1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 */ 28 29 /* 30 * SPA: Storage Pool Allocator 31 * 32 * This file contains all the routines used when modifying on-disk SPA state. 33 * This includes opening, importing, destroying, exporting a pool, and syncing a 34 * pool. 35 */ 36 37 #include <sys/zfs_context.h> 38 #include <sys/fm/fs/zfs.h> 39 #include <sys/spa_impl.h> 40 #include <sys/zio.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/dmu.h> 43 #include <sys/dmu_tx.h> 44 #include <sys/zap.h> 45 #include <sys/zil.h> 46 #include <sys/ddt.h> 47 #include <sys/vdev_impl.h> 48 #include <sys/metaslab.h> 49 #include <sys/metaslab_impl.h> 50 #include <sys/uberblock_impl.h> 51 #include <sys/txg.h> 52 #include <sys/avl.h> 53 #include <sys/dmu_traverse.h> 54 #include <sys/dmu_objset.h> 55 #include <sys/unique.h> 56 #include <sys/dsl_pool.h> 57 #include <sys/dsl_dataset.h> 58 #include <sys/dsl_dir.h> 59 #include <sys/dsl_prop.h> 60 #include <sys/dsl_synctask.h> 61 #include <sys/fs/zfs.h> 62 #include <sys/arc.h> 63 #include <sys/callb.h> 64 #include <sys/systeminfo.h> 65 #include <sys/spa_boot.h> 66 #include <sys/zfs_ioctl.h> 67 #include <sys/dsl_scan.h> 68 #include <sys/zfeature.h> 69 #include <sys/dsl_destroy.h> 70 71 #ifdef _KERNEL 72 #include <sys/bootprops.h> 73 #include <sys/callb.h> 74 #include <sys/cpupart.h> 75 #include <sys/pool.h> 76 #include <sys/sysdc.h> 77 #include <sys/zone.h> 78 #endif /* _KERNEL */ 79 80 #include "zfs_prop.h" 81 #include "zfs_comutil.h" 82 83 /* 84 * The interval, in seconds, at which failed configuration cache file writes 85 * should be retried. 86 */ 87 static int zfs_ccw_retry_interval = 300; 88 89 typedef enum zti_modes { 90 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 91 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 92 ZTI_MODE_NULL, /* don't create a taskq */ 93 ZTI_NMODES 94 } zti_modes_t; 95 96 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 97 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 98 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 99 100 #define ZTI_N(n) ZTI_P(n, 1) 101 #define ZTI_ONE ZTI_N(1) 102 103 typedef struct zio_taskq_info { 104 zti_modes_t zti_mode; 105 uint_t zti_value; 106 uint_t zti_count; 107 } zio_taskq_info_t; 108 109 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 110 "issue", "issue_high", "intr", "intr_high" 111 }; 112 113 /* 114 * This table defines the taskq settings for each ZFS I/O type. When 115 * initializing a pool, we use this table to create an appropriately sized 116 * taskq. Some operations are low volume and therefore have a small, static 117 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 118 * macros. Other operations process a large amount of data; the ZTI_BATCH 119 * macro causes us to create a taskq oriented for throughput. Some operations 120 * are so high frequency and short-lived that the taskq itself can become a a 121 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 122 * additional degree of parallelism specified by the number of threads per- 123 * taskq and the number of taskqs; when dispatching an event in this case, the 124 * particular taskq is chosen at random. 125 * 126 * The different taskq priorities are to handle the different contexts (issue 127 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 128 * need to be handled with minimum delay. 129 */ 130 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 131 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 132 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 133 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 134 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 135 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 137 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 138 }; 139 140 static void spa_sync_version(void *arg, dmu_tx_t *tx); 141 static void spa_sync_props(void *arg, dmu_tx_t *tx); 142 static boolean_t spa_has_active_shared_spare(spa_t *spa); 143 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 144 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 145 char **ereport); 146 static void spa_vdev_resilver_done(spa_t *spa); 147 148 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 149 id_t zio_taskq_psrset_bind = PS_NONE; 150 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 151 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 152 153 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 154 extern int zfs_sync_pass_deferred_free; 155 156 /* 157 * This (illegal) pool name is used when temporarily importing a spa_t in order 158 * to get the vdev stats associated with the imported devices. 159 */ 160 #define TRYIMPORT_NAME "$import" 161 162 /* 163 * ========================================================================== 164 * SPA properties routines 165 * ========================================================================== 166 */ 167 168 /* 169 * Add a (source=src, propname=propval) list to an nvlist. 170 */ 171 static void 172 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 173 uint64_t intval, zprop_source_t src) 174 { 175 const char *propname = zpool_prop_to_name(prop); 176 nvlist_t *propval; 177 178 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 179 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 180 181 if (strval != NULL) 182 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 183 else 184 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 185 186 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 187 nvlist_free(propval); 188 } 189 190 /* 191 * Get property values from the spa configuration. 192 */ 193 static void 194 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 195 { 196 vdev_t *rvd = spa->spa_root_vdev; 197 dsl_pool_t *pool = spa->spa_dsl_pool; 198 uint64_t size, alloc, cap, version; 199 zprop_source_t src = ZPROP_SRC_NONE; 200 spa_config_dirent_t *dp; 201 metaslab_class_t *mc = spa_normal_class(spa); 202 203 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 204 205 if (rvd != NULL) { 206 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 207 size = metaslab_class_get_space(spa_normal_class(spa)); 208 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 209 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 212 size - alloc, src); 213 214 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 215 metaslab_class_fragmentation(mc), src); 216 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 217 metaslab_class_expandable_space(mc), src); 218 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 219 (spa_mode(spa) == FREAD), src); 220 221 cap = (size == 0) ? 0 : (alloc * 100 / size); 222 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 223 224 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 225 ddt_get_pool_dedup_ratio(spa), src); 226 227 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 228 rvd->vdev_state, src); 229 230 version = spa_version(spa); 231 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 232 src = ZPROP_SRC_DEFAULT; 233 else 234 src = ZPROP_SRC_LOCAL; 235 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 236 } 237 238 if (pool != NULL) { 239 /* 240 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 241 * when opening pools before this version freedir will be NULL. 242 */ 243 if (pool->dp_free_dir != NULL) { 244 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 245 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 246 src); 247 } else { 248 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 249 NULL, 0, src); 250 } 251 252 if (pool->dp_leak_dir != NULL) { 253 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 254 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 255 src); 256 } else { 257 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 258 NULL, 0, src); 259 } 260 } 261 262 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 263 264 if (spa->spa_comment != NULL) { 265 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 266 0, ZPROP_SRC_LOCAL); 267 } 268 269 if (spa->spa_root != NULL) 270 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 271 0, ZPROP_SRC_LOCAL); 272 273 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 274 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 275 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 276 } else { 277 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 278 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 279 } 280 281 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 282 if (dp->scd_path == NULL) { 283 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 284 "none", 0, ZPROP_SRC_LOCAL); 285 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 286 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 287 dp->scd_path, 0, ZPROP_SRC_LOCAL); 288 } 289 } 290 } 291 292 /* 293 * Get zpool property values. 294 */ 295 int 296 spa_prop_get(spa_t *spa, nvlist_t **nvp) 297 { 298 objset_t *mos = spa->spa_meta_objset; 299 zap_cursor_t zc; 300 zap_attribute_t za; 301 int err; 302 303 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 304 305 mutex_enter(&spa->spa_props_lock); 306 307 /* 308 * Get properties from the spa config. 309 */ 310 spa_prop_get_config(spa, nvp); 311 312 /* If no pool property object, no more prop to get. */ 313 if (mos == NULL || spa->spa_pool_props_object == 0) { 314 mutex_exit(&spa->spa_props_lock); 315 return (0); 316 } 317 318 /* 319 * Get properties from the MOS pool property object. 320 */ 321 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 322 (err = zap_cursor_retrieve(&zc, &za)) == 0; 323 zap_cursor_advance(&zc)) { 324 uint64_t intval = 0; 325 char *strval = NULL; 326 zprop_source_t src = ZPROP_SRC_DEFAULT; 327 zpool_prop_t prop; 328 329 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 330 continue; 331 332 switch (za.za_integer_length) { 333 case 8: 334 /* integer property */ 335 if (za.za_first_integer != 336 zpool_prop_default_numeric(prop)) 337 src = ZPROP_SRC_LOCAL; 338 339 if (prop == ZPOOL_PROP_BOOTFS) { 340 dsl_pool_t *dp; 341 dsl_dataset_t *ds = NULL; 342 343 dp = spa_get_dsl(spa); 344 dsl_pool_config_enter(dp, FTAG); 345 if (err = dsl_dataset_hold_obj(dp, 346 za.za_first_integer, FTAG, &ds)) { 347 dsl_pool_config_exit(dp, FTAG); 348 break; 349 } 350 351 strval = kmem_alloc( 352 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 353 KM_SLEEP); 354 dsl_dataset_name(ds, strval); 355 dsl_dataset_rele(ds, FTAG); 356 dsl_pool_config_exit(dp, FTAG); 357 } else { 358 strval = NULL; 359 intval = za.za_first_integer; 360 } 361 362 spa_prop_add_list(*nvp, prop, strval, intval, src); 363 364 if (strval != NULL) 365 kmem_free(strval, 366 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 367 368 break; 369 370 case 1: 371 /* string property */ 372 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 373 err = zap_lookup(mos, spa->spa_pool_props_object, 374 za.za_name, 1, za.za_num_integers, strval); 375 if (err) { 376 kmem_free(strval, za.za_num_integers); 377 break; 378 } 379 spa_prop_add_list(*nvp, prop, strval, 0, src); 380 kmem_free(strval, za.za_num_integers); 381 break; 382 383 default: 384 break; 385 } 386 } 387 zap_cursor_fini(&zc); 388 mutex_exit(&spa->spa_props_lock); 389 out: 390 if (err && err != ENOENT) { 391 nvlist_free(*nvp); 392 *nvp = NULL; 393 return (err); 394 } 395 396 return (0); 397 } 398 399 /* 400 * Validate the given pool properties nvlist and modify the list 401 * for the property values to be set. 402 */ 403 static int 404 spa_prop_validate(spa_t *spa, nvlist_t *props) 405 { 406 nvpair_t *elem; 407 int error = 0, reset_bootfs = 0; 408 uint64_t objnum = 0; 409 boolean_t has_feature = B_FALSE; 410 411 elem = NULL; 412 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 413 uint64_t intval; 414 char *strval, *slash, *check, *fname; 415 const char *propname = nvpair_name(elem); 416 zpool_prop_t prop = zpool_name_to_prop(propname); 417 418 switch (prop) { 419 case ZPROP_INVAL: 420 if (!zpool_prop_feature(propname)) { 421 error = SET_ERROR(EINVAL); 422 break; 423 } 424 425 /* 426 * Sanitize the input. 427 */ 428 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 429 error = SET_ERROR(EINVAL); 430 break; 431 } 432 433 if (nvpair_value_uint64(elem, &intval) != 0) { 434 error = SET_ERROR(EINVAL); 435 break; 436 } 437 438 if (intval != 0) { 439 error = SET_ERROR(EINVAL); 440 break; 441 } 442 443 fname = strchr(propname, '@') + 1; 444 if (zfeature_lookup_name(fname, NULL) != 0) { 445 error = SET_ERROR(EINVAL); 446 break; 447 } 448 449 has_feature = B_TRUE; 450 break; 451 452 case ZPOOL_PROP_VERSION: 453 error = nvpair_value_uint64(elem, &intval); 454 if (!error && 455 (intval < spa_version(spa) || 456 intval > SPA_VERSION_BEFORE_FEATURES || 457 has_feature)) 458 error = SET_ERROR(EINVAL); 459 break; 460 461 case ZPOOL_PROP_DELEGATION: 462 case ZPOOL_PROP_AUTOREPLACE: 463 case ZPOOL_PROP_LISTSNAPS: 464 case ZPOOL_PROP_AUTOEXPAND: 465 error = nvpair_value_uint64(elem, &intval); 466 if (!error && intval > 1) 467 error = SET_ERROR(EINVAL); 468 break; 469 470 case ZPOOL_PROP_BOOTFS: 471 /* 472 * If the pool version is less than SPA_VERSION_BOOTFS, 473 * or the pool is still being created (version == 0), 474 * the bootfs property cannot be set. 475 */ 476 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 477 error = SET_ERROR(ENOTSUP); 478 break; 479 } 480 481 /* 482 * Make sure the vdev config is bootable 483 */ 484 if (!vdev_is_bootable(spa->spa_root_vdev)) { 485 error = SET_ERROR(ENOTSUP); 486 break; 487 } 488 489 reset_bootfs = 1; 490 491 error = nvpair_value_string(elem, &strval); 492 493 if (!error) { 494 objset_t *os; 495 uint64_t propval; 496 497 if (strval == NULL || strval[0] == '\0') { 498 objnum = zpool_prop_default_numeric( 499 ZPOOL_PROP_BOOTFS); 500 break; 501 } 502 503 if (error = dmu_objset_hold(strval, FTAG, &os)) 504 break; 505 506 /* 507 * Must be ZPL, and its property settings 508 * must be supported by GRUB (compression 509 * is not gzip, and large blocks are not used). 510 */ 511 512 if (dmu_objset_type(os) != DMU_OST_ZFS) { 513 error = SET_ERROR(ENOTSUP); 514 } else if ((error = 515 dsl_prop_get_int_ds(dmu_objset_ds(os), 516 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 517 &propval)) == 0 && 518 !BOOTFS_COMPRESS_VALID(propval)) { 519 error = SET_ERROR(ENOTSUP); 520 } else if ((error = 521 dsl_prop_get_int_ds(dmu_objset_ds(os), 522 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), 523 &propval)) == 0 && 524 propval > SPA_OLD_MAXBLOCKSIZE) { 525 error = SET_ERROR(ENOTSUP); 526 } else { 527 objnum = dmu_objset_id(os); 528 } 529 dmu_objset_rele(os, FTAG); 530 } 531 break; 532 533 case ZPOOL_PROP_FAILUREMODE: 534 error = nvpair_value_uint64(elem, &intval); 535 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 536 intval > ZIO_FAILURE_MODE_PANIC)) 537 error = SET_ERROR(EINVAL); 538 539 /* 540 * This is a special case which only occurs when 541 * the pool has completely failed. This allows 542 * the user to change the in-core failmode property 543 * without syncing it out to disk (I/Os might 544 * currently be blocked). We do this by returning 545 * EIO to the caller (spa_prop_set) to trick it 546 * into thinking we encountered a property validation 547 * error. 548 */ 549 if (!error && spa_suspended(spa)) { 550 spa->spa_failmode = intval; 551 error = SET_ERROR(EIO); 552 } 553 break; 554 555 case ZPOOL_PROP_CACHEFILE: 556 if ((error = nvpair_value_string(elem, &strval)) != 0) 557 break; 558 559 if (strval[0] == '\0') 560 break; 561 562 if (strcmp(strval, "none") == 0) 563 break; 564 565 if (strval[0] != '/') { 566 error = SET_ERROR(EINVAL); 567 break; 568 } 569 570 slash = strrchr(strval, '/'); 571 ASSERT(slash != NULL); 572 573 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 574 strcmp(slash, "/..") == 0) 575 error = SET_ERROR(EINVAL); 576 break; 577 578 case ZPOOL_PROP_COMMENT: 579 if ((error = nvpair_value_string(elem, &strval)) != 0) 580 break; 581 for (check = strval; *check != '\0'; check++) { 582 /* 583 * The kernel doesn't have an easy isprint() 584 * check. For this kernel check, we merely 585 * check ASCII apart from DEL. Fix this if 586 * there is an easy-to-use kernel isprint(). 587 */ 588 if (*check >= 0x7f) { 589 error = SET_ERROR(EINVAL); 590 break; 591 } 592 check++; 593 } 594 if (strlen(strval) > ZPROP_MAX_COMMENT) 595 error = E2BIG; 596 break; 597 598 case ZPOOL_PROP_DEDUPDITTO: 599 if (spa_version(spa) < SPA_VERSION_DEDUP) 600 error = SET_ERROR(ENOTSUP); 601 else 602 error = nvpair_value_uint64(elem, &intval); 603 if (error == 0 && 604 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 605 error = SET_ERROR(EINVAL); 606 break; 607 } 608 609 if (error) 610 break; 611 } 612 613 if (!error && reset_bootfs) { 614 error = nvlist_remove(props, 615 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 616 617 if (!error) { 618 error = nvlist_add_uint64(props, 619 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 620 } 621 } 622 623 return (error); 624 } 625 626 void 627 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 628 { 629 char *cachefile; 630 spa_config_dirent_t *dp; 631 632 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 633 &cachefile) != 0) 634 return; 635 636 dp = kmem_alloc(sizeof (spa_config_dirent_t), 637 KM_SLEEP); 638 639 if (cachefile[0] == '\0') 640 dp->scd_path = spa_strdup(spa_config_path); 641 else if (strcmp(cachefile, "none") == 0) 642 dp->scd_path = NULL; 643 else 644 dp->scd_path = spa_strdup(cachefile); 645 646 list_insert_head(&spa->spa_config_list, dp); 647 if (need_sync) 648 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 649 } 650 651 int 652 spa_prop_set(spa_t *spa, nvlist_t *nvp) 653 { 654 int error; 655 nvpair_t *elem = NULL; 656 boolean_t need_sync = B_FALSE; 657 658 if ((error = spa_prop_validate(spa, nvp)) != 0) 659 return (error); 660 661 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 662 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 663 664 if (prop == ZPOOL_PROP_CACHEFILE || 665 prop == ZPOOL_PROP_ALTROOT || 666 prop == ZPOOL_PROP_READONLY) 667 continue; 668 669 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 670 uint64_t ver; 671 672 if (prop == ZPOOL_PROP_VERSION) { 673 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 674 } else { 675 ASSERT(zpool_prop_feature(nvpair_name(elem))); 676 ver = SPA_VERSION_FEATURES; 677 need_sync = B_TRUE; 678 } 679 680 /* Save time if the version is already set. */ 681 if (ver == spa_version(spa)) 682 continue; 683 684 /* 685 * In addition to the pool directory object, we might 686 * create the pool properties object, the features for 687 * read object, the features for write object, or the 688 * feature descriptions object. 689 */ 690 error = dsl_sync_task(spa->spa_name, NULL, 691 spa_sync_version, &ver, 692 6, ZFS_SPACE_CHECK_RESERVED); 693 if (error) 694 return (error); 695 continue; 696 } 697 698 need_sync = B_TRUE; 699 break; 700 } 701 702 if (need_sync) { 703 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 704 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 705 } 706 707 return (0); 708 } 709 710 /* 711 * If the bootfs property value is dsobj, clear it. 712 */ 713 void 714 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 715 { 716 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 717 VERIFY(zap_remove(spa->spa_meta_objset, 718 spa->spa_pool_props_object, 719 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 720 spa->spa_bootfs = 0; 721 } 722 } 723 724 /*ARGSUSED*/ 725 static int 726 spa_change_guid_check(void *arg, dmu_tx_t *tx) 727 { 728 uint64_t *newguid = arg; 729 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 730 vdev_t *rvd = spa->spa_root_vdev; 731 uint64_t vdev_state; 732 733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 734 vdev_state = rvd->vdev_state; 735 spa_config_exit(spa, SCL_STATE, FTAG); 736 737 if (vdev_state != VDEV_STATE_HEALTHY) 738 return (SET_ERROR(ENXIO)); 739 740 ASSERT3U(spa_guid(spa), !=, *newguid); 741 742 return (0); 743 } 744 745 static void 746 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 747 { 748 uint64_t *newguid = arg; 749 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 750 uint64_t oldguid; 751 vdev_t *rvd = spa->spa_root_vdev; 752 753 oldguid = spa_guid(spa); 754 755 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 756 rvd->vdev_guid = *newguid; 757 rvd->vdev_guid_sum += (*newguid - oldguid); 758 vdev_config_dirty(rvd); 759 spa_config_exit(spa, SCL_STATE, FTAG); 760 761 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 762 oldguid, *newguid); 763 } 764 765 /* 766 * Change the GUID for the pool. This is done so that we can later 767 * re-import a pool built from a clone of our own vdevs. We will modify 768 * the root vdev's guid, our own pool guid, and then mark all of our 769 * vdevs dirty. Note that we must make sure that all our vdevs are 770 * online when we do this, or else any vdevs that weren't present 771 * would be orphaned from our pool. We are also going to issue a 772 * sysevent to update any watchers. 773 */ 774 int 775 spa_change_guid(spa_t *spa) 776 { 777 int error; 778 uint64_t guid; 779 780 mutex_enter(&spa->spa_vdev_top_lock); 781 mutex_enter(&spa_namespace_lock); 782 guid = spa_generate_guid(NULL); 783 784 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 785 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 786 787 if (error == 0) { 788 spa_config_sync(spa, B_FALSE, B_TRUE); 789 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 790 } 791 792 mutex_exit(&spa_namespace_lock); 793 mutex_exit(&spa->spa_vdev_top_lock); 794 795 return (error); 796 } 797 798 /* 799 * ========================================================================== 800 * SPA state manipulation (open/create/destroy/import/export) 801 * ========================================================================== 802 */ 803 804 static int 805 spa_error_entry_compare(const void *a, const void *b) 806 { 807 spa_error_entry_t *sa = (spa_error_entry_t *)a; 808 spa_error_entry_t *sb = (spa_error_entry_t *)b; 809 int ret; 810 811 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 812 sizeof (zbookmark_phys_t)); 813 814 if (ret < 0) 815 return (-1); 816 else if (ret > 0) 817 return (1); 818 else 819 return (0); 820 } 821 822 /* 823 * Utility function which retrieves copies of the current logs and 824 * re-initializes them in the process. 825 */ 826 void 827 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 828 { 829 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 830 831 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 832 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 833 834 avl_create(&spa->spa_errlist_scrub, 835 spa_error_entry_compare, sizeof (spa_error_entry_t), 836 offsetof(spa_error_entry_t, se_avl)); 837 avl_create(&spa->spa_errlist_last, 838 spa_error_entry_compare, sizeof (spa_error_entry_t), 839 offsetof(spa_error_entry_t, se_avl)); 840 } 841 842 static void 843 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 844 { 845 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 846 enum zti_modes mode = ztip->zti_mode; 847 uint_t value = ztip->zti_value; 848 uint_t count = ztip->zti_count; 849 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 850 char name[32]; 851 uint_t flags = 0; 852 boolean_t batch = B_FALSE; 853 854 if (mode == ZTI_MODE_NULL) { 855 tqs->stqs_count = 0; 856 tqs->stqs_taskq = NULL; 857 return; 858 } 859 860 ASSERT3U(count, >, 0); 861 862 tqs->stqs_count = count; 863 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 864 865 switch (mode) { 866 case ZTI_MODE_FIXED: 867 ASSERT3U(value, >=, 1); 868 value = MAX(value, 1); 869 break; 870 871 case ZTI_MODE_BATCH: 872 batch = B_TRUE; 873 flags |= TASKQ_THREADS_CPU_PCT; 874 value = zio_taskq_batch_pct; 875 break; 876 877 default: 878 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 879 "spa_activate()", 880 zio_type_name[t], zio_taskq_types[q], mode, value); 881 break; 882 } 883 884 for (uint_t i = 0; i < count; i++) { 885 taskq_t *tq; 886 887 if (count > 1) { 888 (void) snprintf(name, sizeof (name), "%s_%s_%u", 889 zio_type_name[t], zio_taskq_types[q], i); 890 } else { 891 (void) snprintf(name, sizeof (name), "%s_%s", 892 zio_type_name[t], zio_taskq_types[q]); 893 } 894 895 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 896 if (batch) 897 flags |= TASKQ_DC_BATCH; 898 899 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 900 spa->spa_proc, zio_taskq_basedc, flags); 901 } else { 902 pri_t pri = maxclsyspri; 903 /* 904 * The write issue taskq can be extremely CPU 905 * intensive. Run it at slightly lower priority 906 * than the other taskqs. 907 */ 908 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 909 pri--; 910 911 tq = taskq_create_proc(name, value, pri, 50, 912 INT_MAX, spa->spa_proc, flags); 913 } 914 915 tqs->stqs_taskq[i] = tq; 916 } 917 } 918 919 static void 920 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 921 { 922 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 923 924 if (tqs->stqs_taskq == NULL) { 925 ASSERT0(tqs->stqs_count); 926 return; 927 } 928 929 for (uint_t i = 0; i < tqs->stqs_count; i++) { 930 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 931 taskq_destroy(tqs->stqs_taskq[i]); 932 } 933 934 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 935 tqs->stqs_taskq = NULL; 936 } 937 938 /* 939 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 940 * Note that a type may have multiple discrete taskqs to avoid lock contention 941 * on the taskq itself. In that case we choose which taskq at random by using 942 * the low bits of gethrtime(). 943 */ 944 void 945 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 946 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 947 { 948 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 949 taskq_t *tq; 950 951 ASSERT3P(tqs->stqs_taskq, !=, NULL); 952 ASSERT3U(tqs->stqs_count, !=, 0); 953 954 if (tqs->stqs_count == 1) { 955 tq = tqs->stqs_taskq[0]; 956 } else { 957 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 958 } 959 960 taskq_dispatch_ent(tq, func, arg, flags, ent); 961 } 962 963 static void 964 spa_create_zio_taskqs(spa_t *spa) 965 { 966 for (int t = 0; t < ZIO_TYPES; t++) { 967 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 968 spa_taskqs_init(spa, t, q); 969 } 970 } 971 } 972 973 #ifdef _KERNEL 974 static void 975 spa_thread(void *arg) 976 { 977 callb_cpr_t cprinfo; 978 979 spa_t *spa = arg; 980 user_t *pu = PTOU(curproc); 981 982 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 983 spa->spa_name); 984 985 ASSERT(curproc != &p0); 986 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 987 "zpool-%s", spa->spa_name); 988 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 989 990 /* bind this thread to the requested psrset */ 991 if (zio_taskq_psrset_bind != PS_NONE) { 992 pool_lock(); 993 mutex_enter(&cpu_lock); 994 mutex_enter(&pidlock); 995 mutex_enter(&curproc->p_lock); 996 997 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 998 0, NULL, NULL) == 0) { 999 curthread->t_bind_pset = zio_taskq_psrset_bind; 1000 } else { 1001 cmn_err(CE_WARN, 1002 "Couldn't bind process for zfs pool \"%s\" to " 1003 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1004 } 1005 1006 mutex_exit(&curproc->p_lock); 1007 mutex_exit(&pidlock); 1008 mutex_exit(&cpu_lock); 1009 pool_unlock(); 1010 } 1011 1012 if (zio_taskq_sysdc) { 1013 sysdc_thread_enter(curthread, 100, 0); 1014 } 1015 1016 spa->spa_proc = curproc; 1017 spa->spa_did = curthread->t_did; 1018 1019 spa_create_zio_taskqs(spa); 1020 1021 mutex_enter(&spa->spa_proc_lock); 1022 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1023 1024 spa->spa_proc_state = SPA_PROC_ACTIVE; 1025 cv_broadcast(&spa->spa_proc_cv); 1026 1027 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1028 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1029 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1030 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1031 1032 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1033 spa->spa_proc_state = SPA_PROC_GONE; 1034 spa->spa_proc = &p0; 1035 cv_broadcast(&spa->spa_proc_cv); 1036 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1037 1038 mutex_enter(&curproc->p_lock); 1039 lwp_exit(); 1040 } 1041 #endif 1042 1043 /* 1044 * Activate an uninitialized pool. 1045 */ 1046 static void 1047 spa_activate(spa_t *spa, int mode) 1048 { 1049 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1050 1051 spa->spa_state = POOL_STATE_ACTIVE; 1052 spa->spa_mode = mode; 1053 1054 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1055 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1056 1057 /* Try to create a covering process */ 1058 mutex_enter(&spa->spa_proc_lock); 1059 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1060 ASSERT(spa->spa_proc == &p0); 1061 spa->spa_did = 0; 1062 1063 /* Only create a process if we're going to be around a while. */ 1064 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1065 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1066 NULL, 0) == 0) { 1067 spa->spa_proc_state = SPA_PROC_CREATED; 1068 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1069 cv_wait(&spa->spa_proc_cv, 1070 &spa->spa_proc_lock); 1071 } 1072 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1073 ASSERT(spa->spa_proc != &p0); 1074 ASSERT(spa->spa_did != 0); 1075 } else { 1076 #ifdef _KERNEL 1077 cmn_err(CE_WARN, 1078 "Couldn't create process for zfs pool \"%s\"\n", 1079 spa->spa_name); 1080 #endif 1081 } 1082 } 1083 mutex_exit(&spa->spa_proc_lock); 1084 1085 /* If we didn't create a process, we need to create our taskqs. */ 1086 if (spa->spa_proc == &p0) { 1087 spa_create_zio_taskqs(spa); 1088 } 1089 1090 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1091 offsetof(vdev_t, vdev_config_dirty_node)); 1092 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1093 offsetof(objset_t, os_evicting_node)); 1094 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1095 offsetof(vdev_t, vdev_state_dirty_node)); 1096 1097 txg_list_create(&spa->spa_vdev_txg_list, 1098 offsetof(struct vdev, vdev_txg_node)); 1099 1100 avl_create(&spa->spa_errlist_scrub, 1101 spa_error_entry_compare, sizeof (spa_error_entry_t), 1102 offsetof(spa_error_entry_t, se_avl)); 1103 avl_create(&spa->spa_errlist_last, 1104 spa_error_entry_compare, sizeof (spa_error_entry_t), 1105 offsetof(spa_error_entry_t, se_avl)); 1106 } 1107 1108 /* 1109 * Opposite of spa_activate(). 1110 */ 1111 static void 1112 spa_deactivate(spa_t *spa) 1113 { 1114 ASSERT(spa->spa_sync_on == B_FALSE); 1115 ASSERT(spa->spa_dsl_pool == NULL); 1116 ASSERT(spa->spa_root_vdev == NULL); 1117 ASSERT(spa->spa_async_zio_root == NULL); 1118 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1119 1120 spa_evicting_os_wait(spa); 1121 1122 txg_list_destroy(&spa->spa_vdev_txg_list); 1123 1124 list_destroy(&spa->spa_config_dirty_list); 1125 list_destroy(&spa->spa_evicting_os_list); 1126 list_destroy(&spa->spa_state_dirty_list); 1127 1128 for (int t = 0; t < ZIO_TYPES; t++) { 1129 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1130 spa_taskqs_fini(spa, t, q); 1131 } 1132 } 1133 1134 metaslab_class_destroy(spa->spa_normal_class); 1135 spa->spa_normal_class = NULL; 1136 1137 metaslab_class_destroy(spa->spa_log_class); 1138 spa->spa_log_class = NULL; 1139 1140 /* 1141 * If this was part of an import or the open otherwise failed, we may 1142 * still have errors left in the queues. Empty them just in case. 1143 */ 1144 spa_errlog_drain(spa); 1145 1146 avl_destroy(&spa->spa_errlist_scrub); 1147 avl_destroy(&spa->spa_errlist_last); 1148 1149 spa->spa_state = POOL_STATE_UNINITIALIZED; 1150 1151 mutex_enter(&spa->spa_proc_lock); 1152 if (spa->spa_proc_state != SPA_PROC_NONE) { 1153 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1154 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1155 cv_broadcast(&spa->spa_proc_cv); 1156 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1157 ASSERT(spa->spa_proc != &p0); 1158 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1159 } 1160 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1161 spa->spa_proc_state = SPA_PROC_NONE; 1162 } 1163 ASSERT(spa->spa_proc == &p0); 1164 mutex_exit(&spa->spa_proc_lock); 1165 1166 /* 1167 * We want to make sure spa_thread() has actually exited the ZFS 1168 * module, so that the module can't be unloaded out from underneath 1169 * it. 1170 */ 1171 if (spa->spa_did != 0) { 1172 thread_join(spa->spa_did); 1173 spa->spa_did = 0; 1174 } 1175 } 1176 1177 /* 1178 * Verify a pool configuration, and construct the vdev tree appropriately. This 1179 * will create all the necessary vdevs in the appropriate layout, with each vdev 1180 * in the CLOSED state. This will prep the pool before open/creation/import. 1181 * All vdev validation is done by the vdev_alloc() routine. 1182 */ 1183 static int 1184 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1185 uint_t id, int atype) 1186 { 1187 nvlist_t **child; 1188 uint_t children; 1189 int error; 1190 1191 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1192 return (error); 1193 1194 if ((*vdp)->vdev_ops->vdev_op_leaf) 1195 return (0); 1196 1197 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1198 &child, &children); 1199 1200 if (error == ENOENT) 1201 return (0); 1202 1203 if (error) { 1204 vdev_free(*vdp); 1205 *vdp = NULL; 1206 return (SET_ERROR(EINVAL)); 1207 } 1208 1209 for (int c = 0; c < children; c++) { 1210 vdev_t *vd; 1211 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1212 atype)) != 0) { 1213 vdev_free(*vdp); 1214 *vdp = NULL; 1215 return (error); 1216 } 1217 } 1218 1219 ASSERT(*vdp != NULL); 1220 1221 return (0); 1222 } 1223 1224 /* 1225 * Opposite of spa_load(). 1226 */ 1227 static void 1228 spa_unload(spa_t *spa) 1229 { 1230 int i; 1231 1232 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1233 1234 /* 1235 * Stop async tasks. 1236 */ 1237 spa_async_suspend(spa); 1238 1239 /* 1240 * Stop syncing. 1241 */ 1242 if (spa->spa_sync_on) { 1243 txg_sync_stop(spa->spa_dsl_pool); 1244 spa->spa_sync_on = B_FALSE; 1245 } 1246 1247 /* 1248 * Wait for any outstanding async I/O to complete. 1249 */ 1250 if (spa->spa_async_zio_root != NULL) { 1251 for (int i = 0; i < max_ncpus; i++) 1252 (void) zio_wait(spa->spa_async_zio_root[i]); 1253 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1254 spa->spa_async_zio_root = NULL; 1255 } 1256 1257 bpobj_close(&spa->spa_deferred_bpobj); 1258 1259 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1260 1261 /* 1262 * Close all vdevs. 1263 */ 1264 if (spa->spa_root_vdev) 1265 vdev_free(spa->spa_root_vdev); 1266 ASSERT(spa->spa_root_vdev == NULL); 1267 1268 /* 1269 * Close the dsl pool. 1270 */ 1271 if (spa->spa_dsl_pool) { 1272 dsl_pool_close(spa->spa_dsl_pool); 1273 spa->spa_dsl_pool = NULL; 1274 spa->spa_meta_objset = NULL; 1275 } 1276 1277 ddt_unload(spa); 1278 1279 1280 /* 1281 * Drop and purge level 2 cache 1282 */ 1283 spa_l2cache_drop(spa); 1284 1285 for (i = 0; i < spa->spa_spares.sav_count; i++) 1286 vdev_free(spa->spa_spares.sav_vdevs[i]); 1287 if (spa->spa_spares.sav_vdevs) { 1288 kmem_free(spa->spa_spares.sav_vdevs, 1289 spa->spa_spares.sav_count * sizeof (void *)); 1290 spa->spa_spares.sav_vdevs = NULL; 1291 } 1292 if (spa->spa_spares.sav_config) { 1293 nvlist_free(spa->spa_spares.sav_config); 1294 spa->spa_spares.sav_config = NULL; 1295 } 1296 spa->spa_spares.sav_count = 0; 1297 1298 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1299 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1300 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1301 } 1302 if (spa->spa_l2cache.sav_vdevs) { 1303 kmem_free(spa->spa_l2cache.sav_vdevs, 1304 spa->spa_l2cache.sav_count * sizeof (void *)); 1305 spa->spa_l2cache.sav_vdevs = NULL; 1306 } 1307 if (spa->spa_l2cache.sav_config) { 1308 nvlist_free(spa->spa_l2cache.sav_config); 1309 spa->spa_l2cache.sav_config = NULL; 1310 } 1311 spa->spa_l2cache.sav_count = 0; 1312 1313 spa->spa_async_suspended = 0; 1314 1315 if (spa->spa_comment != NULL) { 1316 spa_strfree(spa->spa_comment); 1317 spa->spa_comment = NULL; 1318 } 1319 1320 spa_config_exit(spa, SCL_ALL, FTAG); 1321 } 1322 1323 /* 1324 * Load (or re-load) the current list of vdevs describing the active spares for 1325 * this pool. When this is called, we have some form of basic information in 1326 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1327 * then re-generate a more complete list including status information. 1328 */ 1329 static void 1330 spa_load_spares(spa_t *spa) 1331 { 1332 nvlist_t **spares; 1333 uint_t nspares; 1334 int i; 1335 vdev_t *vd, *tvd; 1336 1337 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1338 1339 /* 1340 * First, close and free any existing spare vdevs. 1341 */ 1342 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1343 vd = spa->spa_spares.sav_vdevs[i]; 1344 1345 /* Undo the call to spa_activate() below */ 1346 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1347 B_FALSE)) != NULL && tvd->vdev_isspare) 1348 spa_spare_remove(tvd); 1349 vdev_close(vd); 1350 vdev_free(vd); 1351 } 1352 1353 if (spa->spa_spares.sav_vdevs) 1354 kmem_free(spa->spa_spares.sav_vdevs, 1355 spa->spa_spares.sav_count * sizeof (void *)); 1356 1357 if (spa->spa_spares.sav_config == NULL) 1358 nspares = 0; 1359 else 1360 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1361 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1362 1363 spa->spa_spares.sav_count = (int)nspares; 1364 spa->spa_spares.sav_vdevs = NULL; 1365 1366 if (nspares == 0) 1367 return; 1368 1369 /* 1370 * Construct the array of vdevs, opening them to get status in the 1371 * process. For each spare, there is potentially two different vdev_t 1372 * structures associated with it: one in the list of spares (used only 1373 * for basic validation purposes) and one in the active vdev 1374 * configuration (if it's spared in). During this phase we open and 1375 * validate each vdev on the spare list. If the vdev also exists in the 1376 * active configuration, then we also mark this vdev as an active spare. 1377 */ 1378 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1379 KM_SLEEP); 1380 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1381 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1382 VDEV_ALLOC_SPARE) == 0); 1383 ASSERT(vd != NULL); 1384 1385 spa->spa_spares.sav_vdevs[i] = vd; 1386 1387 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1388 B_FALSE)) != NULL) { 1389 if (!tvd->vdev_isspare) 1390 spa_spare_add(tvd); 1391 1392 /* 1393 * We only mark the spare active if we were successfully 1394 * able to load the vdev. Otherwise, importing a pool 1395 * with a bad active spare would result in strange 1396 * behavior, because multiple pool would think the spare 1397 * is actively in use. 1398 * 1399 * There is a vulnerability here to an equally bizarre 1400 * circumstance, where a dead active spare is later 1401 * brought back to life (onlined or otherwise). Given 1402 * the rarity of this scenario, and the extra complexity 1403 * it adds, we ignore the possibility. 1404 */ 1405 if (!vdev_is_dead(tvd)) 1406 spa_spare_activate(tvd); 1407 } 1408 1409 vd->vdev_top = vd; 1410 vd->vdev_aux = &spa->spa_spares; 1411 1412 if (vdev_open(vd) != 0) 1413 continue; 1414 1415 if (vdev_validate_aux(vd) == 0) 1416 spa_spare_add(vd); 1417 } 1418 1419 /* 1420 * Recompute the stashed list of spares, with status information 1421 * this time. 1422 */ 1423 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1424 DATA_TYPE_NVLIST_ARRAY) == 0); 1425 1426 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1427 KM_SLEEP); 1428 for (i = 0; i < spa->spa_spares.sav_count; i++) 1429 spares[i] = vdev_config_generate(spa, 1430 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1431 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1432 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1433 for (i = 0; i < spa->spa_spares.sav_count; i++) 1434 nvlist_free(spares[i]); 1435 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1436 } 1437 1438 /* 1439 * Load (or re-load) the current list of vdevs describing the active l2cache for 1440 * this pool. When this is called, we have some form of basic information in 1441 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1442 * then re-generate a more complete list including status information. 1443 * Devices which are already active have their details maintained, and are 1444 * not re-opened. 1445 */ 1446 static void 1447 spa_load_l2cache(spa_t *spa) 1448 { 1449 nvlist_t **l2cache; 1450 uint_t nl2cache; 1451 int i, j, oldnvdevs; 1452 uint64_t guid; 1453 vdev_t *vd, **oldvdevs, **newvdevs; 1454 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1455 1456 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1457 1458 if (sav->sav_config != NULL) { 1459 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1460 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1461 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1462 } else { 1463 nl2cache = 0; 1464 newvdevs = NULL; 1465 } 1466 1467 oldvdevs = sav->sav_vdevs; 1468 oldnvdevs = sav->sav_count; 1469 sav->sav_vdevs = NULL; 1470 sav->sav_count = 0; 1471 1472 /* 1473 * Process new nvlist of vdevs. 1474 */ 1475 for (i = 0; i < nl2cache; i++) { 1476 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1477 &guid) == 0); 1478 1479 newvdevs[i] = NULL; 1480 for (j = 0; j < oldnvdevs; j++) { 1481 vd = oldvdevs[j]; 1482 if (vd != NULL && guid == vd->vdev_guid) { 1483 /* 1484 * Retain previous vdev for add/remove ops. 1485 */ 1486 newvdevs[i] = vd; 1487 oldvdevs[j] = NULL; 1488 break; 1489 } 1490 } 1491 1492 if (newvdevs[i] == NULL) { 1493 /* 1494 * Create new vdev 1495 */ 1496 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1497 VDEV_ALLOC_L2CACHE) == 0); 1498 ASSERT(vd != NULL); 1499 newvdevs[i] = vd; 1500 1501 /* 1502 * Commit this vdev as an l2cache device, 1503 * even if it fails to open. 1504 */ 1505 spa_l2cache_add(vd); 1506 1507 vd->vdev_top = vd; 1508 vd->vdev_aux = sav; 1509 1510 spa_l2cache_activate(vd); 1511 1512 if (vdev_open(vd) != 0) 1513 continue; 1514 1515 (void) vdev_validate_aux(vd); 1516 1517 if (!vdev_is_dead(vd)) 1518 l2arc_add_vdev(spa, vd); 1519 } 1520 } 1521 1522 /* 1523 * Purge vdevs that were dropped 1524 */ 1525 for (i = 0; i < oldnvdevs; i++) { 1526 uint64_t pool; 1527 1528 vd = oldvdevs[i]; 1529 if (vd != NULL) { 1530 ASSERT(vd->vdev_isl2cache); 1531 1532 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1533 pool != 0ULL && l2arc_vdev_present(vd)) 1534 l2arc_remove_vdev(vd); 1535 vdev_clear_stats(vd); 1536 vdev_free(vd); 1537 } 1538 } 1539 1540 if (oldvdevs) 1541 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1542 1543 if (sav->sav_config == NULL) 1544 goto out; 1545 1546 sav->sav_vdevs = newvdevs; 1547 sav->sav_count = (int)nl2cache; 1548 1549 /* 1550 * Recompute the stashed list of l2cache devices, with status 1551 * information this time. 1552 */ 1553 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1554 DATA_TYPE_NVLIST_ARRAY) == 0); 1555 1556 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1557 for (i = 0; i < sav->sav_count; i++) 1558 l2cache[i] = vdev_config_generate(spa, 1559 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1560 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1561 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1562 out: 1563 for (i = 0; i < sav->sav_count; i++) 1564 nvlist_free(l2cache[i]); 1565 if (sav->sav_count) 1566 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1567 } 1568 1569 static int 1570 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1571 { 1572 dmu_buf_t *db; 1573 char *packed = NULL; 1574 size_t nvsize = 0; 1575 int error; 1576 *value = NULL; 1577 1578 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1579 if (error != 0) 1580 return (error); 1581 1582 nvsize = *(uint64_t *)db->db_data; 1583 dmu_buf_rele(db, FTAG); 1584 1585 packed = kmem_alloc(nvsize, KM_SLEEP); 1586 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1587 DMU_READ_PREFETCH); 1588 if (error == 0) 1589 error = nvlist_unpack(packed, nvsize, value, 0); 1590 kmem_free(packed, nvsize); 1591 1592 return (error); 1593 } 1594 1595 /* 1596 * Checks to see if the given vdev could not be opened, in which case we post a 1597 * sysevent to notify the autoreplace code that the device has been removed. 1598 */ 1599 static void 1600 spa_check_removed(vdev_t *vd) 1601 { 1602 for (int c = 0; c < vd->vdev_children; c++) 1603 spa_check_removed(vd->vdev_child[c]); 1604 1605 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1606 !vd->vdev_ishole) { 1607 zfs_post_autoreplace(vd->vdev_spa, vd); 1608 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1609 } 1610 } 1611 1612 /* 1613 * Validate the current config against the MOS config 1614 */ 1615 static boolean_t 1616 spa_config_valid(spa_t *spa, nvlist_t *config) 1617 { 1618 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1619 nvlist_t *nv; 1620 1621 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1622 1623 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1624 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1625 1626 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1627 1628 /* 1629 * If we're doing a normal import, then build up any additional 1630 * diagnostic information about missing devices in this config. 1631 * We'll pass this up to the user for further processing. 1632 */ 1633 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1634 nvlist_t **child, *nv; 1635 uint64_t idx = 0; 1636 1637 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1638 KM_SLEEP); 1639 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1640 1641 for (int c = 0; c < rvd->vdev_children; c++) { 1642 vdev_t *tvd = rvd->vdev_child[c]; 1643 vdev_t *mtvd = mrvd->vdev_child[c]; 1644 1645 if (tvd->vdev_ops == &vdev_missing_ops && 1646 mtvd->vdev_ops != &vdev_missing_ops && 1647 mtvd->vdev_islog) 1648 child[idx++] = vdev_config_generate(spa, mtvd, 1649 B_FALSE, 0); 1650 } 1651 1652 if (idx) { 1653 VERIFY(nvlist_add_nvlist_array(nv, 1654 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1655 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1656 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1657 1658 for (int i = 0; i < idx; i++) 1659 nvlist_free(child[i]); 1660 } 1661 nvlist_free(nv); 1662 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1663 } 1664 1665 /* 1666 * Compare the root vdev tree with the information we have 1667 * from the MOS config (mrvd). Check each top-level vdev 1668 * with the corresponding MOS config top-level (mtvd). 1669 */ 1670 for (int c = 0; c < rvd->vdev_children; c++) { 1671 vdev_t *tvd = rvd->vdev_child[c]; 1672 vdev_t *mtvd = mrvd->vdev_child[c]; 1673 1674 /* 1675 * Resolve any "missing" vdevs in the current configuration. 1676 * If we find that the MOS config has more accurate information 1677 * about the top-level vdev then use that vdev instead. 1678 */ 1679 if (tvd->vdev_ops == &vdev_missing_ops && 1680 mtvd->vdev_ops != &vdev_missing_ops) { 1681 1682 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1683 continue; 1684 1685 /* 1686 * Device specific actions. 1687 */ 1688 if (mtvd->vdev_islog) { 1689 spa_set_log_state(spa, SPA_LOG_CLEAR); 1690 } else { 1691 /* 1692 * XXX - once we have 'readonly' pool 1693 * support we should be able to handle 1694 * missing data devices by transitioning 1695 * the pool to readonly. 1696 */ 1697 continue; 1698 } 1699 1700 /* 1701 * Swap the missing vdev with the data we were 1702 * able to obtain from the MOS config. 1703 */ 1704 vdev_remove_child(rvd, tvd); 1705 vdev_remove_child(mrvd, mtvd); 1706 1707 vdev_add_child(rvd, mtvd); 1708 vdev_add_child(mrvd, tvd); 1709 1710 spa_config_exit(spa, SCL_ALL, FTAG); 1711 vdev_load(mtvd); 1712 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1713 1714 vdev_reopen(rvd); 1715 } else if (mtvd->vdev_islog) { 1716 /* 1717 * Load the slog device's state from the MOS config 1718 * since it's possible that the label does not 1719 * contain the most up-to-date information. 1720 */ 1721 vdev_load_log_state(tvd, mtvd); 1722 vdev_reopen(tvd); 1723 } 1724 } 1725 vdev_free(mrvd); 1726 spa_config_exit(spa, SCL_ALL, FTAG); 1727 1728 /* 1729 * Ensure we were able to validate the config. 1730 */ 1731 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1732 } 1733 1734 /* 1735 * Check for missing log devices 1736 */ 1737 static boolean_t 1738 spa_check_logs(spa_t *spa) 1739 { 1740 boolean_t rv = B_FALSE; 1741 1742 switch (spa->spa_log_state) { 1743 case SPA_LOG_MISSING: 1744 /* need to recheck in case slog has been restored */ 1745 case SPA_LOG_UNKNOWN: 1746 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1747 NULL, DS_FIND_CHILDREN) != 0); 1748 if (rv) 1749 spa_set_log_state(spa, SPA_LOG_MISSING); 1750 break; 1751 } 1752 return (rv); 1753 } 1754 1755 static boolean_t 1756 spa_passivate_log(spa_t *spa) 1757 { 1758 vdev_t *rvd = spa->spa_root_vdev; 1759 boolean_t slog_found = B_FALSE; 1760 1761 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1762 1763 if (!spa_has_slogs(spa)) 1764 return (B_FALSE); 1765 1766 for (int c = 0; c < rvd->vdev_children; c++) { 1767 vdev_t *tvd = rvd->vdev_child[c]; 1768 metaslab_group_t *mg = tvd->vdev_mg; 1769 1770 if (tvd->vdev_islog) { 1771 metaslab_group_passivate(mg); 1772 slog_found = B_TRUE; 1773 } 1774 } 1775 1776 return (slog_found); 1777 } 1778 1779 static void 1780 spa_activate_log(spa_t *spa) 1781 { 1782 vdev_t *rvd = spa->spa_root_vdev; 1783 1784 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1785 1786 for (int c = 0; c < rvd->vdev_children; c++) { 1787 vdev_t *tvd = rvd->vdev_child[c]; 1788 metaslab_group_t *mg = tvd->vdev_mg; 1789 1790 if (tvd->vdev_islog) 1791 metaslab_group_activate(mg); 1792 } 1793 } 1794 1795 int 1796 spa_offline_log(spa_t *spa) 1797 { 1798 int error; 1799 1800 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1801 NULL, DS_FIND_CHILDREN); 1802 if (error == 0) { 1803 /* 1804 * We successfully offlined the log device, sync out the 1805 * current txg so that the "stubby" block can be removed 1806 * by zil_sync(). 1807 */ 1808 txg_wait_synced(spa->spa_dsl_pool, 0); 1809 } 1810 return (error); 1811 } 1812 1813 static void 1814 spa_aux_check_removed(spa_aux_vdev_t *sav) 1815 { 1816 for (int i = 0; i < sav->sav_count; i++) 1817 spa_check_removed(sav->sav_vdevs[i]); 1818 } 1819 1820 void 1821 spa_claim_notify(zio_t *zio) 1822 { 1823 spa_t *spa = zio->io_spa; 1824 1825 if (zio->io_error) 1826 return; 1827 1828 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1829 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1830 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1831 mutex_exit(&spa->spa_props_lock); 1832 } 1833 1834 typedef struct spa_load_error { 1835 uint64_t sle_meta_count; 1836 uint64_t sle_data_count; 1837 } spa_load_error_t; 1838 1839 static void 1840 spa_load_verify_done(zio_t *zio) 1841 { 1842 blkptr_t *bp = zio->io_bp; 1843 spa_load_error_t *sle = zio->io_private; 1844 dmu_object_type_t type = BP_GET_TYPE(bp); 1845 int error = zio->io_error; 1846 spa_t *spa = zio->io_spa; 1847 1848 if (error) { 1849 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1850 type != DMU_OT_INTENT_LOG) 1851 atomic_inc_64(&sle->sle_meta_count); 1852 else 1853 atomic_inc_64(&sle->sle_data_count); 1854 } 1855 zio_data_buf_free(zio->io_data, zio->io_size); 1856 1857 mutex_enter(&spa->spa_scrub_lock); 1858 spa->spa_scrub_inflight--; 1859 cv_broadcast(&spa->spa_scrub_io_cv); 1860 mutex_exit(&spa->spa_scrub_lock); 1861 } 1862 1863 /* 1864 * Maximum number of concurrent scrub i/os to create while verifying 1865 * a pool while importing it. 1866 */ 1867 int spa_load_verify_maxinflight = 10000; 1868 boolean_t spa_load_verify_metadata = B_TRUE; 1869 boolean_t spa_load_verify_data = B_TRUE; 1870 1871 /*ARGSUSED*/ 1872 static int 1873 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1874 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1875 { 1876 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1877 return (0); 1878 /* 1879 * Note: normally this routine will not be called if 1880 * spa_load_verify_metadata is not set. However, it may be useful 1881 * to manually set the flag after the traversal has begun. 1882 */ 1883 if (!spa_load_verify_metadata) 1884 return (0); 1885 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data) 1886 return (0); 1887 1888 zio_t *rio = arg; 1889 size_t size = BP_GET_PSIZE(bp); 1890 void *data = zio_data_buf_alloc(size); 1891 1892 mutex_enter(&spa->spa_scrub_lock); 1893 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1894 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1895 spa->spa_scrub_inflight++; 1896 mutex_exit(&spa->spa_scrub_lock); 1897 1898 zio_nowait(zio_read(rio, spa, bp, data, size, 1899 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1900 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1901 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1902 return (0); 1903 } 1904 1905 static int 1906 spa_load_verify(spa_t *spa) 1907 { 1908 zio_t *rio; 1909 spa_load_error_t sle = { 0 }; 1910 zpool_rewind_policy_t policy; 1911 boolean_t verify_ok = B_FALSE; 1912 int error = 0; 1913 1914 zpool_get_rewind_policy(spa->spa_config, &policy); 1915 1916 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1917 return (0); 1918 1919 rio = zio_root(spa, NULL, &sle, 1920 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1921 1922 if (spa_load_verify_metadata) { 1923 error = traverse_pool(spa, spa->spa_verify_min_txg, 1924 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 1925 spa_load_verify_cb, rio); 1926 } 1927 1928 (void) zio_wait(rio); 1929 1930 spa->spa_load_meta_errors = sle.sle_meta_count; 1931 spa->spa_load_data_errors = sle.sle_data_count; 1932 1933 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1934 sle.sle_data_count <= policy.zrp_maxdata) { 1935 int64_t loss = 0; 1936 1937 verify_ok = B_TRUE; 1938 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1939 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1940 1941 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1942 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1943 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1944 VERIFY(nvlist_add_int64(spa->spa_load_info, 1945 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1946 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1947 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1948 } else { 1949 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1950 } 1951 1952 if (error) { 1953 if (error != ENXIO && error != EIO) 1954 error = SET_ERROR(EIO); 1955 return (error); 1956 } 1957 1958 return (verify_ok ? 0 : EIO); 1959 } 1960 1961 /* 1962 * Find a value in the pool props object. 1963 */ 1964 static void 1965 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1966 { 1967 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1968 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1969 } 1970 1971 /* 1972 * Find a value in the pool directory object. 1973 */ 1974 static int 1975 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1976 { 1977 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1978 name, sizeof (uint64_t), 1, val)); 1979 } 1980 1981 static int 1982 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1983 { 1984 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1985 return (err); 1986 } 1987 1988 /* 1989 * Fix up config after a partly-completed split. This is done with the 1990 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1991 * pool have that entry in their config, but only the splitting one contains 1992 * a list of all the guids of the vdevs that are being split off. 1993 * 1994 * This function determines what to do with that list: either rejoin 1995 * all the disks to the pool, or complete the splitting process. To attempt 1996 * the rejoin, each disk that is offlined is marked online again, and 1997 * we do a reopen() call. If the vdev label for every disk that was 1998 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1999 * then we call vdev_split() on each disk, and complete the split. 2000 * 2001 * Otherwise we leave the config alone, with all the vdevs in place in 2002 * the original pool. 2003 */ 2004 static void 2005 spa_try_repair(spa_t *spa, nvlist_t *config) 2006 { 2007 uint_t extracted; 2008 uint64_t *glist; 2009 uint_t i, gcount; 2010 nvlist_t *nvl; 2011 vdev_t **vd; 2012 boolean_t attempt_reopen; 2013 2014 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2015 return; 2016 2017 /* check that the config is complete */ 2018 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2019 &glist, &gcount) != 0) 2020 return; 2021 2022 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2023 2024 /* attempt to online all the vdevs & validate */ 2025 attempt_reopen = B_TRUE; 2026 for (i = 0; i < gcount; i++) { 2027 if (glist[i] == 0) /* vdev is hole */ 2028 continue; 2029 2030 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2031 if (vd[i] == NULL) { 2032 /* 2033 * Don't bother attempting to reopen the disks; 2034 * just do the split. 2035 */ 2036 attempt_reopen = B_FALSE; 2037 } else { 2038 /* attempt to re-online it */ 2039 vd[i]->vdev_offline = B_FALSE; 2040 } 2041 } 2042 2043 if (attempt_reopen) { 2044 vdev_reopen(spa->spa_root_vdev); 2045 2046 /* check each device to see what state it's in */ 2047 for (extracted = 0, i = 0; i < gcount; i++) { 2048 if (vd[i] != NULL && 2049 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2050 break; 2051 ++extracted; 2052 } 2053 } 2054 2055 /* 2056 * If every disk has been moved to the new pool, or if we never 2057 * even attempted to look at them, then we split them off for 2058 * good. 2059 */ 2060 if (!attempt_reopen || gcount == extracted) { 2061 for (i = 0; i < gcount; i++) 2062 if (vd[i] != NULL) 2063 vdev_split(vd[i]); 2064 vdev_reopen(spa->spa_root_vdev); 2065 } 2066 2067 kmem_free(vd, gcount * sizeof (vdev_t *)); 2068 } 2069 2070 static int 2071 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2072 boolean_t mosconfig) 2073 { 2074 nvlist_t *config = spa->spa_config; 2075 char *ereport = FM_EREPORT_ZFS_POOL; 2076 char *comment; 2077 int error; 2078 uint64_t pool_guid; 2079 nvlist_t *nvl; 2080 2081 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2082 return (SET_ERROR(EINVAL)); 2083 2084 ASSERT(spa->spa_comment == NULL); 2085 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2086 spa->spa_comment = spa_strdup(comment); 2087 2088 /* 2089 * Versioning wasn't explicitly added to the label until later, so if 2090 * it's not present treat it as the initial version. 2091 */ 2092 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2093 &spa->spa_ubsync.ub_version) != 0) 2094 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2095 2096 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2097 &spa->spa_config_txg); 2098 2099 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2100 spa_guid_exists(pool_guid, 0)) { 2101 error = SET_ERROR(EEXIST); 2102 } else { 2103 spa->spa_config_guid = pool_guid; 2104 2105 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2106 &nvl) == 0) { 2107 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2108 KM_SLEEP) == 0); 2109 } 2110 2111 nvlist_free(spa->spa_load_info); 2112 spa->spa_load_info = fnvlist_alloc(); 2113 2114 gethrestime(&spa->spa_loaded_ts); 2115 error = spa_load_impl(spa, pool_guid, config, state, type, 2116 mosconfig, &ereport); 2117 } 2118 2119 /* 2120 * Don't count references from objsets that are already closed 2121 * and are making their way through the eviction process. 2122 */ 2123 spa_evicting_os_wait(spa); 2124 spa->spa_minref = refcount_count(&spa->spa_refcount); 2125 if (error) { 2126 if (error != EEXIST) { 2127 spa->spa_loaded_ts.tv_sec = 0; 2128 spa->spa_loaded_ts.tv_nsec = 0; 2129 } 2130 if (error != EBADF) { 2131 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2132 } 2133 } 2134 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2135 spa->spa_ena = 0; 2136 2137 return (error); 2138 } 2139 2140 /* 2141 * Load an existing storage pool, using the pool's builtin spa_config as a 2142 * source of configuration information. 2143 */ 2144 static int 2145 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2146 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2147 char **ereport) 2148 { 2149 int error = 0; 2150 nvlist_t *nvroot = NULL; 2151 nvlist_t *label; 2152 vdev_t *rvd; 2153 uberblock_t *ub = &spa->spa_uberblock; 2154 uint64_t children, config_cache_txg = spa->spa_config_txg; 2155 int orig_mode = spa->spa_mode; 2156 int parse; 2157 uint64_t obj; 2158 boolean_t missing_feat_write = B_FALSE; 2159 2160 /* 2161 * If this is an untrusted config, access the pool in read-only mode. 2162 * This prevents things like resilvering recently removed devices. 2163 */ 2164 if (!mosconfig) 2165 spa->spa_mode = FREAD; 2166 2167 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2168 2169 spa->spa_load_state = state; 2170 2171 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2172 return (SET_ERROR(EINVAL)); 2173 2174 parse = (type == SPA_IMPORT_EXISTING ? 2175 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2176 2177 /* 2178 * Create "The Godfather" zio to hold all async IOs 2179 */ 2180 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2181 KM_SLEEP); 2182 for (int i = 0; i < max_ncpus; i++) { 2183 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2184 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2185 ZIO_FLAG_GODFATHER); 2186 } 2187 2188 /* 2189 * Parse the configuration into a vdev tree. We explicitly set the 2190 * value that will be returned by spa_version() since parsing the 2191 * configuration requires knowing the version number. 2192 */ 2193 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2194 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2195 spa_config_exit(spa, SCL_ALL, FTAG); 2196 2197 if (error != 0) 2198 return (error); 2199 2200 ASSERT(spa->spa_root_vdev == rvd); 2201 2202 if (type != SPA_IMPORT_ASSEMBLE) { 2203 ASSERT(spa_guid(spa) == pool_guid); 2204 } 2205 2206 /* 2207 * Try to open all vdevs, loading each label in the process. 2208 */ 2209 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2210 error = vdev_open(rvd); 2211 spa_config_exit(spa, SCL_ALL, FTAG); 2212 if (error != 0) 2213 return (error); 2214 2215 /* 2216 * We need to validate the vdev labels against the configuration that 2217 * we have in hand, which is dependent on the setting of mosconfig. If 2218 * mosconfig is true then we're validating the vdev labels based on 2219 * that config. Otherwise, we're validating against the cached config 2220 * (zpool.cache) that was read when we loaded the zfs module, and then 2221 * later we will recursively call spa_load() and validate against 2222 * the vdev config. 2223 * 2224 * If we're assembling a new pool that's been split off from an 2225 * existing pool, the labels haven't yet been updated so we skip 2226 * validation for now. 2227 */ 2228 if (type != SPA_IMPORT_ASSEMBLE) { 2229 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2230 error = vdev_validate(rvd, mosconfig); 2231 spa_config_exit(spa, SCL_ALL, FTAG); 2232 2233 if (error != 0) 2234 return (error); 2235 2236 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2237 return (SET_ERROR(ENXIO)); 2238 } 2239 2240 /* 2241 * Find the best uberblock. 2242 */ 2243 vdev_uberblock_load(rvd, ub, &label); 2244 2245 /* 2246 * If we weren't able to find a single valid uberblock, return failure. 2247 */ 2248 if (ub->ub_txg == 0) { 2249 nvlist_free(label); 2250 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2251 } 2252 2253 /* 2254 * If the pool has an unsupported version we can't open it. 2255 */ 2256 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2257 nvlist_free(label); 2258 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2259 } 2260 2261 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2262 nvlist_t *features; 2263 2264 /* 2265 * If we weren't able to find what's necessary for reading the 2266 * MOS in the label, return failure. 2267 */ 2268 if (label == NULL || nvlist_lookup_nvlist(label, 2269 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2270 nvlist_free(label); 2271 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2272 ENXIO)); 2273 } 2274 2275 /* 2276 * Update our in-core representation with the definitive values 2277 * from the label. 2278 */ 2279 nvlist_free(spa->spa_label_features); 2280 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2281 } 2282 2283 nvlist_free(label); 2284 2285 /* 2286 * Look through entries in the label nvlist's features_for_read. If 2287 * there is a feature listed there which we don't understand then we 2288 * cannot open a pool. 2289 */ 2290 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2291 nvlist_t *unsup_feat; 2292 2293 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2294 0); 2295 2296 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2297 NULL); nvp != NULL; 2298 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2299 if (!zfeature_is_supported(nvpair_name(nvp))) { 2300 VERIFY(nvlist_add_string(unsup_feat, 2301 nvpair_name(nvp), "") == 0); 2302 } 2303 } 2304 2305 if (!nvlist_empty(unsup_feat)) { 2306 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2307 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2308 nvlist_free(unsup_feat); 2309 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2310 ENOTSUP)); 2311 } 2312 2313 nvlist_free(unsup_feat); 2314 } 2315 2316 /* 2317 * If the vdev guid sum doesn't match the uberblock, we have an 2318 * incomplete configuration. We first check to see if the pool 2319 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2320 * If it is, defer the vdev_guid_sum check till later so we 2321 * can handle missing vdevs. 2322 */ 2323 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2324 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2325 rvd->vdev_guid_sum != ub->ub_guid_sum) 2326 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2327 2328 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2329 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2330 spa_try_repair(spa, config); 2331 spa_config_exit(spa, SCL_ALL, FTAG); 2332 nvlist_free(spa->spa_config_splitting); 2333 spa->spa_config_splitting = NULL; 2334 } 2335 2336 /* 2337 * Initialize internal SPA structures. 2338 */ 2339 spa->spa_state = POOL_STATE_ACTIVE; 2340 spa->spa_ubsync = spa->spa_uberblock; 2341 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2342 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2343 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2344 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2345 spa->spa_claim_max_txg = spa->spa_first_txg; 2346 spa->spa_prev_software_version = ub->ub_software_version; 2347 2348 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2349 if (error) 2350 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2351 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2352 2353 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2354 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2355 2356 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2357 boolean_t missing_feat_read = B_FALSE; 2358 nvlist_t *unsup_feat, *enabled_feat; 2359 2360 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2361 &spa->spa_feat_for_read_obj) != 0) { 2362 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2363 } 2364 2365 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2366 &spa->spa_feat_for_write_obj) != 0) { 2367 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2368 } 2369 2370 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2371 &spa->spa_feat_desc_obj) != 0) { 2372 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2373 } 2374 2375 enabled_feat = fnvlist_alloc(); 2376 unsup_feat = fnvlist_alloc(); 2377 2378 if (!spa_features_check(spa, B_FALSE, 2379 unsup_feat, enabled_feat)) 2380 missing_feat_read = B_TRUE; 2381 2382 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2383 if (!spa_features_check(spa, B_TRUE, 2384 unsup_feat, enabled_feat)) { 2385 missing_feat_write = B_TRUE; 2386 } 2387 } 2388 2389 fnvlist_add_nvlist(spa->spa_load_info, 2390 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2391 2392 if (!nvlist_empty(unsup_feat)) { 2393 fnvlist_add_nvlist(spa->spa_load_info, 2394 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2395 } 2396 2397 fnvlist_free(enabled_feat); 2398 fnvlist_free(unsup_feat); 2399 2400 if (!missing_feat_read) { 2401 fnvlist_add_boolean(spa->spa_load_info, 2402 ZPOOL_CONFIG_CAN_RDONLY); 2403 } 2404 2405 /* 2406 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2407 * twofold: to determine whether the pool is available for 2408 * import in read-write mode and (if it is not) whether the 2409 * pool is available for import in read-only mode. If the pool 2410 * is available for import in read-write mode, it is displayed 2411 * as available in userland; if it is not available for import 2412 * in read-only mode, it is displayed as unavailable in 2413 * userland. If the pool is available for import in read-only 2414 * mode but not read-write mode, it is displayed as unavailable 2415 * in userland with a special note that the pool is actually 2416 * available for open in read-only mode. 2417 * 2418 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2419 * missing a feature for write, we must first determine whether 2420 * the pool can be opened read-only before returning to 2421 * userland in order to know whether to display the 2422 * abovementioned note. 2423 */ 2424 if (missing_feat_read || (missing_feat_write && 2425 spa_writeable(spa))) { 2426 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2427 ENOTSUP)); 2428 } 2429 2430 /* 2431 * Load refcounts for ZFS features from disk into an in-memory 2432 * cache during SPA initialization. 2433 */ 2434 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2435 uint64_t refcount; 2436 2437 error = feature_get_refcount_from_disk(spa, 2438 &spa_feature_table[i], &refcount); 2439 if (error == 0) { 2440 spa->spa_feat_refcount_cache[i] = refcount; 2441 } else if (error == ENOTSUP) { 2442 spa->spa_feat_refcount_cache[i] = 2443 SPA_FEATURE_DISABLED; 2444 } else { 2445 return (spa_vdev_err(rvd, 2446 VDEV_AUX_CORRUPT_DATA, EIO)); 2447 } 2448 } 2449 } 2450 2451 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2452 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2453 &spa->spa_feat_enabled_txg_obj) != 0) 2454 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2455 } 2456 2457 spa->spa_is_initializing = B_TRUE; 2458 error = dsl_pool_open(spa->spa_dsl_pool); 2459 spa->spa_is_initializing = B_FALSE; 2460 if (error != 0) 2461 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2462 2463 if (!mosconfig) { 2464 uint64_t hostid; 2465 nvlist_t *policy = NULL, *nvconfig; 2466 2467 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2468 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2469 2470 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2471 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2472 char *hostname; 2473 unsigned long myhostid = 0; 2474 2475 VERIFY(nvlist_lookup_string(nvconfig, 2476 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2477 2478 #ifdef _KERNEL 2479 myhostid = zone_get_hostid(NULL); 2480 #else /* _KERNEL */ 2481 /* 2482 * We're emulating the system's hostid in userland, so 2483 * we can't use zone_get_hostid(). 2484 */ 2485 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2486 #endif /* _KERNEL */ 2487 if (hostid != 0 && myhostid != 0 && 2488 hostid != myhostid) { 2489 nvlist_free(nvconfig); 2490 cmn_err(CE_WARN, "pool '%s' could not be " 2491 "loaded as it was last accessed by " 2492 "another system (host: %s hostid: 0x%lx). " 2493 "See: http://illumos.org/msg/ZFS-8000-EY", 2494 spa_name(spa), hostname, 2495 (unsigned long)hostid); 2496 return (SET_ERROR(EBADF)); 2497 } 2498 } 2499 if (nvlist_lookup_nvlist(spa->spa_config, 2500 ZPOOL_REWIND_POLICY, &policy) == 0) 2501 VERIFY(nvlist_add_nvlist(nvconfig, 2502 ZPOOL_REWIND_POLICY, policy) == 0); 2503 2504 spa_config_set(spa, nvconfig); 2505 spa_unload(spa); 2506 spa_deactivate(spa); 2507 spa_activate(spa, orig_mode); 2508 2509 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2510 } 2511 2512 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2513 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2514 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2515 if (error != 0) 2516 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2517 2518 /* 2519 * Load the bit that tells us to use the new accounting function 2520 * (raid-z deflation). If we have an older pool, this will not 2521 * be present. 2522 */ 2523 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2524 if (error != 0 && error != ENOENT) 2525 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2526 2527 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2528 &spa->spa_creation_version); 2529 if (error != 0 && error != ENOENT) 2530 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2531 2532 /* 2533 * Load the persistent error log. If we have an older pool, this will 2534 * not be present. 2535 */ 2536 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2537 if (error != 0 && error != ENOENT) 2538 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2539 2540 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2541 &spa->spa_errlog_scrub); 2542 if (error != 0 && error != ENOENT) 2543 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2544 2545 /* 2546 * Load the history object. If we have an older pool, this 2547 * will not be present. 2548 */ 2549 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2550 if (error != 0 && error != ENOENT) 2551 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2552 2553 /* 2554 * If we're assembling the pool from the split-off vdevs of 2555 * an existing pool, we don't want to attach the spares & cache 2556 * devices. 2557 */ 2558 2559 /* 2560 * Load any hot spares for this pool. 2561 */ 2562 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2563 if (error != 0 && error != ENOENT) 2564 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2565 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2566 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2567 if (load_nvlist(spa, spa->spa_spares.sav_object, 2568 &spa->spa_spares.sav_config) != 0) 2569 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2570 2571 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2572 spa_load_spares(spa); 2573 spa_config_exit(spa, SCL_ALL, FTAG); 2574 } else if (error == 0) { 2575 spa->spa_spares.sav_sync = B_TRUE; 2576 } 2577 2578 /* 2579 * Load any level 2 ARC devices for this pool. 2580 */ 2581 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2582 &spa->spa_l2cache.sav_object); 2583 if (error != 0 && error != ENOENT) 2584 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2585 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2586 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2587 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2588 &spa->spa_l2cache.sav_config) != 0) 2589 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2590 2591 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2592 spa_load_l2cache(spa); 2593 spa_config_exit(spa, SCL_ALL, FTAG); 2594 } else if (error == 0) { 2595 spa->spa_l2cache.sav_sync = B_TRUE; 2596 } 2597 2598 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2599 2600 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2601 if (error && error != ENOENT) 2602 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2603 2604 if (error == 0) { 2605 uint64_t autoreplace; 2606 2607 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2608 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2609 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2610 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2611 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2612 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2613 &spa->spa_dedup_ditto); 2614 2615 spa->spa_autoreplace = (autoreplace != 0); 2616 } 2617 2618 /* 2619 * If the 'autoreplace' property is set, then post a resource notifying 2620 * the ZFS DE that it should not issue any faults for unopenable 2621 * devices. We also iterate over the vdevs, and post a sysevent for any 2622 * unopenable vdevs so that the normal autoreplace handler can take 2623 * over. 2624 */ 2625 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2626 spa_check_removed(spa->spa_root_vdev); 2627 /* 2628 * For the import case, this is done in spa_import(), because 2629 * at this point we're using the spare definitions from 2630 * the MOS config, not necessarily from the userland config. 2631 */ 2632 if (state != SPA_LOAD_IMPORT) { 2633 spa_aux_check_removed(&spa->spa_spares); 2634 spa_aux_check_removed(&spa->spa_l2cache); 2635 } 2636 } 2637 2638 /* 2639 * Load the vdev state for all toplevel vdevs. 2640 */ 2641 vdev_load(rvd); 2642 2643 /* 2644 * Propagate the leaf DTLs we just loaded all the way up the tree. 2645 */ 2646 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2647 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2648 spa_config_exit(spa, SCL_ALL, FTAG); 2649 2650 /* 2651 * Load the DDTs (dedup tables). 2652 */ 2653 error = ddt_load(spa); 2654 if (error != 0) 2655 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2656 2657 spa_update_dspace(spa); 2658 2659 /* 2660 * Validate the config, using the MOS config to fill in any 2661 * information which might be missing. If we fail to validate 2662 * the config then declare the pool unfit for use. If we're 2663 * assembling a pool from a split, the log is not transferred 2664 * over. 2665 */ 2666 if (type != SPA_IMPORT_ASSEMBLE) { 2667 nvlist_t *nvconfig; 2668 2669 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2670 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2671 2672 if (!spa_config_valid(spa, nvconfig)) { 2673 nvlist_free(nvconfig); 2674 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2675 ENXIO)); 2676 } 2677 nvlist_free(nvconfig); 2678 2679 /* 2680 * Now that we've validated the config, check the state of the 2681 * root vdev. If it can't be opened, it indicates one or 2682 * more toplevel vdevs are faulted. 2683 */ 2684 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2685 return (SET_ERROR(ENXIO)); 2686 2687 if (spa_writeable(spa) && spa_check_logs(spa)) { 2688 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2689 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2690 } 2691 } 2692 2693 if (missing_feat_write) { 2694 ASSERT(state == SPA_LOAD_TRYIMPORT); 2695 2696 /* 2697 * At this point, we know that we can open the pool in 2698 * read-only mode but not read-write mode. We now have enough 2699 * information and can return to userland. 2700 */ 2701 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2702 } 2703 2704 /* 2705 * We've successfully opened the pool, verify that we're ready 2706 * to start pushing transactions. 2707 */ 2708 if (state != SPA_LOAD_TRYIMPORT) { 2709 if (error = spa_load_verify(spa)) 2710 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2711 error)); 2712 } 2713 2714 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2715 spa->spa_load_max_txg == UINT64_MAX)) { 2716 dmu_tx_t *tx; 2717 int need_update = B_FALSE; 2718 2719 ASSERT(state != SPA_LOAD_TRYIMPORT); 2720 2721 /* 2722 * Claim log blocks that haven't been committed yet. 2723 * This must all happen in a single txg. 2724 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2725 * invoked from zil_claim_log_block()'s i/o done callback. 2726 * Price of rollback is that we abandon the log. 2727 */ 2728 spa->spa_claiming = B_TRUE; 2729 2730 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2731 spa_first_txg(spa)); 2732 (void) dmu_objset_find(spa_name(spa), 2733 zil_claim, tx, DS_FIND_CHILDREN); 2734 dmu_tx_commit(tx); 2735 2736 spa->spa_claiming = B_FALSE; 2737 2738 spa_set_log_state(spa, SPA_LOG_GOOD); 2739 spa->spa_sync_on = B_TRUE; 2740 txg_sync_start(spa->spa_dsl_pool); 2741 2742 /* 2743 * Wait for all claims to sync. We sync up to the highest 2744 * claimed log block birth time so that claimed log blocks 2745 * don't appear to be from the future. spa_claim_max_txg 2746 * will have been set for us by either zil_check_log_chain() 2747 * (invoked from spa_check_logs()) or zil_claim() above. 2748 */ 2749 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2750 2751 /* 2752 * If the config cache is stale, or we have uninitialized 2753 * metaslabs (see spa_vdev_add()), then update the config. 2754 * 2755 * If this is a verbatim import, trust the current 2756 * in-core spa_config and update the disk labels. 2757 */ 2758 if (config_cache_txg != spa->spa_config_txg || 2759 state == SPA_LOAD_IMPORT || 2760 state == SPA_LOAD_RECOVER || 2761 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2762 need_update = B_TRUE; 2763 2764 for (int c = 0; c < rvd->vdev_children; c++) 2765 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2766 need_update = B_TRUE; 2767 2768 /* 2769 * Update the config cache asychronously in case we're the 2770 * root pool, in which case the config cache isn't writable yet. 2771 */ 2772 if (need_update) 2773 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2774 2775 /* 2776 * Check all DTLs to see if anything needs resilvering. 2777 */ 2778 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2779 vdev_resilver_needed(rvd, NULL, NULL)) 2780 spa_async_request(spa, SPA_ASYNC_RESILVER); 2781 2782 /* 2783 * Log the fact that we booted up (so that we can detect if 2784 * we rebooted in the middle of an operation). 2785 */ 2786 spa_history_log_version(spa, "open"); 2787 2788 /* 2789 * Delete any inconsistent datasets. 2790 */ 2791 (void) dmu_objset_find(spa_name(spa), 2792 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2793 2794 /* 2795 * Clean up any stale temporary dataset userrefs. 2796 */ 2797 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2798 } 2799 2800 return (0); 2801 } 2802 2803 static int 2804 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2805 { 2806 int mode = spa->spa_mode; 2807 2808 spa_unload(spa); 2809 spa_deactivate(spa); 2810 2811 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 2812 2813 spa_activate(spa, mode); 2814 spa_async_suspend(spa); 2815 2816 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2817 } 2818 2819 /* 2820 * If spa_load() fails this function will try loading prior txg's. If 2821 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2822 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2823 * function will not rewind the pool and will return the same error as 2824 * spa_load(). 2825 */ 2826 static int 2827 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2828 uint64_t max_request, int rewind_flags) 2829 { 2830 nvlist_t *loadinfo = NULL; 2831 nvlist_t *config = NULL; 2832 int load_error, rewind_error; 2833 uint64_t safe_rewind_txg; 2834 uint64_t min_txg; 2835 2836 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2837 spa->spa_load_max_txg = spa->spa_load_txg; 2838 spa_set_log_state(spa, SPA_LOG_CLEAR); 2839 } else { 2840 spa->spa_load_max_txg = max_request; 2841 if (max_request != UINT64_MAX) 2842 spa->spa_extreme_rewind = B_TRUE; 2843 } 2844 2845 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2846 mosconfig); 2847 if (load_error == 0) 2848 return (0); 2849 2850 if (spa->spa_root_vdev != NULL) 2851 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2852 2853 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2854 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2855 2856 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2857 nvlist_free(config); 2858 return (load_error); 2859 } 2860 2861 if (state == SPA_LOAD_RECOVER) { 2862 /* Price of rolling back is discarding txgs, including log */ 2863 spa_set_log_state(spa, SPA_LOG_CLEAR); 2864 } else { 2865 /* 2866 * If we aren't rolling back save the load info from our first 2867 * import attempt so that we can restore it after attempting 2868 * to rewind. 2869 */ 2870 loadinfo = spa->spa_load_info; 2871 spa->spa_load_info = fnvlist_alloc(); 2872 } 2873 2874 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2875 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2876 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2877 TXG_INITIAL : safe_rewind_txg; 2878 2879 /* 2880 * Continue as long as we're finding errors, we're still within 2881 * the acceptable rewind range, and we're still finding uberblocks 2882 */ 2883 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2884 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2885 if (spa->spa_load_max_txg < safe_rewind_txg) 2886 spa->spa_extreme_rewind = B_TRUE; 2887 rewind_error = spa_load_retry(spa, state, mosconfig); 2888 } 2889 2890 spa->spa_extreme_rewind = B_FALSE; 2891 spa->spa_load_max_txg = UINT64_MAX; 2892 2893 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2894 spa_config_set(spa, config); 2895 2896 if (state == SPA_LOAD_RECOVER) { 2897 ASSERT3P(loadinfo, ==, NULL); 2898 return (rewind_error); 2899 } else { 2900 /* Store the rewind info as part of the initial load info */ 2901 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2902 spa->spa_load_info); 2903 2904 /* Restore the initial load info */ 2905 fnvlist_free(spa->spa_load_info); 2906 spa->spa_load_info = loadinfo; 2907 2908 return (load_error); 2909 } 2910 } 2911 2912 /* 2913 * Pool Open/Import 2914 * 2915 * The import case is identical to an open except that the configuration is sent 2916 * down from userland, instead of grabbed from the configuration cache. For the 2917 * case of an open, the pool configuration will exist in the 2918 * POOL_STATE_UNINITIALIZED state. 2919 * 2920 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2921 * the same time open the pool, without having to keep around the spa_t in some 2922 * ambiguous state. 2923 */ 2924 static int 2925 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2926 nvlist_t **config) 2927 { 2928 spa_t *spa; 2929 spa_load_state_t state = SPA_LOAD_OPEN; 2930 int error; 2931 int locked = B_FALSE; 2932 2933 *spapp = NULL; 2934 2935 /* 2936 * As disgusting as this is, we need to support recursive calls to this 2937 * function because dsl_dir_open() is called during spa_load(), and ends 2938 * up calling spa_open() again. The real fix is to figure out how to 2939 * avoid dsl_dir_open() calling this in the first place. 2940 */ 2941 if (mutex_owner(&spa_namespace_lock) != curthread) { 2942 mutex_enter(&spa_namespace_lock); 2943 locked = B_TRUE; 2944 } 2945 2946 if ((spa = spa_lookup(pool)) == NULL) { 2947 if (locked) 2948 mutex_exit(&spa_namespace_lock); 2949 return (SET_ERROR(ENOENT)); 2950 } 2951 2952 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2953 zpool_rewind_policy_t policy; 2954 2955 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2956 &policy); 2957 if (policy.zrp_request & ZPOOL_DO_REWIND) 2958 state = SPA_LOAD_RECOVER; 2959 2960 spa_activate(spa, spa_mode_global); 2961 2962 if (state != SPA_LOAD_RECOVER) 2963 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2964 2965 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2966 policy.zrp_request); 2967 2968 if (error == EBADF) { 2969 /* 2970 * If vdev_validate() returns failure (indicated by 2971 * EBADF), it indicates that one of the vdevs indicates 2972 * that the pool has been exported or destroyed. If 2973 * this is the case, the config cache is out of sync and 2974 * we should remove the pool from the namespace. 2975 */ 2976 spa_unload(spa); 2977 spa_deactivate(spa); 2978 spa_config_sync(spa, B_TRUE, B_TRUE); 2979 spa_remove(spa); 2980 if (locked) 2981 mutex_exit(&spa_namespace_lock); 2982 return (SET_ERROR(ENOENT)); 2983 } 2984 2985 if (error) { 2986 /* 2987 * We can't open the pool, but we still have useful 2988 * information: the state of each vdev after the 2989 * attempted vdev_open(). Return this to the user. 2990 */ 2991 if (config != NULL && spa->spa_config) { 2992 VERIFY(nvlist_dup(spa->spa_config, config, 2993 KM_SLEEP) == 0); 2994 VERIFY(nvlist_add_nvlist(*config, 2995 ZPOOL_CONFIG_LOAD_INFO, 2996 spa->spa_load_info) == 0); 2997 } 2998 spa_unload(spa); 2999 spa_deactivate(spa); 3000 spa->spa_last_open_failed = error; 3001 if (locked) 3002 mutex_exit(&spa_namespace_lock); 3003 *spapp = NULL; 3004 return (error); 3005 } 3006 } 3007 3008 spa_open_ref(spa, tag); 3009 3010 if (config != NULL) 3011 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3012 3013 /* 3014 * If we've recovered the pool, pass back any information we 3015 * gathered while doing the load. 3016 */ 3017 if (state == SPA_LOAD_RECOVER) { 3018 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 3019 spa->spa_load_info) == 0); 3020 } 3021 3022 if (locked) { 3023 spa->spa_last_open_failed = 0; 3024 spa->spa_last_ubsync_txg = 0; 3025 spa->spa_load_txg = 0; 3026 mutex_exit(&spa_namespace_lock); 3027 } 3028 3029 *spapp = spa; 3030 3031 return (0); 3032 } 3033 3034 int 3035 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 3036 nvlist_t **config) 3037 { 3038 return (spa_open_common(name, spapp, tag, policy, config)); 3039 } 3040 3041 int 3042 spa_open(const char *name, spa_t **spapp, void *tag) 3043 { 3044 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3045 } 3046 3047 /* 3048 * Lookup the given spa_t, incrementing the inject count in the process, 3049 * preventing it from being exported or destroyed. 3050 */ 3051 spa_t * 3052 spa_inject_addref(char *name) 3053 { 3054 spa_t *spa; 3055 3056 mutex_enter(&spa_namespace_lock); 3057 if ((spa = spa_lookup(name)) == NULL) { 3058 mutex_exit(&spa_namespace_lock); 3059 return (NULL); 3060 } 3061 spa->spa_inject_ref++; 3062 mutex_exit(&spa_namespace_lock); 3063 3064 return (spa); 3065 } 3066 3067 void 3068 spa_inject_delref(spa_t *spa) 3069 { 3070 mutex_enter(&spa_namespace_lock); 3071 spa->spa_inject_ref--; 3072 mutex_exit(&spa_namespace_lock); 3073 } 3074 3075 /* 3076 * Add spares device information to the nvlist. 3077 */ 3078 static void 3079 spa_add_spares(spa_t *spa, nvlist_t *config) 3080 { 3081 nvlist_t **spares; 3082 uint_t i, nspares; 3083 nvlist_t *nvroot; 3084 uint64_t guid; 3085 vdev_stat_t *vs; 3086 uint_t vsc; 3087 uint64_t pool; 3088 3089 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3090 3091 if (spa->spa_spares.sav_count == 0) 3092 return; 3093 3094 VERIFY(nvlist_lookup_nvlist(config, 3095 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3096 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3097 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3098 if (nspares != 0) { 3099 VERIFY(nvlist_add_nvlist_array(nvroot, 3100 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3101 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3102 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3103 3104 /* 3105 * Go through and find any spares which have since been 3106 * repurposed as an active spare. If this is the case, update 3107 * their status appropriately. 3108 */ 3109 for (i = 0; i < nspares; i++) { 3110 VERIFY(nvlist_lookup_uint64(spares[i], 3111 ZPOOL_CONFIG_GUID, &guid) == 0); 3112 if (spa_spare_exists(guid, &pool, NULL) && 3113 pool != 0ULL) { 3114 VERIFY(nvlist_lookup_uint64_array( 3115 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3116 (uint64_t **)&vs, &vsc) == 0); 3117 vs->vs_state = VDEV_STATE_CANT_OPEN; 3118 vs->vs_aux = VDEV_AUX_SPARED; 3119 } 3120 } 3121 } 3122 } 3123 3124 /* 3125 * Add l2cache device information to the nvlist, including vdev stats. 3126 */ 3127 static void 3128 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3129 { 3130 nvlist_t **l2cache; 3131 uint_t i, j, nl2cache; 3132 nvlist_t *nvroot; 3133 uint64_t guid; 3134 vdev_t *vd; 3135 vdev_stat_t *vs; 3136 uint_t vsc; 3137 3138 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3139 3140 if (spa->spa_l2cache.sav_count == 0) 3141 return; 3142 3143 VERIFY(nvlist_lookup_nvlist(config, 3144 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3145 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3146 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3147 if (nl2cache != 0) { 3148 VERIFY(nvlist_add_nvlist_array(nvroot, 3149 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3150 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3151 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3152 3153 /* 3154 * Update level 2 cache device stats. 3155 */ 3156 3157 for (i = 0; i < nl2cache; i++) { 3158 VERIFY(nvlist_lookup_uint64(l2cache[i], 3159 ZPOOL_CONFIG_GUID, &guid) == 0); 3160 3161 vd = NULL; 3162 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3163 if (guid == 3164 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3165 vd = spa->spa_l2cache.sav_vdevs[j]; 3166 break; 3167 } 3168 } 3169 ASSERT(vd != NULL); 3170 3171 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3172 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3173 == 0); 3174 vdev_get_stats(vd, vs); 3175 } 3176 } 3177 } 3178 3179 static void 3180 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3181 { 3182 nvlist_t *features; 3183 zap_cursor_t zc; 3184 zap_attribute_t za; 3185 3186 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3187 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3188 3189 if (spa->spa_feat_for_read_obj != 0) { 3190 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3191 spa->spa_feat_for_read_obj); 3192 zap_cursor_retrieve(&zc, &za) == 0; 3193 zap_cursor_advance(&zc)) { 3194 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3195 za.za_num_integers == 1); 3196 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3197 za.za_first_integer)); 3198 } 3199 zap_cursor_fini(&zc); 3200 } 3201 3202 if (spa->spa_feat_for_write_obj != 0) { 3203 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3204 spa->spa_feat_for_write_obj); 3205 zap_cursor_retrieve(&zc, &za) == 0; 3206 zap_cursor_advance(&zc)) { 3207 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3208 za.za_num_integers == 1); 3209 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3210 za.za_first_integer)); 3211 } 3212 zap_cursor_fini(&zc); 3213 } 3214 3215 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3216 features) == 0); 3217 nvlist_free(features); 3218 } 3219 3220 int 3221 spa_get_stats(const char *name, nvlist_t **config, 3222 char *altroot, size_t buflen) 3223 { 3224 int error; 3225 spa_t *spa; 3226 3227 *config = NULL; 3228 error = spa_open_common(name, &spa, FTAG, NULL, config); 3229 3230 if (spa != NULL) { 3231 /* 3232 * This still leaves a window of inconsistency where the spares 3233 * or l2cache devices could change and the config would be 3234 * self-inconsistent. 3235 */ 3236 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3237 3238 if (*config != NULL) { 3239 uint64_t loadtimes[2]; 3240 3241 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3242 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3243 VERIFY(nvlist_add_uint64_array(*config, 3244 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3245 3246 VERIFY(nvlist_add_uint64(*config, 3247 ZPOOL_CONFIG_ERRCOUNT, 3248 spa_get_errlog_size(spa)) == 0); 3249 3250 if (spa_suspended(spa)) 3251 VERIFY(nvlist_add_uint64(*config, 3252 ZPOOL_CONFIG_SUSPENDED, 3253 spa->spa_failmode) == 0); 3254 3255 spa_add_spares(spa, *config); 3256 spa_add_l2cache(spa, *config); 3257 spa_add_feature_stats(spa, *config); 3258 } 3259 } 3260 3261 /* 3262 * We want to get the alternate root even for faulted pools, so we cheat 3263 * and call spa_lookup() directly. 3264 */ 3265 if (altroot) { 3266 if (spa == NULL) { 3267 mutex_enter(&spa_namespace_lock); 3268 spa = spa_lookup(name); 3269 if (spa) 3270 spa_altroot(spa, altroot, buflen); 3271 else 3272 altroot[0] = '\0'; 3273 spa = NULL; 3274 mutex_exit(&spa_namespace_lock); 3275 } else { 3276 spa_altroot(spa, altroot, buflen); 3277 } 3278 } 3279 3280 if (spa != NULL) { 3281 spa_config_exit(spa, SCL_CONFIG, FTAG); 3282 spa_close(spa, FTAG); 3283 } 3284 3285 return (error); 3286 } 3287 3288 /* 3289 * Validate that the auxiliary device array is well formed. We must have an 3290 * array of nvlists, each which describes a valid leaf vdev. If this is an 3291 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3292 * specified, as long as they are well-formed. 3293 */ 3294 static int 3295 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3296 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3297 vdev_labeltype_t label) 3298 { 3299 nvlist_t **dev; 3300 uint_t i, ndev; 3301 vdev_t *vd; 3302 int error; 3303 3304 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3305 3306 /* 3307 * It's acceptable to have no devs specified. 3308 */ 3309 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3310 return (0); 3311 3312 if (ndev == 0) 3313 return (SET_ERROR(EINVAL)); 3314 3315 /* 3316 * Make sure the pool is formatted with a version that supports this 3317 * device type. 3318 */ 3319 if (spa_version(spa) < version) 3320 return (SET_ERROR(ENOTSUP)); 3321 3322 /* 3323 * Set the pending device list so we correctly handle device in-use 3324 * checking. 3325 */ 3326 sav->sav_pending = dev; 3327 sav->sav_npending = ndev; 3328 3329 for (i = 0; i < ndev; i++) { 3330 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3331 mode)) != 0) 3332 goto out; 3333 3334 if (!vd->vdev_ops->vdev_op_leaf) { 3335 vdev_free(vd); 3336 error = SET_ERROR(EINVAL); 3337 goto out; 3338 } 3339 3340 /* 3341 * The L2ARC currently only supports disk devices in 3342 * kernel context. For user-level testing, we allow it. 3343 */ 3344 #ifdef _KERNEL 3345 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3346 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3347 error = SET_ERROR(ENOTBLK); 3348 vdev_free(vd); 3349 goto out; 3350 } 3351 #endif 3352 vd->vdev_top = vd; 3353 3354 if ((error = vdev_open(vd)) == 0 && 3355 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3356 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3357 vd->vdev_guid) == 0); 3358 } 3359 3360 vdev_free(vd); 3361 3362 if (error && 3363 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3364 goto out; 3365 else 3366 error = 0; 3367 } 3368 3369 out: 3370 sav->sav_pending = NULL; 3371 sav->sav_npending = 0; 3372 return (error); 3373 } 3374 3375 static int 3376 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3377 { 3378 int error; 3379 3380 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3381 3382 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3383 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3384 VDEV_LABEL_SPARE)) != 0) { 3385 return (error); 3386 } 3387 3388 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3389 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3390 VDEV_LABEL_L2CACHE)); 3391 } 3392 3393 static void 3394 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3395 const char *config) 3396 { 3397 int i; 3398 3399 if (sav->sav_config != NULL) { 3400 nvlist_t **olddevs; 3401 uint_t oldndevs; 3402 nvlist_t **newdevs; 3403 3404 /* 3405 * Generate new dev list by concatentating with the 3406 * current dev list. 3407 */ 3408 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3409 &olddevs, &oldndevs) == 0); 3410 3411 newdevs = kmem_alloc(sizeof (void *) * 3412 (ndevs + oldndevs), KM_SLEEP); 3413 for (i = 0; i < oldndevs; i++) 3414 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3415 KM_SLEEP) == 0); 3416 for (i = 0; i < ndevs; i++) 3417 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3418 KM_SLEEP) == 0); 3419 3420 VERIFY(nvlist_remove(sav->sav_config, config, 3421 DATA_TYPE_NVLIST_ARRAY) == 0); 3422 3423 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3424 config, newdevs, ndevs + oldndevs) == 0); 3425 for (i = 0; i < oldndevs + ndevs; i++) 3426 nvlist_free(newdevs[i]); 3427 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3428 } else { 3429 /* 3430 * Generate a new dev list. 3431 */ 3432 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3433 KM_SLEEP) == 0); 3434 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3435 devs, ndevs) == 0); 3436 } 3437 } 3438 3439 /* 3440 * Stop and drop level 2 ARC devices 3441 */ 3442 void 3443 spa_l2cache_drop(spa_t *spa) 3444 { 3445 vdev_t *vd; 3446 int i; 3447 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3448 3449 for (i = 0; i < sav->sav_count; i++) { 3450 uint64_t pool; 3451 3452 vd = sav->sav_vdevs[i]; 3453 ASSERT(vd != NULL); 3454 3455 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3456 pool != 0ULL && l2arc_vdev_present(vd)) 3457 l2arc_remove_vdev(vd); 3458 } 3459 } 3460 3461 /* 3462 * Pool Creation 3463 */ 3464 int 3465 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3466 nvlist_t *zplprops) 3467 { 3468 spa_t *spa; 3469 char *altroot = NULL; 3470 vdev_t *rvd; 3471 dsl_pool_t *dp; 3472 dmu_tx_t *tx; 3473 int error = 0; 3474 uint64_t txg = TXG_INITIAL; 3475 nvlist_t **spares, **l2cache; 3476 uint_t nspares, nl2cache; 3477 uint64_t version, obj; 3478 boolean_t has_features; 3479 3480 /* 3481 * If this pool already exists, return failure. 3482 */ 3483 mutex_enter(&spa_namespace_lock); 3484 if (spa_lookup(pool) != NULL) { 3485 mutex_exit(&spa_namespace_lock); 3486 return (SET_ERROR(EEXIST)); 3487 } 3488 3489 /* 3490 * Allocate a new spa_t structure. 3491 */ 3492 (void) nvlist_lookup_string(props, 3493 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3494 spa = spa_add(pool, NULL, altroot); 3495 spa_activate(spa, spa_mode_global); 3496 3497 if (props && (error = spa_prop_validate(spa, props))) { 3498 spa_deactivate(spa); 3499 spa_remove(spa); 3500 mutex_exit(&spa_namespace_lock); 3501 return (error); 3502 } 3503 3504 has_features = B_FALSE; 3505 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3506 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3507 if (zpool_prop_feature(nvpair_name(elem))) 3508 has_features = B_TRUE; 3509 } 3510 3511 if (has_features || nvlist_lookup_uint64(props, 3512 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3513 version = SPA_VERSION; 3514 } 3515 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3516 3517 spa->spa_first_txg = txg; 3518 spa->spa_uberblock.ub_txg = txg - 1; 3519 spa->spa_uberblock.ub_version = version; 3520 spa->spa_ubsync = spa->spa_uberblock; 3521 3522 /* 3523 * Create "The Godfather" zio to hold all async IOs 3524 */ 3525 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3526 KM_SLEEP); 3527 for (int i = 0; i < max_ncpus; i++) { 3528 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3529 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3530 ZIO_FLAG_GODFATHER); 3531 } 3532 3533 /* 3534 * Create the root vdev. 3535 */ 3536 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3537 3538 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3539 3540 ASSERT(error != 0 || rvd != NULL); 3541 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3542 3543 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3544 error = SET_ERROR(EINVAL); 3545 3546 if (error == 0 && 3547 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3548 (error = spa_validate_aux(spa, nvroot, txg, 3549 VDEV_ALLOC_ADD)) == 0) { 3550 for (int c = 0; c < rvd->vdev_children; c++) { 3551 vdev_metaslab_set_size(rvd->vdev_child[c]); 3552 vdev_expand(rvd->vdev_child[c], txg); 3553 } 3554 } 3555 3556 spa_config_exit(spa, SCL_ALL, FTAG); 3557 3558 if (error != 0) { 3559 spa_unload(spa); 3560 spa_deactivate(spa); 3561 spa_remove(spa); 3562 mutex_exit(&spa_namespace_lock); 3563 return (error); 3564 } 3565 3566 /* 3567 * Get the list of spares, if specified. 3568 */ 3569 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3570 &spares, &nspares) == 0) { 3571 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3572 KM_SLEEP) == 0); 3573 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3574 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3575 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3576 spa_load_spares(spa); 3577 spa_config_exit(spa, SCL_ALL, FTAG); 3578 spa->spa_spares.sav_sync = B_TRUE; 3579 } 3580 3581 /* 3582 * Get the list of level 2 cache devices, if specified. 3583 */ 3584 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3585 &l2cache, &nl2cache) == 0) { 3586 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3587 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3588 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3589 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3590 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3591 spa_load_l2cache(spa); 3592 spa_config_exit(spa, SCL_ALL, FTAG); 3593 spa->spa_l2cache.sav_sync = B_TRUE; 3594 } 3595 3596 spa->spa_is_initializing = B_TRUE; 3597 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3598 spa->spa_meta_objset = dp->dp_meta_objset; 3599 spa->spa_is_initializing = B_FALSE; 3600 3601 /* 3602 * Create DDTs (dedup tables). 3603 */ 3604 ddt_create(spa); 3605 3606 spa_update_dspace(spa); 3607 3608 tx = dmu_tx_create_assigned(dp, txg); 3609 3610 /* 3611 * Create the pool config object. 3612 */ 3613 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3614 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3615 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3616 3617 if (zap_add(spa->spa_meta_objset, 3618 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3619 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3620 cmn_err(CE_PANIC, "failed to add pool config"); 3621 } 3622 3623 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3624 spa_feature_create_zap_objects(spa, tx); 3625 3626 if (zap_add(spa->spa_meta_objset, 3627 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3628 sizeof (uint64_t), 1, &version, tx) != 0) { 3629 cmn_err(CE_PANIC, "failed to add pool version"); 3630 } 3631 3632 /* Newly created pools with the right version are always deflated. */ 3633 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3634 spa->spa_deflate = TRUE; 3635 if (zap_add(spa->spa_meta_objset, 3636 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3637 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3638 cmn_err(CE_PANIC, "failed to add deflate"); 3639 } 3640 } 3641 3642 /* 3643 * Create the deferred-free bpobj. Turn off compression 3644 * because sync-to-convergence takes longer if the blocksize 3645 * keeps changing. 3646 */ 3647 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3648 dmu_object_set_compress(spa->spa_meta_objset, obj, 3649 ZIO_COMPRESS_OFF, tx); 3650 if (zap_add(spa->spa_meta_objset, 3651 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3652 sizeof (uint64_t), 1, &obj, tx) != 0) { 3653 cmn_err(CE_PANIC, "failed to add bpobj"); 3654 } 3655 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3656 spa->spa_meta_objset, obj)); 3657 3658 /* 3659 * Create the pool's history object. 3660 */ 3661 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3662 spa_history_create_obj(spa, tx); 3663 3664 /* 3665 * Set pool properties. 3666 */ 3667 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3668 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3669 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3670 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3671 3672 if (props != NULL) { 3673 spa_configfile_set(spa, props, B_FALSE); 3674 spa_sync_props(props, tx); 3675 } 3676 3677 dmu_tx_commit(tx); 3678 3679 spa->spa_sync_on = B_TRUE; 3680 txg_sync_start(spa->spa_dsl_pool); 3681 3682 /* 3683 * We explicitly wait for the first transaction to complete so that our 3684 * bean counters are appropriately updated. 3685 */ 3686 txg_wait_synced(spa->spa_dsl_pool, txg); 3687 3688 spa_config_sync(spa, B_FALSE, B_TRUE); 3689 3690 spa_history_log_version(spa, "create"); 3691 3692 /* 3693 * Don't count references from objsets that are already closed 3694 * and are making their way through the eviction process. 3695 */ 3696 spa_evicting_os_wait(spa); 3697 spa->spa_minref = refcount_count(&spa->spa_refcount); 3698 3699 mutex_exit(&spa_namespace_lock); 3700 3701 return (0); 3702 } 3703 3704 #ifdef _KERNEL 3705 /* 3706 * Get the root pool information from the root disk, then import the root pool 3707 * during the system boot up time. 3708 */ 3709 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3710 3711 static nvlist_t * 3712 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3713 { 3714 nvlist_t *config; 3715 nvlist_t *nvtop, *nvroot; 3716 uint64_t pgid; 3717 3718 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3719 return (NULL); 3720 3721 /* 3722 * Add this top-level vdev to the child array. 3723 */ 3724 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3725 &nvtop) == 0); 3726 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3727 &pgid) == 0); 3728 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3729 3730 /* 3731 * Put this pool's top-level vdevs into a root vdev. 3732 */ 3733 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3734 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3735 VDEV_TYPE_ROOT) == 0); 3736 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3737 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3738 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3739 &nvtop, 1) == 0); 3740 3741 /* 3742 * Replace the existing vdev_tree with the new root vdev in 3743 * this pool's configuration (remove the old, add the new). 3744 */ 3745 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3746 nvlist_free(nvroot); 3747 return (config); 3748 } 3749 3750 /* 3751 * Walk the vdev tree and see if we can find a device with "better" 3752 * configuration. A configuration is "better" if the label on that 3753 * device has a more recent txg. 3754 */ 3755 static void 3756 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3757 { 3758 for (int c = 0; c < vd->vdev_children; c++) 3759 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3760 3761 if (vd->vdev_ops->vdev_op_leaf) { 3762 nvlist_t *label; 3763 uint64_t label_txg; 3764 3765 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3766 &label) != 0) 3767 return; 3768 3769 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3770 &label_txg) == 0); 3771 3772 /* 3773 * Do we have a better boot device? 3774 */ 3775 if (label_txg > *txg) { 3776 *txg = label_txg; 3777 *avd = vd; 3778 } 3779 nvlist_free(label); 3780 } 3781 } 3782 3783 /* 3784 * Import a root pool. 3785 * 3786 * For x86. devpath_list will consist of devid and/or physpath name of 3787 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3788 * The GRUB "findroot" command will return the vdev we should boot. 3789 * 3790 * For Sparc, devpath_list consists the physpath name of the booting device 3791 * no matter the rootpool is a single device pool or a mirrored pool. 3792 * e.g. 3793 * "/pci@1f,0/ide@d/disk@0,0:a" 3794 */ 3795 int 3796 spa_import_rootpool(char *devpath, char *devid) 3797 { 3798 spa_t *spa; 3799 vdev_t *rvd, *bvd, *avd = NULL; 3800 nvlist_t *config, *nvtop; 3801 uint64_t guid, txg; 3802 char *pname; 3803 int error; 3804 3805 /* 3806 * Read the label from the boot device and generate a configuration. 3807 */ 3808 config = spa_generate_rootconf(devpath, devid, &guid); 3809 #if defined(_OBP) && defined(_KERNEL) 3810 if (config == NULL) { 3811 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3812 /* iscsi boot */ 3813 get_iscsi_bootpath_phy(devpath); 3814 config = spa_generate_rootconf(devpath, devid, &guid); 3815 } 3816 } 3817 #endif 3818 if (config == NULL) { 3819 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3820 devpath); 3821 return (SET_ERROR(EIO)); 3822 } 3823 3824 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3825 &pname) == 0); 3826 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3827 3828 mutex_enter(&spa_namespace_lock); 3829 if ((spa = spa_lookup(pname)) != NULL) { 3830 /* 3831 * Remove the existing root pool from the namespace so that we 3832 * can replace it with the correct config we just read in. 3833 */ 3834 spa_remove(spa); 3835 } 3836 3837 spa = spa_add(pname, config, NULL); 3838 spa->spa_is_root = B_TRUE; 3839 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3840 3841 /* 3842 * Build up a vdev tree based on the boot device's label config. 3843 */ 3844 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3845 &nvtop) == 0); 3846 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3847 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3848 VDEV_ALLOC_ROOTPOOL); 3849 spa_config_exit(spa, SCL_ALL, FTAG); 3850 if (error) { 3851 mutex_exit(&spa_namespace_lock); 3852 nvlist_free(config); 3853 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3854 pname); 3855 return (error); 3856 } 3857 3858 /* 3859 * Get the boot vdev. 3860 */ 3861 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3862 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3863 (u_longlong_t)guid); 3864 error = SET_ERROR(ENOENT); 3865 goto out; 3866 } 3867 3868 /* 3869 * Determine if there is a better boot device. 3870 */ 3871 avd = bvd; 3872 spa_alt_rootvdev(rvd, &avd, &txg); 3873 if (avd != bvd) { 3874 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3875 "try booting from '%s'", avd->vdev_path); 3876 error = SET_ERROR(EINVAL); 3877 goto out; 3878 } 3879 3880 /* 3881 * If the boot device is part of a spare vdev then ensure that 3882 * we're booting off the active spare. 3883 */ 3884 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3885 !bvd->vdev_isspare) { 3886 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3887 "try booting from '%s'", 3888 bvd->vdev_parent-> 3889 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3890 error = SET_ERROR(EINVAL); 3891 goto out; 3892 } 3893 3894 error = 0; 3895 out: 3896 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3897 vdev_free(rvd); 3898 spa_config_exit(spa, SCL_ALL, FTAG); 3899 mutex_exit(&spa_namespace_lock); 3900 3901 nvlist_free(config); 3902 return (error); 3903 } 3904 3905 #endif 3906 3907 /* 3908 * Import a non-root pool into the system. 3909 */ 3910 int 3911 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3912 { 3913 spa_t *spa; 3914 char *altroot = NULL; 3915 spa_load_state_t state = SPA_LOAD_IMPORT; 3916 zpool_rewind_policy_t policy; 3917 uint64_t mode = spa_mode_global; 3918 uint64_t readonly = B_FALSE; 3919 int error; 3920 nvlist_t *nvroot; 3921 nvlist_t **spares, **l2cache; 3922 uint_t nspares, nl2cache; 3923 3924 /* 3925 * If a pool with this name exists, return failure. 3926 */ 3927 mutex_enter(&spa_namespace_lock); 3928 if (spa_lookup(pool) != NULL) { 3929 mutex_exit(&spa_namespace_lock); 3930 return (SET_ERROR(EEXIST)); 3931 } 3932 3933 /* 3934 * Create and initialize the spa structure. 3935 */ 3936 (void) nvlist_lookup_string(props, 3937 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3938 (void) nvlist_lookup_uint64(props, 3939 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3940 if (readonly) 3941 mode = FREAD; 3942 spa = spa_add(pool, config, altroot); 3943 spa->spa_import_flags = flags; 3944 3945 /* 3946 * Verbatim import - Take a pool and insert it into the namespace 3947 * as if it had been loaded at boot. 3948 */ 3949 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3950 if (props != NULL) 3951 spa_configfile_set(spa, props, B_FALSE); 3952 3953 spa_config_sync(spa, B_FALSE, B_TRUE); 3954 3955 mutex_exit(&spa_namespace_lock); 3956 return (0); 3957 } 3958 3959 spa_activate(spa, mode); 3960 3961 /* 3962 * Don't start async tasks until we know everything is healthy. 3963 */ 3964 spa_async_suspend(spa); 3965 3966 zpool_get_rewind_policy(config, &policy); 3967 if (policy.zrp_request & ZPOOL_DO_REWIND) 3968 state = SPA_LOAD_RECOVER; 3969 3970 /* 3971 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3972 * because the user-supplied config is actually the one to trust when 3973 * doing an import. 3974 */ 3975 if (state != SPA_LOAD_RECOVER) 3976 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3977 3978 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3979 policy.zrp_request); 3980 3981 /* 3982 * Propagate anything learned while loading the pool and pass it 3983 * back to caller (i.e. rewind info, missing devices, etc). 3984 */ 3985 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3986 spa->spa_load_info) == 0); 3987 3988 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3989 /* 3990 * Toss any existing sparelist, as it doesn't have any validity 3991 * anymore, and conflicts with spa_has_spare(). 3992 */ 3993 if (spa->spa_spares.sav_config) { 3994 nvlist_free(spa->spa_spares.sav_config); 3995 spa->spa_spares.sav_config = NULL; 3996 spa_load_spares(spa); 3997 } 3998 if (spa->spa_l2cache.sav_config) { 3999 nvlist_free(spa->spa_l2cache.sav_config); 4000 spa->spa_l2cache.sav_config = NULL; 4001 spa_load_l2cache(spa); 4002 } 4003 4004 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4005 &nvroot) == 0); 4006 if (error == 0) 4007 error = spa_validate_aux(spa, nvroot, -1ULL, 4008 VDEV_ALLOC_SPARE); 4009 if (error == 0) 4010 error = spa_validate_aux(spa, nvroot, -1ULL, 4011 VDEV_ALLOC_L2CACHE); 4012 spa_config_exit(spa, SCL_ALL, FTAG); 4013 4014 if (props != NULL) 4015 spa_configfile_set(spa, props, B_FALSE); 4016 4017 if (error != 0 || (props && spa_writeable(spa) && 4018 (error = spa_prop_set(spa, props)))) { 4019 spa_unload(spa); 4020 spa_deactivate(spa); 4021 spa_remove(spa); 4022 mutex_exit(&spa_namespace_lock); 4023 return (error); 4024 } 4025 4026 spa_async_resume(spa); 4027 4028 /* 4029 * Override any spares and level 2 cache devices as specified by 4030 * the user, as these may have correct device names/devids, etc. 4031 */ 4032 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4033 &spares, &nspares) == 0) { 4034 if (spa->spa_spares.sav_config) 4035 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 4036 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 4037 else 4038 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 4039 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4040 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4041 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4042 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4043 spa_load_spares(spa); 4044 spa_config_exit(spa, SCL_ALL, FTAG); 4045 spa->spa_spares.sav_sync = B_TRUE; 4046 } 4047 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4048 &l2cache, &nl2cache) == 0) { 4049 if (spa->spa_l2cache.sav_config) 4050 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4051 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4052 else 4053 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4054 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4055 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4056 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4057 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4058 spa_load_l2cache(spa); 4059 spa_config_exit(spa, SCL_ALL, FTAG); 4060 spa->spa_l2cache.sav_sync = B_TRUE; 4061 } 4062 4063 /* 4064 * Check for any removed devices. 4065 */ 4066 if (spa->spa_autoreplace) { 4067 spa_aux_check_removed(&spa->spa_spares); 4068 spa_aux_check_removed(&spa->spa_l2cache); 4069 } 4070 4071 if (spa_writeable(spa)) { 4072 /* 4073 * Update the config cache to include the newly-imported pool. 4074 */ 4075 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4076 } 4077 4078 /* 4079 * It's possible that the pool was expanded while it was exported. 4080 * We kick off an async task to handle this for us. 4081 */ 4082 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4083 4084 mutex_exit(&spa_namespace_lock); 4085 spa_history_log_version(spa, "import"); 4086 4087 return (0); 4088 } 4089 4090 nvlist_t * 4091 spa_tryimport(nvlist_t *tryconfig) 4092 { 4093 nvlist_t *config = NULL; 4094 char *poolname; 4095 spa_t *spa; 4096 uint64_t state; 4097 int error; 4098 4099 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4100 return (NULL); 4101 4102 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4103 return (NULL); 4104 4105 /* 4106 * Create and initialize the spa structure. 4107 */ 4108 mutex_enter(&spa_namespace_lock); 4109 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4110 spa_activate(spa, FREAD); 4111 4112 /* 4113 * Pass off the heavy lifting to spa_load(). 4114 * Pass TRUE for mosconfig because the user-supplied config 4115 * is actually the one to trust when doing an import. 4116 */ 4117 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4118 4119 /* 4120 * If 'tryconfig' was at least parsable, return the current config. 4121 */ 4122 if (spa->spa_root_vdev != NULL) { 4123 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4124 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4125 poolname) == 0); 4126 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4127 state) == 0); 4128 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4129 spa->spa_uberblock.ub_timestamp) == 0); 4130 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4131 spa->spa_load_info) == 0); 4132 4133 /* 4134 * If the bootfs property exists on this pool then we 4135 * copy it out so that external consumers can tell which 4136 * pools are bootable. 4137 */ 4138 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4139 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4140 4141 /* 4142 * We have to play games with the name since the 4143 * pool was opened as TRYIMPORT_NAME. 4144 */ 4145 if (dsl_dsobj_to_dsname(spa_name(spa), 4146 spa->spa_bootfs, tmpname) == 0) { 4147 char *cp; 4148 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4149 4150 cp = strchr(tmpname, '/'); 4151 if (cp == NULL) { 4152 (void) strlcpy(dsname, tmpname, 4153 MAXPATHLEN); 4154 } else { 4155 (void) snprintf(dsname, MAXPATHLEN, 4156 "%s/%s", poolname, ++cp); 4157 } 4158 VERIFY(nvlist_add_string(config, 4159 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4160 kmem_free(dsname, MAXPATHLEN); 4161 } 4162 kmem_free(tmpname, MAXPATHLEN); 4163 } 4164 4165 /* 4166 * Add the list of hot spares and level 2 cache devices. 4167 */ 4168 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4169 spa_add_spares(spa, config); 4170 spa_add_l2cache(spa, config); 4171 spa_config_exit(spa, SCL_CONFIG, FTAG); 4172 } 4173 4174 spa_unload(spa); 4175 spa_deactivate(spa); 4176 spa_remove(spa); 4177 mutex_exit(&spa_namespace_lock); 4178 4179 return (config); 4180 } 4181 4182 /* 4183 * Pool export/destroy 4184 * 4185 * The act of destroying or exporting a pool is very simple. We make sure there 4186 * is no more pending I/O and any references to the pool are gone. Then, we 4187 * update the pool state and sync all the labels to disk, removing the 4188 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4189 * we don't sync the labels or remove the configuration cache. 4190 */ 4191 static int 4192 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4193 boolean_t force, boolean_t hardforce) 4194 { 4195 spa_t *spa; 4196 4197 if (oldconfig) 4198 *oldconfig = NULL; 4199 4200 if (!(spa_mode_global & FWRITE)) 4201 return (SET_ERROR(EROFS)); 4202 4203 mutex_enter(&spa_namespace_lock); 4204 if ((spa = spa_lookup(pool)) == NULL) { 4205 mutex_exit(&spa_namespace_lock); 4206 return (SET_ERROR(ENOENT)); 4207 } 4208 4209 /* 4210 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4211 * reacquire the namespace lock, and see if we can export. 4212 */ 4213 spa_open_ref(spa, FTAG); 4214 mutex_exit(&spa_namespace_lock); 4215 spa_async_suspend(spa); 4216 mutex_enter(&spa_namespace_lock); 4217 spa_close(spa, FTAG); 4218 4219 /* 4220 * The pool will be in core if it's openable, 4221 * in which case we can modify its state. 4222 */ 4223 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4224 /* 4225 * Objsets may be open only because they're dirty, so we 4226 * have to force it to sync before checking spa_refcnt. 4227 */ 4228 txg_wait_synced(spa->spa_dsl_pool, 0); 4229 spa_evicting_os_wait(spa); 4230 4231 /* 4232 * A pool cannot be exported or destroyed if there are active 4233 * references. If we are resetting a pool, allow references by 4234 * fault injection handlers. 4235 */ 4236 if (!spa_refcount_zero(spa) || 4237 (spa->spa_inject_ref != 0 && 4238 new_state != POOL_STATE_UNINITIALIZED)) { 4239 spa_async_resume(spa); 4240 mutex_exit(&spa_namespace_lock); 4241 return (SET_ERROR(EBUSY)); 4242 } 4243 4244 /* 4245 * A pool cannot be exported if it has an active shared spare. 4246 * This is to prevent other pools stealing the active spare 4247 * from an exported pool. At user's own will, such pool can 4248 * be forcedly exported. 4249 */ 4250 if (!force && new_state == POOL_STATE_EXPORTED && 4251 spa_has_active_shared_spare(spa)) { 4252 spa_async_resume(spa); 4253 mutex_exit(&spa_namespace_lock); 4254 return (SET_ERROR(EXDEV)); 4255 } 4256 4257 /* 4258 * We want this to be reflected on every label, 4259 * so mark them all dirty. spa_unload() will do the 4260 * final sync that pushes these changes out. 4261 */ 4262 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4263 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4264 spa->spa_state = new_state; 4265 spa->spa_final_txg = spa_last_synced_txg(spa) + 4266 TXG_DEFER_SIZE + 1; 4267 vdev_config_dirty(spa->spa_root_vdev); 4268 spa_config_exit(spa, SCL_ALL, FTAG); 4269 } 4270 } 4271 4272 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4273 4274 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4275 spa_unload(spa); 4276 spa_deactivate(spa); 4277 } 4278 4279 if (oldconfig && spa->spa_config) 4280 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4281 4282 if (new_state != POOL_STATE_UNINITIALIZED) { 4283 if (!hardforce) 4284 spa_config_sync(spa, B_TRUE, B_TRUE); 4285 spa_remove(spa); 4286 } 4287 mutex_exit(&spa_namespace_lock); 4288 4289 return (0); 4290 } 4291 4292 /* 4293 * Destroy a storage pool. 4294 */ 4295 int 4296 spa_destroy(char *pool) 4297 { 4298 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4299 B_FALSE, B_FALSE)); 4300 } 4301 4302 /* 4303 * Export a storage pool. 4304 */ 4305 int 4306 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4307 boolean_t hardforce) 4308 { 4309 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4310 force, hardforce)); 4311 } 4312 4313 /* 4314 * Similar to spa_export(), this unloads the spa_t without actually removing it 4315 * from the namespace in any way. 4316 */ 4317 int 4318 spa_reset(char *pool) 4319 { 4320 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4321 B_FALSE, B_FALSE)); 4322 } 4323 4324 /* 4325 * ========================================================================== 4326 * Device manipulation 4327 * ========================================================================== 4328 */ 4329 4330 /* 4331 * Add a device to a storage pool. 4332 */ 4333 int 4334 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4335 { 4336 uint64_t txg, id; 4337 int error; 4338 vdev_t *rvd = spa->spa_root_vdev; 4339 vdev_t *vd, *tvd; 4340 nvlist_t **spares, **l2cache; 4341 uint_t nspares, nl2cache; 4342 4343 ASSERT(spa_writeable(spa)); 4344 4345 txg = spa_vdev_enter(spa); 4346 4347 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4348 VDEV_ALLOC_ADD)) != 0) 4349 return (spa_vdev_exit(spa, NULL, txg, error)); 4350 4351 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4352 4353 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4354 &nspares) != 0) 4355 nspares = 0; 4356 4357 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4358 &nl2cache) != 0) 4359 nl2cache = 0; 4360 4361 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4362 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4363 4364 if (vd->vdev_children != 0 && 4365 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4366 return (spa_vdev_exit(spa, vd, txg, error)); 4367 4368 /* 4369 * We must validate the spares and l2cache devices after checking the 4370 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4371 */ 4372 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4373 return (spa_vdev_exit(spa, vd, txg, error)); 4374 4375 /* 4376 * Transfer each new top-level vdev from vd to rvd. 4377 */ 4378 for (int c = 0; c < vd->vdev_children; c++) { 4379 4380 /* 4381 * Set the vdev id to the first hole, if one exists. 4382 */ 4383 for (id = 0; id < rvd->vdev_children; id++) { 4384 if (rvd->vdev_child[id]->vdev_ishole) { 4385 vdev_free(rvd->vdev_child[id]); 4386 break; 4387 } 4388 } 4389 tvd = vd->vdev_child[c]; 4390 vdev_remove_child(vd, tvd); 4391 tvd->vdev_id = id; 4392 vdev_add_child(rvd, tvd); 4393 vdev_config_dirty(tvd); 4394 } 4395 4396 if (nspares != 0) { 4397 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4398 ZPOOL_CONFIG_SPARES); 4399 spa_load_spares(spa); 4400 spa->spa_spares.sav_sync = B_TRUE; 4401 } 4402 4403 if (nl2cache != 0) { 4404 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4405 ZPOOL_CONFIG_L2CACHE); 4406 spa_load_l2cache(spa); 4407 spa->spa_l2cache.sav_sync = B_TRUE; 4408 } 4409 4410 /* 4411 * We have to be careful when adding new vdevs to an existing pool. 4412 * If other threads start allocating from these vdevs before we 4413 * sync the config cache, and we lose power, then upon reboot we may 4414 * fail to open the pool because there are DVAs that the config cache 4415 * can't translate. Therefore, we first add the vdevs without 4416 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4417 * and then let spa_config_update() initialize the new metaslabs. 4418 * 4419 * spa_load() checks for added-but-not-initialized vdevs, so that 4420 * if we lose power at any point in this sequence, the remaining 4421 * steps will be completed the next time we load the pool. 4422 */ 4423 (void) spa_vdev_exit(spa, vd, txg, 0); 4424 4425 mutex_enter(&spa_namespace_lock); 4426 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4427 mutex_exit(&spa_namespace_lock); 4428 4429 return (0); 4430 } 4431 4432 /* 4433 * Attach a device to a mirror. The arguments are the path to any device 4434 * in the mirror, and the nvroot for the new device. If the path specifies 4435 * a device that is not mirrored, we automatically insert the mirror vdev. 4436 * 4437 * If 'replacing' is specified, the new device is intended to replace the 4438 * existing device; in this case the two devices are made into their own 4439 * mirror using the 'replacing' vdev, which is functionally identical to 4440 * the mirror vdev (it actually reuses all the same ops) but has a few 4441 * extra rules: you can't attach to it after it's been created, and upon 4442 * completion of resilvering, the first disk (the one being replaced) 4443 * is automatically detached. 4444 */ 4445 int 4446 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4447 { 4448 uint64_t txg, dtl_max_txg; 4449 vdev_t *rvd = spa->spa_root_vdev; 4450 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4451 vdev_ops_t *pvops; 4452 char *oldvdpath, *newvdpath; 4453 int newvd_isspare; 4454 int error; 4455 4456 ASSERT(spa_writeable(spa)); 4457 4458 txg = spa_vdev_enter(spa); 4459 4460 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4461 4462 if (oldvd == NULL) 4463 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4464 4465 if (!oldvd->vdev_ops->vdev_op_leaf) 4466 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4467 4468 pvd = oldvd->vdev_parent; 4469 4470 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4471 VDEV_ALLOC_ATTACH)) != 0) 4472 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4473 4474 if (newrootvd->vdev_children != 1) 4475 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4476 4477 newvd = newrootvd->vdev_child[0]; 4478 4479 if (!newvd->vdev_ops->vdev_op_leaf) 4480 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4481 4482 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4483 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4484 4485 /* 4486 * Spares can't replace logs 4487 */ 4488 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4489 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4490 4491 if (!replacing) { 4492 /* 4493 * For attach, the only allowable parent is a mirror or the root 4494 * vdev. 4495 */ 4496 if (pvd->vdev_ops != &vdev_mirror_ops && 4497 pvd->vdev_ops != &vdev_root_ops) 4498 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4499 4500 pvops = &vdev_mirror_ops; 4501 } else { 4502 /* 4503 * Active hot spares can only be replaced by inactive hot 4504 * spares. 4505 */ 4506 if (pvd->vdev_ops == &vdev_spare_ops && 4507 oldvd->vdev_isspare && 4508 !spa_has_spare(spa, newvd->vdev_guid)) 4509 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4510 4511 /* 4512 * If the source is a hot spare, and the parent isn't already a 4513 * spare, then we want to create a new hot spare. Otherwise, we 4514 * want to create a replacing vdev. The user is not allowed to 4515 * attach to a spared vdev child unless the 'isspare' state is 4516 * the same (spare replaces spare, non-spare replaces 4517 * non-spare). 4518 */ 4519 if (pvd->vdev_ops == &vdev_replacing_ops && 4520 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4521 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4522 } else if (pvd->vdev_ops == &vdev_spare_ops && 4523 newvd->vdev_isspare != oldvd->vdev_isspare) { 4524 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4525 } 4526 4527 if (newvd->vdev_isspare) 4528 pvops = &vdev_spare_ops; 4529 else 4530 pvops = &vdev_replacing_ops; 4531 } 4532 4533 /* 4534 * Make sure the new device is big enough. 4535 */ 4536 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4537 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4538 4539 /* 4540 * The new device cannot have a higher alignment requirement 4541 * than the top-level vdev. 4542 */ 4543 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4544 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4545 4546 /* 4547 * If this is an in-place replacement, update oldvd's path and devid 4548 * to make it distinguishable from newvd, and unopenable from now on. 4549 */ 4550 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4551 spa_strfree(oldvd->vdev_path); 4552 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4553 KM_SLEEP); 4554 (void) sprintf(oldvd->vdev_path, "%s/%s", 4555 newvd->vdev_path, "old"); 4556 if (oldvd->vdev_devid != NULL) { 4557 spa_strfree(oldvd->vdev_devid); 4558 oldvd->vdev_devid = NULL; 4559 } 4560 } 4561 4562 /* mark the device being resilvered */ 4563 newvd->vdev_resilver_txg = txg; 4564 4565 /* 4566 * If the parent is not a mirror, or if we're replacing, insert the new 4567 * mirror/replacing/spare vdev above oldvd. 4568 */ 4569 if (pvd->vdev_ops != pvops) 4570 pvd = vdev_add_parent(oldvd, pvops); 4571 4572 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4573 ASSERT(pvd->vdev_ops == pvops); 4574 ASSERT(oldvd->vdev_parent == pvd); 4575 4576 /* 4577 * Extract the new device from its root and add it to pvd. 4578 */ 4579 vdev_remove_child(newrootvd, newvd); 4580 newvd->vdev_id = pvd->vdev_children; 4581 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4582 vdev_add_child(pvd, newvd); 4583 4584 tvd = newvd->vdev_top; 4585 ASSERT(pvd->vdev_top == tvd); 4586 ASSERT(tvd->vdev_parent == rvd); 4587 4588 vdev_config_dirty(tvd); 4589 4590 /* 4591 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4592 * for any dmu_sync-ed blocks. It will propagate upward when 4593 * spa_vdev_exit() calls vdev_dtl_reassess(). 4594 */ 4595 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4596 4597 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4598 dtl_max_txg - TXG_INITIAL); 4599 4600 if (newvd->vdev_isspare) { 4601 spa_spare_activate(newvd); 4602 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4603 } 4604 4605 oldvdpath = spa_strdup(oldvd->vdev_path); 4606 newvdpath = spa_strdup(newvd->vdev_path); 4607 newvd_isspare = newvd->vdev_isspare; 4608 4609 /* 4610 * Mark newvd's DTL dirty in this txg. 4611 */ 4612 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4613 4614 /* 4615 * Schedule the resilver to restart in the future. We do this to 4616 * ensure that dmu_sync-ed blocks have been stitched into the 4617 * respective datasets. 4618 */ 4619 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4620 4621 /* 4622 * Commit the config 4623 */ 4624 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4625 4626 spa_history_log_internal(spa, "vdev attach", NULL, 4627 "%s vdev=%s %s vdev=%s", 4628 replacing && newvd_isspare ? "spare in" : 4629 replacing ? "replace" : "attach", newvdpath, 4630 replacing ? "for" : "to", oldvdpath); 4631 4632 spa_strfree(oldvdpath); 4633 spa_strfree(newvdpath); 4634 4635 if (spa->spa_bootfs) 4636 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4637 4638 return (0); 4639 } 4640 4641 /* 4642 * Detach a device from a mirror or replacing vdev. 4643 * 4644 * If 'replace_done' is specified, only detach if the parent 4645 * is a replacing vdev. 4646 */ 4647 int 4648 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4649 { 4650 uint64_t txg; 4651 int error; 4652 vdev_t *rvd = spa->spa_root_vdev; 4653 vdev_t *vd, *pvd, *cvd, *tvd; 4654 boolean_t unspare = B_FALSE; 4655 uint64_t unspare_guid = 0; 4656 char *vdpath; 4657 4658 ASSERT(spa_writeable(spa)); 4659 4660 txg = spa_vdev_enter(spa); 4661 4662 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4663 4664 if (vd == NULL) 4665 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4666 4667 if (!vd->vdev_ops->vdev_op_leaf) 4668 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4669 4670 pvd = vd->vdev_parent; 4671 4672 /* 4673 * If the parent/child relationship is not as expected, don't do it. 4674 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4675 * vdev that's replacing B with C. The user's intent in replacing 4676 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4677 * the replace by detaching C, the expected behavior is to end up 4678 * M(A,B). But suppose that right after deciding to detach C, 4679 * the replacement of B completes. We would have M(A,C), and then 4680 * ask to detach C, which would leave us with just A -- not what 4681 * the user wanted. To prevent this, we make sure that the 4682 * parent/child relationship hasn't changed -- in this example, 4683 * that C's parent is still the replacing vdev R. 4684 */ 4685 if (pvd->vdev_guid != pguid && pguid != 0) 4686 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4687 4688 /* 4689 * Only 'replacing' or 'spare' vdevs can be replaced. 4690 */ 4691 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4692 pvd->vdev_ops != &vdev_spare_ops) 4693 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4694 4695 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4696 spa_version(spa) >= SPA_VERSION_SPARES); 4697 4698 /* 4699 * Only mirror, replacing, and spare vdevs support detach. 4700 */ 4701 if (pvd->vdev_ops != &vdev_replacing_ops && 4702 pvd->vdev_ops != &vdev_mirror_ops && 4703 pvd->vdev_ops != &vdev_spare_ops) 4704 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4705 4706 /* 4707 * If this device has the only valid copy of some data, 4708 * we cannot safely detach it. 4709 */ 4710 if (vdev_dtl_required(vd)) 4711 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4712 4713 ASSERT(pvd->vdev_children >= 2); 4714 4715 /* 4716 * If we are detaching the second disk from a replacing vdev, then 4717 * check to see if we changed the original vdev's path to have "/old" 4718 * at the end in spa_vdev_attach(). If so, undo that change now. 4719 */ 4720 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4721 vd->vdev_path != NULL) { 4722 size_t len = strlen(vd->vdev_path); 4723 4724 for (int c = 0; c < pvd->vdev_children; c++) { 4725 cvd = pvd->vdev_child[c]; 4726 4727 if (cvd == vd || cvd->vdev_path == NULL) 4728 continue; 4729 4730 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4731 strcmp(cvd->vdev_path + len, "/old") == 0) { 4732 spa_strfree(cvd->vdev_path); 4733 cvd->vdev_path = spa_strdup(vd->vdev_path); 4734 break; 4735 } 4736 } 4737 } 4738 4739 /* 4740 * If we are detaching the original disk from a spare, then it implies 4741 * that the spare should become a real disk, and be removed from the 4742 * active spare list for the pool. 4743 */ 4744 if (pvd->vdev_ops == &vdev_spare_ops && 4745 vd->vdev_id == 0 && 4746 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4747 unspare = B_TRUE; 4748 4749 /* 4750 * Erase the disk labels so the disk can be used for other things. 4751 * This must be done after all other error cases are handled, 4752 * but before we disembowel vd (so we can still do I/O to it). 4753 * But if we can't do it, don't treat the error as fatal -- 4754 * it may be that the unwritability of the disk is the reason 4755 * it's being detached! 4756 */ 4757 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4758 4759 /* 4760 * Remove vd from its parent and compact the parent's children. 4761 */ 4762 vdev_remove_child(pvd, vd); 4763 vdev_compact_children(pvd); 4764 4765 /* 4766 * Remember one of the remaining children so we can get tvd below. 4767 */ 4768 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4769 4770 /* 4771 * If we need to remove the remaining child from the list of hot spares, 4772 * do it now, marking the vdev as no longer a spare in the process. 4773 * We must do this before vdev_remove_parent(), because that can 4774 * change the GUID if it creates a new toplevel GUID. For a similar 4775 * reason, we must remove the spare now, in the same txg as the detach; 4776 * otherwise someone could attach a new sibling, change the GUID, and 4777 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4778 */ 4779 if (unspare) { 4780 ASSERT(cvd->vdev_isspare); 4781 spa_spare_remove(cvd); 4782 unspare_guid = cvd->vdev_guid; 4783 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4784 cvd->vdev_unspare = B_TRUE; 4785 } 4786 4787 /* 4788 * If the parent mirror/replacing vdev only has one child, 4789 * the parent is no longer needed. Remove it from the tree. 4790 */ 4791 if (pvd->vdev_children == 1) { 4792 if (pvd->vdev_ops == &vdev_spare_ops) 4793 cvd->vdev_unspare = B_FALSE; 4794 vdev_remove_parent(cvd); 4795 } 4796 4797 4798 /* 4799 * We don't set tvd until now because the parent we just removed 4800 * may have been the previous top-level vdev. 4801 */ 4802 tvd = cvd->vdev_top; 4803 ASSERT(tvd->vdev_parent == rvd); 4804 4805 /* 4806 * Reevaluate the parent vdev state. 4807 */ 4808 vdev_propagate_state(cvd); 4809 4810 /* 4811 * If the 'autoexpand' property is set on the pool then automatically 4812 * try to expand the size of the pool. For example if the device we 4813 * just detached was smaller than the others, it may be possible to 4814 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4815 * first so that we can obtain the updated sizes of the leaf vdevs. 4816 */ 4817 if (spa->spa_autoexpand) { 4818 vdev_reopen(tvd); 4819 vdev_expand(tvd, txg); 4820 } 4821 4822 vdev_config_dirty(tvd); 4823 4824 /* 4825 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4826 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4827 * But first make sure we're not on any *other* txg's DTL list, to 4828 * prevent vd from being accessed after it's freed. 4829 */ 4830 vdpath = spa_strdup(vd->vdev_path); 4831 for (int t = 0; t < TXG_SIZE; t++) 4832 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4833 vd->vdev_detached = B_TRUE; 4834 vdev_dirty(tvd, VDD_DTL, vd, txg); 4835 4836 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4837 4838 /* hang on to the spa before we release the lock */ 4839 spa_open_ref(spa, FTAG); 4840 4841 error = spa_vdev_exit(spa, vd, txg, 0); 4842 4843 spa_history_log_internal(spa, "detach", NULL, 4844 "vdev=%s", vdpath); 4845 spa_strfree(vdpath); 4846 4847 /* 4848 * If this was the removal of the original device in a hot spare vdev, 4849 * then we want to go through and remove the device from the hot spare 4850 * list of every other pool. 4851 */ 4852 if (unspare) { 4853 spa_t *altspa = NULL; 4854 4855 mutex_enter(&spa_namespace_lock); 4856 while ((altspa = spa_next(altspa)) != NULL) { 4857 if (altspa->spa_state != POOL_STATE_ACTIVE || 4858 altspa == spa) 4859 continue; 4860 4861 spa_open_ref(altspa, FTAG); 4862 mutex_exit(&spa_namespace_lock); 4863 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4864 mutex_enter(&spa_namespace_lock); 4865 spa_close(altspa, FTAG); 4866 } 4867 mutex_exit(&spa_namespace_lock); 4868 4869 /* search the rest of the vdevs for spares to remove */ 4870 spa_vdev_resilver_done(spa); 4871 } 4872 4873 /* all done with the spa; OK to release */ 4874 mutex_enter(&spa_namespace_lock); 4875 spa_close(spa, FTAG); 4876 mutex_exit(&spa_namespace_lock); 4877 4878 return (error); 4879 } 4880 4881 /* 4882 * Split a set of devices from their mirrors, and create a new pool from them. 4883 */ 4884 int 4885 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4886 nvlist_t *props, boolean_t exp) 4887 { 4888 int error = 0; 4889 uint64_t txg, *glist; 4890 spa_t *newspa; 4891 uint_t c, children, lastlog; 4892 nvlist_t **child, *nvl, *tmp; 4893 dmu_tx_t *tx; 4894 char *altroot = NULL; 4895 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4896 boolean_t activate_slog; 4897 4898 ASSERT(spa_writeable(spa)); 4899 4900 txg = spa_vdev_enter(spa); 4901 4902 /* clear the log and flush everything up to now */ 4903 activate_slog = spa_passivate_log(spa); 4904 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4905 error = spa_offline_log(spa); 4906 txg = spa_vdev_config_enter(spa); 4907 4908 if (activate_slog) 4909 spa_activate_log(spa); 4910 4911 if (error != 0) 4912 return (spa_vdev_exit(spa, NULL, txg, error)); 4913 4914 /* check new spa name before going any further */ 4915 if (spa_lookup(newname) != NULL) 4916 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4917 4918 /* 4919 * scan through all the children to ensure they're all mirrors 4920 */ 4921 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4922 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4923 &children) != 0) 4924 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4925 4926 /* first, check to ensure we've got the right child count */ 4927 rvd = spa->spa_root_vdev; 4928 lastlog = 0; 4929 for (c = 0; c < rvd->vdev_children; c++) { 4930 vdev_t *vd = rvd->vdev_child[c]; 4931 4932 /* don't count the holes & logs as children */ 4933 if (vd->vdev_islog || vd->vdev_ishole) { 4934 if (lastlog == 0) 4935 lastlog = c; 4936 continue; 4937 } 4938 4939 lastlog = 0; 4940 } 4941 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4942 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4943 4944 /* next, ensure no spare or cache devices are part of the split */ 4945 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4946 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4947 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4948 4949 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4950 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4951 4952 /* then, loop over each vdev and validate it */ 4953 for (c = 0; c < children; c++) { 4954 uint64_t is_hole = 0; 4955 4956 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4957 &is_hole); 4958 4959 if (is_hole != 0) { 4960 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4961 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4962 continue; 4963 } else { 4964 error = SET_ERROR(EINVAL); 4965 break; 4966 } 4967 } 4968 4969 /* which disk is going to be split? */ 4970 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4971 &glist[c]) != 0) { 4972 error = SET_ERROR(EINVAL); 4973 break; 4974 } 4975 4976 /* look it up in the spa */ 4977 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4978 if (vml[c] == NULL) { 4979 error = SET_ERROR(ENODEV); 4980 break; 4981 } 4982 4983 /* make sure there's nothing stopping the split */ 4984 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4985 vml[c]->vdev_islog || 4986 vml[c]->vdev_ishole || 4987 vml[c]->vdev_isspare || 4988 vml[c]->vdev_isl2cache || 4989 !vdev_writeable(vml[c]) || 4990 vml[c]->vdev_children != 0 || 4991 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4992 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4993 error = SET_ERROR(EINVAL); 4994 break; 4995 } 4996 4997 if (vdev_dtl_required(vml[c])) { 4998 error = SET_ERROR(EBUSY); 4999 break; 5000 } 5001 5002 /* we need certain info from the top level */ 5003 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 5004 vml[c]->vdev_top->vdev_ms_array) == 0); 5005 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 5006 vml[c]->vdev_top->vdev_ms_shift) == 0); 5007 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 5008 vml[c]->vdev_top->vdev_asize) == 0); 5009 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 5010 vml[c]->vdev_top->vdev_ashift) == 0); 5011 } 5012 5013 if (error != 0) { 5014 kmem_free(vml, children * sizeof (vdev_t *)); 5015 kmem_free(glist, children * sizeof (uint64_t)); 5016 return (spa_vdev_exit(spa, NULL, txg, error)); 5017 } 5018 5019 /* stop writers from using the disks */ 5020 for (c = 0; c < children; c++) { 5021 if (vml[c] != NULL) 5022 vml[c]->vdev_offline = B_TRUE; 5023 } 5024 vdev_reopen(spa->spa_root_vdev); 5025 5026 /* 5027 * Temporarily record the splitting vdevs in the spa config. This 5028 * will disappear once the config is regenerated. 5029 */ 5030 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5031 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 5032 glist, children) == 0); 5033 kmem_free(glist, children * sizeof (uint64_t)); 5034 5035 mutex_enter(&spa->spa_props_lock); 5036 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 5037 nvl) == 0); 5038 mutex_exit(&spa->spa_props_lock); 5039 spa->spa_config_splitting = nvl; 5040 vdev_config_dirty(spa->spa_root_vdev); 5041 5042 /* configure and create the new pool */ 5043 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 5044 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5045 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 5046 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5047 spa_version(spa)) == 0); 5048 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 5049 spa->spa_config_txg) == 0); 5050 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5051 spa_generate_guid(NULL)) == 0); 5052 (void) nvlist_lookup_string(props, 5053 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5054 5055 /* add the new pool to the namespace */ 5056 newspa = spa_add(newname, config, altroot); 5057 newspa->spa_config_txg = spa->spa_config_txg; 5058 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5059 5060 /* release the spa config lock, retaining the namespace lock */ 5061 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5062 5063 if (zio_injection_enabled) 5064 zio_handle_panic_injection(spa, FTAG, 1); 5065 5066 spa_activate(newspa, spa_mode_global); 5067 spa_async_suspend(newspa); 5068 5069 /* create the new pool from the disks of the original pool */ 5070 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 5071 if (error) 5072 goto out; 5073 5074 /* if that worked, generate a real config for the new pool */ 5075 if (newspa->spa_root_vdev != NULL) { 5076 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5077 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5078 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5079 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5080 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5081 B_TRUE)); 5082 } 5083 5084 /* set the props */ 5085 if (props != NULL) { 5086 spa_configfile_set(newspa, props, B_FALSE); 5087 error = spa_prop_set(newspa, props); 5088 if (error) 5089 goto out; 5090 } 5091 5092 /* flush everything */ 5093 txg = spa_vdev_config_enter(newspa); 5094 vdev_config_dirty(newspa->spa_root_vdev); 5095 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5096 5097 if (zio_injection_enabled) 5098 zio_handle_panic_injection(spa, FTAG, 2); 5099 5100 spa_async_resume(newspa); 5101 5102 /* finally, update the original pool's config */ 5103 txg = spa_vdev_config_enter(spa); 5104 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5105 error = dmu_tx_assign(tx, TXG_WAIT); 5106 if (error != 0) 5107 dmu_tx_abort(tx); 5108 for (c = 0; c < children; c++) { 5109 if (vml[c] != NULL) { 5110 vdev_split(vml[c]); 5111 if (error == 0) 5112 spa_history_log_internal(spa, "detach", tx, 5113 "vdev=%s", vml[c]->vdev_path); 5114 vdev_free(vml[c]); 5115 } 5116 } 5117 vdev_config_dirty(spa->spa_root_vdev); 5118 spa->spa_config_splitting = NULL; 5119 nvlist_free(nvl); 5120 if (error == 0) 5121 dmu_tx_commit(tx); 5122 (void) spa_vdev_exit(spa, NULL, txg, 0); 5123 5124 if (zio_injection_enabled) 5125 zio_handle_panic_injection(spa, FTAG, 3); 5126 5127 /* split is complete; log a history record */ 5128 spa_history_log_internal(newspa, "split", NULL, 5129 "from pool %s", spa_name(spa)); 5130 5131 kmem_free(vml, children * sizeof (vdev_t *)); 5132 5133 /* if we're not going to mount the filesystems in userland, export */ 5134 if (exp) 5135 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5136 B_FALSE, B_FALSE); 5137 5138 return (error); 5139 5140 out: 5141 spa_unload(newspa); 5142 spa_deactivate(newspa); 5143 spa_remove(newspa); 5144 5145 txg = spa_vdev_config_enter(spa); 5146 5147 /* re-online all offlined disks */ 5148 for (c = 0; c < children; c++) { 5149 if (vml[c] != NULL) 5150 vml[c]->vdev_offline = B_FALSE; 5151 } 5152 vdev_reopen(spa->spa_root_vdev); 5153 5154 nvlist_free(spa->spa_config_splitting); 5155 spa->spa_config_splitting = NULL; 5156 (void) spa_vdev_exit(spa, NULL, txg, error); 5157 5158 kmem_free(vml, children * sizeof (vdev_t *)); 5159 return (error); 5160 } 5161 5162 static nvlist_t * 5163 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5164 { 5165 for (int i = 0; i < count; i++) { 5166 uint64_t guid; 5167 5168 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5169 &guid) == 0); 5170 5171 if (guid == target_guid) 5172 return (nvpp[i]); 5173 } 5174 5175 return (NULL); 5176 } 5177 5178 static void 5179 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5180 nvlist_t *dev_to_remove) 5181 { 5182 nvlist_t **newdev = NULL; 5183 5184 if (count > 1) 5185 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5186 5187 for (int i = 0, j = 0; i < count; i++) { 5188 if (dev[i] == dev_to_remove) 5189 continue; 5190 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5191 } 5192 5193 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5194 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5195 5196 for (int i = 0; i < count - 1; i++) 5197 nvlist_free(newdev[i]); 5198 5199 if (count > 1) 5200 kmem_free(newdev, (count - 1) * sizeof (void *)); 5201 } 5202 5203 /* 5204 * Evacuate the device. 5205 */ 5206 static int 5207 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5208 { 5209 uint64_t txg; 5210 int error = 0; 5211 5212 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5213 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5214 ASSERT(vd == vd->vdev_top); 5215 5216 /* 5217 * Evacuate the device. We don't hold the config lock as writer 5218 * since we need to do I/O but we do keep the 5219 * spa_namespace_lock held. Once this completes the device 5220 * should no longer have any blocks allocated on it. 5221 */ 5222 if (vd->vdev_islog) { 5223 if (vd->vdev_stat.vs_alloc != 0) 5224 error = spa_offline_log(spa); 5225 } else { 5226 error = SET_ERROR(ENOTSUP); 5227 } 5228 5229 if (error) 5230 return (error); 5231 5232 /* 5233 * The evacuation succeeded. Remove any remaining MOS metadata 5234 * associated with this vdev, and wait for these changes to sync. 5235 */ 5236 ASSERT0(vd->vdev_stat.vs_alloc); 5237 txg = spa_vdev_config_enter(spa); 5238 vd->vdev_removing = B_TRUE; 5239 vdev_dirty_leaves(vd, VDD_DTL, txg); 5240 vdev_config_dirty(vd); 5241 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5242 5243 return (0); 5244 } 5245 5246 /* 5247 * Complete the removal by cleaning up the namespace. 5248 */ 5249 static void 5250 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5251 { 5252 vdev_t *rvd = spa->spa_root_vdev; 5253 uint64_t id = vd->vdev_id; 5254 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5255 5256 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5257 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5258 ASSERT(vd == vd->vdev_top); 5259 5260 /* 5261 * Only remove any devices which are empty. 5262 */ 5263 if (vd->vdev_stat.vs_alloc != 0) 5264 return; 5265 5266 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5267 5268 if (list_link_active(&vd->vdev_state_dirty_node)) 5269 vdev_state_clean(vd); 5270 if (list_link_active(&vd->vdev_config_dirty_node)) 5271 vdev_config_clean(vd); 5272 5273 vdev_free(vd); 5274 5275 if (last_vdev) { 5276 vdev_compact_children(rvd); 5277 } else { 5278 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5279 vdev_add_child(rvd, vd); 5280 } 5281 vdev_config_dirty(rvd); 5282 5283 /* 5284 * Reassess the health of our root vdev. 5285 */ 5286 vdev_reopen(rvd); 5287 } 5288 5289 /* 5290 * Remove a device from the pool - 5291 * 5292 * Removing a device from the vdev namespace requires several steps 5293 * and can take a significant amount of time. As a result we use 5294 * the spa_vdev_config_[enter/exit] functions which allow us to 5295 * grab and release the spa_config_lock while still holding the namespace 5296 * lock. During each step the configuration is synced out. 5297 * 5298 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5299 * devices. 5300 */ 5301 int 5302 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5303 { 5304 vdev_t *vd; 5305 metaslab_group_t *mg; 5306 nvlist_t **spares, **l2cache, *nv; 5307 uint64_t txg = 0; 5308 uint_t nspares, nl2cache; 5309 int error = 0; 5310 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5311 5312 ASSERT(spa_writeable(spa)); 5313 5314 if (!locked) 5315 txg = spa_vdev_enter(spa); 5316 5317 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5318 5319 if (spa->spa_spares.sav_vdevs != NULL && 5320 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5321 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5322 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5323 /* 5324 * Only remove the hot spare if it's not currently in use 5325 * in this pool. 5326 */ 5327 if (vd == NULL || unspare) { 5328 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5329 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5330 spa_load_spares(spa); 5331 spa->spa_spares.sav_sync = B_TRUE; 5332 } else { 5333 error = SET_ERROR(EBUSY); 5334 } 5335 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5336 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5337 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5338 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5339 /* 5340 * Cache devices can always be removed. 5341 */ 5342 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5343 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5344 spa_load_l2cache(spa); 5345 spa->spa_l2cache.sav_sync = B_TRUE; 5346 } else if (vd != NULL && vd->vdev_islog) { 5347 ASSERT(!locked); 5348 ASSERT(vd == vd->vdev_top); 5349 5350 mg = vd->vdev_mg; 5351 5352 /* 5353 * Stop allocating from this vdev. 5354 */ 5355 metaslab_group_passivate(mg); 5356 5357 /* 5358 * Wait for the youngest allocations and frees to sync, 5359 * and then wait for the deferral of those frees to finish. 5360 */ 5361 spa_vdev_config_exit(spa, NULL, 5362 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5363 5364 /* 5365 * Attempt to evacuate the vdev. 5366 */ 5367 error = spa_vdev_remove_evacuate(spa, vd); 5368 5369 txg = spa_vdev_config_enter(spa); 5370 5371 /* 5372 * If we couldn't evacuate the vdev, unwind. 5373 */ 5374 if (error) { 5375 metaslab_group_activate(mg); 5376 return (spa_vdev_exit(spa, NULL, txg, error)); 5377 } 5378 5379 /* 5380 * Clean up the vdev namespace. 5381 */ 5382 spa_vdev_remove_from_namespace(spa, vd); 5383 5384 } else if (vd != NULL) { 5385 /* 5386 * Normal vdevs cannot be removed (yet). 5387 */ 5388 error = SET_ERROR(ENOTSUP); 5389 } else { 5390 /* 5391 * There is no vdev of any kind with the specified guid. 5392 */ 5393 error = SET_ERROR(ENOENT); 5394 } 5395 5396 if (!locked) 5397 return (spa_vdev_exit(spa, NULL, txg, error)); 5398 5399 return (error); 5400 } 5401 5402 /* 5403 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5404 * currently spared, so we can detach it. 5405 */ 5406 static vdev_t * 5407 spa_vdev_resilver_done_hunt(vdev_t *vd) 5408 { 5409 vdev_t *newvd, *oldvd; 5410 5411 for (int c = 0; c < vd->vdev_children; c++) { 5412 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5413 if (oldvd != NULL) 5414 return (oldvd); 5415 } 5416 5417 /* 5418 * Check for a completed replacement. We always consider the first 5419 * vdev in the list to be the oldest vdev, and the last one to be 5420 * the newest (see spa_vdev_attach() for how that works). In 5421 * the case where the newest vdev is faulted, we will not automatically 5422 * remove it after a resilver completes. This is OK as it will require 5423 * user intervention to determine which disk the admin wishes to keep. 5424 */ 5425 if (vd->vdev_ops == &vdev_replacing_ops) { 5426 ASSERT(vd->vdev_children > 1); 5427 5428 newvd = vd->vdev_child[vd->vdev_children - 1]; 5429 oldvd = vd->vdev_child[0]; 5430 5431 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5432 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5433 !vdev_dtl_required(oldvd)) 5434 return (oldvd); 5435 } 5436 5437 /* 5438 * Check for a completed resilver with the 'unspare' flag set. 5439 */ 5440 if (vd->vdev_ops == &vdev_spare_ops) { 5441 vdev_t *first = vd->vdev_child[0]; 5442 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5443 5444 if (last->vdev_unspare) { 5445 oldvd = first; 5446 newvd = last; 5447 } else if (first->vdev_unspare) { 5448 oldvd = last; 5449 newvd = first; 5450 } else { 5451 oldvd = NULL; 5452 } 5453 5454 if (oldvd != NULL && 5455 vdev_dtl_empty(newvd, DTL_MISSING) && 5456 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5457 !vdev_dtl_required(oldvd)) 5458 return (oldvd); 5459 5460 /* 5461 * If there are more than two spares attached to a disk, 5462 * and those spares are not required, then we want to 5463 * attempt to free them up now so that they can be used 5464 * by other pools. Once we're back down to a single 5465 * disk+spare, we stop removing them. 5466 */ 5467 if (vd->vdev_children > 2) { 5468 newvd = vd->vdev_child[1]; 5469 5470 if (newvd->vdev_isspare && last->vdev_isspare && 5471 vdev_dtl_empty(last, DTL_MISSING) && 5472 vdev_dtl_empty(last, DTL_OUTAGE) && 5473 !vdev_dtl_required(newvd)) 5474 return (newvd); 5475 } 5476 } 5477 5478 return (NULL); 5479 } 5480 5481 static void 5482 spa_vdev_resilver_done(spa_t *spa) 5483 { 5484 vdev_t *vd, *pvd, *ppvd; 5485 uint64_t guid, sguid, pguid, ppguid; 5486 5487 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5488 5489 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5490 pvd = vd->vdev_parent; 5491 ppvd = pvd->vdev_parent; 5492 guid = vd->vdev_guid; 5493 pguid = pvd->vdev_guid; 5494 ppguid = ppvd->vdev_guid; 5495 sguid = 0; 5496 /* 5497 * If we have just finished replacing a hot spared device, then 5498 * we need to detach the parent's first child (the original hot 5499 * spare) as well. 5500 */ 5501 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5502 ppvd->vdev_children == 2) { 5503 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5504 sguid = ppvd->vdev_child[1]->vdev_guid; 5505 } 5506 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5507 5508 spa_config_exit(spa, SCL_ALL, FTAG); 5509 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5510 return; 5511 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5512 return; 5513 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5514 } 5515 5516 spa_config_exit(spa, SCL_ALL, FTAG); 5517 } 5518 5519 /* 5520 * Update the stored path or FRU for this vdev. 5521 */ 5522 int 5523 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5524 boolean_t ispath) 5525 { 5526 vdev_t *vd; 5527 boolean_t sync = B_FALSE; 5528 5529 ASSERT(spa_writeable(spa)); 5530 5531 spa_vdev_state_enter(spa, SCL_ALL); 5532 5533 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5534 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5535 5536 if (!vd->vdev_ops->vdev_op_leaf) 5537 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5538 5539 if (ispath) { 5540 if (strcmp(value, vd->vdev_path) != 0) { 5541 spa_strfree(vd->vdev_path); 5542 vd->vdev_path = spa_strdup(value); 5543 sync = B_TRUE; 5544 } 5545 } else { 5546 if (vd->vdev_fru == NULL) { 5547 vd->vdev_fru = spa_strdup(value); 5548 sync = B_TRUE; 5549 } else if (strcmp(value, vd->vdev_fru) != 0) { 5550 spa_strfree(vd->vdev_fru); 5551 vd->vdev_fru = spa_strdup(value); 5552 sync = B_TRUE; 5553 } 5554 } 5555 5556 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5557 } 5558 5559 int 5560 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5561 { 5562 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5563 } 5564 5565 int 5566 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5567 { 5568 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5569 } 5570 5571 /* 5572 * ========================================================================== 5573 * SPA Scanning 5574 * ========================================================================== 5575 */ 5576 5577 int 5578 spa_scan_stop(spa_t *spa) 5579 { 5580 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5581 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5582 return (SET_ERROR(EBUSY)); 5583 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5584 } 5585 5586 int 5587 spa_scan(spa_t *spa, pool_scan_func_t func) 5588 { 5589 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5590 5591 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5592 return (SET_ERROR(ENOTSUP)); 5593 5594 /* 5595 * If a resilver was requested, but there is no DTL on a 5596 * writeable leaf device, we have nothing to do. 5597 */ 5598 if (func == POOL_SCAN_RESILVER && 5599 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5600 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5601 return (0); 5602 } 5603 5604 return (dsl_scan(spa->spa_dsl_pool, func)); 5605 } 5606 5607 /* 5608 * ========================================================================== 5609 * SPA async task processing 5610 * ========================================================================== 5611 */ 5612 5613 static void 5614 spa_async_remove(spa_t *spa, vdev_t *vd) 5615 { 5616 if (vd->vdev_remove_wanted) { 5617 vd->vdev_remove_wanted = B_FALSE; 5618 vd->vdev_delayed_close = B_FALSE; 5619 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5620 5621 /* 5622 * We want to clear the stats, but we don't want to do a full 5623 * vdev_clear() as that will cause us to throw away 5624 * degraded/faulted state as well as attempt to reopen the 5625 * device, all of which is a waste. 5626 */ 5627 vd->vdev_stat.vs_read_errors = 0; 5628 vd->vdev_stat.vs_write_errors = 0; 5629 vd->vdev_stat.vs_checksum_errors = 0; 5630 5631 vdev_state_dirty(vd->vdev_top); 5632 } 5633 5634 for (int c = 0; c < vd->vdev_children; c++) 5635 spa_async_remove(spa, vd->vdev_child[c]); 5636 } 5637 5638 static void 5639 spa_async_probe(spa_t *spa, vdev_t *vd) 5640 { 5641 if (vd->vdev_probe_wanted) { 5642 vd->vdev_probe_wanted = B_FALSE; 5643 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5644 } 5645 5646 for (int c = 0; c < vd->vdev_children; c++) 5647 spa_async_probe(spa, vd->vdev_child[c]); 5648 } 5649 5650 static void 5651 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5652 { 5653 sysevent_id_t eid; 5654 nvlist_t *attr; 5655 char *physpath; 5656 5657 if (!spa->spa_autoexpand) 5658 return; 5659 5660 for (int c = 0; c < vd->vdev_children; c++) { 5661 vdev_t *cvd = vd->vdev_child[c]; 5662 spa_async_autoexpand(spa, cvd); 5663 } 5664 5665 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5666 return; 5667 5668 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5669 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5670 5671 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5672 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5673 5674 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5675 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5676 5677 nvlist_free(attr); 5678 kmem_free(physpath, MAXPATHLEN); 5679 } 5680 5681 static void 5682 spa_async_thread(spa_t *spa) 5683 { 5684 int tasks; 5685 5686 ASSERT(spa->spa_sync_on); 5687 5688 mutex_enter(&spa->spa_async_lock); 5689 tasks = spa->spa_async_tasks; 5690 spa->spa_async_tasks = 0; 5691 mutex_exit(&spa->spa_async_lock); 5692 5693 /* 5694 * See if the config needs to be updated. 5695 */ 5696 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5697 uint64_t old_space, new_space; 5698 5699 mutex_enter(&spa_namespace_lock); 5700 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5701 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5702 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5703 mutex_exit(&spa_namespace_lock); 5704 5705 /* 5706 * If the pool grew as a result of the config update, 5707 * then log an internal history event. 5708 */ 5709 if (new_space != old_space) { 5710 spa_history_log_internal(spa, "vdev online", NULL, 5711 "pool '%s' size: %llu(+%llu)", 5712 spa_name(spa), new_space, new_space - old_space); 5713 } 5714 } 5715 5716 /* 5717 * See if any devices need to be marked REMOVED. 5718 */ 5719 if (tasks & SPA_ASYNC_REMOVE) { 5720 spa_vdev_state_enter(spa, SCL_NONE); 5721 spa_async_remove(spa, spa->spa_root_vdev); 5722 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5723 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5724 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5725 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5726 (void) spa_vdev_state_exit(spa, NULL, 0); 5727 } 5728 5729 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5730 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5731 spa_async_autoexpand(spa, spa->spa_root_vdev); 5732 spa_config_exit(spa, SCL_CONFIG, FTAG); 5733 } 5734 5735 /* 5736 * See if any devices need to be probed. 5737 */ 5738 if (tasks & SPA_ASYNC_PROBE) { 5739 spa_vdev_state_enter(spa, SCL_NONE); 5740 spa_async_probe(spa, spa->spa_root_vdev); 5741 (void) spa_vdev_state_exit(spa, NULL, 0); 5742 } 5743 5744 /* 5745 * If any devices are done replacing, detach them. 5746 */ 5747 if (tasks & SPA_ASYNC_RESILVER_DONE) 5748 spa_vdev_resilver_done(spa); 5749 5750 /* 5751 * Kick off a resilver. 5752 */ 5753 if (tasks & SPA_ASYNC_RESILVER) 5754 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5755 5756 /* 5757 * Let the world know that we're done. 5758 */ 5759 mutex_enter(&spa->spa_async_lock); 5760 spa->spa_async_thread = NULL; 5761 cv_broadcast(&spa->spa_async_cv); 5762 mutex_exit(&spa->spa_async_lock); 5763 thread_exit(); 5764 } 5765 5766 void 5767 spa_async_suspend(spa_t *spa) 5768 { 5769 mutex_enter(&spa->spa_async_lock); 5770 spa->spa_async_suspended++; 5771 while (spa->spa_async_thread != NULL) 5772 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5773 mutex_exit(&spa->spa_async_lock); 5774 } 5775 5776 void 5777 spa_async_resume(spa_t *spa) 5778 { 5779 mutex_enter(&spa->spa_async_lock); 5780 ASSERT(spa->spa_async_suspended != 0); 5781 spa->spa_async_suspended--; 5782 mutex_exit(&spa->spa_async_lock); 5783 } 5784 5785 static boolean_t 5786 spa_async_tasks_pending(spa_t *spa) 5787 { 5788 uint_t non_config_tasks; 5789 uint_t config_task; 5790 boolean_t config_task_suspended; 5791 5792 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5793 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5794 if (spa->spa_ccw_fail_time == 0) { 5795 config_task_suspended = B_FALSE; 5796 } else { 5797 config_task_suspended = 5798 (gethrtime() - spa->spa_ccw_fail_time) < 5799 (zfs_ccw_retry_interval * NANOSEC); 5800 } 5801 5802 return (non_config_tasks || (config_task && !config_task_suspended)); 5803 } 5804 5805 static void 5806 spa_async_dispatch(spa_t *spa) 5807 { 5808 mutex_enter(&spa->spa_async_lock); 5809 if (spa_async_tasks_pending(spa) && 5810 !spa->spa_async_suspended && 5811 spa->spa_async_thread == NULL && 5812 rootdir != NULL) 5813 spa->spa_async_thread = thread_create(NULL, 0, 5814 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5815 mutex_exit(&spa->spa_async_lock); 5816 } 5817 5818 void 5819 spa_async_request(spa_t *spa, int task) 5820 { 5821 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5822 mutex_enter(&spa->spa_async_lock); 5823 spa->spa_async_tasks |= task; 5824 mutex_exit(&spa->spa_async_lock); 5825 } 5826 5827 /* 5828 * ========================================================================== 5829 * SPA syncing routines 5830 * ========================================================================== 5831 */ 5832 5833 static int 5834 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5835 { 5836 bpobj_t *bpo = arg; 5837 bpobj_enqueue(bpo, bp, tx); 5838 return (0); 5839 } 5840 5841 static int 5842 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5843 { 5844 zio_t *zio = arg; 5845 5846 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5847 zio->io_flags)); 5848 return (0); 5849 } 5850 5851 /* 5852 * Note: this simple function is not inlined to make it easier to dtrace the 5853 * amount of time spent syncing frees. 5854 */ 5855 static void 5856 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5857 { 5858 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5859 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5860 VERIFY(zio_wait(zio) == 0); 5861 } 5862 5863 /* 5864 * Note: this simple function is not inlined to make it easier to dtrace the 5865 * amount of time spent syncing deferred frees. 5866 */ 5867 static void 5868 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5869 { 5870 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5871 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5872 spa_free_sync_cb, zio, tx), ==, 0); 5873 VERIFY0(zio_wait(zio)); 5874 } 5875 5876 5877 static void 5878 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5879 { 5880 char *packed = NULL; 5881 size_t bufsize; 5882 size_t nvsize = 0; 5883 dmu_buf_t *db; 5884 5885 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5886 5887 /* 5888 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5889 * information. This avoids the dmu_buf_will_dirty() path and 5890 * saves us a pre-read to get data we don't actually care about. 5891 */ 5892 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5893 packed = kmem_alloc(bufsize, KM_SLEEP); 5894 5895 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5896 KM_SLEEP) == 0); 5897 bzero(packed + nvsize, bufsize - nvsize); 5898 5899 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5900 5901 kmem_free(packed, bufsize); 5902 5903 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5904 dmu_buf_will_dirty(db, tx); 5905 *(uint64_t *)db->db_data = nvsize; 5906 dmu_buf_rele(db, FTAG); 5907 } 5908 5909 static void 5910 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5911 const char *config, const char *entry) 5912 { 5913 nvlist_t *nvroot; 5914 nvlist_t **list; 5915 int i; 5916 5917 if (!sav->sav_sync) 5918 return; 5919 5920 /* 5921 * Update the MOS nvlist describing the list of available devices. 5922 * spa_validate_aux() will have already made sure this nvlist is 5923 * valid and the vdevs are labeled appropriately. 5924 */ 5925 if (sav->sav_object == 0) { 5926 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5927 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5928 sizeof (uint64_t), tx); 5929 VERIFY(zap_update(spa->spa_meta_objset, 5930 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5931 &sav->sav_object, tx) == 0); 5932 } 5933 5934 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5935 if (sav->sav_count == 0) { 5936 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5937 } else { 5938 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5939 for (i = 0; i < sav->sav_count; i++) 5940 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5941 B_FALSE, VDEV_CONFIG_L2CACHE); 5942 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5943 sav->sav_count) == 0); 5944 for (i = 0; i < sav->sav_count; i++) 5945 nvlist_free(list[i]); 5946 kmem_free(list, sav->sav_count * sizeof (void *)); 5947 } 5948 5949 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5950 nvlist_free(nvroot); 5951 5952 sav->sav_sync = B_FALSE; 5953 } 5954 5955 static void 5956 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5957 { 5958 nvlist_t *config; 5959 5960 if (list_is_empty(&spa->spa_config_dirty_list)) 5961 return; 5962 5963 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5964 5965 config = spa_config_generate(spa, spa->spa_root_vdev, 5966 dmu_tx_get_txg(tx), B_FALSE); 5967 5968 /* 5969 * If we're upgrading the spa version then make sure that 5970 * the config object gets updated with the correct version. 5971 */ 5972 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5973 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5974 spa->spa_uberblock.ub_version); 5975 5976 spa_config_exit(spa, SCL_STATE, FTAG); 5977 5978 if (spa->spa_config_syncing) 5979 nvlist_free(spa->spa_config_syncing); 5980 spa->spa_config_syncing = config; 5981 5982 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5983 } 5984 5985 static void 5986 spa_sync_version(void *arg, dmu_tx_t *tx) 5987 { 5988 uint64_t *versionp = arg; 5989 uint64_t version = *versionp; 5990 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5991 5992 /* 5993 * Setting the version is special cased when first creating the pool. 5994 */ 5995 ASSERT(tx->tx_txg != TXG_INITIAL); 5996 5997 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5998 ASSERT(version >= spa_version(spa)); 5999 6000 spa->spa_uberblock.ub_version = version; 6001 vdev_config_dirty(spa->spa_root_vdev); 6002 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 6003 } 6004 6005 /* 6006 * Set zpool properties. 6007 */ 6008 static void 6009 spa_sync_props(void *arg, dmu_tx_t *tx) 6010 { 6011 nvlist_t *nvp = arg; 6012 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6013 objset_t *mos = spa->spa_meta_objset; 6014 nvpair_t *elem = NULL; 6015 6016 mutex_enter(&spa->spa_props_lock); 6017 6018 while ((elem = nvlist_next_nvpair(nvp, elem))) { 6019 uint64_t intval; 6020 char *strval, *fname; 6021 zpool_prop_t prop; 6022 const char *propname; 6023 zprop_type_t proptype; 6024 spa_feature_t fid; 6025 6026 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 6027 case ZPROP_INVAL: 6028 /* 6029 * We checked this earlier in spa_prop_validate(). 6030 */ 6031 ASSERT(zpool_prop_feature(nvpair_name(elem))); 6032 6033 fname = strchr(nvpair_name(elem), '@') + 1; 6034 VERIFY0(zfeature_lookup_name(fname, &fid)); 6035 6036 spa_feature_enable(spa, fid, tx); 6037 spa_history_log_internal(spa, "set", tx, 6038 "%s=enabled", nvpair_name(elem)); 6039 break; 6040 6041 case ZPOOL_PROP_VERSION: 6042 intval = fnvpair_value_uint64(elem); 6043 /* 6044 * The version is synced seperatly before other 6045 * properties and should be correct by now. 6046 */ 6047 ASSERT3U(spa_version(spa), >=, intval); 6048 break; 6049 6050 case ZPOOL_PROP_ALTROOT: 6051 /* 6052 * 'altroot' is a non-persistent property. It should 6053 * have been set temporarily at creation or import time. 6054 */ 6055 ASSERT(spa->spa_root != NULL); 6056 break; 6057 6058 case ZPOOL_PROP_READONLY: 6059 case ZPOOL_PROP_CACHEFILE: 6060 /* 6061 * 'readonly' and 'cachefile' are also non-persisitent 6062 * properties. 6063 */ 6064 break; 6065 case ZPOOL_PROP_COMMENT: 6066 strval = fnvpair_value_string(elem); 6067 if (spa->spa_comment != NULL) 6068 spa_strfree(spa->spa_comment); 6069 spa->spa_comment = spa_strdup(strval); 6070 /* 6071 * We need to dirty the configuration on all the vdevs 6072 * so that their labels get updated. It's unnecessary 6073 * to do this for pool creation since the vdev's 6074 * configuratoin has already been dirtied. 6075 */ 6076 if (tx->tx_txg != TXG_INITIAL) 6077 vdev_config_dirty(spa->spa_root_vdev); 6078 spa_history_log_internal(spa, "set", tx, 6079 "%s=%s", nvpair_name(elem), strval); 6080 break; 6081 default: 6082 /* 6083 * Set pool property values in the poolprops mos object. 6084 */ 6085 if (spa->spa_pool_props_object == 0) { 6086 spa->spa_pool_props_object = 6087 zap_create_link(mos, DMU_OT_POOL_PROPS, 6088 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6089 tx); 6090 } 6091 6092 /* normalize the property name */ 6093 propname = zpool_prop_to_name(prop); 6094 proptype = zpool_prop_get_type(prop); 6095 6096 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6097 ASSERT(proptype == PROP_TYPE_STRING); 6098 strval = fnvpair_value_string(elem); 6099 VERIFY0(zap_update(mos, 6100 spa->spa_pool_props_object, propname, 6101 1, strlen(strval) + 1, strval, tx)); 6102 spa_history_log_internal(spa, "set", tx, 6103 "%s=%s", nvpair_name(elem), strval); 6104 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6105 intval = fnvpair_value_uint64(elem); 6106 6107 if (proptype == PROP_TYPE_INDEX) { 6108 const char *unused; 6109 VERIFY0(zpool_prop_index_to_string( 6110 prop, intval, &unused)); 6111 } 6112 VERIFY0(zap_update(mos, 6113 spa->spa_pool_props_object, propname, 6114 8, 1, &intval, tx)); 6115 spa_history_log_internal(spa, "set", tx, 6116 "%s=%lld", nvpair_name(elem), intval); 6117 } else { 6118 ASSERT(0); /* not allowed */ 6119 } 6120 6121 switch (prop) { 6122 case ZPOOL_PROP_DELEGATION: 6123 spa->spa_delegation = intval; 6124 break; 6125 case ZPOOL_PROP_BOOTFS: 6126 spa->spa_bootfs = intval; 6127 break; 6128 case ZPOOL_PROP_FAILUREMODE: 6129 spa->spa_failmode = intval; 6130 break; 6131 case ZPOOL_PROP_AUTOEXPAND: 6132 spa->spa_autoexpand = intval; 6133 if (tx->tx_txg != TXG_INITIAL) 6134 spa_async_request(spa, 6135 SPA_ASYNC_AUTOEXPAND); 6136 break; 6137 case ZPOOL_PROP_DEDUPDITTO: 6138 spa->spa_dedup_ditto = intval; 6139 break; 6140 default: 6141 break; 6142 } 6143 } 6144 6145 } 6146 6147 mutex_exit(&spa->spa_props_lock); 6148 } 6149 6150 /* 6151 * Perform one-time upgrade on-disk changes. spa_version() does not 6152 * reflect the new version this txg, so there must be no changes this 6153 * txg to anything that the upgrade code depends on after it executes. 6154 * Therefore this must be called after dsl_pool_sync() does the sync 6155 * tasks. 6156 */ 6157 static void 6158 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6159 { 6160 dsl_pool_t *dp = spa->spa_dsl_pool; 6161 6162 ASSERT(spa->spa_sync_pass == 1); 6163 6164 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6165 6166 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6167 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6168 dsl_pool_create_origin(dp, tx); 6169 6170 /* Keeping the origin open increases spa_minref */ 6171 spa->spa_minref += 3; 6172 } 6173 6174 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6175 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6176 dsl_pool_upgrade_clones(dp, tx); 6177 } 6178 6179 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6180 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6181 dsl_pool_upgrade_dir_clones(dp, tx); 6182 6183 /* Keeping the freedir open increases spa_minref */ 6184 spa->spa_minref += 3; 6185 } 6186 6187 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6188 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6189 spa_feature_create_zap_objects(spa, tx); 6190 } 6191 6192 /* 6193 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6194 * when possibility to use lz4 compression for metadata was added 6195 * Old pools that have this feature enabled must be upgraded to have 6196 * this feature active 6197 */ 6198 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6199 boolean_t lz4_en = spa_feature_is_enabled(spa, 6200 SPA_FEATURE_LZ4_COMPRESS); 6201 boolean_t lz4_ac = spa_feature_is_active(spa, 6202 SPA_FEATURE_LZ4_COMPRESS); 6203 6204 if (lz4_en && !lz4_ac) 6205 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6206 } 6207 rrw_exit(&dp->dp_config_rwlock, FTAG); 6208 } 6209 6210 /* 6211 * Sync the specified transaction group. New blocks may be dirtied as 6212 * part of the process, so we iterate until it converges. 6213 */ 6214 void 6215 spa_sync(spa_t *spa, uint64_t txg) 6216 { 6217 dsl_pool_t *dp = spa->spa_dsl_pool; 6218 objset_t *mos = spa->spa_meta_objset; 6219 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6220 vdev_t *rvd = spa->spa_root_vdev; 6221 vdev_t *vd; 6222 dmu_tx_t *tx; 6223 int error; 6224 6225 VERIFY(spa_writeable(spa)); 6226 6227 /* 6228 * Lock out configuration changes. 6229 */ 6230 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6231 6232 spa->spa_syncing_txg = txg; 6233 spa->spa_sync_pass = 0; 6234 6235 /* 6236 * If there are any pending vdev state changes, convert them 6237 * into config changes that go out with this transaction group. 6238 */ 6239 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6240 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6241 /* 6242 * We need the write lock here because, for aux vdevs, 6243 * calling vdev_config_dirty() modifies sav_config. 6244 * This is ugly and will become unnecessary when we 6245 * eliminate the aux vdev wart by integrating all vdevs 6246 * into the root vdev tree. 6247 */ 6248 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6249 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6250 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6251 vdev_state_clean(vd); 6252 vdev_config_dirty(vd); 6253 } 6254 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6255 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6256 } 6257 spa_config_exit(spa, SCL_STATE, FTAG); 6258 6259 tx = dmu_tx_create_assigned(dp, txg); 6260 6261 spa->spa_sync_starttime = gethrtime(); 6262 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6263 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6264 6265 /* 6266 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6267 * set spa_deflate if we have no raid-z vdevs. 6268 */ 6269 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6270 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6271 int i; 6272 6273 for (i = 0; i < rvd->vdev_children; i++) { 6274 vd = rvd->vdev_child[i]; 6275 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6276 break; 6277 } 6278 if (i == rvd->vdev_children) { 6279 spa->spa_deflate = TRUE; 6280 VERIFY(0 == zap_add(spa->spa_meta_objset, 6281 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6282 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6283 } 6284 } 6285 6286 /* 6287 * Iterate to convergence. 6288 */ 6289 do { 6290 int pass = ++spa->spa_sync_pass; 6291 6292 spa_sync_config_object(spa, tx); 6293 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6294 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6295 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6296 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6297 spa_errlog_sync(spa, txg); 6298 dsl_pool_sync(dp, txg); 6299 6300 if (pass < zfs_sync_pass_deferred_free) { 6301 spa_sync_frees(spa, free_bpl, tx); 6302 } else { 6303 /* 6304 * We can not defer frees in pass 1, because 6305 * we sync the deferred frees later in pass 1. 6306 */ 6307 ASSERT3U(pass, >, 1); 6308 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6309 &spa->spa_deferred_bpobj, tx); 6310 } 6311 6312 ddt_sync(spa, txg); 6313 dsl_scan_sync(dp, tx); 6314 6315 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6316 vdev_sync(vd, txg); 6317 6318 if (pass == 1) { 6319 spa_sync_upgrades(spa, tx); 6320 ASSERT3U(txg, >=, 6321 spa->spa_uberblock.ub_rootbp.blk_birth); 6322 /* 6323 * Note: We need to check if the MOS is dirty 6324 * because we could have marked the MOS dirty 6325 * without updating the uberblock (e.g. if we 6326 * have sync tasks but no dirty user data). We 6327 * need to check the uberblock's rootbp because 6328 * it is updated if we have synced out dirty 6329 * data (though in this case the MOS will most 6330 * likely also be dirty due to second order 6331 * effects, we don't want to rely on that here). 6332 */ 6333 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && 6334 !dmu_objset_is_dirty(mos, txg)) { 6335 /* 6336 * Nothing changed on the first pass, 6337 * therefore this TXG is a no-op. Avoid 6338 * syncing deferred frees, so that we 6339 * can keep this TXG as a no-op. 6340 */ 6341 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, 6342 txg)); 6343 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6344 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 6345 break; 6346 } 6347 spa_sync_deferred_frees(spa, tx); 6348 } 6349 6350 } while (dmu_objset_is_dirty(mos, txg)); 6351 6352 /* 6353 * Rewrite the vdev configuration (which includes the uberblock) 6354 * to commit the transaction group. 6355 * 6356 * If there are no dirty vdevs, we sync the uberblock to a few 6357 * random top-level vdevs that are known to be visible in the 6358 * config cache (see spa_vdev_add() for a complete description). 6359 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6360 */ 6361 for (;;) { 6362 /* 6363 * We hold SCL_STATE to prevent vdev open/close/etc. 6364 * while we're attempting to write the vdev labels. 6365 */ 6366 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6367 6368 if (list_is_empty(&spa->spa_config_dirty_list)) { 6369 vdev_t *svd[SPA_DVAS_PER_BP]; 6370 int svdcount = 0; 6371 int children = rvd->vdev_children; 6372 int c0 = spa_get_random(children); 6373 6374 for (int c = 0; c < children; c++) { 6375 vd = rvd->vdev_child[(c0 + c) % children]; 6376 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6377 continue; 6378 svd[svdcount++] = vd; 6379 if (svdcount == SPA_DVAS_PER_BP) 6380 break; 6381 } 6382 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6383 if (error != 0) 6384 error = vdev_config_sync(svd, svdcount, txg, 6385 B_TRUE); 6386 } else { 6387 error = vdev_config_sync(rvd->vdev_child, 6388 rvd->vdev_children, txg, B_FALSE); 6389 if (error != 0) 6390 error = vdev_config_sync(rvd->vdev_child, 6391 rvd->vdev_children, txg, B_TRUE); 6392 } 6393 6394 if (error == 0) 6395 spa->spa_last_synced_guid = rvd->vdev_guid; 6396 6397 spa_config_exit(spa, SCL_STATE, FTAG); 6398 6399 if (error == 0) 6400 break; 6401 zio_suspend(spa, NULL); 6402 zio_resume_wait(spa); 6403 } 6404 dmu_tx_commit(tx); 6405 6406 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6407 6408 /* 6409 * Clear the dirty config list. 6410 */ 6411 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6412 vdev_config_clean(vd); 6413 6414 /* 6415 * Now that the new config has synced transactionally, 6416 * let it become visible to the config cache. 6417 */ 6418 if (spa->spa_config_syncing != NULL) { 6419 spa_config_set(spa, spa->spa_config_syncing); 6420 spa->spa_config_txg = txg; 6421 spa->spa_config_syncing = NULL; 6422 } 6423 6424 spa->spa_ubsync = spa->spa_uberblock; 6425 6426 dsl_pool_sync_done(dp, txg); 6427 6428 /* 6429 * Update usable space statistics. 6430 */ 6431 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6432 vdev_sync_done(vd, txg); 6433 6434 spa_update_dspace(spa); 6435 6436 /* 6437 * It had better be the case that we didn't dirty anything 6438 * since vdev_config_sync(). 6439 */ 6440 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6441 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6442 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6443 6444 spa->spa_sync_pass = 0; 6445 6446 spa_config_exit(spa, SCL_CONFIG, FTAG); 6447 6448 spa_handle_ignored_writes(spa); 6449 6450 /* 6451 * If any async tasks have been requested, kick them off. 6452 */ 6453 spa_async_dispatch(spa); 6454 } 6455 6456 /* 6457 * Sync all pools. We don't want to hold the namespace lock across these 6458 * operations, so we take a reference on the spa_t and drop the lock during the 6459 * sync. 6460 */ 6461 void 6462 spa_sync_allpools(void) 6463 { 6464 spa_t *spa = NULL; 6465 mutex_enter(&spa_namespace_lock); 6466 while ((spa = spa_next(spa)) != NULL) { 6467 if (spa_state(spa) != POOL_STATE_ACTIVE || 6468 !spa_writeable(spa) || spa_suspended(spa)) 6469 continue; 6470 spa_open_ref(spa, FTAG); 6471 mutex_exit(&spa_namespace_lock); 6472 txg_wait_synced(spa_get_dsl(spa), 0); 6473 mutex_enter(&spa_namespace_lock); 6474 spa_close(spa, FTAG); 6475 } 6476 mutex_exit(&spa_namespace_lock); 6477 } 6478 6479 /* 6480 * ========================================================================== 6481 * Miscellaneous routines 6482 * ========================================================================== 6483 */ 6484 6485 /* 6486 * Remove all pools in the system. 6487 */ 6488 void 6489 spa_evict_all(void) 6490 { 6491 spa_t *spa; 6492 6493 /* 6494 * Remove all cached state. All pools should be closed now, 6495 * so every spa in the AVL tree should be unreferenced. 6496 */ 6497 mutex_enter(&spa_namespace_lock); 6498 while ((spa = spa_next(NULL)) != NULL) { 6499 /* 6500 * Stop async tasks. The async thread may need to detach 6501 * a device that's been replaced, which requires grabbing 6502 * spa_namespace_lock, so we must drop it here. 6503 */ 6504 spa_open_ref(spa, FTAG); 6505 mutex_exit(&spa_namespace_lock); 6506 spa_async_suspend(spa); 6507 mutex_enter(&spa_namespace_lock); 6508 spa_close(spa, FTAG); 6509 6510 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6511 spa_unload(spa); 6512 spa_deactivate(spa); 6513 } 6514 spa_remove(spa); 6515 } 6516 mutex_exit(&spa_namespace_lock); 6517 } 6518 6519 vdev_t * 6520 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6521 { 6522 vdev_t *vd; 6523 int i; 6524 6525 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6526 return (vd); 6527 6528 if (aux) { 6529 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6530 vd = spa->spa_l2cache.sav_vdevs[i]; 6531 if (vd->vdev_guid == guid) 6532 return (vd); 6533 } 6534 6535 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6536 vd = spa->spa_spares.sav_vdevs[i]; 6537 if (vd->vdev_guid == guid) 6538 return (vd); 6539 } 6540 } 6541 6542 return (NULL); 6543 } 6544 6545 void 6546 spa_upgrade(spa_t *spa, uint64_t version) 6547 { 6548 ASSERT(spa_writeable(spa)); 6549 6550 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6551 6552 /* 6553 * This should only be called for a non-faulted pool, and since a 6554 * future version would result in an unopenable pool, this shouldn't be 6555 * possible. 6556 */ 6557 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6558 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6559 6560 spa->spa_uberblock.ub_version = version; 6561 vdev_config_dirty(spa->spa_root_vdev); 6562 6563 spa_config_exit(spa, SCL_ALL, FTAG); 6564 6565 txg_wait_synced(spa_get_dsl(spa), 0); 6566 } 6567 6568 boolean_t 6569 spa_has_spare(spa_t *spa, uint64_t guid) 6570 { 6571 int i; 6572 uint64_t spareguid; 6573 spa_aux_vdev_t *sav = &spa->spa_spares; 6574 6575 for (i = 0; i < sav->sav_count; i++) 6576 if (sav->sav_vdevs[i]->vdev_guid == guid) 6577 return (B_TRUE); 6578 6579 for (i = 0; i < sav->sav_npending; i++) { 6580 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6581 &spareguid) == 0 && spareguid == guid) 6582 return (B_TRUE); 6583 } 6584 6585 return (B_FALSE); 6586 } 6587 6588 /* 6589 * Check if a pool has an active shared spare device. 6590 * Note: reference count of an active spare is 2, as a spare and as a replace 6591 */ 6592 static boolean_t 6593 spa_has_active_shared_spare(spa_t *spa) 6594 { 6595 int i, refcnt; 6596 uint64_t pool; 6597 spa_aux_vdev_t *sav = &spa->spa_spares; 6598 6599 for (i = 0; i < sav->sav_count; i++) { 6600 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6601 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6602 refcnt > 2) 6603 return (B_TRUE); 6604 } 6605 6606 return (B_FALSE); 6607 } 6608 6609 /* 6610 * Post a sysevent corresponding to the given event. The 'name' must be one of 6611 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6612 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6613 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6614 * or zdb as real changes. 6615 */ 6616 void 6617 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6618 { 6619 #ifdef _KERNEL 6620 sysevent_t *ev; 6621 sysevent_attr_list_t *attr = NULL; 6622 sysevent_value_t value; 6623 sysevent_id_t eid; 6624 6625 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6626 SE_SLEEP); 6627 6628 value.value_type = SE_DATA_TYPE_STRING; 6629 value.value.sv_string = spa_name(spa); 6630 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6631 goto done; 6632 6633 value.value_type = SE_DATA_TYPE_UINT64; 6634 value.value.sv_uint64 = spa_guid(spa); 6635 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6636 goto done; 6637 6638 if (vd) { 6639 value.value_type = SE_DATA_TYPE_UINT64; 6640 value.value.sv_uint64 = vd->vdev_guid; 6641 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6642 SE_SLEEP) != 0) 6643 goto done; 6644 6645 if (vd->vdev_path) { 6646 value.value_type = SE_DATA_TYPE_STRING; 6647 value.value.sv_string = vd->vdev_path; 6648 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6649 &value, SE_SLEEP) != 0) 6650 goto done; 6651 } 6652 } 6653 6654 if (sysevent_attach_attributes(ev, attr) != 0) 6655 goto done; 6656 attr = NULL; 6657 6658 (void) log_sysevent(ev, SE_SLEEP, &eid); 6659 6660 done: 6661 if (attr) 6662 sysevent_free_attr(attr); 6663 sysevent_free(ev); 6664 #endif 6665 } 6666