xref: /titanic_44/usr/src/uts/common/fs/zfs/spa.c (revision 18c2aff776a775d34a4c9893a4c72e0434d68e36)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/unique.h>
52 #include <sys/dsl_pool.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/fs/zfs.h>
56 #include <sys/callb.h>
57 
58 /*
59  * ==========================================================================
60  * SPA state manipulation (open/create/destroy/import/export)
61  * ==========================================================================
62  */
63 
64 static int
65 spa_error_entry_compare(const void *a, const void *b)
66 {
67 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
68 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
69 	int ret;
70 
71 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
72 	    sizeof (zbookmark_t));
73 
74 	if (ret < 0)
75 		return (-1);
76 	else if (ret > 0)
77 		return (1);
78 	else
79 		return (0);
80 }
81 
82 /*
83  * Utility function which retrieves copies of the current logs and
84  * re-initializes them in the process.
85  */
86 void
87 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
88 {
89 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
90 
91 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
92 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
93 
94 	avl_create(&spa->spa_errlist_scrub,
95 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
96 	    offsetof(spa_error_entry_t, se_avl));
97 	avl_create(&spa->spa_errlist_last,
98 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
99 	    offsetof(spa_error_entry_t, se_avl));
100 }
101 
102 /*
103  * Activate an uninitialized pool.
104  */
105 static void
106 spa_activate(spa_t *spa)
107 {
108 	int t;
109 
110 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
111 
112 	spa->spa_state = POOL_STATE_ACTIVE;
113 
114 	spa->spa_normal_class = metaslab_class_create();
115 
116 	for (t = 0; t < ZIO_TYPES; t++) {
117 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
118 		    8, maxclsyspri, 50, INT_MAX,
119 		    TASKQ_PREPOPULATE);
120 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
121 		    8, maxclsyspri, 50, INT_MAX,
122 		    TASKQ_PREPOPULATE);
123 	}
124 
125 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
126 
127 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
128 	mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL);
129 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
130 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
131 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
132 	mutex_init(&spa->spa_config_lock.scl_lock, NULL, MUTEX_DEFAULT, NULL);
133 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
134 
135 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
136 	    offsetof(vdev_t, vdev_dirty_node));
137 
138 	txg_list_create(&spa->spa_vdev_txg_list,
139 	    offsetof(struct vdev, vdev_txg_node));
140 
141 	avl_create(&spa->spa_errlist_scrub,
142 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
143 	    offsetof(spa_error_entry_t, se_avl));
144 	avl_create(&spa->spa_errlist_last,
145 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
146 	    offsetof(spa_error_entry_t, se_avl));
147 }
148 
149 /*
150  * Opposite of spa_activate().
151  */
152 static void
153 spa_deactivate(spa_t *spa)
154 {
155 	int t;
156 
157 	ASSERT(spa->spa_sync_on == B_FALSE);
158 	ASSERT(spa->spa_dsl_pool == NULL);
159 	ASSERT(spa->spa_root_vdev == NULL);
160 
161 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
162 
163 	txg_list_destroy(&spa->spa_vdev_txg_list);
164 
165 	list_destroy(&spa->spa_dirty_list);
166 
167 	rw_destroy(&spa->spa_traverse_lock);
168 
169 	for (t = 0; t < ZIO_TYPES; t++) {
170 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
171 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
172 		spa->spa_zio_issue_taskq[t] = NULL;
173 		spa->spa_zio_intr_taskq[t] = NULL;
174 	}
175 
176 	metaslab_class_destroy(spa->spa_normal_class);
177 	spa->spa_normal_class = NULL;
178 
179 	/*
180 	 * If this was part of an import or the open otherwise failed, we may
181 	 * still have errors left in the queues.  Empty them just in case.
182 	 */
183 	spa_errlog_drain(spa);
184 
185 	avl_destroy(&spa->spa_errlist_scrub);
186 	avl_destroy(&spa->spa_errlist_last);
187 
188 	spa->spa_state = POOL_STATE_UNINITIALIZED;
189 }
190 
191 /*
192  * Verify a pool configuration, and construct the vdev tree appropriately.  This
193  * will create all the necessary vdevs in the appropriate layout, with each vdev
194  * in the CLOSED state.  This will prep the pool before open/creation/import.
195  * All vdev validation is done by the vdev_alloc() routine.
196  */
197 static int
198 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
199     uint_t id, int atype)
200 {
201 	nvlist_t **child;
202 	uint_t c, children;
203 	int error;
204 
205 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
206 		return (error);
207 
208 	if ((*vdp)->vdev_ops->vdev_op_leaf)
209 		return (0);
210 
211 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
212 	    &child, &children) != 0) {
213 		vdev_free(*vdp);
214 		*vdp = NULL;
215 		return (EINVAL);
216 	}
217 
218 	for (c = 0; c < children; c++) {
219 		vdev_t *vd;
220 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
221 		    atype)) != 0) {
222 			vdev_free(*vdp);
223 			*vdp = NULL;
224 			return (error);
225 		}
226 	}
227 
228 	ASSERT(*vdp != NULL);
229 
230 	return (0);
231 }
232 
233 /*
234  * Opposite of spa_load().
235  */
236 static void
237 spa_unload(spa_t *spa)
238 {
239 	int i;
240 
241 	/*
242 	 * Stop async tasks.
243 	 */
244 	spa_async_suspend(spa);
245 
246 	/*
247 	 * Stop syncing.
248 	 */
249 	if (spa->spa_sync_on) {
250 		txg_sync_stop(spa->spa_dsl_pool);
251 		spa->spa_sync_on = B_FALSE;
252 	}
253 
254 	/*
255 	 * Wait for any outstanding prefetch I/O to complete.
256 	 */
257 	spa_config_enter(spa, RW_WRITER, FTAG);
258 	spa_config_exit(spa, FTAG);
259 
260 	/*
261 	 * Close the dsl pool.
262 	 */
263 	if (spa->spa_dsl_pool) {
264 		dsl_pool_close(spa->spa_dsl_pool);
265 		spa->spa_dsl_pool = NULL;
266 	}
267 
268 	/*
269 	 * Close all vdevs.
270 	 */
271 	if (spa->spa_root_vdev)
272 		vdev_free(spa->spa_root_vdev);
273 	ASSERT(spa->spa_root_vdev == NULL);
274 
275 	for (i = 0; i < spa->spa_nspares; i++)
276 		vdev_free(spa->spa_spares[i]);
277 	if (spa->spa_spares) {
278 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
279 		spa->spa_spares = NULL;
280 	}
281 	if (spa->spa_sparelist) {
282 		nvlist_free(spa->spa_sparelist);
283 		spa->spa_sparelist = NULL;
284 	}
285 
286 	spa->spa_async_suspended = 0;
287 }
288 
289 /*
290  * Load (or re-load) the current list of vdevs describing the active spares for
291  * this pool.  When this is called, we have some form of basic information in
292  * 'spa_sparelist'.  We parse this into vdevs, try to open them, and then
293  * re-generate a more complete list including status information.
294  */
295 static void
296 spa_load_spares(spa_t *spa)
297 {
298 	nvlist_t **spares;
299 	uint_t nspares;
300 	int i;
301 
302 	/*
303 	 * First, close and free any existing spare vdevs.
304 	 */
305 	for (i = 0; i < spa->spa_nspares; i++) {
306 		vdev_close(spa->spa_spares[i]);
307 		vdev_free(spa->spa_spares[i]);
308 	}
309 	if (spa->spa_spares)
310 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
311 
312 	if (spa->spa_sparelist == NULL)
313 		nspares = 0;
314 	else
315 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
316 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
317 
318 	spa->spa_nspares = (int)nspares;
319 	spa->spa_spares = NULL;
320 
321 	if (nspares == 0)
322 		return;
323 
324 	/*
325 	 * Construct the array of vdevs, opening them to get status in the
326 	 * process.
327 	 */
328 	spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP);
329 	for (i = 0; i < spa->spa_nspares; i++) {
330 		vdev_t *vd;
331 
332 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
333 		    VDEV_ALLOC_SPARE) == 0);
334 		ASSERT(vd != NULL);
335 
336 		spa->spa_spares[i] = vd;
337 
338 		if (vdev_open(vd) != 0)
339 			continue;
340 
341 		vd->vdev_top = vd;
342 		(void) vdev_validate_spare(vd);
343 	}
344 
345 	/*
346 	 * Recompute the stashed list of spares, with status information
347 	 * this time.
348 	 */
349 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
350 	    DATA_TYPE_NVLIST_ARRAY) == 0);
351 
352 	spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP);
353 	for (i = 0; i < spa->spa_nspares; i++)
354 		spares[i] = vdev_config_generate(spa, spa->spa_spares[i],
355 		    B_TRUE, B_TRUE);
356 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
357 	    spares, spa->spa_nspares) == 0);
358 	for (i = 0; i < spa->spa_nspares; i++)
359 		nvlist_free(spares[i]);
360 	kmem_free(spares, spa->spa_nspares * sizeof (void *));
361 }
362 
363 static int
364 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
365 {
366 	dmu_buf_t *db;
367 	char *packed = NULL;
368 	size_t nvsize = 0;
369 	int error;
370 	*value = NULL;
371 
372 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
373 	nvsize = *(uint64_t *)db->db_data;
374 	dmu_buf_rele(db, FTAG);
375 
376 	packed = kmem_alloc(nvsize, KM_SLEEP);
377 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
378 	if (error == 0)
379 		error = nvlist_unpack(packed, nvsize, value, 0);
380 	kmem_free(packed, nvsize);
381 
382 	return (error);
383 }
384 
385 /*
386  * Load an existing storage pool, using the pool's builtin spa_config as a
387  * source of configuration information.
388  */
389 static int
390 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
391 {
392 	int error = 0;
393 	nvlist_t *nvroot = NULL;
394 	vdev_t *rvd;
395 	uberblock_t *ub = &spa->spa_uberblock;
396 	uint64_t config_cache_txg = spa->spa_config_txg;
397 	uint64_t pool_guid;
398 	uint64_t version;
399 	zio_t *zio;
400 
401 	spa->spa_load_state = state;
402 
403 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
404 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
405 		error = EINVAL;
406 		goto out;
407 	}
408 
409 	/*
410 	 * Versioning wasn't explicitly added to the label until later, so if
411 	 * it's not present treat it as the initial version.
412 	 */
413 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
414 		version = ZFS_VERSION_INITIAL;
415 
416 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
417 	    &spa->spa_config_txg);
418 
419 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
420 	    spa_guid_exists(pool_guid, 0)) {
421 		error = EEXIST;
422 		goto out;
423 	}
424 
425 	spa->spa_load_guid = pool_guid;
426 
427 	/*
428 	 * Parse the configuration into a vdev tree.  We explicitly set the
429 	 * value that will be returned by spa_version() since parsing the
430 	 * configuration requires knowing the version number.
431 	 */
432 	spa_config_enter(spa, RW_WRITER, FTAG);
433 	spa->spa_ubsync.ub_version = version;
434 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
435 	spa_config_exit(spa, FTAG);
436 
437 	if (error != 0)
438 		goto out;
439 
440 	ASSERT(spa->spa_root_vdev == rvd);
441 	ASSERT(spa_guid(spa) == pool_guid);
442 
443 	/*
444 	 * Try to open all vdevs, loading each label in the process.
445 	 */
446 	if (vdev_open(rvd) != 0) {
447 		error = ENXIO;
448 		goto out;
449 	}
450 
451 	/*
452 	 * Validate the labels for all leaf vdevs.  We need to grab the config
453 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
454 	 * flag.
455 	 */
456 	spa_config_enter(spa, RW_READER, FTAG);
457 	error = vdev_validate(rvd);
458 	spa_config_exit(spa, FTAG);
459 
460 	if (error != 0) {
461 		error = EBADF;
462 		goto out;
463 	}
464 
465 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
466 		error = ENXIO;
467 		goto out;
468 	}
469 
470 	/*
471 	 * Find the best uberblock.
472 	 */
473 	bzero(ub, sizeof (uberblock_t));
474 
475 	zio = zio_root(spa, NULL, NULL,
476 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
477 	vdev_uberblock_load(zio, rvd, ub);
478 	error = zio_wait(zio);
479 
480 	/*
481 	 * If we weren't able to find a single valid uberblock, return failure.
482 	 */
483 	if (ub->ub_txg == 0) {
484 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
485 		    VDEV_AUX_CORRUPT_DATA);
486 		error = ENXIO;
487 		goto out;
488 	}
489 
490 	/*
491 	 * If the pool is newer than the code, we can't open it.
492 	 */
493 	if (ub->ub_version > ZFS_VERSION) {
494 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
495 		    VDEV_AUX_VERSION_NEWER);
496 		error = ENOTSUP;
497 		goto out;
498 	}
499 
500 	/*
501 	 * If the vdev guid sum doesn't match the uberblock, we have an
502 	 * incomplete configuration.
503 	 */
504 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
505 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
506 		    VDEV_AUX_BAD_GUID_SUM);
507 		error = ENXIO;
508 		goto out;
509 	}
510 
511 	/*
512 	 * Initialize internal SPA structures.
513 	 */
514 	spa->spa_state = POOL_STATE_ACTIVE;
515 	spa->spa_ubsync = spa->spa_uberblock;
516 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
517 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
518 	if (error) {
519 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
520 		    VDEV_AUX_CORRUPT_DATA);
521 		goto out;
522 	}
523 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
524 
525 	if (zap_lookup(spa->spa_meta_objset,
526 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
527 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
528 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
529 		    VDEV_AUX_CORRUPT_DATA);
530 		error = EIO;
531 		goto out;
532 	}
533 
534 	if (!mosconfig) {
535 		nvlist_t *newconfig;
536 
537 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
538 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
539 			    VDEV_AUX_CORRUPT_DATA);
540 			error = EIO;
541 			goto out;
542 		}
543 
544 		spa_config_set(spa, newconfig);
545 		spa_unload(spa);
546 		spa_deactivate(spa);
547 		spa_activate(spa);
548 
549 		return (spa_load(spa, newconfig, state, B_TRUE));
550 	}
551 
552 	if (zap_lookup(spa->spa_meta_objset,
553 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
554 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
555 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
556 		    VDEV_AUX_CORRUPT_DATA);
557 		error = EIO;
558 		goto out;
559 	}
560 
561 	/*
562 	 * Load the bit that tells us to use the new accounting function
563 	 * (raid-z deflation).  If we have an older pool, this will not
564 	 * be present.
565 	 */
566 	error = zap_lookup(spa->spa_meta_objset,
567 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
568 	    sizeof (uint64_t), 1, &spa->spa_deflate);
569 	if (error != 0 && error != ENOENT) {
570 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
571 		    VDEV_AUX_CORRUPT_DATA);
572 		error = EIO;
573 		goto out;
574 	}
575 
576 	/*
577 	 * Load the persistent error log.  If we have an older pool, this will
578 	 * not be present.
579 	 */
580 	error = zap_lookup(spa->spa_meta_objset,
581 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
582 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
583 	if (error != 0 && error != ENOENT) {
584 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
585 		    VDEV_AUX_CORRUPT_DATA);
586 		error = EIO;
587 		goto out;
588 	}
589 
590 	error = zap_lookup(spa->spa_meta_objset,
591 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
592 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
593 	if (error != 0 && error != ENOENT) {
594 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
595 		    VDEV_AUX_CORRUPT_DATA);
596 		error = EIO;
597 		goto out;
598 	}
599 
600 	/*
601 	 * Load any hot spares for this pool.
602 	 */
603 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
604 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object);
605 	if (error != 0 && error != ENOENT) {
606 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
607 		    VDEV_AUX_CORRUPT_DATA);
608 		error = EIO;
609 		goto out;
610 	}
611 	if (error == 0) {
612 		ASSERT(spa_version(spa) >= ZFS_VERSION_SPARES);
613 		if (load_nvlist(spa, spa->spa_spares_object,
614 		    &spa->spa_sparelist) != 0) {
615 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
616 			    VDEV_AUX_CORRUPT_DATA);
617 			error = EIO;
618 			goto out;
619 		}
620 
621 		spa_config_enter(spa, RW_WRITER, FTAG);
622 		spa_load_spares(spa);
623 		spa_config_exit(spa, FTAG);
624 	}
625 
626 	/*
627 	 * Load the vdev state for all toplevel vdevs.
628 	 */
629 	vdev_load(rvd);
630 
631 	/*
632 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
633 	 */
634 	spa_config_enter(spa, RW_WRITER, FTAG);
635 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
636 	spa_config_exit(spa, FTAG);
637 
638 	/*
639 	 * Check the state of the root vdev.  If it can't be opened, it
640 	 * indicates one or more toplevel vdevs are faulted.
641 	 */
642 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
643 		error = ENXIO;
644 		goto out;
645 	}
646 
647 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
648 		dmu_tx_t *tx;
649 		int need_update = B_FALSE;
650 		int c;
651 
652 		/*
653 		 * Claim log blocks that haven't been committed yet.
654 		 * This must all happen in a single txg.
655 		 */
656 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
657 		    spa_first_txg(spa));
658 		(void) dmu_objset_find(spa->spa_name,
659 		    zil_claim, tx, DS_FIND_CHILDREN);
660 		dmu_tx_commit(tx);
661 
662 		spa->spa_sync_on = B_TRUE;
663 		txg_sync_start(spa->spa_dsl_pool);
664 
665 		/*
666 		 * Wait for all claims to sync.
667 		 */
668 		txg_wait_synced(spa->spa_dsl_pool, 0);
669 
670 		/*
671 		 * If the config cache is stale, or we have uninitialized
672 		 * metaslabs (see spa_vdev_add()), then update the config.
673 		 */
674 		if (config_cache_txg != spa->spa_config_txg ||
675 		    state == SPA_LOAD_IMPORT)
676 			need_update = B_TRUE;
677 
678 		for (c = 0; c < rvd->vdev_children; c++)
679 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
680 				need_update = B_TRUE;
681 
682 		/*
683 		 * Update the config cache asychronously in case we're the
684 		 * root pool, in which case the config cache isn't writable yet.
685 		 */
686 		if (need_update)
687 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
688 	}
689 
690 	error = 0;
691 out:
692 	if (error && error != EBADF)
693 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
694 	spa->spa_load_state = SPA_LOAD_NONE;
695 	spa->spa_ena = 0;
696 
697 	return (error);
698 }
699 
700 /*
701  * Pool Open/Import
702  *
703  * The import case is identical to an open except that the configuration is sent
704  * down from userland, instead of grabbed from the configuration cache.  For the
705  * case of an open, the pool configuration will exist in the
706  * POOL_STATE_UNITIALIZED state.
707  *
708  * The stats information (gen/count/ustats) is used to gather vdev statistics at
709  * the same time open the pool, without having to keep around the spa_t in some
710  * ambiguous state.
711  */
712 static int
713 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
714 {
715 	spa_t *spa;
716 	int error;
717 	int loaded = B_FALSE;
718 	int locked = B_FALSE;
719 
720 	*spapp = NULL;
721 
722 	/*
723 	 * As disgusting as this is, we need to support recursive calls to this
724 	 * function because dsl_dir_open() is called during spa_load(), and ends
725 	 * up calling spa_open() again.  The real fix is to figure out how to
726 	 * avoid dsl_dir_open() calling this in the first place.
727 	 */
728 	if (mutex_owner(&spa_namespace_lock) != curthread) {
729 		mutex_enter(&spa_namespace_lock);
730 		locked = B_TRUE;
731 	}
732 
733 	if ((spa = spa_lookup(pool)) == NULL) {
734 		if (locked)
735 			mutex_exit(&spa_namespace_lock);
736 		return (ENOENT);
737 	}
738 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
739 
740 		spa_activate(spa);
741 
742 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
743 
744 		if (error == EBADF) {
745 			/*
746 			 * If vdev_validate() returns failure (indicated by
747 			 * EBADF), it indicates that one of the vdevs indicates
748 			 * that the pool has been exported or destroyed.  If
749 			 * this is the case, the config cache is out of sync and
750 			 * we should remove the pool from the namespace.
751 			 */
752 			zfs_post_ok(spa, NULL);
753 			spa_unload(spa);
754 			spa_deactivate(spa);
755 			spa_remove(spa);
756 			spa_config_sync();
757 			if (locked)
758 				mutex_exit(&spa_namespace_lock);
759 			return (ENOENT);
760 		}
761 
762 		if (error) {
763 			/*
764 			 * We can't open the pool, but we still have useful
765 			 * information: the state of each vdev after the
766 			 * attempted vdev_open().  Return this to the user.
767 			 */
768 			if (config != NULL && spa->spa_root_vdev != NULL) {
769 				spa_config_enter(spa, RW_READER, FTAG);
770 				*config = spa_config_generate(spa, NULL, -1ULL,
771 				    B_TRUE);
772 				spa_config_exit(spa, FTAG);
773 			}
774 			spa_unload(spa);
775 			spa_deactivate(spa);
776 			spa->spa_last_open_failed = B_TRUE;
777 			if (locked)
778 				mutex_exit(&spa_namespace_lock);
779 			*spapp = NULL;
780 			return (error);
781 		} else {
782 			zfs_post_ok(spa, NULL);
783 			spa->spa_last_open_failed = B_FALSE;
784 		}
785 
786 		loaded = B_TRUE;
787 	}
788 
789 	spa_open_ref(spa, tag);
790 	if (locked)
791 		mutex_exit(&spa_namespace_lock);
792 
793 	*spapp = spa;
794 
795 	if (config != NULL) {
796 		spa_config_enter(spa, RW_READER, FTAG);
797 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
798 		spa_config_exit(spa, FTAG);
799 	}
800 
801 	/*
802 	 * If we just loaded the pool, resilver anything that's out of date.
803 	 */
804 	if (loaded && (spa_mode & FWRITE))
805 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
806 
807 	return (0);
808 }
809 
810 int
811 spa_open(const char *name, spa_t **spapp, void *tag)
812 {
813 	return (spa_open_common(name, spapp, tag, NULL));
814 }
815 
816 /*
817  * Lookup the given spa_t, incrementing the inject count in the process,
818  * preventing it from being exported or destroyed.
819  */
820 spa_t *
821 spa_inject_addref(char *name)
822 {
823 	spa_t *spa;
824 
825 	mutex_enter(&spa_namespace_lock);
826 	if ((spa = spa_lookup(name)) == NULL) {
827 		mutex_exit(&spa_namespace_lock);
828 		return (NULL);
829 	}
830 	spa->spa_inject_ref++;
831 	mutex_exit(&spa_namespace_lock);
832 
833 	return (spa);
834 }
835 
836 void
837 spa_inject_delref(spa_t *spa)
838 {
839 	mutex_enter(&spa_namespace_lock);
840 	spa->spa_inject_ref--;
841 	mutex_exit(&spa_namespace_lock);
842 }
843 
844 static void
845 spa_add_spares(spa_t *spa, nvlist_t *config)
846 {
847 	nvlist_t **spares;
848 	uint_t i, nspares;
849 	nvlist_t *nvroot;
850 	uint64_t guid;
851 	vdev_stat_t *vs;
852 	uint_t vsc;
853 
854 	if (spa->spa_nspares == 0)
855 		return;
856 
857 	VERIFY(nvlist_lookup_nvlist(config,
858 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
859 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
860 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
861 	if (nspares != 0) {
862 		VERIFY(nvlist_add_nvlist_array(nvroot,
863 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
864 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
865 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
866 
867 		/*
868 		 * Go through and find any spares which have since been
869 		 * repurposed as an active spare.  If this is the case, update
870 		 * their status appropriately.
871 		 */
872 		for (i = 0; i < nspares; i++) {
873 			VERIFY(nvlist_lookup_uint64(spares[i],
874 			    ZPOOL_CONFIG_GUID, &guid) == 0);
875 			if (spa_spare_inuse(guid)) {
876 				VERIFY(nvlist_lookup_uint64_array(
877 				    spares[i], ZPOOL_CONFIG_STATS,
878 				    (uint64_t **)&vs, &vsc) == 0);
879 				vs->vs_state = VDEV_STATE_CANT_OPEN;
880 				vs->vs_aux = VDEV_AUX_SPARED;
881 			}
882 		}
883 	}
884 }
885 
886 int
887 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
888 {
889 	int error;
890 	spa_t *spa;
891 
892 	*config = NULL;
893 	error = spa_open_common(name, &spa, FTAG, config);
894 
895 	if (spa && *config != NULL) {
896 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
897 		    spa_get_errlog_size(spa)) == 0);
898 
899 		spa_add_spares(spa, *config);
900 	}
901 
902 	/*
903 	 * We want to get the alternate root even for faulted pools, so we cheat
904 	 * and call spa_lookup() directly.
905 	 */
906 	if (altroot) {
907 		if (spa == NULL) {
908 			mutex_enter(&spa_namespace_lock);
909 			spa = spa_lookup(name);
910 			if (spa)
911 				spa_altroot(spa, altroot, buflen);
912 			else
913 				altroot[0] = '\0';
914 			spa = NULL;
915 			mutex_exit(&spa_namespace_lock);
916 		} else {
917 			spa_altroot(spa, altroot, buflen);
918 		}
919 	}
920 
921 	if (spa != NULL)
922 		spa_close(spa, FTAG);
923 
924 	return (error);
925 }
926 
927 /*
928  * Validate that the 'spares' array is well formed.  We must have an array of
929  * nvlists, each which describes a valid leaf vdev.
930  */
931 static int
932 spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
933 {
934 	nvlist_t **spares;
935 	uint_t i, nspares;
936 	vdev_t *vd;
937 	int error;
938 
939 	/*
940 	 * It's acceptable to have no spares specified.
941 	 */
942 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
943 	    &spares, &nspares) != 0)
944 		return (0);
945 
946 	if (nspares == 0)
947 		return (EINVAL);
948 
949 	/*
950 	 * Make sure the pool is formatted with a version that supports hot
951 	 * spares.
952 	 */
953 	if (spa_version(spa) < ZFS_VERSION_SPARES)
954 		return (ENOTSUP);
955 
956 	for (i = 0; i < nspares; i++) {
957 		if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0,
958 		    mode)) != 0)
959 			return (error);
960 
961 		if (!vd->vdev_ops->vdev_op_leaf) {
962 			vdev_free(vd);
963 			return (EINVAL);
964 		}
965 
966 		if ((error = vdev_open(vd)) != 0) {
967 			vdev_free(vd);
968 			return (error);
969 		}
970 
971 		vd->vdev_top = vd;
972 		if ((error = vdev_label_spare(vd, crtxg)) != 0) {
973 			vdev_free(vd);
974 			return (error);
975 		}
976 
977 		VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID,
978 		    vd->vdev_guid) == 0);
979 
980 		vdev_free(vd);
981 	}
982 
983 	return (0);
984 }
985 
986 /*
987  * Pool Creation
988  */
989 int
990 spa_create(const char *pool, nvlist_t *nvroot, const char *altroot)
991 {
992 	spa_t *spa;
993 	vdev_t *rvd;
994 	dsl_pool_t *dp;
995 	dmu_tx_t *tx;
996 	int c, error = 0;
997 	uint64_t txg = TXG_INITIAL;
998 	nvlist_t **spares;
999 	uint_t nspares;
1000 
1001 	/*
1002 	 * If this pool already exists, return failure.
1003 	 */
1004 	mutex_enter(&spa_namespace_lock);
1005 	if (spa_lookup(pool) != NULL) {
1006 		mutex_exit(&spa_namespace_lock);
1007 		return (EEXIST);
1008 	}
1009 
1010 	/*
1011 	 * Allocate a new spa_t structure.
1012 	 */
1013 	spa = spa_add(pool, altroot);
1014 	spa_activate(spa);
1015 
1016 	spa->spa_uberblock.ub_txg = txg - 1;
1017 	spa->spa_uberblock.ub_version = ZFS_VERSION;
1018 	spa->spa_ubsync = spa->spa_uberblock;
1019 
1020 	/*
1021 	 * Create the root vdev.
1022 	 */
1023 	spa_config_enter(spa, RW_WRITER, FTAG);
1024 
1025 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1026 
1027 	ASSERT(error != 0 || rvd != NULL);
1028 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1029 
1030 	if (error == 0 && rvd->vdev_children == 0)
1031 		error = EINVAL;
1032 
1033 	if (error == 0 &&
1034 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1035 	    (error = spa_validate_spares(spa, nvroot, txg,
1036 	    VDEV_ALLOC_ADD)) == 0) {
1037 		for (c = 0; c < rvd->vdev_children; c++)
1038 			vdev_init(rvd->vdev_child[c], txg);
1039 		vdev_config_dirty(rvd);
1040 	}
1041 
1042 	spa_config_exit(spa, FTAG);
1043 
1044 	if (error != 0) {
1045 		spa_unload(spa);
1046 		spa_deactivate(spa);
1047 		spa_remove(spa);
1048 		mutex_exit(&spa_namespace_lock);
1049 		return (error);
1050 	}
1051 
1052 	/*
1053 	 * Get the list of spares, if specified.
1054 	 */
1055 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1056 	    &spares, &nspares) == 0) {
1057 		VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME,
1058 		    KM_SLEEP) == 0);
1059 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1060 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1061 		spa_config_enter(spa, RW_WRITER, FTAG);
1062 		spa_load_spares(spa);
1063 		spa_config_exit(spa, FTAG);
1064 		spa->spa_sync_spares = B_TRUE;
1065 	}
1066 
1067 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
1068 	spa->spa_meta_objset = dp->dp_meta_objset;
1069 
1070 	tx = dmu_tx_create_assigned(dp, txg);
1071 
1072 	/*
1073 	 * Create the pool config object.
1074 	 */
1075 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1076 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1077 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1078 
1079 	if (zap_add(spa->spa_meta_objset,
1080 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1081 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1082 		cmn_err(CE_PANIC, "failed to add pool config");
1083 	}
1084 
1085 	/* Newly created pools are always deflated. */
1086 	spa->spa_deflate = TRUE;
1087 	if (zap_add(spa->spa_meta_objset,
1088 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1089 	    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1090 		cmn_err(CE_PANIC, "failed to add deflate");
1091 	}
1092 
1093 	/*
1094 	 * Create the deferred-free bplist object.  Turn off compression
1095 	 * because sync-to-convergence takes longer if the blocksize
1096 	 * keeps changing.
1097 	 */
1098 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1099 	    1 << 14, tx);
1100 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1101 	    ZIO_COMPRESS_OFF, tx);
1102 
1103 	if (zap_add(spa->spa_meta_objset,
1104 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1105 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1106 		cmn_err(CE_PANIC, "failed to add bplist");
1107 	}
1108 
1109 	dmu_tx_commit(tx);
1110 
1111 	spa->spa_sync_on = B_TRUE;
1112 	txg_sync_start(spa->spa_dsl_pool);
1113 
1114 	/*
1115 	 * We explicitly wait for the first transaction to complete so that our
1116 	 * bean counters are appropriately updated.
1117 	 */
1118 	txg_wait_synced(spa->spa_dsl_pool, txg);
1119 
1120 	spa_config_sync();
1121 
1122 	mutex_exit(&spa_namespace_lock);
1123 
1124 	return (0);
1125 }
1126 
1127 /*
1128  * Import the given pool into the system.  We set up the necessary spa_t and
1129  * then call spa_load() to do the dirty work.
1130  */
1131 int
1132 spa_import(const char *pool, nvlist_t *config, const char *altroot)
1133 {
1134 	spa_t *spa;
1135 	int error;
1136 	nvlist_t *nvroot;
1137 	nvlist_t **spares;
1138 	uint_t nspares;
1139 
1140 	if (!(spa_mode & FWRITE))
1141 		return (EROFS);
1142 
1143 	/*
1144 	 * If a pool with this name exists, return failure.
1145 	 */
1146 	mutex_enter(&spa_namespace_lock);
1147 	if (spa_lookup(pool) != NULL) {
1148 		mutex_exit(&spa_namespace_lock);
1149 		return (EEXIST);
1150 	}
1151 
1152 	/*
1153 	 * Create and initialize the spa structure.
1154 	 */
1155 	spa = spa_add(pool, altroot);
1156 	spa_activate(spa);
1157 
1158 	/*
1159 	 * Pass off the heavy lifting to spa_load().
1160 	 * Pass TRUE for mosconfig because the user-supplied config
1161 	 * is actually the one to trust when doing an import.
1162 	 */
1163 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
1164 
1165 	spa_config_enter(spa, RW_WRITER, FTAG);
1166 	/*
1167 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
1168 	 * and conflicts with spa_has_spare().
1169 	 */
1170 	if (spa->spa_sparelist) {
1171 		nvlist_free(spa->spa_sparelist);
1172 		spa->spa_sparelist = NULL;
1173 		spa_load_spares(spa);
1174 	}
1175 
1176 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1177 	    &nvroot) == 0);
1178 	if (error == 0)
1179 		error = spa_validate_spares(spa, nvroot, -1ULL,
1180 		    VDEV_ALLOC_SPARE);
1181 	spa_config_exit(spa, FTAG);
1182 
1183 	if (error != 0) {
1184 		spa_unload(spa);
1185 		spa_deactivate(spa);
1186 		spa_remove(spa);
1187 		mutex_exit(&spa_namespace_lock);
1188 		return (error);
1189 	}
1190 
1191 	/*
1192 	 * Override any spares as specified by the user, as these may have
1193 	 * correct device names/devids, etc.
1194 	 */
1195 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1196 	    &spares, &nspares) == 0) {
1197 		if (spa->spa_sparelist)
1198 			VERIFY(nvlist_remove(spa->spa_sparelist,
1199 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1200 		else
1201 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1202 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1203 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1204 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1205 		spa_config_enter(spa, RW_WRITER, FTAG);
1206 		spa_load_spares(spa);
1207 		spa_config_exit(spa, FTAG);
1208 		spa->spa_sync_spares = B_TRUE;
1209 	}
1210 
1211 	/*
1212 	 * Update the config cache to include the newly-imported pool.
1213 	 */
1214 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1215 
1216 	mutex_exit(&spa_namespace_lock);
1217 
1218 	/*
1219 	 * Resilver anything that's out of date.
1220 	 */
1221 	if (spa_mode & FWRITE)
1222 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1223 
1224 	return (0);
1225 }
1226 
1227 /*
1228  * This (illegal) pool name is used when temporarily importing a spa_t in order
1229  * to get the vdev stats associated with the imported devices.
1230  */
1231 #define	TRYIMPORT_NAME	"$import"
1232 
1233 nvlist_t *
1234 spa_tryimport(nvlist_t *tryconfig)
1235 {
1236 	nvlist_t *config = NULL;
1237 	char *poolname;
1238 	spa_t *spa;
1239 	uint64_t state;
1240 
1241 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
1242 		return (NULL);
1243 
1244 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
1245 		return (NULL);
1246 
1247 	/*
1248 	 * Create and initialize the spa structure.
1249 	 */
1250 	mutex_enter(&spa_namespace_lock);
1251 	spa = spa_add(TRYIMPORT_NAME, NULL);
1252 	spa_activate(spa);
1253 
1254 	/*
1255 	 * Pass off the heavy lifting to spa_load().
1256 	 * Pass TRUE for mosconfig because the user-supplied config
1257 	 * is actually the one to trust when doing an import.
1258 	 */
1259 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
1260 
1261 	/*
1262 	 * If 'tryconfig' was at least parsable, return the current config.
1263 	 */
1264 	if (spa->spa_root_vdev != NULL) {
1265 		spa_config_enter(spa, RW_READER, FTAG);
1266 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1267 		spa_config_exit(spa, FTAG);
1268 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
1269 		    poolname) == 0);
1270 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1271 		    state) == 0);
1272 
1273 		/*
1274 		 * Add the list of hot spares.
1275 		 */
1276 		spa_add_spares(spa, config);
1277 	}
1278 
1279 	spa_unload(spa);
1280 	spa_deactivate(spa);
1281 	spa_remove(spa);
1282 	mutex_exit(&spa_namespace_lock);
1283 
1284 	return (config);
1285 }
1286 
1287 /*
1288  * Pool export/destroy
1289  *
1290  * The act of destroying or exporting a pool is very simple.  We make sure there
1291  * is no more pending I/O and any references to the pool are gone.  Then, we
1292  * update the pool state and sync all the labels to disk, removing the
1293  * configuration from the cache afterwards.
1294  */
1295 static int
1296 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
1297 {
1298 	spa_t *spa;
1299 
1300 	if (oldconfig)
1301 		*oldconfig = NULL;
1302 
1303 	if (!(spa_mode & FWRITE))
1304 		return (EROFS);
1305 
1306 	mutex_enter(&spa_namespace_lock);
1307 	if ((spa = spa_lookup(pool)) == NULL) {
1308 		mutex_exit(&spa_namespace_lock);
1309 		return (ENOENT);
1310 	}
1311 
1312 	/*
1313 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
1314 	 * reacquire the namespace lock, and see if we can export.
1315 	 */
1316 	spa_open_ref(spa, FTAG);
1317 	mutex_exit(&spa_namespace_lock);
1318 	spa_async_suspend(spa);
1319 	mutex_enter(&spa_namespace_lock);
1320 	spa_close(spa, FTAG);
1321 
1322 	/*
1323 	 * The pool will be in core if it's openable,
1324 	 * in which case we can modify its state.
1325 	 */
1326 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
1327 		/*
1328 		 * Objsets may be open only because they're dirty, so we
1329 		 * have to force it to sync before checking spa_refcnt.
1330 		 */
1331 		spa_scrub_suspend(spa);
1332 		txg_wait_synced(spa->spa_dsl_pool, 0);
1333 
1334 		/*
1335 		 * A pool cannot be exported or destroyed if there are active
1336 		 * references.  If we are resetting a pool, allow references by
1337 		 * fault injection handlers.
1338 		 */
1339 		if (!spa_refcount_zero(spa) ||
1340 		    (spa->spa_inject_ref != 0 &&
1341 		    new_state != POOL_STATE_UNINITIALIZED)) {
1342 			spa_scrub_resume(spa);
1343 			spa_async_resume(spa);
1344 			mutex_exit(&spa_namespace_lock);
1345 			return (EBUSY);
1346 		}
1347 
1348 		spa_scrub_resume(spa);
1349 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1350 
1351 		/*
1352 		 * We want this to be reflected on every label,
1353 		 * so mark them all dirty.  spa_unload() will do the
1354 		 * final sync that pushes these changes out.
1355 		 */
1356 		if (new_state != POOL_STATE_UNINITIALIZED) {
1357 			spa_config_enter(spa, RW_WRITER, FTAG);
1358 			spa->spa_state = new_state;
1359 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
1360 			vdev_config_dirty(spa->spa_root_vdev);
1361 			spa_config_exit(spa, FTAG);
1362 		}
1363 	}
1364 
1365 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1366 		spa_unload(spa);
1367 		spa_deactivate(spa);
1368 	}
1369 
1370 	if (oldconfig && spa->spa_config)
1371 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
1372 
1373 	if (new_state != POOL_STATE_UNINITIALIZED) {
1374 		spa_remove(spa);
1375 		spa_config_sync();
1376 	}
1377 	mutex_exit(&spa_namespace_lock);
1378 
1379 	return (0);
1380 }
1381 
1382 /*
1383  * Destroy a storage pool.
1384  */
1385 int
1386 spa_destroy(char *pool)
1387 {
1388 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
1389 }
1390 
1391 /*
1392  * Export a storage pool.
1393  */
1394 int
1395 spa_export(char *pool, nvlist_t **oldconfig)
1396 {
1397 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
1398 }
1399 
1400 /*
1401  * Similar to spa_export(), this unloads the spa_t without actually removing it
1402  * from the namespace in any way.
1403  */
1404 int
1405 spa_reset(char *pool)
1406 {
1407 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
1408 }
1409 
1410 
1411 /*
1412  * ==========================================================================
1413  * Device manipulation
1414  * ==========================================================================
1415  */
1416 
1417 /*
1418  * Add capacity to a storage pool.
1419  */
1420 int
1421 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1422 {
1423 	uint64_t txg;
1424 	int c, error;
1425 	vdev_t *rvd = spa->spa_root_vdev;
1426 	vdev_t *vd, *tvd;
1427 	nvlist_t **spares;
1428 	uint_t i, nspares;
1429 
1430 	txg = spa_vdev_enter(spa);
1431 
1432 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
1433 	    VDEV_ALLOC_ADD)) != 0)
1434 		return (spa_vdev_exit(spa, NULL, txg, error));
1435 
1436 	if ((error = spa_validate_spares(spa, nvroot, txg,
1437 	    VDEV_ALLOC_ADD)) != 0)
1438 		return (spa_vdev_exit(spa, vd, txg, error));
1439 
1440 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1441 	    &spares, &nspares) != 0)
1442 		nspares = 0;
1443 
1444 	if (vd->vdev_children == 0 && nspares == 0)
1445 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1446 
1447 	if (vd->vdev_children != 0) {
1448 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0)
1449 			return (spa_vdev_exit(spa, vd, txg, error));
1450 
1451 		/*
1452 		 * Transfer each new top-level vdev from vd to rvd.
1453 		 */
1454 		for (c = 0; c < vd->vdev_children; c++) {
1455 			tvd = vd->vdev_child[c];
1456 			vdev_remove_child(vd, tvd);
1457 			tvd->vdev_id = rvd->vdev_children;
1458 			vdev_add_child(rvd, tvd);
1459 			vdev_config_dirty(tvd);
1460 		}
1461 	}
1462 
1463 	if (nspares != 0) {
1464 		if (spa->spa_sparelist != NULL) {
1465 			nvlist_t **oldspares;
1466 			uint_t oldnspares;
1467 			nvlist_t **newspares;
1468 
1469 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
1470 			    ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0);
1471 
1472 			newspares = kmem_alloc(sizeof (void *) *
1473 			    (nspares + oldnspares), KM_SLEEP);
1474 			for (i = 0; i < oldnspares; i++)
1475 				VERIFY(nvlist_dup(oldspares[i],
1476 				    &newspares[i], KM_SLEEP) == 0);
1477 			for (i = 0; i < nspares; i++)
1478 				VERIFY(nvlist_dup(spares[i],
1479 				    &newspares[i + oldnspares],
1480 				    KM_SLEEP) == 0);
1481 
1482 			VERIFY(nvlist_remove(spa->spa_sparelist,
1483 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1484 
1485 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1486 			    ZPOOL_CONFIG_SPARES, newspares,
1487 			    nspares + oldnspares) == 0);
1488 			for (i = 0; i < oldnspares + nspares; i++)
1489 				nvlist_free(newspares[i]);
1490 			kmem_free(newspares, (oldnspares + nspares) *
1491 			    sizeof (void *));
1492 		} else {
1493 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1494 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1495 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1496 			    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1497 		}
1498 
1499 		spa_load_spares(spa);
1500 		spa->spa_sync_spares = B_TRUE;
1501 	}
1502 
1503 	/*
1504 	 * We have to be careful when adding new vdevs to an existing pool.
1505 	 * If other threads start allocating from these vdevs before we
1506 	 * sync the config cache, and we lose power, then upon reboot we may
1507 	 * fail to open the pool because there are DVAs that the config cache
1508 	 * can't translate.  Therefore, we first add the vdevs without
1509 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1510 	 * and then let spa_config_update() initialize the new metaslabs.
1511 	 *
1512 	 * spa_load() checks for added-but-not-initialized vdevs, so that
1513 	 * if we lose power at any point in this sequence, the remaining
1514 	 * steps will be completed the next time we load the pool.
1515 	 */
1516 	(void) spa_vdev_exit(spa, vd, txg, 0);
1517 
1518 	mutex_enter(&spa_namespace_lock);
1519 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1520 	mutex_exit(&spa_namespace_lock);
1521 
1522 	return (0);
1523 }
1524 
1525 /*
1526  * Attach a device to a mirror.  The arguments are the path to any device
1527  * in the mirror, and the nvroot for the new device.  If the path specifies
1528  * a device that is not mirrored, we automatically insert the mirror vdev.
1529  *
1530  * If 'replacing' is specified, the new device is intended to replace the
1531  * existing device; in this case the two devices are made into their own
1532  * mirror using the 'replacing' vdev, which is functionally idendical to
1533  * the mirror vdev (it actually reuses all the same ops) but has a few
1534  * extra rules: you can't attach to it after it's been created, and upon
1535  * completion of resilvering, the first disk (the one being replaced)
1536  * is automatically detached.
1537  */
1538 int
1539 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1540 {
1541 	uint64_t txg, open_txg;
1542 	int error;
1543 	vdev_t *rvd = spa->spa_root_vdev;
1544 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1545 	vdev_ops_t *pvops;
1546 
1547 	txg = spa_vdev_enter(spa);
1548 
1549 	oldvd = vdev_lookup_by_guid(rvd, guid);
1550 
1551 	if (oldvd == NULL)
1552 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1553 
1554 	if (!oldvd->vdev_ops->vdev_op_leaf)
1555 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1556 
1557 	pvd = oldvd->vdev_parent;
1558 
1559 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
1560 	    VDEV_ALLOC_ADD)) != 0 || newrootvd->vdev_children != 1)
1561 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1562 
1563 	newvd = newrootvd->vdev_child[0];
1564 
1565 	if (!newvd->vdev_ops->vdev_op_leaf)
1566 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1567 
1568 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
1569 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1570 
1571 	if (!replacing) {
1572 		/*
1573 		 * For attach, the only allowable parent is a mirror or the root
1574 		 * vdev.
1575 		 */
1576 		if (pvd->vdev_ops != &vdev_mirror_ops &&
1577 		    pvd->vdev_ops != &vdev_root_ops)
1578 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1579 
1580 		pvops = &vdev_mirror_ops;
1581 	} else {
1582 		/*
1583 		 * Active hot spares can only be replaced by inactive hot
1584 		 * spares.
1585 		 */
1586 		if (pvd->vdev_ops == &vdev_spare_ops &&
1587 		    pvd->vdev_child[1] == oldvd &&
1588 		    !spa_has_spare(spa, newvd->vdev_guid))
1589 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1590 
1591 		/*
1592 		 * If the source is a hot spare, and the parent isn't already a
1593 		 * spare, then we want to create a new hot spare.  Otherwise, we
1594 		 * want to create a replacing vdev.
1595 		 */
1596 		if (pvd->vdev_ops == &vdev_replacing_ops)
1597 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1598 		else if (pvd->vdev_ops != &vdev_spare_ops &&
1599 		    newvd->vdev_isspare)
1600 			pvops = &vdev_spare_ops;
1601 		else
1602 			pvops = &vdev_replacing_ops;
1603 	}
1604 
1605 	/*
1606 	 * Compare the new device size with the replaceable/attachable
1607 	 * device size.
1608 	 */
1609 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1610 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1611 
1612 	/*
1613 	 * The new device cannot have a higher alignment requirement
1614 	 * than the top-level vdev.
1615 	 */
1616 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
1617 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1618 
1619 	/*
1620 	 * If this is an in-place replacement, update oldvd's path and devid
1621 	 * to make it distinguishable from newvd, and unopenable from now on.
1622 	 */
1623 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1624 		spa_strfree(oldvd->vdev_path);
1625 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1626 		    KM_SLEEP);
1627 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1628 		    newvd->vdev_path, "old");
1629 		if (oldvd->vdev_devid != NULL) {
1630 			spa_strfree(oldvd->vdev_devid);
1631 			oldvd->vdev_devid = NULL;
1632 		}
1633 	}
1634 
1635 	/*
1636 	 * If the parent is not a mirror, or if we're replacing, insert the new
1637 	 * mirror/replacing/spare vdev above oldvd.
1638 	 */
1639 	if (pvd->vdev_ops != pvops)
1640 		pvd = vdev_add_parent(oldvd, pvops);
1641 
1642 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1643 	ASSERT(pvd->vdev_ops == pvops);
1644 	ASSERT(oldvd->vdev_parent == pvd);
1645 
1646 	/*
1647 	 * Extract the new device from its root and add it to pvd.
1648 	 */
1649 	vdev_remove_child(newrootvd, newvd);
1650 	newvd->vdev_id = pvd->vdev_children;
1651 	vdev_add_child(pvd, newvd);
1652 
1653 	/*
1654 	 * If newvd is smaller than oldvd, but larger than its rsize,
1655 	 * the addition of newvd may have decreased our parent's asize.
1656 	 */
1657 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1658 
1659 	tvd = newvd->vdev_top;
1660 	ASSERT(pvd->vdev_top == tvd);
1661 	ASSERT(tvd->vdev_parent == rvd);
1662 
1663 	vdev_config_dirty(tvd);
1664 
1665 	/*
1666 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1667 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1668 	 */
1669 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1670 
1671 	mutex_enter(&newvd->vdev_dtl_lock);
1672 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1673 	    open_txg - TXG_INITIAL + 1);
1674 	mutex_exit(&newvd->vdev_dtl_lock);
1675 
1676 	dprintf("attached %s in txg %llu\n", newvd->vdev_path, txg);
1677 
1678 	/*
1679 	 * Mark newvd's DTL dirty in this txg.
1680 	 */
1681 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
1682 
1683 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1684 
1685 	/*
1686 	 * Kick off a resilver to update newvd.
1687 	 */
1688 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1689 
1690 	return (0);
1691 }
1692 
1693 /*
1694  * Detach a device from a mirror or replacing vdev.
1695  * If 'replace_done' is specified, only detach if the parent
1696  * is a replacing vdev.
1697  */
1698 int
1699 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1700 {
1701 	uint64_t txg;
1702 	int c, t, error;
1703 	vdev_t *rvd = spa->spa_root_vdev;
1704 	vdev_t *vd, *pvd, *cvd, *tvd;
1705 	boolean_t unspare = B_FALSE;
1706 	uint64_t unspare_guid;
1707 
1708 	txg = spa_vdev_enter(spa);
1709 
1710 	vd = vdev_lookup_by_guid(rvd, guid);
1711 
1712 	if (vd == NULL)
1713 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1714 
1715 	if (!vd->vdev_ops->vdev_op_leaf)
1716 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1717 
1718 	pvd = vd->vdev_parent;
1719 
1720 	/*
1721 	 * If replace_done is specified, only remove this device if it's
1722 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
1723 	 * disk can be removed.
1724 	 */
1725 	if (replace_done) {
1726 		if (pvd->vdev_ops == &vdev_replacing_ops) {
1727 			if (vd->vdev_id != 0)
1728 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1729 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
1730 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1731 		}
1732 	}
1733 
1734 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
1735 	    spa_version(spa) >= ZFS_VERSION_SPARES);
1736 
1737 	/*
1738 	 * Only mirror, replacing, and spare vdevs support detach.
1739 	 */
1740 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1741 	    pvd->vdev_ops != &vdev_mirror_ops &&
1742 	    pvd->vdev_ops != &vdev_spare_ops)
1743 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1744 
1745 	/*
1746 	 * If there's only one replica, you can't detach it.
1747 	 */
1748 	if (pvd->vdev_children <= 1)
1749 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1750 
1751 	/*
1752 	 * If all siblings have non-empty DTLs, this device may have the only
1753 	 * valid copy of the data, which means we cannot safely detach it.
1754 	 *
1755 	 * XXX -- as in the vdev_offline() case, we really want a more
1756 	 * precise DTL check.
1757 	 */
1758 	for (c = 0; c < pvd->vdev_children; c++) {
1759 		uint64_t dirty;
1760 
1761 		cvd = pvd->vdev_child[c];
1762 		if (cvd == vd)
1763 			continue;
1764 		if (vdev_is_dead(cvd))
1765 			continue;
1766 		mutex_enter(&cvd->vdev_dtl_lock);
1767 		dirty = cvd->vdev_dtl_map.sm_space |
1768 		    cvd->vdev_dtl_scrub.sm_space;
1769 		mutex_exit(&cvd->vdev_dtl_lock);
1770 		if (!dirty)
1771 			break;
1772 	}
1773 
1774 	/*
1775 	 * If we are a replacing or spare vdev, then we can always detach the
1776 	 * latter child, as that is how one cancels the operation.
1777 	 */
1778 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
1779 	    c == pvd->vdev_children)
1780 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1781 
1782 	/*
1783 	 * If we are detaching the original disk from a spare, then it implies
1784 	 * that the spare should become a real disk, and be removed from the
1785 	 * active spare list for the pool.
1786 	 */
1787 	if (pvd->vdev_ops == &vdev_spare_ops &&
1788 	    vd->vdev_id == 0)
1789 		unspare = B_TRUE;
1790 
1791 	/*
1792 	 * Erase the disk labels so the disk can be used for other things.
1793 	 * This must be done after all other error cases are handled,
1794 	 * but before we disembowel vd (so we can still do I/O to it).
1795 	 * But if we can't do it, don't treat the error as fatal --
1796 	 * it may be that the unwritability of the disk is the reason
1797 	 * it's being detached!
1798 	 */
1799 	error = vdev_label_init(vd, 0, B_FALSE);
1800 	if (error)
1801 		dprintf("unable to erase labels on %s\n", vdev_description(vd));
1802 
1803 	/*
1804 	 * Remove vd from its parent and compact the parent's children.
1805 	 */
1806 	vdev_remove_child(pvd, vd);
1807 	vdev_compact_children(pvd);
1808 
1809 	/*
1810 	 * Remember one of the remaining children so we can get tvd below.
1811 	 */
1812 	cvd = pvd->vdev_child[0];
1813 
1814 	/*
1815 	 * If we need to remove the remaining child from the list of hot spares,
1816 	 * do it now, marking the vdev as no longer a spare in the process.  We
1817 	 * must do this before vdev_remove_parent(), because that can change the
1818 	 * GUID if it creates a new toplevel GUID.
1819 	 */
1820 	if (unspare) {
1821 		ASSERT(cvd->vdev_isspare);
1822 		spa_spare_remove(cvd->vdev_guid);
1823 		cvd->vdev_isspare = B_FALSE;
1824 		unspare_guid = cvd->vdev_guid;
1825 	}
1826 
1827 	/*
1828 	 * If the parent mirror/replacing vdev only has one child,
1829 	 * the parent is no longer needed.  Remove it from the tree.
1830 	 */
1831 	if (pvd->vdev_children == 1)
1832 		vdev_remove_parent(cvd);
1833 
1834 	/*
1835 	 * We don't set tvd until now because the parent we just removed
1836 	 * may have been the previous top-level vdev.
1837 	 */
1838 	tvd = cvd->vdev_top;
1839 	ASSERT(tvd->vdev_parent == rvd);
1840 
1841 	/*
1842 	 * Reopen this top-level vdev to reassess health after detach.
1843 	 */
1844 	vdev_reopen(tvd);
1845 
1846 	/*
1847 	 * If the device we just detached was smaller than the others,
1848 	 * it may be possible to add metaslabs (i.e. grow the pool).
1849 	 * vdev_metaslab_init() can't fail because the existing metaslabs
1850 	 * are already in core, so there's nothing to read from disk.
1851 	 */
1852 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
1853 
1854 	vdev_config_dirty(tvd);
1855 
1856 	/*
1857 	 * Mark vd's DTL as dirty in this txg.
1858 	 * vdev_dtl_sync() will see that vd->vdev_detached is set
1859 	 * and free vd's DTL object in syncing context.
1860 	 * But first make sure we're not on any *other* txg's DTL list,
1861 	 * to prevent vd from being accessed after it's freed.
1862 	 */
1863 	for (t = 0; t < TXG_SIZE; t++)
1864 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
1865 	vd->vdev_detached = B_TRUE;
1866 	vdev_dirty(tvd, VDD_DTL, vd, txg);
1867 
1868 	dprintf("detached %s in txg %llu\n", vd->vdev_path, txg);
1869 
1870 	error = spa_vdev_exit(spa, vd, txg, 0);
1871 
1872 	/*
1873 	 * If we are supposed to remove the given vdev from the list of spares,
1874 	 * iterate over all pools in the system and replace it if it's present.
1875 	 */
1876 	if (unspare) {
1877 		spa = NULL;
1878 		mutex_enter(&spa_namespace_lock);
1879 		while ((spa = spa_next(spa)) != NULL) {
1880 			if (spa->spa_state != POOL_STATE_ACTIVE)
1881 				continue;
1882 
1883 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
1884 		}
1885 		mutex_exit(&spa_namespace_lock);
1886 	}
1887 
1888 	return (error);
1889 }
1890 
1891 /*
1892  * Remove a device from the pool.  Currently, this supports removing only hot
1893  * spares.
1894  */
1895 int
1896 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
1897 {
1898 	vdev_t *vd;
1899 	nvlist_t **spares, *nv, **newspares;
1900 	uint_t i, j, nspares;
1901 	int ret = 0;
1902 
1903 	spa_config_enter(spa, RW_WRITER, FTAG);
1904 
1905 	vd = spa_lookup_by_guid(spa, guid);
1906 
1907 	nv = NULL;
1908 	if (spa->spa_spares != NULL &&
1909 	    nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1910 	    &spares, &nspares) == 0) {
1911 		for (i = 0; i < nspares; i++) {
1912 			uint64_t theguid;
1913 
1914 			VERIFY(nvlist_lookup_uint64(spares[i],
1915 			    ZPOOL_CONFIG_GUID, &theguid) == 0);
1916 			if (theguid == guid) {
1917 				nv = spares[i];
1918 				break;
1919 			}
1920 		}
1921 	}
1922 
1923 	/*
1924 	 * We only support removing a hot spare, and only if it's not currently
1925 	 * in use in this pool.
1926 	 */
1927 	if (nv == NULL && vd == NULL) {
1928 		ret = ENOENT;
1929 		goto out;
1930 	}
1931 
1932 	if (nv == NULL && vd != NULL) {
1933 		ret = ENOTSUP;
1934 		goto out;
1935 	}
1936 
1937 	if (!unspare && nv != NULL && vd != NULL) {
1938 		ret = EBUSY;
1939 		goto out;
1940 	}
1941 
1942 	if (nspares == 1) {
1943 		newspares = NULL;
1944 	} else {
1945 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
1946 		    KM_SLEEP);
1947 		for (i = 0, j = 0; i < nspares; i++) {
1948 			if (spares[i] != nv)
1949 				VERIFY(nvlist_dup(spares[i],
1950 				    &newspares[j++], KM_SLEEP) == 0);
1951 		}
1952 	}
1953 
1954 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1955 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1956 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1957 	    newspares, nspares - 1) == 0);
1958 	for (i = 0; i < nspares - 1; i++)
1959 		nvlist_free(newspares[i]);
1960 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
1961 	spa_load_spares(spa);
1962 	spa->spa_sync_spares = B_TRUE;
1963 
1964 out:
1965 	spa_config_exit(spa, FTAG);
1966 
1967 	return (ret);
1968 }
1969 
1970 /*
1971  * Find any device that's done replacing, so we can detach it.
1972  */
1973 static vdev_t *
1974 spa_vdev_replace_done_hunt(vdev_t *vd)
1975 {
1976 	vdev_t *newvd, *oldvd;
1977 	int c;
1978 
1979 	for (c = 0; c < vd->vdev_children; c++) {
1980 		oldvd = spa_vdev_replace_done_hunt(vd->vdev_child[c]);
1981 		if (oldvd != NULL)
1982 			return (oldvd);
1983 	}
1984 
1985 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
1986 		oldvd = vd->vdev_child[0];
1987 		newvd = vd->vdev_child[1];
1988 
1989 		mutex_enter(&newvd->vdev_dtl_lock);
1990 		if (newvd->vdev_dtl_map.sm_space == 0 &&
1991 		    newvd->vdev_dtl_scrub.sm_space == 0) {
1992 			mutex_exit(&newvd->vdev_dtl_lock);
1993 			return (oldvd);
1994 		}
1995 		mutex_exit(&newvd->vdev_dtl_lock);
1996 	}
1997 
1998 	return (NULL);
1999 }
2000 
2001 static void
2002 spa_vdev_replace_done(spa_t *spa)
2003 {
2004 	vdev_t *vd;
2005 	vdev_t *pvd;
2006 	uint64_t guid;
2007 	uint64_t pguid = 0;
2008 
2009 	spa_config_enter(spa, RW_READER, FTAG);
2010 
2011 	while ((vd = spa_vdev_replace_done_hunt(spa->spa_root_vdev)) != NULL) {
2012 		guid = vd->vdev_guid;
2013 		/*
2014 		 * If we have just finished replacing a hot spared device, then
2015 		 * we need to detach the parent's first child (the original hot
2016 		 * spare) as well.
2017 		 */
2018 		pvd = vd->vdev_parent;
2019 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2020 		    pvd->vdev_id == 0) {
2021 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
2022 			ASSERT(pvd->vdev_parent->vdev_children == 2);
2023 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
2024 		}
2025 		spa_config_exit(spa, FTAG);
2026 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
2027 			return;
2028 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
2029 			return;
2030 		spa_config_enter(spa, RW_READER, FTAG);
2031 	}
2032 
2033 	spa_config_exit(spa, FTAG);
2034 }
2035 
2036 /*
2037  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
2038  * on spa_vdev_enter/exit() to synchronize the labels and cache.
2039  */
2040 int
2041 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
2042 {
2043 	vdev_t *rvd, *vd;
2044 	uint64_t txg;
2045 
2046 	rvd = spa->spa_root_vdev;
2047 
2048 	txg = spa_vdev_enter(spa);
2049 
2050 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2051 		/*
2052 		 * Determine if this is a reference to a hot spare.  In that
2053 		 * case, update the path as stored in the spare list.
2054 		 */
2055 		nvlist_t **spares;
2056 		uint_t i, nspares;
2057 		if (spa->spa_sparelist != NULL) {
2058 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2059 			    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2060 			for (i = 0; i < nspares; i++) {
2061 				uint64_t theguid;
2062 				VERIFY(nvlist_lookup_uint64(spares[i],
2063 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
2064 				if (theguid == guid)
2065 					break;
2066 			}
2067 
2068 			if (i == nspares)
2069 				return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2070 
2071 			VERIFY(nvlist_add_string(spares[i],
2072 			    ZPOOL_CONFIG_PATH, newpath) == 0);
2073 			spa_load_spares(spa);
2074 			spa->spa_sync_spares = B_TRUE;
2075 			return (spa_vdev_exit(spa, NULL, txg, 0));
2076 		} else {
2077 			return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2078 		}
2079 	}
2080 
2081 	if (!vd->vdev_ops->vdev_op_leaf)
2082 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2083 
2084 	spa_strfree(vd->vdev_path);
2085 	vd->vdev_path = spa_strdup(newpath);
2086 
2087 	vdev_config_dirty(vd->vdev_top);
2088 
2089 	return (spa_vdev_exit(spa, NULL, txg, 0));
2090 }
2091 
2092 /*
2093  * ==========================================================================
2094  * SPA Scrubbing
2095  * ==========================================================================
2096  */
2097 
2098 void
2099 spa_scrub_throttle(spa_t *spa, int direction)
2100 {
2101 	mutex_enter(&spa->spa_scrub_lock);
2102 	spa->spa_scrub_throttled += direction;
2103 	ASSERT(spa->spa_scrub_throttled >= 0);
2104 	if (spa->spa_scrub_throttled == 0)
2105 		cv_broadcast(&spa->spa_scrub_io_cv);
2106 	mutex_exit(&spa->spa_scrub_lock);
2107 }
2108 
2109 static void
2110 spa_scrub_io_done(zio_t *zio)
2111 {
2112 	spa_t *spa = zio->io_spa;
2113 
2114 	zio_buf_free(zio->io_data, zio->io_size);
2115 
2116 	mutex_enter(&spa->spa_scrub_lock);
2117 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2118 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
2119 		spa->spa_scrub_errors++;
2120 		mutex_enter(&vd->vdev_stat_lock);
2121 		vd->vdev_stat.vs_scrub_errors++;
2122 		mutex_exit(&vd->vdev_stat_lock);
2123 	}
2124 	if (--spa->spa_scrub_inflight == 0) {
2125 		cv_broadcast(&spa->spa_scrub_io_cv);
2126 		ASSERT(spa->spa_scrub_throttled == 0);
2127 	}
2128 	mutex_exit(&spa->spa_scrub_lock);
2129 }
2130 
2131 static void
2132 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
2133     zbookmark_t *zb)
2134 {
2135 	size_t size = BP_GET_LSIZE(bp);
2136 	void *data = zio_buf_alloc(size);
2137 
2138 	mutex_enter(&spa->spa_scrub_lock);
2139 	spa->spa_scrub_inflight++;
2140 	mutex_exit(&spa->spa_scrub_lock);
2141 
2142 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2143 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
2144 
2145 	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
2146 
2147 	zio_nowait(zio_read(NULL, spa, bp, data, size,
2148 	    spa_scrub_io_done, NULL, priority, flags, zb));
2149 }
2150 
2151 /* ARGSUSED */
2152 static int
2153 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
2154 {
2155 	blkptr_t *bp = &bc->bc_blkptr;
2156 	vdev_t *vd = spa->spa_root_vdev;
2157 	dva_t *dva = bp->blk_dva;
2158 	int needs_resilver = B_FALSE;
2159 	int d;
2160 
2161 	if (bc->bc_errno) {
2162 		/*
2163 		 * We can't scrub this block, but we can continue to scrub
2164 		 * the rest of the pool.  Note the error and move along.
2165 		 */
2166 		mutex_enter(&spa->spa_scrub_lock);
2167 		spa->spa_scrub_errors++;
2168 		mutex_exit(&spa->spa_scrub_lock);
2169 
2170 		mutex_enter(&vd->vdev_stat_lock);
2171 		vd->vdev_stat.vs_scrub_errors++;
2172 		mutex_exit(&vd->vdev_stat_lock);
2173 
2174 		return (ERESTART);
2175 	}
2176 
2177 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
2178 
2179 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
2180 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
2181 
2182 		ASSERT(vd != NULL);
2183 
2184 		/*
2185 		 * Keep track of how much data we've examined so that
2186 		 * zpool(1M) status can make useful progress reports.
2187 		 */
2188 		mutex_enter(&vd->vdev_stat_lock);
2189 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
2190 		mutex_exit(&vd->vdev_stat_lock);
2191 
2192 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
2193 			if (DVA_GET_GANG(&dva[d])) {
2194 				/*
2195 				 * Gang members may be spread across multiple
2196 				 * vdevs, so the best we can do is look at the
2197 				 * pool-wide DTL.
2198 				 * XXX -- it would be better to change our
2199 				 * allocation policy to ensure that this can't
2200 				 * happen.
2201 				 */
2202 				vd = spa->spa_root_vdev;
2203 			}
2204 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
2205 			    bp->blk_birth, 1))
2206 				needs_resilver = B_TRUE;
2207 		}
2208 	}
2209 
2210 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
2211 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
2212 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
2213 	else if (needs_resilver)
2214 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
2215 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
2216 
2217 	return (0);
2218 }
2219 
2220 static void
2221 spa_scrub_thread(spa_t *spa)
2222 {
2223 	callb_cpr_t cprinfo;
2224 	traverse_handle_t *th = spa->spa_scrub_th;
2225 	vdev_t *rvd = spa->spa_root_vdev;
2226 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
2227 	int error = 0;
2228 	boolean_t complete;
2229 
2230 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
2231 
2232 	/*
2233 	 * If we're restarting due to a snapshot create/delete,
2234 	 * wait for that to complete.
2235 	 */
2236 	txg_wait_synced(spa_get_dsl(spa), 0);
2237 
2238 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
2239 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2240 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
2241 
2242 	spa_config_enter(spa, RW_WRITER, FTAG);
2243 	vdev_reopen(rvd);		/* purge all vdev caches */
2244 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
2245 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
2246 	spa_config_exit(spa, FTAG);
2247 
2248 	mutex_enter(&spa->spa_scrub_lock);
2249 	spa->spa_scrub_errors = 0;
2250 	spa->spa_scrub_active = 1;
2251 	ASSERT(spa->spa_scrub_inflight == 0);
2252 	ASSERT(spa->spa_scrub_throttled == 0);
2253 
2254 	while (!spa->spa_scrub_stop) {
2255 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2256 		while (spa->spa_scrub_suspended) {
2257 			spa->spa_scrub_active = 0;
2258 			cv_broadcast(&spa->spa_scrub_cv);
2259 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2260 			spa->spa_scrub_active = 1;
2261 		}
2262 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
2263 
2264 		if (spa->spa_scrub_restart_txg != 0)
2265 			break;
2266 
2267 		mutex_exit(&spa->spa_scrub_lock);
2268 		error = traverse_more(th);
2269 		mutex_enter(&spa->spa_scrub_lock);
2270 		if (error != EAGAIN)
2271 			break;
2272 
2273 		while (spa->spa_scrub_throttled > 0)
2274 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2275 	}
2276 
2277 	while (spa->spa_scrub_inflight)
2278 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2279 
2280 	spa->spa_scrub_active = 0;
2281 	cv_broadcast(&spa->spa_scrub_cv);
2282 
2283 	mutex_exit(&spa->spa_scrub_lock);
2284 
2285 	spa_config_enter(spa, RW_WRITER, FTAG);
2286 
2287 	mutex_enter(&spa->spa_scrub_lock);
2288 
2289 	/*
2290 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
2291 	 * AND the spa config lock to synchronize with any config changes
2292 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
2293 	 */
2294 	if (spa->spa_scrub_restart_txg != 0)
2295 		error = ERESTART;
2296 
2297 	if (spa->spa_scrub_stop)
2298 		error = EINTR;
2299 
2300 	/*
2301 	 * Even if there were uncorrectable errors, we consider the scrub
2302 	 * completed.  The downside is that if there is a transient error during
2303 	 * a resilver, we won't resilver the data properly to the target.  But
2304 	 * if the damage is permanent (more likely) we will resilver forever,
2305 	 * which isn't really acceptable.  Since there is enough information for
2306 	 * the user to know what has failed and why, this seems like a more
2307 	 * tractable approach.
2308 	 */
2309 	complete = (error == 0);
2310 
2311 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
2312 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2313 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
2314 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
2315 
2316 	mutex_exit(&spa->spa_scrub_lock);
2317 
2318 	/*
2319 	 * If the scrub/resilver completed, update all DTLs to reflect this.
2320 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
2321 	 */
2322 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
2323 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
2324 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
2325 	spa_errlog_rotate(spa);
2326 
2327 	spa_config_exit(spa, FTAG);
2328 
2329 	mutex_enter(&spa->spa_scrub_lock);
2330 
2331 	/*
2332 	 * We may have finished replacing a device.
2333 	 * Let the async thread assess this and handle the detach.
2334 	 */
2335 	spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
2336 
2337 	/*
2338 	 * If we were told to restart, our final act is to start a new scrub.
2339 	 */
2340 	if (error == ERESTART)
2341 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
2342 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
2343 
2344 	spa->spa_scrub_type = POOL_SCRUB_NONE;
2345 	spa->spa_scrub_active = 0;
2346 	spa->spa_scrub_thread = NULL;
2347 	cv_broadcast(&spa->spa_scrub_cv);
2348 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
2349 	thread_exit();
2350 }
2351 
2352 void
2353 spa_scrub_suspend(spa_t *spa)
2354 {
2355 	mutex_enter(&spa->spa_scrub_lock);
2356 	spa->spa_scrub_suspended++;
2357 	while (spa->spa_scrub_active) {
2358 		cv_broadcast(&spa->spa_scrub_cv);
2359 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2360 	}
2361 	while (spa->spa_scrub_inflight)
2362 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2363 	mutex_exit(&spa->spa_scrub_lock);
2364 }
2365 
2366 void
2367 spa_scrub_resume(spa_t *spa)
2368 {
2369 	mutex_enter(&spa->spa_scrub_lock);
2370 	ASSERT(spa->spa_scrub_suspended != 0);
2371 	if (--spa->spa_scrub_suspended == 0)
2372 		cv_broadcast(&spa->spa_scrub_cv);
2373 	mutex_exit(&spa->spa_scrub_lock);
2374 }
2375 
2376 void
2377 spa_scrub_restart(spa_t *spa, uint64_t txg)
2378 {
2379 	/*
2380 	 * Something happened (e.g. snapshot create/delete) that means
2381 	 * we must restart any in-progress scrubs.  The itinerary will
2382 	 * fix this properly.
2383 	 */
2384 	mutex_enter(&spa->spa_scrub_lock);
2385 	spa->spa_scrub_restart_txg = txg;
2386 	mutex_exit(&spa->spa_scrub_lock);
2387 }
2388 
2389 int
2390 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
2391 {
2392 	space_seg_t *ss;
2393 	uint64_t mintxg, maxtxg;
2394 	vdev_t *rvd = spa->spa_root_vdev;
2395 
2396 	if ((uint_t)type >= POOL_SCRUB_TYPES)
2397 		return (ENOTSUP);
2398 
2399 	mutex_enter(&spa->spa_scrub_lock);
2400 
2401 	/*
2402 	 * If there's a scrub or resilver already in progress, stop it.
2403 	 */
2404 	while (spa->spa_scrub_thread != NULL) {
2405 		/*
2406 		 * Don't stop a resilver unless forced.
2407 		 */
2408 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
2409 			mutex_exit(&spa->spa_scrub_lock);
2410 			return (EBUSY);
2411 		}
2412 		spa->spa_scrub_stop = 1;
2413 		cv_broadcast(&spa->spa_scrub_cv);
2414 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2415 	}
2416 
2417 	/*
2418 	 * Terminate the previous traverse.
2419 	 */
2420 	if (spa->spa_scrub_th != NULL) {
2421 		traverse_fini(spa->spa_scrub_th);
2422 		spa->spa_scrub_th = NULL;
2423 	}
2424 
2425 	if (rvd == NULL) {
2426 		ASSERT(spa->spa_scrub_stop == 0);
2427 		ASSERT(spa->spa_scrub_type == type);
2428 		ASSERT(spa->spa_scrub_restart_txg == 0);
2429 		mutex_exit(&spa->spa_scrub_lock);
2430 		return (0);
2431 	}
2432 
2433 	mintxg = TXG_INITIAL - 1;
2434 	maxtxg = spa_last_synced_txg(spa) + 1;
2435 
2436 	mutex_enter(&rvd->vdev_dtl_lock);
2437 
2438 	if (rvd->vdev_dtl_map.sm_space == 0) {
2439 		/*
2440 		 * The pool-wide DTL is empty.
2441 		 * If this is a resilver, there's nothing to do except
2442 		 * check whether any in-progress replacements have completed.
2443 		 */
2444 		if (type == POOL_SCRUB_RESILVER) {
2445 			type = POOL_SCRUB_NONE;
2446 			spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
2447 		}
2448 	} else {
2449 		/*
2450 		 * The pool-wide DTL is non-empty.
2451 		 * If this is a normal scrub, upgrade to a resilver instead.
2452 		 */
2453 		if (type == POOL_SCRUB_EVERYTHING)
2454 			type = POOL_SCRUB_RESILVER;
2455 	}
2456 
2457 	if (type == POOL_SCRUB_RESILVER) {
2458 		/*
2459 		 * Determine the resilvering boundaries.
2460 		 *
2461 		 * Note: (mintxg, maxtxg) is an open interval,
2462 		 * i.e. mintxg and maxtxg themselves are not included.
2463 		 *
2464 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
2465 		 * so we don't claim to resilver a txg that's still changing.
2466 		 */
2467 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
2468 		mintxg = ss->ss_start - 1;
2469 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
2470 		maxtxg = MIN(ss->ss_end, maxtxg);
2471 	}
2472 
2473 	mutex_exit(&rvd->vdev_dtl_lock);
2474 
2475 	spa->spa_scrub_stop = 0;
2476 	spa->spa_scrub_type = type;
2477 	spa->spa_scrub_restart_txg = 0;
2478 
2479 	if (type != POOL_SCRUB_NONE) {
2480 		spa->spa_scrub_mintxg = mintxg;
2481 		spa->spa_scrub_maxtxg = maxtxg;
2482 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
2483 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
2484 		    ZIO_FLAG_CANFAIL);
2485 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
2486 		spa->spa_scrub_thread = thread_create(NULL, 0,
2487 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
2488 	}
2489 
2490 	mutex_exit(&spa->spa_scrub_lock);
2491 
2492 	return (0);
2493 }
2494 
2495 /*
2496  * ==========================================================================
2497  * SPA async task processing
2498  * ==========================================================================
2499  */
2500 
2501 static void
2502 spa_async_reopen(spa_t *spa)
2503 {
2504 	vdev_t *rvd = spa->spa_root_vdev;
2505 	vdev_t *tvd;
2506 	int c;
2507 
2508 	spa_config_enter(spa, RW_WRITER, FTAG);
2509 
2510 	for (c = 0; c < rvd->vdev_children; c++) {
2511 		tvd = rvd->vdev_child[c];
2512 		if (tvd->vdev_reopen_wanted) {
2513 			tvd->vdev_reopen_wanted = 0;
2514 			vdev_reopen(tvd);
2515 		}
2516 	}
2517 
2518 	spa_config_exit(spa, FTAG);
2519 }
2520 
2521 static void
2522 spa_async_thread(spa_t *spa)
2523 {
2524 	int tasks;
2525 
2526 	ASSERT(spa->spa_sync_on);
2527 
2528 	mutex_enter(&spa->spa_async_lock);
2529 	tasks = spa->spa_async_tasks;
2530 	spa->spa_async_tasks = 0;
2531 	mutex_exit(&spa->spa_async_lock);
2532 
2533 	/*
2534 	 * See if the config needs to be updated.
2535 	 */
2536 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
2537 		mutex_enter(&spa_namespace_lock);
2538 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2539 		mutex_exit(&spa_namespace_lock);
2540 	}
2541 
2542 	/*
2543 	 * See if any devices need to be reopened.
2544 	 */
2545 	if (tasks & SPA_ASYNC_REOPEN)
2546 		spa_async_reopen(spa);
2547 
2548 	/*
2549 	 * If any devices are done replacing, detach them.
2550 	 */
2551 	if (tasks & SPA_ASYNC_REPLACE_DONE)
2552 		spa_vdev_replace_done(spa);
2553 
2554 	/*
2555 	 * Kick off a scrub.
2556 	 */
2557 	if (tasks & SPA_ASYNC_SCRUB)
2558 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
2559 
2560 	/*
2561 	 * Kick off a resilver.
2562 	 */
2563 	if (tasks & SPA_ASYNC_RESILVER)
2564 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2565 
2566 	/*
2567 	 * Let the world know that we're done.
2568 	 */
2569 	mutex_enter(&spa->spa_async_lock);
2570 	spa->spa_async_thread = NULL;
2571 	cv_broadcast(&spa->spa_async_cv);
2572 	mutex_exit(&spa->spa_async_lock);
2573 	thread_exit();
2574 }
2575 
2576 void
2577 spa_async_suspend(spa_t *spa)
2578 {
2579 	mutex_enter(&spa->spa_async_lock);
2580 	spa->spa_async_suspended++;
2581 	while (spa->spa_async_thread != NULL)
2582 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
2583 	mutex_exit(&spa->spa_async_lock);
2584 }
2585 
2586 void
2587 spa_async_resume(spa_t *spa)
2588 {
2589 	mutex_enter(&spa->spa_async_lock);
2590 	ASSERT(spa->spa_async_suspended != 0);
2591 	spa->spa_async_suspended--;
2592 	mutex_exit(&spa->spa_async_lock);
2593 }
2594 
2595 static void
2596 spa_async_dispatch(spa_t *spa)
2597 {
2598 	mutex_enter(&spa->spa_async_lock);
2599 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
2600 	    spa->spa_async_thread == NULL &&
2601 	    rootdir != NULL && !vn_is_readonly(rootdir))
2602 		spa->spa_async_thread = thread_create(NULL, 0,
2603 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
2604 	mutex_exit(&spa->spa_async_lock);
2605 }
2606 
2607 void
2608 spa_async_request(spa_t *spa, int task)
2609 {
2610 	mutex_enter(&spa->spa_async_lock);
2611 	spa->spa_async_tasks |= task;
2612 	mutex_exit(&spa->spa_async_lock);
2613 }
2614 
2615 /*
2616  * ==========================================================================
2617  * SPA syncing routines
2618  * ==========================================================================
2619  */
2620 
2621 static void
2622 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
2623 {
2624 	bplist_t *bpl = &spa->spa_sync_bplist;
2625 	dmu_tx_t *tx;
2626 	blkptr_t blk;
2627 	uint64_t itor = 0;
2628 	zio_t *zio;
2629 	int error;
2630 	uint8_t c = 1;
2631 
2632 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
2633 
2634 	while (bplist_iterate(bpl, &itor, &blk) == 0)
2635 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
2636 
2637 	error = zio_wait(zio);
2638 	ASSERT3U(error, ==, 0);
2639 
2640 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2641 	bplist_vacate(bpl, tx);
2642 
2643 	/*
2644 	 * Pre-dirty the first block so we sync to convergence faster.
2645 	 * (Usually only the first block is needed.)
2646 	 */
2647 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2648 	dmu_tx_commit(tx);
2649 }
2650 
2651 static void
2652 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
2653 {
2654 	char *packed = NULL;
2655 	size_t nvsize = 0;
2656 	dmu_buf_t *db;
2657 
2658 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
2659 
2660 	packed = kmem_alloc(nvsize, KM_SLEEP);
2661 
2662 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
2663 	    KM_SLEEP) == 0);
2664 
2665 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
2666 
2667 	kmem_free(packed, nvsize);
2668 
2669 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
2670 	dmu_buf_will_dirty(db, tx);
2671 	*(uint64_t *)db->db_data = nvsize;
2672 	dmu_buf_rele(db, FTAG);
2673 }
2674 
2675 static void
2676 spa_sync_spares(spa_t *spa, dmu_tx_t *tx)
2677 {
2678 	nvlist_t *nvroot;
2679 	nvlist_t **spares;
2680 	int i;
2681 
2682 	if (!spa->spa_sync_spares)
2683 		return;
2684 
2685 	/*
2686 	 * Update the MOS nvlist describing the list of available spares.
2687 	 * spa_validate_spares() will have already made sure this nvlist is
2688 	 * valid and the vdevs are labelled appropriately.
2689 	 */
2690 	if (spa->spa_spares_object == 0) {
2691 		spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset,
2692 		    DMU_OT_PACKED_NVLIST, 1 << 14,
2693 		    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2694 		VERIFY(zap_update(spa->spa_meta_objset,
2695 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES,
2696 		    sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0);
2697 	}
2698 
2699 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2700 	if (spa->spa_nspares == 0) {
2701 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2702 		    NULL, 0) == 0);
2703 	} else {
2704 		spares = kmem_alloc(spa->spa_nspares * sizeof (void *),
2705 		    KM_SLEEP);
2706 		for (i = 0; i < spa->spa_nspares; i++)
2707 			spares[i] = vdev_config_generate(spa,
2708 			    spa->spa_spares[i], B_FALSE, B_TRUE);
2709 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2710 		    spares, spa->spa_nspares) == 0);
2711 		for (i = 0; i < spa->spa_nspares; i++)
2712 			nvlist_free(spares[i]);
2713 		kmem_free(spares, spa->spa_nspares * sizeof (void *));
2714 	}
2715 
2716 	spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx);
2717 
2718 	spa->spa_sync_spares = B_FALSE;
2719 }
2720 
2721 static void
2722 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2723 {
2724 	nvlist_t *config;
2725 
2726 	if (list_is_empty(&spa->spa_dirty_list))
2727 		return;
2728 
2729 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2730 
2731 	if (spa->spa_config_syncing)
2732 		nvlist_free(spa->spa_config_syncing);
2733 	spa->spa_config_syncing = config;
2734 
2735 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
2736 }
2737 
2738 /*
2739  * Sync the specified transaction group.  New blocks may be dirtied as
2740  * part of the process, so we iterate until it converges.
2741  */
2742 void
2743 spa_sync(spa_t *spa, uint64_t txg)
2744 {
2745 	dsl_pool_t *dp = spa->spa_dsl_pool;
2746 	objset_t *mos = spa->spa_meta_objset;
2747 	bplist_t *bpl = &spa->spa_sync_bplist;
2748 	vdev_t *rvd = spa->spa_root_vdev;
2749 	vdev_t *vd;
2750 	dmu_tx_t *tx;
2751 	int dirty_vdevs;
2752 
2753 	/*
2754 	 * Lock out configuration changes.
2755 	 */
2756 	spa_config_enter(spa, RW_READER, FTAG);
2757 
2758 	spa->spa_syncing_txg = txg;
2759 	spa->spa_sync_pass = 0;
2760 
2761 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
2762 
2763 	tx = dmu_tx_create_assigned(dp, txg);
2764 
2765 	/*
2766 	 * If we are upgrading to ZFS_VERSION_RAIDZ_DEFLATE this txg,
2767 	 * set spa_deflate if we have no raid-z vdevs.
2768 	 */
2769 	if (spa->spa_ubsync.ub_version < ZFS_VERSION_RAIDZ_DEFLATE &&
2770 	    spa->spa_uberblock.ub_version >= ZFS_VERSION_RAIDZ_DEFLATE) {
2771 		int i;
2772 
2773 		for (i = 0; i < rvd->vdev_children; i++) {
2774 			vd = rvd->vdev_child[i];
2775 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
2776 				break;
2777 		}
2778 		if (i == rvd->vdev_children) {
2779 			spa->spa_deflate = TRUE;
2780 			VERIFY(0 == zap_add(spa->spa_meta_objset,
2781 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2782 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
2783 		}
2784 	}
2785 
2786 	/*
2787 	 * If anything has changed in this txg, push the deferred frees
2788 	 * from the previous txg.  If not, leave them alone so that we
2789 	 * don't generate work on an otherwise idle system.
2790 	 */
2791 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
2792 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
2793 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
2794 		spa_sync_deferred_frees(spa, txg);
2795 
2796 	/*
2797 	 * Iterate to convergence.
2798 	 */
2799 	do {
2800 		spa->spa_sync_pass++;
2801 
2802 		spa_sync_config_object(spa, tx);
2803 		spa_sync_spares(spa, tx);
2804 		spa_errlog_sync(spa, txg);
2805 		dsl_pool_sync(dp, txg);
2806 
2807 		dirty_vdevs = 0;
2808 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
2809 			vdev_sync(vd, txg);
2810 			dirty_vdevs++;
2811 		}
2812 
2813 		bplist_sync(bpl, tx);
2814 	} while (dirty_vdevs);
2815 
2816 	bplist_close(bpl);
2817 
2818 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
2819 
2820 	/*
2821 	 * Rewrite the vdev configuration (which includes the uberblock)
2822 	 * to commit the transaction group.
2823 	 *
2824 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
2825 	 * Otherwise, pick a random top-level vdev that's known to be
2826 	 * visible in the config cache (see spa_vdev_add() for details).
2827 	 * If the write fails, try the next vdev until we're tried them all.
2828 	 */
2829 	if (!list_is_empty(&spa->spa_dirty_list)) {
2830 		VERIFY(vdev_config_sync(rvd, txg) == 0);
2831 	} else {
2832 		int children = rvd->vdev_children;
2833 		int c0 = spa_get_random(children);
2834 		int c;
2835 
2836 		for (c = 0; c < children; c++) {
2837 			vd = rvd->vdev_child[(c0 + c) % children];
2838 			if (vd->vdev_ms_array == 0)
2839 				continue;
2840 			if (vdev_config_sync(vd, txg) == 0)
2841 				break;
2842 		}
2843 		if (c == children)
2844 			VERIFY(vdev_config_sync(rvd, txg) == 0);
2845 	}
2846 
2847 	dmu_tx_commit(tx);
2848 
2849 	/*
2850 	 * Clear the dirty config list.
2851 	 */
2852 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
2853 		vdev_config_clean(vd);
2854 
2855 	/*
2856 	 * Now that the new config has synced transactionally,
2857 	 * let it become visible to the config cache.
2858 	 */
2859 	if (spa->spa_config_syncing != NULL) {
2860 		spa_config_set(spa, spa->spa_config_syncing);
2861 		spa->spa_config_txg = txg;
2862 		spa->spa_config_syncing = NULL;
2863 	}
2864 
2865 	/*
2866 	 * Make a stable copy of the fully synced uberblock.
2867 	 * We use this as the root for pool traversals.
2868 	 */
2869 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
2870 
2871 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
2872 
2873 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
2874 	spa->spa_traverse_wanted = 0;
2875 	spa->spa_ubsync = spa->spa_uberblock;
2876 	rw_exit(&spa->spa_traverse_lock);
2877 
2878 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
2879 
2880 	/*
2881 	 * Clean up the ZIL records for the synced txg.
2882 	 */
2883 	dsl_pool_zil_clean(dp);
2884 
2885 	/*
2886 	 * Update usable space statistics.
2887 	 */
2888 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
2889 		vdev_sync_done(vd, txg);
2890 
2891 	/*
2892 	 * It had better be the case that we didn't dirty anything
2893 	 * since vdev_config_sync().
2894 	 */
2895 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
2896 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
2897 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
2898 	ASSERT(bpl->bpl_queue == NULL);
2899 
2900 	spa_config_exit(spa, FTAG);
2901 
2902 	/*
2903 	 * If any async tasks have been requested, kick them off.
2904 	 */
2905 	spa_async_dispatch(spa);
2906 }
2907 
2908 /*
2909  * Sync all pools.  We don't want to hold the namespace lock across these
2910  * operations, so we take a reference on the spa_t and drop the lock during the
2911  * sync.
2912  */
2913 void
2914 spa_sync_allpools(void)
2915 {
2916 	spa_t *spa = NULL;
2917 	mutex_enter(&spa_namespace_lock);
2918 	while ((spa = spa_next(spa)) != NULL) {
2919 		if (spa_state(spa) != POOL_STATE_ACTIVE)
2920 			continue;
2921 		spa_open_ref(spa, FTAG);
2922 		mutex_exit(&spa_namespace_lock);
2923 		txg_wait_synced(spa_get_dsl(spa), 0);
2924 		mutex_enter(&spa_namespace_lock);
2925 		spa_close(spa, FTAG);
2926 	}
2927 	mutex_exit(&spa_namespace_lock);
2928 }
2929 
2930 /*
2931  * ==========================================================================
2932  * Miscellaneous routines
2933  * ==========================================================================
2934  */
2935 
2936 /*
2937  * Remove all pools in the system.
2938  */
2939 void
2940 spa_evict_all(void)
2941 {
2942 	spa_t *spa;
2943 
2944 	/*
2945 	 * Remove all cached state.  All pools should be closed now,
2946 	 * so every spa in the AVL tree should be unreferenced.
2947 	 */
2948 	mutex_enter(&spa_namespace_lock);
2949 	while ((spa = spa_next(NULL)) != NULL) {
2950 		/*
2951 		 * Stop async tasks.  The async thread may need to detach
2952 		 * a device that's been replaced, which requires grabbing
2953 		 * spa_namespace_lock, so we must drop it here.
2954 		 */
2955 		spa_open_ref(spa, FTAG);
2956 		mutex_exit(&spa_namespace_lock);
2957 		spa_async_suspend(spa);
2958 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
2959 		mutex_enter(&spa_namespace_lock);
2960 		spa_close(spa, FTAG);
2961 
2962 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2963 			spa_unload(spa);
2964 			spa_deactivate(spa);
2965 		}
2966 		spa_remove(spa);
2967 	}
2968 	mutex_exit(&spa_namespace_lock);
2969 }
2970 
2971 vdev_t *
2972 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
2973 {
2974 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
2975 }
2976 
2977 void
2978 spa_upgrade(spa_t *spa)
2979 {
2980 	spa_config_enter(spa, RW_WRITER, FTAG);
2981 
2982 	/*
2983 	 * This should only be called for a non-faulted pool, and since a
2984 	 * future version would result in an unopenable pool, this shouldn't be
2985 	 * possible.
2986 	 */
2987 	ASSERT(spa->spa_uberblock.ub_version <= ZFS_VERSION);
2988 
2989 	spa->spa_uberblock.ub_version = ZFS_VERSION;
2990 	vdev_config_dirty(spa->spa_root_vdev);
2991 
2992 	spa_config_exit(spa, FTAG);
2993 
2994 	txg_wait_synced(spa_get_dsl(spa), 0);
2995 }
2996 
2997 boolean_t
2998 spa_has_spare(spa_t *spa, uint64_t guid)
2999 {
3000 	int i;
3001 
3002 	for (i = 0; i < spa->spa_nspares; i++)
3003 		if (spa->spa_spares[i]->vdev_guid == guid)
3004 			return (B_TRUE);
3005 
3006 	return (B_FALSE);
3007 }
3008