
26105 	}
26106 
26107 	if (un->un_f_cfg_is_atapi == TRUE) {
26108 		/*
26109 		 * The mode page contents are not required; set the allocation
26110 		 * length for the mode page header only
26111 		 */
26112 		hdrlen = MODE_HEADER_LENGTH_GRP2;
26113 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
26114 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
26115 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
26116 			goto err_exit;
26117 		device_specific =
26118 		    ((struct mode_header_grp2 *)sense)->device_specific;
26119 	} else {
26120 		hdrlen = MODE_HEADER_LENGTH;
26121 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
26122 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
26123 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
26124 			goto err_exit;
26125 		device_specific =
26126 		    ((struct mode_header *)sense)->device_specific;
26127 	}
26128 
26129 	/*
26130 	 * Write protect mode sense failed; not all disks
26131 	 * understand this query. Return FALSE assuming that
26132 	 * these devices are not writable.
26133 	 */
26134 	if (device_specific & WRITE_PROTECT) {
26135 		rval = TRUE;
26136 	}
26137 
26138 err_exit:
26139 	kmem_free(sense, hdrlen);
26140 	return (rval);
26141 }
26142 
26143 /*
26144  *    Function: sr_volume_ctrl()
26145  *
26146  * Description: This routine is the driver entry point for handling CD-ROM
26147  *		audio output volume ioctl requests. (CDROMVOLCTRL)
26148  *
26149  *   Arguments: dev	- the device 'dev_t'
26150  *		data	- pointer to user audio volume control structure
26151  *		flag	- this argument is a pass through to ddi_copyxxx()
26152  *			  directly from the mode argument of ioctl().
26153  *
26154  * Return Code: the code returned by sd_send_scsi_cmd()
26155  *		EFAULT if ddi_copyxxx() fails
26156  *		ENXIO if fail ddi_get_soft_state
26157  *		EINVAL if data pointer is NULL
26158  *
26159  */
26160 
26161 static int
26162 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
26163 {
26164 	struct sd_lun		*un;
26165 	struct cdrom_volctrl    volume;
26166 	struct cdrom_volctrl    *vol = &volume;
26167 	uchar_t			*sense_page;
26168 	uchar_t			*select_page;
26169 	uchar_t			*sense;
26170 	uchar_t			*select;
26171 	int			sense_buflen;
26172 	int			select_buflen;
26173 	int			rval;
26174 
26175 	if (data == NULL) {
26176 		return (EINVAL);
26177 	}
26178 
26179 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26180 	    (un->un_state == SD_STATE_OFFLINE)) {
26181 		return (ENXIO);
26182 	}
26183 
26184 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
26185 		return (EFAULT);
26186 	}
26187 
26188 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
26189 		struct mode_header_grp2		*sense_mhp;
26190 		struct mode_header_grp2		*select_mhp;
26191 		int				bd_len;
26192 
26193 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
26194 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
26195 		    MODEPAGE_AUDIO_CTRL_LEN;
26196 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
26197 		select = kmem_zalloc(select_buflen, KM_SLEEP);
26198 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
26199 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
26200 		    SD_PATH_STANDARD)) != 0) {
26201 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
26202 			    "sr_volume_ctrl: Mode Sense Failed\n");
26203 			kmem_free(sense, sense_buflen);
26204 			kmem_free(select, select_buflen);
26205 			return (rval);
26206 		}
26207 		sense_mhp = (struct mode_header_grp2 *)sense;
26208 		select_mhp = (struct mode_header_grp2 *)select;
26209 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
26210 		    sense_mhp->bdesc_length_lo;
26211 		if (bd_len > MODE_BLK_DESC_LENGTH) {
26212 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26213 			    "sr_volume_ctrl: Mode Sense returned invalid "
26214 			    "block descriptor length\n");
26215 			kmem_free(sense, sense_buflen);
26216 			kmem_free(select, select_buflen);
26217 			return (EIO);
26218 		}
26219 		sense_page = (uchar_t *)
26220 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
26221 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
26222 		select_mhp->length_msb = 0;
26223 		select_mhp->length_lsb = 0;
26224 		select_mhp->bdesc_length_hi = 0;
26225 		select_mhp->bdesc_length_lo = 0;
26226 	} else {
26227 		struct mode_header		*sense_mhp, *select_mhp;
26228 
26229 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
26230 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
26231 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
26232 		select = kmem_zalloc(select_buflen, KM_SLEEP);
26233 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26234 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
26235 		    SD_PATH_STANDARD)) != 0) {
26236 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26237 			    "sr_volume_ctrl: Mode Sense Failed\n");
26238 			kmem_free(sense, sense_buflen);
26239 			kmem_free(select, select_buflen);
26240 			return (rval);
26241 		}
26242 		sense_mhp  = (struct mode_header *)sense;
26243 		select_mhp = (struct mode_header *)select;
26244 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
26245 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26246 			    "sr_volume_ctrl: Mode Sense returned invalid "
26247 			    "block descriptor length\n");
26248 			kmem_free(sense, sense_buflen);
26249 			kmem_free(select, select_buflen);
26250 			return (EIO);
26251 		}
26252 		sense_page = (uchar_t *)
26253 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
26254 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
26255 		select_mhp->length = 0;
26256 		select_mhp->bdesc_length = 0;
26257 	}
26258 	/*
26259 	 * Note: An audio control data structure could be created and overlayed
26260 	 * on the following in place of the array indexing method implemented.
26261 	 */
26262 
26263 	/* Build the select data for the user volume data */
26264 	select_page[0] = MODEPAGE_AUDIO_CTRL;
26265 	select_page[1] = 0xE;
26266 	/* Set the immediate bit */
26267 	select_page[2] = 0x04;
26268 	/* Zero out reserved fields */
26269 	select_page[3] = 0x00;
26270 	select_page[4] = 0x00;
26271 	/* Return sense data for fields not to be modified */
26272 	select_page[5] = sense_page[5];
26273 	select_page[6] = sense_page[6];
26274 	select_page[7] = sense_page[7];
26275 	/* Set the user specified volume levels for channel 0 and 1 */
26276 	select_page[8] = 0x01;
26277 	select_page[9] = vol->channel0;
26278 	select_page[10] = 0x02;
26279 	select_page[11] = vol->channel1;
26280 	/* Channel 2 and 3 are currently unsupported so return the sense data */
26281 	select_page[12] = sense_page[12];
26282 	select_page[13] = sense_page[13];
26283 	select_page[14] = sense_page[14];
26284 	select_page[15] = sense_page[15];
26285 
26286 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
26287 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
26288 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26289 	} else {
26290 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
26291 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26292 	}
26293 
26294 	kmem_free(sense, sense_buflen);
26295 	kmem_free(select, select_buflen);
26296 	return (rval);
26297 }
26298 
26299 
26300 /*
26301  *    Function: sr_read_sony_session_offset()
26302  *
26303  * Description: This routine is the driver entry point for handling CD-ROM
26304  *		ioctl requests for session offset information. (CDROMREADOFFSET)
26305  *		The address of the first track in the last session of a
26306  *		multi-session CD-ROM is returned
26307  *
26308  *		Note: This routine uses a vendor specific key value in the
26309  *		command control field without implementing any vendor check here
26310  *		or in the ioctl routine.
26311  *
26312  *   Arguments: dev	- the device 'dev_t'
26313  *		data	- pointer to an int to hold the requested address
26314  *		flag	- this argument is a pass through to ddi_copyxxx()
26315  *			  directly from the mode argument of ioctl().
26316  *
26317  * Return Code: the code returned by sd_send_scsi_cmd()
26318  *		EFAULT if ddi_copyxxx() fails
26319  *		ENXIO if fail ddi_get_soft_state
26320  *		EINVAL if data pointer is NULL
26321  */
26322 
26323 static int
26324 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
26325 {
26326 	struct sd_lun		*un;
26327 	struct uscsi_cmd	*com;
26328 	caddr_t			buffer;
26329 	char			cdb[CDB_GROUP1];
26330 	int			session_offset = 0;
26331 	int			rval;
26332 
26333 	if (data == NULL) {
26334 		return (EINVAL);
26335 	}
26336 
26337 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26338 	    (un->un_state == SD_STATE_OFFLINE)) {
26339 		return (ENXIO);
26340 	}
26341 
26342 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
26343 	bzero(cdb, CDB_GROUP1);
26344 	cdb[0] = SCMD_READ_TOC;
26345 	/*
26346 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
26347 	 * (4 byte TOC response header + 8 byte response data)
26348 	 */
26349 	cdb[8] = SONY_SESSION_OFFSET_LEN;
26350 	/* Byte 9 is the control byte. A vendor specific value is used */
26351 	cdb[9] = SONY_SESSION_OFFSET_KEY;
26352 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26353 	com->uscsi_cdb = cdb;
26354 	com->uscsi_cdblen = CDB_GROUP1;
26355 	com->uscsi_bufaddr = buffer;
26356 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
26357 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26358 
26359 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26360 	    SD_PATH_STANDARD);
26361 	if (rval != 0) {
26362 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
26363 		kmem_free(com, sizeof (*com));
26364 		return (rval);
26365 	}
26366 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
26367 		session_offset =
26368 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26369 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26370 		/*
26371 		 * Offset returned offset in current lbasize block's. Convert to
26372 		 * 2k block's to return to the user
26373 		 */
26374 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
26375 			session_offset >>= 2;
26376 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
26377 			session_offset >>= 1;
26378 		}
26379 	}
26380 
26381 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
26382 		rval = EFAULT;
26383 	}
26384 
26385 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
26386 	kmem_free(com, sizeof (*com));
26387 	return (rval);
26388 }
26389 
26390 
26391 /*
26392  *    Function: sd_wm_cache_constructor()
26393  *
26394  * Description: Cache Constructor for the wmap cache for the read/modify/write
26395  * 		devices.
26396  *
26397  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
26398  *		un	- sd_lun structure for the device.
26399  *		flag	- the km flags passed to constructor
26400  *
26401  * Return Code: 0 on success.
26402  *		-1 on failure.
26403  */
26404 
26405 /*ARGSUSED*/
26406 static int
26407 sd_wm_cache_constructor(void *wm, void *un, int flags)
26408 {
26409 	bzero(wm, sizeof (struct sd_w_map));
26410 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
26411 	return (0);
26412 }
26413 
26414 
26415 /*
26416  *    Function: sd_wm_cache_destructor()
26417  *
26418  * Description: Cache destructor for the wmap cache for the read/modify/write
26419  * 		devices.
26420  *
26421  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
26422  *		un	- sd_lun structure for the device.
26423  */
26424 /*ARGSUSED*/
26425 static void
26426 sd_wm_cache_destructor(void *wm, void *un)
26427 {
26428 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
26429 }
26430 
26431 
26432 /*
26433  *    Function: sd_range_lock()
26434  *
26435  * Description: Lock the range of blocks specified as parameter to ensure
26436  *		that read, modify write is atomic and no other i/o writes
26437  *		to the same location. The range is specified in terms
26438  *		of start and end blocks. Block numbers are the actual
26439  *		media block numbers and not system.
26440  *
26441  *   Arguments: un	- sd_lun structure for the device.
26442  *		startb - The starting block number
26443  *		endb - The end block number
26444  *		typ - type of i/o - simple/read_modify_write
26445  *
26446  * Return Code: wm  - pointer to the wmap structure.
26447  *
26448  *     Context: This routine can sleep.
26449  */
26450 
26451 static struct sd_w_map *
26452 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
26453 {
26454 	struct sd_w_map *wmp = NULL;
26455 	struct sd_w_map *sl_wmp = NULL;
26456 	struct sd_w_map *tmp_wmp;
26457 	wm_state state = SD_WM_CHK_LIST;
26458 
26459 
26460 	ASSERT(un != NULL);
26461 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26462 
26463 	mutex_enter(SD_MUTEX(un));
26464 
26465 	while (state != SD_WM_DONE) {
26466 
26467 		switch (state) {
26468 		case SD_WM_CHK_LIST:
26469 			/*
26470 			 * This is the starting state. Check the wmap list
26471 			 * to see if the range is currently available.
26472 			 */
26473 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
26474 				/*
26475 				 * If this is a simple write and no rmw
26476 				 * i/o is pending then try to lock the
26477 				 * range as the range should be available.
26478 				 */
26479 				state = SD_WM_LOCK_RANGE;
26480 			} else {
26481 				tmp_wmp = sd_get_range(un, startb, endb);
26482 				if (tmp_wmp != NULL) {
26483 					if ((wmp != NULL) && ONLIST(un, wmp)) {
26484 						/*
26485 						 * Should not keep onlist wmps
26486 						 * while waiting this macro
26487 						 * will also do wmp = NULL;
26488 						 */
26489 						FREE_ONLIST_WMAP(un, wmp);
26490 					}
26491 					/*
26492 					 * sl_wmp is the wmap on which wait
26493 					 * is done, since the tmp_wmp points
26494 					 * to the inuse wmap, set sl_wmp to
26495 					 * tmp_wmp and change the state to sleep
26496 					 */
26497 					sl_wmp = tmp_wmp;
26498 					state = SD_WM_WAIT_MAP;
26499 				} else {
26500 					state = SD_WM_LOCK_RANGE;
26501 				}
26502 
26503 			}
26504 			break;
26505 
26506 		case SD_WM_LOCK_RANGE:
26507 			ASSERT(un->un_wm_cache);
26508 			/*
26509 			 * The range need to be locked, try to get a wmap.
26510 			 * First attempt it with NO_SLEEP, want to avoid a sleep
26511 			 * if possible as we will have to release the sd mutex
26512 			 * if we have to sleep.
26513 			 */
26514 			if (wmp == NULL)
26515 				wmp = kmem_cache_alloc(un->un_wm_cache,
26516 				    KM_NOSLEEP);
26517 			if (wmp == NULL) {
26518 				mutex_exit(SD_MUTEX(un));
26519 				_NOTE(DATA_READABLE_WITHOUT_LOCK
26520 				    (sd_lun::un_wm_cache))
26521 				wmp = kmem_cache_alloc(un->un_wm_cache,
26522 				    KM_SLEEP);
26523 				mutex_enter(SD_MUTEX(un));
26524 				/*
26525 				 * we released the mutex so recheck and go to
26526 				 * check list state.
26527 				 */
26528 				state = SD_WM_CHK_LIST;
26529 			} else {
26530 				/*
26531 				 * We exit out of state machine since we
26532 				 * have the wmap. Do the housekeeping first.
26533 				 * place the wmap on the wmap list if it is not
26534 				 * on it already and then set the state to done.
26535 				 */
26536 				wmp->wm_start = startb;
26537 				wmp->wm_end = endb;
26538 				wmp->wm_flags = typ | SD_WM_BUSY;
26539 				if (typ & SD_WTYPE_RMW) {
26540 					un->un_rmw_count++;
26541 				}
26542 				/*
26543 				 * If not already on the list then link
26544 				 */
26545 				if (!ONLIST(un, wmp)) {
26546 					wmp->wm_next = un->un_wm;
26547 					wmp->wm_prev = NULL;
26548 					if (wmp->wm_next)
26549 						wmp->wm_next->wm_prev = wmp;
26550 					un->un_wm = wmp;
26551 				}
26552 				state = SD_WM_DONE;
26553 			}
26554 			break;
26555 
26556 		case SD_WM_WAIT_MAP:
26557 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
26558 			/*
26559 			 * Wait is done on sl_wmp, which is set in the
26560 			 * check_list state.
26561 			 */
26562 			sl_wmp->wm_wanted_count++;
26563 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
26564 			sl_wmp->wm_wanted_count--;
26565 			/*
26566 			 * We can reuse the memory from the completed sl_wmp
26567 			 * lock range for our new lock, but only if noone is
26568 			 * waiting for it.
26569 			 */
26570 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
26571 			if (sl_wmp->wm_wanted_count == 0) {
26572 				if (wmp != NULL)
26573 					CHK_N_FREEWMP(un, wmp);
26574 				wmp = sl_wmp;
26575 			}
26576 			sl_wmp = NULL;
26577 			/*
26578 			 * After waking up, need to recheck for availability of
26579 			 * range.
26580 			 */
26581 			state = SD_WM_CHK_LIST;
26582 			break;
26583 
26584 		default:
26585 			panic("sd_range_lock: "
26586 			    "Unknown state %d in sd_range_lock", state);
26587 			/*NOTREACHED*/
26588 		} /* switch(state) */
26589 
26590 	} /* while(state != SD_WM_DONE) */
26591 
26592 	mutex_exit(SD_MUTEX(un));
26593 
26594 	ASSERT(wmp != NULL);
26595 
26596 	return (wmp);
26597 }
26598 
26599 
26600 /*
26601  *    Function: sd_get_range()
26602  *
26603  * Description: Find if there any overlapping I/O to this one
26604  *		Returns the write-map of 1st such I/O, NULL otherwise.
26605  *
26606  *   Arguments: un	- sd_lun structure for the device.
26607  *		startb - The starting block number
26608  *		endb - The end block number
26609  *
26610  * Return Code: wm  - pointer to the wmap structure.
26611  */
26612 
26613 static struct sd_w_map *
26614 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
26615 {
26616 	struct sd_w_map *wmp;
26617 
26618 	ASSERT(un != NULL);
26619 
26620 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
26621 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
26622 			continue;
26623 		}
26624 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
26625 			break;
26626 		}
26627 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
26628 			break;
26629 		}
26630 	}
26631 
26632 	return (wmp);
26633 }
26634 
26635 
26636 /*
26637  *    Function: sd_free_inlist_wmap()
26638  *
26639  * Description: Unlink and free a write map struct.
26640  *
26641  *   Arguments: un      - sd_lun structure for the device.
26642  *		wmp	- sd_w_map which needs to be unlinked.
26643  */
26644 
26645 static void
26646 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
26647 {
26648 	ASSERT(un != NULL);
26649 
26650 	if (un->un_wm == wmp) {
26651 		un->un_wm = wmp->wm_next;
26652 	} else {
26653 		wmp->wm_prev->wm_next = wmp->wm_next;
26654 	}
26655 
26656 	if (wmp->wm_next) {
26657 		wmp->wm_next->wm_prev = wmp->wm_prev;
26658 	}
26659 
26660 	wmp->wm_next = wmp->wm_prev = NULL;
26661 
26662 	kmem_cache_free(un->un_wm_cache, wmp);
26663 }
26664 
26665 
26666 /*
26667  *    Function: sd_range_unlock()
26668  *
26669  * Description: Unlock the range locked by wm.
26670  *		Free write map if nobody else is waiting on it.
26671  *
26672  *   Arguments: un      - sd_lun structure for the device.
26673  *              wmp     - sd_w_map which needs to be unlinked.
26674  */
26675 
26676 static void
26677 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
26678 {
26679 	ASSERT(un != NULL);
26680 	ASSERT(wm != NULL);
26681 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26682 
26683 	mutex_enter(SD_MUTEX(un));
26684 
26685 	if (wm->wm_flags & SD_WTYPE_RMW) {
26686 		un->un_rmw_count--;
26687 	}
26688 
26689 	if (wm->wm_wanted_count) {
26690 		wm->wm_flags = 0;
26691 		/*
26692 		 * Broadcast that the wmap is available now.
26693 		 */
26694 		cv_broadcast(&wm->wm_avail);
26695 	} else {
26696 		/*
26697 		 * If no one is waiting on the map, it should be free'ed.
26698 		 */
26699 		sd_free_inlist_wmap(un, wm);
26700 	}
26701 
26702 	mutex_exit(SD_MUTEX(un));
26703 }
26704 
26705 
26706 /*
26707  *    Function: sd_read_modify_write_task
26708  *
26709  * Description: Called from a taskq thread to initiate the write phase of
26710  *		a read-modify-write request.  This is used for targets where
26711  *		un->un_sys_blocksize != un->un_tgt_blocksize.
26712  *
26713  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
26714  *
26715  *     Context: Called under taskq thread context.
26716  */
26717 
26718 static void
26719 sd_read_modify_write_task(void *arg)
26720 {
26721 	struct sd_mapblocksize_info	*bsp;
26722 	struct buf	*bp;
26723 	struct sd_xbuf	*xp;
26724 	struct sd_lun	*un;
26725 
26726 	bp = arg;	/* The bp is given in arg */
26727 	ASSERT(bp != NULL);
26728 
26729 	/* Get the pointer to the layer-private data struct */
26730 	xp = SD_GET_XBUF(bp);
26731 	ASSERT(xp != NULL);
26732 	bsp = xp->xb_private;
26733 	ASSERT(bsp != NULL);
26734 
26735 	un = SD_GET_UN(bp);
26736 	ASSERT(un != NULL);
26737 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26738 
26739 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26740 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
26741 
26742 	/*
26743 	 * This is the write phase of a read-modify-write request, called
26744 	 * under the context of a taskq thread in response to the completion
26745 	 * of the read portion of the rmw request completing under interrupt
26746 	 * context. The write request must be sent from here down the iostart
26747 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
26748 	 * we use the layer index saved in the layer-private data area.
26749 	 */
26750 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
26751 
26752 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26753 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
26754 }
26755 
26756 
26757 /*
26758  *    Function: sddump_do_read_of_rmw()
26759  *
26760  * Description: This routine will be called from sddump, If sddump is called
26761  *		with an I/O which not aligned on device blocksize boundary
26762  *		then the write has to be converted to read-modify-write.
26763  *		Do the read part here in order to keep sddump simple.
26764  *		Note - That the sd_mutex is held across the call to this
26765  *		routine.
26766  *
26767  *   Arguments: un	- sd_lun
26768  *		blkno	- block number in terms of media block size.
26769  *		nblk	- number of blocks.
26770  *		bpp	- pointer to pointer to the buf structure. On return
26771  *			from this function, *bpp points to the valid buffer
26772  *			to which the write has to be done.
26773  *
26774  * Return Code: 0 for success or errno-type return code
26775  */
26776 
26777 static int
26778 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
26779 	struct buf **bpp)
26780 {
26781 	int err;
26782 	int i;
26783 	int rval;
26784 	struct buf *bp;
26785 	struct scsi_pkt *pkt = NULL;
26786 	uint32_t target_blocksize;
26787 
26788 	ASSERT(un != NULL);
26789 	ASSERT(mutex_owned(SD_MUTEX(un)));
26790 
26791 	target_blocksize = un->un_tgt_blocksize;
26792 
26793 	mutex_exit(SD_MUTEX(un));
26794 
26795 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
26796 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
26797 	if (bp == NULL) {
26798 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26799 		    "no resources for dumping; giving up");
26800 		err = ENOMEM;
26801 		goto done;
26802 	}
26803 
26804 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
26805 	    blkno, nblk);
26806 	if (rval != 0) {
26807 		scsi_free_consistent_buf(bp);
26808 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26809 		    "no resources for dumping; giving up");
26810 		err = ENOMEM;
26811 		goto done;
26812 	}
26813 
26814 	pkt->pkt_flags |= FLAG_NOINTR;
26815 
26816 	err = EIO;
26817 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26818 
26819 		/*
26820 		 * Scsi_poll returns 0 (success) if the command completes and
26821 		 * the status block is STATUS_GOOD.  We should only check
26822 		 * errors if this condition is not true.  Even then we should
26823 		 * send our own request sense packet only if we have a check
26824 		 * condition and auto request sense has not been performed by
26825 		 * the hba.
26826 		 */
26827 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
26828 
26829 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
26830 			err = 0;
26831 			break;
26832 		}
26833 
26834 		/*
26835 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
26836 		 * no need to read RQS data.
26837 		 */
26838 		if (pkt->pkt_reason == CMD_DEV_GONE) {
26839 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26840 			    "Error while dumping state with rmw..."
26841 			    "Device is gone\n");
26842 			break;
26843 		}
26844 
26845 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
26846 			SD_INFO(SD_LOG_DUMP, un,
26847 			    "sddump: read failed with CHECK, try # %d\n", i);
26848 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
26849 				(void) sd_send_polled_RQS(un);
26850 			}
26851 
26852 			continue;
26853 		}
26854 
26855 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
26856 			int reset_retval = 0;
26857 
26858 			SD_INFO(SD_LOG_DUMP, un,
26859 			    "sddump: read failed with BUSY, try # %d\n", i);
26860 
26861 			if (un->un_f_lun_reset_enabled == TRUE) {
26862 				reset_retval = scsi_reset(SD_ADDRESS(un),
26863 				    RESET_LUN);
26864 			}
26865 			if (reset_retval == 0) {
26866 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26867 			}
26868 			(void) sd_send_polled_RQS(un);
26869 
26870 		} else {
26871 			SD_INFO(SD_LOG_DUMP, un,
26872 			    "sddump: read failed with 0x%x, try # %d\n",
26873 			    SD_GET_PKT_STATUS(pkt), i);
26874 			mutex_enter(SD_MUTEX(un));
26875 			sd_reset_target(un, pkt);
26876 			mutex_exit(SD_MUTEX(un));
26877 		}
26878 
26879 		/*
26880 		 * If we are not getting anywhere with lun/target resets,
26881 		 * let's reset the bus.
26882 		 */
26883 		if (i > SD_NDUMP_RETRIES/2) {
26884 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26885 			(void) sd_send_polled_RQS(un);
26886 		}
26887 
26888 	}
26889 	scsi_destroy_pkt(pkt);
26890 
26891 	if (err != 0) {
26892 		scsi_free_consistent_buf(bp);
26893 		*bpp = NULL;
26894 	} else {
26895 		*bpp = bp;
26896 	}
26897 
26898 done:
26899 	mutex_enter(SD_MUTEX(un));
26900 	return (err);
26901 }
26902 
26903 
26904 /*
26905  *    Function: sd_failfast_flushq
26906  *
26907  * Description: Take all bp's on the wait queue that have B_FAILFAST set
26908  *		in b_flags and move them onto the failfast queue, then kick
26909  *		off a thread to return all bp's on the failfast queue to
26910  *		their owners with an error set.
26911  *
26912  *   Arguments: un - pointer to the soft state struct for the instance.
26913  *
26914  *     Context: may execute in interrupt context.
26915  */
26916 
26917 static void
26918 sd_failfast_flushq(struct sd_lun *un)
26919 {
26920 	struct buf *bp;
26921 	struct buf *next_waitq_bp;
26922 	struct buf *prev_waitq_bp = NULL;
26923 
26924 	ASSERT(un != NULL);
26925 	ASSERT(mutex_owned(SD_MUTEX(un)));
26926 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
26927 	ASSERT(un->un_failfast_bp == NULL);
26928 
26929 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26930 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
26931 
26932 	/*
26933 	 * Check if we should flush all bufs when entering failfast state, or
26934 	 * just those with B_FAILFAST set.
26935 	 */
26936 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
26937 		/*
26938 		 * Move *all* bp's on the wait queue to the failfast flush
26939 		 * queue, including those that do NOT have B_FAILFAST set.
26940 		 */
26941 		if (un->un_failfast_headp == NULL) {
26942 			ASSERT(un->un_failfast_tailp == NULL);
26943 			un->un_failfast_headp = un->un_waitq_headp;
26944 		} else {
26945 			ASSERT(un->un_failfast_tailp != NULL);
26946 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
26947 		}
26948 
26949 		un->un_failfast_tailp = un->un_waitq_tailp;
26950 
26951 		/* update kstat for each bp moved out of the waitq */
26952 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
26953 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26954 		}
26955 
26956 		/* empty the waitq */
26957 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
26958 
26959 	} else {
26960 		/*
26961 		 * Go thru the wait queue, pick off all entries with
26962 		 * B_FAILFAST set, and move these onto the failfast queue.
26963 		 */
26964 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
26965 			/*
26966 			 * Save the pointer to the next bp on the wait queue,
26967 			 * so we get to it on the next iteration of this loop.
26968 			 */
26969 			next_waitq_bp = bp->av_forw;
26970 
26971 			/*
26972 			 * If this bp from the wait queue does NOT have
26973 			 * B_FAILFAST set, just move on to the next element
26974 			 * in the wait queue. Note, this is the only place
26975 			 * where it is correct to set prev_waitq_bp.
26976 			 */
26977 			if ((bp->b_flags & B_FAILFAST) == 0) {
26978 				prev_waitq_bp = bp;
26979 				continue;
26980 			}
26981 
26982 			/*
26983 			 * Remove the bp from the wait queue.
26984 			 */
26985 			if (bp == un->un_waitq_headp) {
26986 				/* The bp is the first element of the waitq. */
26987 				un->un_waitq_headp = next_waitq_bp;
26988 				if (un->un_waitq_headp == NULL) {
26989 					/* The wait queue is now empty */
26990 					un->un_waitq_tailp = NULL;
26991 				}
26992 			} else {
26993 				/*
26994 				 * The bp is either somewhere in the middle
26995 				 * or at the end of the wait queue.
26996 				 */
26997 				ASSERT(un->un_waitq_headp != NULL);
26998 				ASSERT(prev_waitq_bp != NULL);
26999 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
27000 				    == 0);
27001 				if (bp == un->un_waitq_tailp) {
27002 					/* bp is the last entry on the waitq. */
27003 					ASSERT(next_waitq_bp == NULL);
27004 					un->un_waitq_tailp = prev_waitq_bp;
27005 				}
27006 				prev_waitq_bp->av_forw = next_waitq_bp;
27007 			}
27008 			bp->av_forw = NULL;
27009 
27010 			/*
27011 			 * update kstat since the bp is moved out of
27012 			 * the waitq
27013 			 */
27014 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
27015 
27016 			/*
27017 			 * Now put the bp onto the failfast queue.
27018 			 */
27019 			if (un->un_failfast_headp == NULL) {
27020 				/* failfast queue is currently empty */
27021 				ASSERT(un->un_failfast_tailp == NULL);
27022 				un->un_failfast_headp =
27023 				    un->un_failfast_tailp = bp;
27024 			} else {
27025 				/* Add the bp to the end of the failfast q */
27026 				ASSERT(un->un_failfast_tailp != NULL);
27027 				ASSERT(un->un_failfast_tailp->b_flags &
27028 				    B_FAILFAST);
27029 				un->un_failfast_tailp->av_forw = bp;
27030 				un->un_failfast_tailp = bp;
27031 			}
27032 		}
27033 	}
27034 
27035 	/*
27036 	 * Now return all bp's on the failfast queue to their owners.
27037 	 */
27038 	while ((bp = un->un_failfast_headp) != NULL) {
27039 
27040 		un->un_failfast_headp = bp->av_forw;
27041 		if (un->un_failfast_headp == NULL) {
27042 			un->un_failfast_tailp = NULL;
27043 		}
27044 
27045 		/*
27046 		 * We want to return the bp with a failure error code, but
27047 		 * we do not want a call to sd_start_cmds() to occur here,
27048 		 * so use sd_return_failed_command_no_restart() instead of
27049 		 * sd_return_failed_command().
27050 		 */
27051 		sd_return_failed_command_no_restart(un, bp, EIO);
27052 	}
27053 
27054 	/* Flush the xbuf queues if required. */
27055 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
27056 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
27057 	}
27058 
27059 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
27060 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
27061 }
27062 
27063 
27064 /*
27065  *    Function: sd_failfast_flushq_callback
27066  *
27067  * Description: Return TRUE if the given bp meets the criteria for failfast
27068  *		flushing. Used with ddi_xbuf_flushq(9F).
27069  *
27070  *   Arguments: bp - ptr to buf struct to be examined.
27071  *
27072  *     Context: Any
27073  */
27074 
27075 static int
27076 sd_failfast_flushq_callback(struct buf *bp)
27077 {
27078 	/*
27079 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
27080 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
27081 	 */
27082 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
27083 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
27084 }
27085 
27086 
27087 
27088 /*
27089  * Function: sd_setup_next_xfer
27090  *
27091  * Description: Prepare next I/O operation using DMA_PARTIAL
27092  *
27093  */
27094 
27095 static int
27096 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
27097     struct scsi_pkt *pkt, struct sd_xbuf *xp)
27098 {
27099 	ssize_t	num_blks_not_xfered;
27100 	daddr_t	strt_blk_num;
27101 	ssize_t	bytes_not_xfered;
27102 	int	rval;
27103 
27104 	ASSERT(pkt->pkt_resid == 0);
27105 
27106 	/*
27107 	 * Calculate next block number and amount to be transferred.
27108 	 *
27109 	 * How much data NOT transfered to the HBA yet.
27110 	 */
27111 	bytes_not_xfered = xp->xb_dma_resid;
27112 
27113 	/*
27114 	 * figure how many blocks NOT transfered to the HBA yet.
27115 	 */
27116 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
27117 
27118 	/*
27119 	 * set starting block number to the end of what WAS transfered.
27120 	 */
27121 	strt_blk_num = xp->xb_blkno +
27122 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
27123 
27124 	/*
27125 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
27126 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
27127 	 * the disk mutex here.
27128 	 */
27129 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
27130 	    strt_blk_num, num_blks_not_xfered);
27131 
27132 	if (rval == 0) {
27133 
27134 		/*
27135 		 * Success.
27136 		 *
27137 		 * Adjust things if there are still more blocks to be
27138 		 * transfered.
27139 		 */
27140 		xp->xb_dma_resid = pkt->pkt_resid;
27141 		pkt->pkt_resid = 0;
27142 
27143 		return (1);
27144 	}
27145 
27146 	/*
27147 	 * There's really only one possible return value from
27148 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
27149 	 * returns NULL.
27150 	 */
27151 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
27152 
27153 	bp->b_resid = bp->b_bcount;
27154 	bp->b_flags |= B_ERROR;
27155 
27156 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27157 	    "Error setting up next portion of DMA transfer\n");
27158 
27159 	return (0);
27160 }
27161 
27162 /*
27163  *    Function: sd_panic_for_res_conflict
27164  *
27165  * Description: Call panic with a string formatted with "Reservation Conflict"
27166  *		and a human readable identifier indicating the SD instance
27167  *		that experienced the reservation conflict.
27168  *
27169  *   Arguments: un - pointer to the soft state struct for the instance.
27170  *
27171  *     Context: may execute in interrupt context.
27172  */
27173 
27174 #define	SD_RESV_CONFLICT_FMT_LEN 40
27175 void
27176 sd_panic_for_res_conflict(struct sd_lun *un)
27177 {
27178 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
27179 	char path_str[MAXPATHLEN];
27180 
27181 	(void) snprintf(panic_str, sizeof (panic_str),
27182 	    "Reservation Conflict\nDisk: %s",
27183 	    ddi_pathname(SD_DEVINFO(un), path_str));
27184 
27185 	panic(panic_str);
27186 }
27187 
27188 /*
27189  * Note: The following sd_faultinjection_ioctl( ) routines implement
27190  * driver support for handling fault injection for error analysis
27191  * causing faults in multiple layers of the driver.
27192  *
27193  */
27194 
27195 #ifdef SD_FAULT_INJECTION
27196 static uint_t   sd_fault_injection_on = 0;
27197 
27198 /*
27199  *    Function: sd_faultinjection_ioctl()
27200  *
27201  * Description: This routine is the driver entry point for handling
27202  *              faultinjection ioctls to inject errors into the
27203  *              layer model
27204  *
27205  *   Arguments: cmd	- the ioctl cmd received
27206  *		arg	- the arguments from user and returns
27207  */
27208 
27209 static void
27210 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
27211 
27212 	uint_t i;
27213 	uint_t rval;
27214 
27215 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
27216 
27217 	mutex_enter(SD_MUTEX(un));
27218 
27219 	switch (cmd) {
27220 	case SDIOCRUN:
27221 		/* Allow pushed faults to be injected */
27222 		SD_INFO(SD_LOG_SDTEST, un,
27223 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
27224 
27225 		sd_fault_injection_on = 1;
27226 
27227 		SD_INFO(SD_LOG_IOERR, un,
27228 		    "sd_faultinjection_ioctl: run finished\n");
27229 		break;
27230 
27231 	case SDIOCSTART:
27232 		/* Start Injection Session */
27233 		SD_INFO(SD_LOG_SDTEST, un,
27234 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
27235 
27236 		sd_fault_injection_on = 0;
27237 		un->sd_injection_mask = 0xFFFFFFFF;
27238 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
27239 			un->sd_fi_fifo_pkt[i] = NULL;
27240 			un->sd_fi_fifo_xb[i] = NULL;
27241 			un->sd_fi_fifo_un[i] = NULL;
27242 			un->sd_fi_fifo_arq[i] = NULL;
27243 		}
27244 		un->sd_fi_fifo_start = 0;
27245 		un->sd_fi_fifo_end = 0;
27246 
27247 		mutex_enter(&(un->un_fi_mutex));
27248 		un->sd_fi_log[0] = '\0';
27249 		un->sd_fi_buf_len = 0;
27250 		mutex_exit(&(un->un_fi_mutex));
27251 
27252 		SD_INFO(SD_LOG_IOERR, un,
27253 		    "sd_faultinjection_ioctl: start finished\n");
27254 		break;
27255 
27256 	case SDIOCSTOP:
27257 		/* Stop Injection Session */
27258 		SD_INFO(SD_LOG_SDTEST, un,
27259 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
27260 		sd_fault_injection_on = 0;
27261 		un->sd_injection_mask = 0x0;
27262 
27263 		/* Empty stray or unuseds structs from fifo */
27264 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
27265 			if (un->sd_fi_fifo_pkt[i] != NULL) {
27266 				kmem_free(un->sd_fi_fifo_pkt[i],
27267 				    sizeof (struct sd_fi_pkt));
27268 			}
27269 			if (un->sd_fi_fifo_xb[i] != NULL) {
27270 				kmem_free(un->sd_fi_fifo_xb[i],
27271 				    sizeof (struct sd_fi_xb));
27272 			}
27273 			if (un->sd_fi_fifo_un[i] != NULL) {
27274 				kmem_free(un->sd_fi_fifo_un[i],
27275 				    sizeof (struct sd_fi_un));
27276 			}
27277 			if (un->sd_fi_fifo_arq[i] != NULL) {
27278 				kmem_free(un->sd_fi_fifo_arq[i],
27279 				    sizeof (struct sd_fi_arq));
27280 			}
27281 			un->sd_fi_fifo_pkt[i] = NULL;
27282 			un->sd_fi_fifo_un[i] = NULL;
27283 			un->sd_fi_fifo_xb[i] = NULL;
27284 			un->sd_fi_fifo_arq[i] = NULL;
27285 		}
27286 		un->sd_fi_fifo_start = 0;
27287 		un->sd_fi_fifo_end = 0;
27288 
27289 		SD_INFO(SD_LOG_IOERR, un,
27290 		    "sd_faultinjection_ioctl: stop finished\n");
27291 		break;
27292 
27293 	case SDIOCINSERTPKT:
27294 		/* Store a packet struct to be pushed onto fifo */
27295 		SD_INFO(SD_LOG_SDTEST, un,
27296 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
27297 
27298 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27299 
27300 		sd_fault_injection_on = 0;
27301 
27302 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
27303 		if (un->sd_fi_fifo_pkt[i] != NULL) {
27304 			kmem_free(un->sd_fi_fifo_pkt[i],
27305 			    sizeof (struct sd_fi_pkt));
27306 		}
27307 		if (arg != NULL) {
27308 			un->sd_fi_fifo_pkt[i] =
27309 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
27310 			if (un->sd_fi_fifo_pkt[i] == NULL) {
27311 				/* Alloc failed don't store anything */
27312 				break;
27313 			}
27314 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
27315 			    sizeof (struct sd_fi_pkt), 0);
27316 			if (rval == -1) {
27317 				kmem_free(un->sd_fi_fifo_pkt[i],
27318 				    sizeof (struct sd_fi_pkt));
27319 				un->sd_fi_fifo_pkt[i] = NULL;
27320 			}
27321 		} else {
27322 			SD_INFO(SD_LOG_IOERR, un,
27323 			    "sd_faultinjection_ioctl: pkt null\n");
27324 		}
27325 		break;
27326 
27327 	case SDIOCINSERTXB:
27328 		/* Store a xb struct to be pushed onto fifo */
27329 		SD_INFO(SD_LOG_SDTEST, un,
27330 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
27331 
27332 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27333 
27334 		sd_fault_injection_on = 0;
27335 
27336 		if (un->sd_fi_fifo_xb[i] != NULL) {
27337 			kmem_free(un->sd_fi_fifo_xb[i],
27338 			    sizeof (struct sd_fi_xb));
27339 			un->sd_fi_fifo_xb[i] = NULL;
27340 		}
27341 		if (arg != NULL) {
27342 			un->sd_fi_fifo_xb[i] =
27343 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
27344 			if (un->sd_fi_fifo_xb[i] == NULL) {
27345 				/* Alloc failed don't store anything */
27346 				break;
27347 			}
27348 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
27349 			    sizeof (struct sd_fi_xb), 0);
27350 
27351 			if (rval == -1) {
27352 				kmem_free(un->sd_fi_fifo_xb[i],
27353 				    sizeof (struct sd_fi_xb));
27354 				un->sd_fi_fifo_xb[i] = NULL;
27355 			}
27356 		} else {
27357 			SD_INFO(SD_LOG_IOERR, un,
27358 			    "sd_faultinjection_ioctl: xb null\n");
27359 		}
27360 		break;
27361 
27362 	case SDIOCINSERTUN:
27363 		/* Store a un struct to be pushed onto fifo */
27364 		SD_INFO(SD_LOG_SDTEST, un,
27365 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
27366 
27367 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27368 
27369 		sd_fault_injection_on = 0;
27370 
27371 		if (un->sd_fi_fifo_un[i] != NULL) {
27372 			kmem_free(un->sd_fi_fifo_un[i],
27373 			    sizeof (struct sd_fi_un));
27374 			un->sd_fi_fifo_un[i] = NULL;
27375 		}
27376 		if (arg != NULL) {
27377 			un->sd_fi_fifo_un[i] =
27378 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
27379 			if (un->sd_fi_fifo_un[i] == NULL) {
27380 				/* Alloc failed don't store anything */
27381 				break;
27382 			}
27383 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
27384 			    sizeof (struct sd_fi_un), 0);
27385 			if (rval == -1) {
27386 				kmem_free(un->sd_fi_fifo_un[i],
27387 				    sizeof (struct sd_fi_un));
27388 				un->sd_fi_fifo_un[i] = NULL;
27389 			}
27390 
27391 		} else {
27392 			SD_INFO(SD_LOG_IOERR, un,
27393 			    "sd_faultinjection_ioctl: un null\n");
27394 		}
27395 
27396 		break;
27397 
27398 	case SDIOCINSERTARQ:
27399 		/* Store a arq struct to be pushed onto fifo */
27400 		SD_INFO(SD_LOG_SDTEST, un,
27401 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
27402 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27403 
27404 		sd_fault_injection_on = 0;
27405 
27406 		if (un->sd_fi_fifo_arq[i] != NULL) {
27407 			kmem_free(un->sd_fi_fifo_arq[i],
27408 			    sizeof (struct sd_fi_arq));
27409 			un->sd_fi_fifo_arq[i] = NULL;
27410 		}
27411 		if (arg != NULL) {
27412 			un->sd_fi_fifo_arq[i] =
27413 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
27414 			if (un->sd_fi_fifo_arq[i] == NULL) {
27415 				/* Alloc failed don't store anything */
27416 				break;
27417 			}
27418 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
27419 			    sizeof (struct sd_fi_arq), 0);
27420 			if (rval == -1) {
27421 				kmem_free(un->sd_fi_fifo_arq[i],
27422 				    sizeof (struct sd_fi_arq));
27423 				un->sd_fi_fifo_arq[i] = NULL;
27424 			}
27425 
27426 		} else {
27427 			SD_INFO(SD_LOG_IOERR, un,
27428 			    "sd_faultinjection_ioctl: arq null\n");
27429 		}
27430 
27431 		break;
27432 
27433 	case SDIOCPUSH:
27434 		/* Push stored xb, pkt, un, and arq onto fifo */
27435 		sd_fault_injection_on = 0;
27436 
27437 		if (arg != NULL) {
27438 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
27439 			if (rval != -1 &&
27440 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
27441 				un->sd_fi_fifo_end += i;
27442 			}
27443 		} else {
27444 			SD_INFO(SD_LOG_IOERR, un,
27445 			    "sd_faultinjection_ioctl: push arg null\n");
27446 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
27447 				un->sd_fi_fifo_end++;
27448 			}
27449 		}
27450 		SD_INFO(SD_LOG_IOERR, un,
27451 		    "sd_faultinjection_ioctl: push to end=%d\n",
27452 		    un->sd_fi_fifo_end);
27453 		break;
27454 
27455 	case SDIOCRETRIEVE:
27456 		/* Return buffer of log from Injection session */
27457 		SD_INFO(SD_LOG_SDTEST, un,
27458 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
27459 
27460 		sd_fault_injection_on = 0;
27461 
27462 		mutex_enter(&(un->un_fi_mutex));
27463 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
27464 		    un->sd_fi_buf_len+1, 0);
27465 		mutex_exit(&(un->un_fi_mutex));
27466 
27467 		if (rval == -1) {
27468 			/*
27469 			 * arg is possibly invalid setting
27470 			 * it to NULL for return
27471 			 */
27472 			arg = NULL;
27473 		}
27474 		break;
27475 	}
27476 
27477 	mutex_exit(SD_MUTEX(un));
27478 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
27479 			    " exit\n");
27480 }
27481 
27482 
27483 /*
27484  *    Function: sd_injection_log()
27485  *
27486  * Description: This routine adds buff to the already existing injection log
27487  *              for retrieval via faultinjection_ioctl for use in fault
27488  *              detection and recovery
27489  *
27490  *   Arguments: buf - the string to add to the log
27491  */
27492 
27493 static void
27494 sd_injection_log(char *buf, struct sd_lun *un)
27495 {
27496 	uint_t len;
27497 
27498 	ASSERT(un != NULL);
27499 	ASSERT(buf != NULL);
27500 
27501 	mutex_enter(&(un->un_fi_mutex));
27502 
27503 	len = min(strlen(buf), 255);
27504 	/* Add logged value to Injection log to be returned later */
27505 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
27506 		uint_t	offset = strlen((char *)un->sd_fi_log);
27507 		char *destp = (char *)un->sd_fi_log + offset;
27508 		int i;
27509 		for (i = 0; i < len; i++) {
27510 			*destp++ = *buf++;
27511 		}
27512 		un->sd_fi_buf_len += len;
27513 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
27514 	}
27515 
27516 	mutex_exit(&(un->un_fi_mutex));
27517 }
27518 
27519 
27520 /*
27521  *    Function: sd_faultinjection()
27522  *
27523  * Description: This routine takes the pkt and changes its
27524  *		content based on error injection scenerio.
27525  *
27526  *   Arguments: pktp	- packet to be changed
27527  */
27528 
27529 static void
27530 sd_faultinjection(struct scsi_pkt *pktp)
27531 {
27532 	uint_t i;
27533 	struct sd_fi_pkt *fi_pkt;
27534 	struct sd_fi_xb *fi_xb;
27535 	struct sd_fi_un *fi_un;
27536 	struct sd_fi_arq *fi_arq;
27537 	struct buf *bp;
27538 	struct sd_xbuf *xb;
27539 	struct sd_lun *un;
27540 
27541 	ASSERT(pktp != NULL);
27542 
27543 	/* pull bp xb and un from pktp */
27544 	bp = (struct buf *)pktp->pkt_private;
27545 	xb = SD_GET_XBUF(bp);
27546 	un = SD_GET_UN(bp);
27547 
27548 	ASSERT(un != NULL);
27549 
27550 	mutex_enter(SD_MUTEX(un));
27551 
27552 	SD_TRACE(SD_LOG_SDTEST, un,
27553 	    "sd_faultinjection: entry Injection from sdintr\n");
27554 
27555 	/* if injection is off return */
27556 	if (sd_fault_injection_on == 0 ||
27557 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
27558 		mutex_exit(SD_MUTEX(un));
27559 		return;
27560 	}
27561 
27562 
27563 	/* take next set off fifo */
27564 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
27565 
27566 	fi_pkt = un->sd_fi_fifo_pkt[i];
27567 	fi_xb = un->sd_fi_fifo_xb[i];
27568 	fi_un = un->sd_fi_fifo_un[i];
27569 	fi_arq = un->sd_fi_fifo_arq[i];
27570 
27571 
27572 	/* set variables accordingly */
27573 	/* set pkt if it was on fifo */
27574 	if (fi_pkt != NULL) {
27575 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
27576 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
27577 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
27578 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
27579 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
27580 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
27581 
27582 	}
27583 
27584 	/* set xb if it was on fifo */
27585 	if (fi_xb != NULL) {
27586 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
27587 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
27588 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
27589 		SD_CONDSET(xb, xb, xb_victim_retry_count,
27590 		    "xb_victim_retry_count");
27591 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
27592 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
27593 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
27594 
27595 		/* copy in block data from sense */
27596 		if (fi_xb->xb_sense_data[0] != -1) {
27597 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
27598 			    SENSE_LENGTH);
27599 		}
27600 
27601 		/* copy in extended sense codes */
27602 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
27603 		    "es_code");
27604 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
27605 		    "es_key");
27606 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
27607 		    "es_add_code");
27608 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
27609 		    es_qual_code, "es_qual_code");
27610 	}
27611 
27612 	/* set un if it was on fifo */
27613 	if (fi_un != NULL) {
27614 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
27615 		SD_CONDSET(un, un, un_ctype, "un_ctype");
27616 		SD_CONDSET(un, un, un_reset_retry_count,
27617 		    "un_reset_retry_count");
27618 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
27619 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
27620 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
27621 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
27622 		    "un_f_allow_bus_device_reset");
27623 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
27624 
27625 	}
27626 
27627 	/* copy in auto request sense if it was on fifo */
27628 	if (fi_arq != NULL) {
27629 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
27630 	}
27631 
27632 	/* free structs */
27633 	if (un->sd_fi_fifo_pkt[i] != NULL) {
27634 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
27635 	}
27636 	if (un->sd_fi_fifo_xb[i] != NULL) {
27637 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
27638 	}
27639 	if (un->sd_fi_fifo_un[i] != NULL) {
27640 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
27641 	}
27642 	if (un->sd_fi_fifo_arq[i] != NULL) {
27643 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
27644 	}
27645 
27646 	/*
27647 	 * kmem_free does not gurantee to set to NULL
27648 	 * since we uses these to determine if we set
27649 	 * values or not lets confirm they are always
27650 	 * NULL after free
27651 	 */
27652 	un->sd_fi_fifo_pkt[i] = NULL;
27653 	un->sd_fi_fifo_un[i] = NULL;
27654 	un->sd_fi_fifo_xb[i] = NULL;
27655 	un->sd_fi_fifo_arq[i] = NULL;
27656 
27657 	un->sd_fi_fifo_start++;
27658 
27659 	mutex_exit(SD_MUTEX(un));
27660 
27661 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
27662 }
27663 
27664 #endif /* SD_FAULT_INJECTION */
27665 
27666 /*
27667  * This routine is invoked in sd_unit_attach(). Before calling it, the
27668  * properties in conf file should be processed already, and "hotpluggable"
27669  * property was processed also.
27670  *
27671  * The sd driver distinguishes 3 different type of devices: removable media,
27672  * non-removable media, and hotpluggable. Below the differences are defined:
27673  *
27674  * 1. Device ID
27675  *
27676  *     The device ID of a device is used to identify this device. Refer to
27677  *     ddi_devid_register(9F).
27678  *
27679  *     For a non-removable media disk device which can provide 0x80 or 0x83
27680  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
27681  *     device ID is created to identify this device. For other non-removable
27682  *     media devices, a default device ID is created only if this device has
27683  *     at least 2 alter cylinders. Otherwise, this device has no devid.
27684  *
27685  *     -------------------------------------------------------
27686  *     removable media   hotpluggable  | Can Have Device ID
27687  *     -------------------------------------------------------
27688  *         false             false     |     Yes
27689  *         false             true      |     Yes
27690  *         true                x       |     No
27691  *     ------------------------------------------------------
27692  *
27693  *
27694  * 2. SCSI group 4 commands
27695  *
27696  *     In SCSI specs, only some commands in group 4 command set can use
27697  *     8-byte addresses that can be used to access >2TB storage spaces.
27698  *     Other commands have no such capability. Without supporting group4,
27699  *     it is impossible to make full use of storage spaces of a disk with
27700  *     capacity larger than 2TB.
27701  *
27702  *     -----------------------------------------------
27703  *     removable media   hotpluggable   LP64  |  Group
27704  *     -----------------------------------------------
27705  *           false          false       false |   1
27706  *           false          false       true  |   4
27707  *           false          true        false |   1
27708  *           false          true        true  |   4
27709  *           true             x           x   |   5
27710  *     -----------------------------------------------
27711  *
27712  *
27713  * 3. Check for VTOC Label
27714  *
27715  *     If a direct-access disk has no EFI label, sd will check if it has a
27716  *     valid VTOC label. Now, sd also does that check for removable media
27717  *     and hotpluggable devices.
27718  *
27719  *     --------------------------------------------------------------
27720  *     Direct-Access   removable media    hotpluggable |  Check Label
27721  *     -------------------------------------------------------------
27722  *         false          false           false        |   No
27723  *         false          false           true         |   No
27724  *         false          true            false        |   Yes
27725  *         false          true            true         |   Yes
27726  *         true            x                x          |   Yes
27727  *     --------------------------------------------------------------
27728  *
27729  *
27730  * 4. Building default VTOC label
27731  *
27732  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
27733  *     If those devices have no valid VTOC label, sd(7d) will attempt to
27734  *     create default VTOC for them. Currently sd creates default VTOC label
27735  *     for all devices on x86 platform (VTOC_16), but only for removable
27736  *     media devices on SPARC (VTOC_8).
27737  *
27738  *     -----------------------------------------------------------
27739  *       removable media hotpluggable platform   |   Default Label
27740  *     -----------------------------------------------------------
27741  *             false          false    sparc     |     No
27742  *             false          true      x86      |     Yes
27743  *             false          true     sparc     |     Yes
27744  *             true             x        x       |     Yes
27745  *     ----------------------------------------------------------
27746  *
27747  *
27748  * 5. Supported blocksizes of target devices
27749  *
27750  *     Sd supports non-512-byte blocksize for removable media devices only.
27751  *     For other devices, only 512-byte blocksize is supported. This may be
27752  *     changed in near future because some RAID devices require non-512-byte
27753  *     blocksize
27754  *
27755  *     -----------------------------------------------------------
27756  *     removable media    hotpluggable    | non-512-byte blocksize
27757  *     -----------------------------------------------------------
27758  *           false          false         |   No
27759  *           false          true          |   No
27760  *           true             x           |   Yes
27761  *     -----------------------------------------------------------
27762  *
27763  *
27764  * 6. Automatic mount & unmount
27765  *
27766  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
27767  *     if a device is removable media device. It return 1 for removable media
27768  *     devices, and 0 for others.
27769  *
27770  *     The automatic mounting subsystem should distinguish between the types
27771  *     of devices and apply automounting policies to each.
27772  *
27773  *
27774  * 7. fdisk partition management
27775  *
27776  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
27777  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
27778  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
27779  *     fdisk partitions on both x86 and SPARC platform.
27780  *
27781  *     -----------------------------------------------------------
27782  *       platform   removable media  USB/1394  |  fdisk supported
27783  *     -----------------------------------------------------------
27784  *        x86         X               X        |       true
27785  *     ------------------------------------------------------------
27786  *        sparc       X               X        |       false
27787  *     ------------------------------------------------------------
27788  *
27789  *
27790  * 8. MBOOT/MBR
27791  *
27792  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
27793  *     read/write mboot for removable media devices on sparc platform.
27794  *
27795  *     -----------------------------------------------------------
27796  *       platform   removable media  USB/1394  |  mboot supported
27797  *     -----------------------------------------------------------
27798  *        x86         X               X        |       true
27799  *     ------------------------------------------------------------
27800  *        sparc      false           false     |       false
27801  *        sparc      false           true      |       true
27802  *        sparc      true            false     |       true
27803  *        sparc      true            true      |       true
27804  *     ------------------------------------------------------------
27805  *
27806  *
27807  * 9.  error handling during opening device
27808  *
27809  *     If failed to open a disk device, an errno is returned. For some kinds
27810  *     of errors, different errno is returned depending on if this device is
27811  *     a removable media device. This brings USB/1394 hard disks in line with
27812  *     expected hard disk behavior. It is not expected that this breaks any
27813  *     application.
27814  *
27815  *     ------------------------------------------------------
27816  *       removable media    hotpluggable   |  errno
27817  *     ------------------------------------------------------
27818  *             false          false        |   EIO
27819  *             false          true         |   EIO
27820  *             true             x          |   ENXIO
27821  *     ------------------------------------------------------
27822  *
27823  *
27824  * 11. ioctls: DKIOCEJECT, CDROMEJECT
27825  *
27826  *     These IOCTLs are applicable only to removable media devices.
27827  *
27828  *     -----------------------------------------------------------
27829  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
27830  *     -----------------------------------------------------------
27831  *             false          false        |     No
27832  *             false          true         |     No
27833  *             true            x           |     Yes
27834  *     -----------------------------------------------------------
27835  *
27836  *
27837  * 12. Kstats for partitions
27838  *
27839  *     sd creates partition kstat for non-removable media devices. USB and
27840  *     Firewire hard disks now have partition kstats
27841  *
27842  *      ------------------------------------------------------
27843  *       removable media    hotpluggable   |   kstat
27844  *      ------------------------------------------------------
27845  *             false          false        |    Yes
27846  *             false          true         |    Yes
27847  *             true             x          |    No
27848  *       ------------------------------------------------------
27849  *
27850  *
27851  * 13. Removable media & hotpluggable properties
27852  *
27853  *     Sd driver creates a "removable-media" property for removable media
27854  *     devices. Parent nexus drivers create a "hotpluggable" property if
27855  *     it supports hotplugging.
27856  *
27857  *     ---------------------------------------------------------------------
27858  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
27859  *     ---------------------------------------------------------------------
27860  *       false            false       |    No                   No
27861  *       false            true        |    No                   Yes
27862  *       true             false       |    Yes                  No
27863  *       true             true        |    Yes                  Yes
27864  *     ---------------------------------------------------------------------
27865  *
27866  *
27867  * 14. Power Management
27868  *
27869  *     sd only power manages removable media devices or devices that support
27870  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
27871  *
27872  *     A parent nexus that supports hotplugging can also set "pm-capable"
27873  *     if the disk can be power managed.
27874  *
27875  *     ------------------------------------------------------------
27876  *       removable media hotpluggable pm-capable  |   power manage
27877  *     ------------------------------------------------------------
27878  *             false          false     false     |     No
27879  *             false          false     true      |     Yes
27880  *             false          true      false     |     No
27881  *             false          true      true      |     Yes
27882  *             true             x        x        |     Yes
27883  *     ------------------------------------------------------------
27884  *
27885  *      USB and firewire hard disks can now be power managed independently
27886  *      of the framebuffer
27887  *
27888  *
27889  * 15. Support for USB disks with capacity larger than 1TB
27890  *
27891  *     Currently, sd doesn't permit a fixed disk device with capacity
27892  *     larger than 1TB to be used in a 32-bit operating system environment.
27893  *     However, sd doesn't do that for removable media devices. Instead, it
27894  *     assumes that removable media devices cannot have a capacity larger
27895  *     than 1TB. Therefore, using those devices on 32-bit system is partially
27896  *     supported, which can cause some unexpected results.
27897  *
27898  *     ---------------------------------------------------------------------
27899  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
27900  *     ---------------------------------------------------------------------
27901  *             false          false  |   true         |     no
27902  *             false          true   |   true         |     no
27903  *             true           false  |   true         |     Yes
27904  *             true           true   |   true         |     Yes
27905  *     ---------------------------------------------------------------------
27906  *
27907  *
27908  * 16. Check write-protection at open time
27909  *
27910  *     When a removable media device is being opened for writing without NDELAY
27911  *     flag, sd will check if this device is writable. If attempting to open
27912  *     without NDELAY flag a write-protected device, this operation will abort.
27913  *
27914  *     ------------------------------------------------------------
27915  *       removable media    USB/1394   |   WP Check
27916  *     ------------------------------------------------------------
27917  *             false          false    |     No
27918  *             false          true     |     No
27919  *             true           false    |     Yes
27920  *             true           true     |     Yes
27921  *     ------------------------------------------------------------
27922  *
27923  *
27924  * 17. syslog when corrupted VTOC is encountered
27925  *
27926  *      Currently, if an invalid VTOC is encountered, sd only print syslog
27927  *      for fixed SCSI disks.
27928  *     ------------------------------------------------------------
27929  *       removable media    USB/1394   |   print syslog
27930  *     ------------------------------------------------------------
27931  *             false          false    |     Yes
27932  *             false          true     |     No
27933  *             true           false    |     No
27934  *             true           true     |     No
27935  *     ------------------------------------------------------------
27936  */
27937 static void
27938 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
27939 {
27940 	int	pm_capable_prop;
27941 
27942 	ASSERT(un->un_sd);
27943 	ASSERT(un->un_sd->sd_inq);
27944 
27945 	/*
27946 	 * Enable SYNC CACHE support for all devices.
27947 	 */
27948 	un->un_f_sync_cache_supported = TRUE;
27949 
27950 	if (un->un_sd->sd_inq->inq_rmb) {
27951 		/*
27952 		 * The media of this device is removable. And for this kind
27953 		 * of devices, it is possible to change medium after opening
27954 		 * devices. Thus we should support this operation.
27955 		 */
27956 		un->un_f_has_removable_media = TRUE;
27957 
27958 		/*
27959 		 * support non-512-byte blocksize of removable media devices
27960 		 */
27961 		un->un_f_non_devbsize_supported = TRUE;
27962 
27963 		/*
27964 		 * Assume that all removable media devices support DOOR_LOCK
27965 		 */
27966 		un->un_f_doorlock_supported = TRUE;
27967 
27968 		/*
27969 		 * For a removable media device, it is possible to be opened
27970 		 * with NDELAY flag when there is no media in drive, in this
27971 		 * case we don't care if device is writable. But if without
27972 		 * NDELAY flag, we need to check if media is write-protected.
27973 		 */
27974 		un->un_f_chk_wp_open = TRUE;
27975 
27976 		/*
27977 		 * need to start a SCSI watch thread to monitor media state,
27978 		 * when media is being inserted or ejected, notify syseventd.
27979 		 */
27980 		un->un_f_monitor_media_state = TRUE;
27981 
27982 		/*
27983 		 * Some devices don't support START_STOP_UNIT command.
27984 		 * Therefore, we'd better check if a device supports it
27985 		 * before sending it.
27986 		 */
27987 		un->un_f_check_start_stop = TRUE;
27988 
27989 		/*
27990 		 * support eject media ioctl:
27991 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
27992 		 */
27993 		un->un_f_eject_media_supported = TRUE;
27994 
27995 		/*
27996 		 * Because many removable-media devices don't support
27997 		 * LOG_SENSE, we couldn't use this command to check if
27998 		 * a removable media device support power-management.
27999 		 * We assume that they support power-management via
28000 		 * START_STOP_UNIT command and can be spun up and down
28001 		 * without limitations.
28002 		 */
28003 		un->un_f_pm_supported = TRUE;
28004 
28005 		/*
28006 		 * Need to create a zero length (Boolean) property
28007 		 * removable-media for the removable media devices.
28008 		 * Note that the return value of the property is not being
28009 		 * checked, since if unable to create the property
28010 		 * then do not want the attach to fail altogether. Consistent
28011 		 * with other property creation in attach.
28012 		 */
28013 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
28014 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
28015 
28016 	} else {
28017 		/*
28018 		 * create device ID for device
28019 		 */
28020 		un->un_f_devid_supported = TRUE;
28021 
28022 		/*
28023 		 * Spin up non-removable-media devices once it is attached
28024 		 */
28025 		un->un_f_attach_spinup = TRUE;
28026 
28027 		/*
28028 		 * According to SCSI specification, Sense data has two kinds of
28029 		 * format: fixed format, and descriptor format. At present, we
28030 		 * don't support descriptor format sense data for removable
28031 		 * media.
28032 		 */
28033 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
28034 			un->un_f_descr_format_supported = TRUE;
28035 		}
28036 
28037 		/*
28038 		 * kstats are created only for non-removable media devices.
28039 		 *
28040 		 * Set this in sd.conf to 0 in order to disable kstats.  The
28041 		 * default is 1, so they are enabled by default.
28042 		 */
28043 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
28044 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
28045 		    "enable-partition-kstats", 1));
28046 
28047 		/*
28048 		 * Check if HBA has set the "pm-capable" property.
28049 		 * If "pm-capable" exists and is non-zero then we can
28050 		 * power manage the device without checking the start/stop
28051 		 * cycle count log sense page.
28052 		 *
28053 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
28054 		 * then we should not power manage the device.
28055 		 *
28056 		 * If "pm-capable" doesn't exist then pm_capable_prop will
28057 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
28058 		 * sd will check the start/stop cycle count log sense page
28059 		 * and power manage the device if the cycle count limit has
28060 		 * not been exceeded.
28061 		 */
28062 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
28063 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
28064 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
28065 			un->un_f_log_sense_supported = TRUE;
28066 		} else {
28067 			/*
28068 			 * pm-capable property exists.
28069 			 *
28070 			 * Convert "TRUE" values for pm_capable_prop to
28071 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
28072 			 * later. "TRUE" values are any values except
28073 			 * SD_PM_CAPABLE_FALSE (0) and
28074 			 * SD_PM_CAPABLE_UNDEFINED (-1)
28075 			 */
28076 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
28077 				un->un_f_log_sense_supported = FALSE;
28078 			} else {
28079 				un->un_f_pm_supported = TRUE;
28080 			}
28081 
28082 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
28083 			    "sd_unit_attach: un:0x%p pm-capable "
28084 			    "property set to %d.\n", un, un->un_f_pm_supported);
28085 		}
28086 	}
28087 
28088 	if (un->un_f_is_hotpluggable) {
28089 
28090 		/*
28091 		 * Have to watch hotpluggable devices as well, since
28092 		 * that's the only way for userland applications to
28093 		 * detect hot removal while device is busy/mounted.
28094 		 */
28095 		un->un_f_monitor_media_state = TRUE;
28096 
28097 		un->un_f_check_start_stop = TRUE;
28098 
28099 	}
28100 }
28101 
28102 /*
28103  * sd_tg_rdwr:
28104  * Provides rdwr access for cmlb via sd_tgops. The start_block is
28105  * in sys block size, req_length in bytes.
28106  *
28107  */
28108 static int
28109 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
28110     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
28111 {
28112 	struct sd_lun *un;
28113 	int path_flag = (int)(uintptr_t)tg_cookie;
28114 	char *dkl = NULL;
28115 	diskaddr_t real_addr = start_block;
28116 	diskaddr_t first_byte, end_block;
28117 
28118 	size_t	buffer_size = reqlength;
28119 	int rval;
28120 	diskaddr_t	cap;
28121 	uint32_t	lbasize;
28122 
28123 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
28124 	if (un == NULL)
28125 		return (ENXIO);
28126 
28127 	if (cmd != TG_READ && cmd != TG_WRITE)
28128 		return (EINVAL);
28129 
28130 	mutex_enter(SD_MUTEX(un));
28131 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
28132 		mutex_exit(SD_MUTEX(un));
28133 		rval = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
28134 		    &lbasize, path_flag);
28135 		if (rval != 0)
28136 			return (rval);
28137 		mutex_enter(SD_MUTEX(un));
28138 		sd_update_block_info(un, lbasize, cap);
28139 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
28140 			mutex_exit(SD_MUTEX(un));
28141 			return (EIO);
28142 		}
28143 	}
28144 
28145 	if (NOT_DEVBSIZE(un)) {
28146 		/*
28147 		 * sys_blocksize != tgt_blocksize, need to re-adjust
28148 		 * blkno and save the index to beginning of dk_label
28149 		 */
28150 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
28151 		real_addr = first_byte / un->un_tgt_blocksize;
28152 
28153 		end_block = (first_byte + reqlength +
28154 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
28155 
28156 		/* round up buffer size to multiple of target block size */
28157 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
28158 
28159 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
28160 		    "label_addr: 0x%x allocation size: 0x%x\n",
28161 		    real_addr, buffer_size);
28162 
28163 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
28164 		    (reqlength % un->un_tgt_blocksize) != 0)
28165 			/* the request is not aligned */
28166 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
28167 	}
28168 
28169 	/*
28170 	 * The MMC standard allows READ CAPACITY to be
28171 	 * inaccurate by a bounded amount (in the interest of
28172 	 * response latency).  As a result, failed READs are
28173 	 * commonplace (due to the reading of metadata and not
28174 	 * data). Depending on the per-Vendor/drive Sense data,
28175 	 * the failed READ can cause many (unnecessary) retries.
28176 	 */
28177 
28178 	if (ISCD(un) && (cmd == TG_READ) &&
28179 	    (un->un_f_blockcount_is_valid == TRUE) &&
28180 	    ((start_block == (un->un_blockcount - 1))||
28181 	    (start_block == (un->un_blockcount - 2)))) {
28182 			path_flag = SD_PATH_DIRECT_PRIORITY;
28183 	}
28184 
28185 	mutex_exit(SD_MUTEX(un));
28186 	if (cmd == TG_READ) {
28187 		rval = sd_send_scsi_READ(un, (dkl != NULL)? dkl: bufaddr,
28188 		    buffer_size, real_addr, path_flag);
28189 		if (dkl != NULL)
28190 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
28191 			    real_addr), bufaddr, reqlength);
28192 	} else {
28193 		if (dkl) {
28194 			rval = sd_send_scsi_READ(un, dkl, buffer_size,
28195 			    real_addr, path_flag);
28196 			if (rval) {
28197 				kmem_free(dkl, buffer_size);
28198 				return (rval);
28199 			}
28200 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
28201 			    real_addr), reqlength);
28202 		}
28203 		rval = sd_send_scsi_WRITE(un, (dkl != NULL)? dkl: bufaddr,
28204 		    buffer_size, real_addr, path_flag);
28205 	}
28206 
28207 	if (dkl != NULL)
28208 		kmem_free(dkl, buffer_size);
28209 
28210 	return (rval);
28211 }
28212 
28213 
28214 static int
28215 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
28216 {
28217 
28218 	struct sd_lun *un;
28219 	diskaddr_t	cap;
28220 	uint32_t	lbasize;
28221 	int		path_flag = (int)(uintptr_t)tg_cookie;
28222 	int		ret = 0;
28223 
28224 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
28225 	if (un == NULL)
28226 		return (ENXIO);
28227 
28228 	switch (cmd) {
28229 	case TG_GETPHYGEOM:
28230 	case TG_GETVIRTGEOM:
28231 	case TG_GETCAPACITY:
28232 	case  TG_GETBLOCKSIZE:
28233 		mutex_enter(SD_MUTEX(un));
28234 
28235 		if ((un->un_f_blockcount_is_valid == TRUE) &&
28236 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
28237 			cap = un->un_blockcount;
28238 			lbasize = un->un_tgt_blocksize;
28239 			mutex_exit(SD_MUTEX(un));
28240 		} else {
28241 			mutex_exit(SD_MUTEX(un));
28242 			ret = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
28243 			    &lbasize, path_flag);
28244 			if (ret != 0)
28245 				return (ret);
28246 			mutex_enter(SD_MUTEX(un));
28247 			sd_update_block_info(un, lbasize, cap);
28248 			if ((un->un_f_blockcount_is_valid == FALSE) ||
28249 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
28250 				mutex_exit(SD_MUTEX(un));
28251 				return (EIO);
28252 			}
28253 			mutex_exit(SD_MUTEX(un));
28254 		}
28255 
28256 		if (cmd == TG_GETCAPACITY) {
28257 			*(diskaddr_t *)arg = cap;
28258 			return (0);
28259 		}
28260 
28261 		if (cmd == TG_GETBLOCKSIZE) {
28262 			*(uint32_t *)arg = lbasize;
28263 			return (0);
28264 		}
28265 
28266 		if (cmd == TG_GETPHYGEOM)
28267 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
28268 			    cap, lbasize, path_flag);
28269 		else
28270 			/* TG_GETVIRTGEOM */
28271 			ret = sd_get_virtual_geometry(un,
28272 			    (cmlb_geom_t *)arg, cap, lbasize);
28273 
28274 		return (ret);
28275 
28276 	case TG_GETATTR:
28277 		mutex_enter(SD_MUTEX(un));
28278 		((tg_attribute_t *)arg)->media_is_writable =
28279 		    un->un_f_mmc_writable_media;
28280 		mutex_exit(SD_MUTEX(un));
28281 		return (0);
28282 	default:
28283 		return (ENOTTY);
28284 
28285 	}
28286 
28287 }
28288