1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * CPU Device driver. The driver is not DDI-compliant. 30 * 31 * The driver supports following features: 32 * - Power management. 33 */ 34 35 #include <sys/types.h> 36 #include <sys/param.h> 37 #include <sys/errno.h> 38 #include <sys/modctl.h> 39 #include <sys/kmem.h> 40 #include <sys/conf.h> 41 #include <sys/cmn_err.h> 42 #include <sys/stat.h> 43 #include <sys/debug.h> 44 #include <sys/systm.h> 45 #include <sys/ddi.h> 46 #include <sys/sunddi.h> 47 48 #include <sys/machsystm.h> 49 #include <sys/x_call.h> 50 #include <sys/cpudrv.h> 51 #include <sys/cpudrv_plat.h> 52 #include <sys/msacct.h> 53 54 /* 55 * CPU power management 56 * 57 * The supported power saving model is to slow down the CPU (on SPARC by 58 * dividing the CPU clock and on x86 by dropping down a P-state). 59 * Periodically we determine the amount of time the CPU is running 60 * idle thread and threads in user mode during the last quantum. If the idle 61 * thread was running less than its low water mark for current speed for 62 * number of consecutive sampling periods, or number of running threads in 63 * user mode are above its high water mark, we arrange to go to the higher 64 * speed. If the idle thread was running more than its high water mark without 65 * dropping a number of consecutive times below the mark, and number of threads 66 * running in user mode are below its low water mark, we arrange to go to the 67 * next lower speed. While going down, we go through all the speeds. While 68 * going up we go to the maximum speed to minimize impact on the user, but have 69 * provisions in the driver to go to other speeds. 70 * 71 * The driver does not have knowledge of a particular implementation of this 72 * scheme and will work with all CPUs supporting this model. On SPARC, the 73 * driver determines supported speeds by looking at 'clock-divisors' property 74 * created by OBP. On x86, the driver retrieves the supported speeds from 75 * ACPI. 76 */ 77 78 /* 79 * Configuration function prototypes and data structures 80 */ 81 static int cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); 82 static int cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); 83 static int cpudrv_power(dev_info_t *dip, int comp, int level); 84 85 struct dev_ops cpudrv_ops = { 86 DEVO_REV, /* rev */ 87 0, /* refcnt */ 88 nodev, /* getinfo */ 89 nulldev, /* identify */ 90 nulldev, /* probe */ 91 cpudrv_attach, /* attach */ 92 cpudrv_detach, /* detach */ 93 nodev, /* reset */ 94 (struct cb_ops *)NULL, /* cb_ops */ 95 (struct bus_ops *)NULL, /* bus_ops */ 96 cpudrv_power /* power */ 97 }; 98 99 static struct modldrv modldrv = { 100 &mod_driverops, /* modops */ 101 "CPU Driver %I%", /* linkinfo */ 102 &cpudrv_ops, /* dev_ops */ 103 }; 104 105 static struct modlinkage modlinkage = { 106 MODREV_1, /* rev */ 107 &modldrv, /* linkage */ 108 NULL 109 }; 110 111 /* 112 * Function prototypes 113 */ 114 static int cpudrv_pm_init(cpudrv_devstate_t *cpudsp); 115 static void cpudrv_pm_free(cpudrv_devstate_t *cpudsp); 116 static int cpudrv_pm_comp_create(cpudrv_devstate_t *cpudsp); 117 static void cpudrv_pm_monitor_disp(void *arg); 118 static void cpudrv_pm_monitor(void *arg); 119 120 /* 121 * Driver global variables 122 */ 123 uint_t cpudrv_debug = 0; 124 void *cpudrv_state; 125 static uint_t cpudrv_pm_idle_hwm = CPUDRV_PM_IDLE_HWM; 126 static uint_t cpudrv_pm_idle_lwm = CPUDRV_PM_IDLE_LWM; 127 static uint_t cpudrv_pm_idle_buf_zone = CPUDRV_PM_IDLE_BUF_ZONE; 128 static uint_t cpudrv_pm_idle_bhwm_cnt_max = CPUDRV_PM_IDLE_BHWM_CNT_MAX; 129 static uint_t cpudrv_pm_idle_blwm_cnt_max = CPUDRV_PM_IDLE_BLWM_CNT_MAX; 130 static uint_t cpudrv_pm_user_hwm = CPUDRV_PM_USER_HWM; 131 132 /* 133 * cpudrv_direct_pm allows user applications to directly control the 134 * power state transitions (direct pm) without following the normal 135 * direct pm protocol. This is needed because the normal protocol 136 * requires that a device only be lowered when it is idle, and be 137 * brought up when it request to do so by calling pm_raise_power(). 138 * Ignoring this protocol is harmless for CPU (other than speed). 139 * Moreover it might be the case that CPU is never idle or wants 140 * to be at higher speed because of the addition CPU cycles required 141 * to run the user application. 142 * 143 * The driver will still report idle/busy status to the framework. Although 144 * framework will ignore this information for direct pm devices and not 145 * try to bring them down when idle, user applications can still use this 146 * information if they wants. 147 * 148 * In the future, provide an ioctl to control setting of this mode. In 149 * that case, this variable should move to the state structure and 150 * be protected by the lock in the state structure. 151 */ 152 int cpudrv_direct_pm = 0; 153 154 /* 155 * Arranges for the handler function to be called at the interval suitable 156 * for current speed. 157 */ 158 #define CPUDRV_PM_MONITOR_INIT(cpudsp) { \ 159 ASSERT(mutex_owned(&(cpudsp)->lock)); \ 160 (cpudsp)->cpudrv_pm.timeout_id = timeout(cpudrv_pm_monitor_disp, \ 161 (cpudsp), (((cpudsp)->cpudrv_pm.cur_spd == NULL) ? \ 162 CPUDRV_PM_QUANT_CNT_OTHR : \ 163 (cpudsp)->cpudrv_pm.cur_spd->quant_cnt)); \ 164 } 165 166 /* 167 * Arranges for the handler function not to be called back. 168 */ 169 #define CPUDRV_PM_MONITOR_FINI(cpudsp) { \ 170 timeout_id_t tmp_tid; \ 171 ASSERT(mutex_owned(&(cpudsp)->lock)); \ 172 ASSERT((cpudsp)->cpudrv_pm.timeout_id); \ 173 tmp_tid = (cpudsp)->cpudrv_pm.timeout_id; \ 174 (cpudsp)->cpudrv_pm.timeout_id = 0; \ 175 mutex_exit(&(cpudsp)->lock); \ 176 (void) untimeout(tmp_tid); \ 177 mutex_enter(&(cpudsp)->cpudrv_pm.timeout_lock); \ 178 while ((cpudsp)->cpudrv_pm.timeout_count != 0) \ 179 cv_wait(&(cpudsp)->cpudrv_pm.timeout_cv, \ 180 &(cpudsp)->cpudrv_pm.timeout_lock); \ 181 mutex_exit(&(cpudsp)->cpudrv_pm.timeout_lock); \ 182 mutex_enter(&(cpudsp)->lock); \ 183 } 184 185 int 186 _init(void) 187 { 188 int error; 189 190 DPRINTF(D_INIT, (" _init: function called\n")); 191 if ((error = ddi_soft_state_init(&cpudrv_state, 192 sizeof (cpudrv_devstate_t), 0)) != 0) { 193 return (error); 194 } 195 196 if ((error = mod_install(&modlinkage)) != 0) { 197 ddi_soft_state_fini(&cpudrv_state); 198 } 199 200 /* 201 * Callbacks used by the PPM driver. 202 */ 203 CPUDRV_PM_SET_PPM_CALLBACKS(); 204 return (error); 205 } 206 207 int 208 _fini(void) 209 { 210 int error; 211 212 DPRINTF(D_FINI, (" _fini: function called\n")); 213 if ((error = mod_remove(&modlinkage)) == 0) { 214 ddi_soft_state_fini(&cpudrv_state); 215 } 216 217 return (error); 218 } 219 220 int 221 _info(struct modinfo *modinfop) 222 { 223 return (mod_info(&modlinkage, modinfop)); 224 } 225 226 /* 227 * Driver attach(9e) entry point. 228 */ 229 static int 230 cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 231 { 232 int instance; 233 cpudrv_devstate_t *cpudsp; 234 extern pri_t maxclsyspri; 235 236 instance = ddi_get_instance(dip); 237 238 switch (cmd) { 239 case DDI_ATTACH: 240 DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: " 241 "DDI_ATTACH called\n", instance)); 242 if (ddi_soft_state_zalloc(cpudrv_state, instance) != 243 DDI_SUCCESS) { 244 cmn_err(CE_WARN, "cpudrv_attach: instance %d: " 245 "can't allocate state", instance); 246 CPUDRV_PM_DISABLE(); 247 return (DDI_FAILURE); 248 } 249 if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == 250 NULL) { 251 cmn_err(CE_WARN, "cpudrv_attach: instance %d: " 252 "can't get state", instance); 253 ddi_soft_state_free(cpudrv_state, instance); 254 CPUDRV_PM_DISABLE(); 255 return (DDI_FAILURE); 256 } 257 cpudsp->dip = dip; 258 259 /* 260 * Find CPU number for this dev_info node. 261 */ 262 if (!cpudrv_pm_get_cpu_id(dip, &(cpudsp->cpu_id))) { 263 cmn_err(CE_WARN, "cpudrv_attach: instance %d: " 264 "can't convert dip to cpu_id", instance); 265 ddi_soft_state_free(cpudrv_state, instance); 266 CPUDRV_PM_DISABLE(); 267 return (DDI_FAILURE); 268 } 269 if (cpudrv_pm_init(cpudsp) != DDI_SUCCESS) { 270 ddi_soft_state_free(cpudrv_state, instance); 271 CPUDRV_PM_DISABLE(); 272 return (DDI_FAILURE); 273 } 274 if (cpudrv_pm_comp_create(cpudsp) != DDI_SUCCESS) { 275 ddi_soft_state_free(cpudrv_state, instance); 276 CPUDRV_PM_DISABLE(); 277 cpudrv_pm_free(cpudsp); 278 return (DDI_FAILURE); 279 } 280 if (ddi_prop_update_string(DDI_DEV_T_NONE, 281 dip, "pm-class", "CPU") != DDI_PROP_SUCCESS) { 282 ddi_soft_state_free(cpudrv_state, instance); 283 CPUDRV_PM_DISABLE(); 284 cpudrv_pm_free(cpudsp); 285 return (DDI_FAILURE); 286 } 287 288 /* 289 * Taskq is used to dispatch routine to monitor CPU activities. 290 */ 291 cpudsp->cpudrv_pm.tq = taskq_create_instance( 292 "cpudrv_pm_monitor", 293 ddi_get_instance(dip), CPUDRV_PM_TASKQ_THREADS, 294 (maxclsyspri - 1), CPUDRV_PM_TASKQ_MIN, 295 CPUDRV_PM_TASKQ_MAX, TASKQ_PREPOPULATE|TASKQ_CPR_SAFE); 296 297 mutex_init(&cpudsp->lock, NULL, MUTEX_DRIVER, NULL); 298 mutex_init(&cpudsp->cpudrv_pm.timeout_lock, NULL, MUTEX_DRIVER, 299 NULL); 300 cv_init(&cpudsp->cpudrv_pm.timeout_cv, NULL, CV_DEFAULT, NULL); 301 302 /* 303 * Driver needs to assume that CPU is running at unknown speed 304 * at DDI_ATTACH and switch it to the needed speed. We assume 305 * that initial needed speed is full speed for us. 306 */ 307 /* 308 * We need to take the lock because cpudrv_pm_monitor() 309 * will start running in parallel with attach(). 310 */ 311 mutex_enter(&cpudsp->lock); 312 cpudsp->cpudrv_pm.cur_spd = NULL; 313 cpudsp->cpudrv_pm.targ_spd = cpudsp->cpudrv_pm.head_spd; 314 /* 315 * We don't call pm_raise_power() directly from attach because 316 * driver attach for a slave CPU node can happen before the 317 * CPU is even initialized. We just start the monitoring 318 * system which understands unknown speed and moves CPU 319 * to targ_spd when it have been initialized. 320 */ 321 CPUDRV_PM_MONITOR_INIT(cpudsp); 322 mutex_exit(&cpudsp->lock); 323 324 CPUDRV_PM_INSTALL_TOPSPEED_CHANGE_HANDLER(cpudsp, dip); 325 326 ddi_report_dev(dip); 327 return (DDI_SUCCESS); 328 329 case DDI_RESUME: 330 DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: " 331 "DDI_RESUME called\n", instance)); 332 if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == 333 NULL) { 334 cmn_err(CE_WARN, "cpudrv_attach: instance %d: " 335 "can't get state", instance); 336 return (DDI_FAILURE); 337 } 338 mutex_enter(&cpudsp->lock); 339 /* 340 * Driver needs to assume that CPU is running at unknown speed 341 * at DDI_RESUME and switch it to the needed speed. We assume 342 * that the needed speed is full speed for us. 343 */ 344 cpudsp->cpudrv_pm.cur_spd = NULL; 345 cpudsp->cpudrv_pm.targ_spd = cpudsp->cpudrv_pm.head_spd; 346 CPUDRV_PM_MONITOR_INIT(cpudsp); 347 mutex_exit(&cpudsp->lock); 348 CPUDRV_PM_REDEFINE_TOPSPEED(dip); 349 return (DDI_SUCCESS); 350 351 default: 352 return (DDI_FAILURE); 353 } 354 } 355 356 /* 357 * Driver detach(9e) entry point. 358 */ 359 static int 360 cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 361 { 362 int instance; 363 cpudrv_devstate_t *cpudsp; 364 cpudrv_pm_t *cpupm; 365 366 instance = ddi_get_instance(dip); 367 368 switch (cmd) { 369 case DDI_DETACH: 370 DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: " 371 "DDI_DETACH called\n", instance)); 372 /* 373 * If the only thing supported by the driver is power 374 * management, we can in future enhance the driver and 375 * framework that loads it to unload the driver when 376 * user has disabled CPU power management. 377 */ 378 return (DDI_FAILURE); 379 380 case DDI_SUSPEND: 381 DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: " 382 "DDI_SUSPEND called\n", instance)); 383 if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == 384 NULL) { 385 cmn_err(CE_WARN, "cpudrv_detach: instance %d: " 386 "can't get state", instance); 387 return (DDI_FAILURE); 388 } 389 /* 390 * During a checkpoint-resume sequence, framework will 391 * stop interrupts to quiesce kernel activity. This will 392 * leave our monitoring system ineffective. Handle this 393 * by stopping our monitoring system and bringing CPU 394 * to full speed. In case we are in special direct pm 395 * mode, we leave the CPU at whatever speed it is. This 396 * is harmless other than speed. 397 */ 398 mutex_enter(&cpudsp->lock); 399 cpupm = &(cpudsp->cpudrv_pm); 400 401 DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: DDI_SUSPEND - " 402 "cur_spd %d, head_spd %d\n", instance, 403 cpupm->cur_spd->pm_level, cpupm->head_spd->pm_level)); 404 405 CPUDRV_PM_MONITOR_FINI(cpudsp); 406 407 if (!cpudrv_direct_pm && (cpupm->cur_spd != cpupm->head_spd)) { 408 if (cpupm->pm_busycnt < 1) { 409 if ((pm_busy_component(dip, CPUDRV_PM_COMP_NUM) 410 == DDI_SUCCESS)) { 411 cpupm->pm_busycnt++; 412 } else { 413 CPUDRV_PM_MONITOR_INIT(cpudsp); 414 mutex_exit(&cpudsp->lock); 415 cmn_err(CE_WARN, "cpudrv_detach: " 416 "instance %d: can't busy CPU " 417 "component", instance); 418 return (DDI_FAILURE); 419 } 420 } 421 mutex_exit(&cpudsp->lock); 422 if (pm_raise_power(dip, CPUDRV_PM_COMP_NUM, 423 cpupm->head_spd->pm_level) != DDI_SUCCESS) { 424 mutex_enter(&cpudsp->lock); 425 CPUDRV_PM_MONITOR_INIT(cpudsp); 426 mutex_exit(&cpudsp->lock); 427 cmn_err(CE_WARN, "cpudrv_detach: instance %d: " 428 "can't raise CPU power level", instance); 429 return (DDI_FAILURE); 430 } else { 431 return (DDI_SUCCESS); 432 } 433 } else { 434 mutex_exit(&cpudsp->lock); 435 return (DDI_SUCCESS); 436 } 437 438 default: 439 return (DDI_FAILURE); 440 } 441 } 442 443 /* 444 * Driver power(9e) entry point. 445 * 446 * Driver's notion of current power is set *only* in power(9e) entry point 447 * after actual power change operation has been successfully completed. 448 */ 449 /* ARGSUSED */ 450 static int 451 cpudrv_power(dev_info_t *dip, int comp, int level) 452 { 453 int instance; 454 cpudrv_devstate_t *cpudsp; 455 cpudrv_pm_t *cpupm; 456 cpudrv_pm_spd_t *new_spd; 457 boolean_t is_ready; 458 int ret; 459 460 instance = ddi_get_instance(dip); 461 462 DPRINTF(D_POWER, ("cpudrv_power: instance %d: level %d\n", 463 instance, level)); 464 if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == NULL) { 465 cmn_err(CE_WARN, "cpudrv_power: instance %d: can't get state", 466 instance); 467 return (DDI_FAILURE); 468 } 469 470 mutex_enter(&cpudsp->lock); 471 cpupm = &(cpudsp->cpudrv_pm); 472 473 /* 474 * In normal operation, we fail if we are busy and request is 475 * to lower the power level. We let this go through if the driver 476 * is in special direct pm mode. On x86, we also let this through 477 * if the change is due to a request to throttle the max speed. 478 */ 479 if (!cpudrv_direct_pm && (cpupm->pm_busycnt >= 1) && 480 !cpudrv_pm_is_throttle_thread(cpupm)) { 481 if ((cpupm->cur_spd != NULL) && 482 (level < cpupm->cur_spd->pm_level)) { 483 mutex_exit(&cpudsp->lock); 484 return (DDI_FAILURE); 485 } 486 } 487 488 for (new_spd = cpupm->head_spd; new_spd; new_spd = new_spd->down_spd) { 489 if (new_spd->pm_level == level) 490 break; 491 } 492 if (!new_spd) { 493 CPUDRV_PM_RESET_THROTTLE_THREAD(cpupm); 494 mutex_exit(&cpudsp->lock); 495 cmn_err(CE_WARN, "cpudrv_power: instance %d: " 496 "can't locate new CPU speed", instance); 497 return (DDI_FAILURE); 498 } 499 500 /* 501 * We currently refuse to power manage if the CPU is not ready to 502 * take cross calls (cross calls fail silently if CPU is not ready 503 * for it). 504 * 505 * Additionally, for x86 platforms we cannot power manage 506 * any one instance, until all instances have been initialized. 507 * That's because we don't know what the CPU domains look like 508 * until all instances have been initialized. 509 */ 510 is_ready = CPUDRV_PM_XCALL_IS_READY(cpudsp->cpu_id); 511 if (!is_ready) { 512 DPRINTF(D_POWER, ("cpudrv_power: instance %d: " 513 "CPU not ready for x-calls\n", instance)); 514 } else if (!(is_ready = cpudrv_pm_all_instances_ready())) { 515 DPRINTF(D_POWER, ("cpudrv_power: instance %d: " 516 "waiting for all CPUs to be ready\n", instance)); 517 } 518 if (!is_ready) { 519 CPUDRV_PM_RESET_THROTTLE_THREAD(cpupm); 520 mutex_exit(&cpudsp->lock); 521 return (DDI_FAILURE); 522 } 523 524 /* 525 * Execute CPU specific routine on the requested CPU to change its 526 * speed to normal-speed/divisor. 527 */ 528 if ((ret = cpudrv_pm_change_speed(cpudsp, new_spd)) != DDI_SUCCESS) { 529 cmn_err(CE_WARN, "cpudrv_power: cpudrv_pm_change_speed() " 530 "return = %d", ret); 531 mutex_exit(&cpudsp->lock); 532 return (DDI_FAILURE); 533 } 534 535 /* 536 * Reset idle threshold time for the new power level. 537 */ 538 if ((cpupm->cur_spd != NULL) && (level < cpupm->cur_spd->pm_level)) { 539 if (pm_idle_component(dip, CPUDRV_PM_COMP_NUM) == 540 DDI_SUCCESS) { 541 if (cpupm->pm_busycnt >= 1) 542 cpupm->pm_busycnt--; 543 } else 544 cmn_err(CE_WARN, "cpudrv_power: instance %d: can't " 545 "idle CPU component", ddi_get_instance(dip)); 546 } 547 /* 548 * Reset various parameters because we are now running at new speed. 549 */ 550 cpupm->lastquan_mstate[CMS_IDLE] = 0; 551 cpupm->lastquan_mstate[CMS_SYSTEM] = 0; 552 cpupm->lastquan_mstate[CMS_USER] = 0; 553 cpupm->lastquan_lbolt = 0; 554 cpupm->cur_spd = new_spd; 555 CPUDRV_PM_RESET_THROTTLE_THREAD(cpupm); 556 mutex_exit(&cpudsp->lock); 557 558 return (DDI_SUCCESS); 559 } 560 561 /* 562 * Initialize the field that will be used for reporting 563 * the supported_frequencies_Hz cpu_info kstat. 564 */ 565 static void 566 set_supp_freqs(cpu_t *cp, cpudrv_pm_t *cpupm) 567 { 568 char *supp_freqs; 569 char *sfptr; 570 uint64_t *speeds; 571 cpudrv_pm_spd_t *spd; 572 int i; 573 #define UINT64_MAX_STRING (sizeof ("18446744073709551615")) 574 575 speeds = kmem_zalloc(cpupm->num_spd * sizeof (uint64_t), KM_SLEEP); 576 for (i = cpupm->num_spd - 1, spd = cpupm->head_spd; spd; 577 i--, spd = spd->down_spd) { 578 speeds[i] = 579 CPUDRV_PM_SPEED_HZ(cp->cpu_type_info.pi_clock, spd->speed); 580 } 581 582 supp_freqs = kmem_zalloc((UINT64_MAX_STRING * cpupm->num_spd), 583 KM_SLEEP); 584 sfptr = supp_freqs; 585 for (i = 0; i < cpupm->num_spd; i++) { 586 if (i == cpupm->num_spd - 1) { 587 (void) sprintf(sfptr, "%"PRIu64, speeds[i]); 588 } else { 589 (void) sprintf(sfptr, "%"PRIu64":", speeds[i]); 590 sfptr = supp_freqs + strlen(supp_freqs); 591 } 592 } 593 cp->cpu_supp_freqs = supp_freqs; 594 kmem_free(speeds, cpupm->num_spd * sizeof (uint64_t)); 595 } 596 597 /* 598 * Initialize power management data. 599 */ 600 static int 601 cpudrv_pm_init(cpudrv_devstate_t *cpudsp) 602 { 603 cpudrv_pm_t *cpupm = &(cpudsp->cpudrv_pm); 604 cpudrv_pm_spd_t *cur_spd; 605 cpudrv_pm_spd_t *prev_spd = NULL; 606 int *speeds; 607 uint_t nspeeds; 608 int idle_cnt_percent; 609 int user_cnt_percent; 610 int i; 611 612 if (!cpudrv_pm_init_module(cpudsp)) 613 return (DDI_FAILURE); 614 615 CPUDRV_PM_GET_SPEEDS(cpudsp, speeds, nspeeds); 616 if (nspeeds < 2) { 617 /* Need at least two speeds to power manage */ 618 CPUDRV_PM_FREE_SPEEDS(speeds, nspeeds); 619 cpudrv_pm_free_module(cpudsp); 620 return (DDI_FAILURE); 621 } 622 cpupm->num_spd = nspeeds; 623 624 /* 625 * Calculate the watermarks and other parameters based on the 626 * supplied speeds. 627 * 628 * One of the basic assumption is that for X amount of CPU work, 629 * if CPU is slowed down by a factor of N, the time it takes to 630 * do the same work will be N * X. 631 * 632 * The driver declares that a CPU is idle and ready for slowed down, 633 * if amount of idle thread is more than the current speed idle_hwm 634 * without dropping below idle_hwm a number of consecutive sampling 635 * intervals and number of running threads in user mode are below 636 * user_lwm. We want to set the current user_lwm such that if we 637 * just switched to the next slower speed with no change in real work 638 * load, the amount of user threads at the slower speed will be such 639 * that it falls below the slower speed's user_hwm. If we didn't do 640 * that then we will just come back to the higher speed as soon as we 641 * go down even with no change in work load. 642 * The user_hwm is a fixed precentage and not calculated dynamically. 643 * 644 * We bring the CPU up if idle thread at current speed is less than 645 * the current speed idle_lwm for a number of consecutive sampling 646 * intervals or user threads are above the user_hwm for the current 647 * speed. 648 */ 649 for (i = 0; i < nspeeds; i++) { 650 cur_spd = kmem_zalloc(sizeof (cpudrv_pm_spd_t), KM_SLEEP); 651 cur_spd->speed = speeds[i]; 652 if (i == 0) { /* normal speed */ 653 cpupm->head_spd = cur_spd; 654 cur_spd->quant_cnt = CPUDRV_PM_QUANT_CNT_NORMAL; 655 cur_spd->idle_hwm = 656 (cpudrv_pm_idle_hwm * cur_spd->quant_cnt) / 100; 657 /* can't speed anymore */ 658 cur_spd->idle_lwm = 0; 659 cur_spd->user_hwm = UINT_MAX; 660 } else { 661 cur_spd->quant_cnt = CPUDRV_PM_QUANT_CNT_OTHR; 662 ASSERT(prev_spd != NULL); 663 prev_spd->down_spd = cur_spd; 664 cur_spd->up_spd = cpupm->head_spd; 665 666 /* 667 * Let's assume CPU is considered idle at full speed 668 * when it is spending I% of time in running the idle 669 * thread. At full speed, CPU will be busy (100 - I) % 670 * of times. This % of busyness increases by factor of 671 * N as CPU slows down. CPU that is idle I% of times 672 * in full speed, it is idle (100 - ((100 - I) * N)) % 673 * of times in N speed. The idle_lwm is a fixed 674 * percentage. A large value of N may result in 675 * idle_hwm to go below idle_lwm. We need to make sure 676 * that there is at least a buffer zone seperation 677 * between the idle_lwm and idle_hwm values. 678 */ 679 idle_cnt_percent = CPUDRV_PM_IDLE_CNT_PERCENT( 680 cpudrv_pm_idle_hwm, speeds, i); 681 idle_cnt_percent = max(idle_cnt_percent, 682 (cpudrv_pm_idle_lwm + cpudrv_pm_idle_buf_zone)); 683 cur_spd->idle_hwm = 684 (idle_cnt_percent * cur_spd->quant_cnt) / 100; 685 cur_spd->idle_lwm = 686 (cpudrv_pm_idle_lwm * cur_spd->quant_cnt) / 100; 687 688 /* 689 * The lwm for user threads are determined such that 690 * if CPU slows down, the load of work in the 691 * new speed would still keep the CPU at or below the 692 * user_hwm in the new speed. This is to prevent 693 * the quick jump back up to higher speed. 694 */ 695 cur_spd->user_hwm = (cpudrv_pm_user_hwm * 696 cur_spd->quant_cnt) / 100; 697 user_cnt_percent = CPUDRV_PM_USER_CNT_PERCENT( 698 cpudrv_pm_user_hwm, speeds, i); 699 prev_spd->user_lwm = 700 (user_cnt_percent * prev_spd->quant_cnt) / 100; 701 } 702 prev_spd = cur_spd; 703 } 704 /* Slowest speed. Can't slow down anymore */ 705 cur_spd->idle_hwm = UINT_MAX; 706 cur_spd->user_lwm = -1; 707 #ifdef DEBUG 708 DPRINTF(D_PM_INIT, ("cpudrv_pm_init: instance %d: head_spd spd %d, " 709 "num_spd %d\n", ddi_get_instance(cpudsp->dip), 710 cpupm->head_spd->speed, cpupm->num_spd)); 711 for (cur_spd = cpupm->head_spd; cur_spd; cur_spd = cur_spd->down_spd) { 712 DPRINTF(D_PM_INIT, ("cpudrv_pm_init: instance %d: speed %d, " 713 "down_spd spd %d, idle_hwm %d, user_lwm %d, " 714 "up_spd spd %d, idle_lwm %d, user_hwm %d, " 715 "quant_cnt %d\n", ddi_get_instance(cpudsp->dip), 716 cur_spd->speed, 717 (cur_spd->down_spd ? cur_spd->down_spd->speed : 0), 718 cur_spd->idle_hwm, cur_spd->user_lwm, 719 (cur_spd->up_spd ? cur_spd->up_spd->speed : 0), 720 cur_spd->idle_lwm, cur_spd->user_hwm, 721 cur_spd->quant_cnt)); 722 } 723 #endif /* DEBUG */ 724 CPUDRV_PM_FREE_SPEEDS(speeds, nspeeds); 725 return (DDI_SUCCESS); 726 } 727 728 /* 729 * Free CPU power management data. 730 */ 731 static void 732 cpudrv_pm_free(cpudrv_devstate_t *cpudsp) 733 { 734 cpudrv_pm_t *cpupm = &(cpudsp->cpudrv_pm); 735 cpudrv_pm_spd_t *cur_spd, *next_spd; 736 737 cur_spd = cpupm->head_spd; 738 while (cur_spd) { 739 next_spd = cur_spd->down_spd; 740 kmem_free(cur_spd, sizeof (cpudrv_pm_spd_t)); 741 cur_spd = next_spd; 742 } 743 bzero(cpupm, sizeof (cpudrv_pm_t)); 744 cpudrv_pm_free_module(cpudsp); 745 } 746 747 /* 748 * Create pm-components property. 749 */ 750 static int 751 cpudrv_pm_comp_create(cpudrv_devstate_t *cpudsp) 752 { 753 cpudrv_pm_t *cpupm = &(cpudsp->cpudrv_pm); 754 cpudrv_pm_spd_t *cur_spd; 755 char **pmc; 756 int size; 757 char name[] = "NAME=CPU Speed"; 758 int i, j; 759 uint_t comp_spd; 760 int result = DDI_FAILURE; 761 762 pmc = kmem_zalloc((cpupm->num_spd + 1) * sizeof (char *), KM_SLEEP); 763 size = CPUDRV_PM_COMP_SIZE(); 764 if (cpupm->num_spd > CPUDRV_PM_COMP_MAX_VAL) { 765 cmn_err(CE_WARN, "cpudrv_pm_comp_create: instance %d: " 766 "number of speeds exceeded limits", 767 ddi_get_instance(cpudsp->dip)); 768 kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *)); 769 return (result); 770 } 771 772 for (i = cpupm->num_spd, cur_spd = cpupm->head_spd; i > 0; 773 i--, cur_spd = cur_spd->down_spd) { 774 cur_spd->pm_level = i; 775 pmc[i] = kmem_zalloc((size * sizeof (char)), KM_SLEEP); 776 comp_spd = CPUDRV_PM_COMP_SPEED(cpupm, cur_spd); 777 if (comp_spd > CPUDRV_PM_COMP_MAX_VAL) { 778 cmn_err(CE_WARN, "cpudrv_pm_comp_create: " 779 "instance %d: speed exceeded limits", 780 ddi_get_instance(cpudsp->dip)); 781 for (j = cpupm->num_spd; j >= i; j--) { 782 kmem_free(pmc[j], size * sizeof (char)); 783 } 784 kmem_free(pmc, (cpupm->num_spd + 1) * 785 sizeof (char *)); 786 return (result); 787 } 788 CPUDRV_PM_COMP_SPRINT(pmc[i], cpupm, cur_spd, comp_spd) 789 DPRINTF(D_PM_COMP_CREATE, ("cpudrv_pm_comp_create: " 790 "instance %d: pm-components power level %d string '%s'\n", 791 ddi_get_instance(cpudsp->dip), i, pmc[i])); 792 } 793 pmc[0] = kmem_zalloc(sizeof (name), KM_SLEEP); 794 (void) strcat(pmc[0], name); 795 DPRINTF(D_PM_COMP_CREATE, ("cpudrv_pm_comp_create: instance %d: " 796 "pm-components component name '%s'\n", 797 ddi_get_instance(cpudsp->dip), pmc[0])); 798 799 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, cpudsp->dip, 800 "pm-components", pmc, cpupm->num_spd + 1) == DDI_PROP_SUCCESS) { 801 result = DDI_SUCCESS; 802 } else { 803 cmn_err(CE_WARN, "cpudrv_pm_comp_create: instance %d: " 804 "can't create pm-components property", 805 ddi_get_instance(cpudsp->dip)); 806 } 807 808 for (i = cpupm->num_spd; i > 0; i--) { 809 kmem_free(pmc[i], size * sizeof (char)); 810 } 811 kmem_free(pmc[0], sizeof (name)); 812 kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *)); 813 return (result); 814 } 815 816 /* 817 * Mark a component idle. 818 */ 819 #define CPUDRV_PM_MONITOR_PM_IDLE_COMP(dip, cpupm) { \ 820 if ((cpupm)->pm_busycnt >= 1) { \ 821 if (pm_idle_component((dip), CPUDRV_PM_COMP_NUM) == \ 822 DDI_SUCCESS) { \ 823 DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: " \ 824 "instance %d: pm_idle_component called\n", \ 825 ddi_get_instance((dip)))); \ 826 (cpupm)->pm_busycnt--; \ 827 } else { \ 828 cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: " \ 829 "can't idle CPU component", \ 830 ddi_get_instance((dip))); \ 831 } \ 832 } \ 833 } 834 835 /* 836 * Marks a component busy in both PM framework and driver state structure. 837 */ 838 #define CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm) { \ 839 if ((cpupm)->pm_busycnt < 1) { \ 840 if (pm_busy_component((dip), CPUDRV_PM_COMP_NUM) == \ 841 DDI_SUCCESS) { \ 842 DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: " \ 843 "instance %d: pm_busy_component called\n", \ 844 ddi_get_instance((dip)))); \ 845 (cpupm)->pm_busycnt++; \ 846 } else { \ 847 cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: " \ 848 "can't busy CPU component", \ 849 ddi_get_instance((dip))); \ 850 } \ 851 } \ 852 } 853 854 /* 855 * Marks a component busy and calls pm_raise_power(). 856 */ 857 #define CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm, new_level) { \ 858 /* \ 859 * Mark driver and PM framework busy first so framework doesn't try \ 860 * to bring CPU to lower speed when we need to be at higher speed. \ 861 */ \ 862 CPUDRV_PM_MONITOR_PM_BUSY_COMP((dip), (cpupm)); \ 863 mutex_exit(&(cpudsp)->lock); \ 864 DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: " \ 865 "pm_raise_power called to %d\n", ddi_get_instance((dip)), \ 866 (new_level))); \ 867 if (pm_raise_power((dip), CPUDRV_PM_COMP_NUM, (new_level)) != \ 868 DDI_SUCCESS) { \ 869 cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: can't " \ 870 "raise CPU power level", ddi_get_instance((dip))); \ 871 } \ 872 mutex_enter(&(cpudsp)->lock); \ 873 } 874 875 /* 876 * In order to monitor a CPU, we need to hold cpu_lock to access CPU 877 * statistics. Holding cpu_lock is not allowed from a callout routine. 878 * We dispatch a taskq to do that job. 879 */ 880 static void 881 cpudrv_pm_monitor_disp(void *arg) 882 { 883 cpudrv_devstate_t *cpudsp = (cpudrv_devstate_t *)arg; 884 885 /* 886 * We are here because the last task has scheduled a timeout. 887 * The queue should be empty at this time. 888 */ 889 mutex_enter(&cpudsp->cpudrv_pm.timeout_lock); 890 if (!taskq_dispatch(cpudsp->cpudrv_pm.tq, cpudrv_pm_monitor, arg, 891 TQ_NOSLEEP)) { 892 mutex_exit(&cpudsp->cpudrv_pm.timeout_lock); 893 DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor_disp: failed to " 894 "dispatch the cpudrv_pm_monitor taskq\n")); 895 mutex_enter(&cpudsp->lock); 896 CPUDRV_PM_MONITOR_INIT(cpudsp); 897 mutex_exit(&cpudsp->lock); 898 return; 899 } 900 cpudsp->cpudrv_pm.timeout_count++; 901 mutex_exit(&cpudsp->cpudrv_pm.timeout_lock); 902 } 903 904 /* 905 * Get current CPU microstate times and scale them. We should probably be 906 * using get_cpu_mstate() to get this data, but bugs in some of the ISRs 907 * have led to inflated system times and prevented CPUs from being power 908 * managed. We can probably safely ignore time spent in ISRs when 909 * determining idleness. 910 */ 911 static void 912 cpudrv_get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 913 { 914 int i; 915 916 for (i = 0; i < NCMSTATES; i++) { 917 times[i] = cpu->cpu_acct[i]; 918 scalehrtime(×[i]); 919 } 920 } 921 922 /* 923 * Monitors each CPU for the amount of time idle thread was running in the 924 * last quantum and arranges for the CPU to go to the lower or higher speed. 925 * Called at the time interval appropriate for the current speed. The 926 * time interval for normal speed is CPUDRV_PM_QUANT_CNT_NORMAL. The time 927 * interval for other speeds (including unknown speed) is 928 * CPUDRV_PM_QUANT_CNT_OTHR. 929 */ 930 static void 931 cpudrv_pm_monitor(void *arg) 932 { 933 cpudrv_devstate_t *cpudsp = (cpudrv_devstate_t *)arg; 934 cpudrv_pm_t *cpupm; 935 cpudrv_pm_spd_t *cur_spd, *new_spd; 936 cpu_t *cp; 937 dev_info_t *dip; 938 uint_t idle_cnt, user_cnt, system_cnt; 939 clock_t lbolt_cnt; 940 hrtime_t msnsecs[NCMSTATES]; 941 boolean_t is_ready; 942 943 #define GET_CPU_MSTATE_CNT(state, cnt) \ 944 msnsecs[state] = NSEC_TO_TICK(msnsecs[state]); \ 945 if (cpupm->lastquan_mstate[state] > msnsecs[state]) \ 946 msnsecs[state] = cpupm->lastquan_mstate[state]; \ 947 cnt = msnsecs[state] - cpupm->lastquan_mstate[state]; \ 948 cpupm->lastquan_mstate[state] = msnsecs[state] 949 950 mutex_enter(&cpudsp->lock); 951 cpupm = &(cpudsp->cpudrv_pm); 952 if (cpupm->timeout_id == 0) { 953 mutex_exit(&cpudsp->lock); 954 goto do_return; 955 } 956 cur_spd = cpupm->cur_spd; 957 dip = cpudsp->dip; 958 959 /* 960 * We assume that a CPU is initialized and has a valid cpu_t 961 * structure, if it is ready for cross calls. If this changes, 962 * additional checks might be needed. 963 * 964 * Additionally, for x86 platforms we cannot power manage 965 * any one instance, until all instances have been initialized. 966 * That's because we don't know what the CPU domains look like 967 * until all instances have been initialized. 968 */ 969 is_ready = CPUDRV_PM_XCALL_IS_READY(cpudsp->cpu_id); 970 if (!is_ready) { 971 DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: " 972 "CPU not ready for x-calls\n", ddi_get_instance(dip))); 973 } else if (!(is_ready = cpudrv_pm_all_instances_ready())) { 974 DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: " 975 "waiting for all CPUs to be ready\n", 976 ddi_get_instance(dip))); 977 } 978 if (!is_ready) { 979 /* 980 * Make sure that we are busy so that framework doesn't 981 * try to bring us down in this situation. 982 */ 983 CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm); 984 CPUDRV_PM_MONITOR_INIT(cpudsp); 985 mutex_exit(&cpudsp->lock); 986 goto do_return; 987 } 988 989 /* 990 * Make sure that we are still not at unknown power level. 991 */ 992 if (cur_spd == NULL) { 993 DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: " 994 "cur_spd is unknown\n", ddi_get_instance(dip))); 995 CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm, 996 cpupm->targ_spd->pm_level); 997 /* 998 * We just changed the speed. Wait till at least next 999 * call to this routine before proceeding ahead. 1000 */ 1001 CPUDRV_PM_MONITOR_INIT(cpudsp); 1002 mutex_exit(&cpudsp->lock); 1003 goto do_return; 1004 } 1005 1006 mutex_enter(&cpu_lock); 1007 if ((cp = cpu_get(cpudsp->cpu_id)) == NULL) { 1008 mutex_exit(&cpu_lock); 1009 CPUDRV_PM_MONITOR_INIT(cpudsp); 1010 mutex_exit(&cpudsp->lock); 1011 cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: can't get " 1012 "cpu_t", ddi_get_instance(dip)); 1013 goto do_return; 1014 } 1015 if (cp->cpu_supp_freqs == NULL) 1016 set_supp_freqs(cp, cpupm); 1017 1018 cpudrv_get_cpu_mstate(cp, msnsecs); 1019 GET_CPU_MSTATE_CNT(CMS_IDLE, idle_cnt); 1020 GET_CPU_MSTATE_CNT(CMS_USER, user_cnt); 1021 GET_CPU_MSTATE_CNT(CMS_SYSTEM, system_cnt); 1022 1023 /* 1024 * We can't do anything when we have just switched to a state 1025 * because there is no valid timestamp. 1026 */ 1027 if (cpupm->lastquan_lbolt == 0) { 1028 cpupm->lastquan_lbolt = lbolt; 1029 mutex_exit(&cpu_lock); 1030 CPUDRV_PM_MONITOR_INIT(cpudsp); 1031 mutex_exit(&cpudsp->lock); 1032 goto do_return; 1033 } 1034 1035 /* 1036 * Various watermarks are based on this routine being called back 1037 * exactly at the requested period. This is not guaranteed 1038 * because this routine is called from a taskq that is dispatched 1039 * from a timeout routine. Handle this by finding out how many 1040 * ticks have elapsed since the last call (lbolt_cnt) and adjusting 1041 * the idle_cnt based on the delay added to the requested period 1042 * by timeout and taskq. 1043 */ 1044 lbolt_cnt = lbolt - cpupm->lastquan_lbolt; 1045 cpupm->lastquan_lbolt = lbolt; 1046 mutex_exit(&cpu_lock); 1047 /* 1048 * Time taken between recording the current counts and 1049 * arranging the next call of this routine is an error in our 1050 * calculation. We minimize the error by calling 1051 * CPUDRV_PM_MONITOR_INIT() here instead of end of this routine. 1052 */ 1053 CPUDRV_PM_MONITOR_INIT(cpudsp); 1054 DPRINTF(D_PM_MONITOR_VERBOSE, ("cpudrv_pm_monitor: instance %d: " 1055 "idle count %d, user count %d, system count %d, pm_level %d, " 1056 "pm_busycnt %d\n", ddi_get_instance(dip), idle_cnt, user_cnt, 1057 system_cnt, cur_spd->pm_level, cpupm->pm_busycnt)); 1058 1059 #ifdef DEBUG 1060 /* 1061 * Notify that timeout and taskq has caused delays and we need to 1062 * scale our parameters accordingly. 1063 * 1064 * To get accurate result, don't turn on other DPRINTFs with 1065 * the following DPRINTF. PROM calls generated by other 1066 * DPRINTFs changes the timing. 1067 */ 1068 if (lbolt_cnt > cur_spd->quant_cnt) { 1069 DPRINTF(D_PM_MONITOR_DELAY, ("cpudrv_pm_monitor: instance %d: " 1070 "lbolt count %ld > quantum_count %u\n", 1071 ddi_get_instance(dip), lbolt_cnt, cur_spd->quant_cnt)); 1072 } 1073 #endif /* DEBUG */ 1074 1075 /* 1076 * Adjust counts based on the delay added by timeout and taskq. 1077 */ 1078 idle_cnt = (idle_cnt * cur_spd->quant_cnt) / lbolt_cnt; 1079 user_cnt = (user_cnt * cur_spd->quant_cnt) / lbolt_cnt; 1080 if ((user_cnt > cur_spd->user_hwm) || (idle_cnt < cur_spd->idle_lwm && 1081 cur_spd->idle_blwm_cnt >= cpudrv_pm_idle_blwm_cnt_max)) { 1082 cur_spd->idle_blwm_cnt = 0; 1083 cur_spd->idle_bhwm_cnt = 0; 1084 /* 1085 * In normal situation, arrange to go to next higher speed. 1086 * If we are running in special direct pm mode, we just stay 1087 * at the current speed. 1088 */ 1089 if (cur_spd == cur_spd->up_spd || cpudrv_direct_pm) { 1090 CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm); 1091 } else { 1092 new_spd = cur_spd->up_spd; 1093 CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm, 1094 new_spd->pm_level); 1095 } 1096 } else if ((user_cnt <= cur_spd->user_lwm) && 1097 (idle_cnt >= cur_spd->idle_hwm) || !CPU_ACTIVE(cp)) { 1098 cur_spd->idle_blwm_cnt = 0; 1099 cur_spd->idle_bhwm_cnt = 0; 1100 /* 1101 * Arrange to go to next lower speed by informing our idle 1102 * status to the power management framework. 1103 */ 1104 CPUDRV_PM_MONITOR_PM_IDLE_COMP(dip, cpupm); 1105 } else { 1106 /* 1107 * If we are between the idle water marks and have not 1108 * been here enough consecutive times to be considered 1109 * busy, just increment the count and return. 1110 */ 1111 if ((idle_cnt < cur_spd->idle_hwm) && 1112 (idle_cnt >= cur_spd->idle_lwm) && 1113 (cur_spd->idle_bhwm_cnt < cpudrv_pm_idle_bhwm_cnt_max)) { 1114 cur_spd->idle_blwm_cnt = 0; 1115 cur_spd->idle_bhwm_cnt++; 1116 mutex_exit(&cpudsp->lock); 1117 goto do_return; 1118 } 1119 if (idle_cnt < cur_spd->idle_lwm) { 1120 cur_spd->idle_blwm_cnt++; 1121 cur_spd->idle_bhwm_cnt = 0; 1122 } 1123 /* 1124 * Arranges to stay at the current speed. 1125 */ 1126 CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm); 1127 } 1128 mutex_exit(&cpudsp->lock); 1129 do_return: 1130 mutex_enter(&cpupm->timeout_lock); 1131 ASSERT(cpupm->timeout_count > 0); 1132 cpupm->timeout_count--; 1133 cv_signal(&cpupm->timeout_cv); 1134 mutex_exit(&cpupm->timeout_lock); 1135 } 1136