1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/dmu.h> 27 #include <sys/dmu_impl.h> 28 #include <sys/dmu_tx.h> 29 #include <sys/dbuf.h> 30 #include <sys/dnode.h> 31 #include <sys/zfs_context.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dmu_traverse.h> 34 #include <sys/dsl_dataset.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_pool.h> 37 #include <sys/dsl_synctask.h> 38 #include <sys/dsl_prop.h> 39 #include <sys/dmu_zfetch.h> 40 #include <sys/zfs_ioctl.h> 41 #include <sys/zap.h> 42 #include <sys/zio_checksum.h> 43 #ifdef _KERNEL 44 #include <sys/vmsystm.h> 45 #include <sys/zfs_znode.h> 46 #endif 47 48 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 49 { byteswap_uint8_array, TRUE, "unallocated" }, 50 { zap_byteswap, TRUE, "object directory" }, 51 { byteswap_uint64_array, TRUE, "object array" }, 52 { byteswap_uint8_array, TRUE, "packed nvlist" }, 53 { byteswap_uint64_array, TRUE, "packed nvlist size" }, 54 { byteswap_uint64_array, TRUE, "bplist" }, 55 { byteswap_uint64_array, TRUE, "bplist header" }, 56 { byteswap_uint64_array, TRUE, "SPA space map header" }, 57 { byteswap_uint64_array, TRUE, "SPA space map" }, 58 { byteswap_uint64_array, TRUE, "ZIL intent log" }, 59 { dnode_buf_byteswap, TRUE, "DMU dnode" }, 60 { dmu_objset_byteswap, TRUE, "DMU objset" }, 61 { byteswap_uint64_array, TRUE, "DSL directory" }, 62 { zap_byteswap, TRUE, "DSL directory child map"}, 63 { zap_byteswap, TRUE, "DSL dataset snap map" }, 64 { zap_byteswap, TRUE, "DSL props" }, 65 { byteswap_uint64_array, TRUE, "DSL dataset" }, 66 { zfs_znode_byteswap, TRUE, "ZFS znode" }, 67 { zfs_oldacl_byteswap, TRUE, "ZFS V0 ACL" }, 68 { byteswap_uint8_array, FALSE, "ZFS plain file" }, 69 { zap_byteswap, TRUE, "ZFS directory" }, 70 { zap_byteswap, TRUE, "ZFS master node" }, 71 { zap_byteswap, TRUE, "ZFS delete queue" }, 72 { byteswap_uint8_array, FALSE, "zvol object" }, 73 { zap_byteswap, TRUE, "zvol prop" }, 74 { byteswap_uint8_array, FALSE, "other uint8[]" }, 75 { byteswap_uint64_array, FALSE, "other uint64[]" }, 76 { zap_byteswap, TRUE, "other ZAP" }, 77 { zap_byteswap, TRUE, "persistent error log" }, 78 { byteswap_uint8_array, TRUE, "SPA history" }, 79 { byteswap_uint64_array, TRUE, "SPA history offsets" }, 80 { zap_byteswap, TRUE, "Pool properties" }, 81 { zap_byteswap, TRUE, "DSL permissions" }, 82 { zfs_acl_byteswap, TRUE, "ZFS ACL" }, 83 { byteswap_uint8_array, TRUE, "ZFS SYSACL" }, 84 { byteswap_uint8_array, TRUE, "FUID table" }, 85 { byteswap_uint64_array, TRUE, "FUID table size" }, 86 { zap_byteswap, TRUE, "DSL dataset next clones"}, 87 { zap_byteswap, TRUE, "scrub work queue" }, 88 }; 89 90 int 91 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 92 void *tag, dmu_buf_t **dbp) 93 { 94 dnode_t *dn; 95 uint64_t blkid; 96 dmu_buf_impl_t *db; 97 int err; 98 99 err = dnode_hold(os->os, object, FTAG, &dn); 100 if (err) 101 return (err); 102 blkid = dbuf_whichblock(dn, offset); 103 rw_enter(&dn->dn_struct_rwlock, RW_READER); 104 db = dbuf_hold(dn, blkid, tag); 105 rw_exit(&dn->dn_struct_rwlock); 106 if (db == NULL) { 107 err = EIO; 108 } else { 109 err = dbuf_read(db, NULL, DB_RF_CANFAIL); 110 if (err) { 111 dbuf_rele(db, tag); 112 db = NULL; 113 } 114 } 115 116 dnode_rele(dn, FTAG); 117 *dbp = &db->db; 118 return (err); 119 } 120 121 int 122 dmu_bonus_max(void) 123 { 124 return (DN_MAX_BONUSLEN); 125 } 126 127 int 128 dmu_set_bonus(dmu_buf_t *db, int newsize, dmu_tx_t *tx) 129 { 130 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 131 132 if (dn->dn_bonus != (dmu_buf_impl_t *)db) 133 return (EINVAL); 134 if (newsize < 0 || newsize > db->db_size) 135 return (EINVAL); 136 dnode_setbonuslen(dn, newsize, tx); 137 return (0); 138 } 139 140 /* 141 * returns ENOENT, EIO, or 0. 142 */ 143 int 144 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 145 { 146 dnode_t *dn; 147 dmu_buf_impl_t *db; 148 int error; 149 150 error = dnode_hold(os->os, object, FTAG, &dn); 151 if (error) 152 return (error); 153 154 rw_enter(&dn->dn_struct_rwlock, RW_READER); 155 if (dn->dn_bonus == NULL) { 156 rw_exit(&dn->dn_struct_rwlock); 157 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 158 if (dn->dn_bonus == NULL) 159 dbuf_create_bonus(dn); 160 } 161 db = dn->dn_bonus; 162 rw_exit(&dn->dn_struct_rwlock); 163 164 /* as long as the bonus buf is held, the dnode will be held */ 165 if (refcount_add(&db->db_holds, tag) == 1) 166 VERIFY(dnode_add_ref(dn, db)); 167 168 dnode_rele(dn, FTAG); 169 170 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED)); 171 172 *dbp = &db->db; 173 return (0); 174 } 175 176 /* 177 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 178 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 179 * and can induce severe lock contention when writing to several files 180 * whose dnodes are in the same block. 181 */ 182 static int 183 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, 184 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 185 { 186 dmu_buf_t **dbp; 187 uint64_t blkid, nblks, i; 188 uint32_t flags; 189 int err; 190 zio_t *zio; 191 192 ASSERT(length <= DMU_MAX_ACCESS); 193 194 flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT; 195 if (length > zfetch_array_rd_sz) 196 flags |= DB_RF_NOPREFETCH; 197 198 rw_enter(&dn->dn_struct_rwlock, RW_READER); 199 if (dn->dn_datablkshift) { 200 int blkshift = dn->dn_datablkshift; 201 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 202 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 203 } else { 204 if (offset + length > dn->dn_datablksz) { 205 zfs_panic_recover("zfs: accessing past end of object " 206 "%llx/%llx (size=%u access=%llu+%llu)", 207 (longlong_t)dn->dn_objset-> 208 os_dsl_dataset->ds_object, 209 (longlong_t)dn->dn_object, dn->dn_datablksz, 210 (longlong_t)offset, (longlong_t)length); 211 return (EIO); 212 } 213 nblks = 1; 214 } 215 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 216 217 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, TRUE); 218 blkid = dbuf_whichblock(dn, offset); 219 for (i = 0; i < nblks; i++) { 220 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 221 if (db == NULL) { 222 rw_exit(&dn->dn_struct_rwlock); 223 dmu_buf_rele_array(dbp, nblks, tag); 224 zio_nowait(zio); 225 return (EIO); 226 } 227 /* initiate async i/o */ 228 if (read) { 229 rw_exit(&dn->dn_struct_rwlock); 230 (void) dbuf_read(db, zio, flags); 231 rw_enter(&dn->dn_struct_rwlock, RW_READER); 232 } 233 dbp[i] = &db->db; 234 } 235 rw_exit(&dn->dn_struct_rwlock); 236 237 /* wait for async i/o */ 238 err = zio_wait(zio); 239 if (err) { 240 dmu_buf_rele_array(dbp, nblks, tag); 241 return (err); 242 } 243 244 /* wait for other io to complete */ 245 if (read) { 246 for (i = 0; i < nblks; i++) { 247 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 248 mutex_enter(&db->db_mtx); 249 while (db->db_state == DB_READ || 250 db->db_state == DB_FILL) 251 cv_wait(&db->db_changed, &db->db_mtx); 252 if (db->db_state == DB_UNCACHED) 253 err = EIO; 254 mutex_exit(&db->db_mtx); 255 if (err) { 256 dmu_buf_rele_array(dbp, nblks, tag); 257 return (err); 258 } 259 } 260 } 261 262 *numbufsp = nblks; 263 *dbpp = dbp; 264 return (0); 265 } 266 267 static int 268 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 269 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 270 { 271 dnode_t *dn; 272 int err; 273 274 err = dnode_hold(os->os, object, FTAG, &dn); 275 if (err) 276 return (err); 277 278 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 279 numbufsp, dbpp); 280 281 dnode_rele(dn, FTAG); 282 283 return (err); 284 } 285 286 int 287 dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, 288 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 289 { 290 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 291 int err; 292 293 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 294 numbufsp, dbpp); 295 296 return (err); 297 } 298 299 void 300 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 301 { 302 int i; 303 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 304 305 if (numbufs == 0) 306 return; 307 308 for (i = 0; i < numbufs; i++) { 309 if (dbp[i]) 310 dbuf_rele(dbp[i], tag); 311 } 312 313 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 314 } 315 316 void 317 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 318 { 319 dnode_t *dn; 320 uint64_t blkid; 321 int nblks, i, err; 322 323 if (zfs_prefetch_disable) 324 return; 325 326 if (len == 0) { /* they're interested in the bonus buffer */ 327 dn = os->os->os_meta_dnode; 328 329 if (object == 0 || object >= DN_MAX_OBJECT) 330 return; 331 332 rw_enter(&dn->dn_struct_rwlock, RW_READER); 333 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 334 dbuf_prefetch(dn, blkid); 335 rw_exit(&dn->dn_struct_rwlock); 336 return; 337 } 338 339 /* 340 * XXX - Note, if the dnode for the requested object is not 341 * already cached, we will do a *synchronous* read in the 342 * dnode_hold() call. The same is true for any indirects. 343 */ 344 err = dnode_hold(os->os, object, FTAG, &dn); 345 if (err != 0) 346 return; 347 348 rw_enter(&dn->dn_struct_rwlock, RW_READER); 349 if (dn->dn_datablkshift) { 350 int blkshift = dn->dn_datablkshift; 351 nblks = (P2ROUNDUP(offset+len, 1<<blkshift) - 352 P2ALIGN(offset, 1<<blkshift)) >> blkshift; 353 } else { 354 nblks = (offset < dn->dn_datablksz); 355 } 356 357 if (nblks != 0) { 358 blkid = dbuf_whichblock(dn, offset); 359 for (i = 0; i < nblks; i++) 360 dbuf_prefetch(dn, blkid+i); 361 } 362 363 rw_exit(&dn->dn_struct_rwlock); 364 365 dnode_rele(dn, FTAG); 366 } 367 368 static int 369 get_next_chunk(dnode_t *dn, uint64_t *offset, uint64_t limit) 370 { 371 uint64_t len = limit - *offset; 372 uint64_t chunk_len = dn->dn_datablksz * DMU_MAX_DELETEBLKCNT; 373 uint64_t dn_used; 374 int err; 375 376 ASSERT(limit <= *offset); 377 378 dn_used = dn->dn_phys->dn_used << 379 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES ? 0 : DEV_BSHIFT); 380 if (len <= chunk_len || dn_used <= chunk_len) { 381 *offset = limit; 382 return (0); 383 } 384 385 while (*offset > limit) { 386 uint64_t initial_offset = *offset; 387 uint64_t delta; 388 389 /* skip over allocated data */ 390 err = dnode_next_offset(dn, 391 DNODE_FIND_HOLE|DNODE_FIND_BACKWARDS, offset, 1, 1, 0); 392 if (err == ESRCH) 393 *offset = limit; 394 else if (err) 395 return (err); 396 397 ASSERT3U(*offset, <=, initial_offset); 398 delta = initial_offset - *offset; 399 if (delta >= chunk_len) { 400 *offset += delta - chunk_len; 401 return (0); 402 } 403 chunk_len -= delta; 404 405 /* skip over unallocated data */ 406 err = dnode_next_offset(dn, 407 DNODE_FIND_BACKWARDS, offset, 1, 1, 0); 408 if (err == ESRCH) 409 *offset = limit; 410 else if (err) 411 return (err); 412 413 if (*offset < limit) 414 *offset = limit; 415 ASSERT3U(*offset, <, initial_offset); 416 } 417 return (0); 418 } 419 420 static int 421 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 422 uint64_t length, boolean_t free_dnode) 423 { 424 dmu_tx_t *tx; 425 uint64_t object_size, start, end, len; 426 boolean_t trunc = (length == DMU_OBJECT_END); 427 int align, err; 428 429 align = 1 << dn->dn_datablkshift; 430 ASSERT(align > 0); 431 object_size = align == 1 ? dn->dn_datablksz : 432 (dn->dn_maxblkid + 1) << dn->dn_datablkshift; 433 434 if (trunc || (end = offset + length) > object_size) 435 end = object_size; 436 if (end <= offset) 437 return (0); 438 length = end - offset; 439 440 while (length) { 441 start = end; 442 err = get_next_chunk(dn, &start, offset); 443 if (err) 444 return (err); 445 len = trunc ? DMU_OBJECT_END : end - start; 446 447 tx = dmu_tx_create(os); 448 dmu_tx_hold_free(tx, dn->dn_object, start, len); 449 err = dmu_tx_assign(tx, TXG_WAIT); 450 if (err) { 451 dmu_tx_abort(tx); 452 return (err); 453 } 454 455 dnode_free_range(dn, start, trunc ? -1 : len, tx); 456 457 if (start == 0 && trunc && free_dnode) 458 dnode_free(dn, tx); 459 460 length -= end - start; 461 462 dmu_tx_commit(tx); 463 end = start; 464 trunc = FALSE; 465 } 466 return (0); 467 } 468 469 int 470 dmu_free_long_range(objset_t *os, uint64_t object, 471 uint64_t offset, uint64_t length) 472 { 473 dnode_t *dn; 474 int err; 475 476 err = dnode_hold(os->os, object, FTAG, &dn); 477 if (err != 0) 478 return (err); 479 err = dmu_free_long_range_impl(os, dn, offset, length, FALSE); 480 dnode_rele(dn, FTAG); 481 return (err); 482 } 483 484 int 485 dmu_free_object(objset_t *os, uint64_t object) 486 { 487 dnode_t *dn; 488 dmu_tx_t *tx; 489 int err; 490 491 err = dnode_hold_impl(os->os, object, DNODE_MUST_BE_ALLOCATED, 492 FTAG, &dn); 493 if (err != 0) 494 return (err); 495 if (dn->dn_nlevels == 1) { 496 tx = dmu_tx_create(os); 497 dmu_tx_hold_bonus(tx, object); 498 dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END); 499 err = dmu_tx_assign(tx, TXG_WAIT); 500 if (err == 0) { 501 dnode_free_range(dn, 0, DMU_OBJECT_END, tx); 502 dnode_free(dn, tx); 503 dmu_tx_commit(tx); 504 } else { 505 dmu_tx_abort(tx); 506 } 507 } else { 508 err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE); 509 } 510 dnode_rele(dn, FTAG); 511 return (err); 512 } 513 514 int 515 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 516 uint64_t size, dmu_tx_t *tx) 517 { 518 dnode_t *dn; 519 int err = dnode_hold(os->os, object, FTAG, &dn); 520 if (err) 521 return (err); 522 ASSERT(offset < UINT64_MAX); 523 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 524 dnode_free_range(dn, offset, size, tx); 525 dnode_rele(dn, FTAG); 526 return (0); 527 } 528 529 int 530 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 531 void *buf) 532 { 533 dnode_t *dn; 534 dmu_buf_t **dbp; 535 int numbufs, i, err; 536 537 err = dnode_hold(os->os, object, FTAG, &dn); 538 if (err) 539 return (err); 540 541 /* 542 * Deal with odd block sizes, where there can't be data past the first 543 * block. If we ever do the tail block optimization, we will need to 544 * handle that here as well. 545 */ 546 if (dn->dn_datablkshift == 0) { 547 int newsz = offset > dn->dn_datablksz ? 0 : 548 MIN(size, dn->dn_datablksz - offset); 549 bzero((char *)buf + newsz, size - newsz); 550 size = newsz; 551 } 552 553 while (size > 0) { 554 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 555 556 /* 557 * NB: we could do this block-at-a-time, but it's nice 558 * to be reading in parallel. 559 */ 560 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 561 TRUE, FTAG, &numbufs, &dbp); 562 if (err) 563 break; 564 565 for (i = 0; i < numbufs; i++) { 566 int tocpy; 567 int bufoff; 568 dmu_buf_t *db = dbp[i]; 569 570 ASSERT(size > 0); 571 572 bufoff = offset - db->db_offset; 573 tocpy = (int)MIN(db->db_size - bufoff, size); 574 575 bcopy((char *)db->db_data + bufoff, buf, tocpy); 576 577 offset += tocpy; 578 size -= tocpy; 579 buf = (char *)buf + tocpy; 580 } 581 dmu_buf_rele_array(dbp, numbufs, FTAG); 582 } 583 dnode_rele(dn, FTAG); 584 return (err); 585 } 586 587 void 588 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 589 const void *buf, dmu_tx_t *tx) 590 { 591 dmu_buf_t **dbp; 592 int numbufs, i; 593 594 if (size == 0) 595 return; 596 597 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 598 FALSE, FTAG, &numbufs, &dbp)); 599 600 for (i = 0; i < numbufs; i++) { 601 int tocpy; 602 int bufoff; 603 dmu_buf_t *db = dbp[i]; 604 605 ASSERT(size > 0); 606 607 bufoff = offset - db->db_offset; 608 tocpy = (int)MIN(db->db_size - bufoff, size); 609 610 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 611 612 if (tocpy == db->db_size) 613 dmu_buf_will_fill(db, tx); 614 else 615 dmu_buf_will_dirty(db, tx); 616 617 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 618 619 if (tocpy == db->db_size) 620 dmu_buf_fill_done(db, tx); 621 622 offset += tocpy; 623 size -= tocpy; 624 buf = (char *)buf + tocpy; 625 } 626 dmu_buf_rele_array(dbp, numbufs, FTAG); 627 } 628 629 #ifdef _KERNEL 630 int 631 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 632 { 633 dmu_buf_t **dbp; 634 int numbufs, i, err; 635 636 /* 637 * NB: we could do this block-at-a-time, but it's nice 638 * to be reading in parallel. 639 */ 640 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, 641 &numbufs, &dbp); 642 if (err) 643 return (err); 644 645 for (i = 0; i < numbufs; i++) { 646 int tocpy; 647 int bufoff; 648 dmu_buf_t *db = dbp[i]; 649 650 ASSERT(size > 0); 651 652 bufoff = uio->uio_loffset - db->db_offset; 653 tocpy = (int)MIN(db->db_size - bufoff, size); 654 655 err = uiomove((char *)db->db_data + bufoff, tocpy, 656 UIO_READ, uio); 657 if (err) 658 break; 659 660 size -= tocpy; 661 } 662 dmu_buf_rele_array(dbp, numbufs, FTAG); 663 664 return (err); 665 } 666 667 int 668 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 669 dmu_tx_t *tx) 670 { 671 dmu_buf_t **dbp; 672 int numbufs, i; 673 int err = 0; 674 675 if (size == 0) 676 return (0); 677 678 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, 679 FALSE, FTAG, &numbufs, &dbp); 680 if (err) 681 return (err); 682 683 for (i = 0; i < numbufs; i++) { 684 int tocpy; 685 int bufoff; 686 dmu_buf_t *db = dbp[i]; 687 688 ASSERT(size > 0); 689 690 bufoff = uio->uio_loffset - db->db_offset; 691 tocpy = (int)MIN(db->db_size - bufoff, size); 692 693 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 694 695 if (tocpy == db->db_size) 696 dmu_buf_will_fill(db, tx); 697 else 698 dmu_buf_will_dirty(db, tx); 699 700 /* 701 * XXX uiomove could block forever (eg. nfs-backed 702 * pages). There needs to be a uiolockdown() function 703 * to lock the pages in memory, so that uiomove won't 704 * block. 705 */ 706 err = uiomove((char *)db->db_data + bufoff, tocpy, 707 UIO_WRITE, uio); 708 709 if (tocpy == db->db_size) 710 dmu_buf_fill_done(db, tx); 711 712 if (err) 713 break; 714 715 size -= tocpy; 716 } 717 dmu_buf_rele_array(dbp, numbufs, FTAG); 718 return (err); 719 } 720 721 int 722 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 723 page_t *pp, dmu_tx_t *tx) 724 { 725 dmu_buf_t **dbp; 726 int numbufs, i; 727 int err; 728 729 if (size == 0) 730 return (0); 731 732 err = dmu_buf_hold_array(os, object, offset, size, 733 FALSE, FTAG, &numbufs, &dbp); 734 if (err) 735 return (err); 736 737 for (i = 0; i < numbufs; i++) { 738 int tocpy, copied, thiscpy; 739 int bufoff; 740 dmu_buf_t *db = dbp[i]; 741 caddr_t va; 742 743 ASSERT(size > 0); 744 ASSERT3U(db->db_size, >=, PAGESIZE); 745 746 bufoff = offset - db->db_offset; 747 tocpy = (int)MIN(db->db_size - bufoff, size); 748 749 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 750 751 if (tocpy == db->db_size) 752 dmu_buf_will_fill(db, tx); 753 else 754 dmu_buf_will_dirty(db, tx); 755 756 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 757 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 758 thiscpy = MIN(PAGESIZE, tocpy - copied); 759 va = zfs_map_page(pp, S_READ); 760 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 761 zfs_unmap_page(pp, va); 762 pp = pp->p_next; 763 bufoff += PAGESIZE; 764 } 765 766 if (tocpy == db->db_size) 767 dmu_buf_fill_done(db, tx); 768 769 if (err) 770 break; 771 772 offset += tocpy; 773 size -= tocpy; 774 } 775 dmu_buf_rele_array(dbp, numbufs, FTAG); 776 return (err); 777 } 778 #endif 779 780 typedef struct { 781 dbuf_dirty_record_t *dr; 782 dmu_sync_cb_t *done; 783 void *arg; 784 } dmu_sync_arg_t; 785 786 /* ARGSUSED */ 787 static void 788 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 789 { 790 dmu_sync_arg_t *in = varg; 791 dbuf_dirty_record_t *dr = in->dr; 792 dmu_buf_impl_t *db = dr->dr_dbuf; 793 dmu_sync_cb_t *done = in->done; 794 795 if (!BP_IS_HOLE(zio->io_bp)) { 796 zio->io_bp->blk_fill = 1; 797 BP_SET_TYPE(zio->io_bp, db->db_dnode->dn_type); 798 BP_SET_LEVEL(zio->io_bp, 0); 799 } 800 801 mutex_enter(&db->db_mtx); 802 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 803 dr->dt.dl.dr_overridden_by = *zio->io_bp; /* structure assignment */ 804 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 805 cv_broadcast(&db->db_changed); 806 mutex_exit(&db->db_mtx); 807 808 if (done) 809 done(&(db->db), in->arg); 810 811 kmem_free(in, sizeof (dmu_sync_arg_t)); 812 } 813 814 /* 815 * Intent log support: sync the block associated with db to disk. 816 * N.B. and XXX: the caller is responsible for making sure that the 817 * data isn't changing while dmu_sync() is writing it. 818 * 819 * Return values: 820 * 821 * EEXIST: this txg has already been synced, so there's nothing to to. 822 * The caller should not log the write. 823 * 824 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 825 * The caller should not log the write. 826 * 827 * EALREADY: this block is already in the process of being synced. 828 * The caller should track its progress (somehow). 829 * 830 * EINPROGRESS: the IO has been initiated. 831 * The caller should log this blkptr in the callback. 832 * 833 * 0: completed. Sets *bp to the blkptr just written. 834 * The caller should log this blkptr immediately. 835 */ 836 int 837 dmu_sync(zio_t *pio, dmu_buf_t *db_fake, 838 blkptr_t *bp, uint64_t txg, dmu_sync_cb_t *done, void *arg) 839 { 840 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 841 objset_impl_t *os = db->db_objset; 842 dsl_pool_t *dp = os->os_dsl_dataset->ds_dir->dd_pool; 843 tx_state_t *tx = &dp->dp_tx; 844 dbuf_dirty_record_t *dr; 845 dmu_sync_arg_t *in; 846 zbookmark_t zb; 847 writeprops_t wp = { 0 }; 848 zio_t *zio; 849 int zio_flags; 850 int err; 851 852 ASSERT(BP_IS_HOLE(bp)); 853 ASSERT(txg != 0); 854 855 856 dprintf("dmu_sync txg=%llu, s,o,q %llu %llu %llu\n", 857 txg, tx->tx_synced_txg, tx->tx_open_txg, tx->tx_quiesced_txg); 858 859 /* 860 * XXX - would be nice if we could do this without suspending... 861 */ 862 txg_suspend(dp); 863 864 /* 865 * If this txg already synced, there's nothing to do. 866 */ 867 if (txg <= tx->tx_synced_txg) { 868 txg_resume(dp); 869 /* 870 * If we're running ziltest, we need the blkptr regardless. 871 */ 872 if (txg > spa_freeze_txg(dp->dp_spa)) { 873 /* if db_blkptr == NULL, this was an empty write */ 874 if (db->db_blkptr) 875 *bp = *db->db_blkptr; /* structure assignment */ 876 return (0); 877 } 878 return (EEXIST); 879 } 880 881 mutex_enter(&db->db_mtx); 882 883 if (txg == tx->tx_syncing_txg) { 884 while (db->db_data_pending) { 885 /* 886 * IO is in-progress. Wait for it to finish. 887 * XXX - would be nice to be able to somehow "attach" 888 * this zio to the parent zio passed in. 889 */ 890 cv_wait(&db->db_changed, &db->db_mtx); 891 if (!db->db_data_pending && 892 db->db_blkptr && BP_IS_HOLE(db->db_blkptr)) { 893 /* 894 * IO was compressed away 895 */ 896 *bp = *db->db_blkptr; /* structure assignment */ 897 mutex_exit(&db->db_mtx); 898 txg_resume(dp); 899 return (0); 900 } 901 ASSERT(db->db_data_pending || 902 (db->db_blkptr && db->db_blkptr->blk_birth == txg)); 903 } 904 905 if (db->db_blkptr && db->db_blkptr->blk_birth == txg) { 906 /* 907 * IO is already completed. 908 */ 909 *bp = *db->db_blkptr; /* structure assignment */ 910 mutex_exit(&db->db_mtx); 911 txg_resume(dp); 912 return (0); 913 } 914 } 915 916 dr = db->db_last_dirty; 917 while (dr && dr->dr_txg > txg) 918 dr = dr->dr_next; 919 if (dr == NULL || dr->dr_txg < txg) { 920 /* 921 * This dbuf isn't dirty, must have been free_range'd. 922 * There's no need to log writes to freed blocks, so we're done. 923 */ 924 mutex_exit(&db->db_mtx); 925 txg_resume(dp); 926 return (ENOENT); 927 } 928 929 ASSERT(dr->dr_txg == txg); 930 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 931 /* 932 * We have already issued a sync write for this buffer. 933 */ 934 mutex_exit(&db->db_mtx); 935 txg_resume(dp); 936 return (EALREADY); 937 } else if (dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 938 /* 939 * This buffer has already been synced. It could not 940 * have been dirtied since, or we would have cleared the state. 941 */ 942 *bp = dr->dt.dl.dr_overridden_by; /* structure assignment */ 943 mutex_exit(&db->db_mtx); 944 txg_resume(dp); 945 return (0); 946 } 947 948 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 949 in = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 950 in->dr = dr; 951 in->done = done; 952 in->arg = arg; 953 mutex_exit(&db->db_mtx); 954 txg_resume(dp); 955 956 zb.zb_objset = os->os_dsl_dataset->ds_object; 957 zb.zb_object = db->db.db_object; 958 zb.zb_level = db->db_level; 959 zb.zb_blkid = db->db_blkid; 960 zio_flags = ZIO_FLAG_MUSTSUCCEED; 961 if (dmu_ot[db->db_dnode->dn_type].ot_metadata || zb.zb_level != 0) 962 zio_flags |= ZIO_FLAG_METADATA; 963 wp.wp_type = db->db_dnode->dn_type; 964 wp.wp_copies = os->os_copies; 965 wp.wp_level = db->db_level; 966 wp.wp_dnchecksum = db->db_dnode->dn_checksum; 967 wp.wp_oschecksum = os->os_checksum; 968 wp.wp_dncompress = db->db_dnode->dn_compress; 969 wp.wp_oscompress = os->os_compress; 970 zio = arc_write(pio, os->os_spa, &wp, 971 DBUF_IS_L2CACHEABLE(db), txg, bp, dr->dt.dl.dr_data, NULL, 972 dmu_sync_done, in, ZIO_PRIORITY_SYNC_WRITE, zio_flags, &zb); 973 974 if (pio) { 975 zio_nowait(zio); 976 err = EINPROGRESS; 977 } else { 978 err = zio_wait(zio); 979 ASSERT(err == 0); 980 } 981 return (err); 982 } 983 984 int 985 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 986 dmu_tx_t *tx) 987 { 988 dnode_t *dn; 989 int err; 990 991 err = dnode_hold(os->os, object, FTAG, &dn); 992 if (err) 993 return (err); 994 err = dnode_set_blksz(dn, size, ibs, tx); 995 dnode_rele(dn, FTAG); 996 return (err); 997 } 998 999 void 1000 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1001 dmu_tx_t *tx) 1002 { 1003 dnode_t *dn; 1004 1005 /* XXX assumes dnode_hold will not get an i/o error */ 1006 (void) dnode_hold(os->os, object, FTAG, &dn); 1007 ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); 1008 dn->dn_checksum = checksum; 1009 dnode_setdirty(dn, tx); 1010 dnode_rele(dn, FTAG); 1011 } 1012 1013 void 1014 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1015 dmu_tx_t *tx) 1016 { 1017 dnode_t *dn; 1018 1019 /* XXX assumes dnode_hold will not get an i/o error */ 1020 (void) dnode_hold(os->os, object, FTAG, &dn); 1021 ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); 1022 dn->dn_compress = compress; 1023 dnode_setdirty(dn, tx); 1024 dnode_rele(dn, FTAG); 1025 } 1026 1027 int 1028 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1029 { 1030 dnode_t *dn; 1031 int i, err; 1032 1033 err = dnode_hold(os->os, object, FTAG, &dn); 1034 if (err) 1035 return (err); 1036 /* 1037 * Sync any current changes before 1038 * we go trundling through the block pointers. 1039 */ 1040 for (i = 0; i < TXG_SIZE; i++) { 1041 if (list_link_active(&dn->dn_dirty_link[i])) 1042 break; 1043 } 1044 if (i != TXG_SIZE) { 1045 dnode_rele(dn, FTAG); 1046 txg_wait_synced(dmu_objset_pool(os), 0); 1047 err = dnode_hold(os->os, object, FTAG, &dn); 1048 if (err) 1049 return (err); 1050 } 1051 1052 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1053 dnode_rele(dn, FTAG); 1054 1055 return (err); 1056 } 1057 1058 void 1059 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1060 { 1061 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1062 mutex_enter(&dn->dn_mtx); 1063 1064 doi->doi_data_block_size = dn->dn_datablksz; 1065 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1066 1ULL << dn->dn_indblkshift : 0; 1067 doi->doi_indirection = dn->dn_nlevels; 1068 doi->doi_checksum = dn->dn_checksum; 1069 doi->doi_compress = dn->dn_compress; 1070 doi->doi_physical_blks = (DN_USED_BYTES(dn->dn_phys) + 1071 SPA_MINBLOCKSIZE/2) >> SPA_MINBLOCKSHIFT; 1072 doi->doi_max_block_offset = dn->dn_phys->dn_maxblkid; 1073 doi->doi_type = dn->dn_type; 1074 doi->doi_bonus_size = dn->dn_bonuslen; 1075 doi->doi_bonus_type = dn->dn_bonustype; 1076 1077 mutex_exit(&dn->dn_mtx); 1078 rw_exit(&dn->dn_struct_rwlock); 1079 } 1080 1081 /* 1082 * Get information on a DMU object. 1083 * If doi is NULL, just indicates whether the object exists. 1084 */ 1085 int 1086 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1087 { 1088 dnode_t *dn; 1089 int err = dnode_hold(os->os, object, FTAG, &dn); 1090 1091 if (err) 1092 return (err); 1093 1094 if (doi != NULL) 1095 dmu_object_info_from_dnode(dn, doi); 1096 1097 dnode_rele(dn, FTAG); 1098 return (0); 1099 } 1100 1101 /* 1102 * As above, but faster; can be used when you have a held dbuf in hand. 1103 */ 1104 void 1105 dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi) 1106 { 1107 dmu_object_info_from_dnode(((dmu_buf_impl_t *)db)->db_dnode, doi); 1108 } 1109 1110 /* 1111 * Faster still when you only care about the size. 1112 * This is specifically optimized for zfs_getattr(). 1113 */ 1114 void 1115 dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512) 1116 { 1117 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 1118 1119 *blksize = dn->dn_datablksz; 1120 /* add 1 for dnode space */ 1121 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1122 SPA_MINBLOCKSHIFT) + 1; 1123 } 1124 1125 void 1126 byteswap_uint64_array(void *vbuf, size_t size) 1127 { 1128 uint64_t *buf = vbuf; 1129 size_t count = size >> 3; 1130 int i; 1131 1132 ASSERT((size & 7) == 0); 1133 1134 for (i = 0; i < count; i++) 1135 buf[i] = BSWAP_64(buf[i]); 1136 } 1137 1138 void 1139 byteswap_uint32_array(void *vbuf, size_t size) 1140 { 1141 uint32_t *buf = vbuf; 1142 size_t count = size >> 2; 1143 int i; 1144 1145 ASSERT((size & 3) == 0); 1146 1147 for (i = 0; i < count; i++) 1148 buf[i] = BSWAP_32(buf[i]); 1149 } 1150 1151 void 1152 byteswap_uint16_array(void *vbuf, size_t size) 1153 { 1154 uint16_t *buf = vbuf; 1155 size_t count = size >> 1; 1156 int i; 1157 1158 ASSERT((size & 1) == 0); 1159 1160 for (i = 0; i < count; i++) 1161 buf[i] = BSWAP_16(buf[i]); 1162 } 1163 1164 /* ARGSUSED */ 1165 void 1166 byteswap_uint8_array(void *vbuf, size_t size) 1167 { 1168 } 1169 1170 void 1171 dmu_init(void) 1172 { 1173 dbuf_init(); 1174 dnode_init(); 1175 arc_init(); 1176 l2arc_init(); 1177 } 1178 1179 void 1180 dmu_fini(void) 1181 { 1182 arc_fini(); 1183 dnode_fini(); 1184 dbuf_fini(); 1185 l2arc_fini(); 1186 } 1187