1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/fm/fs/zfs.h> 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/uberblock_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/space_map.h> 38 #include <sys/zio.h> 39 #include <sys/zap.h> 40 #include <sys/fs/zfs.h> 41 #include <sys/arc.h> 42 #include <sys/zil.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 static vdev_ops_t *vdev_ops_table[] = { 49 &vdev_root_ops, 50 &vdev_raidz_ops, 51 &vdev_mirror_ops, 52 &vdev_replacing_ops, 53 &vdev_spare_ops, 54 &vdev_disk_ops, 55 &vdev_file_ops, 56 &vdev_missing_ops, 57 NULL 58 }; 59 60 /* maximum scrub/resilver I/O queue per leaf vdev */ 61 int zfs_scrub_limit = 10; 62 63 /* 64 * Given a vdev type, return the appropriate ops vector. 65 */ 66 static vdev_ops_t * 67 vdev_getops(const char *type) 68 { 69 vdev_ops_t *ops, **opspp; 70 71 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 72 if (strcmp(ops->vdev_op_type, type) == 0) 73 break; 74 75 return (ops); 76 } 77 78 /* 79 * Default asize function: return the MAX of psize with the asize of 80 * all children. This is what's used by anything other than RAID-Z. 81 */ 82 uint64_t 83 vdev_default_asize(vdev_t *vd, uint64_t psize) 84 { 85 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 86 uint64_t csize; 87 88 for (int c = 0; c < vd->vdev_children; c++) { 89 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 90 asize = MAX(asize, csize); 91 } 92 93 return (asize); 94 } 95 96 /* 97 * Get the minimum allocatable size. We define the allocatable size as 98 * the vdev's asize rounded to the nearest metaslab. This allows us to 99 * replace or attach devices which don't have the same physical size but 100 * can still satisfy the same number of allocations. 101 */ 102 uint64_t 103 vdev_get_min_asize(vdev_t *vd) 104 { 105 vdev_t *pvd = vd->vdev_parent; 106 107 /* 108 * The our parent is NULL (inactive spare or cache) or is the root, 109 * just return our own asize. 110 */ 111 if (pvd == NULL) 112 return (vd->vdev_asize); 113 114 /* 115 * The top-level vdev just returns the allocatable size rounded 116 * to the nearest metaslab. 117 */ 118 if (vd == vd->vdev_top) 119 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 120 121 /* 122 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 123 * so each child must provide at least 1/Nth of its asize. 124 */ 125 if (pvd->vdev_ops == &vdev_raidz_ops) 126 return (pvd->vdev_min_asize / pvd->vdev_children); 127 128 return (pvd->vdev_min_asize); 129 } 130 131 void 132 vdev_set_min_asize(vdev_t *vd) 133 { 134 vd->vdev_min_asize = vdev_get_min_asize(vd); 135 136 for (int c = 0; c < vd->vdev_children; c++) 137 vdev_set_min_asize(vd->vdev_child[c]); 138 } 139 140 vdev_t * 141 vdev_lookup_top(spa_t *spa, uint64_t vdev) 142 { 143 vdev_t *rvd = spa->spa_root_vdev; 144 145 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 146 147 if (vdev < rvd->vdev_children) { 148 ASSERT(rvd->vdev_child[vdev] != NULL); 149 return (rvd->vdev_child[vdev]); 150 } 151 152 return (NULL); 153 } 154 155 vdev_t * 156 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 157 { 158 vdev_t *mvd; 159 160 if (vd->vdev_guid == guid) 161 return (vd); 162 163 for (int c = 0; c < vd->vdev_children; c++) 164 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 165 NULL) 166 return (mvd); 167 168 return (NULL); 169 } 170 171 void 172 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 173 { 174 size_t oldsize, newsize; 175 uint64_t id = cvd->vdev_id; 176 vdev_t **newchild; 177 178 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 179 ASSERT(cvd->vdev_parent == NULL); 180 181 cvd->vdev_parent = pvd; 182 183 if (pvd == NULL) 184 return; 185 186 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 187 188 oldsize = pvd->vdev_children * sizeof (vdev_t *); 189 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 190 newsize = pvd->vdev_children * sizeof (vdev_t *); 191 192 newchild = kmem_zalloc(newsize, KM_SLEEP); 193 if (pvd->vdev_child != NULL) { 194 bcopy(pvd->vdev_child, newchild, oldsize); 195 kmem_free(pvd->vdev_child, oldsize); 196 } 197 198 pvd->vdev_child = newchild; 199 pvd->vdev_child[id] = cvd; 200 201 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 202 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 203 204 /* 205 * Walk up all ancestors to update guid sum. 206 */ 207 for (; pvd != NULL; pvd = pvd->vdev_parent) 208 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 209 210 if (cvd->vdev_ops->vdev_op_leaf) 211 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 212 } 213 214 void 215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 216 { 217 int c; 218 uint_t id = cvd->vdev_id; 219 220 ASSERT(cvd->vdev_parent == pvd); 221 222 if (pvd == NULL) 223 return; 224 225 ASSERT(id < pvd->vdev_children); 226 ASSERT(pvd->vdev_child[id] == cvd); 227 228 pvd->vdev_child[id] = NULL; 229 cvd->vdev_parent = NULL; 230 231 for (c = 0; c < pvd->vdev_children; c++) 232 if (pvd->vdev_child[c]) 233 break; 234 235 if (c == pvd->vdev_children) { 236 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 237 pvd->vdev_child = NULL; 238 pvd->vdev_children = 0; 239 } 240 241 /* 242 * Walk up all ancestors to update guid sum. 243 */ 244 for (; pvd != NULL; pvd = pvd->vdev_parent) 245 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 246 247 if (cvd->vdev_ops->vdev_op_leaf) 248 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 249 } 250 251 /* 252 * Remove any holes in the child array. 253 */ 254 void 255 vdev_compact_children(vdev_t *pvd) 256 { 257 vdev_t **newchild, *cvd; 258 int oldc = pvd->vdev_children; 259 int newc; 260 261 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 262 263 for (int c = newc = 0; c < oldc; c++) 264 if (pvd->vdev_child[c]) 265 newc++; 266 267 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 268 269 for (int c = newc = 0; c < oldc; c++) { 270 if ((cvd = pvd->vdev_child[c]) != NULL) { 271 newchild[newc] = cvd; 272 cvd->vdev_id = newc++; 273 } 274 } 275 276 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 277 pvd->vdev_child = newchild; 278 pvd->vdev_children = newc; 279 } 280 281 /* 282 * Allocate and minimally initialize a vdev_t. 283 */ 284 static vdev_t * 285 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 286 { 287 vdev_t *vd; 288 289 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 290 291 if (spa->spa_root_vdev == NULL) { 292 ASSERT(ops == &vdev_root_ops); 293 spa->spa_root_vdev = vd; 294 } 295 296 if (guid == 0) { 297 if (spa->spa_root_vdev == vd) { 298 /* 299 * The root vdev's guid will also be the pool guid, 300 * which must be unique among all pools. 301 */ 302 while (guid == 0 || spa_guid_exists(guid, 0)) 303 guid = spa_get_random(-1ULL); 304 } else { 305 /* 306 * Any other vdev's guid must be unique within the pool. 307 */ 308 while (guid == 0 || 309 spa_guid_exists(spa_guid(spa), guid)) 310 guid = spa_get_random(-1ULL); 311 } 312 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 313 } 314 315 vd->vdev_spa = spa; 316 vd->vdev_id = id; 317 vd->vdev_guid = guid; 318 vd->vdev_guid_sum = guid; 319 vd->vdev_ops = ops; 320 vd->vdev_state = VDEV_STATE_CLOSED; 321 322 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 323 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 324 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 325 for (int t = 0; t < DTL_TYPES; t++) { 326 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 327 &vd->vdev_dtl_lock); 328 } 329 txg_list_create(&vd->vdev_ms_list, 330 offsetof(struct metaslab, ms_txg_node)); 331 txg_list_create(&vd->vdev_dtl_list, 332 offsetof(struct vdev, vdev_dtl_node)); 333 vd->vdev_stat.vs_timestamp = gethrtime(); 334 vdev_queue_init(vd); 335 vdev_cache_init(vd); 336 337 return (vd); 338 } 339 340 /* 341 * Allocate a new vdev. The 'alloctype' is used to control whether we are 342 * creating a new vdev or loading an existing one - the behavior is slightly 343 * different for each case. 344 */ 345 int 346 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 347 int alloctype) 348 { 349 vdev_ops_t *ops; 350 char *type; 351 uint64_t guid = 0, islog, nparity; 352 vdev_t *vd; 353 354 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 355 356 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 357 return (EINVAL); 358 359 if ((ops = vdev_getops(type)) == NULL) 360 return (EINVAL); 361 362 /* 363 * If this is a load, get the vdev guid from the nvlist. 364 * Otherwise, vdev_alloc_common() will generate one for us. 365 */ 366 if (alloctype == VDEV_ALLOC_LOAD) { 367 uint64_t label_id; 368 369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 370 label_id != id) 371 return (EINVAL); 372 373 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 374 return (EINVAL); 375 } else if (alloctype == VDEV_ALLOC_SPARE) { 376 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 377 return (EINVAL); 378 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 379 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 380 return (EINVAL); 381 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 382 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 383 return (EINVAL); 384 } 385 386 /* 387 * The first allocated vdev must be of type 'root'. 388 */ 389 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 390 return (EINVAL); 391 392 /* 393 * Determine whether we're a log vdev. 394 */ 395 islog = 0; 396 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 397 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 398 return (ENOTSUP); 399 400 /* 401 * Set the nparity property for RAID-Z vdevs. 402 */ 403 nparity = -1ULL; 404 if (ops == &vdev_raidz_ops) { 405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 406 &nparity) == 0) { 407 /* 408 * Currently, we can only support 2 parity devices. 409 */ 410 if (nparity == 0 || nparity > 2) 411 return (EINVAL); 412 /* 413 * Older versions can only support 1 parity device. 414 */ 415 if (nparity == 2 && 416 spa_version(spa) < SPA_VERSION_RAID6) 417 return (ENOTSUP); 418 } else { 419 /* 420 * We require the parity to be specified for SPAs that 421 * support multiple parity levels. 422 */ 423 if (spa_version(spa) >= SPA_VERSION_RAID6) 424 return (EINVAL); 425 /* 426 * Otherwise, we default to 1 parity device for RAID-Z. 427 */ 428 nparity = 1; 429 } 430 } else { 431 nparity = 0; 432 } 433 ASSERT(nparity != -1ULL); 434 435 vd = vdev_alloc_common(spa, id, guid, ops); 436 437 vd->vdev_islog = islog; 438 vd->vdev_nparity = nparity; 439 440 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 441 vd->vdev_path = spa_strdup(vd->vdev_path); 442 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 443 vd->vdev_devid = spa_strdup(vd->vdev_devid); 444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 445 &vd->vdev_physpath) == 0) 446 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 448 vd->vdev_fru = spa_strdup(vd->vdev_fru); 449 450 /* 451 * Set the whole_disk property. If it's not specified, leave the value 452 * as -1. 453 */ 454 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 455 &vd->vdev_wholedisk) != 0) 456 vd->vdev_wholedisk = -1ULL; 457 458 /* 459 * Look for the 'not present' flag. This will only be set if the device 460 * was not present at the time of import. 461 */ 462 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 463 &vd->vdev_not_present); 464 465 /* 466 * Get the alignment requirement. 467 */ 468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 469 470 /* 471 * If we're a top-level vdev, try to load the allocation parameters. 472 */ 473 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 474 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 475 &vd->vdev_ms_array); 476 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 477 &vd->vdev_ms_shift); 478 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 479 &vd->vdev_asize); 480 } 481 482 /* 483 * If we're a leaf vdev, try to load the DTL object and other state. 484 */ 485 if (vd->vdev_ops->vdev_op_leaf && 486 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 487 alloctype == VDEV_ALLOC_ROOTPOOL)) { 488 if (alloctype == VDEV_ALLOC_LOAD) { 489 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 490 &vd->vdev_dtl_smo.smo_object); 491 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 492 &vd->vdev_unspare); 493 } 494 495 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 496 uint64_t spare = 0; 497 498 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 499 &spare) == 0 && spare) 500 spa_spare_add(vd); 501 } 502 503 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 504 &vd->vdev_offline); 505 506 /* 507 * When importing a pool, we want to ignore the persistent fault 508 * state, as the diagnosis made on another system may not be 509 * valid in the current context. 510 */ 511 if (spa->spa_load_state == SPA_LOAD_OPEN) { 512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 513 &vd->vdev_faulted); 514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 515 &vd->vdev_degraded); 516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 517 &vd->vdev_removed); 518 } 519 } 520 521 /* 522 * Add ourselves to the parent's list of children. 523 */ 524 vdev_add_child(parent, vd); 525 526 *vdp = vd; 527 528 return (0); 529 } 530 531 void 532 vdev_free(vdev_t *vd) 533 { 534 spa_t *spa = vd->vdev_spa; 535 536 /* 537 * vdev_free() implies closing the vdev first. This is simpler than 538 * trying to ensure complicated semantics for all callers. 539 */ 540 vdev_close(vd); 541 542 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 543 544 /* 545 * Free all children. 546 */ 547 for (int c = 0; c < vd->vdev_children; c++) 548 vdev_free(vd->vdev_child[c]); 549 550 ASSERT(vd->vdev_child == NULL); 551 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 552 553 /* 554 * Discard allocation state. 555 */ 556 if (vd == vd->vdev_top) 557 vdev_metaslab_fini(vd); 558 559 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 560 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 561 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 562 563 /* 564 * Remove this vdev from its parent's child list. 565 */ 566 vdev_remove_child(vd->vdev_parent, vd); 567 568 ASSERT(vd->vdev_parent == NULL); 569 570 /* 571 * Clean up vdev structure. 572 */ 573 vdev_queue_fini(vd); 574 vdev_cache_fini(vd); 575 576 if (vd->vdev_path) 577 spa_strfree(vd->vdev_path); 578 if (vd->vdev_devid) 579 spa_strfree(vd->vdev_devid); 580 if (vd->vdev_physpath) 581 spa_strfree(vd->vdev_physpath); 582 if (vd->vdev_fru) 583 spa_strfree(vd->vdev_fru); 584 585 if (vd->vdev_isspare) 586 spa_spare_remove(vd); 587 if (vd->vdev_isl2cache) 588 spa_l2cache_remove(vd); 589 590 txg_list_destroy(&vd->vdev_ms_list); 591 txg_list_destroy(&vd->vdev_dtl_list); 592 593 mutex_enter(&vd->vdev_dtl_lock); 594 for (int t = 0; t < DTL_TYPES; t++) { 595 space_map_unload(&vd->vdev_dtl[t]); 596 space_map_destroy(&vd->vdev_dtl[t]); 597 } 598 mutex_exit(&vd->vdev_dtl_lock); 599 600 mutex_destroy(&vd->vdev_dtl_lock); 601 mutex_destroy(&vd->vdev_stat_lock); 602 mutex_destroy(&vd->vdev_probe_lock); 603 604 if (vd == spa->spa_root_vdev) 605 spa->spa_root_vdev = NULL; 606 607 kmem_free(vd, sizeof (vdev_t)); 608 } 609 610 /* 611 * Transfer top-level vdev state from svd to tvd. 612 */ 613 static void 614 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 615 { 616 spa_t *spa = svd->vdev_spa; 617 metaslab_t *msp; 618 vdev_t *vd; 619 int t; 620 621 ASSERT(tvd == tvd->vdev_top); 622 623 tvd->vdev_ms_array = svd->vdev_ms_array; 624 tvd->vdev_ms_shift = svd->vdev_ms_shift; 625 tvd->vdev_ms_count = svd->vdev_ms_count; 626 627 svd->vdev_ms_array = 0; 628 svd->vdev_ms_shift = 0; 629 svd->vdev_ms_count = 0; 630 631 tvd->vdev_mg = svd->vdev_mg; 632 tvd->vdev_ms = svd->vdev_ms; 633 634 svd->vdev_mg = NULL; 635 svd->vdev_ms = NULL; 636 637 if (tvd->vdev_mg != NULL) 638 tvd->vdev_mg->mg_vd = tvd; 639 640 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 641 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 642 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 643 644 svd->vdev_stat.vs_alloc = 0; 645 svd->vdev_stat.vs_space = 0; 646 svd->vdev_stat.vs_dspace = 0; 647 648 for (t = 0; t < TXG_SIZE; t++) { 649 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 650 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 651 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 652 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 653 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 654 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 655 } 656 657 if (list_link_active(&svd->vdev_config_dirty_node)) { 658 vdev_config_clean(svd); 659 vdev_config_dirty(tvd); 660 } 661 662 if (list_link_active(&svd->vdev_state_dirty_node)) { 663 vdev_state_clean(svd); 664 vdev_state_dirty(tvd); 665 } 666 667 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 668 svd->vdev_deflate_ratio = 0; 669 670 tvd->vdev_islog = svd->vdev_islog; 671 svd->vdev_islog = 0; 672 } 673 674 static void 675 vdev_top_update(vdev_t *tvd, vdev_t *vd) 676 { 677 if (vd == NULL) 678 return; 679 680 vd->vdev_top = tvd; 681 682 for (int c = 0; c < vd->vdev_children; c++) 683 vdev_top_update(tvd, vd->vdev_child[c]); 684 } 685 686 /* 687 * Add a mirror/replacing vdev above an existing vdev. 688 */ 689 vdev_t * 690 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 691 { 692 spa_t *spa = cvd->vdev_spa; 693 vdev_t *pvd = cvd->vdev_parent; 694 vdev_t *mvd; 695 696 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 697 698 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 699 700 mvd->vdev_asize = cvd->vdev_asize; 701 mvd->vdev_min_asize = cvd->vdev_min_asize; 702 mvd->vdev_ashift = cvd->vdev_ashift; 703 mvd->vdev_state = cvd->vdev_state; 704 705 vdev_remove_child(pvd, cvd); 706 vdev_add_child(pvd, mvd); 707 cvd->vdev_id = mvd->vdev_children; 708 vdev_add_child(mvd, cvd); 709 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 710 711 if (mvd == mvd->vdev_top) 712 vdev_top_transfer(cvd, mvd); 713 714 return (mvd); 715 } 716 717 /* 718 * Remove a 1-way mirror/replacing vdev from the tree. 719 */ 720 void 721 vdev_remove_parent(vdev_t *cvd) 722 { 723 vdev_t *mvd = cvd->vdev_parent; 724 vdev_t *pvd = mvd->vdev_parent; 725 726 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 727 728 ASSERT(mvd->vdev_children == 1); 729 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 730 mvd->vdev_ops == &vdev_replacing_ops || 731 mvd->vdev_ops == &vdev_spare_ops); 732 cvd->vdev_ashift = mvd->vdev_ashift; 733 734 vdev_remove_child(mvd, cvd); 735 vdev_remove_child(pvd, mvd); 736 737 /* 738 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 739 * Otherwise, we could have detached an offline device, and when we 740 * go to import the pool we'll think we have two top-level vdevs, 741 * instead of a different version of the same top-level vdev. 742 */ 743 if (mvd->vdev_top == mvd) { 744 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 745 cvd->vdev_guid += guid_delta; 746 cvd->vdev_guid_sum += guid_delta; 747 } 748 cvd->vdev_id = mvd->vdev_id; 749 vdev_add_child(pvd, cvd); 750 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 751 752 if (cvd == cvd->vdev_top) 753 vdev_top_transfer(mvd, cvd); 754 755 ASSERT(mvd->vdev_children == 0); 756 vdev_free(mvd); 757 } 758 759 int 760 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 761 { 762 spa_t *spa = vd->vdev_spa; 763 objset_t *mos = spa->spa_meta_objset; 764 metaslab_class_t *mc; 765 uint64_t m; 766 uint64_t oldc = vd->vdev_ms_count; 767 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 768 metaslab_t **mspp; 769 int error; 770 771 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 772 return (0); 773 774 /* 775 * Compute the raidz-deflation ratio. Note, we hard-code 776 * in 128k (1 << 17) because it is the current "typical" blocksize. 777 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 778 * or we will inconsistently account for existing bp's. 779 */ 780 vd->vdev_deflate_ratio = (1 << 17) / 781 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 782 783 ASSERT(oldc <= newc); 784 785 if (vd->vdev_islog) 786 mc = spa->spa_log_class; 787 else 788 mc = spa->spa_normal_class; 789 790 if (vd->vdev_mg == NULL) 791 vd->vdev_mg = metaslab_group_create(mc, vd); 792 793 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 794 795 if (oldc != 0) { 796 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 797 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 798 } 799 800 vd->vdev_ms = mspp; 801 vd->vdev_ms_count = newc; 802 803 for (m = oldc; m < newc; m++) { 804 space_map_obj_t smo = { 0, 0, 0 }; 805 if (txg == 0) { 806 uint64_t object = 0; 807 error = dmu_read(mos, vd->vdev_ms_array, 808 m * sizeof (uint64_t), sizeof (uint64_t), &object, 809 DMU_READ_PREFETCH); 810 if (error) 811 return (error); 812 if (object != 0) { 813 dmu_buf_t *db; 814 error = dmu_bonus_hold(mos, object, FTAG, &db); 815 if (error) 816 return (error); 817 ASSERT3U(db->db_size, >=, sizeof (smo)); 818 bcopy(db->db_data, &smo, sizeof (smo)); 819 ASSERT3U(smo.smo_object, ==, object); 820 dmu_buf_rele(db, FTAG); 821 } 822 } 823 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 824 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 825 } 826 827 return (0); 828 } 829 830 void 831 vdev_metaslab_fini(vdev_t *vd) 832 { 833 uint64_t m; 834 uint64_t count = vd->vdev_ms_count; 835 836 if (vd->vdev_ms != NULL) { 837 for (m = 0; m < count; m++) 838 if (vd->vdev_ms[m] != NULL) 839 metaslab_fini(vd->vdev_ms[m]); 840 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 841 vd->vdev_ms = NULL; 842 } 843 } 844 845 typedef struct vdev_probe_stats { 846 boolean_t vps_readable; 847 boolean_t vps_writeable; 848 int vps_flags; 849 } vdev_probe_stats_t; 850 851 static void 852 vdev_probe_done(zio_t *zio) 853 { 854 spa_t *spa = zio->io_spa; 855 vdev_t *vd = zio->io_vd; 856 vdev_probe_stats_t *vps = zio->io_private; 857 858 ASSERT(vd->vdev_probe_zio != NULL); 859 860 if (zio->io_type == ZIO_TYPE_READ) { 861 if (zio->io_error == 0) 862 vps->vps_readable = 1; 863 if (zio->io_error == 0 && spa_writeable(spa)) { 864 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 865 zio->io_offset, zio->io_size, zio->io_data, 866 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 867 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 868 } else { 869 zio_buf_free(zio->io_data, zio->io_size); 870 } 871 } else if (zio->io_type == ZIO_TYPE_WRITE) { 872 if (zio->io_error == 0) 873 vps->vps_writeable = 1; 874 zio_buf_free(zio->io_data, zio->io_size); 875 } else if (zio->io_type == ZIO_TYPE_NULL) { 876 zio_t *pio; 877 878 vd->vdev_cant_read |= !vps->vps_readable; 879 vd->vdev_cant_write |= !vps->vps_writeable; 880 881 if (vdev_readable(vd) && 882 (vdev_writeable(vd) || !spa_writeable(spa))) { 883 zio->io_error = 0; 884 } else { 885 ASSERT(zio->io_error != 0); 886 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 887 spa, vd, NULL, 0, 0); 888 zio->io_error = ENXIO; 889 } 890 891 mutex_enter(&vd->vdev_probe_lock); 892 ASSERT(vd->vdev_probe_zio == zio); 893 vd->vdev_probe_zio = NULL; 894 mutex_exit(&vd->vdev_probe_lock); 895 896 while ((pio = zio_walk_parents(zio)) != NULL) 897 if (!vdev_accessible(vd, pio)) 898 pio->io_error = ENXIO; 899 900 kmem_free(vps, sizeof (*vps)); 901 } 902 } 903 904 /* 905 * Determine whether this device is accessible by reading and writing 906 * to several known locations: the pad regions of each vdev label 907 * but the first (which we leave alone in case it contains a VTOC). 908 */ 909 zio_t * 910 vdev_probe(vdev_t *vd, zio_t *zio) 911 { 912 spa_t *spa = vd->vdev_spa; 913 vdev_probe_stats_t *vps = NULL; 914 zio_t *pio; 915 916 ASSERT(vd->vdev_ops->vdev_op_leaf); 917 918 /* 919 * Don't probe the probe. 920 */ 921 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 922 return (NULL); 923 924 /* 925 * To prevent 'probe storms' when a device fails, we create 926 * just one probe i/o at a time. All zios that want to probe 927 * this vdev will become parents of the probe io. 928 */ 929 mutex_enter(&vd->vdev_probe_lock); 930 931 if ((pio = vd->vdev_probe_zio) == NULL) { 932 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 933 934 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 935 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 936 ZIO_FLAG_TRYHARD; 937 938 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 939 /* 940 * vdev_cant_read and vdev_cant_write can only 941 * transition from TRUE to FALSE when we have the 942 * SCL_ZIO lock as writer; otherwise they can only 943 * transition from FALSE to TRUE. This ensures that 944 * any zio looking at these values can assume that 945 * failures persist for the life of the I/O. That's 946 * important because when a device has intermittent 947 * connectivity problems, we want to ensure that 948 * they're ascribed to the device (ENXIO) and not 949 * the zio (EIO). 950 * 951 * Since we hold SCL_ZIO as writer here, clear both 952 * values so the probe can reevaluate from first 953 * principles. 954 */ 955 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 956 vd->vdev_cant_read = B_FALSE; 957 vd->vdev_cant_write = B_FALSE; 958 } 959 960 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 961 vdev_probe_done, vps, 962 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 963 964 if (zio != NULL) { 965 vd->vdev_probe_wanted = B_TRUE; 966 spa_async_request(spa, SPA_ASYNC_PROBE); 967 } 968 } 969 970 if (zio != NULL) 971 zio_add_child(zio, pio); 972 973 mutex_exit(&vd->vdev_probe_lock); 974 975 if (vps == NULL) { 976 ASSERT(zio != NULL); 977 return (NULL); 978 } 979 980 for (int l = 1; l < VDEV_LABELS; l++) { 981 zio_nowait(zio_read_phys(pio, vd, 982 vdev_label_offset(vd->vdev_psize, l, 983 offsetof(vdev_label_t, vl_pad2)), 984 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 985 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 986 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 987 } 988 989 if (zio == NULL) 990 return (pio); 991 992 zio_nowait(pio); 993 return (NULL); 994 } 995 996 static void 997 vdev_open_child(void *arg) 998 { 999 vdev_t *vd = arg; 1000 1001 vd->vdev_open_thread = curthread; 1002 vd->vdev_open_error = vdev_open(vd); 1003 vd->vdev_open_thread = NULL; 1004 } 1005 1006 void 1007 vdev_open_children(vdev_t *vd) 1008 { 1009 taskq_t *tq; 1010 int children = vd->vdev_children; 1011 1012 tq = taskq_create("vdev_open", children, minclsyspri, 1013 children, children, TASKQ_PREPOPULATE); 1014 1015 for (int c = 0; c < children; c++) 1016 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1017 TQ_SLEEP) != NULL); 1018 1019 taskq_destroy(tq); 1020 } 1021 1022 /* 1023 * Prepare a virtual device for access. 1024 */ 1025 int 1026 vdev_open(vdev_t *vd) 1027 { 1028 spa_t *spa = vd->vdev_spa; 1029 int error; 1030 uint64_t osize = 0; 1031 uint64_t asize, psize; 1032 uint64_t ashift = 0; 1033 1034 ASSERT(vd->vdev_open_thread == curthread || 1035 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1036 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1037 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1038 vd->vdev_state == VDEV_STATE_OFFLINE); 1039 1040 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1041 vd->vdev_cant_read = B_FALSE; 1042 vd->vdev_cant_write = B_FALSE; 1043 vd->vdev_min_asize = vdev_get_min_asize(vd); 1044 1045 if (!vd->vdev_removed && vd->vdev_faulted) { 1046 ASSERT(vd->vdev_children == 0); 1047 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1048 VDEV_AUX_ERR_EXCEEDED); 1049 return (ENXIO); 1050 } else if (vd->vdev_offline) { 1051 ASSERT(vd->vdev_children == 0); 1052 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1053 return (ENXIO); 1054 } 1055 1056 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 1057 1058 if (zio_injection_enabled && error == 0) 1059 error = zio_handle_device_injection(vd, NULL, ENXIO); 1060 1061 if (error) { 1062 if (vd->vdev_removed && 1063 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1064 vd->vdev_removed = B_FALSE; 1065 1066 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1067 vd->vdev_stat.vs_aux); 1068 return (error); 1069 } 1070 1071 vd->vdev_removed = B_FALSE; 1072 1073 if (vd->vdev_degraded) { 1074 ASSERT(vd->vdev_children == 0); 1075 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1076 VDEV_AUX_ERR_EXCEEDED); 1077 } else { 1078 vd->vdev_state = VDEV_STATE_HEALTHY; 1079 } 1080 1081 for (int c = 0; c < vd->vdev_children; c++) { 1082 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1083 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1084 VDEV_AUX_NONE); 1085 break; 1086 } 1087 } 1088 1089 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1090 1091 if (vd->vdev_children == 0) { 1092 if (osize < SPA_MINDEVSIZE) { 1093 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1094 VDEV_AUX_TOO_SMALL); 1095 return (EOVERFLOW); 1096 } 1097 psize = osize; 1098 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1099 } else { 1100 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1101 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1102 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1103 VDEV_AUX_TOO_SMALL); 1104 return (EOVERFLOW); 1105 } 1106 psize = 0; 1107 asize = osize; 1108 } 1109 1110 vd->vdev_psize = psize; 1111 1112 /* 1113 * Make sure the allocatable size hasn't shrunk. 1114 */ 1115 if (asize < vd->vdev_min_asize) { 1116 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1117 VDEV_AUX_BAD_LABEL); 1118 return (EINVAL); 1119 } 1120 1121 if (vd->vdev_asize == 0) { 1122 /* 1123 * This is the first-ever open, so use the computed values. 1124 * For testing purposes, a higher ashift can be requested. 1125 */ 1126 vd->vdev_asize = asize; 1127 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1128 } else { 1129 /* 1130 * Make sure the alignment requirement hasn't increased. 1131 */ 1132 if (ashift > vd->vdev_top->vdev_ashift) { 1133 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1134 VDEV_AUX_BAD_LABEL); 1135 return (EINVAL); 1136 } 1137 } 1138 1139 /* 1140 * If all children are healthy and the asize has increased, 1141 * then we've experienced dynamic LUN growth. If automatic 1142 * expansion is enabled then use the additional space. 1143 */ 1144 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1145 (vd->vdev_expanding || spa->spa_autoexpand)) 1146 vd->vdev_asize = asize; 1147 1148 vdev_set_min_asize(vd); 1149 1150 /* 1151 * Ensure we can issue some IO before declaring the 1152 * vdev open for business. 1153 */ 1154 if (vd->vdev_ops->vdev_op_leaf && 1155 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1156 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1157 VDEV_AUX_IO_FAILURE); 1158 return (error); 1159 } 1160 1161 /* 1162 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1163 * resilver. But don't do this if we are doing a reopen for a scrub, 1164 * since this would just restart the scrub we are already doing. 1165 */ 1166 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1167 vdev_resilver_needed(vd, NULL, NULL)) 1168 spa_async_request(spa, SPA_ASYNC_RESILVER); 1169 1170 return (0); 1171 } 1172 1173 /* 1174 * Called once the vdevs are all opened, this routine validates the label 1175 * contents. This needs to be done before vdev_load() so that we don't 1176 * inadvertently do repair I/Os to the wrong device. 1177 * 1178 * This function will only return failure if one of the vdevs indicates that it 1179 * has since been destroyed or exported. This is only possible if 1180 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1181 * will be updated but the function will return 0. 1182 */ 1183 int 1184 vdev_validate(vdev_t *vd) 1185 { 1186 spa_t *spa = vd->vdev_spa; 1187 nvlist_t *label; 1188 uint64_t guid, top_guid; 1189 uint64_t state; 1190 boolean_t inactive_state; 1191 1192 for (int c = 0; c < vd->vdev_children; c++) 1193 if (vdev_validate(vd->vdev_child[c]) != 0) 1194 return (EBADF); 1195 1196 /* 1197 * If the device has already failed, or was marked offline, don't do 1198 * any further validation. Otherwise, label I/O will fail and we will 1199 * overwrite the previous state. 1200 */ 1201 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1202 1203 if ((label = vdev_label_read_config(vd)) == NULL) { 1204 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1205 VDEV_AUX_BAD_LABEL); 1206 return (0); 1207 } 1208 1209 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1210 &guid) != 0 || guid != spa_guid(spa)) { 1211 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1212 VDEV_AUX_CORRUPT_DATA); 1213 nvlist_free(label); 1214 return (0); 1215 } 1216 1217 /* 1218 * If this vdev just became a top-level vdev because its 1219 * sibling was detached, it will have adopted the parent's 1220 * vdev guid -- but the label may or may not be on disk yet. 1221 * Fortunately, either version of the label will have the 1222 * same top guid, so if we're a top-level vdev, we can 1223 * safely compare to that instead. 1224 */ 1225 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1226 &guid) != 0 || 1227 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1228 &top_guid) != 0 || 1229 (vd->vdev_guid != guid && 1230 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1231 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1232 VDEV_AUX_CORRUPT_DATA); 1233 nvlist_free(label); 1234 return (0); 1235 } 1236 1237 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1238 &state) != 0) { 1239 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1240 VDEV_AUX_CORRUPT_DATA); 1241 nvlist_free(label); 1242 return (0); 1243 } 1244 1245 nvlist_free(label); 1246 1247 inactive_state = (state == POOL_STATE_EXPORTED || 1248 state == POOL_STATE_DESTROYED); 1249 1250 if (spa->spa_load_state == SPA_LOAD_OPEN && 1251 !(state == POOL_STATE_ACTIVE) && 1252 !(spa->spa_inactive_states_ok && inactive_state)) 1253 return (EBADF); 1254 1255 /* 1256 * If we were able to open and validate a vdev that was 1257 * previously marked permanently unavailable, clear that state 1258 * now. 1259 */ 1260 if (vd->vdev_not_present) 1261 vd->vdev_not_present = 0; 1262 } 1263 1264 return (0); 1265 } 1266 1267 /* 1268 * Close a virtual device. 1269 */ 1270 void 1271 vdev_close(vdev_t *vd) 1272 { 1273 spa_t *spa = vd->vdev_spa; 1274 1275 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1276 1277 vd->vdev_ops->vdev_op_close(vd); 1278 1279 vdev_cache_purge(vd); 1280 1281 /* 1282 * We record the previous state before we close it, so that if we are 1283 * doing a reopen(), we don't generate FMA ereports if we notice that 1284 * it's still faulted. 1285 */ 1286 vd->vdev_prevstate = vd->vdev_state; 1287 1288 if (vd->vdev_offline) 1289 vd->vdev_state = VDEV_STATE_OFFLINE; 1290 else 1291 vd->vdev_state = VDEV_STATE_CLOSED; 1292 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1293 } 1294 1295 void 1296 vdev_reopen(vdev_t *vd) 1297 { 1298 spa_t *spa = vd->vdev_spa; 1299 1300 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1301 1302 vdev_close(vd); 1303 (void) vdev_open(vd); 1304 1305 /* 1306 * Call vdev_validate() here to make sure we have the same device. 1307 * Otherwise, a device with an invalid label could be successfully 1308 * opened in response to vdev_reopen(). 1309 */ 1310 if (vd->vdev_aux) { 1311 (void) vdev_validate_aux(vd); 1312 if (vdev_readable(vd) && vdev_writeable(vd) && 1313 vd->vdev_aux == &spa->spa_l2cache && 1314 !l2arc_vdev_present(vd)) 1315 l2arc_add_vdev(spa, vd); 1316 } else { 1317 (void) vdev_validate(vd); 1318 } 1319 1320 /* 1321 * Reassess parent vdev's health. 1322 */ 1323 vdev_propagate_state(vd); 1324 } 1325 1326 int 1327 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1328 { 1329 int error; 1330 1331 /* 1332 * Normally, partial opens (e.g. of a mirror) are allowed. 1333 * For a create, however, we want to fail the request if 1334 * there are any components we can't open. 1335 */ 1336 error = vdev_open(vd); 1337 1338 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1339 vdev_close(vd); 1340 return (error ? error : ENXIO); 1341 } 1342 1343 /* 1344 * Recursively initialize all labels. 1345 */ 1346 if ((error = vdev_label_init(vd, txg, isreplacing ? 1347 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1348 vdev_close(vd); 1349 return (error); 1350 } 1351 1352 return (0); 1353 } 1354 1355 void 1356 vdev_metaslab_set_size(vdev_t *vd) 1357 { 1358 /* 1359 * Aim for roughly 200 metaslabs per vdev. 1360 */ 1361 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1362 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1363 } 1364 1365 void 1366 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1367 { 1368 ASSERT(vd == vd->vdev_top); 1369 ASSERT(ISP2(flags)); 1370 1371 if (flags & VDD_METASLAB) 1372 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1373 1374 if (flags & VDD_DTL) 1375 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1376 1377 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1378 } 1379 1380 /* 1381 * DTLs. 1382 * 1383 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1384 * the vdev has less than perfect replication. There are three kinds of DTL: 1385 * 1386 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1387 * 1388 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1389 * 1390 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1391 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1392 * txgs that was scrubbed. 1393 * 1394 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1395 * persistent errors or just some device being offline. 1396 * Unlike the other three, the DTL_OUTAGE map is not generally 1397 * maintained; it's only computed when needed, typically to 1398 * determine whether a device can be detached. 1399 * 1400 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1401 * either has the data or it doesn't. 1402 * 1403 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1404 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1405 * if any child is less than fully replicated, then so is its parent. 1406 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1407 * comprising only those txgs which appear in 'maxfaults' or more children; 1408 * those are the txgs we don't have enough replication to read. For example, 1409 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1410 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1411 * two child DTL_MISSING maps. 1412 * 1413 * It should be clear from the above that to compute the DTLs and outage maps 1414 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1415 * Therefore, that is all we keep on disk. When loading the pool, or after 1416 * a configuration change, we generate all other DTLs from first principles. 1417 */ 1418 void 1419 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1420 { 1421 space_map_t *sm = &vd->vdev_dtl[t]; 1422 1423 ASSERT(t < DTL_TYPES); 1424 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1425 1426 mutex_enter(sm->sm_lock); 1427 if (!space_map_contains(sm, txg, size)) 1428 space_map_add(sm, txg, size); 1429 mutex_exit(sm->sm_lock); 1430 } 1431 1432 boolean_t 1433 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1434 { 1435 space_map_t *sm = &vd->vdev_dtl[t]; 1436 boolean_t dirty = B_FALSE; 1437 1438 ASSERT(t < DTL_TYPES); 1439 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1440 1441 mutex_enter(sm->sm_lock); 1442 if (sm->sm_space != 0) 1443 dirty = space_map_contains(sm, txg, size); 1444 mutex_exit(sm->sm_lock); 1445 1446 return (dirty); 1447 } 1448 1449 boolean_t 1450 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1451 { 1452 space_map_t *sm = &vd->vdev_dtl[t]; 1453 boolean_t empty; 1454 1455 mutex_enter(sm->sm_lock); 1456 empty = (sm->sm_space == 0); 1457 mutex_exit(sm->sm_lock); 1458 1459 return (empty); 1460 } 1461 1462 /* 1463 * Reassess DTLs after a config change or scrub completion. 1464 */ 1465 void 1466 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1467 { 1468 spa_t *spa = vd->vdev_spa; 1469 avl_tree_t reftree; 1470 int minref; 1471 1472 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1473 1474 for (int c = 0; c < vd->vdev_children; c++) 1475 vdev_dtl_reassess(vd->vdev_child[c], txg, 1476 scrub_txg, scrub_done); 1477 1478 if (vd == spa->spa_root_vdev) 1479 return; 1480 1481 if (vd->vdev_ops->vdev_op_leaf) { 1482 mutex_enter(&vd->vdev_dtl_lock); 1483 if (scrub_txg != 0 && 1484 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) { 1485 /* XXX should check scrub_done? */ 1486 /* 1487 * We completed a scrub up to scrub_txg. If we 1488 * did it without rebooting, then the scrub dtl 1489 * will be valid, so excise the old region and 1490 * fold in the scrub dtl. Otherwise, leave the 1491 * dtl as-is if there was an error. 1492 * 1493 * There's little trick here: to excise the beginning 1494 * of the DTL_MISSING map, we put it into a reference 1495 * tree and then add a segment with refcnt -1 that 1496 * covers the range [0, scrub_txg). This means 1497 * that each txg in that range has refcnt -1 or 0. 1498 * We then add DTL_SCRUB with a refcnt of 2, so that 1499 * entries in the range [0, scrub_txg) will have a 1500 * positive refcnt -- either 1 or 2. We then convert 1501 * the reference tree into the new DTL_MISSING map. 1502 */ 1503 space_map_ref_create(&reftree); 1504 space_map_ref_add_map(&reftree, 1505 &vd->vdev_dtl[DTL_MISSING], 1); 1506 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1507 space_map_ref_add_map(&reftree, 1508 &vd->vdev_dtl[DTL_SCRUB], 2); 1509 space_map_ref_generate_map(&reftree, 1510 &vd->vdev_dtl[DTL_MISSING], 1); 1511 space_map_ref_destroy(&reftree); 1512 } 1513 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1514 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1515 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1516 if (scrub_done) 1517 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1518 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1519 if (!vdev_readable(vd)) 1520 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1521 else 1522 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1523 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1524 mutex_exit(&vd->vdev_dtl_lock); 1525 1526 if (txg != 0) 1527 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1528 return; 1529 } 1530 1531 mutex_enter(&vd->vdev_dtl_lock); 1532 for (int t = 0; t < DTL_TYPES; t++) { 1533 if (t == DTL_SCRUB) 1534 continue; /* leaf vdevs only */ 1535 if (t == DTL_PARTIAL) 1536 minref = 1; /* i.e. non-zero */ 1537 else if (vd->vdev_nparity != 0) 1538 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1539 else 1540 minref = vd->vdev_children; /* any kind of mirror */ 1541 space_map_ref_create(&reftree); 1542 for (int c = 0; c < vd->vdev_children; c++) { 1543 vdev_t *cvd = vd->vdev_child[c]; 1544 mutex_enter(&cvd->vdev_dtl_lock); 1545 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1); 1546 mutex_exit(&cvd->vdev_dtl_lock); 1547 } 1548 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1549 space_map_ref_destroy(&reftree); 1550 } 1551 mutex_exit(&vd->vdev_dtl_lock); 1552 } 1553 1554 static int 1555 vdev_dtl_load(vdev_t *vd) 1556 { 1557 spa_t *spa = vd->vdev_spa; 1558 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1559 objset_t *mos = spa->spa_meta_objset; 1560 dmu_buf_t *db; 1561 int error; 1562 1563 ASSERT(vd->vdev_children == 0); 1564 1565 if (smo->smo_object == 0) 1566 return (0); 1567 1568 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1569 return (error); 1570 1571 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1572 bcopy(db->db_data, smo, sizeof (*smo)); 1573 dmu_buf_rele(db, FTAG); 1574 1575 mutex_enter(&vd->vdev_dtl_lock); 1576 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1577 NULL, SM_ALLOC, smo, mos); 1578 mutex_exit(&vd->vdev_dtl_lock); 1579 1580 return (error); 1581 } 1582 1583 void 1584 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1585 { 1586 spa_t *spa = vd->vdev_spa; 1587 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1588 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1589 objset_t *mos = spa->spa_meta_objset; 1590 space_map_t smsync; 1591 kmutex_t smlock; 1592 dmu_buf_t *db; 1593 dmu_tx_t *tx; 1594 1595 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1596 1597 if (vd->vdev_detached) { 1598 if (smo->smo_object != 0) { 1599 int err = dmu_object_free(mos, smo->smo_object, tx); 1600 ASSERT3U(err, ==, 0); 1601 smo->smo_object = 0; 1602 } 1603 dmu_tx_commit(tx); 1604 return; 1605 } 1606 1607 if (smo->smo_object == 0) { 1608 ASSERT(smo->smo_objsize == 0); 1609 ASSERT(smo->smo_alloc == 0); 1610 smo->smo_object = dmu_object_alloc(mos, 1611 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1612 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1613 ASSERT(smo->smo_object != 0); 1614 vdev_config_dirty(vd->vdev_top); 1615 } 1616 1617 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1618 1619 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1620 &smlock); 1621 1622 mutex_enter(&smlock); 1623 1624 mutex_enter(&vd->vdev_dtl_lock); 1625 space_map_walk(sm, space_map_add, &smsync); 1626 mutex_exit(&vd->vdev_dtl_lock); 1627 1628 space_map_truncate(smo, mos, tx); 1629 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1630 1631 space_map_destroy(&smsync); 1632 1633 mutex_exit(&smlock); 1634 mutex_destroy(&smlock); 1635 1636 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1637 dmu_buf_will_dirty(db, tx); 1638 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1639 bcopy(smo, db->db_data, sizeof (*smo)); 1640 dmu_buf_rele(db, FTAG); 1641 1642 dmu_tx_commit(tx); 1643 } 1644 1645 /* 1646 * Determine whether the specified vdev can be offlined/detached/removed 1647 * without losing data. 1648 */ 1649 boolean_t 1650 vdev_dtl_required(vdev_t *vd) 1651 { 1652 spa_t *spa = vd->vdev_spa; 1653 vdev_t *tvd = vd->vdev_top; 1654 uint8_t cant_read = vd->vdev_cant_read; 1655 boolean_t required; 1656 1657 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1658 1659 if (vd == spa->spa_root_vdev || vd == tvd) 1660 return (B_TRUE); 1661 1662 /* 1663 * Temporarily mark the device as unreadable, and then determine 1664 * whether this results in any DTL outages in the top-level vdev. 1665 * If not, we can safely offline/detach/remove the device. 1666 */ 1667 vd->vdev_cant_read = B_TRUE; 1668 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1669 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1670 vd->vdev_cant_read = cant_read; 1671 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1672 1673 return (required); 1674 } 1675 1676 /* 1677 * Determine if resilver is needed, and if so the txg range. 1678 */ 1679 boolean_t 1680 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1681 { 1682 boolean_t needed = B_FALSE; 1683 uint64_t thismin = UINT64_MAX; 1684 uint64_t thismax = 0; 1685 1686 if (vd->vdev_children == 0) { 1687 mutex_enter(&vd->vdev_dtl_lock); 1688 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1689 vdev_writeable(vd)) { 1690 space_seg_t *ss; 1691 1692 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1693 thismin = ss->ss_start - 1; 1694 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1695 thismax = ss->ss_end; 1696 needed = B_TRUE; 1697 } 1698 mutex_exit(&vd->vdev_dtl_lock); 1699 } else { 1700 for (int c = 0; c < vd->vdev_children; c++) { 1701 vdev_t *cvd = vd->vdev_child[c]; 1702 uint64_t cmin, cmax; 1703 1704 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1705 thismin = MIN(thismin, cmin); 1706 thismax = MAX(thismax, cmax); 1707 needed = B_TRUE; 1708 } 1709 } 1710 } 1711 1712 if (needed && minp) { 1713 *minp = thismin; 1714 *maxp = thismax; 1715 } 1716 return (needed); 1717 } 1718 1719 void 1720 vdev_load(vdev_t *vd) 1721 { 1722 /* 1723 * Recursively load all children. 1724 */ 1725 for (int c = 0; c < vd->vdev_children; c++) 1726 vdev_load(vd->vdev_child[c]); 1727 1728 /* 1729 * If this is a top-level vdev, initialize its metaslabs. 1730 */ 1731 if (vd == vd->vdev_top && 1732 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1733 vdev_metaslab_init(vd, 0) != 0)) 1734 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1735 VDEV_AUX_CORRUPT_DATA); 1736 1737 /* 1738 * If this is a leaf vdev, load its DTL. 1739 */ 1740 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1741 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1742 VDEV_AUX_CORRUPT_DATA); 1743 } 1744 1745 /* 1746 * The special vdev case is used for hot spares and l2cache devices. Its 1747 * sole purpose it to set the vdev state for the associated vdev. To do this, 1748 * we make sure that we can open the underlying device, then try to read the 1749 * label, and make sure that the label is sane and that it hasn't been 1750 * repurposed to another pool. 1751 */ 1752 int 1753 vdev_validate_aux(vdev_t *vd) 1754 { 1755 nvlist_t *label; 1756 uint64_t guid, version; 1757 uint64_t state; 1758 1759 if (!vdev_readable(vd)) 1760 return (0); 1761 1762 if ((label = vdev_label_read_config(vd)) == NULL) { 1763 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1764 VDEV_AUX_CORRUPT_DATA); 1765 return (-1); 1766 } 1767 1768 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1769 version > SPA_VERSION || 1770 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1771 guid != vd->vdev_guid || 1772 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1773 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1774 VDEV_AUX_CORRUPT_DATA); 1775 nvlist_free(label); 1776 return (-1); 1777 } 1778 1779 /* 1780 * We don't actually check the pool state here. If it's in fact in 1781 * use by another pool, we update this fact on the fly when requested. 1782 */ 1783 nvlist_free(label); 1784 return (0); 1785 } 1786 1787 void 1788 vdev_sync_done(vdev_t *vd, uint64_t txg) 1789 { 1790 metaslab_t *msp; 1791 1792 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1793 metaslab_sync_done(msp, txg); 1794 } 1795 1796 void 1797 vdev_sync(vdev_t *vd, uint64_t txg) 1798 { 1799 spa_t *spa = vd->vdev_spa; 1800 vdev_t *lvd; 1801 metaslab_t *msp; 1802 dmu_tx_t *tx; 1803 1804 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1805 ASSERT(vd == vd->vdev_top); 1806 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1807 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1808 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1809 ASSERT(vd->vdev_ms_array != 0); 1810 vdev_config_dirty(vd); 1811 dmu_tx_commit(tx); 1812 } 1813 1814 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1815 metaslab_sync(msp, txg); 1816 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1817 } 1818 1819 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1820 vdev_dtl_sync(lvd, txg); 1821 1822 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1823 } 1824 1825 uint64_t 1826 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1827 { 1828 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1829 } 1830 1831 /* 1832 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 1833 * not be opened, and no I/O is attempted. 1834 */ 1835 int 1836 vdev_fault(spa_t *spa, uint64_t guid) 1837 { 1838 vdev_t *vd; 1839 1840 spa_vdev_state_enter(spa); 1841 1842 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1843 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1844 1845 if (!vd->vdev_ops->vdev_op_leaf) 1846 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1847 1848 /* 1849 * Faulted state takes precedence over degraded. 1850 */ 1851 vd->vdev_faulted = 1ULL; 1852 vd->vdev_degraded = 0ULL; 1853 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED); 1854 1855 /* 1856 * If marking the vdev as faulted cause the top-level vdev to become 1857 * unavailable, then back off and simply mark the vdev as degraded 1858 * instead. 1859 */ 1860 if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) { 1861 vd->vdev_degraded = 1ULL; 1862 vd->vdev_faulted = 0ULL; 1863 1864 /* 1865 * If we reopen the device and it's not dead, only then do we 1866 * mark it degraded. 1867 */ 1868 vdev_reopen(vd); 1869 1870 if (vdev_readable(vd)) { 1871 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1872 VDEV_AUX_ERR_EXCEEDED); 1873 } 1874 } 1875 1876 return (spa_vdev_state_exit(spa, vd, 0)); 1877 } 1878 1879 /* 1880 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 1881 * user that something is wrong. The vdev continues to operate as normal as far 1882 * as I/O is concerned. 1883 */ 1884 int 1885 vdev_degrade(spa_t *spa, uint64_t guid) 1886 { 1887 vdev_t *vd; 1888 1889 spa_vdev_state_enter(spa); 1890 1891 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1892 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1893 1894 if (!vd->vdev_ops->vdev_op_leaf) 1895 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1896 1897 /* 1898 * If the vdev is already faulted, then don't do anything. 1899 */ 1900 if (vd->vdev_faulted || vd->vdev_degraded) 1901 return (spa_vdev_state_exit(spa, NULL, 0)); 1902 1903 vd->vdev_degraded = 1ULL; 1904 if (!vdev_is_dead(vd)) 1905 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1906 VDEV_AUX_ERR_EXCEEDED); 1907 1908 return (spa_vdev_state_exit(spa, vd, 0)); 1909 } 1910 1911 /* 1912 * Online the given vdev. If 'unspare' is set, it implies two things. First, 1913 * any attached spare device should be detached when the device finishes 1914 * resilvering. Second, the online should be treated like a 'test' online case, 1915 * so no FMA events are generated if the device fails to open. 1916 */ 1917 int 1918 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 1919 { 1920 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 1921 1922 spa_vdev_state_enter(spa); 1923 1924 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1925 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1926 1927 if (!vd->vdev_ops->vdev_op_leaf) 1928 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1929 1930 tvd = vd->vdev_top; 1931 vd->vdev_offline = B_FALSE; 1932 vd->vdev_tmpoffline = B_FALSE; 1933 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 1934 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 1935 1936 /* XXX - L2ARC 1.0 does not support expansion */ 1937 if (!vd->vdev_aux) { 1938 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 1939 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 1940 } 1941 1942 vdev_reopen(tvd); 1943 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 1944 1945 if (!vd->vdev_aux) { 1946 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 1947 pvd->vdev_expanding = B_FALSE; 1948 } 1949 1950 if (newstate) 1951 *newstate = vd->vdev_state; 1952 if ((flags & ZFS_ONLINE_UNSPARE) && 1953 !vdev_is_dead(vd) && vd->vdev_parent && 1954 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 1955 vd->vdev_parent->vdev_child[0] == vd) 1956 vd->vdev_unspare = B_TRUE; 1957 1958 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 1959 1960 /* XXX - L2ARC 1.0 does not support expansion */ 1961 if (vd->vdev_aux) 1962 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 1963 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 1964 } 1965 return (spa_vdev_state_exit(spa, vd, 0)); 1966 } 1967 1968 int 1969 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 1970 { 1971 vdev_t *vd, *tvd; 1972 int error; 1973 1974 spa_vdev_state_enter(spa); 1975 1976 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1977 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1978 1979 if (!vd->vdev_ops->vdev_op_leaf) 1980 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1981 1982 tvd = vd->vdev_top; 1983 1984 /* 1985 * If the device isn't already offline, try to offline it. 1986 */ 1987 if (!vd->vdev_offline) { 1988 /* 1989 * If this device has the only valid copy of some data, 1990 * don't allow it to be offlined. Log devices are always 1991 * expendable. 1992 */ 1993 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 1994 vdev_dtl_required(vd)) 1995 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 1996 1997 /* 1998 * Offline this device and reopen its top-level vdev. 1999 * If the top-level vdev is a log device then just offline 2000 * it. Otherwise, if this action results in the top-level 2001 * vdev becoming unusable, undo it and fail the request. 2002 */ 2003 vd->vdev_offline = B_TRUE; 2004 vdev_reopen(tvd); 2005 2006 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2007 vdev_is_dead(tvd)) { 2008 vd->vdev_offline = B_FALSE; 2009 vdev_reopen(tvd); 2010 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2011 } 2012 } 2013 2014 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2015 2016 if (!tvd->vdev_islog || !vdev_is_dead(tvd)) 2017 return (spa_vdev_state_exit(spa, vd, 0)); 2018 2019 (void) spa_vdev_state_exit(spa, vd, 0); 2020 2021 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 2022 NULL, DS_FIND_CHILDREN); 2023 if (error) { 2024 (void) vdev_online(spa, guid, 0, NULL); 2025 return (error); 2026 } 2027 /* 2028 * If we successfully offlined the log device then we need to 2029 * sync out the current txg so that the "stubby" block can be 2030 * removed by zil_sync(). 2031 */ 2032 txg_wait_synced(spa->spa_dsl_pool, 0); 2033 return (0); 2034 } 2035 2036 /* 2037 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2038 * vdev_offline(), we assume the spa config is locked. We also clear all 2039 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2040 */ 2041 void 2042 vdev_clear(spa_t *spa, vdev_t *vd) 2043 { 2044 vdev_t *rvd = spa->spa_root_vdev; 2045 2046 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2047 2048 if (vd == NULL) 2049 vd = rvd; 2050 2051 vd->vdev_stat.vs_read_errors = 0; 2052 vd->vdev_stat.vs_write_errors = 0; 2053 vd->vdev_stat.vs_checksum_errors = 0; 2054 2055 for (int c = 0; c < vd->vdev_children; c++) 2056 vdev_clear(spa, vd->vdev_child[c]); 2057 2058 /* 2059 * If we're in the FAULTED state or have experienced failed I/O, then 2060 * clear the persistent state and attempt to reopen the device. We 2061 * also mark the vdev config dirty, so that the new faulted state is 2062 * written out to disk. 2063 */ 2064 if (vd->vdev_faulted || vd->vdev_degraded || 2065 !vdev_readable(vd) || !vdev_writeable(vd)) { 2066 2067 vd->vdev_faulted = vd->vdev_degraded = 0; 2068 vd->vdev_cant_read = B_FALSE; 2069 vd->vdev_cant_write = B_FALSE; 2070 2071 vdev_reopen(vd); 2072 2073 if (vd != rvd) 2074 vdev_state_dirty(vd->vdev_top); 2075 2076 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2077 spa_async_request(spa, SPA_ASYNC_RESILVER); 2078 2079 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2080 } 2081 } 2082 2083 boolean_t 2084 vdev_is_dead(vdev_t *vd) 2085 { 2086 return (vd->vdev_state < VDEV_STATE_DEGRADED); 2087 } 2088 2089 boolean_t 2090 vdev_readable(vdev_t *vd) 2091 { 2092 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2093 } 2094 2095 boolean_t 2096 vdev_writeable(vdev_t *vd) 2097 { 2098 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2099 } 2100 2101 boolean_t 2102 vdev_allocatable(vdev_t *vd) 2103 { 2104 uint64_t state = vd->vdev_state; 2105 2106 /* 2107 * We currently allow allocations from vdevs which may be in the 2108 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2109 * fails to reopen then we'll catch it later when we're holding 2110 * the proper locks. Note that we have to get the vdev state 2111 * in a local variable because although it changes atomically, 2112 * we're asking two separate questions about it. 2113 */ 2114 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2115 !vd->vdev_cant_write); 2116 } 2117 2118 boolean_t 2119 vdev_accessible(vdev_t *vd, zio_t *zio) 2120 { 2121 ASSERT(zio->io_vd == vd); 2122 2123 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2124 return (B_FALSE); 2125 2126 if (zio->io_type == ZIO_TYPE_READ) 2127 return (!vd->vdev_cant_read); 2128 2129 if (zio->io_type == ZIO_TYPE_WRITE) 2130 return (!vd->vdev_cant_write); 2131 2132 return (B_TRUE); 2133 } 2134 2135 /* 2136 * Get statistics for the given vdev. 2137 */ 2138 void 2139 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2140 { 2141 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2142 2143 mutex_enter(&vd->vdev_stat_lock); 2144 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2145 vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors; 2146 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2147 vs->vs_state = vd->vdev_state; 2148 vs->vs_rsize = vdev_get_min_asize(vd); 2149 if (vd->vdev_ops->vdev_op_leaf) 2150 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2151 mutex_exit(&vd->vdev_stat_lock); 2152 2153 /* 2154 * If we're getting stats on the root vdev, aggregate the I/O counts 2155 * over all top-level vdevs (i.e. the direct children of the root). 2156 */ 2157 if (vd == rvd) { 2158 for (int c = 0; c < rvd->vdev_children; c++) { 2159 vdev_t *cvd = rvd->vdev_child[c]; 2160 vdev_stat_t *cvs = &cvd->vdev_stat; 2161 2162 mutex_enter(&vd->vdev_stat_lock); 2163 for (int t = 0; t < ZIO_TYPES; t++) { 2164 vs->vs_ops[t] += cvs->vs_ops[t]; 2165 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2166 } 2167 vs->vs_scrub_examined += cvs->vs_scrub_examined; 2168 mutex_exit(&vd->vdev_stat_lock); 2169 } 2170 } 2171 } 2172 2173 void 2174 vdev_clear_stats(vdev_t *vd) 2175 { 2176 mutex_enter(&vd->vdev_stat_lock); 2177 vd->vdev_stat.vs_space = 0; 2178 vd->vdev_stat.vs_dspace = 0; 2179 vd->vdev_stat.vs_alloc = 0; 2180 mutex_exit(&vd->vdev_stat_lock); 2181 } 2182 2183 void 2184 vdev_stat_update(zio_t *zio, uint64_t psize) 2185 { 2186 spa_t *spa = zio->io_spa; 2187 vdev_t *rvd = spa->spa_root_vdev; 2188 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2189 vdev_t *pvd; 2190 uint64_t txg = zio->io_txg; 2191 vdev_stat_t *vs = &vd->vdev_stat; 2192 zio_type_t type = zio->io_type; 2193 int flags = zio->io_flags; 2194 2195 /* 2196 * If this i/o is a gang leader, it didn't do any actual work. 2197 */ 2198 if (zio->io_gang_tree) 2199 return; 2200 2201 if (zio->io_error == 0) { 2202 /* 2203 * If this is a root i/o, don't count it -- we've already 2204 * counted the top-level vdevs, and vdev_get_stats() will 2205 * aggregate them when asked. This reduces contention on 2206 * the root vdev_stat_lock and implicitly handles blocks 2207 * that compress away to holes, for which there is no i/o. 2208 * (Holes never create vdev children, so all the counters 2209 * remain zero, which is what we want.) 2210 * 2211 * Note: this only applies to successful i/o (io_error == 0) 2212 * because unlike i/o counts, errors are not additive. 2213 * When reading a ditto block, for example, failure of 2214 * one top-level vdev does not imply a root-level error. 2215 */ 2216 if (vd == rvd) 2217 return; 2218 2219 ASSERT(vd == zio->io_vd); 2220 2221 if (flags & ZIO_FLAG_IO_BYPASS) 2222 return; 2223 2224 mutex_enter(&vd->vdev_stat_lock); 2225 2226 if (flags & ZIO_FLAG_IO_REPAIR) { 2227 if (flags & ZIO_FLAG_SCRUB_THREAD) 2228 vs->vs_scrub_repaired += psize; 2229 if (flags & ZIO_FLAG_SELF_HEAL) 2230 vs->vs_self_healed += psize; 2231 } 2232 2233 vs->vs_ops[type]++; 2234 vs->vs_bytes[type] += psize; 2235 2236 mutex_exit(&vd->vdev_stat_lock); 2237 return; 2238 } 2239 2240 if (flags & ZIO_FLAG_SPECULATIVE) 2241 return; 2242 2243 /* 2244 * If this is an I/O error that is going to be retried, then ignore the 2245 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2246 * hard errors, when in reality they can happen for any number of 2247 * innocuous reasons (bus resets, MPxIO link failure, etc). 2248 */ 2249 if (zio->io_error == EIO && 2250 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2251 return; 2252 2253 mutex_enter(&vd->vdev_stat_lock); 2254 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2255 if (zio->io_error == ECKSUM) 2256 vs->vs_checksum_errors++; 2257 else 2258 vs->vs_read_errors++; 2259 } 2260 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2261 vs->vs_write_errors++; 2262 mutex_exit(&vd->vdev_stat_lock); 2263 2264 if (type == ZIO_TYPE_WRITE && txg != 0 && 2265 (!(flags & ZIO_FLAG_IO_REPAIR) || 2266 (flags & ZIO_FLAG_SCRUB_THREAD))) { 2267 /* 2268 * This is either a normal write (not a repair), or it's a 2269 * repair induced by the scrub thread. In the normal case, 2270 * we commit the DTL change in the same txg as the block 2271 * was born. In the scrub-induced repair case, we know that 2272 * scrubs run in first-pass syncing context, so we commit 2273 * the DTL change in spa->spa_syncing_txg. 2274 * 2275 * We currently do not make DTL entries for failed spontaneous 2276 * self-healing writes triggered by normal (non-scrubbing) 2277 * reads, because we have no transactional context in which to 2278 * do so -- and it's not clear that it'd be desirable anyway. 2279 */ 2280 if (vd->vdev_ops->vdev_op_leaf) { 2281 uint64_t commit_txg = txg; 2282 if (flags & ZIO_FLAG_SCRUB_THREAD) { 2283 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2284 ASSERT(spa_sync_pass(spa) == 1); 2285 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2286 commit_txg = spa->spa_syncing_txg; 2287 } 2288 ASSERT(commit_txg >= spa->spa_syncing_txg); 2289 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2290 return; 2291 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2292 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2293 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2294 } 2295 if (vd != rvd) 2296 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2297 } 2298 } 2299 2300 void 2301 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 2302 { 2303 vdev_stat_t *vs = &vd->vdev_stat; 2304 2305 for (int c = 0; c < vd->vdev_children; c++) 2306 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 2307 2308 mutex_enter(&vd->vdev_stat_lock); 2309 2310 if (type == POOL_SCRUB_NONE) { 2311 /* 2312 * Update completion and end time. Leave everything else alone 2313 * so we can report what happened during the previous scrub. 2314 */ 2315 vs->vs_scrub_complete = complete; 2316 vs->vs_scrub_end = gethrestime_sec(); 2317 } else { 2318 vs->vs_scrub_type = type; 2319 vs->vs_scrub_complete = 0; 2320 vs->vs_scrub_examined = 0; 2321 vs->vs_scrub_repaired = 0; 2322 vs->vs_scrub_start = gethrestime_sec(); 2323 vs->vs_scrub_end = 0; 2324 } 2325 2326 mutex_exit(&vd->vdev_stat_lock); 2327 } 2328 2329 /* 2330 * Update the in-core space usage stats for this vdev and the root vdev. 2331 */ 2332 void 2333 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta, 2334 boolean_t update_root) 2335 { 2336 int64_t dspace_delta = space_delta; 2337 spa_t *spa = vd->vdev_spa; 2338 vdev_t *rvd = spa->spa_root_vdev; 2339 2340 ASSERT(vd == vd->vdev_top); 2341 2342 /* 2343 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2344 * factor. We must calculate this here and not at the root vdev 2345 * because the root vdev's psize-to-asize is simply the max of its 2346 * childrens', thus not accurate enough for us. 2347 */ 2348 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2349 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2350 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2351 vd->vdev_deflate_ratio; 2352 2353 mutex_enter(&vd->vdev_stat_lock); 2354 vd->vdev_stat.vs_space += space_delta; 2355 vd->vdev_stat.vs_alloc += alloc_delta; 2356 vd->vdev_stat.vs_dspace += dspace_delta; 2357 mutex_exit(&vd->vdev_stat_lock); 2358 2359 if (update_root) { 2360 ASSERT(rvd == vd->vdev_parent); 2361 ASSERT(vd->vdev_ms_count != 0); 2362 2363 /* 2364 * Don't count non-normal (e.g. intent log) space as part of 2365 * the pool's capacity. 2366 */ 2367 if (vd->vdev_mg->mg_class != spa->spa_normal_class) 2368 return; 2369 2370 mutex_enter(&rvd->vdev_stat_lock); 2371 rvd->vdev_stat.vs_space += space_delta; 2372 rvd->vdev_stat.vs_alloc += alloc_delta; 2373 rvd->vdev_stat.vs_dspace += dspace_delta; 2374 mutex_exit(&rvd->vdev_stat_lock); 2375 } 2376 } 2377 2378 /* 2379 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2380 * so that it will be written out next time the vdev configuration is synced. 2381 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2382 */ 2383 void 2384 vdev_config_dirty(vdev_t *vd) 2385 { 2386 spa_t *spa = vd->vdev_spa; 2387 vdev_t *rvd = spa->spa_root_vdev; 2388 int c; 2389 2390 /* 2391 * If this is an aux vdev (as with l2cache and spare devices), then we 2392 * update the vdev config manually and set the sync flag. 2393 */ 2394 if (vd->vdev_aux != NULL) { 2395 spa_aux_vdev_t *sav = vd->vdev_aux; 2396 nvlist_t **aux; 2397 uint_t naux; 2398 2399 for (c = 0; c < sav->sav_count; c++) { 2400 if (sav->sav_vdevs[c] == vd) 2401 break; 2402 } 2403 2404 if (c == sav->sav_count) { 2405 /* 2406 * We're being removed. There's nothing more to do. 2407 */ 2408 ASSERT(sav->sav_sync == B_TRUE); 2409 return; 2410 } 2411 2412 sav->sav_sync = B_TRUE; 2413 2414 if (nvlist_lookup_nvlist_array(sav->sav_config, 2415 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2416 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2417 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2418 } 2419 2420 ASSERT(c < naux); 2421 2422 /* 2423 * Setting the nvlist in the middle if the array is a little 2424 * sketchy, but it will work. 2425 */ 2426 nvlist_free(aux[c]); 2427 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE); 2428 2429 return; 2430 } 2431 2432 /* 2433 * The dirty list is protected by the SCL_CONFIG lock. The caller 2434 * must either hold SCL_CONFIG as writer, or must be the sync thread 2435 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2436 * so this is sufficient to ensure mutual exclusion. 2437 */ 2438 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2439 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2440 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2441 2442 if (vd == rvd) { 2443 for (c = 0; c < rvd->vdev_children; c++) 2444 vdev_config_dirty(rvd->vdev_child[c]); 2445 } else { 2446 ASSERT(vd == vd->vdev_top); 2447 2448 if (!list_link_active(&vd->vdev_config_dirty_node)) 2449 list_insert_head(&spa->spa_config_dirty_list, vd); 2450 } 2451 } 2452 2453 void 2454 vdev_config_clean(vdev_t *vd) 2455 { 2456 spa_t *spa = vd->vdev_spa; 2457 2458 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2459 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2460 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2461 2462 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2463 list_remove(&spa->spa_config_dirty_list, vd); 2464 } 2465 2466 /* 2467 * Mark a top-level vdev's state as dirty, so that the next pass of 2468 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2469 * the state changes from larger config changes because they require 2470 * much less locking, and are often needed for administrative actions. 2471 */ 2472 void 2473 vdev_state_dirty(vdev_t *vd) 2474 { 2475 spa_t *spa = vd->vdev_spa; 2476 2477 ASSERT(vd == vd->vdev_top); 2478 2479 /* 2480 * The state list is protected by the SCL_STATE lock. The caller 2481 * must either hold SCL_STATE as writer, or must be the sync thread 2482 * (which holds SCL_STATE as reader). There's only one sync thread, 2483 * so this is sufficient to ensure mutual exclusion. 2484 */ 2485 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2486 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2487 spa_config_held(spa, SCL_STATE, RW_READER))); 2488 2489 if (!list_link_active(&vd->vdev_state_dirty_node)) 2490 list_insert_head(&spa->spa_state_dirty_list, vd); 2491 } 2492 2493 void 2494 vdev_state_clean(vdev_t *vd) 2495 { 2496 spa_t *spa = vd->vdev_spa; 2497 2498 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2499 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2500 spa_config_held(spa, SCL_STATE, RW_READER))); 2501 2502 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2503 list_remove(&spa->spa_state_dirty_list, vd); 2504 } 2505 2506 /* 2507 * Propagate vdev state up from children to parent. 2508 */ 2509 void 2510 vdev_propagate_state(vdev_t *vd) 2511 { 2512 spa_t *spa = vd->vdev_spa; 2513 vdev_t *rvd = spa->spa_root_vdev; 2514 int degraded = 0, faulted = 0; 2515 int corrupted = 0; 2516 vdev_t *child; 2517 2518 if (vd->vdev_children > 0) { 2519 for (int c = 0; c < vd->vdev_children; c++) { 2520 child = vd->vdev_child[c]; 2521 2522 if (!vdev_readable(child) || 2523 (!vdev_writeable(child) && spa_writeable(spa))) { 2524 /* 2525 * Root special: if there is a top-level log 2526 * device, treat the root vdev as if it were 2527 * degraded. 2528 */ 2529 if (child->vdev_islog && vd == rvd) 2530 degraded++; 2531 else 2532 faulted++; 2533 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2534 degraded++; 2535 } 2536 2537 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2538 corrupted++; 2539 } 2540 2541 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2542 2543 /* 2544 * Root special: if there is a top-level vdev that cannot be 2545 * opened due to corrupted metadata, then propagate the root 2546 * vdev's aux state as 'corrupt' rather than 'insufficient 2547 * replicas'. 2548 */ 2549 if (corrupted && vd == rvd && 2550 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2551 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2552 VDEV_AUX_CORRUPT_DATA); 2553 } 2554 2555 if (vd->vdev_parent) 2556 vdev_propagate_state(vd->vdev_parent); 2557 } 2558 2559 /* 2560 * Set a vdev's state. If this is during an open, we don't update the parent 2561 * state, because we're in the process of opening children depth-first. 2562 * Otherwise, we propagate the change to the parent. 2563 * 2564 * If this routine places a device in a faulted state, an appropriate ereport is 2565 * generated. 2566 */ 2567 void 2568 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2569 { 2570 uint64_t save_state; 2571 spa_t *spa = vd->vdev_spa; 2572 2573 if (state == vd->vdev_state) { 2574 vd->vdev_stat.vs_aux = aux; 2575 return; 2576 } 2577 2578 save_state = vd->vdev_state; 2579 2580 vd->vdev_state = state; 2581 vd->vdev_stat.vs_aux = aux; 2582 2583 /* 2584 * If we are setting the vdev state to anything but an open state, then 2585 * always close the underlying device. Otherwise, we keep accessible 2586 * but invalid devices open forever. We don't call vdev_close() itself, 2587 * because that implies some extra checks (offline, etc) that we don't 2588 * want here. This is limited to leaf devices, because otherwise 2589 * closing the device will affect other children. 2590 */ 2591 if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) 2592 vd->vdev_ops->vdev_op_close(vd); 2593 2594 if (vd->vdev_removed && 2595 state == VDEV_STATE_CANT_OPEN && 2596 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2597 /* 2598 * If the previous state is set to VDEV_STATE_REMOVED, then this 2599 * device was previously marked removed and someone attempted to 2600 * reopen it. If this failed due to a nonexistent device, then 2601 * keep the device in the REMOVED state. We also let this be if 2602 * it is one of our special test online cases, which is only 2603 * attempting to online the device and shouldn't generate an FMA 2604 * fault. 2605 */ 2606 vd->vdev_state = VDEV_STATE_REMOVED; 2607 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2608 } else if (state == VDEV_STATE_REMOVED) { 2609 /* 2610 * Indicate to the ZFS DE that this device has been removed, and 2611 * any recent errors should be ignored. 2612 */ 2613 zfs_post_remove(spa, vd); 2614 vd->vdev_removed = B_TRUE; 2615 } else if (state == VDEV_STATE_CANT_OPEN) { 2616 /* 2617 * If we fail to open a vdev during an import, we mark it as 2618 * "not available", which signifies that it was never there to 2619 * begin with. Failure to open such a device is not considered 2620 * an error. 2621 */ 2622 if (spa->spa_load_state == SPA_LOAD_IMPORT && 2623 vd->vdev_ops->vdev_op_leaf) 2624 vd->vdev_not_present = 1; 2625 2626 /* 2627 * Post the appropriate ereport. If the 'prevstate' field is 2628 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2629 * that this is part of a vdev_reopen(). In this case, we don't 2630 * want to post the ereport if the device was already in the 2631 * CANT_OPEN state beforehand. 2632 * 2633 * If the 'checkremove' flag is set, then this is an attempt to 2634 * online the device in response to an insertion event. If we 2635 * hit this case, then we have detected an insertion event for a 2636 * faulted or offline device that wasn't in the removed state. 2637 * In this scenario, we don't post an ereport because we are 2638 * about to replace the device, or attempt an online with 2639 * vdev_forcefault, which will generate the fault for us. 2640 */ 2641 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2642 !vd->vdev_not_present && !vd->vdev_checkremove && 2643 vd != spa->spa_root_vdev) { 2644 const char *class; 2645 2646 switch (aux) { 2647 case VDEV_AUX_OPEN_FAILED: 2648 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2649 break; 2650 case VDEV_AUX_CORRUPT_DATA: 2651 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2652 break; 2653 case VDEV_AUX_NO_REPLICAS: 2654 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2655 break; 2656 case VDEV_AUX_BAD_GUID_SUM: 2657 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2658 break; 2659 case VDEV_AUX_TOO_SMALL: 2660 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2661 break; 2662 case VDEV_AUX_BAD_LABEL: 2663 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2664 break; 2665 case VDEV_AUX_IO_FAILURE: 2666 class = FM_EREPORT_ZFS_IO_FAILURE; 2667 break; 2668 default: 2669 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2670 } 2671 2672 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 2673 } 2674 2675 /* Erase any notion of persistent removed state */ 2676 vd->vdev_removed = B_FALSE; 2677 } else { 2678 vd->vdev_removed = B_FALSE; 2679 } 2680 2681 if (!isopen && vd->vdev_parent) 2682 vdev_propagate_state(vd->vdev_parent); 2683 } 2684 2685 /* 2686 * Check the vdev configuration to ensure that it's capable of supporting 2687 * a root pool. Currently, we do not support RAID-Z or partial configuration. 2688 * In addition, only a single top-level vdev is allowed and none of the leaves 2689 * can be wholedisks. 2690 */ 2691 boolean_t 2692 vdev_is_bootable(vdev_t *vd) 2693 { 2694 if (!vd->vdev_ops->vdev_op_leaf) { 2695 char *vdev_type = vd->vdev_ops->vdev_op_type; 2696 2697 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 2698 vd->vdev_children > 1) { 2699 return (B_FALSE); 2700 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 2701 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 2702 return (B_FALSE); 2703 } 2704 } else if (vd->vdev_wholedisk == 1) { 2705 return (B_FALSE); 2706 } 2707 2708 for (int c = 0; c < vd->vdev_children; c++) { 2709 if (!vdev_is_bootable(vd->vdev_child[c])) 2710 return (B_FALSE); 2711 } 2712 return (B_TRUE); 2713 } 2714 2715 void 2716 vdev_load_log_state(vdev_t *vd, nvlist_t *nv) 2717 { 2718 uint_t children; 2719 nvlist_t **child; 2720 uint64_t val; 2721 spa_t *spa = vd->vdev_spa; 2722 2723 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 2724 &child, &children) == 0) { 2725 for (int c = 0; c < children; c++) 2726 vdev_load_log_state(vd->vdev_child[c], child[c]); 2727 } 2728 2729 if (vd->vdev_ops->vdev_op_leaf && nvlist_lookup_uint64(nv, 2730 ZPOOL_CONFIG_OFFLINE, &val) == 0 && val) { 2731 2732 /* 2733 * It would be nice to call vdev_offline() 2734 * directly but the pool isn't fully loaded and 2735 * the txg threads have not been started yet. 2736 */ 2737 spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_WRITER); 2738 vd->vdev_offline = val; 2739 vdev_reopen(vd->vdev_top); 2740 spa_config_exit(spa, SCL_STATE_ALL, FTAG); 2741 } 2742 } 2743 2744 /* 2745 * Expand a vdev if possible. 2746 */ 2747 void 2748 vdev_expand(vdev_t *vd, uint64_t txg) 2749 { 2750 ASSERT(vd->vdev_top == vd); 2751 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2752 2753 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 2754 VERIFY(vdev_metaslab_init(vd, txg) == 0); 2755 vdev_config_dirty(vd); 2756 } 2757 } 2758