xref: /titanic_44/usr/src/uts/common/fs/zfs/vdev.c (revision 269e59f9a28bf47e0f463e64fc5af4a408b73b21)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/fm/fs/zfs.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/uberblock_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/space_map.h>
37 #include <sys/zio.h>
38 #include <sys/zap.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/arc.h>
41 #include <sys/zil.h>
42 #include <sys/dsl_scan.h>
43 
44 /*
45  * Virtual device management.
46  */
47 
48 static vdev_ops_t *vdev_ops_table[] = {
49 	&vdev_root_ops,
50 	&vdev_raidz_ops,
51 	&vdev_mirror_ops,
52 	&vdev_replacing_ops,
53 	&vdev_spare_ops,
54 	&vdev_disk_ops,
55 	&vdev_file_ops,
56 	&vdev_missing_ops,
57 	&vdev_hole_ops,
58 	NULL
59 };
60 
61 /* maximum scrub/resilver I/O queue per leaf vdev */
62 int zfs_scrub_limit = 10;
63 
64 /*
65  * Given a vdev type, return the appropriate ops vector.
66  */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70 	vdev_ops_t *ops, **opspp;
71 
72 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73 		if (strcmp(ops->vdev_op_type, type) == 0)
74 			break;
75 
76 	return (ops);
77 }
78 
79 /*
80  * Default asize function: return the MAX of psize with the asize of
81  * all children.  This is what's used by anything other than RAID-Z.
82  */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87 	uint64_t csize;
88 
89 	for (int c = 0; c < vd->vdev_children; c++) {
90 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
91 		asize = MAX(asize, csize);
92 	}
93 
94 	return (asize);
95 }
96 
97 /*
98  * Get the minimum allocatable size. We define the allocatable size as
99  * the vdev's asize rounded to the nearest metaslab. This allows us to
100  * replace or attach devices which don't have the same physical size but
101  * can still satisfy the same number of allocations.
102  */
103 uint64_t
104 vdev_get_min_asize(vdev_t *vd)
105 {
106 	vdev_t *pvd = vd->vdev_parent;
107 
108 	/*
109 	 * The our parent is NULL (inactive spare or cache) or is the root,
110 	 * just return our own asize.
111 	 */
112 	if (pvd == NULL)
113 		return (vd->vdev_asize);
114 
115 	/*
116 	 * The top-level vdev just returns the allocatable size rounded
117 	 * to the nearest metaslab.
118 	 */
119 	if (vd == vd->vdev_top)
120 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
121 
122 	/*
123 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
124 	 * so each child must provide at least 1/Nth of its asize.
125 	 */
126 	if (pvd->vdev_ops == &vdev_raidz_ops)
127 		return (pvd->vdev_min_asize / pvd->vdev_children);
128 
129 	return (pvd->vdev_min_asize);
130 }
131 
132 void
133 vdev_set_min_asize(vdev_t *vd)
134 {
135 	vd->vdev_min_asize = vdev_get_min_asize(vd);
136 
137 	for (int c = 0; c < vd->vdev_children; c++)
138 		vdev_set_min_asize(vd->vdev_child[c]);
139 }
140 
141 vdev_t *
142 vdev_lookup_top(spa_t *spa, uint64_t vdev)
143 {
144 	vdev_t *rvd = spa->spa_root_vdev;
145 
146 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
147 
148 	if (vdev < rvd->vdev_children) {
149 		ASSERT(rvd->vdev_child[vdev] != NULL);
150 		return (rvd->vdev_child[vdev]);
151 	}
152 
153 	return (NULL);
154 }
155 
156 vdev_t *
157 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
158 {
159 	vdev_t *mvd;
160 
161 	if (vd->vdev_guid == guid)
162 		return (vd);
163 
164 	for (int c = 0; c < vd->vdev_children; c++)
165 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
166 		    NULL)
167 			return (mvd);
168 
169 	return (NULL);
170 }
171 
172 void
173 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
174 {
175 	size_t oldsize, newsize;
176 	uint64_t id = cvd->vdev_id;
177 	vdev_t **newchild;
178 
179 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
180 	ASSERT(cvd->vdev_parent == NULL);
181 
182 	cvd->vdev_parent = pvd;
183 
184 	if (pvd == NULL)
185 		return;
186 
187 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
188 
189 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
190 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
191 	newsize = pvd->vdev_children * sizeof (vdev_t *);
192 
193 	newchild = kmem_zalloc(newsize, KM_SLEEP);
194 	if (pvd->vdev_child != NULL) {
195 		bcopy(pvd->vdev_child, newchild, oldsize);
196 		kmem_free(pvd->vdev_child, oldsize);
197 	}
198 
199 	pvd->vdev_child = newchild;
200 	pvd->vdev_child[id] = cvd;
201 
202 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
203 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
204 
205 	/*
206 	 * Walk up all ancestors to update guid sum.
207 	 */
208 	for (; pvd != NULL; pvd = pvd->vdev_parent)
209 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
210 }
211 
212 void
213 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
214 {
215 	int c;
216 	uint_t id = cvd->vdev_id;
217 
218 	ASSERT(cvd->vdev_parent == pvd);
219 
220 	if (pvd == NULL)
221 		return;
222 
223 	ASSERT(id < pvd->vdev_children);
224 	ASSERT(pvd->vdev_child[id] == cvd);
225 
226 	pvd->vdev_child[id] = NULL;
227 	cvd->vdev_parent = NULL;
228 
229 	for (c = 0; c < pvd->vdev_children; c++)
230 		if (pvd->vdev_child[c])
231 			break;
232 
233 	if (c == pvd->vdev_children) {
234 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
235 		pvd->vdev_child = NULL;
236 		pvd->vdev_children = 0;
237 	}
238 
239 	/*
240 	 * Walk up all ancestors to update guid sum.
241 	 */
242 	for (; pvd != NULL; pvd = pvd->vdev_parent)
243 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
244 }
245 
246 /*
247  * Remove any holes in the child array.
248  */
249 void
250 vdev_compact_children(vdev_t *pvd)
251 {
252 	vdev_t **newchild, *cvd;
253 	int oldc = pvd->vdev_children;
254 	int newc;
255 
256 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
257 
258 	for (int c = newc = 0; c < oldc; c++)
259 		if (pvd->vdev_child[c])
260 			newc++;
261 
262 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
263 
264 	for (int c = newc = 0; c < oldc; c++) {
265 		if ((cvd = pvd->vdev_child[c]) != NULL) {
266 			newchild[newc] = cvd;
267 			cvd->vdev_id = newc++;
268 		}
269 	}
270 
271 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
272 	pvd->vdev_child = newchild;
273 	pvd->vdev_children = newc;
274 }
275 
276 /*
277  * Allocate and minimally initialize a vdev_t.
278  */
279 vdev_t *
280 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
281 {
282 	vdev_t *vd;
283 
284 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
285 
286 	if (spa->spa_root_vdev == NULL) {
287 		ASSERT(ops == &vdev_root_ops);
288 		spa->spa_root_vdev = vd;
289 	}
290 
291 	if (guid == 0 && ops != &vdev_hole_ops) {
292 		if (spa->spa_root_vdev == vd) {
293 			/*
294 			 * The root vdev's guid will also be the pool guid,
295 			 * which must be unique among all pools.
296 			 */
297 			guid = spa_generate_guid(NULL);
298 		} else {
299 			/*
300 			 * Any other vdev's guid must be unique within the pool.
301 			 */
302 			guid = spa_generate_guid(spa);
303 		}
304 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
305 	}
306 
307 	vd->vdev_spa = spa;
308 	vd->vdev_id = id;
309 	vd->vdev_guid = guid;
310 	vd->vdev_guid_sum = guid;
311 	vd->vdev_ops = ops;
312 	vd->vdev_state = VDEV_STATE_CLOSED;
313 	vd->vdev_ishole = (ops == &vdev_hole_ops);
314 
315 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
316 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
317 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
318 	for (int t = 0; t < DTL_TYPES; t++) {
319 		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
320 		    &vd->vdev_dtl_lock);
321 	}
322 	txg_list_create(&vd->vdev_ms_list,
323 	    offsetof(struct metaslab, ms_txg_node));
324 	txg_list_create(&vd->vdev_dtl_list,
325 	    offsetof(struct vdev, vdev_dtl_node));
326 	vd->vdev_stat.vs_timestamp = gethrtime();
327 	vdev_queue_init(vd);
328 	vdev_cache_init(vd);
329 
330 	return (vd);
331 }
332 
333 /*
334  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
335  * creating a new vdev or loading an existing one - the behavior is slightly
336  * different for each case.
337  */
338 int
339 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
340     int alloctype)
341 {
342 	vdev_ops_t *ops;
343 	char *type;
344 	uint64_t guid = 0, islog, nparity;
345 	vdev_t *vd;
346 
347 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
348 
349 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
350 		return (EINVAL);
351 
352 	if ((ops = vdev_getops(type)) == NULL)
353 		return (EINVAL);
354 
355 	/*
356 	 * If this is a load, get the vdev guid from the nvlist.
357 	 * Otherwise, vdev_alloc_common() will generate one for us.
358 	 */
359 	if (alloctype == VDEV_ALLOC_LOAD) {
360 		uint64_t label_id;
361 
362 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
363 		    label_id != id)
364 			return (EINVAL);
365 
366 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
367 			return (EINVAL);
368 	} else if (alloctype == VDEV_ALLOC_SPARE) {
369 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
370 			return (EINVAL);
371 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
372 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373 			return (EINVAL);
374 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
375 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376 			return (EINVAL);
377 	}
378 
379 	/*
380 	 * The first allocated vdev must be of type 'root'.
381 	 */
382 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
383 		return (EINVAL);
384 
385 	/*
386 	 * Determine whether we're a log vdev.
387 	 */
388 	islog = 0;
389 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
390 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
391 		return (ENOTSUP);
392 
393 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
394 		return (ENOTSUP);
395 
396 	/*
397 	 * Set the nparity property for RAID-Z vdevs.
398 	 */
399 	nparity = -1ULL;
400 	if (ops == &vdev_raidz_ops) {
401 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
402 		    &nparity) == 0) {
403 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
404 				return (EINVAL);
405 			/*
406 			 * Previous versions could only support 1 or 2 parity
407 			 * device.
408 			 */
409 			if (nparity > 1 &&
410 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
411 				return (ENOTSUP);
412 			if (nparity > 2 &&
413 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
414 				return (ENOTSUP);
415 		} else {
416 			/*
417 			 * We require the parity to be specified for SPAs that
418 			 * support multiple parity levels.
419 			 */
420 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
421 				return (EINVAL);
422 			/*
423 			 * Otherwise, we default to 1 parity device for RAID-Z.
424 			 */
425 			nparity = 1;
426 		}
427 	} else {
428 		nparity = 0;
429 	}
430 	ASSERT(nparity != -1ULL);
431 
432 	vd = vdev_alloc_common(spa, id, guid, ops);
433 
434 	vd->vdev_islog = islog;
435 	vd->vdev_nparity = nparity;
436 
437 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
438 		vd->vdev_path = spa_strdup(vd->vdev_path);
439 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
440 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
441 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
442 	    &vd->vdev_physpath) == 0)
443 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
444 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
445 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
446 
447 	/*
448 	 * Set the whole_disk property.  If it's not specified, leave the value
449 	 * as -1.
450 	 */
451 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
452 	    &vd->vdev_wholedisk) != 0)
453 		vd->vdev_wholedisk = -1ULL;
454 
455 	/*
456 	 * Look for the 'not present' flag.  This will only be set if the device
457 	 * was not present at the time of import.
458 	 */
459 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
460 	    &vd->vdev_not_present);
461 
462 	/*
463 	 * Get the alignment requirement.
464 	 */
465 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
466 
467 	/*
468 	 * Retrieve the vdev creation time.
469 	 */
470 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
471 	    &vd->vdev_crtxg);
472 
473 	/*
474 	 * If we're a top-level vdev, try to load the allocation parameters.
475 	 */
476 	if (parent && !parent->vdev_parent &&
477 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
478 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
479 		    &vd->vdev_ms_array);
480 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
481 		    &vd->vdev_ms_shift);
482 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
483 		    &vd->vdev_asize);
484 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
485 		    &vd->vdev_removing);
486 	}
487 
488 	if (parent && !parent->vdev_parent) {
489 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
490 		    alloctype == VDEV_ALLOC_ADD ||
491 		    alloctype == VDEV_ALLOC_SPLIT ||
492 		    alloctype == VDEV_ALLOC_ROOTPOOL);
493 		vd->vdev_mg = metaslab_group_create(islog ?
494 		    spa_log_class(spa) : spa_normal_class(spa), vd);
495 	}
496 
497 	/*
498 	 * If we're a leaf vdev, try to load the DTL object and other state.
499 	 */
500 	if (vd->vdev_ops->vdev_op_leaf &&
501 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
502 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
503 		if (alloctype == VDEV_ALLOC_LOAD) {
504 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
505 			    &vd->vdev_dtl_smo.smo_object);
506 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
507 			    &vd->vdev_unspare);
508 		}
509 
510 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
511 			uint64_t spare = 0;
512 
513 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
514 			    &spare) == 0 && spare)
515 				spa_spare_add(vd);
516 		}
517 
518 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
519 		    &vd->vdev_offline);
520 
521 		/*
522 		 * When importing a pool, we want to ignore the persistent fault
523 		 * state, as the diagnosis made on another system may not be
524 		 * valid in the current context.  Local vdevs will
525 		 * remain in the faulted state.
526 		 */
527 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
528 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
529 			    &vd->vdev_faulted);
530 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
531 			    &vd->vdev_degraded);
532 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
533 			    &vd->vdev_removed);
534 
535 			if (vd->vdev_faulted || vd->vdev_degraded) {
536 				char *aux;
537 
538 				vd->vdev_label_aux =
539 				    VDEV_AUX_ERR_EXCEEDED;
540 				if (nvlist_lookup_string(nv,
541 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
542 				    strcmp(aux, "external") == 0)
543 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
544 			}
545 		}
546 	}
547 
548 	/*
549 	 * Add ourselves to the parent's list of children.
550 	 */
551 	vdev_add_child(parent, vd);
552 
553 	*vdp = vd;
554 
555 	return (0);
556 }
557 
558 void
559 vdev_free(vdev_t *vd)
560 {
561 	spa_t *spa = vd->vdev_spa;
562 
563 	/*
564 	 * vdev_free() implies closing the vdev first.  This is simpler than
565 	 * trying to ensure complicated semantics for all callers.
566 	 */
567 	vdev_close(vd);
568 
569 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
570 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
571 
572 	/*
573 	 * Free all children.
574 	 */
575 	for (int c = 0; c < vd->vdev_children; c++)
576 		vdev_free(vd->vdev_child[c]);
577 
578 	ASSERT(vd->vdev_child == NULL);
579 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
580 
581 	/*
582 	 * Discard allocation state.
583 	 */
584 	if (vd->vdev_mg != NULL) {
585 		vdev_metaslab_fini(vd);
586 		metaslab_group_destroy(vd->vdev_mg);
587 	}
588 
589 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
590 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
591 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
592 
593 	/*
594 	 * Remove this vdev from its parent's child list.
595 	 */
596 	vdev_remove_child(vd->vdev_parent, vd);
597 
598 	ASSERT(vd->vdev_parent == NULL);
599 
600 	/*
601 	 * Clean up vdev structure.
602 	 */
603 	vdev_queue_fini(vd);
604 	vdev_cache_fini(vd);
605 
606 	if (vd->vdev_path)
607 		spa_strfree(vd->vdev_path);
608 	if (vd->vdev_devid)
609 		spa_strfree(vd->vdev_devid);
610 	if (vd->vdev_physpath)
611 		spa_strfree(vd->vdev_physpath);
612 	if (vd->vdev_fru)
613 		spa_strfree(vd->vdev_fru);
614 
615 	if (vd->vdev_isspare)
616 		spa_spare_remove(vd);
617 	if (vd->vdev_isl2cache)
618 		spa_l2cache_remove(vd);
619 
620 	txg_list_destroy(&vd->vdev_ms_list);
621 	txg_list_destroy(&vd->vdev_dtl_list);
622 
623 	mutex_enter(&vd->vdev_dtl_lock);
624 	for (int t = 0; t < DTL_TYPES; t++) {
625 		space_map_unload(&vd->vdev_dtl[t]);
626 		space_map_destroy(&vd->vdev_dtl[t]);
627 	}
628 	mutex_exit(&vd->vdev_dtl_lock);
629 
630 	mutex_destroy(&vd->vdev_dtl_lock);
631 	mutex_destroy(&vd->vdev_stat_lock);
632 	mutex_destroy(&vd->vdev_probe_lock);
633 
634 	if (vd == spa->spa_root_vdev)
635 		spa->spa_root_vdev = NULL;
636 
637 	kmem_free(vd, sizeof (vdev_t));
638 }
639 
640 /*
641  * Transfer top-level vdev state from svd to tvd.
642  */
643 static void
644 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
645 {
646 	spa_t *spa = svd->vdev_spa;
647 	metaslab_t *msp;
648 	vdev_t *vd;
649 	int t;
650 
651 	ASSERT(tvd == tvd->vdev_top);
652 
653 	tvd->vdev_ms_array = svd->vdev_ms_array;
654 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
655 	tvd->vdev_ms_count = svd->vdev_ms_count;
656 
657 	svd->vdev_ms_array = 0;
658 	svd->vdev_ms_shift = 0;
659 	svd->vdev_ms_count = 0;
660 
661 	tvd->vdev_mg = svd->vdev_mg;
662 	tvd->vdev_ms = svd->vdev_ms;
663 
664 	svd->vdev_mg = NULL;
665 	svd->vdev_ms = NULL;
666 
667 	if (tvd->vdev_mg != NULL)
668 		tvd->vdev_mg->mg_vd = tvd;
669 
670 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
671 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
672 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
673 
674 	svd->vdev_stat.vs_alloc = 0;
675 	svd->vdev_stat.vs_space = 0;
676 	svd->vdev_stat.vs_dspace = 0;
677 
678 	for (t = 0; t < TXG_SIZE; t++) {
679 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
680 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
681 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
682 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
683 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
684 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
685 	}
686 
687 	if (list_link_active(&svd->vdev_config_dirty_node)) {
688 		vdev_config_clean(svd);
689 		vdev_config_dirty(tvd);
690 	}
691 
692 	if (list_link_active(&svd->vdev_state_dirty_node)) {
693 		vdev_state_clean(svd);
694 		vdev_state_dirty(tvd);
695 	}
696 
697 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
698 	svd->vdev_deflate_ratio = 0;
699 
700 	tvd->vdev_islog = svd->vdev_islog;
701 	svd->vdev_islog = 0;
702 }
703 
704 static void
705 vdev_top_update(vdev_t *tvd, vdev_t *vd)
706 {
707 	if (vd == NULL)
708 		return;
709 
710 	vd->vdev_top = tvd;
711 
712 	for (int c = 0; c < vd->vdev_children; c++)
713 		vdev_top_update(tvd, vd->vdev_child[c]);
714 }
715 
716 /*
717  * Add a mirror/replacing vdev above an existing vdev.
718  */
719 vdev_t *
720 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
721 {
722 	spa_t *spa = cvd->vdev_spa;
723 	vdev_t *pvd = cvd->vdev_parent;
724 	vdev_t *mvd;
725 
726 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
727 
728 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
729 
730 	mvd->vdev_asize = cvd->vdev_asize;
731 	mvd->vdev_min_asize = cvd->vdev_min_asize;
732 	mvd->vdev_ashift = cvd->vdev_ashift;
733 	mvd->vdev_state = cvd->vdev_state;
734 	mvd->vdev_crtxg = cvd->vdev_crtxg;
735 
736 	vdev_remove_child(pvd, cvd);
737 	vdev_add_child(pvd, mvd);
738 	cvd->vdev_id = mvd->vdev_children;
739 	vdev_add_child(mvd, cvd);
740 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
741 
742 	if (mvd == mvd->vdev_top)
743 		vdev_top_transfer(cvd, mvd);
744 
745 	return (mvd);
746 }
747 
748 /*
749  * Remove a 1-way mirror/replacing vdev from the tree.
750  */
751 void
752 vdev_remove_parent(vdev_t *cvd)
753 {
754 	vdev_t *mvd = cvd->vdev_parent;
755 	vdev_t *pvd = mvd->vdev_parent;
756 
757 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
758 
759 	ASSERT(mvd->vdev_children == 1);
760 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
761 	    mvd->vdev_ops == &vdev_replacing_ops ||
762 	    mvd->vdev_ops == &vdev_spare_ops);
763 	cvd->vdev_ashift = mvd->vdev_ashift;
764 
765 	vdev_remove_child(mvd, cvd);
766 	vdev_remove_child(pvd, mvd);
767 
768 	/*
769 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
770 	 * Otherwise, we could have detached an offline device, and when we
771 	 * go to import the pool we'll think we have two top-level vdevs,
772 	 * instead of a different version of the same top-level vdev.
773 	 */
774 	if (mvd->vdev_top == mvd) {
775 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
776 		cvd->vdev_orig_guid = cvd->vdev_guid;
777 		cvd->vdev_guid += guid_delta;
778 		cvd->vdev_guid_sum += guid_delta;
779 	}
780 	cvd->vdev_id = mvd->vdev_id;
781 	vdev_add_child(pvd, cvd);
782 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
783 
784 	if (cvd == cvd->vdev_top)
785 		vdev_top_transfer(mvd, cvd);
786 
787 	ASSERT(mvd->vdev_children == 0);
788 	vdev_free(mvd);
789 }
790 
791 int
792 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
793 {
794 	spa_t *spa = vd->vdev_spa;
795 	objset_t *mos = spa->spa_meta_objset;
796 	uint64_t m;
797 	uint64_t oldc = vd->vdev_ms_count;
798 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
799 	metaslab_t **mspp;
800 	int error;
801 
802 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
803 
804 	/*
805 	 * This vdev is not being allocated from yet or is a hole.
806 	 */
807 	if (vd->vdev_ms_shift == 0)
808 		return (0);
809 
810 	ASSERT(!vd->vdev_ishole);
811 
812 	/*
813 	 * Compute the raidz-deflation ratio.  Note, we hard-code
814 	 * in 128k (1 << 17) because it is the current "typical" blocksize.
815 	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
816 	 * or we will inconsistently account for existing bp's.
817 	 */
818 	vd->vdev_deflate_ratio = (1 << 17) /
819 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
820 
821 	ASSERT(oldc <= newc);
822 
823 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
824 
825 	if (oldc != 0) {
826 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
827 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
828 	}
829 
830 	vd->vdev_ms = mspp;
831 	vd->vdev_ms_count = newc;
832 
833 	for (m = oldc; m < newc; m++) {
834 		space_map_obj_t smo = { 0, 0, 0 };
835 		if (txg == 0) {
836 			uint64_t object = 0;
837 			error = dmu_read(mos, vd->vdev_ms_array,
838 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
839 			    DMU_READ_PREFETCH);
840 			if (error)
841 				return (error);
842 			if (object != 0) {
843 				dmu_buf_t *db;
844 				error = dmu_bonus_hold(mos, object, FTAG, &db);
845 				if (error)
846 					return (error);
847 				ASSERT3U(db->db_size, >=, sizeof (smo));
848 				bcopy(db->db_data, &smo, sizeof (smo));
849 				ASSERT3U(smo.smo_object, ==, object);
850 				dmu_buf_rele(db, FTAG);
851 			}
852 		}
853 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
854 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
855 	}
856 
857 	if (txg == 0)
858 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
859 
860 	/*
861 	 * If the vdev is being removed we don't activate
862 	 * the metaslabs since we want to ensure that no new
863 	 * allocations are performed on this device.
864 	 */
865 	if (oldc == 0 && !vd->vdev_removing)
866 		metaslab_group_activate(vd->vdev_mg);
867 
868 	if (txg == 0)
869 		spa_config_exit(spa, SCL_ALLOC, FTAG);
870 
871 	return (0);
872 }
873 
874 void
875 vdev_metaslab_fini(vdev_t *vd)
876 {
877 	uint64_t m;
878 	uint64_t count = vd->vdev_ms_count;
879 
880 	if (vd->vdev_ms != NULL) {
881 		metaslab_group_passivate(vd->vdev_mg);
882 		for (m = 0; m < count; m++)
883 			if (vd->vdev_ms[m] != NULL)
884 				metaslab_fini(vd->vdev_ms[m]);
885 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
886 		vd->vdev_ms = NULL;
887 	}
888 }
889 
890 typedef struct vdev_probe_stats {
891 	boolean_t	vps_readable;
892 	boolean_t	vps_writeable;
893 	int		vps_flags;
894 } vdev_probe_stats_t;
895 
896 static void
897 vdev_probe_done(zio_t *zio)
898 {
899 	spa_t *spa = zio->io_spa;
900 	vdev_t *vd = zio->io_vd;
901 	vdev_probe_stats_t *vps = zio->io_private;
902 
903 	ASSERT(vd->vdev_probe_zio != NULL);
904 
905 	if (zio->io_type == ZIO_TYPE_READ) {
906 		if (zio->io_error == 0)
907 			vps->vps_readable = 1;
908 		if (zio->io_error == 0 && spa_writeable(spa)) {
909 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
910 			    zio->io_offset, zio->io_size, zio->io_data,
911 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
912 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
913 		} else {
914 			zio_buf_free(zio->io_data, zio->io_size);
915 		}
916 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
917 		if (zio->io_error == 0)
918 			vps->vps_writeable = 1;
919 		zio_buf_free(zio->io_data, zio->io_size);
920 	} else if (zio->io_type == ZIO_TYPE_NULL) {
921 		zio_t *pio;
922 
923 		vd->vdev_cant_read |= !vps->vps_readable;
924 		vd->vdev_cant_write |= !vps->vps_writeable;
925 
926 		if (vdev_readable(vd) &&
927 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
928 			zio->io_error = 0;
929 		} else {
930 			ASSERT(zio->io_error != 0);
931 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
932 			    spa, vd, NULL, 0, 0);
933 			zio->io_error = ENXIO;
934 		}
935 
936 		mutex_enter(&vd->vdev_probe_lock);
937 		ASSERT(vd->vdev_probe_zio == zio);
938 		vd->vdev_probe_zio = NULL;
939 		mutex_exit(&vd->vdev_probe_lock);
940 
941 		while ((pio = zio_walk_parents(zio)) != NULL)
942 			if (!vdev_accessible(vd, pio))
943 				pio->io_error = ENXIO;
944 
945 		kmem_free(vps, sizeof (*vps));
946 	}
947 }
948 
949 /*
950  * Determine whether this device is accessible by reading and writing
951  * to several known locations: the pad regions of each vdev label
952  * but the first (which we leave alone in case it contains a VTOC).
953  */
954 zio_t *
955 vdev_probe(vdev_t *vd, zio_t *zio)
956 {
957 	spa_t *spa = vd->vdev_spa;
958 	vdev_probe_stats_t *vps = NULL;
959 	zio_t *pio;
960 
961 	ASSERT(vd->vdev_ops->vdev_op_leaf);
962 
963 	/*
964 	 * Don't probe the probe.
965 	 */
966 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
967 		return (NULL);
968 
969 	/*
970 	 * To prevent 'probe storms' when a device fails, we create
971 	 * just one probe i/o at a time.  All zios that want to probe
972 	 * this vdev will become parents of the probe io.
973 	 */
974 	mutex_enter(&vd->vdev_probe_lock);
975 
976 	if ((pio = vd->vdev_probe_zio) == NULL) {
977 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
978 
979 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
980 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
981 		    ZIO_FLAG_TRYHARD;
982 
983 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
984 			/*
985 			 * vdev_cant_read and vdev_cant_write can only
986 			 * transition from TRUE to FALSE when we have the
987 			 * SCL_ZIO lock as writer; otherwise they can only
988 			 * transition from FALSE to TRUE.  This ensures that
989 			 * any zio looking at these values can assume that
990 			 * failures persist for the life of the I/O.  That's
991 			 * important because when a device has intermittent
992 			 * connectivity problems, we want to ensure that
993 			 * they're ascribed to the device (ENXIO) and not
994 			 * the zio (EIO).
995 			 *
996 			 * Since we hold SCL_ZIO as writer here, clear both
997 			 * values so the probe can reevaluate from first
998 			 * principles.
999 			 */
1000 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1001 			vd->vdev_cant_read = B_FALSE;
1002 			vd->vdev_cant_write = B_FALSE;
1003 		}
1004 
1005 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1006 		    vdev_probe_done, vps,
1007 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1008 
1009 		/*
1010 		 * We can't change the vdev state in this context, so we
1011 		 * kick off an async task to do it on our behalf.
1012 		 */
1013 		if (zio != NULL) {
1014 			vd->vdev_probe_wanted = B_TRUE;
1015 			spa_async_request(spa, SPA_ASYNC_PROBE);
1016 		}
1017 	}
1018 
1019 	if (zio != NULL)
1020 		zio_add_child(zio, pio);
1021 
1022 	mutex_exit(&vd->vdev_probe_lock);
1023 
1024 	if (vps == NULL) {
1025 		ASSERT(zio != NULL);
1026 		return (NULL);
1027 	}
1028 
1029 	for (int l = 1; l < VDEV_LABELS; l++) {
1030 		zio_nowait(zio_read_phys(pio, vd,
1031 		    vdev_label_offset(vd->vdev_psize, l,
1032 		    offsetof(vdev_label_t, vl_pad2)),
1033 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1034 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1035 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1036 	}
1037 
1038 	if (zio == NULL)
1039 		return (pio);
1040 
1041 	zio_nowait(pio);
1042 	return (NULL);
1043 }
1044 
1045 static void
1046 vdev_open_child(void *arg)
1047 {
1048 	vdev_t *vd = arg;
1049 
1050 	vd->vdev_open_thread = curthread;
1051 	vd->vdev_open_error = vdev_open(vd);
1052 	vd->vdev_open_thread = NULL;
1053 }
1054 
1055 boolean_t
1056 vdev_uses_zvols(vdev_t *vd)
1057 {
1058 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1059 	    strlen(ZVOL_DIR)) == 0)
1060 		return (B_TRUE);
1061 	for (int c = 0; c < vd->vdev_children; c++)
1062 		if (vdev_uses_zvols(vd->vdev_child[c]))
1063 			return (B_TRUE);
1064 	return (B_FALSE);
1065 }
1066 
1067 void
1068 vdev_open_children(vdev_t *vd)
1069 {
1070 	taskq_t *tq;
1071 	int children = vd->vdev_children;
1072 
1073 	/*
1074 	 * in order to handle pools on top of zvols, do the opens
1075 	 * in a single thread so that the same thread holds the
1076 	 * spa_namespace_lock
1077 	 */
1078 	if (vdev_uses_zvols(vd)) {
1079 		for (int c = 0; c < children; c++)
1080 			vd->vdev_child[c]->vdev_open_error =
1081 			    vdev_open(vd->vdev_child[c]);
1082 		return;
1083 	}
1084 	tq = taskq_create("vdev_open", children, minclsyspri,
1085 	    children, children, TASKQ_PREPOPULATE);
1086 
1087 	for (int c = 0; c < children; c++)
1088 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1089 		    TQ_SLEEP) != NULL);
1090 
1091 	taskq_destroy(tq);
1092 }
1093 
1094 /*
1095  * Prepare a virtual device for access.
1096  */
1097 int
1098 vdev_open(vdev_t *vd)
1099 {
1100 	spa_t *spa = vd->vdev_spa;
1101 	int error;
1102 	uint64_t osize = 0;
1103 	uint64_t asize, psize;
1104 	uint64_t ashift = 0;
1105 
1106 	ASSERT(vd->vdev_open_thread == curthread ||
1107 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1108 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1109 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1110 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1111 
1112 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1113 	vd->vdev_cant_read = B_FALSE;
1114 	vd->vdev_cant_write = B_FALSE;
1115 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1116 
1117 	/*
1118 	 * If this vdev is not removed, check its fault status.  If it's
1119 	 * faulted, bail out of the open.
1120 	 */
1121 	if (!vd->vdev_removed && vd->vdev_faulted) {
1122 		ASSERT(vd->vdev_children == 0);
1123 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1124 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1125 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1126 		    vd->vdev_label_aux);
1127 		return (ENXIO);
1128 	} else if (vd->vdev_offline) {
1129 		ASSERT(vd->vdev_children == 0);
1130 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1131 		return (ENXIO);
1132 	}
1133 
1134 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1135 
1136 	/*
1137 	 * Reset the vdev_reopening flag so that we actually close
1138 	 * the vdev on error.
1139 	 */
1140 	vd->vdev_reopening = B_FALSE;
1141 	if (zio_injection_enabled && error == 0)
1142 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1143 
1144 	if (error) {
1145 		if (vd->vdev_removed &&
1146 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1147 			vd->vdev_removed = B_FALSE;
1148 
1149 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1150 		    vd->vdev_stat.vs_aux);
1151 		return (error);
1152 	}
1153 
1154 	vd->vdev_removed = B_FALSE;
1155 
1156 	/*
1157 	 * Recheck the faulted flag now that we have confirmed that
1158 	 * the vdev is accessible.  If we're faulted, bail.
1159 	 */
1160 	if (vd->vdev_faulted) {
1161 		ASSERT(vd->vdev_children == 0);
1162 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1163 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1164 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1165 		    vd->vdev_label_aux);
1166 		return (ENXIO);
1167 	}
1168 
1169 	if (vd->vdev_degraded) {
1170 		ASSERT(vd->vdev_children == 0);
1171 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1172 		    VDEV_AUX_ERR_EXCEEDED);
1173 	} else {
1174 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1175 	}
1176 
1177 	/*
1178 	 * For hole or missing vdevs we just return success.
1179 	 */
1180 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1181 		return (0);
1182 
1183 	for (int c = 0; c < vd->vdev_children; c++) {
1184 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1185 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1186 			    VDEV_AUX_NONE);
1187 			break;
1188 		}
1189 	}
1190 
1191 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1192 
1193 	if (vd->vdev_children == 0) {
1194 		if (osize < SPA_MINDEVSIZE) {
1195 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1196 			    VDEV_AUX_TOO_SMALL);
1197 			return (EOVERFLOW);
1198 		}
1199 		psize = osize;
1200 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1201 	} else {
1202 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1203 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1204 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1205 			    VDEV_AUX_TOO_SMALL);
1206 			return (EOVERFLOW);
1207 		}
1208 		psize = 0;
1209 		asize = osize;
1210 	}
1211 
1212 	vd->vdev_psize = psize;
1213 
1214 	/*
1215 	 * Make sure the allocatable size hasn't shrunk.
1216 	 */
1217 	if (asize < vd->vdev_min_asize) {
1218 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1219 		    VDEV_AUX_BAD_LABEL);
1220 		return (EINVAL);
1221 	}
1222 
1223 	if (vd->vdev_asize == 0) {
1224 		/*
1225 		 * This is the first-ever open, so use the computed values.
1226 		 * For testing purposes, a higher ashift can be requested.
1227 		 */
1228 		vd->vdev_asize = asize;
1229 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1230 	} else {
1231 		/*
1232 		 * Make sure the alignment requirement hasn't increased.
1233 		 */
1234 		if (ashift > vd->vdev_top->vdev_ashift) {
1235 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1236 			    VDEV_AUX_BAD_LABEL);
1237 			return (EINVAL);
1238 		}
1239 	}
1240 
1241 	/*
1242 	 * If all children are healthy and the asize has increased,
1243 	 * then we've experienced dynamic LUN growth.  If automatic
1244 	 * expansion is enabled then use the additional space.
1245 	 */
1246 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1247 	    (vd->vdev_expanding || spa->spa_autoexpand))
1248 		vd->vdev_asize = asize;
1249 
1250 	vdev_set_min_asize(vd);
1251 
1252 	/*
1253 	 * Ensure we can issue some IO before declaring the
1254 	 * vdev open for business.
1255 	 */
1256 	if (vd->vdev_ops->vdev_op_leaf &&
1257 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1258 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1259 		    VDEV_AUX_ERR_EXCEEDED);
1260 		return (error);
1261 	}
1262 
1263 	/*
1264 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1265 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1266 	 * since this would just restart the scrub we are already doing.
1267 	 */
1268 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1269 	    vdev_resilver_needed(vd, NULL, NULL))
1270 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1271 
1272 	return (0);
1273 }
1274 
1275 /*
1276  * Called once the vdevs are all opened, this routine validates the label
1277  * contents.  This needs to be done before vdev_load() so that we don't
1278  * inadvertently do repair I/Os to the wrong device.
1279  *
1280  * This function will only return failure if one of the vdevs indicates that it
1281  * has since been destroyed or exported.  This is only possible if
1282  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1283  * will be updated but the function will return 0.
1284  */
1285 int
1286 vdev_validate(vdev_t *vd)
1287 {
1288 	spa_t *spa = vd->vdev_spa;
1289 	nvlist_t *label;
1290 	uint64_t guid = 0, top_guid;
1291 	uint64_t state;
1292 
1293 	for (int c = 0; c < vd->vdev_children; c++)
1294 		if (vdev_validate(vd->vdev_child[c]) != 0)
1295 			return (EBADF);
1296 
1297 	/*
1298 	 * If the device has already failed, or was marked offline, don't do
1299 	 * any further validation.  Otherwise, label I/O will fail and we will
1300 	 * overwrite the previous state.
1301 	 */
1302 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1303 		uint64_t aux_guid = 0;
1304 		nvlist_t *nvl;
1305 
1306 		if ((label = vdev_label_read_config(vd)) == NULL) {
1307 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1308 			    VDEV_AUX_BAD_LABEL);
1309 			return (0);
1310 		}
1311 
1312 		/*
1313 		 * Determine if this vdev has been split off into another
1314 		 * pool.  If so, then refuse to open it.
1315 		 */
1316 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1317 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1318 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1319 			    VDEV_AUX_SPLIT_POOL);
1320 			nvlist_free(label);
1321 			return (0);
1322 		}
1323 
1324 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1325 		    &guid) != 0 || guid != spa_guid(spa)) {
1326 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1327 			    VDEV_AUX_CORRUPT_DATA);
1328 			nvlist_free(label);
1329 			return (0);
1330 		}
1331 
1332 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1333 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1334 		    &aux_guid) != 0)
1335 			aux_guid = 0;
1336 
1337 		/*
1338 		 * If this vdev just became a top-level vdev because its
1339 		 * sibling was detached, it will have adopted the parent's
1340 		 * vdev guid -- but the label may or may not be on disk yet.
1341 		 * Fortunately, either version of the label will have the
1342 		 * same top guid, so if we're a top-level vdev, we can
1343 		 * safely compare to that instead.
1344 		 *
1345 		 * If we split this vdev off instead, then we also check the
1346 		 * original pool's guid.  We don't want to consider the vdev
1347 		 * corrupt if it is partway through a split operation.
1348 		 */
1349 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1350 		    &guid) != 0 ||
1351 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1352 		    &top_guid) != 0 ||
1353 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1354 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1355 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1356 			    VDEV_AUX_CORRUPT_DATA);
1357 			nvlist_free(label);
1358 			return (0);
1359 		}
1360 
1361 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1362 		    &state) != 0) {
1363 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1364 			    VDEV_AUX_CORRUPT_DATA);
1365 			nvlist_free(label);
1366 			return (0);
1367 		}
1368 
1369 		nvlist_free(label);
1370 
1371 		/*
1372 		 * If spa->spa_load_verbatim is true, no need to check the
1373 		 * state of the pool.
1374 		 */
1375 		if (!spa->spa_load_verbatim &&
1376 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1377 		    state != POOL_STATE_ACTIVE)
1378 			return (EBADF);
1379 
1380 		/*
1381 		 * If we were able to open and validate a vdev that was
1382 		 * previously marked permanently unavailable, clear that state
1383 		 * now.
1384 		 */
1385 		if (vd->vdev_not_present)
1386 			vd->vdev_not_present = 0;
1387 	}
1388 
1389 	return (0);
1390 }
1391 
1392 /*
1393  * Close a virtual device.
1394  */
1395 void
1396 vdev_close(vdev_t *vd)
1397 {
1398 	spa_t *spa = vd->vdev_spa;
1399 	vdev_t *pvd = vd->vdev_parent;
1400 
1401 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1402 
1403 	/*
1404 	 * If our parent is reopening, then we are as well, unless we are
1405 	 * going offline.
1406 	 */
1407 	if (pvd != NULL && pvd->vdev_reopening)
1408 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1409 
1410 	vd->vdev_ops->vdev_op_close(vd);
1411 
1412 	vdev_cache_purge(vd);
1413 
1414 	/*
1415 	 * We record the previous state before we close it, so that if we are
1416 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1417 	 * it's still faulted.
1418 	 */
1419 	vd->vdev_prevstate = vd->vdev_state;
1420 
1421 	if (vd->vdev_offline)
1422 		vd->vdev_state = VDEV_STATE_OFFLINE;
1423 	else
1424 		vd->vdev_state = VDEV_STATE_CLOSED;
1425 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1426 }
1427 
1428 void
1429 vdev_hold(vdev_t *vd)
1430 {
1431 	spa_t *spa = vd->vdev_spa;
1432 
1433 	ASSERT(spa_is_root(spa));
1434 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1435 		return;
1436 
1437 	for (int c = 0; c < vd->vdev_children; c++)
1438 		vdev_hold(vd->vdev_child[c]);
1439 
1440 	if (vd->vdev_ops->vdev_op_leaf)
1441 		vd->vdev_ops->vdev_op_hold(vd);
1442 }
1443 
1444 void
1445 vdev_rele(vdev_t *vd)
1446 {
1447 	spa_t *spa = vd->vdev_spa;
1448 
1449 	ASSERT(spa_is_root(spa));
1450 	for (int c = 0; c < vd->vdev_children; c++)
1451 		vdev_rele(vd->vdev_child[c]);
1452 
1453 	if (vd->vdev_ops->vdev_op_leaf)
1454 		vd->vdev_ops->vdev_op_rele(vd);
1455 }
1456 
1457 /*
1458  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1459  * reopen leaf vdevs which had previously been opened as they might deadlock
1460  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1461  * If the leaf has never been opened then open it, as usual.
1462  */
1463 void
1464 vdev_reopen(vdev_t *vd)
1465 {
1466 	spa_t *spa = vd->vdev_spa;
1467 
1468 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1469 
1470 	/* set the reopening flag unless we're taking the vdev offline */
1471 	vd->vdev_reopening = !vd->vdev_offline;
1472 	vdev_close(vd);
1473 	(void) vdev_open(vd);
1474 
1475 	/*
1476 	 * Call vdev_validate() here to make sure we have the same device.
1477 	 * Otherwise, a device with an invalid label could be successfully
1478 	 * opened in response to vdev_reopen().
1479 	 */
1480 	if (vd->vdev_aux) {
1481 		(void) vdev_validate_aux(vd);
1482 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1483 		    vd->vdev_aux == &spa->spa_l2cache &&
1484 		    !l2arc_vdev_present(vd))
1485 			l2arc_add_vdev(spa, vd);
1486 	} else {
1487 		(void) vdev_validate(vd);
1488 	}
1489 
1490 	/*
1491 	 * Reassess parent vdev's health.
1492 	 */
1493 	vdev_propagate_state(vd);
1494 }
1495 
1496 int
1497 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1498 {
1499 	int error;
1500 
1501 	/*
1502 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1503 	 * For a create, however, we want to fail the request if
1504 	 * there are any components we can't open.
1505 	 */
1506 	error = vdev_open(vd);
1507 
1508 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1509 		vdev_close(vd);
1510 		return (error ? error : ENXIO);
1511 	}
1512 
1513 	/*
1514 	 * Recursively initialize all labels.
1515 	 */
1516 	if ((error = vdev_label_init(vd, txg, isreplacing ?
1517 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1518 		vdev_close(vd);
1519 		return (error);
1520 	}
1521 
1522 	return (0);
1523 }
1524 
1525 void
1526 vdev_metaslab_set_size(vdev_t *vd)
1527 {
1528 	/*
1529 	 * Aim for roughly 200 metaslabs per vdev.
1530 	 */
1531 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1532 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1533 }
1534 
1535 void
1536 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1537 {
1538 	ASSERT(vd == vd->vdev_top);
1539 	ASSERT(!vd->vdev_ishole);
1540 	ASSERT(ISP2(flags));
1541 
1542 	if (flags & VDD_METASLAB)
1543 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1544 
1545 	if (flags & VDD_DTL)
1546 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1547 
1548 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1549 }
1550 
1551 /*
1552  * DTLs.
1553  *
1554  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1555  * the vdev has less than perfect replication.  There are four kinds of DTL:
1556  *
1557  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1558  *
1559  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1560  *
1561  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1562  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1563  *	txgs that was scrubbed.
1564  *
1565  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1566  *	persistent errors or just some device being offline.
1567  *	Unlike the other three, the DTL_OUTAGE map is not generally
1568  *	maintained; it's only computed when needed, typically to
1569  *	determine whether a device can be detached.
1570  *
1571  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1572  * either has the data or it doesn't.
1573  *
1574  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1575  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1576  * if any child is less than fully replicated, then so is its parent.
1577  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1578  * comprising only those txgs which appear in 'maxfaults' or more children;
1579  * those are the txgs we don't have enough replication to read.  For example,
1580  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1581  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1582  * two child DTL_MISSING maps.
1583  *
1584  * It should be clear from the above that to compute the DTLs and outage maps
1585  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1586  * Therefore, that is all we keep on disk.  When loading the pool, or after
1587  * a configuration change, we generate all other DTLs from first principles.
1588  */
1589 void
1590 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1591 {
1592 	space_map_t *sm = &vd->vdev_dtl[t];
1593 
1594 	ASSERT(t < DTL_TYPES);
1595 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1596 
1597 	mutex_enter(sm->sm_lock);
1598 	if (!space_map_contains(sm, txg, size))
1599 		space_map_add(sm, txg, size);
1600 	mutex_exit(sm->sm_lock);
1601 }
1602 
1603 boolean_t
1604 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1605 {
1606 	space_map_t *sm = &vd->vdev_dtl[t];
1607 	boolean_t dirty = B_FALSE;
1608 
1609 	ASSERT(t < DTL_TYPES);
1610 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1611 
1612 	mutex_enter(sm->sm_lock);
1613 	if (sm->sm_space != 0)
1614 		dirty = space_map_contains(sm, txg, size);
1615 	mutex_exit(sm->sm_lock);
1616 
1617 	return (dirty);
1618 }
1619 
1620 boolean_t
1621 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1622 {
1623 	space_map_t *sm = &vd->vdev_dtl[t];
1624 	boolean_t empty;
1625 
1626 	mutex_enter(sm->sm_lock);
1627 	empty = (sm->sm_space == 0);
1628 	mutex_exit(sm->sm_lock);
1629 
1630 	return (empty);
1631 }
1632 
1633 /*
1634  * Reassess DTLs after a config change or scrub completion.
1635  */
1636 void
1637 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1638 {
1639 	spa_t *spa = vd->vdev_spa;
1640 	avl_tree_t reftree;
1641 	int minref;
1642 
1643 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1644 
1645 	for (int c = 0; c < vd->vdev_children; c++)
1646 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1647 		    scrub_txg, scrub_done);
1648 
1649 	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1650 		return;
1651 
1652 	if (vd->vdev_ops->vdev_op_leaf) {
1653 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1654 
1655 		mutex_enter(&vd->vdev_dtl_lock);
1656 		if (scrub_txg != 0 &&
1657 		    (spa->spa_scrub_started ||
1658 		    (scn && scn->scn_phys.scn_errors == 0))) {
1659 			/*
1660 			 * We completed a scrub up to scrub_txg.  If we
1661 			 * did it without rebooting, then the scrub dtl
1662 			 * will be valid, so excise the old region and
1663 			 * fold in the scrub dtl.  Otherwise, leave the
1664 			 * dtl as-is if there was an error.
1665 			 *
1666 			 * There's little trick here: to excise the beginning
1667 			 * of the DTL_MISSING map, we put it into a reference
1668 			 * tree and then add a segment with refcnt -1 that
1669 			 * covers the range [0, scrub_txg).  This means
1670 			 * that each txg in that range has refcnt -1 or 0.
1671 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1672 			 * entries in the range [0, scrub_txg) will have a
1673 			 * positive refcnt -- either 1 or 2.  We then convert
1674 			 * the reference tree into the new DTL_MISSING map.
1675 			 */
1676 			space_map_ref_create(&reftree);
1677 			space_map_ref_add_map(&reftree,
1678 			    &vd->vdev_dtl[DTL_MISSING], 1);
1679 			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1680 			space_map_ref_add_map(&reftree,
1681 			    &vd->vdev_dtl[DTL_SCRUB], 2);
1682 			space_map_ref_generate_map(&reftree,
1683 			    &vd->vdev_dtl[DTL_MISSING], 1);
1684 			space_map_ref_destroy(&reftree);
1685 		}
1686 		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1687 		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1688 		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1689 		if (scrub_done)
1690 			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1691 		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1692 		if (!vdev_readable(vd))
1693 			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1694 		else
1695 			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1696 			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1697 		mutex_exit(&vd->vdev_dtl_lock);
1698 
1699 		if (txg != 0)
1700 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1701 		return;
1702 	}
1703 
1704 	mutex_enter(&vd->vdev_dtl_lock);
1705 	for (int t = 0; t < DTL_TYPES; t++) {
1706 		/* account for child's outage in parent's missing map */
1707 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1708 		if (t == DTL_SCRUB)
1709 			continue;			/* leaf vdevs only */
1710 		if (t == DTL_PARTIAL)
1711 			minref = 1;			/* i.e. non-zero */
1712 		else if (vd->vdev_nparity != 0)
1713 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1714 		else
1715 			minref = vd->vdev_children;	/* any kind of mirror */
1716 		space_map_ref_create(&reftree);
1717 		for (int c = 0; c < vd->vdev_children; c++) {
1718 			vdev_t *cvd = vd->vdev_child[c];
1719 			mutex_enter(&cvd->vdev_dtl_lock);
1720 			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1721 			mutex_exit(&cvd->vdev_dtl_lock);
1722 		}
1723 		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1724 		space_map_ref_destroy(&reftree);
1725 	}
1726 	mutex_exit(&vd->vdev_dtl_lock);
1727 }
1728 
1729 static int
1730 vdev_dtl_load(vdev_t *vd)
1731 {
1732 	spa_t *spa = vd->vdev_spa;
1733 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1734 	objset_t *mos = spa->spa_meta_objset;
1735 	dmu_buf_t *db;
1736 	int error;
1737 
1738 	ASSERT(vd->vdev_children == 0);
1739 
1740 	if (smo->smo_object == 0)
1741 		return (0);
1742 
1743 	ASSERT(!vd->vdev_ishole);
1744 
1745 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1746 		return (error);
1747 
1748 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1749 	bcopy(db->db_data, smo, sizeof (*smo));
1750 	dmu_buf_rele(db, FTAG);
1751 
1752 	mutex_enter(&vd->vdev_dtl_lock);
1753 	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1754 	    NULL, SM_ALLOC, smo, mos);
1755 	mutex_exit(&vd->vdev_dtl_lock);
1756 
1757 	return (error);
1758 }
1759 
1760 void
1761 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1762 {
1763 	spa_t *spa = vd->vdev_spa;
1764 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1765 	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1766 	objset_t *mos = spa->spa_meta_objset;
1767 	space_map_t smsync;
1768 	kmutex_t smlock;
1769 	dmu_buf_t *db;
1770 	dmu_tx_t *tx;
1771 
1772 	ASSERT(!vd->vdev_ishole);
1773 
1774 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1775 
1776 	if (vd->vdev_detached) {
1777 		if (smo->smo_object != 0) {
1778 			int err = dmu_object_free(mos, smo->smo_object, tx);
1779 			ASSERT3U(err, ==, 0);
1780 			smo->smo_object = 0;
1781 		}
1782 		dmu_tx_commit(tx);
1783 		return;
1784 	}
1785 
1786 	if (smo->smo_object == 0) {
1787 		ASSERT(smo->smo_objsize == 0);
1788 		ASSERT(smo->smo_alloc == 0);
1789 		smo->smo_object = dmu_object_alloc(mos,
1790 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1791 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1792 		ASSERT(smo->smo_object != 0);
1793 		vdev_config_dirty(vd->vdev_top);
1794 	}
1795 
1796 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1797 
1798 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1799 	    &smlock);
1800 
1801 	mutex_enter(&smlock);
1802 
1803 	mutex_enter(&vd->vdev_dtl_lock);
1804 	space_map_walk(sm, space_map_add, &smsync);
1805 	mutex_exit(&vd->vdev_dtl_lock);
1806 
1807 	space_map_truncate(smo, mos, tx);
1808 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1809 
1810 	space_map_destroy(&smsync);
1811 
1812 	mutex_exit(&smlock);
1813 	mutex_destroy(&smlock);
1814 
1815 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1816 	dmu_buf_will_dirty(db, tx);
1817 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1818 	bcopy(smo, db->db_data, sizeof (*smo));
1819 	dmu_buf_rele(db, FTAG);
1820 
1821 	dmu_tx_commit(tx);
1822 }
1823 
1824 /*
1825  * Determine whether the specified vdev can be offlined/detached/removed
1826  * without losing data.
1827  */
1828 boolean_t
1829 vdev_dtl_required(vdev_t *vd)
1830 {
1831 	spa_t *spa = vd->vdev_spa;
1832 	vdev_t *tvd = vd->vdev_top;
1833 	uint8_t cant_read = vd->vdev_cant_read;
1834 	boolean_t required;
1835 
1836 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1837 
1838 	if (vd == spa->spa_root_vdev || vd == tvd)
1839 		return (B_TRUE);
1840 
1841 	/*
1842 	 * Temporarily mark the device as unreadable, and then determine
1843 	 * whether this results in any DTL outages in the top-level vdev.
1844 	 * If not, we can safely offline/detach/remove the device.
1845 	 */
1846 	vd->vdev_cant_read = B_TRUE;
1847 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1848 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1849 	vd->vdev_cant_read = cant_read;
1850 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1851 
1852 	return (required);
1853 }
1854 
1855 /*
1856  * Determine if resilver is needed, and if so the txg range.
1857  */
1858 boolean_t
1859 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1860 {
1861 	boolean_t needed = B_FALSE;
1862 	uint64_t thismin = UINT64_MAX;
1863 	uint64_t thismax = 0;
1864 
1865 	if (vd->vdev_children == 0) {
1866 		mutex_enter(&vd->vdev_dtl_lock);
1867 		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1868 		    vdev_writeable(vd)) {
1869 			space_seg_t *ss;
1870 
1871 			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1872 			thismin = ss->ss_start - 1;
1873 			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1874 			thismax = ss->ss_end;
1875 			needed = B_TRUE;
1876 		}
1877 		mutex_exit(&vd->vdev_dtl_lock);
1878 	} else {
1879 		for (int c = 0; c < vd->vdev_children; c++) {
1880 			vdev_t *cvd = vd->vdev_child[c];
1881 			uint64_t cmin, cmax;
1882 
1883 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1884 				thismin = MIN(thismin, cmin);
1885 				thismax = MAX(thismax, cmax);
1886 				needed = B_TRUE;
1887 			}
1888 		}
1889 	}
1890 
1891 	if (needed && minp) {
1892 		*minp = thismin;
1893 		*maxp = thismax;
1894 	}
1895 	return (needed);
1896 }
1897 
1898 void
1899 vdev_load(vdev_t *vd)
1900 {
1901 	/*
1902 	 * Recursively load all children.
1903 	 */
1904 	for (int c = 0; c < vd->vdev_children; c++)
1905 		vdev_load(vd->vdev_child[c]);
1906 
1907 	/*
1908 	 * If this is a top-level vdev, initialize its metaslabs.
1909 	 */
1910 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1911 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1912 	    vdev_metaslab_init(vd, 0) != 0))
1913 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1914 		    VDEV_AUX_CORRUPT_DATA);
1915 
1916 	/*
1917 	 * If this is a leaf vdev, load its DTL.
1918 	 */
1919 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1920 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1921 		    VDEV_AUX_CORRUPT_DATA);
1922 }
1923 
1924 /*
1925  * The special vdev case is used for hot spares and l2cache devices.  Its
1926  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1927  * we make sure that we can open the underlying device, then try to read the
1928  * label, and make sure that the label is sane and that it hasn't been
1929  * repurposed to another pool.
1930  */
1931 int
1932 vdev_validate_aux(vdev_t *vd)
1933 {
1934 	nvlist_t *label;
1935 	uint64_t guid, version;
1936 	uint64_t state;
1937 
1938 	if (!vdev_readable(vd))
1939 		return (0);
1940 
1941 	if ((label = vdev_label_read_config(vd)) == NULL) {
1942 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1943 		    VDEV_AUX_CORRUPT_DATA);
1944 		return (-1);
1945 	}
1946 
1947 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1948 	    version > SPA_VERSION ||
1949 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1950 	    guid != vd->vdev_guid ||
1951 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1952 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1953 		    VDEV_AUX_CORRUPT_DATA);
1954 		nvlist_free(label);
1955 		return (-1);
1956 	}
1957 
1958 	/*
1959 	 * We don't actually check the pool state here.  If it's in fact in
1960 	 * use by another pool, we update this fact on the fly when requested.
1961 	 */
1962 	nvlist_free(label);
1963 	return (0);
1964 }
1965 
1966 void
1967 vdev_remove(vdev_t *vd, uint64_t txg)
1968 {
1969 	spa_t *spa = vd->vdev_spa;
1970 	objset_t *mos = spa->spa_meta_objset;
1971 	dmu_tx_t *tx;
1972 
1973 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1974 
1975 	if (vd->vdev_dtl_smo.smo_object) {
1976 		ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1977 		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
1978 		vd->vdev_dtl_smo.smo_object = 0;
1979 	}
1980 
1981 	if (vd->vdev_ms != NULL) {
1982 		for (int m = 0; m < vd->vdev_ms_count; m++) {
1983 			metaslab_t *msp = vd->vdev_ms[m];
1984 
1985 			if (msp == NULL || msp->ms_smo.smo_object == 0)
1986 				continue;
1987 
1988 			ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
1989 			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
1990 			msp->ms_smo.smo_object = 0;
1991 		}
1992 	}
1993 
1994 	if (vd->vdev_ms_array) {
1995 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
1996 		vd->vdev_ms_array = 0;
1997 		vd->vdev_ms_shift = 0;
1998 	}
1999 	dmu_tx_commit(tx);
2000 }
2001 
2002 void
2003 vdev_sync_done(vdev_t *vd, uint64_t txg)
2004 {
2005 	metaslab_t *msp;
2006 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2007 
2008 	ASSERT(!vd->vdev_ishole);
2009 
2010 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2011 		metaslab_sync_done(msp, txg);
2012 
2013 	if (reassess)
2014 		metaslab_sync_reassess(vd->vdev_mg);
2015 }
2016 
2017 void
2018 vdev_sync(vdev_t *vd, uint64_t txg)
2019 {
2020 	spa_t *spa = vd->vdev_spa;
2021 	vdev_t *lvd;
2022 	metaslab_t *msp;
2023 	dmu_tx_t *tx;
2024 
2025 	ASSERT(!vd->vdev_ishole);
2026 
2027 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2028 		ASSERT(vd == vd->vdev_top);
2029 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2030 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2031 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2032 		ASSERT(vd->vdev_ms_array != 0);
2033 		vdev_config_dirty(vd);
2034 		dmu_tx_commit(tx);
2035 	}
2036 
2037 	/*
2038 	 * Remove the metadata associated with this vdev once it's empty.
2039 	 */
2040 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2041 		vdev_remove(vd, txg);
2042 
2043 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2044 		metaslab_sync(msp, txg);
2045 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2046 	}
2047 
2048 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2049 		vdev_dtl_sync(lvd, txg);
2050 
2051 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2052 }
2053 
2054 uint64_t
2055 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2056 {
2057 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2058 }
2059 
2060 /*
2061  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2062  * not be opened, and no I/O is attempted.
2063  */
2064 int
2065 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2066 {
2067 	vdev_t *vd;
2068 
2069 	spa_vdev_state_enter(spa, SCL_NONE);
2070 
2071 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2072 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2073 
2074 	if (!vd->vdev_ops->vdev_op_leaf)
2075 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2076 
2077 	/*
2078 	 * We don't directly use the aux state here, but if we do a
2079 	 * vdev_reopen(), we need this value to be present to remember why we
2080 	 * were faulted.
2081 	 */
2082 	vd->vdev_label_aux = aux;
2083 
2084 	/*
2085 	 * Faulted state takes precedence over degraded.
2086 	 */
2087 	vd->vdev_delayed_close = B_FALSE;
2088 	vd->vdev_faulted = 1ULL;
2089 	vd->vdev_degraded = 0ULL;
2090 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2091 
2092 	/*
2093 	 * If this device has the only valid copy of the data, then
2094 	 * back off and simply mark the vdev as degraded instead.
2095 	 */
2096 	if (!vd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2097 		vd->vdev_degraded = 1ULL;
2098 		vd->vdev_faulted = 0ULL;
2099 
2100 		/*
2101 		 * If we reopen the device and it's not dead, only then do we
2102 		 * mark it degraded.
2103 		 */
2104 		vdev_reopen(vd);
2105 
2106 		if (vdev_readable(vd))
2107 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2108 	}
2109 
2110 	return (spa_vdev_state_exit(spa, vd, 0));
2111 }
2112 
2113 /*
2114  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2115  * user that something is wrong.  The vdev continues to operate as normal as far
2116  * as I/O is concerned.
2117  */
2118 int
2119 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2120 {
2121 	vdev_t *vd;
2122 
2123 	spa_vdev_state_enter(spa, SCL_NONE);
2124 
2125 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2126 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2127 
2128 	if (!vd->vdev_ops->vdev_op_leaf)
2129 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2130 
2131 	/*
2132 	 * If the vdev is already faulted, then don't do anything.
2133 	 */
2134 	if (vd->vdev_faulted || vd->vdev_degraded)
2135 		return (spa_vdev_state_exit(spa, NULL, 0));
2136 
2137 	vd->vdev_degraded = 1ULL;
2138 	if (!vdev_is_dead(vd))
2139 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2140 		    aux);
2141 
2142 	return (spa_vdev_state_exit(spa, vd, 0));
2143 }
2144 
2145 /*
2146  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2147  * any attached spare device should be detached when the device finishes
2148  * resilvering.  Second, the online should be treated like a 'test' online case,
2149  * so no FMA events are generated if the device fails to open.
2150  */
2151 int
2152 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2153 {
2154 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2155 
2156 	spa_vdev_state_enter(spa, SCL_NONE);
2157 
2158 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2159 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2160 
2161 	if (!vd->vdev_ops->vdev_op_leaf)
2162 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2163 
2164 	tvd = vd->vdev_top;
2165 	vd->vdev_offline = B_FALSE;
2166 	vd->vdev_tmpoffline = B_FALSE;
2167 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2168 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2169 
2170 	/* XXX - L2ARC 1.0 does not support expansion */
2171 	if (!vd->vdev_aux) {
2172 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2173 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2174 	}
2175 
2176 	vdev_reopen(tvd);
2177 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2178 
2179 	if (!vd->vdev_aux) {
2180 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2181 			pvd->vdev_expanding = B_FALSE;
2182 	}
2183 
2184 	if (newstate)
2185 		*newstate = vd->vdev_state;
2186 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2187 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2188 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2189 	    vd->vdev_parent->vdev_child[0] == vd)
2190 		vd->vdev_unspare = B_TRUE;
2191 
2192 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2193 
2194 		/* XXX - L2ARC 1.0 does not support expansion */
2195 		if (vd->vdev_aux)
2196 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2197 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2198 	}
2199 	return (spa_vdev_state_exit(spa, vd, 0));
2200 }
2201 
2202 static int
2203 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2204 {
2205 	vdev_t *vd, *tvd;
2206 	int error = 0;
2207 	uint64_t generation;
2208 	metaslab_group_t *mg;
2209 
2210 top:
2211 	spa_vdev_state_enter(spa, SCL_ALLOC);
2212 
2213 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2214 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2215 
2216 	if (!vd->vdev_ops->vdev_op_leaf)
2217 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2218 
2219 	tvd = vd->vdev_top;
2220 	mg = tvd->vdev_mg;
2221 	generation = spa->spa_config_generation + 1;
2222 
2223 	/*
2224 	 * If the device isn't already offline, try to offline it.
2225 	 */
2226 	if (!vd->vdev_offline) {
2227 		/*
2228 		 * If this device has the only valid copy of some data,
2229 		 * don't allow it to be offlined. Log devices are always
2230 		 * expendable.
2231 		 */
2232 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2233 		    vdev_dtl_required(vd))
2234 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2235 
2236 		/*
2237 		 * If the top-level is a slog and it has had allocations
2238 		 * then proceed.  We check that the vdev's metaslab group
2239 		 * is not NULL since it's possible that we may have just
2240 		 * added this vdev but not yet initialized its metaslabs.
2241 		 */
2242 		if (tvd->vdev_islog && mg != NULL) {
2243 			/*
2244 			 * Prevent any future allocations.
2245 			 */
2246 			metaslab_group_passivate(mg);
2247 			(void) spa_vdev_state_exit(spa, vd, 0);
2248 
2249 			error = spa_offline_log(spa);
2250 
2251 			spa_vdev_state_enter(spa, SCL_ALLOC);
2252 
2253 			/*
2254 			 * Check to see if the config has changed.
2255 			 */
2256 			if (error || generation != spa->spa_config_generation) {
2257 				metaslab_group_activate(mg);
2258 				if (error)
2259 					return (spa_vdev_state_exit(spa,
2260 					    vd, error));
2261 				(void) spa_vdev_state_exit(spa, vd, 0);
2262 				goto top;
2263 			}
2264 			ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2265 		}
2266 
2267 		/*
2268 		 * Offline this device and reopen its top-level vdev.
2269 		 * If the top-level vdev is a log device then just offline
2270 		 * it. Otherwise, if this action results in the top-level
2271 		 * vdev becoming unusable, undo it and fail the request.
2272 		 */
2273 		vd->vdev_offline = B_TRUE;
2274 		vdev_reopen(tvd);
2275 
2276 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2277 		    vdev_is_dead(tvd)) {
2278 			vd->vdev_offline = B_FALSE;
2279 			vdev_reopen(tvd);
2280 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2281 		}
2282 
2283 		/*
2284 		 * Add the device back into the metaslab rotor so that
2285 		 * once we online the device it's open for business.
2286 		 */
2287 		if (tvd->vdev_islog && mg != NULL)
2288 			metaslab_group_activate(mg);
2289 	}
2290 
2291 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2292 
2293 	return (spa_vdev_state_exit(spa, vd, 0));
2294 }
2295 
2296 int
2297 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2298 {
2299 	int error;
2300 
2301 	mutex_enter(&spa->spa_vdev_top_lock);
2302 	error = vdev_offline_locked(spa, guid, flags);
2303 	mutex_exit(&spa->spa_vdev_top_lock);
2304 
2305 	return (error);
2306 }
2307 
2308 /*
2309  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2310  * vdev_offline(), we assume the spa config is locked.  We also clear all
2311  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2312  */
2313 void
2314 vdev_clear(spa_t *spa, vdev_t *vd)
2315 {
2316 	vdev_t *rvd = spa->spa_root_vdev;
2317 
2318 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2319 
2320 	if (vd == NULL)
2321 		vd = rvd;
2322 
2323 	vd->vdev_stat.vs_read_errors = 0;
2324 	vd->vdev_stat.vs_write_errors = 0;
2325 	vd->vdev_stat.vs_checksum_errors = 0;
2326 
2327 	for (int c = 0; c < vd->vdev_children; c++)
2328 		vdev_clear(spa, vd->vdev_child[c]);
2329 
2330 	/*
2331 	 * If we're in the FAULTED state or have experienced failed I/O, then
2332 	 * clear the persistent state and attempt to reopen the device.  We
2333 	 * also mark the vdev config dirty, so that the new faulted state is
2334 	 * written out to disk.
2335 	 */
2336 	if (vd->vdev_faulted || vd->vdev_degraded ||
2337 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2338 
2339 		/*
2340 		 * When reopening in reponse to a clear event, it may be due to
2341 		 * a fmadm repair request.  In this case, if the device is
2342 		 * still broken, we want to still post the ereport again.
2343 		 */
2344 		vd->vdev_forcefault = B_TRUE;
2345 
2346 		vd->vdev_faulted = vd->vdev_degraded = 0;
2347 		vd->vdev_cant_read = B_FALSE;
2348 		vd->vdev_cant_write = B_FALSE;
2349 
2350 		vdev_reopen(vd);
2351 
2352 		vd->vdev_forcefault = B_FALSE;
2353 
2354 		if (vd != rvd)
2355 			vdev_state_dirty(vd->vdev_top);
2356 
2357 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2358 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2359 
2360 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2361 	}
2362 
2363 	/*
2364 	 * When clearing a FMA-diagnosed fault, we always want to
2365 	 * unspare the device, as we assume that the original spare was
2366 	 * done in response to the FMA fault.
2367 	 */
2368 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2369 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2370 	    vd->vdev_parent->vdev_child[0] == vd)
2371 		vd->vdev_unspare = B_TRUE;
2372 }
2373 
2374 boolean_t
2375 vdev_is_dead(vdev_t *vd)
2376 {
2377 	/*
2378 	 * Holes and missing devices are always considered "dead".
2379 	 * This simplifies the code since we don't have to check for
2380 	 * these types of devices in the various code paths.
2381 	 * Instead we rely on the fact that we skip over dead devices
2382 	 * before issuing I/O to them.
2383 	 */
2384 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2385 	    vd->vdev_ops == &vdev_missing_ops);
2386 }
2387 
2388 boolean_t
2389 vdev_readable(vdev_t *vd)
2390 {
2391 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2392 }
2393 
2394 boolean_t
2395 vdev_writeable(vdev_t *vd)
2396 {
2397 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2398 }
2399 
2400 boolean_t
2401 vdev_allocatable(vdev_t *vd)
2402 {
2403 	uint64_t state = vd->vdev_state;
2404 
2405 	/*
2406 	 * We currently allow allocations from vdevs which may be in the
2407 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2408 	 * fails to reopen then we'll catch it later when we're holding
2409 	 * the proper locks.  Note that we have to get the vdev state
2410 	 * in a local variable because although it changes atomically,
2411 	 * we're asking two separate questions about it.
2412 	 */
2413 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2414 	    !vd->vdev_cant_write && !vd->vdev_ishole);
2415 }
2416 
2417 boolean_t
2418 vdev_accessible(vdev_t *vd, zio_t *zio)
2419 {
2420 	ASSERT(zio->io_vd == vd);
2421 
2422 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2423 		return (B_FALSE);
2424 
2425 	if (zio->io_type == ZIO_TYPE_READ)
2426 		return (!vd->vdev_cant_read);
2427 
2428 	if (zio->io_type == ZIO_TYPE_WRITE)
2429 		return (!vd->vdev_cant_write);
2430 
2431 	return (B_TRUE);
2432 }
2433 
2434 /*
2435  * Get statistics for the given vdev.
2436  */
2437 void
2438 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2439 {
2440 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2441 
2442 	mutex_enter(&vd->vdev_stat_lock);
2443 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2444 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2445 	vs->vs_state = vd->vdev_state;
2446 	vs->vs_rsize = vdev_get_min_asize(vd);
2447 	if (vd->vdev_ops->vdev_op_leaf)
2448 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2449 	mutex_exit(&vd->vdev_stat_lock);
2450 
2451 	/*
2452 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2453 	 * over all top-level vdevs (i.e. the direct children of the root).
2454 	 */
2455 	if (vd == rvd) {
2456 		for (int c = 0; c < rvd->vdev_children; c++) {
2457 			vdev_t *cvd = rvd->vdev_child[c];
2458 			vdev_stat_t *cvs = &cvd->vdev_stat;
2459 
2460 			mutex_enter(&vd->vdev_stat_lock);
2461 			for (int t = 0; t < ZIO_TYPES; t++) {
2462 				vs->vs_ops[t] += cvs->vs_ops[t];
2463 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2464 			}
2465 			cvs->vs_scan_removing = cvd->vdev_removing;
2466 			mutex_exit(&vd->vdev_stat_lock);
2467 		}
2468 	}
2469 }
2470 
2471 void
2472 vdev_clear_stats(vdev_t *vd)
2473 {
2474 	mutex_enter(&vd->vdev_stat_lock);
2475 	vd->vdev_stat.vs_space = 0;
2476 	vd->vdev_stat.vs_dspace = 0;
2477 	vd->vdev_stat.vs_alloc = 0;
2478 	mutex_exit(&vd->vdev_stat_lock);
2479 }
2480 
2481 void
2482 vdev_scan_stat_init(vdev_t *vd)
2483 {
2484 	vdev_stat_t *vs = &vd->vdev_stat;
2485 
2486 	for (int c = 0; c < vd->vdev_children; c++)
2487 		vdev_scan_stat_init(vd->vdev_child[c]);
2488 
2489 	mutex_enter(&vd->vdev_stat_lock);
2490 	vs->vs_scan_processed = 0;
2491 	mutex_exit(&vd->vdev_stat_lock);
2492 }
2493 
2494 void
2495 vdev_stat_update(zio_t *zio, uint64_t psize)
2496 {
2497 	spa_t *spa = zio->io_spa;
2498 	vdev_t *rvd = spa->spa_root_vdev;
2499 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2500 	vdev_t *pvd;
2501 	uint64_t txg = zio->io_txg;
2502 	vdev_stat_t *vs = &vd->vdev_stat;
2503 	zio_type_t type = zio->io_type;
2504 	int flags = zio->io_flags;
2505 
2506 	/*
2507 	 * If this i/o is a gang leader, it didn't do any actual work.
2508 	 */
2509 	if (zio->io_gang_tree)
2510 		return;
2511 
2512 	if (zio->io_error == 0) {
2513 		/*
2514 		 * If this is a root i/o, don't count it -- we've already
2515 		 * counted the top-level vdevs, and vdev_get_stats() will
2516 		 * aggregate them when asked.  This reduces contention on
2517 		 * the root vdev_stat_lock and implicitly handles blocks
2518 		 * that compress away to holes, for which there is no i/o.
2519 		 * (Holes never create vdev children, so all the counters
2520 		 * remain zero, which is what we want.)
2521 		 *
2522 		 * Note: this only applies to successful i/o (io_error == 0)
2523 		 * because unlike i/o counts, errors are not additive.
2524 		 * When reading a ditto block, for example, failure of
2525 		 * one top-level vdev does not imply a root-level error.
2526 		 */
2527 		if (vd == rvd)
2528 			return;
2529 
2530 		ASSERT(vd == zio->io_vd);
2531 
2532 		if (flags & ZIO_FLAG_IO_BYPASS)
2533 			return;
2534 
2535 		mutex_enter(&vd->vdev_stat_lock);
2536 
2537 		if (flags & ZIO_FLAG_IO_REPAIR) {
2538 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2539 				dsl_scan_phys_t *scn_phys =
2540 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2541 				uint64_t *processed = &scn_phys->scn_processed;
2542 
2543 				/* XXX cleanup? */
2544 				if (vd->vdev_ops->vdev_op_leaf)
2545 					atomic_add_64(processed, psize);
2546 				vs->vs_scan_processed += psize;
2547 			}
2548 
2549 			if (flags & ZIO_FLAG_SELF_HEAL)
2550 				vs->vs_self_healed += psize;
2551 		}
2552 
2553 		vs->vs_ops[type]++;
2554 		vs->vs_bytes[type] += psize;
2555 
2556 		mutex_exit(&vd->vdev_stat_lock);
2557 		return;
2558 	}
2559 
2560 	if (flags & ZIO_FLAG_SPECULATIVE)
2561 		return;
2562 
2563 	/*
2564 	 * If this is an I/O error that is going to be retried, then ignore the
2565 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2566 	 * hard errors, when in reality they can happen for any number of
2567 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2568 	 */
2569 	if (zio->io_error == EIO &&
2570 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2571 		return;
2572 
2573 	/*
2574 	 * Intent logs writes won't propagate their error to the root
2575 	 * I/O so don't mark these types of failures as pool-level
2576 	 * errors.
2577 	 */
2578 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2579 		return;
2580 
2581 	mutex_enter(&vd->vdev_stat_lock);
2582 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2583 		if (zio->io_error == ECKSUM)
2584 			vs->vs_checksum_errors++;
2585 		else
2586 			vs->vs_read_errors++;
2587 	}
2588 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2589 		vs->vs_write_errors++;
2590 	mutex_exit(&vd->vdev_stat_lock);
2591 
2592 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2593 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2594 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2595 	    spa->spa_claiming)) {
2596 		/*
2597 		 * This is either a normal write (not a repair), or it's
2598 		 * a repair induced by the scrub thread, or it's a repair
2599 		 * made by zil_claim() during spa_load() in the first txg.
2600 		 * In the normal case, we commit the DTL change in the same
2601 		 * txg as the block was born.  In the scrub-induced repair
2602 		 * case, we know that scrubs run in first-pass syncing context,
2603 		 * so we commit the DTL change in spa_syncing_txg(spa).
2604 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2605 		 *
2606 		 * We currently do not make DTL entries for failed spontaneous
2607 		 * self-healing writes triggered by normal (non-scrubbing)
2608 		 * reads, because we have no transactional context in which to
2609 		 * do so -- and it's not clear that it'd be desirable anyway.
2610 		 */
2611 		if (vd->vdev_ops->vdev_op_leaf) {
2612 			uint64_t commit_txg = txg;
2613 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2614 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2615 				ASSERT(spa_sync_pass(spa) == 1);
2616 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2617 				commit_txg = spa_syncing_txg(spa);
2618 			} else if (spa->spa_claiming) {
2619 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2620 				commit_txg = spa_first_txg(spa);
2621 			}
2622 			ASSERT(commit_txg >= spa_syncing_txg(spa));
2623 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2624 				return;
2625 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2626 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2627 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2628 		}
2629 		if (vd != rvd)
2630 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2631 	}
2632 }
2633 
2634 /*
2635  * Update the in-core space usage stats for this vdev, its metaslab class,
2636  * and the root vdev.
2637  */
2638 void
2639 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2640     int64_t space_delta)
2641 {
2642 	int64_t dspace_delta = space_delta;
2643 	spa_t *spa = vd->vdev_spa;
2644 	vdev_t *rvd = spa->spa_root_vdev;
2645 	metaslab_group_t *mg = vd->vdev_mg;
2646 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2647 
2648 	ASSERT(vd == vd->vdev_top);
2649 
2650 	/*
2651 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2652 	 * factor.  We must calculate this here and not at the root vdev
2653 	 * because the root vdev's psize-to-asize is simply the max of its
2654 	 * childrens', thus not accurate enough for us.
2655 	 */
2656 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2657 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2658 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2659 	    vd->vdev_deflate_ratio;
2660 
2661 	mutex_enter(&vd->vdev_stat_lock);
2662 	vd->vdev_stat.vs_alloc += alloc_delta;
2663 	vd->vdev_stat.vs_space += space_delta;
2664 	vd->vdev_stat.vs_dspace += dspace_delta;
2665 	mutex_exit(&vd->vdev_stat_lock);
2666 
2667 	if (mc == spa_normal_class(spa)) {
2668 		mutex_enter(&rvd->vdev_stat_lock);
2669 		rvd->vdev_stat.vs_alloc += alloc_delta;
2670 		rvd->vdev_stat.vs_space += space_delta;
2671 		rvd->vdev_stat.vs_dspace += dspace_delta;
2672 		mutex_exit(&rvd->vdev_stat_lock);
2673 	}
2674 
2675 	if (mc != NULL) {
2676 		ASSERT(rvd == vd->vdev_parent);
2677 		ASSERT(vd->vdev_ms_count != 0);
2678 
2679 		metaslab_class_space_update(mc,
2680 		    alloc_delta, defer_delta, space_delta, dspace_delta);
2681 	}
2682 }
2683 
2684 /*
2685  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2686  * so that it will be written out next time the vdev configuration is synced.
2687  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2688  */
2689 void
2690 vdev_config_dirty(vdev_t *vd)
2691 {
2692 	spa_t *spa = vd->vdev_spa;
2693 	vdev_t *rvd = spa->spa_root_vdev;
2694 	int c;
2695 
2696 	/*
2697 	 * If this is an aux vdev (as with l2cache and spare devices), then we
2698 	 * update the vdev config manually and set the sync flag.
2699 	 */
2700 	if (vd->vdev_aux != NULL) {
2701 		spa_aux_vdev_t *sav = vd->vdev_aux;
2702 		nvlist_t **aux;
2703 		uint_t naux;
2704 
2705 		for (c = 0; c < sav->sav_count; c++) {
2706 			if (sav->sav_vdevs[c] == vd)
2707 				break;
2708 		}
2709 
2710 		if (c == sav->sav_count) {
2711 			/*
2712 			 * We're being removed.  There's nothing more to do.
2713 			 */
2714 			ASSERT(sav->sav_sync == B_TRUE);
2715 			return;
2716 		}
2717 
2718 		sav->sav_sync = B_TRUE;
2719 
2720 		if (nvlist_lookup_nvlist_array(sav->sav_config,
2721 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2722 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2723 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2724 		}
2725 
2726 		ASSERT(c < naux);
2727 
2728 		/*
2729 		 * Setting the nvlist in the middle if the array is a little
2730 		 * sketchy, but it will work.
2731 		 */
2732 		nvlist_free(aux[c]);
2733 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2734 
2735 		return;
2736 	}
2737 
2738 	/*
2739 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2740 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2741 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2742 	 * so this is sufficient to ensure mutual exclusion.
2743 	 */
2744 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2745 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2746 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2747 
2748 	if (vd == rvd) {
2749 		for (c = 0; c < rvd->vdev_children; c++)
2750 			vdev_config_dirty(rvd->vdev_child[c]);
2751 	} else {
2752 		ASSERT(vd == vd->vdev_top);
2753 
2754 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2755 		    !vd->vdev_ishole)
2756 			list_insert_head(&spa->spa_config_dirty_list, vd);
2757 	}
2758 }
2759 
2760 void
2761 vdev_config_clean(vdev_t *vd)
2762 {
2763 	spa_t *spa = vd->vdev_spa;
2764 
2765 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2766 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2767 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2768 
2769 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2770 	list_remove(&spa->spa_config_dirty_list, vd);
2771 }
2772 
2773 /*
2774  * Mark a top-level vdev's state as dirty, so that the next pass of
2775  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2776  * the state changes from larger config changes because they require
2777  * much less locking, and are often needed for administrative actions.
2778  */
2779 void
2780 vdev_state_dirty(vdev_t *vd)
2781 {
2782 	spa_t *spa = vd->vdev_spa;
2783 
2784 	ASSERT(vd == vd->vdev_top);
2785 
2786 	/*
2787 	 * The state list is protected by the SCL_STATE lock.  The caller
2788 	 * must either hold SCL_STATE as writer, or must be the sync thread
2789 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2790 	 * so this is sufficient to ensure mutual exclusion.
2791 	 */
2792 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2793 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2794 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2795 
2796 	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2797 		list_insert_head(&spa->spa_state_dirty_list, vd);
2798 }
2799 
2800 void
2801 vdev_state_clean(vdev_t *vd)
2802 {
2803 	spa_t *spa = vd->vdev_spa;
2804 
2805 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2806 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2807 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2808 
2809 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2810 	list_remove(&spa->spa_state_dirty_list, vd);
2811 }
2812 
2813 /*
2814  * Propagate vdev state up from children to parent.
2815  */
2816 void
2817 vdev_propagate_state(vdev_t *vd)
2818 {
2819 	spa_t *spa = vd->vdev_spa;
2820 	vdev_t *rvd = spa->spa_root_vdev;
2821 	int degraded = 0, faulted = 0;
2822 	int corrupted = 0;
2823 	vdev_t *child;
2824 
2825 	if (vd->vdev_children > 0) {
2826 		for (int c = 0; c < vd->vdev_children; c++) {
2827 			child = vd->vdev_child[c];
2828 
2829 			/*
2830 			 * Don't factor holes into the decision.
2831 			 */
2832 			if (child->vdev_ishole)
2833 				continue;
2834 
2835 			if (!vdev_readable(child) ||
2836 			    (!vdev_writeable(child) && spa_writeable(spa))) {
2837 				/*
2838 				 * Root special: if there is a top-level log
2839 				 * device, treat the root vdev as if it were
2840 				 * degraded.
2841 				 */
2842 				if (child->vdev_islog && vd == rvd)
2843 					degraded++;
2844 				else
2845 					faulted++;
2846 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2847 				degraded++;
2848 			}
2849 
2850 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2851 				corrupted++;
2852 		}
2853 
2854 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2855 
2856 		/*
2857 		 * Root special: if there is a top-level vdev that cannot be
2858 		 * opened due to corrupted metadata, then propagate the root
2859 		 * vdev's aux state as 'corrupt' rather than 'insufficient
2860 		 * replicas'.
2861 		 */
2862 		if (corrupted && vd == rvd &&
2863 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2864 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2865 			    VDEV_AUX_CORRUPT_DATA);
2866 	}
2867 
2868 	if (vd->vdev_parent)
2869 		vdev_propagate_state(vd->vdev_parent);
2870 }
2871 
2872 /*
2873  * Set a vdev's state.  If this is during an open, we don't update the parent
2874  * state, because we're in the process of opening children depth-first.
2875  * Otherwise, we propagate the change to the parent.
2876  *
2877  * If this routine places a device in a faulted state, an appropriate ereport is
2878  * generated.
2879  */
2880 void
2881 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2882 {
2883 	uint64_t save_state;
2884 	spa_t *spa = vd->vdev_spa;
2885 
2886 	if (state == vd->vdev_state) {
2887 		vd->vdev_stat.vs_aux = aux;
2888 		return;
2889 	}
2890 
2891 	save_state = vd->vdev_state;
2892 
2893 	vd->vdev_state = state;
2894 	vd->vdev_stat.vs_aux = aux;
2895 
2896 	/*
2897 	 * If we are setting the vdev state to anything but an open state, then
2898 	 * always close the underlying device unless the device has requested
2899 	 * a delayed close (i.e. we're about to remove or fault the device).
2900 	 * Otherwise, we keep accessible but invalid devices open forever.
2901 	 * We don't call vdev_close() itself, because that implies some extra
2902 	 * checks (offline, etc) that we don't want here.  This is limited to
2903 	 * leaf devices, because otherwise closing the device will affect other
2904 	 * children.
2905 	 */
2906 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2907 	    vd->vdev_ops->vdev_op_leaf)
2908 		vd->vdev_ops->vdev_op_close(vd);
2909 
2910 	/*
2911 	 * If we have brought this vdev back into service, we need
2912 	 * to notify fmd so that it can gracefully repair any outstanding
2913 	 * cases due to a missing device.  We do this in all cases, even those
2914 	 * that probably don't correlate to a repaired fault.  This is sure to
2915 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
2916 	 * this is a transient state it's OK, as the retire agent will
2917 	 * double-check the state of the vdev before repairing it.
2918 	 */
2919 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2920 	    vd->vdev_prevstate != state)
2921 		zfs_post_state_change(spa, vd);
2922 
2923 	if (vd->vdev_removed &&
2924 	    state == VDEV_STATE_CANT_OPEN &&
2925 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2926 		/*
2927 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2928 		 * device was previously marked removed and someone attempted to
2929 		 * reopen it.  If this failed due to a nonexistent device, then
2930 		 * keep the device in the REMOVED state.  We also let this be if
2931 		 * it is one of our special test online cases, which is only
2932 		 * attempting to online the device and shouldn't generate an FMA
2933 		 * fault.
2934 		 */
2935 		vd->vdev_state = VDEV_STATE_REMOVED;
2936 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2937 	} else if (state == VDEV_STATE_REMOVED) {
2938 		vd->vdev_removed = B_TRUE;
2939 	} else if (state == VDEV_STATE_CANT_OPEN) {
2940 		/*
2941 		 * If we fail to open a vdev during an import, we mark it as
2942 		 * "not available", which signifies that it was never there to
2943 		 * begin with.  Failure to open such a device is not considered
2944 		 * an error.
2945 		 */
2946 		if (spa_load_state(spa) == SPA_LOAD_IMPORT &&
2947 		    vd->vdev_ops->vdev_op_leaf)
2948 			vd->vdev_not_present = 1;
2949 
2950 		/*
2951 		 * Post the appropriate ereport.  If the 'prevstate' field is
2952 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2953 		 * that this is part of a vdev_reopen().  In this case, we don't
2954 		 * want to post the ereport if the device was already in the
2955 		 * CANT_OPEN state beforehand.
2956 		 *
2957 		 * If the 'checkremove' flag is set, then this is an attempt to
2958 		 * online the device in response to an insertion event.  If we
2959 		 * hit this case, then we have detected an insertion event for a
2960 		 * faulted or offline device that wasn't in the removed state.
2961 		 * In this scenario, we don't post an ereport because we are
2962 		 * about to replace the device, or attempt an online with
2963 		 * vdev_forcefault, which will generate the fault for us.
2964 		 */
2965 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2966 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2967 		    vd != spa->spa_root_vdev) {
2968 			const char *class;
2969 
2970 			switch (aux) {
2971 			case VDEV_AUX_OPEN_FAILED:
2972 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2973 				break;
2974 			case VDEV_AUX_CORRUPT_DATA:
2975 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2976 				break;
2977 			case VDEV_AUX_NO_REPLICAS:
2978 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2979 				break;
2980 			case VDEV_AUX_BAD_GUID_SUM:
2981 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2982 				break;
2983 			case VDEV_AUX_TOO_SMALL:
2984 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2985 				break;
2986 			case VDEV_AUX_BAD_LABEL:
2987 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2988 				break;
2989 			default:
2990 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2991 			}
2992 
2993 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2994 		}
2995 
2996 		/* Erase any notion of persistent removed state */
2997 		vd->vdev_removed = B_FALSE;
2998 	} else {
2999 		vd->vdev_removed = B_FALSE;
3000 	}
3001 
3002 	if (!isopen && vd->vdev_parent)
3003 		vdev_propagate_state(vd->vdev_parent);
3004 }
3005 
3006 /*
3007  * Check the vdev configuration to ensure that it's capable of supporting
3008  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3009  * In addition, only a single top-level vdev is allowed and none of the leaves
3010  * can be wholedisks.
3011  */
3012 boolean_t
3013 vdev_is_bootable(vdev_t *vd)
3014 {
3015 	if (!vd->vdev_ops->vdev_op_leaf) {
3016 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3017 
3018 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3019 		    vd->vdev_children > 1) {
3020 			return (B_FALSE);
3021 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3022 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3023 			return (B_FALSE);
3024 		}
3025 	} else if (vd->vdev_wholedisk == 1) {
3026 		return (B_FALSE);
3027 	}
3028 
3029 	for (int c = 0; c < vd->vdev_children; c++) {
3030 		if (!vdev_is_bootable(vd->vdev_child[c]))
3031 			return (B_FALSE);
3032 	}
3033 	return (B_TRUE);
3034 }
3035 
3036 /*
3037  * Load the state from the original vdev tree (ovd) which
3038  * we've retrieved from the MOS config object. If the original
3039  * vdev was offline then we transfer that state to the device
3040  * in the current vdev tree (nvd).
3041  */
3042 void
3043 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3044 {
3045 	spa_t *spa = nvd->vdev_spa;
3046 
3047 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3048 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3049 
3050 	for (int c = 0; c < nvd->vdev_children; c++)
3051 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3052 
3053 	if (nvd->vdev_ops->vdev_op_leaf && ovd->vdev_offline) {
3054 		/*
3055 		 * It would be nice to call vdev_offline()
3056 		 * directly but the pool isn't fully loaded and
3057 		 * the txg threads have not been started yet.
3058 		 */
3059 		nvd->vdev_offline = ovd->vdev_offline;
3060 		vdev_reopen(nvd->vdev_top);
3061 	}
3062 }
3063 
3064 /*
3065  * Expand a vdev if possible.
3066  */
3067 void
3068 vdev_expand(vdev_t *vd, uint64_t txg)
3069 {
3070 	ASSERT(vd->vdev_top == vd);
3071 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3072 
3073 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3074 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3075 		vdev_config_dirty(vd);
3076 	}
3077 }
3078 
3079 /*
3080  * Split a vdev.
3081  */
3082 void
3083 vdev_split(vdev_t *vd)
3084 {
3085 	vdev_t *cvd, *pvd = vd->vdev_parent;
3086 
3087 	vdev_remove_child(pvd, vd);
3088 	vdev_compact_children(pvd);
3089 
3090 	cvd = pvd->vdev_child[0];
3091 	if (pvd->vdev_children == 1) {
3092 		vdev_remove_parent(cvd);
3093 		cvd->vdev_splitting = B_TRUE;
3094 	}
3095 	vdev_propagate_state(cvd);
3096 }
3097