1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #ifndef _INET_IP_H 29 #define _INET_IP_H 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #ifdef __cplusplus 34 extern "C" { 35 #endif 36 37 #include <sys/isa_defs.h> 38 #include <sys/types.h> 39 #include <inet/mib2.h> 40 #include <inet/nd.h> 41 #include <sys/atomic.h> 42 #include <net/if_dl.h> 43 #include <net/if.h> 44 #include <netinet/ip.h> 45 #include <netinet/igmp.h> 46 47 #ifdef _KERNEL 48 #include <netinet/ip6.h> 49 #include <sys/avl.h> 50 #include <sys/vmem.h> 51 #include <sys/squeue.h> 52 #include <net/route.h> 53 #include <sys/systm.h> 54 #include <sys/multidata.h> 55 #include <net/radix.h> 56 57 #ifdef DEBUG 58 #define ILL_DEBUG 59 #define IRE_DEBUG 60 #define NCE_DEBUG 61 #define CONN_DEBUG 62 #endif 63 64 #define IP_DEBUG 65 /* 66 * The mt-streams(9F) flags for the IP module; put here so that other 67 * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set 68 * of flags. 69 */ 70 #define IP_DEVMTFLAGS D_MP 71 #endif /* _KERNEL */ 72 73 #define IP_MOD_NAME "ip" 74 #define IP_DEV_NAME "/dev/ip" 75 #define IP6_DEV_NAME "/dev/ip6" 76 77 #define UDP_MOD_NAME "udp" 78 #define UDP_DEV_NAME "/dev/udp" 79 #define UDP6_DEV_NAME "/dev/udp6" 80 81 #define TCP_MOD_NAME "tcp" 82 #define TCP_DEV_NAME "/dev/tcp" 83 #define TCP6_DEV_NAME "/dev/tcp6" 84 85 #define SCTP_MOD_NAME "sctp" 86 87 /* Minor numbers */ 88 #define IPV4_MINOR 0 89 #define IPV6_MINOR 1 90 #define TCP_MINOR 2 91 #define TCP_MINOR6 3 92 93 #ifndef _IPADDR_T 94 #define _IPADDR_T 95 typedef uint32_t ipaddr_t; 96 #endif 97 98 /* Number of bits in an address */ 99 #define IP_ABITS 32 100 #define IPV6_ABITS 128 101 102 #define IP_HOST_MASK (ipaddr_t)0xffffffffU 103 104 #define IP_CSUM(mp, off, sum) (~ip_cksum(mp, off, sum) & 0xFFFF) 105 #define IP_CSUM_PARTIAL(mp, off, sum) ip_cksum(mp, off, sum) 106 #define IP_BCSUM_PARTIAL(bp, len, sum) bcksum(bp, len, sum) 107 #define IP_MD_CSUM(pd, off, sum) (~ip_md_cksum(pd, off, sum) & 0xffff) 108 #define IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum) 109 110 /* 111 * Flag to IP write side to indicate that the appln has sent in a pre-built 112 * IP header. Stored in ipha_ident (which is otherwise zero). 113 */ 114 #define IP_HDR_INCLUDED 0xFFFF 115 116 #define ILL_FRAG_HASH_TBL_COUNT ((unsigned int)64) 117 #define ILL_FRAG_HASH_TBL_SIZE (ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t)) 118 119 #define IPV4_ADDR_LEN 4 120 #define IP_ADDR_LEN IPV4_ADDR_LEN 121 #define IP_ARP_PROTO_TYPE 0x0800 122 123 #define IPV4_VERSION 4 124 #define IP_VERSION IPV4_VERSION 125 #define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5 126 #define IP_SIMPLE_HDR_LENGTH 20 127 #define IP_MAX_HDR_LENGTH 60 128 129 #define IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH) 130 131 #define IP_MIN_MTU (IP_MAX_HDR_LENGTH + 8) /* 68 bytes */ 132 133 /* 134 * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the 135 * 2 files should be cleaned up to remove all redundant definitions. 136 */ 137 #define IP_MAXPACKET 65535 138 #define IP_SIMPLE_HDR_VERSION \ 139 ((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS) 140 141 #define UDPH_SIZE 8 142 143 /* Leave room for ip_newroute to tack on the src and target addresses */ 144 #define OK_RESOLVER_MP(mp) \ 145 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 146 147 /* 148 * Constants and type definitions to support IP IOCTL commands 149 */ 150 #define IP_IOCTL (('i'<<8)|'p') 151 #define IP_IOC_IRE_DELETE 4 152 #define IP_IOC_IRE_DELETE_NO_REPLY 5 153 #define IP_IOC_IRE_ADVISE_NO_REPLY 6 154 #define IP_IOC_RTS_REQUEST 7 155 156 /* Common definitions used by IP IOCTL data structures */ 157 typedef struct ipllcmd_s { 158 uint_t ipllc_cmd; 159 uint_t ipllc_name_offset; 160 uint_t ipllc_name_length; 161 } ipllc_t; 162 163 /* IP IRE Change Command Structure. */ 164 typedef struct ipic_s { 165 ipllc_t ipic_ipllc; 166 uint_t ipic_ire_type; 167 uint_t ipic_max_frag; 168 uint_t ipic_addr_offset; 169 uint_t ipic_addr_length; 170 uint_t ipic_mask_offset; 171 uint_t ipic_mask_length; 172 uint_t ipic_src_addr_offset; 173 uint_t ipic_src_addr_length; 174 uint_t ipic_ll_hdr_offset; 175 uint_t ipic_ll_hdr_length; 176 uint_t ipic_gateway_addr_offset; 177 uint_t ipic_gateway_addr_length; 178 clock_t ipic_rtt; 179 uint32_t ipic_ssthresh; 180 clock_t ipic_rtt_sd; 181 uchar_t ipic_ire_marks; 182 } ipic_t; 183 184 #define ipic_cmd ipic_ipllc.ipllc_cmd 185 #define ipic_ll_name_length ipic_ipllc.ipllc_name_length 186 #define ipic_ll_name_offset ipic_ipllc.ipllc_name_offset 187 188 /* IP IRE Delete Command Structure. */ 189 typedef struct ipid_s { 190 ipllc_t ipid_ipllc; 191 uint_t ipid_ire_type; 192 uint_t ipid_addr_offset; 193 uint_t ipid_addr_length; 194 uint_t ipid_mask_offset; 195 uint_t ipid_mask_length; 196 } ipid_t; 197 198 #define ipid_cmd ipid_ipllc.ipllc_cmd 199 200 #ifdef _KERNEL 201 /* 202 * Temporary state for ip options parser. 203 */ 204 typedef struct ipoptp_s 205 { 206 uint8_t *ipoptp_next; /* next option to look at */ 207 uint8_t *ipoptp_end; /* end of options */ 208 uint8_t *ipoptp_cur; /* start of current option */ 209 uint8_t ipoptp_len; /* length of current option */ 210 uint32_t ipoptp_flags; 211 } ipoptp_t; 212 213 /* 214 * Flag(s) for ipoptp_flags 215 */ 216 #define IPOPTP_ERROR 0x00000001 217 #endif /* _KERNEL */ 218 219 220 /* Controls forwarding of IP packets, set via ndd */ 221 #define IP_FORWARD_NEVER 0 222 #define IP_FORWARD_ALWAYS 1 223 224 #define WE_ARE_FORWARDING (ip_g_forward == IP_FORWARD_ALWAYS) 225 226 #define IPH_HDR_LENGTH(ipha) \ 227 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2) 228 229 #define IPH_HDR_VERSION(ipha) \ 230 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4) 231 232 #ifdef _KERNEL 233 /* 234 * IP reassembly macros. We hide starting and ending offsets in b_next and 235 * b_prev of messages on the reassembly queue. The messages are chained using 236 * b_cont. These macros are used in ip_reassemble() so we don't have to see 237 * the ugly casts and assignments. 238 * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent 239 * them. 240 */ 241 #define IP_REASS_START(mp) ((uint_t)(uintptr_t)((mp)->b_next)) 242 #define IP_REASS_SET_START(mp, u) \ 243 ((mp)->b_next = (mblk_t *)(uintptr_t)(u)) 244 #define IP_REASS_END(mp) ((uint_t)(uintptr_t)((mp)->b_prev)) 245 #define IP_REASS_SET_END(mp, u) \ 246 ((mp)->b_prev = (mblk_t *)(uintptr_t)(u)) 247 248 #define IP_REASS_COMPLETE 0x1 249 #define IP_REASS_PARTIAL 0x2 250 #define IP_REASS_FAILED 0x4 251 252 /* 253 * Test to determine whether this is a module instance of IP or a 254 * driver instance of IP. 255 */ 256 #define CONN_Q(q) (WR(q)->q_next == NULL) 257 258 #define Q_TO_CONN(q) ((conn_t *)(q)->q_ptr) 259 #define Q_TO_TCP(q) (Q_TO_CONN((q))->conn_tcp) 260 #define Q_TO_UDP(q) (Q_TO_CONN((q))->conn_udp) 261 262 /* 263 * The following two macros are used by IP to get the appropriate 264 * wq and rq for a conn. If it is a TCP conn, then we need 265 * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq 266 * from a conn directly if it knows that the conn is not TCP. 267 */ 268 #define CONNP_TO_WQ(connp) \ 269 (IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq) 270 271 #define CONNP_TO_RQ(connp) RD(CONNP_TO_WQ(connp)) 272 273 #define GRAB_CONN_LOCK(q) { \ 274 if (q != NULL && CONN_Q(q)) \ 275 mutex_enter(&(Q_TO_CONN(q))->conn_lock); \ 276 } 277 278 #define RELEASE_CONN_LOCK(q) { \ 279 if (q != NULL && CONN_Q(q)) \ 280 mutex_exit(&(Q_TO_CONN(q))->conn_lock); \ 281 } 282 283 /* "Congestion controlled" protocol */ 284 #define IP_FLOW_CONTROLLED_ULP(p) ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP) 285 286 /* 287 * Complete the pending operation. Usually an ioctl. Can also 288 * be a bind or option management request that got enqueued 289 * in an ipsq_t. Called on completion of the operation. 290 */ 291 #define CONN_OPER_PENDING_DONE(connp) { \ 292 mutex_enter(&(connp)->conn_lock); \ 293 (connp)->conn_oper_pending_ill = NULL; \ 294 cv_broadcast(&(connp)->conn_refcv); \ 295 mutex_exit(&(connp)->conn_lock); \ 296 CONN_DEC_REF(connp); \ 297 } 298 299 /* Get the credential of an IP queue of unknown type */ 300 #define GET_QUEUE_CRED(wq) \ 301 ((wq)->q_next ? (((ill_t *)(wq)->q_ptr)->ill_credp) \ 302 : ((Q_TO_CONN((wq)))->conn_cred)) 303 304 /* 305 * Flags for the various ip_fanout_* routines. 306 */ 307 #define IP_FF_SEND_ICMP 0x01 /* Send an ICMP error */ 308 #define IP_FF_HDR_COMPLETE 0x02 /* Call ip_hdr_complete if error */ 309 #define IP_FF_CKSUM 0x04 /* Recompute ipha_cksum if error */ 310 #define IP_FF_RAWIP 0x08 /* Use rawip mib variable */ 311 #define IP_FF_SRC_QUENCH 0x10 /* OK to send ICMP_SOURCE_QUENCH */ 312 #define IP_FF_SYN_ADDIRE 0x20 /* Add IRE if TCP syn packet */ 313 #define IP_FF_IP6INFO 0x80 /* Add ip6i_t if needed */ 314 #define IP_FF_SEND_SLLA 0x100 /* Send source link layer info ? */ 315 #define IPV6_REACHABILITY_CONFIRMATION 0x200 /* Flags for ip_xmit_v6 */ 316 #define IP_FF_NO_MCAST_LOOP 0x400 /* No multicasts for sending zone */ 317 318 /* 319 * Following flags are used by IPQoS to determine if policy processing is 320 * required. 321 */ 322 #define IP6_NO_IPPOLICY 0x800 /* Don't do IPQoS processing */ 323 #define IP6_IN_LLMCAST 0x1000 /* Multicast */ 324 325 #define IP_FF_LOOPBACK 0x2000 /* Loopback fanout */ 326 327 #ifndef IRE_DB_TYPE 328 #define IRE_DB_TYPE M_SIG 329 #endif 330 331 #ifndef IRE_DB_REQ_TYPE 332 #define IRE_DB_REQ_TYPE M_PCSIG 333 #endif 334 335 #ifndef IRE_ARPRESOLVE_TYPE 336 #define IRE_ARPRESOLVE_TYPE M_EVENT 337 #endif 338 339 /* 340 * Values for squeue switch: 341 */ 342 343 #define IP_SQUEUE_ENTER_NODRAIN 1 344 #define IP_SQUEUE_ENTER 2 345 /* 346 * This is part of the interface between Transport provider and 347 * IP which can be used to set policy information. This is usually 348 * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that 349 * only IPSEC_POLICY_SET is there when it is found in the chain. 350 * The information contained is an struct ipsec_req_t. On success 351 * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned. 352 * IPSEC_POLICY_SET is never returned. 353 */ 354 #define IPSEC_POLICY_SET M_SETOPTS 355 356 #define IRE_IS_LOCAL(ire) ((ire != NULL) && \ 357 ((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK))) 358 359 #define IRE_IS_TARGET(ire) ((ire != NULL) && \ 360 ((ire)->ire_type != IRE_BROADCAST)) 361 362 /* IP Fragmentation Reassembly Header */ 363 typedef struct ipf_s { 364 struct ipf_s *ipf_hash_next; 365 struct ipf_s **ipf_ptphn; /* Pointer to previous hash next. */ 366 uint32_t ipf_ident; /* Ident to match. */ 367 uint8_t ipf_protocol; /* Protocol to match. */ 368 uchar_t ipf_last_frag_seen : 1; /* Last fragment seen ? */ 369 time_t ipf_timestamp; /* Reassembly start time. */ 370 mblk_t *ipf_mp; /* mblk we live in. */ 371 mblk_t *ipf_tail_mp; /* Frag queue tail pointer. */ 372 int ipf_hole_cnt; /* Number of holes (hard-case). */ 373 int ipf_end; /* Tail end offset (0 -> hard-case). */ 374 uint_t ipf_gen; /* Frag queue generation */ 375 size_t ipf_count; /* Count of bytes used by frag */ 376 uint_t ipf_nf_hdr_len; /* Length of nonfragmented header */ 377 in6_addr_t ipf_v6src; /* IPv6 source address */ 378 in6_addr_t ipf_v6dst; /* IPv6 dest address */ 379 uint_t ipf_prev_nexthdr_offset; /* Offset for nexthdr value */ 380 uint8_t ipf_ecn; /* ECN info for the fragments */ 381 uint8_t ipf_num_dups; /* Number of times dup frags recvd */ 382 uint16_t ipf_checksum_flags; /* Hardware checksum flags */ 383 uint32_t ipf_checksum; /* Partial checksum of fragment data */ 384 } ipf_t; 385 386 #define ipf_src V4_PART_OF_V6(ipf_v6src) 387 #define ipf_dst V4_PART_OF_V6(ipf_v6dst) 388 389 typedef enum { 390 IB_PKT = 0x01, 391 OB_PKT = 0x02 392 } ip_pkt_t; 393 394 #define UPDATE_IB_PKT_COUNT(ire)\ 395 { \ 396 (ire)->ire_ib_pkt_count++; \ 397 if ((ire)->ire_ipif != NULL) { \ 398 /* \ 399 * forwarding packet \ 400 */ \ 401 if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \ 402 atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\ 403 else \ 404 atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\ 405 } \ 406 } 407 #define UPDATE_OB_PKT_COUNT(ire)\ 408 { \ 409 (ire)->ire_ob_pkt_count++;\ 410 if ((ire)->ire_ipif != NULL) { \ 411 atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \ 412 } \ 413 } 414 415 416 #define IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \ 417 { \ 418 switch (ipha->ipha_protocol) { \ 419 case IPPROTO_UDP: \ 420 ip_udp_input(q, mp, ipha, ire, recv_ill); \ 421 break; \ 422 default: \ 423 ip_proto_input(q, mp, ipha, ire, recv_ill); \ 424 break; \ 425 } \ 426 } 427 428 /* 429 * NCE_EXPIRED is TRUE when we have a non-permanent nce that was 430 * found to be REACHABLE more than ip_ire_arp_interval ms ago. 431 * This macro is used to trigger re-arp of existing nce_t entries 432 * so that they can be updated with the latest information. 433 * nce's will get cleaned up (or updated with new info) in the following 434 * circumstances: 435 * - ip_ire_trash_reclaim will free nce's using ndp_cache_reclaim 436 * when memory is low, 437 * - ip_arp_news, when updates are received. 438 * - if the nce is NCE_EXPIRED(), it will be re-initialized to ND_INITIAL, 439 * so that a new arp request will be triggered. 440 * nce_last is the timestamp that indicates when the nce_res_mp in the 441 * nce_t was last updated to a valid link-layer address. nce_last gets 442 * modified/updated : 443 * - when the nce is created or reinit-ed 444 * - every time we get a sane arp response for the nce. 445 */ 446 #define NCE_EXPIRED(nce) (nce->nce_last > 0 && \ 447 ((nce->nce_flags & NCE_F_PERMANENT) == 0) && \ 448 ((TICK_TO_MSEC(lbolt64) - nce->nce_last) > ip_ire_arp_interval)) 449 450 #endif /* _KERNEL */ 451 452 /* ICMP types */ 453 #define ICMP_ECHO_REPLY 0 454 #define ICMP_DEST_UNREACHABLE 3 455 #define ICMP_SOURCE_QUENCH 4 456 #define ICMP_REDIRECT 5 457 #define ICMP_ECHO_REQUEST 8 458 #define ICMP_ROUTER_ADVERTISEMENT 9 459 #define ICMP_ROUTER_SOLICITATION 10 460 #define ICMP_TIME_EXCEEDED 11 461 #define ICMP_PARAM_PROBLEM 12 462 #define ICMP_TIME_STAMP_REQUEST 13 463 #define ICMP_TIME_STAMP_REPLY 14 464 #define ICMP_INFO_REQUEST 15 465 #define ICMP_INFO_REPLY 16 466 #define ICMP_ADDRESS_MASK_REQUEST 17 467 #define ICMP_ADDRESS_MASK_REPLY 18 468 469 /* ICMP_TIME_EXCEEDED codes */ 470 #define ICMP_TTL_EXCEEDED 0 471 #define ICMP_REASSEMBLY_TIME_EXCEEDED 1 472 473 /* ICMP_DEST_UNREACHABLE codes */ 474 #define ICMP_NET_UNREACHABLE 0 475 #define ICMP_HOST_UNREACHABLE 1 476 #define ICMP_PROTOCOL_UNREACHABLE 2 477 #define ICMP_PORT_UNREACHABLE 3 478 #define ICMP_FRAGMENTATION_NEEDED 4 479 #define ICMP_SOURCE_ROUTE_FAILED 5 480 #define ICMP_DEST_NET_UNKNOWN 6 481 #define ICMP_DEST_HOST_UNKNOWN 7 482 #define ICMP_SRC_HOST_ISOLATED 8 483 #define ICMP_DEST_NET_UNREACH_ADMIN 9 484 #define ICMP_DEST_HOST_UNREACH_ADMIN 10 485 #define ICMP_DEST_NET_UNREACH_TOS 11 486 #define ICMP_DEST_HOST_UNREACH_TOS 12 487 488 /* ICMP Header Structure */ 489 typedef struct icmph_s { 490 uint8_t icmph_type; 491 uint8_t icmph_code; 492 uint16_t icmph_checksum; 493 union { 494 struct { /* ECHO request/response structure */ 495 uint16_t u_echo_ident; 496 uint16_t u_echo_seqnum; 497 } u_echo; 498 struct { /* Destination unreachable structure */ 499 uint16_t u_du_zero; 500 uint16_t u_du_mtu; 501 } u_du; 502 struct { /* Parameter problem structure */ 503 uint8_t u_pp_ptr; 504 uint8_t u_pp_rsvd[3]; 505 } u_pp; 506 struct { /* Redirect structure */ 507 ipaddr_t u_rd_gateway; 508 } u_rd; 509 } icmph_u; 510 } icmph_t; 511 512 #define icmph_echo_ident icmph_u.u_echo.u_echo_ident 513 #define icmph_echo_seqnum icmph_u.u_echo.u_echo_seqnum 514 #define icmph_du_zero icmph_u.u_du.u_du_zero 515 #define icmph_du_mtu icmph_u.u_du.u_du_mtu 516 #define icmph_pp_ptr icmph_u.u_pp.u_pp_ptr 517 #define icmph_rd_gateway icmph_u.u_rd.u_rd_gateway 518 519 #define ICMPH_SIZE 8 520 521 /* 522 * Minimum length of transport layer header included in an ICMP error 523 * message for it to be considered valid. 524 */ 525 #define ICMP_MIN_TP_HDR_LEN 8 526 527 /* Aligned IP header */ 528 typedef struct ipha_s { 529 uint8_t ipha_version_and_hdr_length; 530 uint8_t ipha_type_of_service; 531 uint16_t ipha_length; 532 uint16_t ipha_ident; 533 uint16_t ipha_fragment_offset_and_flags; 534 uint8_t ipha_ttl; 535 uint8_t ipha_protocol; 536 uint16_t ipha_hdr_checksum; 537 ipaddr_t ipha_src; 538 ipaddr_t ipha_dst; 539 } ipha_t; 540 541 #define IPH_DF 0x4000 /* Don't fragment */ 542 #define IPH_MF 0x2000 /* More fragments to come */ 543 #define IPH_OFFSET 0x1FFF /* Where the offset lives */ 544 #define IPH_FRAG_HDR 0x8000 /* IPv6 don't fragment bit */ 545 546 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */ 547 #define IPH_ECN_NECT 0x0 /* Not ECN-Capabable Transport */ 548 #define IPH_ECN_ECT1 0x1 /* ECN-Capable Transport, ECT(1) */ 549 #define IPH_ECN_ECT0 0x2 /* ECN-Capable Transport, ECT(0) */ 550 #define IPH_ECN_CE 0x3 /* ECN-Congestion Experienced (CE) */ 551 552 /* IP Mac info structure */ 553 typedef struct ip_m_s { 554 t_uscalar_t ip_m_mac_type; /* From <sys/dlpi.h> */ 555 int ip_m_type; /* From <net/if_types.h> */ 556 boolean_t (*ip_m_v4mapinfo)(uint_t, uint8_t *, uint8_t *, 557 uint32_t *, ipaddr_t *); 558 boolean_t (*ip_m_v6mapinfo)(uint_t, uint8_t *, uint8_t *, 559 uint32_t *, in6_addr_t *); 560 boolean_t (*ip_m_v6intfid)(uint_t, uint8_t *, in6_addr_t *); 561 } ip_m_t; 562 563 /* 564 * The following functions attempt to reduce the link layer dependency 565 * of the IP stack. The current set of link specific operations are: 566 * a. map from IPv4 class D (224.0/4) multicast address range to the link 567 * layer multicast address range. 568 * b. map from IPv6 multicast address range (ff00::/8) to the link 569 * layer multicast address range. 570 * c. derive the default IPv6 interface identifier from the link layer 571 * address. 572 */ 573 #define MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \ 574 (((ip_m)->ip_m_v4mapinfo != NULL) && \ 575 (*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr)) 576 #define MEDIA_V6INTFID(ip_m, plen, phys, v6ptr) \ 577 (((ip_m)->ip_m_v6intfid != NULL) && \ 578 (*(ip_m)->ip_m_v6intfid)(plen, phys, v6ptr)) 579 #define MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \ 580 (((ip_m)->ip_m_v6mapinfo != NULL) && \ 581 (*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr)) 582 583 /* Router entry types */ 584 #define IRE_BROADCAST 0x0001 /* Route entry for broadcast address */ 585 #define IRE_DEFAULT 0x0002 /* Route entry for default gateway */ 586 #define IRE_LOCAL 0x0004 /* Route entry for local address */ 587 #define IRE_LOOPBACK 0x0008 /* Route entry for loopback address */ 588 #define IRE_PREFIX 0x0010 /* Route entry for prefix routes */ 589 #define IRE_CACHE 0x0020 /* Cached Route entry */ 590 #define IRE_IF_NORESOLVER 0x0040 /* Route entry for local interface */ 591 /* net without any address mapping. */ 592 #define IRE_IF_RESOLVER 0x0080 /* Route entry for local interface */ 593 /* net with resolver. */ 594 #define IRE_HOST 0x0100 /* Host route entry */ 595 #define IRE_HOST_REDIRECT 0x0200 /* Host route entry from redirects */ 596 597 /* 598 * IRE_MIPRTUN is only set on the ires in the ip_mrtun_table. 599 * This ire_type must not be set for ftable and ctable routing entries. 600 */ 601 #define IRE_MIPRTUN 0x0400 /* Reverse tunnel route entry */ 602 603 #define IRE_INTERFACE (IRE_IF_NORESOLVER | IRE_IF_RESOLVER) 604 #define IRE_OFFSUBNET (IRE_DEFAULT | IRE_PREFIX | IRE_HOST | \ 605 IRE_HOST_REDIRECT) 606 #define IRE_CACHETABLE (IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \ 607 IRE_LOOPBACK) 608 #define IRE_FORWARDTABLE (IRE_INTERFACE | IRE_OFFSUBNET) 609 610 /* 611 * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of 612 * the bucket should delete this IRE from this bucket. 613 */ 614 #define IRE_MARK_CONDEMNED 0x0001 615 /* 616 * If a broadcast IRE is marked with IRE_MARK_NORECV, ip_rput will drop the 617 * broadcast packets received on that interface. This is marked only 618 * on broadcast ires. Employed by IPMP, where we have multiple NICs on the 619 * same subnet receiving the same broadcast packet. 620 */ 621 #define IRE_MARK_NORECV 0x0002 622 /* 623 * IRE_CACHE marked this way won't be returned by ire_cache_lookup. Need 624 * to look specifically using MATCH_IRE_MARK_HIDDEN. Used by IPMP. 625 */ 626 #define IRE_MARK_HIDDEN 0x0004 /* Typically Used by in.mpathd */ 627 628 /* 629 * ire with IRE_MARK_NOADD is created in ip_newroute_ipif, when outgoing 630 * interface is specified by IP_XMIT_IF socket option. This ire is not 631 * added in IRE_CACHE. For example, this is used by mipagent to prevent 632 * any entry to be added in the cache table. We do not want to add any 633 * entry for a mobile-node in the routing table for foreign agent originated 634 * packets. Adding routes in cache table in this case, may run the risks of 635 * incorrect routing path in case of private overlapping addresses. 636 */ 637 #define IRE_MARK_NOADD 0x0008 /* Mark not to add ire in cache */ 638 639 /* 640 * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used 641 * either for forwarding a packet or has not been used for sending 642 * traffic on TCP connections terminated on this system. In both 643 * cases, this IRE is the first to go when IRE is being cleaned up. 644 */ 645 #define IRE_MARK_TEMPORARY 0x0010 646 647 /* 648 * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with 649 * this mark, additional atomic checks need to be performed. For eg: by the 650 * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the 651 * usesrc grouping could have changed in which case we want to fail adding 652 * the IRE_CACHE entry 653 */ 654 #define IRE_MARK_USESRC_CHECK 0x0020 655 656 /* 657 * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the 658 * routing table lookup for the destination is bypassed and the packet is 659 * sent directly to the specified nexthop. The associated IRE_CACHE entries 660 * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up 661 * in regular ire cache lookups. 662 */ 663 #define IRE_MARK_PRIVATE_ADDR 0x0040 664 665 /* 666 * When we send an ARP resolution query for the nexthop gateway's ire, 667 * we use esballoc to create the ire_t in the AR_ENTRY_QUERY mblk 668 * chain, and mark its ire_marks with IRE_MARK_UNCACHED. This flag 669 * indicates that information from ARP has not been transferred to a 670 * permanent IRE_CACHE entry. The flag is reset only when the 671 * information is successfully transferred to an ire_cache entry (in 672 * ire_add()). Attempting to free the AR_ENTRY_QUERY mblk chain prior 673 * to ire_add (e.g., from arp, or from ip`ip_wput_nondata) will 674 * require that the resources (incomplete ire_cache and/or nce) must 675 * be cleaned up. The free callback routine (ire_freemblk()) checks 676 * for IRE_MARK_UNCACHED to see if any resources that are pinned down 677 * will need to be cleaned up or not. 678 */ 679 680 #define IRE_MARK_UNCACHED 0x0080 681 682 /* Flags with ire_expire routine */ 683 #define FLUSH_ARP_TIME 0x0001 /* ARP info potentially stale timer */ 684 #define FLUSH_REDIRECT_TIME 0x0002 /* Redirects potentially stale */ 685 #define FLUSH_MTU_TIME 0x0004 /* Include path MTU per RFC 1191 */ 686 687 /* Arguments to ire_flush_cache() */ 688 #define IRE_FLUSH_DELETE 0 689 #define IRE_FLUSH_ADD 1 690 691 /* 692 * Open/close synchronization flags. 693 * These are kept in a separate field in the conn and the synchronization 694 * depends on the atomic 32 bit access to that field. 695 */ 696 #define CONN_CLOSING 0x01 /* ip_close waiting for ip_wsrv */ 697 #define CONN_IPSEC_LOAD_WAIT 0x02 /* waiting for load */ 698 #define CONN_CONDEMNED 0x04 /* conn is closing, no more refs */ 699 #define CONN_INCIPIENT 0x08 /* conn not yet visible, no refs */ 700 #define CONN_QUIESCED 0x10 /* conn is now quiescent */ 701 702 /* 703 * Parameter to ip_output giving the identity of the caller. 704 * IP_WSRV means the packet was enqueued in the STREAMS queue 705 * due to flow control and is now being reprocessed in the context of 706 * the STREAMS service procedure, consequent to flow control relief. 707 * IRE_SEND means the packet is being reprocessed consequent to an 708 * ire cache creation and addition and this may or may not be happening 709 * in the service procedure context. Anything other than the above 2 710 * cases is identified as IP_WPUT. Most commonly this is the case of 711 * packets coming down from the application. 712 */ 713 #ifdef _KERNEL 714 #define IP_WSRV 1 /* Called from ip_wsrv */ 715 #define IP_WPUT 2 /* Called from ip_wput */ 716 #define IRE_SEND 3 /* Called from ire_send */ 717 718 /* 719 * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2) 720 */ 721 #define MAX_FILTER_SIZE 64 722 723 typedef struct slist_s { 724 int sl_numsrc; 725 in6_addr_t sl_addr[MAX_FILTER_SIZE]; 726 } slist_t; 727 728 /* 729 * Following struct is used to maintain retransmission state for 730 * a multicast group. One rtx_state_t struct is an in-line field 731 * of the ilm_t struct; the slist_ts in the rtx_state_t struct are 732 * alloc'd as needed. 733 */ 734 typedef struct rtx_state_s { 735 uint_t rtx_timer; /* retrans timer */ 736 int rtx_cnt; /* retrans count */ 737 int rtx_fmode_cnt; /* retrans count for fmode change */ 738 slist_t *rtx_allow; 739 slist_t *rtx_block; 740 } rtx_state_t; 741 742 /* 743 * Used to construct list of multicast address records that will be 744 * sent in a single listener report. 745 */ 746 typedef struct mrec_s { 747 struct mrec_s *mrec_next; 748 uint8_t mrec_type; 749 uint8_t mrec_auxlen; /* currently unused */ 750 in6_addr_t mrec_group; 751 slist_t mrec_srcs; 752 } mrec_t; 753 754 /* Group membership list per upper conn */ 755 /* 756 * XXX add ilg info for ifaddr/ifindex. 757 * XXX can we make ilg survive an ifconfig unplumb + plumb 758 * by setting the ipif/ill to NULL and recover that later? 759 * 760 * ilg_ipif is used by IPv4 as multicast groups are joined using an interface 761 * address (ipif). 762 * ilg_ill is used by IPv6 as multicast groups are joined using an interface 763 * index (phyint->phyint_ifindex). 764 * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6. 765 * 766 * ilg records the state of multicast memberships of a socket end point. 767 * ilm records the state of multicast memberships with the driver and is 768 * maintained per interface. 769 * 770 * Notes : 771 * 772 * 1) There is no direct link between a given ilg and ilm. If the 773 * application has joined a group G with ifindex I, we will have 774 * an ilg with ilg_v6group and ilg_ill. There will be a corresponding 775 * ilm with ilm_ill/ilm_v6addr recording the multicast membership. 776 * To delete the membership, 777 * 778 * a) Search for ilg matching on G and I with ilg_v6group 779 * and ilg_ill. Delete ilg_ill. 780 * b) Search the corresponding ilm matching on G and I with 781 * ilm_v6addr and ilm_ill. Delete ilm. 782 * 783 * In IPv4, the only difference is, we look using ipifs instead of 784 * ills. 785 * 786 * 2) With IP multipathing, we want to keep receiving even after the 787 * interface has failed. We do this by moving multicast memberships 788 * to a new_ill within the group. This is acheived by sending 789 * DL_DISABMULTI_REQS on ilg_ill/ilm_ill and sending DL_ENABMULTIREQS 790 * on the new_ill and changing ilg_ill/ilm_ill to new_ill. But, we 791 * need to be able to delete memberships which will still come down 792 * with the ifindex of the old ill which is what the application 793 * knows of. Thus we store the ilm_/ilg_orig_ifindex to keep track 794 * of where we joined initially so that we can lookup even after we 795 * moved the membership. It is also used for moving back the membership 796 * when the old ill has been repaired. This is done by looking up for 797 * ilms with ilm_orig_ifindex matching on the old ill's ifindex. Only 798 * ilms actually move from old ill to new ill. ilgs don't move (just 799 * the ilg_ill is changed when it moves) as it just records the state 800 * of the application that has joined a group G where as ilm records 801 * the state joined with the driver. Thus when we send DL_XXXMULTI_REQs 802 * we also need to keep the ilm in the right ill. 803 * 804 * In IPv4, as ipifs move from old ill to new_ill, ilgs and ilms move 805 * implicitly as we use only ipifs in IPv4. Thus, one can always lookup 806 * a given ilm/ilg even after it fails without the support of 807 * orig_ifindex. We move ilms still to record the driver state as 808 * mentioned above. 809 */ 810 811 /* 812 * The ilg_t and ilm_t members are protected by ipsq. They can be changed only 813 * by a thread executing in the ipsq. In other words add/delete of a 814 * multicast group has to execute in the ipsq. 815 */ 816 #define ILG_DELETED 0x1 /* ilg_flags */ 817 typedef struct ilg_s { 818 in6_addr_t ilg_v6group; 819 struct ipif_s *ilg_ipif; /* Logical interface we are member on */ 820 struct ill_s *ilg_ill; /* Used by IPv6 */ 821 int ilg_orig_ifindex; /* Interface originally joined on */ 822 uint_t ilg_flags; 823 mcast_record_t ilg_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 824 slist_t *ilg_filter; 825 } ilg_t; 826 827 828 /* 829 * Multicast address list entry for lower ill. 830 * ilm_ipif is used by IPv4 as multicast groups are joined using ipif. 831 * ilm_ill is used by IPv6 as multicast groups are joined using ill. 832 * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6. 833 */ 834 #define ILM_DELETED 0x1 /* ilm_flags */ 835 typedef struct ilm_s { 836 in6_addr_t ilm_v6addr; 837 int ilm_refcnt; 838 uint_t ilm_timer; /* IGMP/MLD query resp timer, in msec */ 839 struct ipif_s *ilm_ipif; /* Back pointer to ipif for IPv4 */ 840 struct ilm_s *ilm_next; /* Linked list for each ill */ 841 uint_t ilm_state; /* state of the membership */ 842 struct ill_s *ilm_ill; /* Back pointer to ill for IPv6 */ 843 int ilm_orig_ifindex; /* V6_MULTICAST_IF/ilm_ipif index */ 844 uint_t ilm_flags; 845 boolean_t ilm_is_new; /* new ilm */ 846 boolean_t ilm_notify_driver; /* Need to notify the driver */ 847 zoneid_t ilm_zoneid; 848 int ilm_no_ilg_cnt; /* number of joins w/ no ilg */ 849 mcast_record_t ilm_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 850 slist_t *ilm_filter; /* source filter list */ 851 slist_t *ilm_pendsrcs; /* relevant src addrs for pending req */ 852 rtx_state_t ilm_rtx; /* SCR retransmission state */ 853 } ilm_t; 854 855 #define ilm_addr V4_PART_OF_V6(ilm_v6addr) 856 857 /* 858 * ilm_walker_cleanup needs to execute when the ilm_walker_cnt goes down to 859 * zero. In addition it needs to block new walkers while it is unlinking ilm's 860 * from the list. Thus simple atomics for the ill_ilm_walker_cnt don't suffice. 861 */ 862 #define ILM_WALKER_HOLD(ill) { \ 863 mutex_enter(&(ill)->ill_lock); \ 864 ill->ill_ilm_walker_cnt++; \ 865 mutex_exit(&(ill)->ill_lock); \ 866 } 867 868 #define ILM_WALKER_RELE(ill) { \ 869 mutex_enter(&(ill)->ill_lock); \ 870 (ill)->ill_ilm_walker_cnt--; \ 871 if ((ill)->ill_ilm_walker_cnt == 0 && (ill)->ill_ilm_cleanup_reqd) \ 872 ilm_walker_cleanup(ill); \ 873 mutex_exit(&(ill)->ill_lock); \ 874 } 875 876 /* 877 * Soft reference to an IPsec SA. 878 * 879 * On relative terms, conn's can be persistant (living as long as the 880 * processes which create them), while SA's are ephemeral (dying when 881 * they hit their time-based or byte-based lifetimes). 882 * 883 * We could hold a hard reference to an SA from an ipsec_latch_t, 884 * but this would cause expired SA's to linger for a potentially 885 * unbounded time. 886 * 887 * Instead, we remember the hash bucket number and bucket generation 888 * in addition to the pointer. The bucket generation is incremented on 889 * each deletion. 890 */ 891 typedef struct ipsa_ref_s 892 { 893 struct ipsa_s *ipsr_sa; 894 struct isaf_s *ipsr_bucket; 895 uint64_t ipsr_gen; 896 } ipsa_ref_t; 897 898 /* 899 * IPsec "latching" state. 900 * 901 * In the presence of IPsec policy, fully-bound conn's bind a connection 902 * to more than just the 5-tuple, but also a specific IPsec action and 903 * identity-pair. 904 * 905 * As an optimization, we also cache soft references to IPsec SA's 906 * here so that we can fast-path around most of the work needed for 907 * outbound IPsec SA selection. 908 * 909 * Were it not for TCP's detached connections, this state would be 910 * in-line in conn_t; instead, this is in a separate structure so it 911 * can be handed off to TCP when a connection is detached. 912 */ 913 typedef struct ipsec_latch_s 914 { 915 kmutex_t ipl_lock; 916 uint32_t ipl_refcnt; 917 918 uint64_t ipl_unique; 919 struct ipsec_policy_s *ipl_in_policy; /* latched policy (in) */ 920 struct ipsec_policy_s *ipl_out_policy; /* latched policy (out) */ 921 struct ipsec_action_s *ipl_in_action; /* latched action (in) */ 922 struct ipsec_action_s *ipl_out_action; /* latched action (out) */ 923 cred_t *ipl_local_id; 924 struct ipsid_s *ipl_local_cid; 925 struct ipsid_s *ipl_remote_cid; 926 unsigned int 927 ipl_out_action_latched : 1, 928 ipl_in_action_latched : 1, 929 ipl_out_policy_latched : 1, 930 ipl_in_policy_latched : 1, 931 932 ipl_ids_latched : 1, 933 934 ipl_pad_to_bit_31 : 27; 935 936 ipsa_ref_t ipl_ref[2]; /* 0: ESP, 1: AH */ 937 938 } ipsec_latch_t; 939 940 #define IPLATCH_REFHOLD(ipl) { \ 941 atomic_add_32(&(ipl)->ipl_refcnt, 1); \ 942 ASSERT((ipl)->ipl_refcnt != 0); \ 943 } 944 945 #define IPLATCH_REFRELE(ipl) { \ 946 ASSERT((ipl)->ipl_refcnt != 0); \ 947 membar_exit(); \ 948 if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0) \ 949 iplatch_free(ipl); \ 950 } 951 952 /* 953 * peer identity structure. 954 */ 955 956 typedef struct conn_s conn_t; 957 958 /* 959 * The old IP client structure "ipc_t" is gone. All the data is stored in the 960 * connection structure "conn_t" now. The mapping of old and new fields looks 961 * like this: 962 * 963 * ipc_ulp conn_ulp 964 * ipc_rq conn_rq 965 * ipc_wq conn_wq 966 * 967 * ipc_laddr conn_src 968 * ipc_faddr conn_rem 969 * ipc_v6laddr conn_srcv6 970 * ipc_v6faddr conn_remv6 971 * 972 * ipc_lport conn_lport 973 * ipc_fport conn_fport 974 * ipc_ports conn_ports 975 * 976 * ipc_policy conn_policy 977 * ipc_latch conn_latch 978 * 979 * ipc_irc_lock conn_lock 980 * ipc_ire_cache conn_ire_cache 981 * 982 * ipc_state_flags conn_state_flags 983 * ipc_outgoing_ill conn_outgoing_ill 984 * 985 * ipc_dontroute conn_dontroute 986 * ipc_loopback conn_loopback 987 * ipc_broadcast conn_broadcast 988 * ipc_reuseaddr conn_reuseaddr 989 * 990 * ipc_multicast_loop conn_multicast_loop 991 * ipc_multi_router conn_multi_router 992 * ipc_priv_stream conn_priv_stream 993 * ipc_draining conn_draining 994 * 995 * ipc_did_putbq conn_did_putbq 996 * ipc_unspec_src conn_unspec_src 997 * ipc_policy_cached conn_policy_cached 998 * 999 * ipc_in_enforce_policy conn_in_enforce_policy 1000 * ipc_out_enforce_policy conn_out_enforce_policy 1001 * ipc_af_isv6 conn_af_isv6 1002 * ipc_pkt_isv6 conn_pkt_isv6 1003 * 1004 * ipc_ipv6_recvpktinfo conn_ipv6_recvpktinfo 1005 * 1006 * ipc_ipv6_recvhoplimit conn_ipv6_recvhoplimit 1007 * ipc_ipv6_recvhopopts conn_ipv6_recvhopopts 1008 * ipc_ipv6_recvdstopts conn_ipv6_recvdstopts 1009 * 1010 * ipc_ipv6_recvrthdr conn_ipv6_recvrthdr 1011 * ipc_ipv6_recvrtdstopts conn_ipv6_recvrtdstopts 1012 * ipc_fully_bound conn_fully_bound 1013 * 1014 * ipc_recvif conn_recvif 1015 * 1016 * ipc_recvslla conn_recvslla 1017 * ipc_acking_unbind conn_acking_unbind 1018 * ipc_pad_to_bit_31 conn_pad_to_bit_31 1019 * 1020 * ipc_xmit_if_ill conn_xmit_if_ill 1021 * ipc_nofailover_ill conn_nofailover_ill 1022 * 1023 * ipc_proto conn_proto 1024 * ipc_incoming_ill conn_incoming_ill 1025 * ipc_outgoing_pill conn_outgoing_pill 1026 * ipc_pending_ill conn_pending_ill 1027 * ipc_unbind_mp conn_unbind_mp 1028 * ipc_ilg conn_ilg 1029 * ipc_ilg_allocated conn_ilg_allocated 1030 * ipc_ilg_inuse conn_ilg_inuse 1031 * ipc_ilg_walker_cnt conn_ilg_walker_cnt 1032 * ipc_refcv conn_refcv 1033 * ipc_multicast_ipif conn_multicast_ipif 1034 * ipc_multicast_ill conn_multicast_ill 1035 * ipc_orig_bound_ifindex conn_orig_bound_ifindex 1036 * ipc_orig_multicast_ifindex conn_orig_multicast_ifindex 1037 * ipc_orig_xmit_ifindex conn_orig_xmit_ifindex 1038 * ipc_drain_next conn_drain_next 1039 * ipc_drain_prev conn_drain_prev 1040 * ipc_idl conn_idl 1041 */ 1042 1043 /* 1044 * This is used to match an inbound/outbound datagram with 1045 * policy. 1046 */ 1047 1048 typedef struct ipsec_selector { 1049 in6_addr_t ips_local_addr_v6; 1050 in6_addr_t ips_remote_addr_v6; 1051 uint16_t ips_local_port; 1052 uint16_t ips_remote_port; 1053 uint8_t ips_icmp_type; 1054 uint8_t ips_icmp_code; 1055 uint8_t ips_protocol; 1056 uint8_t ips_isv4 : 1, 1057 ips_is_icmp_inv_acq: 1; 1058 } ipsec_selector_t; 1059 1060 /* 1061 * Note that we put v4 addresses in the *first* 32-bit word of the 1062 * selector rather than the last to simplify the prefix match/mask code 1063 * in spd.c 1064 */ 1065 #define ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0] 1066 #define ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0] 1067 1068 /* Values used in IP by IPSEC Code */ 1069 #define IPSEC_OUTBOUND B_TRUE 1070 #define IPSEC_INBOUND B_FALSE 1071 1072 /* 1073 * There are two variants in policy failures. The packet may come in 1074 * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not 1075 * have the desired level of protection (IPSEC_POLICY_MISMATCH). 1076 */ 1077 #define IPSEC_POLICY_NOT_NEEDED 0 1078 #define IPSEC_POLICY_MISMATCH 1 1079 #define IPSEC_POLICY_AUTH_NOT_NEEDED 2 1080 #define IPSEC_POLICY_ENCR_NOT_NEEDED 3 1081 #define IPSEC_POLICY_SE_NOT_NEEDED 4 1082 #define IPSEC_POLICY_MAX 5 /* Always max + 1. */ 1083 1084 /* 1085 * Folowing macro is used whenever the code does not know whether there 1086 * is a M_CTL present in the front and it needs to examine the actual mp 1087 * i.e the IP header. As a M_CTL message could be in the front, this 1088 * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL 1089 * mp is not present, both first_mp and mp point to the same message. 1090 */ 1091 #define EXTRACT_PKT_MP(mp, first_mp, mctl_present) \ 1092 (first_mp) = (mp); \ 1093 if ((mp)->b_datap->db_type == M_CTL) { \ 1094 (mp) = (mp)->b_cont; \ 1095 (mctl_present) = B_TRUE; \ 1096 } else { \ 1097 (mctl_present) = B_FALSE; \ 1098 } 1099 1100 /* 1101 * Check with IPSEC inbound policy if 1102 * 1103 * 1) per-socket policy is present - indicated by conn_in_enforce_policy. 1104 * 2) Or if we have not cached policy on the conn and the global policy is 1105 * non-empty. 1106 */ 1107 #define CONN_INBOUND_POLICY_PRESENT(connp) \ 1108 ((connp)->conn_in_enforce_policy || \ 1109 (!((connp)->conn_policy_cached) && \ 1110 ipsec_inbound_v4_policy_present)) 1111 1112 #define CONN_INBOUND_POLICY_PRESENT_V6(connp) \ 1113 ((connp)->conn_in_enforce_policy || \ 1114 (!(connp)->conn_policy_cached && \ 1115 ipsec_inbound_v6_policy_present)) 1116 1117 #define CONN_OUTBOUND_POLICY_PRESENT(connp) \ 1118 ((connp)->conn_out_enforce_policy || \ 1119 (!((connp)->conn_policy_cached) && \ 1120 ipsec_outbound_v4_policy_present)) 1121 1122 #define CONN_OUTBOUND_POLICY_PRESENT_V6(connp) \ 1123 ((connp)->conn_out_enforce_policy || \ 1124 (!(connp)->conn_policy_cached && \ 1125 ipsec_outbound_v6_policy_present)) 1126 1127 /* 1128 * Information cached in IRE for upper layer protocol (ULP). 1129 * 1130 * Notice that ire_max_frag is not included in the iulp_t structure, which 1131 * it may seem that it should. But ire_max_frag cannot really be cached. It 1132 * is fixed for each interface. For MTU found by PMTUd, we may want to cache 1133 * it. But currently, we do not do that. 1134 */ 1135 typedef struct iulp_s { 1136 boolean_t iulp_set; /* Is any metric set? */ 1137 uint32_t iulp_ssthresh; /* Slow start threshold (TCP). */ 1138 clock_t iulp_rtt; /* Guestimate in millisecs. */ 1139 clock_t iulp_rtt_sd; /* Cached value of RTT variance. */ 1140 uint32_t iulp_spipe; /* Send pipe size. */ 1141 uint32_t iulp_rpipe; /* Receive pipe size. */ 1142 uint32_t iulp_rtomax; /* Max round trip timeout. */ 1143 uint32_t iulp_sack; /* Use SACK option (TCP)? */ 1144 uint32_t 1145 iulp_tstamp_ok : 1, /* Use timestamp option (TCP)? */ 1146 iulp_wscale_ok : 1, /* Use window scale option (TCP)? */ 1147 iulp_ecn_ok : 1, /* Enable ECN (for TCP)? */ 1148 iulp_pmtud_ok : 1, /* Enable PMTUd? */ 1149 1150 iulp_not_used : 28; 1151 } iulp_t; 1152 1153 /* Zero iulp_t. */ 1154 extern const iulp_t ire_uinfo_null; 1155 1156 /* 1157 * The conn drain list structure. 1158 * The list is protected by idl_lock. Each conn_t inserted in the list 1159 * points back at this idl_t using conn_idl. IP primes the draining of the 1160 * conns queued in these lists, by qenabling the 1st conn of each list. This 1161 * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance 1162 * of ip_wsrv successively qenables the next conn in the list. 1163 * idl_lock protects all other members of idl_t and conn_drain_next 1164 * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED 1165 * flag of the conn_t and conn_idl. 1166 */ 1167 typedef struct idl_s { 1168 conn_t *idl_conn; /* Head of drain list */ 1169 kmutex_t idl_lock; /* Lock for this list */ 1170 conn_t *idl_conn_draining; /* conn that is draining */ 1171 uint32_t 1172 idl_repeat : 1, /* Last conn must re-enable */ 1173 /* drain list again */ 1174 idl_unused : 31; 1175 } idl_t; 1176 1177 #define CONN_DRAIN_LIST_LOCK(connp) (&((connp)->conn_idl->idl_lock)) 1178 /* 1179 * Interface route structure which holds the necessary information to recreate 1180 * routes that are tied to an interface (namely where ire_ipif != NULL). 1181 * These routes which were initially created via a routing socket or via the 1182 * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be 1183 * traditional interface routes. When an interface comes back up after being 1184 * marked down, this information will be used to recreate the routes. These 1185 * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp). 1186 */ 1187 typedef struct ifrt_s { 1188 ushort_t ifrt_type; /* Type of IRE */ 1189 in6_addr_t ifrt_v6addr; /* Address IRE represents. */ 1190 in6_addr_t ifrt_v6gateway_addr; /* Gateway if IRE_OFFSUBNET */ 1191 in6_addr_t ifrt_v6src_addr; /* Src addr if RTF_SETSRC */ 1192 in6_addr_t ifrt_v6mask; /* Mask for matching IRE. */ 1193 uint32_t ifrt_flags; /* flags related to route */ 1194 uint_t ifrt_max_frag; /* MTU (next hop or path). */ 1195 iulp_t ifrt_iulp_info; /* Cached IRE ULP info. */ 1196 } ifrt_t; 1197 1198 #define ifrt_addr V4_PART_OF_V6(ifrt_v6addr) 1199 #define ifrt_gateway_addr V4_PART_OF_V6(ifrt_v6gateway_addr) 1200 #define ifrt_src_addr V4_PART_OF_V6(ifrt_v6src_addr) 1201 #define ifrt_mask V4_PART_OF_V6(ifrt_v6mask) 1202 1203 /* Number of IP addresses that can be hosted on a physical interface */ 1204 #define MAX_ADDRS_PER_IF 8192 1205 /* 1206 * Number of Source addresses to be considered for source address 1207 * selection. Used by ipif_select_source[_v6]. 1208 */ 1209 #define MAX_IPIF_SELECT_SOURCE 50 1210 1211 #ifdef IP_DEBUG 1212 /* 1213 * Tracing refholds and refreleases for debugging. Existing tracing mechanisms 1214 * do not allow the granularity need to trace refrences to ipif/ill/ire's. This 1215 * mechanism should be revisited once dtrace is available. 1216 */ 1217 #define IP_STACK_DEPTH 15 1218 typedef struct tr_buf_s { 1219 int tr_depth; 1220 pc_t tr_stack[IP_STACK_DEPTH]; 1221 } tr_buf_t; 1222 1223 typedef struct th_trace_s { 1224 struct th_trace_s *th_next; 1225 struct th_trace_s **th_prev; 1226 kthread_t *th_id; 1227 int th_refcnt; 1228 uint_t th_trace_lastref; 1229 #define TR_BUF_MAX 38 1230 tr_buf_t th_trbuf[TR_BUF_MAX]; 1231 } th_trace_t; 1232 #endif 1233 1234 /* The following are ipif_state_flags */ 1235 #define IPIF_CONDEMNED 0x1 /* The ipif is being removed */ 1236 #define IPIF_CHANGING 0x2 /* A critcal ipif field is changing */ 1237 #define IPIF_MOVING 0x8 /* The ipif is being moved */ 1238 #define IPIF_SET_LINKLOCAL 0x10 /* transient flag during bringup */ 1239 #define IPIF_ZERO_SOURCE 0x20 /* transient flag during bringup */ 1240 1241 /* IP interface structure, one per local address */ 1242 typedef struct ipif_s { 1243 struct ipif_s *ipif_next; 1244 struct ill_s *ipif_ill; /* Back pointer to our ill */ 1245 int ipif_id; /* Logical unit number */ 1246 uint_t ipif_mtu; /* Starts at ipif_ill->ill_max_frag */ 1247 uint_t ipif_saved_mtu; /* Save of mtu during ipif_move() */ 1248 in6_addr_t ipif_v6lcl_addr; /* Local IP address for this if. */ 1249 in6_addr_t ipif_v6src_addr; /* Source IP address for this if. */ 1250 in6_addr_t ipif_v6subnet; /* Subnet prefix for this if. */ 1251 in6_addr_t ipif_v6net_mask; /* Net mask for this interface. */ 1252 in6_addr_t ipif_v6brd_addr; /* Broadcast addr for this interface. */ 1253 in6_addr_t ipif_v6pp_dst_addr; /* Point-to-point dest address. */ 1254 uint64_t ipif_flags; /* Interface flags. */ 1255 uint_t ipif_metric; /* BSD if metric, for compatibility. */ 1256 uint_t ipif_ire_type; /* IRE_LOCAL or IRE_LOOPBACK */ 1257 mblk_t *ipif_arp_del_mp; /* Allocated at time arp comes up, to */ 1258 /* prevent awkward out of mem */ 1259 /* condition later */ 1260 mblk_t *ipif_saved_ire_mp; /* Allocated for each extra */ 1261 /* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */ 1262 /* on this interface so that they */ 1263 /* can survive ifconfig down. */ 1264 kmutex_t ipif_saved_ire_lock; /* Protects ipif_saved_ire_mp */ 1265 1266 mrec_t *ipif_igmp_rpt; /* List of group memberships which */ 1267 /* will be reported on. Used when */ 1268 /* handling an igmp timeout. */ 1269 1270 /* 1271 * The packet counts in the ipif contain the sum of the 1272 * packet counts in dead IREs that were affiliated with 1273 * this ipif. 1274 */ 1275 uint_t ipif_fo_pkt_count; /* Forwarded thru our dead IREs */ 1276 uint_t ipif_ib_pkt_count; /* Inbound packets for our dead IREs */ 1277 uint_t ipif_ob_pkt_count; /* Outbound packets to our dead IREs */ 1278 /* Exclusive bit fields, protected by ipsq_t */ 1279 unsigned int 1280 ipif_multicast_up : 1, /* We have joined the allhosts group */ 1281 ipif_solmcast_up : 1, /* We joined solicited node mcast */ 1282 ipif_replace_zero : 1, /* Replacement for zero */ 1283 ipif_was_up : 1, /* ipif was up before */ 1284 1285 ipif_addr_ready : 1, /* DAD is done */ 1286 ipif_was_dup : 1, /* DAD had failed */ 1287 ipif_pad_to_31 : 26; 1288 1289 int ipif_orig_ifindex; /* ifindex before SLIFFAILOVER */ 1290 uint_t ipif_seqid; /* unique index across all ills */ 1291 uint_t ipif_orig_ipifid; /* ipif_id before SLIFFAILOVER */ 1292 uint_t ipif_state_flags; /* See IPIF_* flag defs above */ 1293 uint_t ipif_refcnt; /* active consistent reader cnt */ 1294 uint_t ipif_ire_cnt; /* Number of ire's referencing ipif */ 1295 uint_t ipif_saved_ire_cnt; 1296 zoneid_t 1297 ipif_zoneid; /* zone ID number */ 1298 timeout_id_t ipif_recovery_id; /* Timer for DAD recovery */ 1299 #ifdef ILL_DEBUG 1300 #define IP_TR_HASH_MAX 64 1301 th_trace_t *ipif_trace[IP_TR_HASH_MAX]; 1302 boolean_t ipif_trace_disable; /* True when alloc fails */ 1303 #endif 1304 } ipif_t; 1305 1306 /* 1307 * The following table lists the protection levels of the various members 1308 * of the ipif_t. The following notation is used. 1309 * 1310 * Write once - Written to only once at the time of bringing up 1311 * the interface and can be safely read after the bringup without any lock. 1312 * 1313 * ipsq - Need to execute in the ipsq to perform the indicated access. 1314 * 1315 * ill_lock - Need to hold this mutex to perform the indicated access. 1316 * 1317 * ill_g_lock - Need to hold this rw lock as reader/writer for read access or 1318 * write access respectively. 1319 * 1320 * down ill - Written to only when the ill is down (i.e all ipifs are down) 1321 * up ill - Read only when the ill is up (i.e. at least 1 ipif is up) 1322 * 1323 * Table of ipif_t members and their protection 1324 * 1325 * ipif_next ill_g_lock ill_g_lock 1326 * ipif_ill ipsq + down ipif write once 1327 * ipif_id ipsq + down ipif write once 1328 * ipif_mtu ipsq 1329 * ipif_v6lcl_addr ipsq + down ipif up ipif 1330 * ipif_v6src_addr ipsq + down ipif up ipif 1331 * ipif_v6subnet ipsq + down ipif up ipif 1332 * ipif_v6net_mask ipsq + down ipif up ipif 1333 * 1334 * ipif_v6brd_addr 1335 * ipif_v6pp_dst_addr 1336 * ipif_flags ill_lock ill_lock 1337 * ipif_metric 1338 * ipif_ire_type ipsq + down ill up ill 1339 * 1340 * ipif_arp_del_mp ipsq ipsq 1341 * ipif_saved_ire_mp ipif_saved_ire_lock ipif_saved_ire_lock 1342 * ipif_igmp_rpt ipsq ipsq 1343 * 1344 * ipif_fo_pkt_count Approx 1345 * ipif_ib_pkt_count Approx 1346 * ipif_ob_pkt_count Approx 1347 * 1348 * bit fields ill_lock ill_lock 1349 * 1350 * ipif_orig_ifindex ipsq None 1351 * ipif_orig_ipifid ipsq None 1352 * ipif_seqid ipsq Write once 1353 * 1354 * ipif_state_flags ill_lock ill_lock 1355 * ipif_refcnt ill_lock ill_lock 1356 * ipif_ire_cnt ill_lock ill_lock 1357 * ipif_saved_ire_cnt 1358 */ 1359 1360 #define IP_TR_HASH(tid) ((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1)) 1361 1362 #ifdef ILL_DEBUG 1363 #define IPIF_TRACE_REF(ipif) ipif_trace_ref(ipif) 1364 #define ILL_TRACE_REF(ill) ill_trace_ref(ill) 1365 #define IPIF_UNTRACE_REF(ipif) ipif_untrace_ref(ipif) 1366 #define ILL_UNTRACE_REF(ill) ill_untrace_ref(ill) 1367 #define ILL_TRACE_CLEANUP(ill) ill_trace_cleanup(ill) 1368 #define IPIF_TRACE_CLEANUP(ipif) ipif_trace_cleanup(ipif) 1369 #else 1370 #define IPIF_TRACE_REF(ipif) 1371 #define ILL_TRACE_REF(ill) 1372 #define IPIF_UNTRACE_REF(ipif) 1373 #define ILL_UNTRACE_REF(ill) 1374 #define ILL_TRACE_CLEANUP(ill) 1375 #define IPIF_TRACE_CLEANUP(ipif) 1376 #endif 1377 1378 /* IPv4 compatability macros */ 1379 #define ipif_lcl_addr V4_PART_OF_V6(ipif_v6lcl_addr) 1380 #define ipif_src_addr V4_PART_OF_V6(ipif_v6src_addr) 1381 #define ipif_subnet V4_PART_OF_V6(ipif_v6subnet) 1382 #define ipif_net_mask V4_PART_OF_V6(ipif_v6net_mask) 1383 #define ipif_brd_addr V4_PART_OF_V6(ipif_v6brd_addr) 1384 #define ipif_pp_dst_addr V4_PART_OF_V6(ipif_v6pp_dst_addr) 1385 1386 /* Macros for easy backreferences to the ill. */ 1387 #define ipif_wq ipif_ill->ill_wq 1388 #define ipif_rq ipif_ill->ill_rq 1389 #define ipif_net_type ipif_ill->ill_net_type 1390 #define ipif_resolver_mp ipif_ill->ill_resolver_mp 1391 #define ipif_ipif_up_count ipif_ill->ill_ipif_up_count 1392 #define ipif_bcast_mp ipif_ill->ill_bcast_mp 1393 #define ipif_type ipif_ill->ill_type 1394 #define ipif_isv6 ipif_ill->ill_isv6 1395 1396 #define SIOCLIFADDR_NDX 112 /* ndx of SIOCLIFADDR in the ndx ioctl table */ 1397 1398 /* 1399 * mode value for ip_ioctl_finish for finishing an ioctl 1400 */ 1401 #define CONN_CLOSE 1 /* No mi_copy */ 1402 #define COPYOUT 2 /* do an mi_copyout if needed */ 1403 #define NO_COPYOUT 3 /* do an mi_copy_done */ 1404 1405 /* 1406 * The IP-MT design revolves around the serialization object ipsq_t. 1407 * It is associated with an IPMP group. If IPMP is not enabled, there is 1408 * 1 ipsq_t per phyint. Eg. an ipsq_t would cover both hme0's IPv4 stream 1409 * 1410 * ipsq_lock protects 1411 * ipsq_reentry_cnt, ipsq_writer, ipsq_xopq_mphead, ipsq_xopq_mptail, 1412 * ipsq_mphead, ipsq_mptail, ipsq_split 1413 * 1414 * ipsq_pending_ipif, ipsq_current_ipif, ipsq_pending_mp, ipsq_flags, 1415 * ipsq_waitfor 1416 * 1417 * The fields in the last line above below are set mostly by a writer thread 1418 * But there is an exception in the last call to ipif_ill_refrele_tail which 1419 * could also race with a conn close which could be cleaning up the 1420 * fields. So we choose to protect using ipsq_lock instead of depending on 1421 * the property of the writer. 1422 * ill_g_lock protects 1423 * ipsq_refs, ipsq_phyint_list 1424 */ 1425 typedef struct ipsq_s { 1426 kmutex_t ipsq_lock; 1427 int ipsq_reentry_cnt; 1428 kthread_t *ipsq_writer; /* current owner (thread id) */ 1429 int ipsq_flags; 1430 mblk_t *ipsq_xopq_mphead; /* list of excl ops mostly ioctls */ 1431 mblk_t *ipsq_xopq_mptail; 1432 mblk_t *ipsq_mphead; /* msgs on ipsq linked thru b_next */ 1433 mblk_t *ipsq_mptail; /* msgs on ipsq linked thru b_next */ 1434 ipif_t *ipsq_pending_ipif; /* ipif associated w. ipsq_pending_mp */ 1435 ipif_t *ipsq_current_ipif; /* ipif associated with current ioctl */ 1436 mblk_t *ipsq_pending_mp; /* current ioctl mp while waiting for */ 1437 /* response from another module */ 1438 struct ipsq_s *ipsq_next; /* list of all syncq's (ipsq_g_list) */ 1439 uint_t ipsq_refs; /* Number of phyints on this ipsq */ 1440 struct phyint *ipsq_phyint_list; /* List of phyints on this ipsq */ 1441 boolean_t ipsq_split; /* ipsq may need to be split */ 1442 int ipsq_waitfor; /* Values encoded below */ 1443 char ipsq_name[LIFNAMSIZ+1]; /* same as phyint_groupname */ 1444 int ipsq_last_cmd; /* debugging aid */ 1445 #ifdef ILL_DEBUG 1446 int ipsq_depth; /* debugging aid */ 1447 pc_t ipsq_stack[IP_STACK_DEPTH]; /* debugging aid */ 1448 #endif 1449 } ipsq_t; 1450 1451 /* ipsq_flags */ 1452 #define IPSQ_GROUP 0x1 /* This ipsq belongs to an IPMP group */ 1453 1454 /* 1455 * ipsq_waitfor: 1456 * 1457 * IPIF_DOWN 1 ipif_down waiting for refcnts to drop 1458 * ILL_DOWN 2 ill_down waiting for refcnts to drop 1459 * IPIF_FREE 3 ipif_free waiting for refcnts to drop 1460 * ILL_FREE 4 ill unplumb waiting for refcnts to drop 1461 * ILL_MOVE_OK 5 failover waiting for refcnts to drop 1462 */ 1463 1464 enum { IPIF_DOWN = 1, ILL_DOWN, IPIF_FREE, ILL_FREE, ILL_MOVE_OK }; 1465 1466 /* Flags passed to ipsq_try_enter */ 1467 #define CUR_OP 0 /* Current ioctl continuing again */ 1468 #define NEW_OP 1 /* New ioctl starting afresh */ 1469 1470 /* 1471 * phyint represents state that is common to both IPv4 and IPv6 interfaces. 1472 * There is a separate ill_t representing IPv4 and IPv6 which has a 1473 * backpointer to the phyint structure for acessing common state. 1474 * 1475 * NOTE : It just stores the group name as there is only one name for 1476 * IPv4 and IPv6 i.e it is a underlying link property. Actually 1477 * IPv4 and IPv6 ill are grouped together when their phyints have 1478 * the same name. 1479 */ 1480 typedef struct phyint { 1481 struct ill_s *phyint_illv4; 1482 struct ill_s *phyint_illv6; 1483 uint_t phyint_ifindex; /* SIOCLSLIFINDEX */ 1484 uint_t phyint_notify_delay; /* SIOCSLIFNOTIFYDELAY */ 1485 char *phyint_groupname; /* SIOCSLIFGROUPNAME */ 1486 uint_t phyint_groupname_len; 1487 uint64_t phyint_flags; 1488 avl_node_t phyint_avl_by_index; /* avl tree by index */ 1489 avl_node_t phyint_avl_by_name; /* avl tree by name */ 1490 kmutex_t phyint_lock; 1491 struct ipsq_s *phyint_ipsq; /* back pointer to ipsq */ 1492 struct phyint *phyint_ipsq_next; /* phyint list on this ipsq */ 1493 } phyint_t; 1494 1495 #define CACHE_ALIGN_SIZE 64 1496 1497 #define CACHE_ALIGN(align_struct) P2ROUNDUP(sizeof (struct align_struct),\ 1498 CACHE_ALIGN_SIZE) 1499 struct _phyint_list_s_ { 1500 avl_tree_t phyint_list_avl_by_index; /* avl tree by index */ 1501 avl_tree_t phyint_list_avl_by_name; /* avl tree by name */ 1502 }; 1503 1504 typedef union phyint_list_u { 1505 struct _phyint_list_s_ phyint_list_s; 1506 char phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)]; 1507 } phyint_list_t; 1508 1509 #define phyint_list_avl_by_index phyint_list_s.phyint_list_avl_by_index 1510 #define phyint_list_avl_by_name phyint_list_s.phyint_list_avl_by_name 1511 /* 1512 * ILL groups. We group ills, 1513 * 1514 * - if the ills have the same group name. (New way) 1515 * 1516 * ill_group locking notes: 1517 * 1518 * illgrp_lock protects ill_grp_ill_schednext. 1519 * 1520 * ill_g_lock protects ill_grp_next, illgrp_ill, illgrp_ill_count. 1521 * Holding ill_g_lock freezes the memberships of ills in IPMP groups. 1522 * It also freezes the global list of ills and all ipifs in all ills. 1523 * 1524 * To remove an ipif from the linked list of ipifs of that ill ipif_free_tail 1525 * holds both ill_g_lock, and ill_lock. Similarly to remove an ill from the 1526 * global list of ills, ill_delete_glist holds ill_g_lock as writer. 1527 * This simplifies things for ipif_select_source, illgrp_scheduler etc. 1528 * that need to walk the members of an illgrp. They just hold ill_g_lock 1529 * as reader to do the walk. 1530 * 1531 */ 1532 typedef struct ill_group { 1533 kmutex_t illgrp_lock; 1534 struct ill_group *illgrp_next; /* Next ill_group */ 1535 struct ill_s *illgrp_ill_schednext; /* Next ill to be scheduled */ 1536 struct ill_s *illgrp_ill; /* First ill in the group */ 1537 int illgrp_ill_count; 1538 } ill_group_t; 1539 1540 extern ill_group_t *illgrp_head_v6; 1541 1542 /* 1543 * Fragmentation hash bucket 1544 */ 1545 typedef struct ipfb_s { 1546 struct ipf_s *ipfb_ipf; /* List of ... */ 1547 size_t ipfb_count; /* Count of bytes used by frag(s) */ 1548 kmutex_t ipfb_lock; /* Protect all ipf in list */ 1549 uint_t ipfb_frag_pkts; /* num of distinct fragmented pkts */ 1550 } ipfb_t; 1551 1552 /* 1553 * IRE bucket structure. Usually there is an array of such structures, 1554 * each pointing to a linked list of ires. irb_refcnt counts the number 1555 * of walkers of a given hash bucket. Usually the reference count is 1556 * bumped up if the walker wants no IRES to be DELETED while walking the 1557 * list. Bumping up does not PREVENT ADDITION. This allows walking a given 1558 * hash bucket without stumbling up on a free pointer. 1559 * 1560 * irb_t structures in ip_ftable are dynamically allocated and freed. 1561 * In order to identify the irb_t structures that cna be safely kmem_free'd 1562 * we need to ensure that 1563 * - the irb_refcnt is quiescent, indicating no other walkers, 1564 * - no other threads or ire's are holding references to the irb, 1565 * i.e., irb_nire == 0, 1566 * - there are no active ire's in the bucket, i.e., irb_ire_cnt == 0 1567 */ 1568 typedef struct irb { 1569 struct ire_s *irb_ire; /* First ire in this bucket */ 1570 /* Should be first in this struct */ 1571 krwlock_t irb_lock; /* Protect this bucket */ 1572 uint_t irb_refcnt; /* Protected by irb_lock */ 1573 uchar_t irb_marks; /* CONDEMNED ires in this bucket ? */ 1574 #define IRB_MARK_CONDEMNED 0x0001 1575 #define IRB_MARK_FTABLE 0x0002 1576 uint_t irb_ire_cnt; /* Num of active IRE in this bucket */ 1577 uint_t irb_tmp_ire_cnt; /* Num of temporary IRE */ 1578 struct ire_s *irb_rr_origin; /* origin for round-robin */ 1579 int irb_nire; /* Num of ftable ire's that ref irb */ 1580 } irb_t; 1581 1582 #define IRB2RT(irb) (rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb)) 1583 1584 /* The following are return values of ip_xmit_v4() */ 1585 typedef enum { 1586 SEND_PASSED = 0, /* sent packet out on wire */ 1587 SEND_FAILED, /* sending of packet failed */ 1588 LOOKUP_IN_PROGRESS, /* ire cache found, ARP resolution in progress */ 1589 LLHDR_RESLV_FAILED /* macaddr resl of onlink dst or nexthop failed */ 1590 } ipxmit_state_t; 1591 1592 #define IP_V4_G_HEAD 0 1593 #define IP_V6_G_HEAD 1 1594 1595 #define MAX_G_HEADS 2 1596 1597 /* 1598 * unpadded ill_if structure 1599 */ 1600 struct _ill_if_s_ { 1601 union ill_if_u *illif_next; 1602 union ill_if_u *illif_prev; 1603 avl_tree_t illif_avl_by_ppa; /* AVL tree sorted on ppa */ 1604 vmem_t *illif_ppa_arena; /* ppa index space */ 1605 uint16_t illif_mcast_v1; /* hints for */ 1606 uint16_t illif_mcast_v2; /* [igmp|mld]_slowtimo */ 1607 int illif_name_len; /* name length */ 1608 char illif_name[LIFNAMSIZ]; /* name of interface type */ 1609 }; 1610 1611 /* cache aligned ill_if structure */ 1612 typedef union ill_if_u { 1613 struct _ill_if_s_ ill_if_s; 1614 char illif_filler[CACHE_ALIGN(_ill_if_s_)]; 1615 } ill_if_t; 1616 1617 1618 #define illif_next ill_if_s.illif_next 1619 #define illif_prev ill_if_s.illif_prev 1620 #define illif_avl_by_ppa ill_if_s.illif_avl_by_ppa 1621 #define illif_ppa_arena ill_if_s.illif_ppa_arena 1622 #define illif_mcast_v1 ill_if_s.illif_mcast_v1 1623 #define illif_mcast_v2 ill_if_s.illif_mcast_v2 1624 #define illif_name ill_if_s.illif_name 1625 #define illif_name_len ill_if_s.illif_name_len 1626 1627 typedef struct ill_walk_context_s { 1628 int ctx_current_list; /* current list being searched */ 1629 int ctx_last_list; /* last list to search */ 1630 } ill_walk_context_t; 1631 1632 /* 1633 * ill_gheads structure, one for IPV4 and one for IPV6 1634 */ 1635 struct _ill_g_head_s_ { 1636 ill_if_t *ill_g_list_head; 1637 ill_if_t *ill_g_list_tail; 1638 }; 1639 1640 typedef union ill_g_head_u { 1641 struct _ill_g_head_s_ ill_g_head_s; 1642 char ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)]; 1643 } ill_g_head_t; 1644 1645 #define ill_g_list_head ill_g_head_s.ill_g_list_head 1646 #define ill_g_list_tail ill_g_head_s.ill_g_list_tail 1647 1648 #pragma align CACHE_ALIGN_SIZE(ill_g_heads) 1649 extern ill_g_head_t ill_g_heads[]; /* ILL List Head */ 1650 1651 1652 #define IP_V4_ILL_G_LIST ill_g_heads[IP_V4_G_HEAD].ill_g_list_head 1653 #define IP_V6_ILL_G_LIST ill_g_heads[IP_V6_G_HEAD].ill_g_list_head 1654 #define IP_VX_ILL_G_LIST(i) ill_g_heads[i].ill_g_list_head 1655 1656 #define ILL_START_WALK_V4(ctx_ptr) ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, \ 1657 ctx_ptr) 1658 #define ILL_START_WALK_V6(ctx_ptr) ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, \ 1659 ctx_ptr) 1660 #define ILL_START_WALK_ALL(ctx_ptr) ill_first(MAX_G_HEADS, MAX_G_HEADS, \ 1661 ctx_ptr) 1662 1663 /* 1664 * Capabilities, possible flags for ill_capabilities. 1665 */ 1666 1667 #define ILL_CAPAB_AH 0x01 /* IPsec AH acceleration */ 1668 #define ILL_CAPAB_ESP 0x02 /* IPsec ESP acceleration */ 1669 #define ILL_CAPAB_MDT 0x04 /* Multidata Transmit */ 1670 #define ILL_CAPAB_HCKSUM 0x08 /* Hardware checksumming */ 1671 #define ILL_CAPAB_ZEROCOPY 0x10 /* Zero-copy */ 1672 #define ILL_CAPAB_POLL 0x20 /* Polling Toggle */ 1673 #define ILL_CAPAB_SOFT_RING 0x40 /* Soft_Ring capability */ 1674 1675 /* 1676 * Per-ill Multidata Transmit capabilities. 1677 */ 1678 typedef struct ill_mdt_capab_s ill_mdt_capab_t; 1679 1680 /* 1681 * Per-ill IPsec capabilities. 1682 */ 1683 typedef struct ill_ipsec_capab_s ill_ipsec_capab_t; 1684 1685 /* 1686 * Per-ill Hardware Checksumming capbilities. 1687 */ 1688 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t; 1689 1690 /* 1691 * Per-ill Zero-copy capabilities. 1692 */ 1693 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t; 1694 1695 /* 1696 * Per-ill Polling/soft ring capbilities. 1697 */ 1698 typedef struct ill_dls_capab_s ill_dls_capab_t; 1699 1700 /* 1701 * Per-ill polling resource map. 1702 */ 1703 typedef struct ill_rx_ring ill_rx_ring_t; 1704 1705 /* The following are ill_state_flags */ 1706 #define ILL_LL_SUBNET_PENDING 0x01 /* Waiting for DL_INFO_ACK from drv */ 1707 #define ILL_CONDEMNED 0x02 /* No more new ref's to the ILL */ 1708 #define ILL_CHANGING 0x04 /* ILL not globally visible */ 1709 #define ILL_DL_UNBIND_IN_PROGRESS 0x08 /* UNBIND_REQ is sent */ 1710 #define ILL_SOFT_RING_ASSIGN 0x10 /* Makeing soft ring assigment */ 1711 1712 /* Is this an ILL whose source address is used by other ILL's ? */ 1713 #define IS_USESRC_ILL(ill) \ 1714 (((ill)->ill_usesrc_ifindex == 0) && \ 1715 ((ill)->ill_usesrc_grp_next != NULL)) 1716 1717 /* Is this a client/consumer of the usesrc ILL ? */ 1718 #define IS_USESRC_CLI_ILL(ill) \ 1719 (((ill)->ill_usesrc_ifindex != 0) && \ 1720 ((ill)->ill_usesrc_grp_next != NULL)) 1721 1722 /* Is this an virtual network interface (vni) ILL ? */ 1723 #define IS_VNI(ill) \ 1724 (((ill) != NULL) && \ 1725 (((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \ 1726 PHYI_VIRTUAL)) 1727 1728 /* 1729 * IP Lower level Structure. 1730 * Instance data structure in ip_open when there is a device below us. 1731 */ 1732 typedef struct ill_s { 1733 ill_if_t *ill_ifptr; /* pointer to interface type */ 1734 queue_t *ill_rq; /* Read queue. */ 1735 queue_t *ill_wq; /* Write queue. */ 1736 1737 int ill_error; /* Error value sent up by device. */ 1738 1739 ipif_t *ill_ipif; /* Interface chain for this ILL. */ 1740 1741 uint_t ill_ipif_up_count; /* Number of IPIFs currently up. */ 1742 uint_t ill_max_frag; /* Max IDU from DLPI. */ 1743 char *ill_name; /* Our name. */ 1744 uint_t ill_ipif_dup_count; /* Number of duplicate addresses. */ 1745 uint_t ill_name_length; /* Name length, incl. terminator. */ 1746 char *ill_ndd_name; /* Name + ":ip?_forwarding" for NDD. */ 1747 uint_t ill_net_type; /* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */ 1748 /* 1749 * Physical Point of Attachment num. If DLPI style 1 provider 1750 * then this is derived from the devname. 1751 */ 1752 uint_t ill_ppa; 1753 t_uscalar_t ill_sap; 1754 t_scalar_t ill_sap_length; /* Including sign (for position) */ 1755 uint_t ill_phys_addr_length; /* Excluding the sap. */ 1756 uint_t ill_bcast_addr_length; /* Only set when the DL provider */ 1757 /* supports broadcast. */ 1758 t_uscalar_t ill_mactype; 1759 uint8_t *ill_frag_ptr; /* Reassembly state. */ 1760 timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */ 1761 ipfb_t *ill_frag_hash_tbl; /* Fragment hash list head. */ 1762 ipif_t *ill_pending_ipif; /* IPIF waiting for DL operation. */ 1763 1764 ilm_t *ill_ilm; /* Multicast mebership for lower ill */ 1765 uint_t ill_global_timer; /* for IGMPv3/MLDv2 general queries */ 1766 int ill_mcast_type; /* type of router which is querier */ 1767 /* on this interface */ 1768 uint16_t ill_mcast_v1_time; /* # slow timeouts since last v1 qry */ 1769 uint16_t ill_mcast_v2_time; /* # slow timeouts since last v2 qry */ 1770 uint8_t ill_mcast_v1_tset; /* 1 => timer is set; 0 => not set */ 1771 uint8_t ill_mcast_v2_tset; /* 1 => timer is set; 0 => not set */ 1772 1773 uint8_t ill_mcast_rv; /* IGMPv3/MLDv2 robustness variable */ 1774 int ill_mcast_qi; /* IGMPv3/MLDv2 query interval var */ 1775 1776 mblk_t *ill_pending_mp; /* IOCTL/DLPI awaiting completion. */ 1777 /* 1778 * All non-NULL cells between 'ill_first_mp_to_free' and 1779 * 'ill_last_mp_to_free' are freed in ill_delete. 1780 */ 1781 #define ill_first_mp_to_free ill_bcast_mp 1782 mblk_t *ill_bcast_mp; /* DLPI header for broadcasts. */ 1783 mblk_t *ill_resolver_mp; /* Resolver template. */ 1784 mblk_t *ill_detach_mp; /* detach mp, or NULL if style1 */ 1785 mblk_t *ill_unbind_mp; /* unbind mp from ill_dl_up() */ 1786 mblk_t *ill_dlpi_deferred; /* b_next chain of control messages */ 1787 mblk_t *ill_phys_addr_mp; /* mblk which holds ill_phys_addr */ 1788 #define ill_last_mp_to_free ill_phys_addr_mp 1789 1790 cred_t *ill_credp; /* opener's credentials */ 1791 uint8_t *ill_phys_addr; /* ill_phys_addr_mp->b_rptr + off */ 1792 1793 uint_t ill_state_flags; /* see ILL_* flags above */ 1794 1795 /* Following bit fields protected by ipsq_t */ 1796 uint_t 1797 ill_needs_attach : 1, 1798 ill_reserved : 1, 1799 ill_isv6 : 1, 1800 ill_dlpi_style_set : 1, 1801 1802 ill_ifname_pending : 1, 1803 ill_move_in_progress : 1, /* FAILOVER/FAILBACK in progress */ 1804 ill_join_allmulti : 1, 1805 ill_logical_down : 1, 1806 1807 ill_is_6to4tun : 1, /* Interface is a 6to4 tunnel */ 1808 ill_promisc_on_phys : 1, /* phys interface in promisc mode */ 1809 ill_dl_up : 1, 1810 ill_up_ipifs : 1, 1811 1812 ill_note_link : 1, /* supports link-up notification */ 1813 1814 ill_pad_to_bit_31 : 19; 1815 1816 /* Following bit fields protected by ill_lock */ 1817 uint_t 1818 ill_fragtimer_executing : 1, 1819 ill_fragtimer_needrestart : 1, 1820 ill_ilm_cleanup_reqd : 1, 1821 ill_arp_closing : 1, 1822 1823 ill_arp_bringup_pending : 1, 1824 ill_mtu_userspecified : 1, /* SIOCSLNKINFO has set the mtu */ 1825 ill_arp_extend : 1, /* ARP has DAD extensions */ 1826 ill_pad_bit_31 : 25; 1827 1828 /* 1829 * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'. 1830 */ 1831 int ill_arp_muxid; /* muxid returned from plink for arp */ 1832 int ill_ip_muxid; /* muxid returned from plink for ip */ 1833 1834 /* 1835 * Used for IP frag reassembly throttling on a per ILL basis. 1836 * 1837 * Note: frag_count is approximate, its added to and subtracted from 1838 * without any locking, so simultaneous load/modify/stores can 1839 * collide, also ill_frag_purge() recalculates its value by 1840 * summing all the ipfb_count's without locking out updates 1841 * to the ipfb's. 1842 */ 1843 uint_t ill_ipf_gen; /* Generation of next fragment queue */ 1844 uint_t ill_frag_count; /* Approx count of all mblk bytes */ 1845 uint_t ill_frag_free_num_pkts; /* num of fragmented packets to free */ 1846 clock_t ill_last_frag_clean_time; /* time when frag's were pruned */ 1847 int ill_type; /* From <net/if_types.h> */ 1848 uint_t ill_dlpi_multicast_state; /* See below IDS_* */ 1849 uint_t ill_dlpi_fastpath_state; /* See below IDS_* */ 1850 1851 /* 1852 * Capabilities related fields. 1853 */ 1854 uint_t ill_dlpi_capab_state; /* State of capability query, IDS_* */ 1855 uint64_t ill_capabilities; /* Enabled capabilities, ILL_CAPAB_* */ 1856 ill_mdt_capab_t *ill_mdt_capab; /* Multidata Transmit capabilities */ 1857 ill_ipsec_capab_t *ill_ipsec_capab_ah; /* IPsec AH capabilities */ 1858 ill_ipsec_capab_t *ill_ipsec_capab_esp; /* IPsec ESP capabilities */ 1859 ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */ 1860 ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */ 1861 ill_dls_capab_t *ill_dls_capab; /* Polling, soft ring capabilities */ 1862 1863 /* 1864 * New fields for IPv6 1865 */ 1866 uint8_t ill_max_hops; /* Maximum hops for any logical interface */ 1867 uint_t ill_max_mtu; /* Maximum MTU for any logical interface */ 1868 uint32_t ill_reachable_time; /* Value for ND algorithm in msec */ 1869 uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */ 1870 uint_t ill_max_buf; /* Max # of req to buffer for ND */ 1871 in6_addr_t ill_token; 1872 uint_t ill_token_length; 1873 uint32_t ill_xmit_count; /* ndp max multicast xmits */ 1874 mib2_ipv6IfStatsEntry_t *ill_ip6_mib; /* Per interface mib */ 1875 mib2_ipv6IfIcmpEntry_t *ill_icmp6_mib; /* Per interface mib */ 1876 /* 1877 * Following two mblks are allocated common to all 1878 * the ipifs when the first interface is coming up. 1879 * It is sent up to arp when the last ipif is coming 1880 * down. 1881 */ 1882 mblk_t *ill_arp_down_mp; 1883 mblk_t *ill_arp_del_mapping_mp; 1884 /* 1885 * Used for implementing IFF_NOARP. As IFF_NOARP is used 1886 * to turn off for all the logicals, it is here instead 1887 * of the ipif. 1888 */ 1889 mblk_t *ill_arp_on_mp; 1890 /* Peer ill of an IPMP move operation */ 1891 struct ill_s *ill_move_peer; 1892 1893 phyint_t *ill_phyint; 1894 uint64_t ill_flags; 1895 ill_group_t *ill_group; 1896 struct ill_s *ill_group_next; 1897 /* 1898 * Reverse tunnel related count. This count 1899 * determines how many mobile nodes are using this 1900 * ill to send packet to reverse tunnel via foreign 1901 * agent. A non-zero count specifies presence of 1902 * mobile node(s) using reverse tunnel through this 1903 * interface. 1904 */ 1905 uint32_t ill_mrtun_refcnt; 1906 1907 /* 1908 * This count is bumped up when a route is added with 1909 * RTA_SRCIFP bit flag using routing socket. 1910 */ 1911 uint32_t ill_srcif_refcnt; 1912 /* 1913 * Pointer to the special interface based routing table. 1914 * This routing table is created dynamically when RTA_SRCIFP 1915 * is set by the routing socket. 1916 */ 1917 irb_t *ill_srcif_table; 1918 kmutex_t ill_lock; /* Please see table below */ 1919 /* 1920 * The ill_nd_lla* fields handle the link layer address option 1921 * from neighbor discovery. This is used for external IPv6 1922 * address resolution. 1923 */ 1924 mblk_t *ill_nd_lla_mp; /* mblk which holds ill_nd_lla */ 1925 uint8_t *ill_nd_lla; /* Link Layer Address */ 1926 uint_t ill_nd_lla_len; /* Link Layer Address length */ 1927 /* 1928 * We now have 3 phys_addr_req's sent down. This field keeps track 1929 * of which one is pending. 1930 */ 1931 t_uscalar_t ill_phys_addr_pend; /* which dl_phys_addr_req pending */ 1932 /* 1933 * Used to save errors that occur during plumbing 1934 */ 1935 uint_t ill_ifname_pending_err; 1936 avl_node_t ill_avl_byppa; /* avl node based on ppa */ 1937 void *ill_fastpath_list; /* both ire and nce hang off this */ 1938 uint_t ill_refcnt; /* active refcnt by threads */ 1939 uint_t ill_ire_cnt; /* ires associated with this ill */ 1940 kcondvar_t ill_cv; 1941 uint_t ill_ilm_walker_cnt; /* snmp ilm walkers */ 1942 uint_t ill_nce_cnt; /* nces associated with this ill */ 1943 uint_t ill_waiters; /* threads waiting in ipsq_enter */ 1944 /* 1945 * Contains the upper read queue pointer of the module immediately 1946 * beneath IP. This field allows IP to validate sub-capability 1947 * acknowledgments coming up from downstream. 1948 */ 1949 queue_t *ill_lmod_rq; /* read queue pointer of module below */ 1950 uint_t ill_lmod_cnt; /* number of modules beneath IP */ 1951 ip_m_t *ill_media; /* media specific params/functions */ 1952 t_uscalar_t ill_dlpi_pending; /* Last DLPI primitive issued */ 1953 uint_t ill_usesrc_ifindex; /* use src addr from this ILL */ 1954 struct ill_s *ill_usesrc_grp_next; /* Next ILL in the usesrc group */ 1955 #ifdef ILL_DEBUG 1956 th_trace_t *ill_trace[IP_TR_HASH_MAX]; 1957 boolean_t ill_trace_disable; /* True when alloc fails */ 1958 #endif 1959 } ill_t; 1960 1961 extern void ill_delete_glist(ill_t *); 1962 1963 /* 1964 * The following table lists the protection levels of the various members 1965 * of the ill_t. Same notation as that used for ipif_t above is used. 1966 * 1967 * Write Read 1968 * 1969 * ill_ifptr ill_g_lock + s Write once 1970 * ill_rq ipsq Write once 1971 * ill_wq ipsq Write once 1972 * 1973 * ill_error ipsq None 1974 * ill_ipif ill_g_lock + ipsq ill_g_lock OR ipsq 1975 * ill_ipif_up_count ill_lock + ipsq ill_lock 1976 * ill_max_frag ipsq Write once 1977 * 1978 * ill_name ill_g_lock + ipsq Write once 1979 * ill_name_length ill_g_lock + ipsq Write once 1980 * ill_ndd_name ipsq Write once 1981 * ill_net_type ipsq Write once 1982 * ill_ppa ill_g_lock + ipsq Write once 1983 * ill_sap ipsq + down ill Write once 1984 * ill_sap_length ipsq + down ill Write once 1985 * ill_phys_addr_length ipsq + down ill Write once 1986 * 1987 * ill_bcast_addr_length ipsq ipsq 1988 * ill_mactype ipsq ipsq 1989 * ill_frag_ptr ipsq ipsq 1990 * 1991 * ill_frag_timer_id ill_lock ill_lock 1992 * ill_frag_hash_tbl ipsq up ill 1993 * ill_ilm ipsq + ill_lock ill_lock 1994 * ill_mcast_type ill_lock ill_lock 1995 * ill_mcast_v1_time ill_lock ill_lock 1996 * ill_mcast_v2_time ill_lock ill_lock 1997 * ill_mcast_v1_tset ill_lock ill_lock 1998 * ill_mcast_v2_tset ill_lock ill_lock 1999 * ill_mcast_rv ill_lock ill_lock 2000 * ill_mcast_qi ill_lock ill_lock 2001 * ill_pending_mp ill_lock ill_lock 2002 * 2003 * ill_bcast_mp ipsq ipsq 2004 * ill_resolver_mp ipsq only when ill is up 2005 * ill_down_mp ipsq ipsq 2006 * ill_dlpi_deferred ipsq ipsq 2007 * ill_phys_addr_mp ipsq ipsq 2008 * ill_phys_addr ipsq up ill 2009 * ill_ick ipsq + down ill only when ill is up 2010 * 2011 * ill_state_flags ill_lock ill_lock 2012 * exclusive bit flags ipsq_t ipsq_t 2013 * shared bit flags ill_lock ill_lock 2014 * 2015 * ill_arp_muxid ipsq Not atomic 2016 * ill_ip_muxid ipsq Not atomic 2017 * 2018 * ill_ipf_gen Not atomic 2019 * ill_frag_count Approx. not protected 2020 * ill_type ipsq + down ill only when ill is up 2021 * ill_dlpi_multicast_state ill_lock ill_lock 2022 * ill_dlpi_fastpath_state ill_lock ill_lock 2023 * ill_max_hops ipsq Not atomic 2024 * 2025 * ill_max_mtu 2026 * 2027 * ill_reachable_time ipsq + ill_lock ill_lock 2028 * ill_reachable_retrans_time ipsq + ill_lock ill_lock 2029 * ill_max_buf ipsq + ill_lock ill_lock 2030 * 2031 * Next 2 fields need ill_lock because of the get ioctls. They should not 2032 * report partially updated results without executing in the ipsq. 2033 * ill_token ipsq + ill_lock ill_lock 2034 * ill_token_length ipsq + ill_lock ill_lock 2035 * ill_xmit_count ipsq + down ill write once 2036 * ill_ip6_mib ipsq + down ill only when ill is up 2037 * ill_icmp6_mib ipsq + down ill only when ill is up 2038 * ill_arp_down_mp ipsq ipsq 2039 * ill_arp_del_mapping_mp ipsq ipsq 2040 * ill_arp_on_mp ipsq ipsq 2041 * ill_move_peer ipsq ipsq 2042 * 2043 * ill_phyint ipsq, ill_g_lock, ill_lock Any of them 2044 * ill_flags ill_lock ill_lock 2045 * ill_group ipsq, ill_g_lock, ill_lock Any of them 2046 * ill_group_next ipsq, ill_g_lock, ill_lock Any of them 2047 * ill_mrtun_refcnt ill_lock ill_lock 2048 * ill_srcif_refcnt ill_lock ill_lock 2049 * ill_srcif_table ill_lock ill_lock 2050 * ill_nd_lla_mp ill_lock ill_lock 2051 * ill_nd_lla ill_lock ill_lock 2052 * ill_nd_lla_len ill_lock ill_lock 2053 * ill_phys_addr_pend ipsq + down ill only when ill is up 2054 * ill_ifname_pending_err ipsq ipsq 2055 * ill_avl_byppa ipsq, ill_g_lock Write once 2056 * 2057 * ill_fastpath_list ill_lock ill_lock 2058 * ill_refcnt ill_lock ill_lock 2059 * ill_ire_cnt ill_lock ill_lock 2060 * ill_cv ill_lock ill_lock 2061 * ill_ilm_walker_cnt ill_lock ill_lock 2062 * ill_nce_cnt ill_lock ill_lock 2063 * ill_trace ill_lock ill_lock 2064 * ill_usesrc_grp_next ill_g_usesrc_lock ill_g_usesrc_lock 2065 */ 2066 2067 /* 2068 * For ioctl restart mechanism see ip_reprocess_ioctl() 2069 */ 2070 struct ip_ioctl_cmd_s; 2071 2072 typedef int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *, 2073 struct ip_ioctl_cmd_s *, void *); 2074 2075 typedef struct ip_ioctl_cmd_s { 2076 int ipi_cmd; 2077 size_t ipi_copyin_size; 2078 uint_t ipi_flags; 2079 uint_t ipi_cmd_type; 2080 ifunc_t ipi_func; 2081 ifunc_t ipi_func_restart; 2082 } ip_ioctl_cmd_t; 2083 2084 /* 2085 * ipi_cmd_type: 2086 * 2087 * IF_CMD 1 old style ifreq cmd 2088 * LIF_CMD 2 new style lifreq cmd 2089 * MISC_CMD 3 Misc. (non [l]ifreq, tun) cmds 2090 * TUN_CMD 4 tunnel related 2091 */ 2092 2093 enum { IF_CMD = 1, LIF_CMD, MISC_CMD, TUN_CMD }; 2094 2095 #define IPI_DONTCARE 0 /* For ioctl encoded values that don't matter */ 2096 2097 /* Flag values in ipi_flags */ 2098 #define IPI_PRIV 0x1 /* Root only command */ 2099 #define IPI_MODOK 0x2 /* Permitted on mod instance of IP */ 2100 #define IPI_WR 0x4 /* Need to grab writer access */ 2101 #define IPI_GET_CMD 0x8 /* branch to mi_copyout on success */ 2102 #define IPI_REPL 0x10 /* valid for replacement ipif created in MOVE */ 2103 #define IPI_NULL_BCONT 0x20 /* ioctl has not data and hence no b_cont */ 2104 #define IPI_PASS_DOWN 0x40 /* pass this ioctl down when a module only */ 2105 2106 extern ip_ioctl_cmd_t ip_ndx_ioctl_table[]; 2107 extern ip_ioctl_cmd_t ip_misc_ioctl_table[]; 2108 extern int ip_ndx_ioctl_count; 2109 extern int ip_misc_ioctl_count; 2110 2111 #define ILL_CLEAR_MOVE(ill) { \ 2112 ill_t *peer_ill; \ 2113 \ 2114 peer_ill = (ill)->ill_move_peer; \ 2115 ASSERT(peer_ill != NULL); \ 2116 (ill)->ill_move_in_progress = B_FALSE; \ 2117 peer_ill->ill_move_in_progress = B_FALSE; \ 2118 (ill)->ill_move_peer = NULL; \ 2119 peer_ill->ill_move_peer = NULL; \ 2120 } 2121 /* The 2 ill's are same or belong to the same IPMP group */ 2122 #define SAME_IPMP_GROUP(ill_1, ill_2) \ 2123 (((ill_1)->ill_group != NULL) && \ 2124 ((ill_1)->ill_group == (ill_2)->ill_group)) 2125 2126 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */ 2127 typedef struct ipmx_s { 2128 char ipmx_name[LIFNAMSIZ]; /* if name */ 2129 uint_t 2130 ipmx_arpdev_stream : 1, /* This is the arp stream */ 2131 ipmx_notused : 31; 2132 } ipmx_t; 2133 2134 /* 2135 * State for detecting if a driver supports certain features. 2136 * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state. 2137 * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state. 2138 * Support for DL_CAPABILITY_REQ uses ill_dlpi_capab_state. 2139 */ 2140 #define IDS_UNKNOWN 0 /* No DLPI request sent */ 2141 #define IDS_INPROGRESS 1 /* DLPI request sent */ 2142 #define IDS_OK 2 /* DLPI request completed successfully */ 2143 #define IDS_FAILED 3 /* DLPI request failed */ 2144 #define IDS_RENEG 4 /* Driver asked for a renegotiation */ 2145 2146 /* Named Dispatch Parameter Management Structure */ 2147 typedef struct ipparam_s { 2148 uint_t ip_param_min; 2149 uint_t ip_param_max; 2150 uint_t ip_param_value; 2151 char *ip_param_name; 2152 } ipparam_t; 2153 2154 /* Extended NDP Management Structure */ 2155 typedef struct ipndp_s { 2156 ndgetf_t ip_ndp_getf; 2157 ndsetf_t ip_ndp_setf; 2158 caddr_t ip_ndp_data; 2159 char *ip_ndp_name; 2160 } ipndp_t; 2161 2162 /* 2163 * The kernel stores security attributes of all gateways in a database made 2164 * up of one or more tsol_gcdb_t elements. Each tsol_gcdb_t contains the 2165 * security-related credentials of the gateway. More than one gateways may 2166 * share entries in the database. 2167 * 2168 * The tsol_gc_t structure represents the gateway to credential association, 2169 * and refers to an entry in the database. One or more tsol_gc_t entities are 2170 * grouped together to form one or more tsol_gcgrp_t, each representing the 2171 * list of security attributes specific to the gateway. A gateway may be 2172 * associated with at most one credentials group. 2173 */ 2174 struct tsol_gcgrp_s; 2175 2176 extern uchar_t ip6opt_ls; /* TX IPv6 enabler */ 2177 2178 /* 2179 * Gateway security credential record. 2180 */ 2181 typedef struct tsol_gcdb_s { 2182 uint_t gcdb_refcnt; /* reference count */ 2183 struct rtsa_s gcdb_attr; /* security attributes */ 2184 #define gcdb_mask gcdb_attr.rtsa_mask 2185 #define gcdb_doi gcdb_attr.rtsa_doi 2186 #define gcdb_slrange gcdb_attr.rtsa_slrange 2187 } tsol_gcdb_t; 2188 2189 /* 2190 * Gateway to credential association. 2191 */ 2192 typedef struct tsol_gc_s { 2193 uint_t gc_refcnt; /* reference count */ 2194 struct tsol_gcgrp_s *gc_grp; /* pointer to group */ 2195 struct tsol_gc_s *gc_prev; /* previous in list */ 2196 struct tsol_gc_s *gc_next; /* next in list */ 2197 tsol_gcdb_t *gc_db; /* pointer to actual credentials */ 2198 } tsol_gc_t; 2199 2200 /* 2201 * Gateway credentials group address. 2202 */ 2203 typedef struct tsol_gcgrp_addr_s { 2204 int ga_af; /* address family */ 2205 in6_addr_t ga_addr; /* IPv4 mapped or IPv6 address */ 2206 } tsol_gcgrp_addr_t; 2207 2208 /* 2209 * Gateway credentials group. 2210 */ 2211 typedef struct tsol_gcgrp_s { 2212 uint_t gcgrp_refcnt; /* reference count */ 2213 krwlock_t gcgrp_rwlock; /* lock to protect following */ 2214 uint_t gcgrp_count; /* number of credentials */ 2215 tsol_gc_t *gcgrp_head; /* first credential in list */ 2216 tsol_gc_t *gcgrp_tail; /* last credential in list */ 2217 tsol_gcgrp_addr_t gcgrp_addr; /* next-hop gateway address */ 2218 } tsol_gcgrp_t; 2219 2220 extern kmutex_t gcgrp_lock; 2221 2222 #define GC_REFRELE(p) { \ 2223 ASSERT((p)->gc_grp != NULL); \ 2224 rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \ 2225 ASSERT((p)->gc_refcnt > 0); \ 2226 if (--((p)->gc_refcnt) == 0) \ 2227 gc_inactive(p); \ 2228 else \ 2229 rw_exit(&(p)->gc_grp->gcgrp_rwlock); \ 2230 } 2231 2232 #define GCGRP_REFHOLD(p) { \ 2233 mutex_enter(&gcgrp_lock); \ 2234 ++((p)->gcgrp_refcnt); \ 2235 ASSERT((p)->gcgrp_refcnt != 0); \ 2236 mutex_exit(&gcgrp_lock); \ 2237 } 2238 2239 #define GCGRP_REFRELE(p) { \ 2240 mutex_enter(&gcgrp_lock); \ 2241 ASSERT((p)->gcgrp_refcnt > 0); \ 2242 if (--((p)->gcgrp_refcnt) == 0) \ 2243 gcgrp_inactive(p); \ 2244 ASSERT(MUTEX_HELD(&gcgrp_lock)); \ 2245 mutex_exit(&gcgrp_lock); \ 2246 } 2247 2248 /* 2249 * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr 2250 */ 2251 struct tsol_tnrhc; 2252 2253 typedef struct tsol_ire_gw_secattr_s { 2254 kmutex_t igsa_lock; /* lock to protect following */ 2255 struct tsol_tnrhc *igsa_rhc; /* host entry for gateway */ 2256 tsol_gc_t *igsa_gc; /* for prefix IREs */ 2257 tsol_gcgrp_t *igsa_gcgrp; /* for cache IREs */ 2258 } tsol_ire_gw_secattr_t; 2259 2260 /* 2261 * Following are the macros to increment/decrement the reference 2262 * count of the IREs and IRBs (ire bucket). 2263 * 2264 * 1) We bump up the reference count of an IRE to make sure that 2265 * it does not get deleted and freed while we are using it. 2266 * Typically all the lookup functions hold the bucket lock, 2267 * and look for the IRE. If it finds an IRE, it bumps up the 2268 * reference count before dropping the lock. Sometimes we *may* want 2269 * to bump up the reference count after we *looked* up i.e without 2270 * holding the bucket lock. So, the IRE_REFHOLD macro does not assert 2271 * on the bucket lock being held. Any thread trying to delete from 2272 * the hash bucket can still do so but cannot free the IRE if 2273 * ire_refcnt is not 0. 2274 * 2275 * 2) We bump up the reference count on the bucket where the IRE resides 2276 * (IRB), when we want to prevent the IREs getting deleted from a given 2277 * hash bucket. This makes life easier for ire_walk type functions which 2278 * wants to walk the IRE list, call a function, but needs to drop 2279 * the bucket lock to prevent recursive rw_enters. While the 2280 * lock is dropped, the list could be changed by other threads or 2281 * the same thread could end up deleting the ire or the ire pointed by 2282 * ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as 2283 * a delete will still remove the ire from the bucket while we have 2284 * dropped the lock and hence the ire_next would be NULL. Thus, we 2285 * need a mechanism to prevent deletions from a given bucket. 2286 * 2287 * To prevent deletions, we bump up the reference count on the 2288 * bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED 2289 * both on the ire's ire_marks and the bucket's irb_marks. When the 2290 * reference count on the bucket drops to zero, all the CONDEMNED ires 2291 * are deleted. We don't have to bump up the reference count on the 2292 * bucket if we are walking the bucket and never have to drop the bucket 2293 * lock. Note that IRB_REFHOLD does not prevent addition of new ires 2294 * in the list. It is okay because addition of new ires will not cause 2295 * ire_next to point to freed memory. We do IRB_REFHOLD only when 2296 * all of the 3 conditions are true : 2297 * 2298 * 1) The code needs to walk the IRE bucket from start to end. 2299 * 2) It may have to drop the bucket lock sometimes while doing (1) 2300 * 3) It does not want any ires to be deleted meanwhile. 2301 */ 2302 2303 /* 2304 * Bump up the reference count on the IRE. We cannot assert that the 2305 * bucket lock is being held as it is legal to bump up the reference 2306 * count after the first lookup has returned the IRE without 2307 * holding the lock. Currently ip_wput does this for caching IRE_CACHEs. 2308 */ 2309 2310 #ifndef IRE_DEBUG 2311 2312 #define IRE_REFHOLD_NOTR(ire) IRE_REFHOLD(ire) 2313 #define IRE_UNTRACE_REF(ire) 2314 #define IRE_TRACE_REF(ire) 2315 2316 #else 2317 2318 #define IRE_REFHOLD_NOTR(ire) { \ 2319 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2320 ASSERT((ire)->ire_refcnt != 0); \ 2321 } 2322 2323 #define IRE_UNTRACE_REF(ire) ire_untrace_ref(ire); 2324 #define IRE_TRACE_REF(ire) ire_trace_ref(ire); 2325 #endif 2326 2327 #define IRE_REFHOLD(ire) { \ 2328 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2329 ASSERT((ire)->ire_refcnt != 0); \ 2330 IRE_TRACE_REF(ire); \ 2331 } 2332 2333 #define IRE_REFHOLD_LOCKED(ire) { \ 2334 IRE_TRACE_REF(ire); \ 2335 (ire)->ire_refcnt++; \ 2336 } 2337 2338 /* 2339 * Decrement the reference count on the IRE. 2340 * In architectures e.g sun4u, where atomic_add_32_nv is just 2341 * a cas, we need to maintain the right memory barrier semantics 2342 * as that of mutex_exit i.e all the loads and stores should complete 2343 * before the cas is executed. membar_exit() does that here. 2344 * 2345 * NOTE : This macro is used only in places where we want performance. 2346 * To avoid bloating the code, we use the function "ire_refrele" 2347 * which essentially calls the macro. 2348 */ 2349 #ifndef IRE_DEBUG 2350 #define IRE_REFRELE(ire) { \ 2351 ASSERT((ire)->ire_refcnt != 0); \ 2352 membar_exit(); \ 2353 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2354 ire_inactive(ire); \ 2355 } 2356 #define IRE_REFRELE_NOTR(ire) IRE_REFRELE(ire) 2357 #else 2358 #define IRE_REFRELE(ire) { \ 2359 if (ire->ire_bucket != NULL) \ 2360 ire_untrace_ref(ire); \ 2361 ASSERT((ire)->ire_refcnt != 0); \ 2362 membar_exit(); \ 2363 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2364 ire_inactive(ire); \ 2365 } 2366 #define IRE_REFRELE_NOTR(ire) { \ 2367 ASSERT((ire)->ire_refcnt != 0); \ 2368 membar_exit(); \ 2369 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2370 ire_inactive(ire); \ 2371 } 2372 #endif 2373 2374 /* 2375 * Bump up the reference count on the hash bucket - IRB to 2376 * prevent ires from being deleted in this bucket. 2377 */ 2378 #define IRB_REFHOLD(irb) { \ 2379 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2380 (irb)->irb_refcnt++; \ 2381 ASSERT((irb)->irb_refcnt != 0); \ 2382 rw_exit(&(irb)->irb_lock); \ 2383 } 2384 #define IRB_REFHOLD_LOCKED(irb) { \ 2385 ASSERT(RW_WRITE_HELD(&(irb)->irb_lock)); \ 2386 (irb)->irb_refcnt++; \ 2387 ASSERT((irb)->irb_refcnt != 0); \ 2388 } 2389 2390 void irb_refrele_ftable(irb_t *); 2391 /* 2392 * Note: when IRB_MARK_FTABLE (i.e., IRE_CACHETABLE entry), the irb_t 2393 * is statically allocated, so that when the irb_refcnt goes to 0, 2394 * we simply clean up the ire list and continue. 2395 */ 2396 #define IRB_REFRELE(irb) { \ 2397 if ((irb)->irb_marks & IRB_MARK_FTABLE) { \ 2398 irb_refrele_ftable((irb)); \ 2399 } else { \ 2400 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2401 ASSERT((irb)->irb_refcnt != 0); \ 2402 if (--(irb)->irb_refcnt == 0 && \ 2403 ((irb)->irb_marks & IRE_MARK_CONDEMNED)) { \ 2404 ire_t *ire_list; \ 2405 \ 2406 ire_list = ire_unlink(irb); \ 2407 rw_exit(&(irb)->irb_lock); \ 2408 ASSERT(ire_list != NULL); \ 2409 ire_cleanup(ire_list); \ 2410 } else { \ 2411 rw_exit(&(irb)->irb_lock); \ 2412 } \ 2413 } \ 2414 } 2415 2416 extern struct kmem_cache *rt_entry_cache; 2417 2418 /* 2419 * Lock the fast path mp for access, since the fp_mp can be deleted 2420 * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST and IRE_MIPRTUN 2421 */ 2422 2423 #define LOCK_IRE_FP_MP(ire) { \ 2424 if ((ire)->ire_type == IRE_BROADCAST || \ 2425 (ire)->ire_type == IRE_MIPRTUN) \ 2426 mutex_enter(&ire->ire_nce->nce_lock); \ 2427 } 2428 #define UNLOCK_IRE_FP_MP(ire) { \ 2429 if ((ire)->ire_type == IRE_BROADCAST || \ 2430 (ire)->ire_type == IRE_MIPRTUN) \ 2431 mutex_exit(&ire->ire_nce->nce_lock); \ 2432 } 2433 2434 typedef struct ire4 { 2435 ipaddr_t ire4_src_addr; /* Source address to use. */ 2436 ipaddr_t ire4_mask; /* Mask for matching this IRE. */ 2437 ipaddr_t ire4_addr; /* Address this IRE represents. */ 2438 ipaddr_t ire4_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2439 ipaddr_t ire4_cmask; /* Mask from parent prefix route */ 2440 } ire4_t; 2441 2442 typedef struct ire6 { 2443 in6_addr_t ire6_src_addr; /* Source address to use. */ 2444 in6_addr_t ire6_mask; /* Mask for matching this IRE. */ 2445 in6_addr_t ire6_addr; /* Address this IRE represents. */ 2446 in6_addr_t ire6_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2447 in6_addr_t ire6_cmask; /* Mask from parent prefix route */ 2448 } ire6_t; 2449 2450 typedef union ire_addr { 2451 ire6_t ire6_u; 2452 ire4_t ire4_u; 2453 } ire_addr_u_t; 2454 2455 /* Internet Routing Entry */ 2456 typedef struct ire_s { 2457 struct ire_s *ire_next; /* The hash chain must be first. */ 2458 struct ire_s **ire_ptpn; /* Pointer to previous next. */ 2459 uint32_t ire_refcnt; /* Number of references */ 2460 mblk_t *ire_mp; /* Non-null if allocated as mblk */ 2461 queue_t *ire_rfq; /* recv from this queue */ 2462 queue_t *ire_stq; /* send to this queue */ 2463 union { 2464 uint_t *max_fragp; /* Used only during ire creation */ 2465 uint_t max_frag; /* MTU (next hop or path). */ 2466 } imf_u; 2467 #define ire_max_frag imf_u.max_frag 2468 #define ire_max_fragp imf_u.max_fragp 2469 uint32_t ire_frag_flag; /* IPH_DF or zero. */ 2470 uint32_t ire_ident; /* Per IRE IP ident. */ 2471 uint32_t ire_tire_mark; /* Used for reclaim of unused. */ 2472 uchar_t ire_ipversion; /* IPv4/IPv6 version */ 2473 uchar_t ire_marks; /* IRE_MARK_CONDEMNED etc. */ 2474 ushort_t ire_type; /* Type of IRE */ 2475 uint_t ire_ib_pkt_count; /* Inbound packets for ire_addr */ 2476 uint_t ire_ob_pkt_count; /* Outbound packets to ire_addr */ 2477 uint_t ire_ll_hdr_length; /* Non-zero if we do M_DATA prepends */ 2478 time_t ire_create_time; /* Time (in secs) IRE was created. */ 2479 uint32_t ire_phandle; /* Associate prefix IREs to cache */ 2480 uint32_t ire_ihandle; /* Associate interface IREs to cache */ 2481 ipif_t *ire_ipif; /* the interface that this ire uses */ 2482 uint32_t ire_flags; /* flags related to route (RTF_*) */ 2483 uint_t ire_ipsec_overhead; /* IPSEC overhead */ 2484 /* 2485 * Neighbor Cache Entry for IPv6; arp info for IPv4 2486 */ 2487 struct nce_s *ire_nce; 2488 uint_t ire_masklen; /* # bits in ire_mask{,_v6} */ 2489 ire_addr_u_t ire_u; /* IPv4/IPv6 address info. */ 2490 2491 irb_t *ire_bucket; /* Hash bucket when ire_ptphn is set */ 2492 iulp_t ire_uinfo; /* Upper layer protocol info. */ 2493 /* 2494 * Protects ire_uinfo, ire_max_frag, and ire_frag_flag. 2495 */ 2496 kmutex_t ire_lock; 2497 uint_t ire_ipif_seqid; /* ipif_seqid of ire_ipif */ 2498 /* 2499 * For regular routes in forwarding table and cache table the 2500 * the following entries are NULL/zero. Only reverse tunnel 2501 * table and interface based forwarding table use these fields. 2502 * Routes added with RTA_SRCIFP and RTA_SRC respectively have 2503 * non-zero values for the following fields. 2504 */ 2505 ill_t *ire_in_ill; /* Incoming ill interface */ 2506 ipaddr_t ire_in_src_addr; 2507 /* source ip-addr of incoming packet */ 2508 clock_t ire_last_used_time; /* Last used time */ 2509 struct ire_s *ire_fastpath; /* Pointer to next ire in fastpath */ 2510 tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */ 2511 zoneid_t ire_zoneid; /* for local address discrimination */ 2512 /* 2513 * ire's that are embedded inside mblk_t and sent to the external 2514 * resolver use the ire_stq_ifindex to track the ifindex of the 2515 * ire_stq, so that the ill (if it exists) can be correctly recovered 2516 * for cleanup in the esbfree routine when arp failure occurs 2517 */ 2518 uint_t ire_stq_ifindex; 2519 uint_t ire_defense_count; /* number of ARP conflicts */ 2520 uint_t ire_defense_time; /* last time defended (secs) */ 2521 #ifdef IRE_DEBUG 2522 th_trace_t *ire_trace[IP_TR_HASH_MAX]; 2523 boolean_t ire_trace_disable; /* True when alloc fails */ 2524 #endif 2525 } ire_t; 2526 2527 /* IPv4 compatiblity macros */ 2528 #define ire_src_addr ire_u.ire4_u.ire4_src_addr 2529 #define ire_mask ire_u.ire4_u.ire4_mask 2530 #define ire_addr ire_u.ire4_u.ire4_addr 2531 #define ire_gateway_addr ire_u.ire4_u.ire4_gateway_addr 2532 #define ire_cmask ire_u.ire4_u.ire4_cmask 2533 2534 #define ire_src_addr_v6 ire_u.ire6_u.ire6_src_addr 2535 #define ire_mask_v6 ire_u.ire6_u.ire6_mask 2536 #define ire_addr_v6 ire_u.ire6_u.ire6_addr 2537 #define ire_gateway_addr_v6 ire_u.ire6_u.ire6_gateway_addr 2538 #define ire_cmask_v6 ire_u.ire6_u.ire6_cmask 2539 2540 /* Convenient typedefs for sockaddrs */ 2541 typedef struct sockaddr_in sin_t; 2542 typedef struct sockaddr_in6 sin6_t; 2543 2544 /* Address structure used for internal bind with IP */ 2545 typedef struct ipa_conn_s { 2546 ipaddr_t ac_laddr; 2547 ipaddr_t ac_faddr; 2548 uint16_t ac_fport; 2549 uint16_t ac_lport; 2550 } ipa_conn_t; 2551 2552 typedef struct ipa6_conn_s { 2553 in6_addr_t ac6_laddr; 2554 in6_addr_t ac6_faddr; 2555 uint16_t ac6_fport; 2556 uint16_t ac6_lport; 2557 } ipa6_conn_t; 2558 2559 /* 2560 * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's 2561 * bind handler. 2562 */ 2563 typedef struct ipa_conn_extended_s { 2564 uint64_t acx_flags; 2565 ipa_conn_t acx_conn; 2566 } ipa_conn_x_t; 2567 2568 typedef struct ipa6_conn_extended_s { 2569 uint64_t ac6x_flags; 2570 ipa6_conn_t ac6x_conn; 2571 } ipa6_conn_x_t; 2572 2573 /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */ 2574 #define ACX_VERIFY_DST 0x1ULL /* verify destination address is reachable */ 2575 2576 /* Name/Value Descriptor. */ 2577 typedef struct nv_s { 2578 uint64_t nv_value; 2579 char *nv_name; 2580 } nv_t; 2581 2582 /* IP Forwarding Ticket */ 2583 typedef struct ipftk_s { 2584 queue_t *ipftk_queue; 2585 ipaddr_t ipftk_dst; 2586 } ipftk_t; 2587 2588 typedef struct ipt_s { 2589 pfv_t func; /* Routine to call */ 2590 uchar_t *arg; /* ire or nce passed in */ 2591 } ipt_t; 2592 2593 #define ILL_FRAG_HASH(s, i) \ 2594 ((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT) 2595 2596 /* 2597 * The MAX number of allowed fragmented packets per hash bucket 2598 * calculation is based on the most common mtu size of 1500. This limit 2599 * will work well for other mtu sizes as well. 2600 */ 2601 #define COMMON_IP_MTU 1500 2602 #define MAX_FRAG_MIN 10 2603 #define MAX_FRAG_PKTS \ 2604 MAX(MAX_FRAG_MIN, (2 * (ip_reass_queue_bytes / \ 2605 (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT)))) 2606 2607 /* 2608 * Maximum dups allowed per packet. 2609 */ 2610 extern uint_t ip_max_frag_dups; 2611 2612 /* 2613 * Per-packet information for received packets and transmitted. 2614 * Used by the transport protocols when converting between the packet 2615 * and ancillary data and socket options. 2616 * 2617 * Note: This private data structure and related IPPF_* constant 2618 * definitions are exposed to enable compilation of some debugging tools 2619 * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be 2620 * a temporary hack and long term alternate interfaces should be defined 2621 * to support the needs of such tools and private definitions moved to 2622 * private headers. 2623 */ 2624 struct ip6_pkt_s { 2625 uint_t ipp_fields; /* Which fields are valid */ 2626 uint_t ipp_sticky_ignored; /* sticky fields to ignore */ 2627 uint_t ipp_ifindex; /* pktinfo ifindex */ 2628 in6_addr_t ipp_addr; /* pktinfo src/dst addr */ 2629 uint_t ipp_unicast_hops; /* IPV6_UNICAST_HOPS */ 2630 uint_t ipp_multicast_hops; /* IPV6_MULTICAST_HOPS */ 2631 uint_t ipp_hoplimit; /* IPV6_HOPLIMIT */ 2632 uint_t ipp_hopoptslen; 2633 uint_t ipp_rtdstoptslen; 2634 uint_t ipp_rthdrlen; 2635 uint_t ipp_dstoptslen; 2636 uint_t ipp_pathmtulen; 2637 ip6_hbh_t *ipp_hopopts; 2638 ip6_dest_t *ipp_rtdstopts; 2639 ip6_rthdr_t *ipp_rthdr; 2640 ip6_dest_t *ipp_dstopts; 2641 struct ip6_mtuinfo *ipp_pathmtu; 2642 in6_addr_t ipp_nexthop; /* Transmit only */ 2643 uint8_t ipp_tclass; 2644 int8_t ipp_use_min_mtu; 2645 }; 2646 typedef struct ip6_pkt_s ip6_pkt_t; 2647 2648 extern void ip6_pkt_free(ip6_pkt_t *); /* free storage inside ip6_pkt_t */ 2649 2650 /* 2651 * This structure is used to convey information from IP and the ULP. 2652 * Currently used for the IP_RECVSLLA and IP_RECVIF options. The 2653 * type of information field is set to IN_PKTINFO (i.e inbound pkt info) 2654 */ 2655 typedef struct in_pktinfo { 2656 uint32_t in_pkt_ulp_type; /* type of info sent */ 2657 /* to UDP */ 2658 uint32_t in_pkt_flags; /* what is sent up by IP */ 2659 uint32_t in_pkt_ifindex; /* inbound interface index */ 2660 struct sockaddr_dl in_pkt_slla; /* has source link layer addr */ 2661 } in_pktinfo_t; 2662 2663 /* 2664 * flags to tell UDP what IP is sending; in_pkt_flags 2665 */ 2666 #define IPF_RECVIF 0x01 /* inbound interface index */ 2667 #define IPF_RECVSLLA 0x02 /* source link layer address */ 2668 2669 /* ipp_fields values */ 2670 #define IPPF_IFINDEX 0x0001 /* Part of in6_pktinfo: ifindex */ 2671 #define IPPF_ADDR 0x0002 /* Part of in6_pktinfo: src/dst addr */ 2672 #define IPPF_SCOPE_ID 0x0004 /* Add xmit ip6i_t for sin6_scope_id */ 2673 #define IPPF_NO_CKSUM 0x0008 /* Add xmit ip6i_t for IP6I_NO_*_CKSUM */ 2674 2675 #define IPPF_RAW_CKSUM 0x0010 /* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */ 2676 #define IPPF_HOPLIMIT 0x0020 2677 #define IPPF_HOPOPTS 0x0040 2678 #define IPPF_RTHDR 0x0080 2679 2680 #define IPPF_RTDSTOPTS 0x0100 2681 #define IPPF_DSTOPTS 0x0200 2682 #define IPPF_NEXTHOP 0x0400 2683 #define IPPF_PATHMTU 0x0800 2684 2685 #define IPPF_TCLASS 0x1000 2686 #define IPPF_DONTFRAG 0x2000 2687 #define IPPF_USE_MIN_MTU 0x04000 2688 #define IPPF_MULTICAST_HOPS 0x08000 2689 #define IPPF_UNICAST_HOPS 0x10000 2690 2691 #define IPPF_HAS_IP6I \ 2692 (IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \ 2693 IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \ 2694 IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS) 2695 2696 #define TCP_PORTS_OFFSET 0 2697 #define UDP_PORTS_OFFSET 0 2698 2699 /* 2700 * lookups return the ill/ipif only if the flags are clear OR Iam writer. 2701 * ill / ipif lookup functions increment the refcnt on the ill / ipif only 2702 * after calling these macros. This ensures that the refcnt on the ipif or 2703 * ill will eventually drop down to zero. 2704 */ 2705 #define ILL_LOOKUP_FAILED 1 /* Used as error code */ 2706 #define IPIF_LOOKUP_FAILED 2 /* Used as error code */ 2707 2708 #define ILL_CAN_LOOKUP(ill) \ 2709 (!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) || \ 2710 IAM_WRITER_ILL(ill)) 2711 2712 #define ILL_CAN_WAIT(ill, q) \ 2713 (((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED))) 2714 2715 #define ILL_CAN_LOOKUP_WALKER(ill) \ 2716 (!((ill)->ill_state_flags & ILL_CONDEMNED)) 2717 2718 #define IPIF_CAN_LOOKUP(ipif) \ 2719 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \ 2720 IAM_WRITER_IPIF(ipif)) 2721 2722 /* 2723 * If the parameter 'q' is NULL, the caller is not interested in wait and 2724 * restart of the operation if the ILL or IPIF cannot be looked up when it is 2725 * marked as 'CHANGING'. Typically a thread that tries to send out data will 2726 * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and 2727 * in this case 'q' is NULL 2728 */ 2729 #define IPIF_CAN_WAIT(ipif, q) \ 2730 (((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED))) 2731 2732 #define IPIF_CAN_LOOKUP_WALKER(ipif) \ 2733 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) || \ 2734 IAM_WRITER_IPIF(ipif)) 2735 2736 /* 2737 * These macros are used by critical set ioctls and failover ioctls to 2738 * mark the ipif appropriately before starting the operation and to clear the 2739 * marks after completing the operation. 2740 */ 2741 #define IPIF_UNMARK_MOVING(ipif) \ 2742 (ipif)->ipif_state_flags &= ~IPIF_MOVING & ~IPIF_CHANGING; 2743 2744 #define ILL_UNMARK_CHANGING(ill) \ 2745 (ill)->ill_state_flags &= ~ILL_CHANGING; 2746 2747 /* Macros used to assert that this thread is a writer */ 2748 #define IAM_WRITER_IPSQ(ipsq) ((ipsq)->ipsq_writer == curthread) 2749 #define IAM_WRITER_ILL(ill) \ 2750 ((ill)->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2751 #define IAM_WRITER_IPIF(ipif) \ 2752 ((ipif)->ipif_ill->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2753 2754 /* 2755 * Grab ill locks in the proper order. The order is highest addressed 2756 * ill is locked first. 2757 */ 2758 #define GRAB_ILL_LOCKS(ill_1, ill_2) \ 2759 { \ 2760 if ((ill_1) > (ill_2)) { \ 2761 if (ill_1 != NULL) \ 2762 mutex_enter(&(ill_1)->ill_lock); \ 2763 if (ill_2 != NULL) \ 2764 mutex_enter(&(ill_2)->ill_lock); \ 2765 } else { \ 2766 if (ill_2 != NULL) \ 2767 mutex_enter(&(ill_2)->ill_lock); \ 2768 if (ill_1 != NULL && ill_1 != ill_2) \ 2769 mutex_enter(&(ill_1)->ill_lock); \ 2770 } \ 2771 } 2772 2773 #define RELEASE_ILL_LOCKS(ill_1, ill_2) \ 2774 { \ 2775 if (ill_1 != NULL) \ 2776 mutex_exit(&(ill_1)->ill_lock); \ 2777 if (ill_2 != NULL && ill_2 != ill_1) \ 2778 mutex_exit(&(ill_2)->ill_lock); \ 2779 } 2780 2781 /* Get the other protocol instance ill */ 2782 #define ILL_OTHER(ill) \ 2783 ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \ 2784 (ill)->ill_phyint->phyint_illv6) 2785 2786 #define MATCH_V4_ONLY 0x1 2787 #define MATCH_V6_ONLY 0x2 2788 #define MATCH_ILL_ONLY 0x4 2789 2790 /* ioctl command info: Ioctl properties extracted and stored in here */ 2791 typedef struct cmd_info_s 2792 { 2793 char ci_groupname[LIFNAMSIZ + 1]; /* SIOCSLIFGROUPNAME */ 2794 ipif_t *ci_ipif; /* ipif associated with [l]ifreq ioctl's */ 2795 sin_t *ci_sin; /* the sin struct passed down */ 2796 sin6_t *ci_sin6; /* the sin6_t struct passed down */ 2797 struct lifreq *ci_lifr; /* the lifreq struct passed down */ 2798 } cmd_info_t; 2799 2800 extern krwlock_t ill_g_lock; 2801 extern kmutex_t ip_addr_avail_lock; 2802 extern ipsq_t *ipsq_g_head; 2803 2804 extern ill_t *ip_timer_ill; /* ILL for IRE expiration timer. */ 2805 extern timeout_id_t ip_ire_expire_id; /* IRE expiration timeout id. */ 2806 extern timeout_id_t ip_ire_reclaim_id; /* IRE recalaim timeout id. */ 2807 2808 extern kmutex_t ip_mi_lock; 2809 extern krwlock_t ip_g_nd_lock; /* For adding/removing nd variables */ 2810 extern kmutex_t ip_trash_timer_lock; /* Protects ip_ire_expire_id */ 2811 2812 extern kmutex_t igmp_timer_lock; /* Protects the igmp timer */ 2813 extern kmutex_t mld_timer_lock; /* Protects the mld timer */ 2814 2815 extern krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 2816 2817 extern struct kmem_cache *ire_cache; 2818 2819 extern uint_t ip_redirect_cnt; /* Num of redirect routes in ftable */ 2820 2821 extern ipaddr_t ip_g_all_ones; 2822 extern caddr_t ip_g_nd; /* Named Dispatch List Head */ 2823 2824 extern uint_t ip_loopback_mtu; 2825 2826 extern ipparam_t *ip_param_arr; 2827 2828 extern int ip_g_forward; 2829 extern int ipv6_forward; 2830 extern vmem_t *ip_minor_arena; 2831 2832 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 2833 #define ip_g_resp_to_echo_bcast ip_param_arr[1].ip_param_value 2834 #define ip_g_resp_to_echo_mcast ip_param_arr[2].ip_param_value 2835 #define ip_g_resp_to_timestamp ip_param_arr[3].ip_param_value 2836 #define ip_g_resp_to_timestamp_bcast ip_param_arr[4].ip_param_value 2837 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 2838 #define ip_g_forward_directed_bcast ip_param_arr[6].ip_param_value 2839 #define ip_debug ip_param_arr[7].ip_param_value 2840 #define ip_mrtdebug ip_param_arr[8].ip_param_value 2841 #define ip_timer_interval ip_param_arr[9].ip_param_value 2842 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value 2843 #define ip_ire_redir_interval ip_param_arr[11].ip_param_value 2844 #define ip_def_ttl ip_param_arr[12].ip_param_value 2845 #define ip_forward_src_routed ip_param_arr[13].ip_param_value 2846 #define ip_wroff_extra ip_param_arr[14].ip_param_value 2847 #define ip_ire_pathmtu_interval ip_param_arr[15].ip_param_value 2848 #define ip_icmp_return ip_param_arr[16].ip_param_value 2849 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value 2850 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value 2851 #define ip_ignore_redirect ip_param_arr[19].ip_param_value 2852 #define ip_output_queue ip_param_arr[20].ip_param_value 2853 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 2854 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 2855 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 2856 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 2857 #define ip_strict_dst_multihoming ip_param_arr[25].ip_param_value 2858 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 2859 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value 2860 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 2861 #define igmp_accept_clear_messages ip_param_arr[29].ip_param_value 2862 2863 /* IPv6 configuration knobs */ 2864 #define delay_first_probe_time ip_param_arr[30].ip_param_value 2865 #define max_unicast_solicit ip_param_arr[31].ip_param_value 2866 #define ipv6_def_hops ip_param_arr[32].ip_param_value 2867 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 2868 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 2869 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 2870 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 2871 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 2872 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 2873 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 2874 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 2875 #define pim_accept_clear_messages ip_param_arr[41].ip_param_value 2876 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 2877 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 2878 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 2879 #define ip_policy_mask ip_param_arr[45].ip_param_value 2880 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 2881 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 2882 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 2883 #define ip_ndp_defense_interval ip_param_arr[49].ip_param_value 2884 #define ip_max_temp_idle ip_param_arr[50].ip_param_value 2885 #define ip_max_temp_defend ip_param_arr[51].ip_param_value 2886 #define ip_max_defend ip_param_arr[52].ip_param_value 2887 #define ip_defend_interval ip_param_arr[53].ip_param_value 2888 #define ip_dup_recovery ip_param_arr[54].ip_param_value 2889 #define ip_restrict_interzone_loopback ip_param_arr[55].ip_param_value 2890 #ifdef DEBUG 2891 #define ipv6_drop_inbound_icmpv6 ip_param_arr[56].ip_param_value 2892 #else 2893 #define ipv6_drop_inbound_icmpv6 0 2894 #endif 2895 2896 extern hrtime_t ipsec_policy_failure_last; 2897 2898 extern int dohwcksum; /* use h/w cksum if supported by the h/w */ 2899 #ifdef ZC_TEST 2900 extern int noswcksum; 2901 #endif 2902 2903 extern char ipif_loopback_name[]; 2904 2905 extern nv_t *ire_nv_tbl; 2906 2907 extern time_t ip_g_frag_timeout; 2908 extern clock_t ip_g_frag_timo_ms; 2909 2910 extern mib2_ip_t ip_mib; /* For tcpInErrs and udpNoPorts */ 2911 2912 extern struct module_info ip_mod_info; 2913 2914 extern timeout_id_t igmp_slowtimeout_id; 2915 extern timeout_id_t mld_slowtimeout_id; 2916 2917 extern uint_t loopback_packets; 2918 2919 /* 2920 * Network byte order macros 2921 */ 2922 #ifdef _BIG_ENDIAN 2923 #define N_IN_CLASSD_NET IN_CLASSD_NET 2924 #define N_INADDR_UNSPEC_GROUP INADDR_UNSPEC_GROUP 2925 #else /* _BIG_ENDIAN */ 2926 #define N_IN_CLASSD_NET (ipaddr_t)0x000000f0U 2927 #define N_INADDR_UNSPEC_GROUP (ipaddr_t)0x000000e0U 2928 #endif /* _BIG_ENDIAN */ 2929 #define CLASSD(addr) (((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP) 2930 2931 #define IP_LOOPBACK_ADDR(addr) \ 2932 ((ntohl(addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 2933 2934 #ifdef DEBUG 2935 /* IPsec HW acceleration debugging support */ 2936 2937 #define IPSECHW_CAPAB 0x0001 /* capability negotiation */ 2938 #define IPSECHW_SADB 0x0002 /* SADB exchange */ 2939 #define IPSECHW_PKT 0x0004 /* general packet flow */ 2940 #define IPSECHW_PKTIN 0x0008 /* driver in pkt processing details */ 2941 #define IPSECHW_PKTOUT 0x0010 /* driver out pkt processing details */ 2942 2943 #define IPSECHW_DEBUG(f, x) if (ipsechw_debug & (f)) { (void) printf x; } 2944 #define IPSECHW_CALL(f, r, x) if (ipsechw_debug & (f)) { (void) r x; } 2945 2946 extern uint32_t ipsechw_debug; 2947 #else 2948 #define IPSECHW_DEBUG(f, x) {} 2949 #define IPSECHW_CALL(f, r, x) {} 2950 #endif 2951 2952 #ifdef IP_DEBUG 2953 #include <sys/debug.h> 2954 #include <sys/promif.h> 2955 2956 #define ip0dbg(a) printf a 2957 #define ip1dbg(a) if (ip_debug > 2) printf a 2958 #define ip2dbg(a) if (ip_debug > 3) printf a 2959 #define ip3dbg(a) if (ip_debug > 4) printf a 2960 #else 2961 #define ip0dbg(a) /* */ 2962 #define ip1dbg(a) /* */ 2963 #define ip2dbg(a) /* */ 2964 #define ip3dbg(a) /* */ 2965 #endif /* IP_DEBUG */ 2966 2967 /* Default MAC-layer address string length for mac_colon_addr */ 2968 #define MAC_STR_LEN 128 2969 2970 struct ipsec_out_s; 2971 2972 struct mac_header_info_s; 2973 2974 extern const char *dlpi_prim_str(int); 2975 extern const char *dlpi_err_str(int); 2976 extern void ill_frag_timer(void *); 2977 extern ill_t *ill_first(int, int, ill_walk_context_t *); 2978 extern ill_t *ill_next(ill_walk_context_t *, ill_t *); 2979 extern void ill_frag_timer_start(ill_t *); 2980 extern mblk_t *ip_carve_mp(mblk_t **, ssize_t); 2981 extern mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 2982 extern char *ip_dot_addr(ipaddr_t, char *); 2983 extern const char *mac_colon_addr(const uint8_t *, size_t, char *, size_t); 2984 extern void ip_lwput(queue_t *, mblk_t *); 2985 extern boolean_t icmp_err_rate_limit(void); 2986 extern void icmp_time_exceeded(queue_t *, mblk_t *, uint8_t, zoneid_t); 2987 extern void icmp_unreachable(queue_t *, mblk_t *, uint8_t, zoneid_t); 2988 extern mblk_t *ip_add_info(mblk_t *, ill_t *, uint_t); 2989 extern mblk_t *ip_bind_v4(queue_t *, mblk_t *, conn_t *); 2990 extern int ip_bind_connected(conn_t *, mblk_t *, ipaddr_t *, uint16_t, 2991 ipaddr_t, uint16_t, boolean_t, boolean_t, boolean_t, 2992 boolean_t); 2993 extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *); 2994 extern int ip_bind_laddr(conn_t *, mblk_t *, ipaddr_t, uint16_t, 2995 boolean_t, boolean_t, boolean_t); 2996 extern uint_t ip_cksum(mblk_t *, int, uint32_t); 2997 extern int ip_close(queue_t *, int); 2998 extern uint16_t ip_csum_hdr(ipha_t *); 2999 extern void ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t); 3000 extern void ip_ire_fini(void); 3001 extern void ip_ire_init(void); 3002 extern int ip_open(queue_t *, dev_t *, int, int, cred_t *); 3003 extern int ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *, 3004 size_t); 3005 extern int ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t, 3006 int, int, mblk_t *); 3007 extern void ip_rput(queue_t *, mblk_t *); 3008 extern void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, 3009 struct mac_header_info_s *); 3010 extern void ip_rput_dlpi(queue_t *, mblk_t *); 3011 extern void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 3012 extern void ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *); 3013 3014 extern int ip_snmpmod_close(queue_t *); 3015 extern void ip_snmpmod_wput(queue_t *, mblk_t *); 3016 extern void ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 3017 extern void ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 3018 extern void ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *); 3019 extern void ip_setqinfo(queue_t *, minor_t, boolean_t); 3020 extern void ip_trash_ire_reclaim(void *); 3021 extern void ip_trash_timer_expire(void *); 3022 extern void ip_wput(queue_t *, mblk_t *); 3023 extern void ip_output(void *, mblk_t *, void *, int); 3024 extern void ip_wput_md(queue_t *, mblk_t *, conn_t *); 3025 3026 extern void ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int, 3027 zoneid_t); 3028 extern void ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *, 3029 int, zoneid_t); 3030 extern void ip_wput_multicast(queue_t *, mblk_t *, ipif_t *, zoneid_t); 3031 extern void ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *); 3032 extern void ip_wsrv(queue_t *); 3033 extern char *ip_nv_lookup(nv_t *, int); 3034 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3035 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3036 extern ipaddr_t ip_massage_options(ipha_t *); 3037 extern ipaddr_t ip_net_mask(ipaddr_t); 3038 extern void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 3039 zoneid_t); 3040 extern ipxmit_state_t ip_xmit_v4(mblk_t *, ire_t *, struct ipsec_out_s *, 3041 boolean_t); 3042 extern int ip_hdr_complete(ipha_t *, zoneid_t); 3043 3044 extern struct qinit rinit_ipv6; 3045 extern struct qinit winit_ipv6; 3046 extern struct qinit rinit_tcp; 3047 extern struct qinit rinit_tcp6; 3048 extern struct qinit winit_tcp; 3049 extern struct qinit rinit_acceptor_tcp; 3050 extern struct qinit winit_acceptor_tcp; 3051 3052 extern void conn_drain_insert(conn_t *connp); 3053 extern int conn_ipsec_length(conn_t *connp); 3054 extern void ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *, 3055 ire_t *); 3056 extern ipaddr_t ip_get_dst(ipha_t *); 3057 extern int ipsec_out_extra_length(mblk_t *); 3058 extern int ipsec_in_extra_length(mblk_t *); 3059 extern mblk_t *ipsec_in_alloc(); 3060 extern boolean_t ipsec_in_is_secure(mblk_t *); 3061 extern void ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t); 3062 extern void ipsec_out_to_in(mblk_t *); 3063 extern int ill_forward_set(queue_t *, mblk_t *, boolean_t, caddr_t); 3064 extern void ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *); 3065 3066 extern void ire_cleanup(ire_t *); 3067 extern void ire_inactive(ire_t *); 3068 extern boolean_t irb_inactive(irb_t *); 3069 extern ire_t *ire_unlink(irb_t *); 3070 #ifdef IRE_DEBUG 3071 extern void ire_trace_ref(ire_t *ire); 3072 extern void ire_untrace_ref(ire_t *ire); 3073 extern void ire_thread_exit(ire_t *ire, caddr_t); 3074 #endif 3075 #ifdef ILL_DEBUG 3076 extern void ill_trace_cleanup(ill_t *); 3077 extern void ipif_trace_cleanup(ipif_t *); 3078 #endif 3079 3080 extern int ip_srcid_insert(const in6_addr_t *, zoneid_t); 3081 extern int ip_srcid_remove(const in6_addr_t *, zoneid_t); 3082 extern void ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t); 3083 extern uint_t ip_srcid_find_addr(const in6_addr_t *, zoneid_t); 3084 extern int ip_srcid_report(queue_t *, mblk_t *, caddr_t, cred_t *); 3085 3086 extern uint8_t ipoptp_next(ipoptp_t *); 3087 extern uint8_t ipoptp_first(ipoptp_t *, ipha_t *); 3088 extern int ip_opt_get_user(const ipha_t *, uchar_t *); 3089 extern ill_t *ip_grab_attach_ill(ill_t *, mblk_t *, int, boolean_t); 3090 extern ire_t *conn_set_outgoing_ill(conn_t *, ire_t *, ill_t **); 3091 extern int ipsec_req_from_conn(conn_t *, ipsec_req_t *, int); 3092 extern int ip_snmp_get(queue_t *q, mblk_t *mctl); 3093 extern int ip_snmp_set(queue_t *q, int, int, uchar_t *, int); 3094 extern void ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3095 extern void ip_quiesce_conn(conn_t *); 3096 extern void ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3097 extern void ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *); 3098 extern void ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipif_t *, 3099 ipsq_t *); 3100 3101 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *, 3102 uint_t); 3103 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *, 3104 uint_t); 3105 extern void ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t); 3106 3107 extern boolean_t ipsq_pending_mp_cleanup(ill_t *, conn_t *); 3108 extern void conn_ioctl_cleanup(conn_t *); 3109 extern ill_t *conn_get_held_ill(conn_t *, ill_t **, int *); 3110 extern ill_t *ip_newroute_get_dst_ill(ill_t *); 3111 3112 struct multidata_s; 3113 struct pdesc_s; 3114 3115 extern mblk_t *ip_mdinfo_alloc(ill_mdt_capab_t *); 3116 extern mblk_t *ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *); 3117 extern uint_t ip_md_cksum(struct pdesc_s *, int, uint_t); 3118 extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *, 3119 const mblk_t *); 3120 extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *, 3121 uint32_t, uint32_t, uint32_t, uint32_t); 3122 extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *, 3123 uint_t); 3124 extern mblk_t *ip_unbind(queue_t *, mblk_t *); 3125 3126 extern void tnet_init(void); 3127 extern void tnet_fini(void); 3128 3129 /* Hooks for CGTP (multirt routes) filtering module */ 3130 #define CGTP_FILTER_REV_1 1 3131 #define CGTP_FILTER_REV_2 2 3132 #define CGTP_FILTER_REV CGTP_FILTER_REV_2 3133 3134 /* cfo_filter, cfo_filter_fp, cfo_filter_v6 hooks return values */ 3135 #define CGTP_IP_PKT_NOT_CGTP 0 3136 #define CGTP_IP_PKT_PREMIUM 1 3137 #define CGTP_IP_PKT_DUPLICATE 2 3138 3139 typedef struct cgtp_filter_ops { 3140 int cfo_filter_rev; 3141 int (*cfo_change_state)(int); 3142 int (*cfo_add_dest_v4)(ipaddr_t, ipaddr_t, ipaddr_t, ipaddr_t); 3143 int (*cfo_del_dest_v4)(ipaddr_t, ipaddr_t); 3144 int (*cfo_add_dest_v6)(in6_addr_t *, in6_addr_t *, in6_addr_t *, 3145 in6_addr_t *); 3146 int (*cfo_del_dest_v6)(in6_addr_t *, in6_addr_t *); 3147 int (*cfo_filter)(queue_t *, mblk_t *); 3148 int (*cfo_filter_fp)(queue_t *, mblk_t *); 3149 int (*cfo_filter_v6)(queue_t *, ip6_t *, ip6_frag_t *); 3150 } cgtp_filter_ops_t; 3151 3152 #define CGTP_MCAST_SUCCESS 1 3153 3154 extern cgtp_filter_ops_t *ip_cgtp_filter_ops; 3155 extern boolean_t ip_cgtp_filter; 3156 3157 extern int ip_cgtp_filter_supported(void); 3158 extern int ip_cgtp_filter_register(cgtp_filter_ops_t *); 3159 3160 /* Flags for ire_multirt_lookup() */ 3161 3162 #define MULTIRT_USESTAMP 0x0001 3163 #define MULTIRT_SETSTAMP 0x0002 3164 #define MULTIRT_CACHEGW 0x0004 3165 3166 /* Debug stuff for multirt route resolution. */ 3167 #if defined(DEBUG) && !defined(__lint) 3168 /* Our "don't send, rather drop" flag. */ 3169 #define MULTIRT_DEBUG_FLAG 0x8000 3170 3171 #define MULTIRT_TRACE(x) ip2dbg(x) 3172 3173 #define MULTIRT_DEBUG_TAG(mblk) \ 3174 do { \ 3175 ASSERT(mblk != NULL); \ 3176 MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \ 3177 __FILE__, __LINE__, \ 3178 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3179 (mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \ 3180 } while (0) 3181 3182 #define MULTIRT_DEBUG_UNTAG(mblk) \ 3183 do { \ 3184 ASSERT(mblk != NULL); \ 3185 MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \ 3186 __FILE__, __LINE__, \ 3187 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3188 (mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \ 3189 } while (0) 3190 3191 #define MULTIRT_DEBUG_TAGGED(mblk) \ 3192 (((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE) 3193 #else 3194 #define MULTIRT_DEBUG_TAG(mblk) ASSERT(mblk != NULL) 3195 #define MULTIRT_DEBUG_UNTAG(mblk) ASSERT(mblk != NULL) 3196 #define MULTIRT_DEBUG_TAGGED(mblk) B_FALSE 3197 #endif 3198 3199 /* 3200 * Per-ILL Multidata Transmit capabilities. 3201 */ 3202 struct ill_mdt_capab_s { 3203 uint_t ill_mdt_version; /* interface version */ 3204 uint_t ill_mdt_on; /* on/off switch for MDT on this ILL */ 3205 uint_t ill_mdt_hdr_head; /* leading header fragment extra space */ 3206 uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */ 3207 uint_t ill_mdt_max_pld; /* maximum payload buffers per Multidata */ 3208 uint_t ill_mdt_span_limit; /* maximum payload span per packet */ 3209 }; 3210 3211 struct ill_hcksum_capab_s { 3212 uint_t ill_hcksum_version; /* interface version */ 3213 uint_t ill_hcksum_txflags; /* capabilities on transmit */ 3214 }; 3215 3216 struct ill_zerocopy_capab_s { 3217 uint_t ill_zerocopy_version; /* interface version */ 3218 uint_t ill_zerocopy_flags; /* capabilities */ 3219 }; 3220 3221 /* Possible ill_states */ 3222 #define ILL_RING_INPROC 3 /* Being assigned to squeue */ 3223 #define ILL_RING_INUSE 2 /* Already Assigned to Rx Ring */ 3224 #define ILL_RING_BEING_FREED 1 /* Being Unassigned */ 3225 #define ILL_RING_FREE 0 /* Available to be assigned to Ring */ 3226 3227 #define ILL_MAX_RINGS 256 /* Max num of rx rings we can manage */ 3228 #define ILL_POLLING 0x01 /* Polling in use */ 3229 3230 /* 3231 * These functions pointer types are exported by the mac/dls layer. 3232 * we need to duplicate the definitions here because we cannot 3233 * include mac/dls header files here. 3234 */ 3235 typedef void (*ip_mac_blank_t)(void *, time_t, uint_t); 3236 typedef void (*ip_dld_tx_t)(void *, mblk_t *); 3237 3238 typedef void (*ip_dls_chg_soft_ring_t)(void *, int); 3239 typedef void (*ip_dls_bind_t)(void *, processorid_t); 3240 typedef void (*ip_dls_unbind_t)(void *); 3241 3242 struct ill_rx_ring { 3243 ip_mac_blank_t rr_blank; /* Driver interrupt blanking func */ 3244 void *rr_handle; /* Handle for Rx ring */ 3245 squeue_t *rr_sqp; /* Squeue the ring is bound to */ 3246 ill_t *rr_ill; /* back pointer to ill */ 3247 clock_t rr_poll_time; /* Last lbolt polling was used */ 3248 uint32_t rr_poll_state; /* polling state flags */ 3249 uint32_t rr_max_blank_time; /* Max interrupt blank */ 3250 uint32_t rr_min_blank_time; /* Min interrupt blank */ 3251 uint32_t rr_max_pkt_cnt; /* Max pkts before interrupt */ 3252 uint32_t rr_min_pkt_cnt; /* Mix pkts before interrupt */ 3253 uint32_t rr_normal_blank_time; /* Normal intr freq */ 3254 uint32_t rr_normal_pkt_cnt; /* Normal intr pkt cnt */ 3255 uint32_t rr_ring_state; /* State of this ring */ 3256 }; 3257 3258 struct ill_dls_capab_s { 3259 ip_dld_tx_t ill_tx; /* Driver Tx routine */ 3260 void *ill_tx_handle; /* Driver Tx handle */ 3261 ip_dls_chg_soft_ring_t ill_dls_change_status; 3262 /* change soft ring fanout */ 3263 ip_dls_bind_t ill_dls_bind; /* to add CPU affinity */ 3264 ip_dls_unbind_t ill_dls_unbind; /* remove CPU affinity */ 3265 ill_rx_ring_t *ill_ring_tbl; /* Ring to Sqp mapping table */ 3266 uint_t ill_dls_soft_ring_cnt; /* Number of soft ring */ 3267 conn_t *ill_unbind_conn; /* Conn used during unplumb */ 3268 }; 3269 3270 /* 3271 * This message is sent by an upper-layer protocol to tell IP that it knows all 3272 * about labels and will construct them itself. IP takes the slow path and 3273 * recomputes the label on every packet when this isn't true. 3274 */ 3275 #define IP_ULP_OUT_LABELED (('O' << 8) + 'L') 3276 typedef struct out_labeled_s { 3277 uint32_t out_labeled_type; /* OUT_LABELED */ 3278 queue_t *out_qnext; /* intermediate detection */ 3279 } out_labeled_t; 3280 3281 /* 3282 * IP squeues exports 3283 */ 3284 extern int ip_squeue_profile; 3285 extern int ip_squeue_bind; 3286 extern boolean_t ip_squeue_fanout; 3287 extern boolean_t ip_squeue_soft_ring; 3288 extern uint_t ip_threads_per_cpu; 3289 extern uint_t ip_squeues_per_cpu; 3290 extern uint_t ip_soft_rings_cnt; 3291 3292 typedef struct squeue_set_s { 3293 kmutex_t sqs_lock; 3294 struct squeue_s **sqs_list; 3295 int sqs_size; 3296 int sqs_max_size; 3297 processorid_t sqs_bind; 3298 } squeue_set_t; 3299 3300 #define IP_SQUEUE_GET(hint) \ 3301 ((!ip_squeue_fanout) ? (CPU->cpu_squeue_set->sqs_list[0]) : \ 3302 ip_squeue_random(hint)) 3303 3304 typedef void (*squeue_func_t)(squeue_t *, mblk_t *, sqproc_t, void *, uint8_t); 3305 3306 extern void ip_squeue_init(void (*)(squeue_t *)); 3307 extern squeue_t *ip_squeue_random(uint_t); 3308 extern squeue_t *ip_squeue_get(ill_rx_ring_t *); 3309 extern void ip_squeue_get_pkts(squeue_t *); 3310 extern int ip_squeue_bind_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 3311 extern int ip_squeue_bind_get(queue_t *, mblk_t *, caddr_t, cred_t *); 3312 extern void ip_squeue_clean(void *, mblk_t *, void *); 3313 extern void ip_resume_tcp_bind(void *, mblk_t *, void *); 3314 extern void ip_soft_ring_assignment(ill_t *, ill_rx_ring_t *, 3315 mblk_t *, struct mac_header_info_s *); 3316 3317 extern void tcp_wput(queue_t *, mblk_t *); 3318 3319 extern int ip_fill_mtuinfo(struct in6_addr *, in_port_t, 3320 struct ip6_mtuinfo *); 3321 extern ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *); 3322 3323 typedef void (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *); 3324 3325 /* 3326 * Squeue tags. Tags only need to be unique when the callback function is the 3327 * same to distinguish between different calls, but we use unique tags for 3328 * convenience anyway. 3329 */ 3330 #define SQTAG_IP_INPUT 1 3331 #define SQTAG_TCP_INPUT_ICMP_ERR 2 3332 #define SQTAG_TCP6_INPUT_ICMP_ERR 3 3333 #define SQTAG_IP_TCP_INPUT 4 3334 #define SQTAG_IP6_TCP_INPUT 5 3335 #define SQTAG_IP_TCP_CLOSE 6 3336 #define SQTAG_TCP_OUTPUT 7 3337 #define SQTAG_TCP_TIMER 8 3338 #define SQTAG_TCP_TIMEWAIT 9 3339 #define SQTAG_TCP_ACCEPT_FINISH 10 3340 #define SQTAG_TCP_ACCEPT_FINISH_Q0 11 3341 #define SQTAG_TCP_ACCEPT_PENDING 12 3342 #define SQTAG_TCP_LISTEN_DISCON 13 3343 #define SQTAG_TCP_CONN_REQ 14 3344 #define SQTAG_TCP_EAGER_BLOWOFF 15 3345 #define SQTAG_TCP_EAGER_CLEANUP 16 3346 #define SQTAG_TCP_EAGER_CLEANUP_Q0 17 3347 #define SQTAG_TCP_CONN_IND 18 3348 #define SQTAG_TCP_RSRV 19 3349 #define SQTAG_TCP_ABORT_BUCKET 20 3350 #define SQTAG_TCP_REINPUT 21 3351 #define SQTAG_TCP_REINPUT_EAGER 22 3352 #define SQTAG_TCP_INPUT_MCTL 23 3353 #define SQTAG_TCP_RPUTOTHER 24 3354 #define SQTAG_IP_PROTO_AGAIN 25 3355 #define SQTAG_IP_FANOUT_TCP 26 3356 #define SQTAG_IPSQ_CLEAN_RING 27 3357 #define SQTAG_TCP_WPUT_OTHER 28 3358 #define SQTAG_TCP_CONN_REQ_UNBOUND 29 3359 #define SQTAG_TCP_SEND_PENDING 30 3360 #define SQTAG_BIND_RETRY 31 3361 #define SQTAG_UDP_FANOUT 32 3362 #define SQTAG_UDP_INPUT 33 3363 #define SQTAG_UDP_WPUT 34 3364 #define SQTAG_UDP_OUTPUT 35 3365 #define SQTAG_TCP_KSSL_INPUT 36 3366 3367 #endif /* _KERNEL */ 3368 3369 #ifdef __cplusplus 3370 } 3371 #endif 3372 3373 #endif /* _INET_IP_H */ 3374