1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * DVA-based Adjustable Replacement Cache 29 * 30 * While much of the theory of operation used here is 31 * based on the self-tuning, low overhead replacement cache 32 * presented by Megiddo and Modha at FAST 2003, there are some 33 * significant differences: 34 * 35 * 1. The Megiddo and Modha model assumes any page is evictable. 36 * Pages in its cache cannot be "locked" into memory. This makes 37 * the eviction algorithm simple: evict the last page in the list. 38 * This also make the performance characteristics easy to reason 39 * about. Our cache is not so simple. At any given moment, some 40 * subset of the blocks in the cache are un-evictable because we 41 * have handed out a reference to them. Blocks are only evictable 42 * when there are no external references active. This makes 43 * eviction far more problematic: we choose to evict the evictable 44 * blocks that are the "lowest" in the list. 45 * 46 * There are times when it is not possible to evict the requested 47 * space. In these circumstances we are unable to adjust the cache 48 * size. To prevent the cache growing unbounded at these times we 49 * implement a "cache throttle" that slows the flow of new data 50 * into the cache until we can make space available. 51 * 52 * 2. The Megiddo and Modha model assumes a fixed cache size. 53 * Pages are evicted when the cache is full and there is a cache 54 * miss. Our model has a variable sized cache. It grows with 55 * high use, but also tries to react to memory pressure from the 56 * operating system: decreasing its size when system memory is 57 * tight. 58 * 59 * 3. The Megiddo and Modha model assumes a fixed page size. All 60 * elements of the cache are therefor exactly the same size. So 61 * when adjusting the cache size following a cache miss, its simply 62 * a matter of choosing a single page to evict. In our model, we 63 * have variable sized cache blocks (rangeing from 512 bytes to 64 * 128K bytes). We therefor choose a set of blocks to evict to make 65 * space for a cache miss that approximates as closely as possible 66 * the space used by the new block. 67 * 68 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 69 * by N. Megiddo & D. Modha, FAST 2003 70 */ 71 72 /* 73 * The locking model: 74 * 75 * A new reference to a cache buffer can be obtained in two 76 * ways: 1) via a hash table lookup using the DVA as a key, 77 * or 2) via one of the ARC lists. The arc_read() interface 78 * uses method 1, while the internal arc algorithms for 79 * adjusting the cache use method 2. We therefor provide two 80 * types of locks: 1) the hash table lock array, and 2) the 81 * arc list locks. 82 * 83 * Buffers do not have their own mutexs, rather they rely on the 84 * hash table mutexs for the bulk of their protection (i.e. most 85 * fields in the arc_buf_hdr_t are protected by these mutexs). 86 * 87 * buf_hash_find() returns the appropriate mutex (held) when it 88 * locates the requested buffer in the hash table. It returns 89 * NULL for the mutex if the buffer was not in the table. 90 * 91 * buf_hash_remove() expects the appropriate hash mutex to be 92 * already held before it is invoked. 93 * 94 * Each arc state also has a mutex which is used to protect the 95 * buffer list associated with the state. When attempting to 96 * obtain a hash table lock while holding an arc list lock you 97 * must use: mutex_tryenter() to avoid deadlock. Also note that 98 * the active state mutex must be held before the ghost state mutex. 99 * 100 * Arc buffers may have an associated eviction callback function. 101 * This function will be invoked prior to removing the buffer (e.g. 102 * in arc_do_user_evicts()). Note however that the data associated 103 * with the buffer may be evicted prior to the callback. The callback 104 * must be made with *no locks held* (to prevent deadlock). Additionally, 105 * the users of callbacks must ensure that their private data is 106 * protected from simultaneous callbacks from arc_buf_evict() 107 * and arc_do_user_evicts(). 108 * 109 * Note that the majority of the performance stats are manipulated 110 * with atomic operations. 111 * 112 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 113 * 114 * - L2ARC buflist creation 115 * - L2ARC buflist eviction 116 * - L2ARC write completion, which walks L2ARC buflists 117 * - ARC header destruction, as it removes from L2ARC buflists 118 * - ARC header release, as it removes from L2ARC buflists 119 */ 120 121 #include <sys/spa.h> 122 #include <sys/zio.h> 123 #include <sys/zfs_context.h> 124 #include <sys/arc.h> 125 #include <sys/refcount.h> 126 #include <sys/vdev.h> 127 #include <sys/vdev_impl.h> 128 #ifdef _KERNEL 129 #include <sys/vmsystm.h> 130 #include <vm/anon.h> 131 #include <sys/fs/swapnode.h> 132 #include <sys/dnlc.h> 133 #endif 134 #include <sys/callb.h> 135 #include <sys/kstat.h> 136 #include <zfs_fletcher.h> 137 138 static kmutex_t arc_reclaim_thr_lock; 139 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 140 static uint8_t arc_thread_exit; 141 142 extern int zfs_write_limit_shift; 143 extern uint64_t zfs_write_limit_max; 144 extern kmutex_t zfs_write_limit_lock; 145 146 #define ARC_REDUCE_DNLC_PERCENT 3 147 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 148 149 typedef enum arc_reclaim_strategy { 150 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 151 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 152 } arc_reclaim_strategy_t; 153 154 /* number of seconds before growing cache again */ 155 static int arc_grow_retry = 60; 156 157 /* shift of arc_c for calculating both min and max arc_p */ 158 static int arc_p_min_shift = 4; 159 160 /* log2(fraction of arc to reclaim) */ 161 static int arc_shrink_shift = 5; 162 163 /* 164 * minimum lifespan of a prefetch block in clock ticks 165 * (initialized in arc_init()) 166 */ 167 static int arc_min_prefetch_lifespan; 168 169 static int arc_dead; 170 171 /* 172 * The arc has filled available memory and has now warmed up. 173 */ 174 static boolean_t arc_warm; 175 176 /* 177 * These tunables are for performance analysis. 178 */ 179 uint64_t zfs_arc_max; 180 uint64_t zfs_arc_min; 181 uint64_t zfs_arc_meta_limit = 0; 182 int zfs_arc_grow_retry = 0; 183 int zfs_arc_shrink_shift = 0; 184 int zfs_arc_p_min_shift = 0; 185 186 /* 187 * Note that buffers can be in one of 6 states: 188 * ARC_anon - anonymous (discussed below) 189 * ARC_mru - recently used, currently cached 190 * ARC_mru_ghost - recentely used, no longer in cache 191 * ARC_mfu - frequently used, currently cached 192 * ARC_mfu_ghost - frequently used, no longer in cache 193 * ARC_l2c_only - exists in L2ARC but not other states 194 * When there are no active references to the buffer, they are 195 * are linked onto a list in one of these arc states. These are 196 * the only buffers that can be evicted or deleted. Within each 197 * state there are multiple lists, one for meta-data and one for 198 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 199 * etc.) is tracked separately so that it can be managed more 200 * explicitly: favored over data, limited explicitly. 201 * 202 * Anonymous buffers are buffers that are not associated with 203 * a DVA. These are buffers that hold dirty block copies 204 * before they are written to stable storage. By definition, 205 * they are "ref'd" and are considered part of arc_mru 206 * that cannot be freed. Generally, they will aquire a DVA 207 * as they are written and migrate onto the arc_mru list. 208 * 209 * The ARC_l2c_only state is for buffers that are in the second 210 * level ARC but no longer in any of the ARC_m* lists. The second 211 * level ARC itself may also contain buffers that are in any of 212 * the ARC_m* states - meaning that a buffer can exist in two 213 * places. The reason for the ARC_l2c_only state is to keep the 214 * buffer header in the hash table, so that reads that hit the 215 * second level ARC benefit from these fast lookups. 216 */ 217 218 typedef struct arc_state { 219 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 220 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 221 uint64_t arcs_size; /* total amount of data in this state */ 222 kmutex_t arcs_mtx; 223 } arc_state_t; 224 225 /* The 6 states: */ 226 static arc_state_t ARC_anon; 227 static arc_state_t ARC_mru; 228 static arc_state_t ARC_mru_ghost; 229 static arc_state_t ARC_mfu; 230 static arc_state_t ARC_mfu_ghost; 231 static arc_state_t ARC_l2c_only; 232 233 typedef struct arc_stats { 234 kstat_named_t arcstat_hits; 235 kstat_named_t arcstat_misses; 236 kstat_named_t arcstat_demand_data_hits; 237 kstat_named_t arcstat_demand_data_misses; 238 kstat_named_t arcstat_demand_metadata_hits; 239 kstat_named_t arcstat_demand_metadata_misses; 240 kstat_named_t arcstat_prefetch_data_hits; 241 kstat_named_t arcstat_prefetch_data_misses; 242 kstat_named_t arcstat_prefetch_metadata_hits; 243 kstat_named_t arcstat_prefetch_metadata_misses; 244 kstat_named_t arcstat_mru_hits; 245 kstat_named_t arcstat_mru_ghost_hits; 246 kstat_named_t arcstat_mfu_hits; 247 kstat_named_t arcstat_mfu_ghost_hits; 248 kstat_named_t arcstat_deleted; 249 kstat_named_t arcstat_recycle_miss; 250 kstat_named_t arcstat_mutex_miss; 251 kstat_named_t arcstat_evict_skip; 252 kstat_named_t arcstat_evict_l2_cached; 253 kstat_named_t arcstat_evict_l2_eligible; 254 kstat_named_t arcstat_evict_l2_ineligible; 255 kstat_named_t arcstat_hash_elements; 256 kstat_named_t arcstat_hash_elements_max; 257 kstat_named_t arcstat_hash_collisions; 258 kstat_named_t arcstat_hash_chains; 259 kstat_named_t arcstat_hash_chain_max; 260 kstat_named_t arcstat_p; 261 kstat_named_t arcstat_c; 262 kstat_named_t arcstat_c_min; 263 kstat_named_t arcstat_c_max; 264 kstat_named_t arcstat_size; 265 kstat_named_t arcstat_hdr_size; 266 kstat_named_t arcstat_data_size; 267 kstat_named_t arcstat_other_size; 268 kstat_named_t arcstat_l2_hits; 269 kstat_named_t arcstat_l2_misses; 270 kstat_named_t arcstat_l2_feeds; 271 kstat_named_t arcstat_l2_rw_clash; 272 kstat_named_t arcstat_l2_read_bytes; 273 kstat_named_t arcstat_l2_write_bytes; 274 kstat_named_t arcstat_l2_writes_sent; 275 kstat_named_t arcstat_l2_writes_done; 276 kstat_named_t arcstat_l2_writes_error; 277 kstat_named_t arcstat_l2_writes_hdr_miss; 278 kstat_named_t arcstat_l2_evict_lock_retry; 279 kstat_named_t arcstat_l2_evict_reading; 280 kstat_named_t arcstat_l2_free_on_write; 281 kstat_named_t arcstat_l2_abort_lowmem; 282 kstat_named_t arcstat_l2_cksum_bad; 283 kstat_named_t arcstat_l2_io_error; 284 kstat_named_t arcstat_l2_size; 285 kstat_named_t arcstat_l2_hdr_size; 286 kstat_named_t arcstat_memory_throttle_count; 287 } arc_stats_t; 288 289 static arc_stats_t arc_stats = { 290 { "hits", KSTAT_DATA_UINT64 }, 291 { "misses", KSTAT_DATA_UINT64 }, 292 { "demand_data_hits", KSTAT_DATA_UINT64 }, 293 { "demand_data_misses", KSTAT_DATA_UINT64 }, 294 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 295 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 296 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 297 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 298 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 299 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 300 { "mru_hits", KSTAT_DATA_UINT64 }, 301 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 302 { "mfu_hits", KSTAT_DATA_UINT64 }, 303 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 304 { "deleted", KSTAT_DATA_UINT64 }, 305 { "recycle_miss", KSTAT_DATA_UINT64 }, 306 { "mutex_miss", KSTAT_DATA_UINT64 }, 307 { "evict_skip", KSTAT_DATA_UINT64 }, 308 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 309 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 310 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 311 { "hash_elements", KSTAT_DATA_UINT64 }, 312 { "hash_elements_max", KSTAT_DATA_UINT64 }, 313 { "hash_collisions", KSTAT_DATA_UINT64 }, 314 { "hash_chains", KSTAT_DATA_UINT64 }, 315 { "hash_chain_max", KSTAT_DATA_UINT64 }, 316 { "p", KSTAT_DATA_UINT64 }, 317 { "c", KSTAT_DATA_UINT64 }, 318 { "c_min", KSTAT_DATA_UINT64 }, 319 { "c_max", KSTAT_DATA_UINT64 }, 320 { "size", KSTAT_DATA_UINT64 }, 321 { "hdr_size", KSTAT_DATA_UINT64 }, 322 { "data_size", KSTAT_DATA_UINT64 }, 323 { "other_size", KSTAT_DATA_UINT64 }, 324 { "l2_hits", KSTAT_DATA_UINT64 }, 325 { "l2_misses", KSTAT_DATA_UINT64 }, 326 { "l2_feeds", KSTAT_DATA_UINT64 }, 327 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 328 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 329 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 330 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 331 { "l2_writes_done", KSTAT_DATA_UINT64 }, 332 { "l2_writes_error", KSTAT_DATA_UINT64 }, 333 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 334 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 335 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 336 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 337 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 338 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 339 { "l2_io_error", KSTAT_DATA_UINT64 }, 340 { "l2_size", KSTAT_DATA_UINT64 }, 341 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 342 { "memory_throttle_count", KSTAT_DATA_UINT64 } 343 }; 344 345 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 346 347 #define ARCSTAT_INCR(stat, val) \ 348 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 349 350 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 351 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 352 353 #define ARCSTAT_MAX(stat, val) { \ 354 uint64_t m; \ 355 while ((val) > (m = arc_stats.stat.value.ui64) && \ 356 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 357 continue; \ 358 } 359 360 #define ARCSTAT_MAXSTAT(stat) \ 361 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 362 363 /* 364 * We define a macro to allow ARC hits/misses to be easily broken down by 365 * two separate conditions, giving a total of four different subtypes for 366 * each of hits and misses (so eight statistics total). 367 */ 368 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 369 if (cond1) { \ 370 if (cond2) { \ 371 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 372 } else { \ 373 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 374 } \ 375 } else { \ 376 if (cond2) { \ 377 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 378 } else { \ 379 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 380 } \ 381 } 382 383 kstat_t *arc_ksp; 384 static arc_state_t *arc_anon; 385 static arc_state_t *arc_mru; 386 static arc_state_t *arc_mru_ghost; 387 static arc_state_t *arc_mfu; 388 static arc_state_t *arc_mfu_ghost; 389 static arc_state_t *arc_l2c_only; 390 391 /* 392 * There are several ARC variables that are critical to export as kstats -- 393 * but we don't want to have to grovel around in the kstat whenever we wish to 394 * manipulate them. For these variables, we therefore define them to be in 395 * terms of the statistic variable. This assures that we are not introducing 396 * the possibility of inconsistency by having shadow copies of the variables, 397 * while still allowing the code to be readable. 398 */ 399 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 400 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 401 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 402 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 403 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 404 405 static int arc_no_grow; /* Don't try to grow cache size */ 406 static uint64_t arc_tempreserve; 407 static uint64_t arc_loaned_bytes; 408 static uint64_t arc_meta_used; 409 static uint64_t arc_meta_limit; 410 static uint64_t arc_meta_max = 0; 411 412 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 413 414 typedef struct arc_callback arc_callback_t; 415 416 struct arc_callback { 417 void *acb_private; 418 arc_done_func_t *acb_done; 419 arc_buf_t *acb_buf; 420 zio_t *acb_zio_dummy; 421 arc_callback_t *acb_next; 422 }; 423 424 typedef struct arc_write_callback arc_write_callback_t; 425 426 struct arc_write_callback { 427 void *awcb_private; 428 arc_done_func_t *awcb_ready; 429 arc_done_func_t *awcb_done; 430 arc_buf_t *awcb_buf; 431 }; 432 433 struct arc_buf_hdr { 434 /* protected by hash lock */ 435 dva_t b_dva; 436 uint64_t b_birth; 437 uint64_t b_cksum0; 438 439 kmutex_t b_freeze_lock; 440 zio_cksum_t *b_freeze_cksum; 441 void *b_thawed; 442 443 arc_buf_hdr_t *b_hash_next; 444 arc_buf_t *b_buf; 445 uint32_t b_flags; 446 uint32_t b_datacnt; 447 448 arc_callback_t *b_acb; 449 kcondvar_t b_cv; 450 451 /* immutable */ 452 arc_buf_contents_t b_type; 453 uint64_t b_size; 454 uint64_t b_spa; 455 456 /* protected by arc state mutex */ 457 arc_state_t *b_state; 458 list_node_t b_arc_node; 459 460 /* updated atomically */ 461 clock_t b_arc_access; 462 463 /* self protecting */ 464 refcount_t b_refcnt; 465 466 l2arc_buf_hdr_t *b_l2hdr; 467 list_node_t b_l2node; 468 }; 469 470 static arc_buf_t *arc_eviction_list; 471 static kmutex_t arc_eviction_mtx; 472 static arc_buf_hdr_t arc_eviction_hdr; 473 static void arc_get_data_buf(arc_buf_t *buf); 474 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 475 static int arc_evict_needed(arc_buf_contents_t type); 476 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 477 478 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 479 480 #define GHOST_STATE(state) \ 481 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 482 (state) == arc_l2c_only) 483 484 /* 485 * Private ARC flags. These flags are private ARC only flags that will show up 486 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 487 * be passed in as arc_flags in things like arc_read. However, these flags 488 * should never be passed and should only be set by ARC code. When adding new 489 * public flags, make sure not to smash the private ones. 490 */ 491 492 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 493 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 494 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 495 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 496 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 497 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 498 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 499 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 500 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 501 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 502 503 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 504 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 505 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 506 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 507 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 508 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 509 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 510 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 511 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 512 (hdr)->b_l2hdr != NULL) 513 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 514 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 515 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 516 517 /* 518 * Other sizes 519 */ 520 521 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 522 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 523 524 /* 525 * Hash table routines 526 */ 527 528 #define HT_LOCK_PAD 64 529 530 struct ht_lock { 531 kmutex_t ht_lock; 532 #ifdef _KERNEL 533 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 534 #endif 535 }; 536 537 #define BUF_LOCKS 256 538 typedef struct buf_hash_table { 539 uint64_t ht_mask; 540 arc_buf_hdr_t **ht_table; 541 struct ht_lock ht_locks[BUF_LOCKS]; 542 } buf_hash_table_t; 543 544 static buf_hash_table_t buf_hash_table; 545 546 #define BUF_HASH_INDEX(spa, dva, birth) \ 547 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 548 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 549 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 550 #define HDR_LOCK(hdr) \ 551 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 552 553 uint64_t zfs_crc64_table[256]; 554 555 /* 556 * Level 2 ARC 557 */ 558 559 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 560 #define L2ARC_HEADROOM 2 /* num of writes */ 561 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 562 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 563 564 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 565 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 566 567 /* 568 * L2ARC Performance Tunables 569 */ 570 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 571 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 572 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 573 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 574 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 575 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 576 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 577 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 578 579 /* 580 * L2ARC Internals 581 */ 582 typedef struct l2arc_dev { 583 vdev_t *l2ad_vdev; /* vdev */ 584 spa_t *l2ad_spa; /* spa */ 585 uint64_t l2ad_hand; /* next write location */ 586 uint64_t l2ad_write; /* desired write size, bytes */ 587 uint64_t l2ad_boost; /* warmup write boost, bytes */ 588 uint64_t l2ad_start; /* first addr on device */ 589 uint64_t l2ad_end; /* last addr on device */ 590 uint64_t l2ad_evict; /* last addr eviction reached */ 591 boolean_t l2ad_first; /* first sweep through */ 592 boolean_t l2ad_writing; /* currently writing */ 593 list_t *l2ad_buflist; /* buffer list */ 594 list_node_t l2ad_node; /* device list node */ 595 } l2arc_dev_t; 596 597 static list_t L2ARC_dev_list; /* device list */ 598 static list_t *l2arc_dev_list; /* device list pointer */ 599 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 600 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 601 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 602 static list_t L2ARC_free_on_write; /* free after write buf list */ 603 static list_t *l2arc_free_on_write; /* free after write list ptr */ 604 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 605 static uint64_t l2arc_ndev; /* number of devices */ 606 607 typedef struct l2arc_read_callback { 608 arc_buf_t *l2rcb_buf; /* read buffer */ 609 spa_t *l2rcb_spa; /* spa */ 610 blkptr_t l2rcb_bp; /* original blkptr */ 611 zbookmark_t l2rcb_zb; /* original bookmark */ 612 int l2rcb_flags; /* original flags */ 613 } l2arc_read_callback_t; 614 615 typedef struct l2arc_write_callback { 616 l2arc_dev_t *l2wcb_dev; /* device info */ 617 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 618 } l2arc_write_callback_t; 619 620 struct l2arc_buf_hdr { 621 /* protected by arc_buf_hdr mutex */ 622 l2arc_dev_t *b_dev; /* L2ARC device */ 623 uint64_t b_daddr; /* disk address, offset byte */ 624 }; 625 626 typedef struct l2arc_data_free { 627 /* protected by l2arc_free_on_write_mtx */ 628 void *l2df_data; 629 size_t l2df_size; 630 void (*l2df_func)(void *, size_t); 631 list_node_t l2df_list_node; 632 } l2arc_data_free_t; 633 634 static kmutex_t l2arc_feed_thr_lock; 635 static kcondvar_t l2arc_feed_thr_cv; 636 static uint8_t l2arc_thread_exit; 637 638 static void l2arc_read_done(zio_t *zio); 639 static void l2arc_hdr_stat_add(void); 640 static void l2arc_hdr_stat_remove(void); 641 642 static uint64_t 643 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 644 { 645 uint8_t *vdva = (uint8_t *)dva; 646 uint64_t crc = -1ULL; 647 int i; 648 649 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 650 651 for (i = 0; i < sizeof (dva_t); i++) 652 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 653 654 crc ^= (spa>>8) ^ birth; 655 656 return (crc); 657 } 658 659 #define BUF_EMPTY(buf) \ 660 ((buf)->b_dva.dva_word[0] == 0 && \ 661 (buf)->b_dva.dva_word[1] == 0 && \ 662 (buf)->b_birth == 0) 663 664 #define BUF_EQUAL(spa, dva, birth, buf) \ 665 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 666 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 667 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 668 669 static void 670 buf_discard_identity(arc_buf_hdr_t *hdr) 671 { 672 hdr->b_dva.dva_word[0] = 0; 673 hdr->b_dva.dva_word[1] = 0; 674 hdr->b_birth = 0; 675 hdr->b_cksum0 = 0; 676 } 677 678 static arc_buf_hdr_t * 679 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 680 { 681 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 682 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 683 arc_buf_hdr_t *buf; 684 685 mutex_enter(hash_lock); 686 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 687 buf = buf->b_hash_next) { 688 if (BUF_EQUAL(spa, dva, birth, buf)) { 689 *lockp = hash_lock; 690 return (buf); 691 } 692 } 693 mutex_exit(hash_lock); 694 *lockp = NULL; 695 return (NULL); 696 } 697 698 /* 699 * Insert an entry into the hash table. If there is already an element 700 * equal to elem in the hash table, then the already existing element 701 * will be returned and the new element will not be inserted. 702 * Otherwise returns NULL. 703 */ 704 static arc_buf_hdr_t * 705 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 706 { 707 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 708 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 709 arc_buf_hdr_t *fbuf; 710 uint32_t i; 711 712 ASSERT(!HDR_IN_HASH_TABLE(buf)); 713 *lockp = hash_lock; 714 mutex_enter(hash_lock); 715 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 716 fbuf = fbuf->b_hash_next, i++) { 717 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 718 return (fbuf); 719 } 720 721 buf->b_hash_next = buf_hash_table.ht_table[idx]; 722 buf_hash_table.ht_table[idx] = buf; 723 buf->b_flags |= ARC_IN_HASH_TABLE; 724 725 /* collect some hash table performance data */ 726 if (i > 0) { 727 ARCSTAT_BUMP(arcstat_hash_collisions); 728 if (i == 1) 729 ARCSTAT_BUMP(arcstat_hash_chains); 730 731 ARCSTAT_MAX(arcstat_hash_chain_max, i); 732 } 733 734 ARCSTAT_BUMP(arcstat_hash_elements); 735 ARCSTAT_MAXSTAT(arcstat_hash_elements); 736 737 return (NULL); 738 } 739 740 static void 741 buf_hash_remove(arc_buf_hdr_t *buf) 742 { 743 arc_buf_hdr_t *fbuf, **bufp; 744 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 745 746 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 747 ASSERT(HDR_IN_HASH_TABLE(buf)); 748 749 bufp = &buf_hash_table.ht_table[idx]; 750 while ((fbuf = *bufp) != buf) { 751 ASSERT(fbuf != NULL); 752 bufp = &fbuf->b_hash_next; 753 } 754 *bufp = buf->b_hash_next; 755 buf->b_hash_next = NULL; 756 buf->b_flags &= ~ARC_IN_HASH_TABLE; 757 758 /* collect some hash table performance data */ 759 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 760 761 if (buf_hash_table.ht_table[idx] && 762 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 763 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 764 } 765 766 /* 767 * Global data structures and functions for the buf kmem cache. 768 */ 769 static kmem_cache_t *hdr_cache; 770 static kmem_cache_t *buf_cache; 771 772 static void 773 buf_fini(void) 774 { 775 int i; 776 777 kmem_free(buf_hash_table.ht_table, 778 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 779 for (i = 0; i < BUF_LOCKS; i++) 780 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 781 kmem_cache_destroy(hdr_cache); 782 kmem_cache_destroy(buf_cache); 783 } 784 785 /* 786 * Constructor callback - called when the cache is empty 787 * and a new buf is requested. 788 */ 789 /* ARGSUSED */ 790 static int 791 hdr_cons(void *vbuf, void *unused, int kmflag) 792 { 793 arc_buf_hdr_t *buf = vbuf; 794 795 bzero(buf, sizeof (arc_buf_hdr_t)); 796 refcount_create(&buf->b_refcnt); 797 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 798 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 799 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 800 801 return (0); 802 } 803 804 /* ARGSUSED */ 805 static int 806 buf_cons(void *vbuf, void *unused, int kmflag) 807 { 808 arc_buf_t *buf = vbuf; 809 810 bzero(buf, sizeof (arc_buf_t)); 811 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 812 rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL); 813 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 814 815 return (0); 816 } 817 818 /* 819 * Destructor callback - called when a cached buf is 820 * no longer required. 821 */ 822 /* ARGSUSED */ 823 static void 824 hdr_dest(void *vbuf, void *unused) 825 { 826 arc_buf_hdr_t *buf = vbuf; 827 828 ASSERT(BUF_EMPTY(buf)); 829 refcount_destroy(&buf->b_refcnt); 830 cv_destroy(&buf->b_cv); 831 mutex_destroy(&buf->b_freeze_lock); 832 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 833 } 834 835 /* ARGSUSED */ 836 static void 837 buf_dest(void *vbuf, void *unused) 838 { 839 arc_buf_t *buf = vbuf; 840 841 mutex_destroy(&buf->b_evict_lock); 842 rw_destroy(&buf->b_data_lock); 843 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 844 } 845 846 /* 847 * Reclaim callback -- invoked when memory is low. 848 */ 849 /* ARGSUSED */ 850 static void 851 hdr_recl(void *unused) 852 { 853 dprintf("hdr_recl called\n"); 854 /* 855 * umem calls the reclaim func when we destroy the buf cache, 856 * which is after we do arc_fini(). 857 */ 858 if (!arc_dead) 859 cv_signal(&arc_reclaim_thr_cv); 860 } 861 862 static void 863 buf_init(void) 864 { 865 uint64_t *ct; 866 uint64_t hsize = 1ULL << 12; 867 int i, j; 868 869 /* 870 * The hash table is big enough to fill all of physical memory 871 * with an average 64K block size. The table will take up 872 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 873 */ 874 while (hsize * 65536 < physmem * PAGESIZE) 875 hsize <<= 1; 876 retry: 877 buf_hash_table.ht_mask = hsize - 1; 878 buf_hash_table.ht_table = 879 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 880 if (buf_hash_table.ht_table == NULL) { 881 ASSERT(hsize > (1ULL << 8)); 882 hsize >>= 1; 883 goto retry; 884 } 885 886 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 887 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 888 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 889 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 890 891 for (i = 0; i < 256; i++) 892 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 893 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 894 895 for (i = 0; i < BUF_LOCKS; i++) { 896 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 897 NULL, MUTEX_DEFAULT, NULL); 898 } 899 } 900 901 #define ARC_MINTIME (hz>>4) /* 62 ms */ 902 903 static void 904 arc_cksum_verify(arc_buf_t *buf) 905 { 906 zio_cksum_t zc; 907 908 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 909 return; 910 911 mutex_enter(&buf->b_hdr->b_freeze_lock); 912 if (buf->b_hdr->b_freeze_cksum == NULL || 913 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 914 mutex_exit(&buf->b_hdr->b_freeze_lock); 915 return; 916 } 917 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 918 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 919 panic("buffer modified while frozen!"); 920 mutex_exit(&buf->b_hdr->b_freeze_lock); 921 } 922 923 static int 924 arc_cksum_equal(arc_buf_t *buf) 925 { 926 zio_cksum_t zc; 927 int equal; 928 929 mutex_enter(&buf->b_hdr->b_freeze_lock); 930 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 931 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 932 mutex_exit(&buf->b_hdr->b_freeze_lock); 933 934 return (equal); 935 } 936 937 static void 938 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 939 { 940 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 941 return; 942 943 mutex_enter(&buf->b_hdr->b_freeze_lock); 944 if (buf->b_hdr->b_freeze_cksum != NULL) { 945 mutex_exit(&buf->b_hdr->b_freeze_lock); 946 return; 947 } 948 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 949 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 950 buf->b_hdr->b_freeze_cksum); 951 mutex_exit(&buf->b_hdr->b_freeze_lock); 952 } 953 954 void 955 arc_buf_thaw(arc_buf_t *buf) 956 { 957 if (zfs_flags & ZFS_DEBUG_MODIFY) { 958 if (buf->b_hdr->b_state != arc_anon) 959 panic("modifying non-anon buffer!"); 960 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 961 panic("modifying buffer while i/o in progress!"); 962 arc_cksum_verify(buf); 963 } 964 965 mutex_enter(&buf->b_hdr->b_freeze_lock); 966 if (buf->b_hdr->b_freeze_cksum != NULL) { 967 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 968 buf->b_hdr->b_freeze_cksum = NULL; 969 } 970 971 if (zfs_flags & ZFS_DEBUG_MODIFY) { 972 if (buf->b_hdr->b_thawed) 973 kmem_free(buf->b_hdr->b_thawed, 1); 974 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 975 } 976 977 mutex_exit(&buf->b_hdr->b_freeze_lock); 978 } 979 980 void 981 arc_buf_freeze(arc_buf_t *buf) 982 { 983 kmutex_t *hash_lock; 984 985 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 986 return; 987 988 hash_lock = HDR_LOCK(buf->b_hdr); 989 mutex_enter(hash_lock); 990 991 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 992 buf->b_hdr->b_state == arc_anon); 993 arc_cksum_compute(buf, B_FALSE); 994 mutex_exit(hash_lock); 995 } 996 997 static void 998 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 999 { 1000 ASSERT(MUTEX_HELD(hash_lock)); 1001 1002 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1003 (ab->b_state != arc_anon)) { 1004 uint64_t delta = ab->b_size * ab->b_datacnt; 1005 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1006 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1007 1008 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1009 mutex_enter(&ab->b_state->arcs_mtx); 1010 ASSERT(list_link_active(&ab->b_arc_node)); 1011 list_remove(list, ab); 1012 if (GHOST_STATE(ab->b_state)) { 1013 ASSERT3U(ab->b_datacnt, ==, 0); 1014 ASSERT3P(ab->b_buf, ==, NULL); 1015 delta = ab->b_size; 1016 } 1017 ASSERT(delta > 0); 1018 ASSERT3U(*size, >=, delta); 1019 atomic_add_64(size, -delta); 1020 mutex_exit(&ab->b_state->arcs_mtx); 1021 /* remove the prefetch flag if we get a reference */ 1022 if (ab->b_flags & ARC_PREFETCH) 1023 ab->b_flags &= ~ARC_PREFETCH; 1024 } 1025 } 1026 1027 static int 1028 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1029 { 1030 int cnt; 1031 arc_state_t *state = ab->b_state; 1032 1033 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1034 ASSERT(!GHOST_STATE(state)); 1035 1036 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1037 (state != arc_anon)) { 1038 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1039 1040 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1041 mutex_enter(&state->arcs_mtx); 1042 ASSERT(!list_link_active(&ab->b_arc_node)); 1043 list_insert_head(&state->arcs_list[ab->b_type], ab); 1044 ASSERT(ab->b_datacnt > 0); 1045 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1046 mutex_exit(&state->arcs_mtx); 1047 } 1048 return (cnt); 1049 } 1050 1051 /* 1052 * Move the supplied buffer to the indicated state. The mutex 1053 * for the buffer must be held by the caller. 1054 */ 1055 static void 1056 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1057 { 1058 arc_state_t *old_state = ab->b_state; 1059 int64_t refcnt = refcount_count(&ab->b_refcnt); 1060 uint64_t from_delta, to_delta; 1061 1062 ASSERT(MUTEX_HELD(hash_lock)); 1063 ASSERT(new_state != old_state); 1064 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1065 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1066 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1067 1068 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1069 1070 /* 1071 * If this buffer is evictable, transfer it from the 1072 * old state list to the new state list. 1073 */ 1074 if (refcnt == 0) { 1075 if (old_state != arc_anon) { 1076 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1077 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1078 1079 if (use_mutex) 1080 mutex_enter(&old_state->arcs_mtx); 1081 1082 ASSERT(list_link_active(&ab->b_arc_node)); 1083 list_remove(&old_state->arcs_list[ab->b_type], ab); 1084 1085 /* 1086 * If prefetching out of the ghost cache, 1087 * we will have a non-zero datacnt. 1088 */ 1089 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1090 /* ghost elements have a ghost size */ 1091 ASSERT(ab->b_buf == NULL); 1092 from_delta = ab->b_size; 1093 } 1094 ASSERT3U(*size, >=, from_delta); 1095 atomic_add_64(size, -from_delta); 1096 1097 if (use_mutex) 1098 mutex_exit(&old_state->arcs_mtx); 1099 } 1100 if (new_state != arc_anon) { 1101 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1102 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1103 1104 if (use_mutex) 1105 mutex_enter(&new_state->arcs_mtx); 1106 1107 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1108 1109 /* ghost elements have a ghost size */ 1110 if (GHOST_STATE(new_state)) { 1111 ASSERT(ab->b_datacnt == 0); 1112 ASSERT(ab->b_buf == NULL); 1113 to_delta = ab->b_size; 1114 } 1115 atomic_add_64(size, to_delta); 1116 1117 if (use_mutex) 1118 mutex_exit(&new_state->arcs_mtx); 1119 } 1120 } 1121 1122 ASSERT(!BUF_EMPTY(ab)); 1123 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) 1124 buf_hash_remove(ab); 1125 1126 /* adjust state sizes */ 1127 if (to_delta) 1128 atomic_add_64(&new_state->arcs_size, to_delta); 1129 if (from_delta) { 1130 ASSERT3U(old_state->arcs_size, >=, from_delta); 1131 atomic_add_64(&old_state->arcs_size, -from_delta); 1132 } 1133 ab->b_state = new_state; 1134 1135 /* adjust l2arc hdr stats */ 1136 if (new_state == arc_l2c_only) 1137 l2arc_hdr_stat_add(); 1138 else if (old_state == arc_l2c_only) 1139 l2arc_hdr_stat_remove(); 1140 } 1141 1142 void 1143 arc_space_consume(uint64_t space, arc_space_type_t type) 1144 { 1145 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1146 1147 switch (type) { 1148 case ARC_SPACE_DATA: 1149 ARCSTAT_INCR(arcstat_data_size, space); 1150 break; 1151 case ARC_SPACE_OTHER: 1152 ARCSTAT_INCR(arcstat_other_size, space); 1153 break; 1154 case ARC_SPACE_HDRS: 1155 ARCSTAT_INCR(arcstat_hdr_size, space); 1156 break; 1157 case ARC_SPACE_L2HDRS: 1158 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1159 break; 1160 } 1161 1162 atomic_add_64(&arc_meta_used, space); 1163 atomic_add_64(&arc_size, space); 1164 } 1165 1166 void 1167 arc_space_return(uint64_t space, arc_space_type_t type) 1168 { 1169 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1170 1171 switch (type) { 1172 case ARC_SPACE_DATA: 1173 ARCSTAT_INCR(arcstat_data_size, -space); 1174 break; 1175 case ARC_SPACE_OTHER: 1176 ARCSTAT_INCR(arcstat_other_size, -space); 1177 break; 1178 case ARC_SPACE_HDRS: 1179 ARCSTAT_INCR(arcstat_hdr_size, -space); 1180 break; 1181 case ARC_SPACE_L2HDRS: 1182 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1183 break; 1184 } 1185 1186 ASSERT(arc_meta_used >= space); 1187 if (arc_meta_max < arc_meta_used) 1188 arc_meta_max = arc_meta_used; 1189 atomic_add_64(&arc_meta_used, -space); 1190 ASSERT(arc_size >= space); 1191 atomic_add_64(&arc_size, -space); 1192 } 1193 1194 void * 1195 arc_data_buf_alloc(uint64_t size) 1196 { 1197 if (arc_evict_needed(ARC_BUFC_DATA)) 1198 cv_signal(&arc_reclaim_thr_cv); 1199 atomic_add_64(&arc_size, size); 1200 return (zio_data_buf_alloc(size)); 1201 } 1202 1203 void 1204 arc_data_buf_free(void *buf, uint64_t size) 1205 { 1206 zio_data_buf_free(buf, size); 1207 ASSERT(arc_size >= size); 1208 atomic_add_64(&arc_size, -size); 1209 } 1210 1211 arc_buf_t * 1212 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1213 { 1214 arc_buf_hdr_t *hdr; 1215 arc_buf_t *buf; 1216 1217 ASSERT3U(size, >, 0); 1218 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1219 ASSERT(BUF_EMPTY(hdr)); 1220 hdr->b_size = size; 1221 hdr->b_type = type; 1222 hdr->b_spa = spa_load_guid(spa); 1223 hdr->b_state = arc_anon; 1224 hdr->b_arc_access = 0; 1225 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1226 buf->b_hdr = hdr; 1227 buf->b_data = NULL; 1228 buf->b_efunc = NULL; 1229 buf->b_private = NULL; 1230 buf->b_next = NULL; 1231 hdr->b_buf = buf; 1232 arc_get_data_buf(buf); 1233 hdr->b_datacnt = 1; 1234 hdr->b_flags = 0; 1235 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1236 (void) refcount_add(&hdr->b_refcnt, tag); 1237 1238 return (buf); 1239 } 1240 1241 static char *arc_onloan_tag = "onloan"; 1242 1243 /* 1244 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1245 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1246 * buffers must be returned to the arc before they can be used by the DMU or 1247 * freed. 1248 */ 1249 arc_buf_t * 1250 arc_loan_buf(spa_t *spa, int size) 1251 { 1252 arc_buf_t *buf; 1253 1254 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1255 1256 atomic_add_64(&arc_loaned_bytes, size); 1257 return (buf); 1258 } 1259 1260 /* 1261 * Return a loaned arc buffer to the arc. 1262 */ 1263 void 1264 arc_return_buf(arc_buf_t *buf, void *tag) 1265 { 1266 arc_buf_hdr_t *hdr = buf->b_hdr; 1267 1268 ASSERT(buf->b_data != NULL); 1269 (void) refcount_add(&hdr->b_refcnt, tag); 1270 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1271 1272 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1273 } 1274 1275 /* Detach an arc_buf from a dbuf (tag) */ 1276 void 1277 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1278 { 1279 arc_buf_hdr_t *hdr; 1280 1281 ASSERT(buf->b_data != NULL); 1282 hdr = buf->b_hdr; 1283 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1284 (void) refcount_remove(&hdr->b_refcnt, tag); 1285 buf->b_efunc = NULL; 1286 buf->b_private = NULL; 1287 1288 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1289 } 1290 1291 static arc_buf_t * 1292 arc_buf_clone(arc_buf_t *from) 1293 { 1294 arc_buf_t *buf; 1295 arc_buf_hdr_t *hdr = from->b_hdr; 1296 uint64_t size = hdr->b_size; 1297 1298 ASSERT(hdr->b_state != arc_anon); 1299 1300 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1301 buf->b_hdr = hdr; 1302 buf->b_data = NULL; 1303 buf->b_efunc = NULL; 1304 buf->b_private = NULL; 1305 buf->b_next = hdr->b_buf; 1306 hdr->b_buf = buf; 1307 arc_get_data_buf(buf); 1308 bcopy(from->b_data, buf->b_data, size); 1309 hdr->b_datacnt += 1; 1310 return (buf); 1311 } 1312 1313 void 1314 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1315 { 1316 arc_buf_hdr_t *hdr; 1317 kmutex_t *hash_lock; 1318 1319 /* 1320 * Check to see if this buffer is evicted. Callers 1321 * must verify b_data != NULL to know if the add_ref 1322 * was successful. 1323 */ 1324 mutex_enter(&buf->b_evict_lock); 1325 if (buf->b_data == NULL) { 1326 mutex_exit(&buf->b_evict_lock); 1327 return; 1328 } 1329 hash_lock = HDR_LOCK(buf->b_hdr); 1330 mutex_enter(hash_lock); 1331 hdr = buf->b_hdr; 1332 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1333 mutex_exit(&buf->b_evict_lock); 1334 1335 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1336 add_reference(hdr, hash_lock, tag); 1337 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1338 arc_access(hdr, hash_lock); 1339 mutex_exit(hash_lock); 1340 ARCSTAT_BUMP(arcstat_hits); 1341 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1342 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1343 data, metadata, hits); 1344 } 1345 1346 /* 1347 * Free the arc data buffer. If it is an l2arc write in progress, 1348 * the buffer is placed on l2arc_free_on_write to be freed later. 1349 */ 1350 static void 1351 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1352 void *data, size_t size) 1353 { 1354 if (HDR_L2_WRITING(hdr)) { 1355 l2arc_data_free_t *df; 1356 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1357 df->l2df_data = data; 1358 df->l2df_size = size; 1359 df->l2df_func = free_func; 1360 mutex_enter(&l2arc_free_on_write_mtx); 1361 list_insert_head(l2arc_free_on_write, df); 1362 mutex_exit(&l2arc_free_on_write_mtx); 1363 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1364 } else { 1365 free_func(data, size); 1366 } 1367 } 1368 1369 static void 1370 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1371 { 1372 arc_buf_t **bufp; 1373 1374 /* free up data associated with the buf */ 1375 if (buf->b_data) { 1376 arc_state_t *state = buf->b_hdr->b_state; 1377 uint64_t size = buf->b_hdr->b_size; 1378 arc_buf_contents_t type = buf->b_hdr->b_type; 1379 1380 arc_cksum_verify(buf); 1381 1382 if (!recycle) { 1383 if (type == ARC_BUFC_METADATA) { 1384 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1385 buf->b_data, size); 1386 arc_space_return(size, ARC_SPACE_DATA); 1387 } else { 1388 ASSERT(type == ARC_BUFC_DATA); 1389 arc_buf_data_free(buf->b_hdr, 1390 zio_data_buf_free, buf->b_data, size); 1391 ARCSTAT_INCR(arcstat_data_size, -size); 1392 atomic_add_64(&arc_size, -size); 1393 } 1394 } 1395 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1396 uint64_t *cnt = &state->arcs_lsize[type]; 1397 1398 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1399 ASSERT(state != arc_anon); 1400 1401 ASSERT3U(*cnt, >=, size); 1402 atomic_add_64(cnt, -size); 1403 } 1404 ASSERT3U(state->arcs_size, >=, size); 1405 atomic_add_64(&state->arcs_size, -size); 1406 buf->b_data = NULL; 1407 ASSERT(buf->b_hdr->b_datacnt > 0); 1408 buf->b_hdr->b_datacnt -= 1; 1409 } 1410 1411 /* only remove the buf if requested */ 1412 if (!all) 1413 return; 1414 1415 /* remove the buf from the hdr list */ 1416 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1417 continue; 1418 *bufp = buf->b_next; 1419 buf->b_next = NULL; 1420 1421 ASSERT(buf->b_efunc == NULL); 1422 1423 /* clean up the buf */ 1424 buf->b_hdr = NULL; 1425 kmem_cache_free(buf_cache, buf); 1426 } 1427 1428 static void 1429 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1430 { 1431 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1432 ASSERT3P(hdr->b_state, ==, arc_anon); 1433 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1434 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1435 1436 if (l2hdr != NULL) { 1437 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1438 /* 1439 * To prevent arc_free() and l2arc_evict() from 1440 * attempting to free the same buffer at the same time, 1441 * a FREE_IN_PROGRESS flag is given to arc_free() to 1442 * give it priority. l2arc_evict() can't destroy this 1443 * header while we are waiting on l2arc_buflist_mtx. 1444 * 1445 * The hdr may be removed from l2ad_buflist before we 1446 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1447 */ 1448 if (!buflist_held) { 1449 mutex_enter(&l2arc_buflist_mtx); 1450 l2hdr = hdr->b_l2hdr; 1451 } 1452 1453 if (l2hdr != NULL) { 1454 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1455 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1456 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1457 if (hdr->b_state == arc_l2c_only) 1458 l2arc_hdr_stat_remove(); 1459 hdr->b_l2hdr = NULL; 1460 } 1461 1462 if (!buflist_held) 1463 mutex_exit(&l2arc_buflist_mtx); 1464 } 1465 1466 if (!BUF_EMPTY(hdr)) { 1467 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1468 buf_discard_identity(hdr); 1469 } 1470 while (hdr->b_buf) { 1471 arc_buf_t *buf = hdr->b_buf; 1472 1473 if (buf->b_efunc) { 1474 mutex_enter(&arc_eviction_mtx); 1475 mutex_enter(&buf->b_evict_lock); 1476 ASSERT(buf->b_hdr != NULL); 1477 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1478 hdr->b_buf = buf->b_next; 1479 buf->b_hdr = &arc_eviction_hdr; 1480 buf->b_next = arc_eviction_list; 1481 arc_eviction_list = buf; 1482 mutex_exit(&buf->b_evict_lock); 1483 mutex_exit(&arc_eviction_mtx); 1484 } else { 1485 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1486 } 1487 } 1488 if (hdr->b_freeze_cksum != NULL) { 1489 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1490 hdr->b_freeze_cksum = NULL; 1491 } 1492 if (hdr->b_thawed) { 1493 kmem_free(hdr->b_thawed, 1); 1494 hdr->b_thawed = NULL; 1495 } 1496 1497 ASSERT(!list_link_active(&hdr->b_arc_node)); 1498 ASSERT3P(hdr->b_hash_next, ==, NULL); 1499 ASSERT3P(hdr->b_acb, ==, NULL); 1500 kmem_cache_free(hdr_cache, hdr); 1501 } 1502 1503 void 1504 arc_buf_free(arc_buf_t *buf, void *tag) 1505 { 1506 arc_buf_hdr_t *hdr = buf->b_hdr; 1507 int hashed = hdr->b_state != arc_anon; 1508 1509 ASSERT(buf->b_efunc == NULL); 1510 ASSERT(buf->b_data != NULL); 1511 1512 if (hashed) { 1513 kmutex_t *hash_lock = HDR_LOCK(hdr); 1514 1515 mutex_enter(hash_lock); 1516 hdr = buf->b_hdr; 1517 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1518 1519 (void) remove_reference(hdr, hash_lock, tag); 1520 if (hdr->b_datacnt > 1) { 1521 arc_buf_destroy(buf, FALSE, TRUE); 1522 } else { 1523 ASSERT(buf == hdr->b_buf); 1524 ASSERT(buf->b_efunc == NULL); 1525 hdr->b_flags |= ARC_BUF_AVAILABLE; 1526 } 1527 mutex_exit(hash_lock); 1528 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1529 int destroy_hdr; 1530 /* 1531 * We are in the middle of an async write. Don't destroy 1532 * this buffer unless the write completes before we finish 1533 * decrementing the reference count. 1534 */ 1535 mutex_enter(&arc_eviction_mtx); 1536 (void) remove_reference(hdr, NULL, tag); 1537 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1538 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1539 mutex_exit(&arc_eviction_mtx); 1540 if (destroy_hdr) 1541 arc_hdr_destroy(hdr); 1542 } else { 1543 if (remove_reference(hdr, NULL, tag) > 0) 1544 arc_buf_destroy(buf, FALSE, TRUE); 1545 else 1546 arc_hdr_destroy(hdr); 1547 } 1548 } 1549 1550 int 1551 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1552 { 1553 arc_buf_hdr_t *hdr = buf->b_hdr; 1554 kmutex_t *hash_lock = HDR_LOCK(hdr); 1555 int no_callback = (buf->b_efunc == NULL); 1556 1557 if (hdr->b_state == arc_anon) { 1558 ASSERT(hdr->b_datacnt == 1); 1559 arc_buf_free(buf, tag); 1560 return (no_callback); 1561 } 1562 1563 mutex_enter(hash_lock); 1564 hdr = buf->b_hdr; 1565 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1566 ASSERT(hdr->b_state != arc_anon); 1567 ASSERT(buf->b_data != NULL); 1568 1569 (void) remove_reference(hdr, hash_lock, tag); 1570 if (hdr->b_datacnt > 1) { 1571 if (no_callback) 1572 arc_buf_destroy(buf, FALSE, TRUE); 1573 } else if (no_callback) { 1574 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1575 ASSERT(buf->b_efunc == NULL); 1576 hdr->b_flags |= ARC_BUF_AVAILABLE; 1577 } 1578 ASSERT(no_callback || hdr->b_datacnt > 1 || 1579 refcount_is_zero(&hdr->b_refcnt)); 1580 mutex_exit(hash_lock); 1581 return (no_callback); 1582 } 1583 1584 int 1585 arc_buf_size(arc_buf_t *buf) 1586 { 1587 return (buf->b_hdr->b_size); 1588 } 1589 1590 /* 1591 * Evict buffers from list until we've removed the specified number of 1592 * bytes. Move the removed buffers to the appropriate evict state. 1593 * If the recycle flag is set, then attempt to "recycle" a buffer: 1594 * - look for a buffer to evict that is `bytes' long. 1595 * - return the data block from this buffer rather than freeing it. 1596 * This flag is used by callers that are trying to make space for a 1597 * new buffer in a full arc cache. 1598 * 1599 * This function makes a "best effort". It skips over any buffers 1600 * it can't get a hash_lock on, and so may not catch all candidates. 1601 * It may also return without evicting as much space as requested. 1602 */ 1603 static void * 1604 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1605 arc_buf_contents_t type) 1606 { 1607 arc_state_t *evicted_state; 1608 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1609 arc_buf_hdr_t *ab, *ab_prev = NULL; 1610 list_t *list = &state->arcs_list[type]; 1611 kmutex_t *hash_lock; 1612 boolean_t have_lock; 1613 void *stolen = NULL; 1614 1615 ASSERT(state == arc_mru || state == arc_mfu); 1616 1617 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1618 1619 mutex_enter(&state->arcs_mtx); 1620 mutex_enter(&evicted_state->arcs_mtx); 1621 1622 for (ab = list_tail(list); ab; ab = ab_prev) { 1623 ab_prev = list_prev(list, ab); 1624 /* prefetch buffers have a minimum lifespan */ 1625 if (HDR_IO_IN_PROGRESS(ab) || 1626 (spa && ab->b_spa != spa) || 1627 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1628 ddi_get_lbolt() - ab->b_arc_access < 1629 arc_min_prefetch_lifespan)) { 1630 skipped++; 1631 continue; 1632 } 1633 /* "lookahead" for better eviction candidate */ 1634 if (recycle && ab->b_size != bytes && 1635 ab_prev && ab_prev->b_size == bytes) 1636 continue; 1637 hash_lock = HDR_LOCK(ab); 1638 have_lock = MUTEX_HELD(hash_lock); 1639 if (have_lock || mutex_tryenter(hash_lock)) { 1640 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1641 ASSERT(ab->b_datacnt > 0); 1642 while (ab->b_buf) { 1643 arc_buf_t *buf = ab->b_buf; 1644 if (!mutex_tryenter(&buf->b_evict_lock)) { 1645 missed += 1; 1646 break; 1647 } 1648 if (buf->b_data) { 1649 bytes_evicted += ab->b_size; 1650 if (recycle && ab->b_type == type && 1651 ab->b_size == bytes && 1652 !HDR_L2_WRITING(ab)) { 1653 stolen = buf->b_data; 1654 recycle = FALSE; 1655 } 1656 } 1657 if (buf->b_efunc) { 1658 mutex_enter(&arc_eviction_mtx); 1659 arc_buf_destroy(buf, 1660 buf->b_data == stolen, FALSE); 1661 ab->b_buf = buf->b_next; 1662 buf->b_hdr = &arc_eviction_hdr; 1663 buf->b_next = arc_eviction_list; 1664 arc_eviction_list = buf; 1665 mutex_exit(&arc_eviction_mtx); 1666 mutex_exit(&buf->b_evict_lock); 1667 } else { 1668 mutex_exit(&buf->b_evict_lock); 1669 arc_buf_destroy(buf, 1670 buf->b_data == stolen, TRUE); 1671 } 1672 } 1673 1674 if (ab->b_l2hdr) { 1675 ARCSTAT_INCR(arcstat_evict_l2_cached, 1676 ab->b_size); 1677 } else { 1678 if (l2arc_write_eligible(ab->b_spa, ab)) { 1679 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1680 ab->b_size); 1681 } else { 1682 ARCSTAT_INCR( 1683 arcstat_evict_l2_ineligible, 1684 ab->b_size); 1685 } 1686 } 1687 1688 if (ab->b_datacnt == 0) { 1689 arc_change_state(evicted_state, ab, hash_lock); 1690 ASSERT(HDR_IN_HASH_TABLE(ab)); 1691 ab->b_flags |= ARC_IN_HASH_TABLE; 1692 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1693 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1694 } 1695 if (!have_lock) 1696 mutex_exit(hash_lock); 1697 if (bytes >= 0 && bytes_evicted >= bytes) 1698 break; 1699 } else { 1700 missed += 1; 1701 } 1702 } 1703 1704 mutex_exit(&evicted_state->arcs_mtx); 1705 mutex_exit(&state->arcs_mtx); 1706 1707 if (bytes_evicted < bytes) 1708 dprintf("only evicted %lld bytes from %x", 1709 (longlong_t)bytes_evicted, state); 1710 1711 if (skipped) 1712 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1713 1714 if (missed) 1715 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1716 1717 /* 1718 * We have just evicted some date into the ghost state, make 1719 * sure we also adjust the ghost state size if necessary. 1720 */ 1721 if (arc_no_grow && 1722 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1723 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1724 arc_mru_ghost->arcs_size - arc_c; 1725 1726 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1727 int64_t todelete = 1728 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1729 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1730 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1731 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1732 arc_mru_ghost->arcs_size + 1733 arc_mfu_ghost->arcs_size - arc_c); 1734 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1735 } 1736 } 1737 1738 return (stolen); 1739 } 1740 1741 /* 1742 * Remove buffers from list until we've removed the specified number of 1743 * bytes. Destroy the buffers that are removed. 1744 */ 1745 static void 1746 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1747 { 1748 arc_buf_hdr_t *ab, *ab_prev; 1749 arc_buf_hdr_t marker = { 0 }; 1750 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1751 kmutex_t *hash_lock; 1752 uint64_t bytes_deleted = 0; 1753 uint64_t bufs_skipped = 0; 1754 1755 ASSERT(GHOST_STATE(state)); 1756 top: 1757 mutex_enter(&state->arcs_mtx); 1758 for (ab = list_tail(list); ab; ab = ab_prev) { 1759 ab_prev = list_prev(list, ab); 1760 if (spa && ab->b_spa != spa) 1761 continue; 1762 1763 /* ignore markers */ 1764 if (ab->b_spa == 0) 1765 continue; 1766 1767 hash_lock = HDR_LOCK(ab); 1768 /* caller may be trying to modify this buffer, skip it */ 1769 if (MUTEX_HELD(hash_lock)) 1770 continue; 1771 if (mutex_tryenter(hash_lock)) { 1772 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1773 ASSERT(ab->b_buf == NULL); 1774 ARCSTAT_BUMP(arcstat_deleted); 1775 bytes_deleted += ab->b_size; 1776 1777 if (ab->b_l2hdr != NULL) { 1778 /* 1779 * This buffer is cached on the 2nd Level ARC; 1780 * don't destroy the header. 1781 */ 1782 arc_change_state(arc_l2c_only, ab, hash_lock); 1783 mutex_exit(hash_lock); 1784 } else { 1785 arc_change_state(arc_anon, ab, hash_lock); 1786 mutex_exit(hash_lock); 1787 arc_hdr_destroy(ab); 1788 } 1789 1790 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1791 if (bytes >= 0 && bytes_deleted >= bytes) 1792 break; 1793 } else if (bytes < 0) { 1794 /* 1795 * Insert a list marker and then wait for the 1796 * hash lock to become available. Once its 1797 * available, restart from where we left off. 1798 */ 1799 list_insert_after(list, ab, &marker); 1800 mutex_exit(&state->arcs_mtx); 1801 mutex_enter(hash_lock); 1802 mutex_exit(hash_lock); 1803 mutex_enter(&state->arcs_mtx); 1804 ab_prev = list_prev(list, &marker); 1805 list_remove(list, &marker); 1806 } else 1807 bufs_skipped += 1; 1808 } 1809 mutex_exit(&state->arcs_mtx); 1810 1811 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1812 (bytes < 0 || bytes_deleted < bytes)) { 1813 list = &state->arcs_list[ARC_BUFC_METADATA]; 1814 goto top; 1815 } 1816 1817 if (bufs_skipped) { 1818 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1819 ASSERT(bytes >= 0); 1820 } 1821 1822 if (bytes_deleted < bytes) 1823 dprintf("only deleted %lld bytes from %p", 1824 (longlong_t)bytes_deleted, state); 1825 } 1826 1827 static void 1828 arc_adjust(void) 1829 { 1830 int64_t adjustment, delta; 1831 1832 /* 1833 * Adjust MRU size 1834 */ 1835 1836 adjustment = MIN((int64_t)(arc_size - arc_c), 1837 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - 1838 arc_p)); 1839 1840 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1841 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 1842 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 1843 adjustment -= delta; 1844 } 1845 1846 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1847 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 1848 (void) arc_evict(arc_mru, NULL, delta, FALSE, 1849 ARC_BUFC_METADATA); 1850 } 1851 1852 /* 1853 * Adjust MFU size 1854 */ 1855 1856 adjustment = arc_size - arc_c; 1857 1858 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1859 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 1860 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 1861 adjustment -= delta; 1862 } 1863 1864 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1865 int64_t delta = MIN(adjustment, 1866 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 1867 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 1868 ARC_BUFC_METADATA); 1869 } 1870 1871 /* 1872 * Adjust ghost lists 1873 */ 1874 1875 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 1876 1877 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 1878 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 1879 arc_evict_ghost(arc_mru_ghost, NULL, delta); 1880 } 1881 1882 adjustment = 1883 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 1884 1885 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 1886 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 1887 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 1888 } 1889 } 1890 1891 static void 1892 arc_do_user_evicts(void) 1893 { 1894 mutex_enter(&arc_eviction_mtx); 1895 while (arc_eviction_list != NULL) { 1896 arc_buf_t *buf = arc_eviction_list; 1897 arc_eviction_list = buf->b_next; 1898 mutex_enter(&buf->b_evict_lock); 1899 buf->b_hdr = NULL; 1900 mutex_exit(&buf->b_evict_lock); 1901 mutex_exit(&arc_eviction_mtx); 1902 1903 if (buf->b_efunc != NULL) 1904 VERIFY(buf->b_efunc(buf) == 0); 1905 1906 buf->b_efunc = NULL; 1907 buf->b_private = NULL; 1908 kmem_cache_free(buf_cache, buf); 1909 mutex_enter(&arc_eviction_mtx); 1910 } 1911 mutex_exit(&arc_eviction_mtx); 1912 } 1913 1914 /* 1915 * Flush all *evictable* data from the cache for the given spa. 1916 * NOTE: this will not touch "active" (i.e. referenced) data. 1917 */ 1918 void 1919 arc_flush(spa_t *spa) 1920 { 1921 uint64_t guid = 0; 1922 1923 if (spa) 1924 guid = spa_load_guid(spa); 1925 1926 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 1927 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 1928 if (spa) 1929 break; 1930 } 1931 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 1932 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 1933 if (spa) 1934 break; 1935 } 1936 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 1937 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 1938 if (spa) 1939 break; 1940 } 1941 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 1942 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 1943 if (spa) 1944 break; 1945 } 1946 1947 arc_evict_ghost(arc_mru_ghost, guid, -1); 1948 arc_evict_ghost(arc_mfu_ghost, guid, -1); 1949 1950 mutex_enter(&arc_reclaim_thr_lock); 1951 arc_do_user_evicts(); 1952 mutex_exit(&arc_reclaim_thr_lock); 1953 ASSERT(spa || arc_eviction_list == NULL); 1954 } 1955 1956 void 1957 arc_shrink(void) 1958 { 1959 if (arc_c > arc_c_min) { 1960 uint64_t to_free; 1961 1962 #ifdef _KERNEL 1963 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1964 #else 1965 to_free = arc_c >> arc_shrink_shift; 1966 #endif 1967 if (arc_c > arc_c_min + to_free) 1968 atomic_add_64(&arc_c, -to_free); 1969 else 1970 arc_c = arc_c_min; 1971 1972 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1973 if (arc_c > arc_size) 1974 arc_c = MAX(arc_size, arc_c_min); 1975 if (arc_p > arc_c) 1976 arc_p = (arc_c >> 1); 1977 ASSERT(arc_c >= arc_c_min); 1978 ASSERT((int64_t)arc_p >= 0); 1979 } 1980 1981 if (arc_size > arc_c) 1982 arc_adjust(); 1983 } 1984 1985 static int 1986 arc_reclaim_needed(void) 1987 { 1988 uint64_t extra; 1989 1990 #ifdef _KERNEL 1991 1992 if (needfree) 1993 return (1); 1994 1995 /* 1996 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1997 */ 1998 extra = desfree; 1999 2000 /* 2001 * check that we're out of range of the pageout scanner. It starts to 2002 * schedule paging if freemem is less than lotsfree and needfree. 2003 * lotsfree is the high-water mark for pageout, and needfree is the 2004 * number of needed free pages. We add extra pages here to make sure 2005 * the scanner doesn't start up while we're freeing memory. 2006 */ 2007 if (freemem < lotsfree + needfree + extra) 2008 return (1); 2009 2010 /* 2011 * check to make sure that swapfs has enough space so that anon 2012 * reservations can still succeed. anon_resvmem() checks that the 2013 * availrmem is greater than swapfs_minfree, and the number of reserved 2014 * swap pages. We also add a bit of extra here just to prevent 2015 * circumstances from getting really dire. 2016 */ 2017 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2018 return (1); 2019 2020 #if defined(__i386) 2021 /* 2022 * If we're on an i386 platform, it's possible that we'll exhaust the 2023 * kernel heap space before we ever run out of available physical 2024 * memory. Most checks of the size of the heap_area compare against 2025 * tune.t_minarmem, which is the minimum available real memory that we 2026 * can have in the system. However, this is generally fixed at 25 pages 2027 * which is so low that it's useless. In this comparison, we seek to 2028 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2029 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2030 * free) 2031 */ 2032 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 2033 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 2034 return (1); 2035 #endif 2036 2037 #else 2038 if (spa_get_random(100) == 0) 2039 return (1); 2040 #endif 2041 return (0); 2042 } 2043 2044 static void 2045 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2046 { 2047 size_t i; 2048 kmem_cache_t *prev_cache = NULL; 2049 kmem_cache_t *prev_data_cache = NULL; 2050 extern kmem_cache_t *zio_buf_cache[]; 2051 extern kmem_cache_t *zio_data_buf_cache[]; 2052 2053 #ifdef _KERNEL 2054 if (arc_meta_used >= arc_meta_limit) { 2055 /* 2056 * We are exceeding our meta-data cache limit. 2057 * Purge some DNLC entries to release holds on meta-data. 2058 */ 2059 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2060 } 2061 #if defined(__i386) 2062 /* 2063 * Reclaim unused memory from all kmem caches. 2064 */ 2065 kmem_reap(); 2066 #endif 2067 #endif 2068 2069 /* 2070 * An aggressive reclamation will shrink the cache size as well as 2071 * reap free buffers from the arc kmem caches. 2072 */ 2073 if (strat == ARC_RECLAIM_AGGR) 2074 arc_shrink(); 2075 2076 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2077 if (zio_buf_cache[i] != prev_cache) { 2078 prev_cache = zio_buf_cache[i]; 2079 kmem_cache_reap_now(zio_buf_cache[i]); 2080 } 2081 if (zio_data_buf_cache[i] != prev_data_cache) { 2082 prev_data_cache = zio_data_buf_cache[i]; 2083 kmem_cache_reap_now(zio_data_buf_cache[i]); 2084 } 2085 } 2086 kmem_cache_reap_now(buf_cache); 2087 kmem_cache_reap_now(hdr_cache); 2088 } 2089 2090 static void 2091 arc_reclaim_thread(void) 2092 { 2093 clock_t growtime = 0; 2094 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2095 callb_cpr_t cpr; 2096 2097 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2098 2099 mutex_enter(&arc_reclaim_thr_lock); 2100 while (arc_thread_exit == 0) { 2101 if (arc_reclaim_needed()) { 2102 2103 if (arc_no_grow) { 2104 if (last_reclaim == ARC_RECLAIM_CONS) { 2105 last_reclaim = ARC_RECLAIM_AGGR; 2106 } else { 2107 last_reclaim = ARC_RECLAIM_CONS; 2108 } 2109 } else { 2110 arc_no_grow = TRUE; 2111 last_reclaim = ARC_RECLAIM_AGGR; 2112 membar_producer(); 2113 } 2114 2115 /* reset the growth delay for every reclaim */ 2116 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2117 2118 arc_kmem_reap_now(last_reclaim); 2119 arc_warm = B_TRUE; 2120 2121 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2122 arc_no_grow = FALSE; 2123 } 2124 2125 arc_adjust(); 2126 2127 if (arc_eviction_list != NULL) 2128 arc_do_user_evicts(); 2129 2130 /* block until needed, or one second, whichever is shorter */ 2131 CALLB_CPR_SAFE_BEGIN(&cpr); 2132 (void) cv_timedwait(&arc_reclaim_thr_cv, 2133 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2134 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2135 } 2136 2137 arc_thread_exit = 0; 2138 cv_broadcast(&arc_reclaim_thr_cv); 2139 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2140 thread_exit(); 2141 } 2142 2143 /* 2144 * Adapt arc info given the number of bytes we are trying to add and 2145 * the state that we are comming from. This function is only called 2146 * when we are adding new content to the cache. 2147 */ 2148 static void 2149 arc_adapt(int bytes, arc_state_t *state) 2150 { 2151 int mult; 2152 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2153 2154 if (state == arc_l2c_only) 2155 return; 2156 2157 ASSERT(bytes > 0); 2158 /* 2159 * Adapt the target size of the MRU list: 2160 * - if we just hit in the MRU ghost list, then increase 2161 * the target size of the MRU list. 2162 * - if we just hit in the MFU ghost list, then increase 2163 * the target size of the MFU list by decreasing the 2164 * target size of the MRU list. 2165 */ 2166 if (state == arc_mru_ghost) { 2167 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2168 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2169 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 2170 2171 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2172 } else if (state == arc_mfu_ghost) { 2173 uint64_t delta; 2174 2175 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2176 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2177 mult = MIN(mult, 10); 2178 2179 delta = MIN(bytes * mult, arc_p); 2180 arc_p = MAX(arc_p_min, arc_p - delta); 2181 } 2182 ASSERT((int64_t)arc_p >= 0); 2183 2184 if (arc_reclaim_needed()) { 2185 cv_signal(&arc_reclaim_thr_cv); 2186 return; 2187 } 2188 2189 if (arc_no_grow) 2190 return; 2191 2192 if (arc_c >= arc_c_max) 2193 return; 2194 2195 /* 2196 * If we're within (2 * maxblocksize) bytes of the target 2197 * cache size, increment the target cache size 2198 */ 2199 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2200 atomic_add_64(&arc_c, (int64_t)bytes); 2201 if (arc_c > arc_c_max) 2202 arc_c = arc_c_max; 2203 else if (state == arc_anon) 2204 atomic_add_64(&arc_p, (int64_t)bytes); 2205 if (arc_p > arc_c) 2206 arc_p = arc_c; 2207 } 2208 ASSERT((int64_t)arc_p >= 0); 2209 } 2210 2211 /* 2212 * Check if the cache has reached its limits and eviction is required 2213 * prior to insert. 2214 */ 2215 static int 2216 arc_evict_needed(arc_buf_contents_t type) 2217 { 2218 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2219 return (1); 2220 2221 #ifdef _KERNEL 2222 /* 2223 * If zio data pages are being allocated out of a separate heap segment, 2224 * then enforce that the size of available vmem for this area remains 2225 * above about 1/32nd free. 2226 */ 2227 if (type == ARC_BUFC_DATA && zio_arena != NULL && 2228 vmem_size(zio_arena, VMEM_FREE) < 2229 (vmem_size(zio_arena, VMEM_ALLOC) >> 5)) 2230 return (1); 2231 #endif 2232 2233 if (arc_reclaim_needed()) 2234 return (1); 2235 2236 return (arc_size > arc_c); 2237 } 2238 2239 /* 2240 * The buffer, supplied as the first argument, needs a data block. 2241 * So, if we are at cache max, determine which cache should be victimized. 2242 * We have the following cases: 2243 * 2244 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2245 * In this situation if we're out of space, but the resident size of the MFU is 2246 * under the limit, victimize the MFU cache to satisfy this insertion request. 2247 * 2248 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2249 * Here, we've used up all of the available space for the MRU, so we need to 2250 * evict from our own cache instead. Evict from the set of resident MRU 2251 * entries. 2252 * 2253 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2254 * c minus p represents the MFU space in the cache, since p is the size of the 2255 * cache that is dedicated to the MRU. In this situation there's still space on 2256 * the MFU side, so the MRU side needs to be victimized. 2257 * 2258 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2259 * MFU's resident set is consuming more space than it has been allotted. In 2260 * this situation, we must victimize our own cache, the MFU, for this insertion. 2261 */ 2262 static void 2263 arc_get_data_buf(arc_buf_t *buf) 2264 { 2265 arc_state_t *state = buf->b_hdr->b_state; 2266 uint64_t size = buf->b_hdr->b_size; 2267 arc_buf_contents_t type = buf->b_hdr->b_type; 2268 2269 arc_adapt(size, state); 2270 2271 /* 2272 * We have not yet reached cache maximum size, 2273 * just allocate a new buffer. 2274 */ 2275 if (!arc_evict_needed(type)) { 2276 if (type == ARC_BUFC_METADATA) { 2277 buf->b_data = zio_buf_alloc(size); 2278 arc_space_consume(size, ARC_SPACE_DATA); 2279 } else { 2280 ASSERT(type == ARC_BUFC_DATA); 2281 buf->b_data = zio_data_buf_alloc(size); 2282 ARCSTAT_INCR(arcstat_data_size, size); 2283 atomic_add_64(&arc_size, size); 2284 } 2285 goto out; 2286 } 2287 2288 /* 2289 * If we are prefetching from the mfu ghost list, this buffer 2290 * will end up on the mru list; so steal space from there. 2291 */ 2292 if (state == arc_mfu_ghost) 2293 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2294 else if (state == arc_mru_ghost) 2295 state = arc_mru; 2296 2297 if (state == arc_mru || state == arc_anon) { 2298 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2299 state = (arc_mfu->arcs_lsize[type] >= size && 2300 arc_p > mru_used) ? arc_mfu : arc_mru; 2301 } else { 2302 /* MFU cases */ 2303 uint64_t mfu_space = arc_c - arc_p; 2304 state = (arc_mru->arcs_lsize[type] >= size && 2305 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2306 } 2307 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2308 if (type == ARC_BUFC_METADATA) { 2309 buf->b_data = zio_buf_alloc(size); 2310 arc_space_consume(size, ARC_SPACE_DATA); 2311 } else { 2312 ASSERT(type == ARC_BUFC_DATA); 2313 buf->b_data = zio_data_buf_alloc(size); 2314 ARCSTAT_INCR(arcstat_data_size, size); 2315 atomic_add_64(&arc_size, size); 2316 } 2317 ARCSTAT_BUMP(arcstat_recycle_miss); 2318 } 2319 ASSERT(buf->b_data != NULL); 2320 out: 2321 /* 2322 * Update the state size. Note that ghost states have a 2323 * "ghost size" and so don't need to be updated. 2324 */ 2325 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2326 arc_buf_hdr_t *hdr = buf->b_hdr; 2327 2328 atomic_add_64(&hdr->b_state->arcs_size, size); 2329 if (list_link_active(&hdr->b_arc_node)) { 2330 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2331 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2332 } 2333 /* 2334 * If we are growing the cache, and we are adding anonymous 2335 * data, and we have outgrown arc_p, update arc_p 2336 */ 2337 if (arc_size < arc_c && hdr->b_state == arc_anon && 2338 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2339 arc_p = MIN(arc_c, arc_p + size); 2340 } 2341 } 2342 2343 /* 2344 * This routine is called whenever a buffer is accessed. 2345 * NOTE: the hash lock is dropped in this function. 2346 */ 2347 static void 2348 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2349 { 2350 clock_t now; 2351 2352 ASSERT(MUTEX_HELD(hash_lock)); 2353 2354 if (buf->b_state == arc_anon) { 2355 /* 2356 * This buffer is not in the cache, and does not 2357 * appear in our "ghost" list. Add the new buffer 2358 * to the MRU state. 2359 */ 2360 2361 ASSERT(buf->b_arc_access == 0); 2362 buf->b_arc_access = ddi_get_lbolt(); 2363 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2364 arc_change_state(arc_mru, buf, hash_lock); 2365 2366 } else if (buf->b_state == arc_mru) { 2367 now = ddi_get_lbolt(); 2368 2369 /* 2370 * If this buffer is here because of a prefetch, then either: 2371 * - clear the flag if this is a "referencing" read 2372 * (any subsequent access will bump this into the MFU state). 2373 * or 2374 * - move the buffer to the head of the list if this is 2375 * another prefetch (to make it less likely to be evicted). 2376 */ 2377 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2378 if (refcount_count(&buf->b_refcnt) == 0) { 2379 ASSERT(list_link_active(&buf->b_arc_node)); 2380 } else { 2381 buf->b_flags &= ~ARC_PREFETCH; 2382 ARCSTAT_BUMP(arcstat_mru_hits); 2383 } 2384 buf->b_arc_access = now; 2385 return; 2386 } 2387 2388 /* 2389 * This buffer has been "accessed" only once so far, 2390 * but it is still in the cache. Move it to the MFU 2391 * state. 2392 */ 2393 if (now > buf->b_arc_access + ARC_MINTIME) { 2394 /* 2395 * More than 125ms have passed since we 2396 * instantiated this buffer. Move it to the 2397 * most frequently used state. 2398 */ 2399 buf->b_arc_access = now; 2400 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2401 arc_change_state(arc_mfu, buf, hash_lock); 2402 } 2403 ARCSTAT_BUMP(arcstat_mru_hits); 2404 } else if (buf->b_state == arc_mru_ghost) { 2405 arc_state_t *new_state; 2406 /* 2407 * This buffer has been "accessed" recently, but 2408 * was evicted from the cache. Move it to the 2409 * MFU state. 2410 */ 2411 2412 if (buf->b_flags & ARC_PREFETCH) { 2413 new_state = arc_mru; 2414 if (refcount_count(&buf->b_refcnt) > 0) 2415 buf->b_flags &= ~ARC_PREFETCH; 2416 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2417 } else { 2418 new_state = arc_mfu; 2419 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2420 } 2421 2422 buf->b_arc_access = ddi_get_lbolt(); 2423 arc_change_state(new_state, buf, hash_lock); 2424 2425 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2426 } else if (buf->b_state == arc_mfu) { 2427 /* 2428 * This buffer has been accessed more than once and is 2429 * still in the cache. Keep it in the MFU state. 2430 * 2431 * NOTE: an add_reference() that occurred when we did 2432 * the arc_read() will have kicked this off the list. 2433 * If it was a prefetch, we will explicitly move it to 2434 * the head of the list now. 2435 */ 2436 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2437 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2438 ASSERT(list_link_active(&buf->b_arc_node)); 2439 } 2440 ARCSTAT_BUMP(arcstat_mfu_hits); 2441 buf->b_arc_access = ddi_get_lbolt(); 2442 } else if (buf->b_state == arc_mfu_ghost) { 2443 arc_state_t *new_state = arc_mfu; 2444 /* 2445 * This buffer has been accessed more than once but has 2446 * been evicted from the cache. Move it back to the 2447 * MFU state. 2448 */ 2449 2450 if (buf->b_flags & ARC_PREFETCH) { 2451 /* 2452 * This is a prefetch access... 2453 * move this block back to the MRU state. 2454 */ 2455 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2456 new_state = arc_mru; 2457 } 2458 2459 buf->b_arc_access = ddi_get_lbolt(); 2460 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2461 arc_change_state(new_state, buf, hash_lock); 2462 2463 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2464 } else if (buf->b_state == arc_l2c_only) { 2465 /* 2466 * This buffer is on the 2nd Level ARC. 2467 */ 2468 2469 buf->b_arc_access = ddi_get_lbolt(); 2470 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2471 arc_change_state(arc_mfu, buf, hash_lock); 2472 } else { 2473 ASSERT(!"invalid arc state"); 2474 } 2475 } 2476 2477 /* a generic arc_done_func_t which you can use */ 2478 /* ARGSUSED */ 2479 void 2480 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2481 { 2482 if (zio == NULL || zio->io_error == 0) 2483 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2484 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2485 } 2486 2487 /* a generic arc_done_func_t */ 2488 void 2489 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2490 { 2491 arc_buf_t **bufp = arg; 2492 if (zio && zio->io_error) { 2493 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2494 *bufp = NULL; 2495 } else { 2496 *bufp = buf; 2497 ASSERT(buf->b_data); 2498 } 2499 } 2500 2501 static void 2502 arc_read_done(zio_t *zio) 2503 { 2504 arc_buf_hdr_t *hdr, *found; 2505 arc_buf_t *buf; 2506 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2507 kmutex_t *hash_lock; 2508 arc_callback_t *callback_list, *acb; 2509 int freeable = FALSE; 2510 2511 buf = zio->io_private; 2512 hdr = buf->b_hdr; 2513 2514 /* 2515 * The hdr was inserted into hash-table and removed from lists 2516 * prior to starting I/O. We should find this header, since 2517 * it's in the hash table, and it should be legit since it's 2518 * not possible to evict it during the I/O. The only possible 2519 * reason for it not to be found is if we were freed during the 2520 * read. 2521 */ 2522 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth, 2523 &hash_lock); 2524 2525 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2526 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2527 (found == hdr && HDR_L2_READING(hdr))); 2528 2529 hdr->b_flags &= ~ARC_L2_EVICTED; 2530 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2531 hdr->b_flags &= ~ARC_L2CACHE; 2532 2533 /* byteswap if necessary */ 2534 callback_list = hdr->b_acb; 2535 ASSERT(callback_list != NULL); 2536 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2537 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2538 byteswap_uint64_array : 2539 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap; 2540 func(buf->b_data, hdr->b_size); 2541 } 2542 2543 arc_cksum_compute(buf, B_FALSE); 2544 2545 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2546 /* 2547 * Only call arc_access on anonymous buffers. This is because 2548 * if we've issued an I/O for an evicted buffer, we've already 2549 * called arc_access (to prevent any simultaneous readers from 2550 * getting confused). 2551 */ 2552 arc_access(hdr, hash_lock); 2553 } 2554 2555 /* create copies of the data buffer for the callers */ 2556 abuf = buf; 2557 for (acb = callback_list; acb; acb = acb->acb_next) { 2558 if (acb->acb_done) { 2559 if (abuf == NULL) 2560 abuf = arc_buf_clone(buf); 2561 acb->acb_buf = abuf; 2562 abuf = NULL; 2563 } 2564 } 2565 hdr->b_acb = NULL; 2566 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2567 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2568 if (abuf == buf) { 2569 ASSERT(buf->b_efunc == NULL); 2570 ASSERT(hdr->b_datacnt == 1); 2571 hdr->b_flags |= ARC_BUF_AVAILABLE; 2572 } 2573 2574 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2575 2576 if (zio->io_error != 0) { 2577 hdr->b_flags |= ARC_IO_ERROR; 2578 if (hdr->b_state != arc_anon) 2579 arc_change_state(arc_anon, hdr, hash_lock); 2580 if (HDR_IN_HASH_TABLE(hdr)) 2581 buf_hash_remove(hdr); 2582 freeable = refcount_is_zero(&hdr->b_refcnt); 2583 } 2584 2585 /* 2586 * Broadcast before we drop the hash_lock to avoid the possibility 2587 * that the hdr (and hence the cv) might be freed before we get to 2588 * the cv_broadcast(). 2589 */ 2590 cv_broadcast(&hdr->b_cv); 2591 2592 if (hash_lock) { 2593 mutex_exit(hash_lock); 2594 } else { 2595 /* 2596 * This block was freed while we waited for the read to 2597 * complete. It has been removed from the hash table and 2598 * moved to the anonymous state (so that it won't show up 2599 * in the cache). 2600 */ 2601 ASSERT3P(hdr->b_state, ==, arc_anon); 2602 freeable = refcount_is_zero(&hdr->b_refcnt); 2603 } 2604 2605 /* execute each callback and free its structure */ 2606 while ((acb = callback_list) != NULL) { 2607 if (acb->acb_done) 2608 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2609 2610 if (acb->acb_zio_dummy != NULL) { 2611 acb->acb_zio_dummy->io_error = zio->io_error; 2612 zio_nowait(acb->acb_zio_dummy); 2613 } 2614 2615 callback_list = acb->acb_next; 2616 kmem_free(acb, sizeof (arc_callback_t)); 2617 } 2618 2619 if (freeable) 2620 arc_hdr_destroy(hdr); 2621 } 2622 2623 /* 2624 * "Read" the block block at the specified DVA (in bp) via the 2625 * cache. If the block is found in the cache, invoke the provided 2626 * callback immediately and return. Note that the `zio' parameter 2627 * in the callback will be NULL in this case, since no IO was 2628 * required. If the block is not in the cache pass the read request 2629 * on to the spa with a substitute callback function, so that the 2630 * requested block will be added to the cache. 2631 * 2632 * If a read request arrives for a block that has a read in-progress, 2633 * either wait for the in-progress read to complete (and return the 2634 * results); or, if this is a read with a "done" func, add a record 2635 * to the read to invoke the "done" func when the read completes, 2636 * and return; or just return. 2637 * 2638 * arc_read_done() will invoke all the requested "done" functions 2639 * for readers of this block. 2640 * 2641 * Normal callers should use arc_read and pass the arc buffer and offset 2642 * for the bp. But if you know you don't need locking, you can use 2643 * arc_read_bp. 2644 */ 2645 int 2646 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf, 2647 arc_done_func_t *done, void *private, int priority, int zio_flags, 2648 uint32_t *arc_flags, const zbookmark_t *zb) 2649 { 2650 int err; 2651 2652 if (pbuf == NULL) { 2653 /* 2654 * XXX This happens from traverse callback funcs, for 2655 * the objset_phys_t block. 2656 */ 2657 return (arc_read_nolock(pio, spa, bp, done, private, priority, 2658 zio_flags, arc_flags, zb)); 2659 } 2660 2661 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt)); 2662 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size); 2663 rw_enter(&pbuf->b_data_lock, RW_READER); 2664 2665 err = arc_read_nolock(pio, spa, bp, done, private, priority, 2666 zio_flags, arc_flags, zb); 2667 rw_exit(&pbuf->b_data_lock); 2668 2669 return (err); 2670 } 2671 2672 int 2673 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp, 2674 arc_done_func_t *done, void *private, int priority, int zio_flags, 2675 uint32_t *arc_flags, const zbookmark_t *zb) 2676 { 2677 arc_buf_hdr_t *hdr; 2678 arc_buf_t *buf; 2679 kmutex_t *hash_lock; 2680 zio_t *rzio; 2681 uint64_t guid = spa_load_guid(spa); 2682 2683 top: 2684 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp), 2685 &hash_lock); 2686 if (hdr && hdr->b_datacnt > 0) { 2687 2688 *arc_flags |= ARC_CACHED; 2689 2690 if (HDR_IO_IN_PROGRESS(hdr)) { 2691 2692 if (*arc_flags & ARC_WAIT) { 2693 cv_wait(&hdr->b_cv, hash_lock); 2694 mutex_exit(hash_lock); 2695 goto top; 2696 } 2697 ASSERT(*arc_flags & ARC_NOWAIT); 2698 2699 if (done) { 2700 arc_callback_t *acb = NULL; 2701 2702 acb = kmem_zalloc(sizeof (arc_callback_t), 2703 KM_SLEEP); 2704 acb->acb_done = done; 2705 acb->acb_private = private; 2706 if (pio != NULL) 2707 acb->acb_zio_dummy = zio_null(pio, 2708 spa, NULL, NULL, NULL, zio_flags); 2709 2710 ASSERT(acb->acb_done != NULL); 2711 acb->acb_next = hdr->b_acb; 2712 hdr->b_acb = acb; 2713 add_reference(hdr, hash_lock, private); 2714 mutex_exit(hash_lock); 2715 return (0); 2716 } 2717 mutex_exit(hash_lock); 2718 return (0); 2719 } 2720 2721 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2722 2723 if (done) { 2724 add_reference(hdr, hash_lock, private); 2725 /* 2726 * If this block is already in use, create a new 2727 * copy of the data so that we will be guaranteed 2728 * that arc_release() will always succeed. 2729 */ 2730 buf = hdr->b_buf; 2731 ASSERT(buf); 2732 ASSERT(buf->b_data); 2733 if (HDR_BUF_AVAILABLE(hdr)) { 2734 ASSERT(buf->b_efunc == NULL); 2735 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2736 } else { 2737 buf = arc_buf_clone(buf); 2738 } 2739 2740 } else if (*arc_flags & ARC_PREFETCH && 2741 refcount_count(&hdr->b_refcnt) == 0) { 2742 hdr->b_flags |= ARC_PREFETCH; 2743 } 2744 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2745 arc_access(hdr, hash_lock); 2746 if (*arc_flags & ARC_L2CACHE) 2747 hdr->b_flags |= ARC_L2CACHE; 2748 mutex_exit(hash_lock); 2749 ARCSTAT_BUMP(arcstat_hits); 2750 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2751 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2752 data, metadata, hits); 2753 2754 if (done) 2755 done(NULL, buf, private); 2756 } else { 2757 uint64_t size = BP_GET_LSIZE(bp); 2758 arc_callback_t *acb; 2759 vdev_t *vd = NULL; 2760 uint64_t addr; 2761 boolean_t devw = B_FALSE; 2762 2763 if (hdr == NULL) { 2764 /* this block is not in the cache */ 2765 arc_buf_hdr_t *exists; 2766 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2767 buf = arc_buf_alloc(spa, size, private, type); 2768 hdr = buf->b_hdr; 2769 hdr->b_dva = *BP_IDENTITY(bp); 2770 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 2771 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2772 exists = buf_hash_insert(hdr, &hash_lock); 2773 if (exists) { 2774 /* somebody beat us to the hash insert */ 2775 mutex_exit(hash_lock); 2776 buf_discard_identity(hdr); 2777 (void) arc_buf_remove_ref(buf, private); 2778 goto top; /* restart the IO request */ 2779 } 2780 /* if this is a prefetch, we don't have a reference */ 2781 if (*arc_flags & ARC_PREFETCH) { 2782 (void) remove_reference(hdr, hash_lock, 2783 private); 2784 hdr->b_flags |= ARC_PREFETCH; 2785 } 2786 if (*arc_flags & ARC_L2CACHE) 2787 hdr->b_flags |= ARC_L2CACHE; 2788 if (BP_GET_LEVEL(bp) > 0) 2789 hdr->b_flags |= ARC_INDIRECT; 2790 } else { 2791 /* this block is in the ghost cache */ 2792 ASSERT(GHOST_STATE(hdr->b_state)); 2793 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2794 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2795 ASSERT(hdr->b_buf == NULL); 2796 2797 /* if this is a prefetch, we don't have a reference */ 2798 if (*arc_flags & ARC_PREFETCH) 2799 hdr->b_flags |= ARC_PREFETCH; 2800 else 2801 add_reference(hdr, hash_lock, private); 2802 if (*arc_flags & ARC_L2CACHE) 2803 hdr->b_flags |= ARC_L2CACHE; 2804 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2805 buf->b_hdr = hdr; 2806 buf->b_data = NULL; 2807 buf->b_efunc = NULL; 2808 buf->b_private = NULL; 2809 buf->b_next = NULL; 2810 hdr->b_buf = buf; 2811 ASSERT(hdr->b_datacnt == 0); 2812 hdr->b_datacnt = 1; 2813 arc_get_data_buf(buf); 2814 arc_access(hdr, hash_lock); 2815 } 2816 2817 ASSERT(!GHOST_STATE(hdr->b_state)); 2818 2819 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2820 acb->acb_done = done; 2821 acb->acb_private = private; 2822 2823 ASSERT(hdr->b_acb == NULL); 2824 hdr->b_acb = acb; 2825 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2826 2827 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && 2828 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 2829 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 2830 addr = hdr->b_l2hdr->b_daddr; 2831 /* 2832 * Lock out device removal. 2833 */ 2834 if (vdev_is_dead(vd) || 2835 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 2836 vd = NULL; 2837 } 2838 2839 mutex_exit(hash_lock); 2840 2841 ASSERT3U(hdr->b_size, ==, size); 2842 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 2843 uint64_t, size, zbookmark_t *, zb); 2844 ARCSTAT_BUMP(arcstat_misses); 2845 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2846 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2847 data, metadata, misses); 2848 2849 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 2850 /* 2851 * Read from the L2ARC if the following are true: 2852 * 1. The L2ARC vdev was previously cached. 2853 * 2. This buffer still has L2ARC metadata. 2854 * 3. This buffer isn't currently writing to the L2ARC. 2855 * 4. The L2ARC entry wasn't evicted, which may 2856 * also have invalidated the vdev. 2857 * 5. This isn't prefetch and l2arc_noprefetch is set. 2858 */ 2859 if (hdr->b_l2hdr != NULL && 2860 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 2861 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 2862 l2arc_read_callback_t *cb; 2863 2864 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2865 ARCSTAT_BUMP(arcstat_l2_hits); 2866 2867 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2868 KM_SLEEP); 2869 cb->l2rcb_buf = buf; 2870 cb->l2rcb_spa = spa; 2871 cb->l2rcb_bp = *bp; 2872 cb->l2rcb_zb = *zb; 2873 cb->l2rcb_flags = zio_flags; 2874 2875 /* 2876 * l2arc read. The SCL_L2ARC lock will be 2877 * released by l2arc_read_done(). 2878 */ 2879 rzio = zio_read_phys(pio, vd, addr, size, 2880 buf->b_data, ZIO_CHECKSUM_OFF, 2881 l2arc_read_done, cb, priority, zio_flags | 2882 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 2883 ZIO_FLAG_DONT_PROPAGATE | 2884 ZIO_FLAG_DONT_RETRY, B_FALSE); 2885 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2886 zio_t *, rzio); 2887 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 2888 2889 if (*arc_flags & ARC_NOWAIT) { 2890 zio_nowait(rzio); 2891 return (0); 2892 } 2893 2894 ASSERT(*arc_flags & ARC_WAIT); 2895 if (zio_wait(rzio) == 0) 2896 return (0); 2897 2898 /* l2arc read error; goto zio_read() */ 2899 } else { 2900 DTRACE_PROBE1(l2arc__miss, 2901 arc_buf_hdr_t *, hdr); 2902 ARCSTAT_BUMP(arcstat_l2_misses); 2903 if (HDR_L2_WRITING(hdr)) 2904 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2905 spa_config_exit(spa, SCL_L2ARC, vd); 2906 } 2907 } else { 2908 if (vd != NULL) 2909 spa_config_exit(spa, SCL_L2ARC, vd); 2910 if (l2arc_ndev != 0) { 2911 DTRACE_PROBE1(l2arc__miss, 2912 arc_buf_hdr_t *, hdr); 2913 ARCSTAT_BUMP(arcstat_l2_misses); 2914 } 2915 } 2916 2917 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2918 arc_read_done, buf, priority, zio_flags, zb); 2919 2920 if (*arc_flags & ARC_WAIT) 2921 return (zio_wait(rzio)); 2922 2923 ASSERT(*arc_flags & ARC_NOWAIT); 2924 zio_nowait(rzio); 2925 } 2926 return (0); 2927 } 2928 2929 void 2930 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2931 { 2932 ASSERT(buf->b_hdr != NULL); 2933 ASSERT(buf->b_hdr->b_state != arc_anon); 2934 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2935 ASSERT(buf->b_efunc == NULL); 2936 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 2937 2938 buf->b_efunc = func; 2939 buf->b_private = private; 2940 } 2941 2942 /* 2943 * This is used by the DMU to let the ARC know that a buffer is 2944 * being evicted, so the ARC should clean up. If this arc buf 2945 * is not yet in the evicted state, it will be put there. 2946 */ 2947 int 2948 arc_buf_evict(arc_buf_t *buf) 2949 { 2950 arc_buf_hdr_t *hdr; 2951 kmutex_t *hash_lock; 2952 arc_buf_t **bufp; 2953 2954 mutex_enter(&buf->b_evict_lock); 2955 hdr = buf->b_hdr; 2956 if (hdr == NULL) { 2957 /* 2958 * We are in arc_do_user_evicts(). 2959 */ 2960 ASSERT(buf->b_data == NULL); 2961 mutex_exit(&buf->b_evict_lock); 2962 return (0); 2963 } else if (buf->b_data == NULL) { 2964 arc_buf_t copy = *buf; /* structure assignment */ 2965 /* 2966 * We are on the eviction list; process this buffer now 2967 * but let arc_do_user_evicts() do the reaping. 2968 */ 2969 buf->b_efunc = NULL; 2970 mutex_exit(&buf->b_evict_lock); 2971 VERIFY(copy.b_efunc(©) == 0); 2972 return (1); 2973 } 2974 hash_lock = HDR_LOCK(hdr); 2975 mutex_enter(hash_lock); 2976 hdr = buf->b_hdr; 2977 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 2978 2979 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2980 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2981 2982 /* 2983 * Pull this buffer off of the hdr 2984 */ 2985 bufp = &hdr->b_buf; 2986 while (*bufp != buf) 2987 bufp = &(*bufp)->b_next; 2988 *bufp = buf->b_next; 2989 2990 ASSERT(buf->b_data != NULL); 2991 arc_buf_destroy(buf, FALSE, FALSE); 2992 2993 if (hdr->b_datacnt == 0) { 2994 arc_state_t *old_state = hdr->b_state; 2995 arc_state_t *evicted_state; 2996 2997 ASSERT(hdr->b_buf == NULL); 2998 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2999 3000 evicted_state = 3001 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3002 3003 mutex_enter(&old_state->arcs_mtx); 3004 mutex_enter(&evicted_state->arcs_mtx); 3005 3006 arc_change_state(evicted_state, hdr, hash_lock); 3007 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3008 hdr->b_flags |= ARC_IN_HASH_TABLE; 3009 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3010 3011 mutex_exit(&evicted_state->arcs_mtx); 3012 mutex_exit(&old_state->arcs_mtx); 3013 } 3014 mutex_exit(hash_lock); 3015 mutex_exit(&buf->b_evict_lock); 3016 3017 VERIFY(buf->b_efunc(buf) == 0); 3018 buf->b_efunc = NULL; 3019 buf->b_private = NULL; 3020 buf->b_hdr = NULL; 3021 buf->b_next = NULL; 3022 kmem_cache_free(buf_cache, buf); 3023 return (1); 3024 } 3025 3026 /* 3027 * Release this buffer from the cache. This must be done 3028 * after a read and prior to modifying the buffer contents. 3029 * If the buffer has more than one reference, we must make 3030 * a new hdr for the buffer. 3031 */ 3032 void 3033 arc_release(arc_buf_t *buf, void *tag) 3034 { 3035 arc_buf_hdr_t *hdr; 3036 kmutex_t *hash_lock = NULL; 3037 l2arc_buf_hdr_t *l2hdr; 3038 uint64_t buf_size; 3039 3040 /* 3041 * It would be nice to assert that if it's DMU metadata (level > 3042 * 0 || it's the dnode file), then it must be syncing context. 3043 * But we don't know that information at this level. 3044 */ 3045 3046 mutex_enter(&buf->b_evict_lock); 3047 hdr = buf->b_hdr; 3048 3049 /* this buffer is not on any list */ 3050 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3051 3052 if (hdr->b_state == arc_anon) { 3053 /* this buffer is already released */ 3054 ASSERT(buf->b_efunc == NULL); 3055 } else { 3056 hash_lock = HDR_LOCK(hdr); 3057 mutex_enter(hash_lock); 3058 hdr = buf->b_hdr; 3059 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3060 } 3061 3062 l2hdr = hdr->b_l2hdr; 3063 if (l2hdr) { 3064 mutex_enter(&l2arc_buflist_mtx); 3065 hdr->b_l2hdr = NULL; 3066 buf_size = hdr->b_size; 3067 } 3068 3069 /* 3070 * Do we have more than one buf? 3071 */ 3072 if (hdr->b_datacnt > 1) { 3073 arc_buf_hdr_t *nhdr; 3074 arc_buf_t **bufp; 3075 uint64_t blksz = hdr->b_size; 3076 uint64_t spa = hdr->b_spa; 3077 arc_buf_contents_t type = hdr->b_type; 3078 uint32_t flags = hdr->b_flags; 3079 3080 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3081 /* 3082 * Pull the data off of this hdr and attach it to 3083 * a new anonymous hdr. 3084 */ 3085 (void) remove_reference(hdr, hash_lock, tag); 3086 bufp = &hdr->b_buf; 3087 while (*bufp != buf) 3088 bufp = &(*bufp)->b_next; 3089 *bufp = buf->b_next; 3090 buf->b_next = NULL; 3091 3092 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3093 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3094 if (refcount_is_zero(&hdr->b_refcnt)) { 3095 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3096 ASSERT3U(*size, >=, hdr->b_size); 3097 atomic_add_64(size, -hdr->b_size); 3098 } 3099 hdr->b_datacnt -= 1; 3100 arc_cksum_verify(buf); 3101 3102 mutex_exit(hash_lock); 3103 3104 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3105 nhdr->b_size = blksz; 3106 nhdr->b_spa = spa; 3107 nhdr->b_type = type; 3108 nhdr->b_buf = buf; 3109 nhdr->b_state = arc_anon; 3110 nhdr->b_arc_access = 0; 3111 nhdr->b_flags = flags & ARC_L2_WRITING; 3112 nhdr->b_l2hdr = NULL; 3113 nhdr->b_datacnt = 1; 3114 nhdr->b_freeze_cksum = NULL; 3115 (void) refcount_add(&nhdr->b_refcnt, tag); 3116 buf->b_hdr = nhdr; 3117 mutex_exit(&buf->b_evict_lock); 3118 atomic_add_64(&arc_anon->arcs_size, blksz); 3119 } else { 3120 mutex_exit(&buf->b_evict_lock); 3121 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3122 ASSERT(!list_link_active(&hdr->b_arc_node)); 3123 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3124 if (hdr->b_state != arc_anon) 3125 arc_change_state(arc_anon, hdr, hash_lock); 3126 hdr->b_arc_access = 0; 3127 if (hash_lock) 3128 mutex_exit(hash_lock); 3129 3130 buf_discard_identity(hdr); 3131 arc_buf_thaw(buf); 3132 } 3133 buf->b_efunc = NULL; 3134 buf->b_private = NULL; 3135 3136 if (l2hdr) { 3137 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3138 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3139 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3140 mutex_exit(&l2arc_buflist_mtx); 3141 } 3142 } 3143 3144 /* 3145 * Release this buffer. If it does not match the provided BP, fill it 3146 * with that block's contents. 3147 */ 3148 /* ARGSUSED */ 3149 int 3150 arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa, 3151 zbookmark_t *zb) 3152 { 3153 arc_release(buf, tag); 3154 return (0); 3155 } 3156 3157 int 3158 arc_released(arc_buf_t *buf) 3159 { 3160 int released; 3161 3162 mutex_enter(&buf->b_evict_lock); 3163 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3164 mutex_exit(&buf->b_evict_lock); 3165 return (released); 3166 } 3167 3168 int 3169 arc_has_callback(arc_buf_t *buf) 3170 { 3171 int callback; 3172 3173 mutex_enter(&buf->b_evict_lock); 3174 callback = (buf->b_efunc != NULL); 3175 mutex_exit(&buf->b_evict_lock); 3176 return (callback); 3177 } 3178 3179 #ifdef ZFS_DEBUG 3180 int 3181 arc_referenced(arc_buf_t *buf) 3182 { 3183 int referenced; 3184 3185 mutex_enter(&buf->b_evict_lock); 3186 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3187 mutex_exit(&buf->b_evict_lock); 3188 return (referenced); 3189 } 3190 #endif 3191 3192 static void 3193 arc_write_ready(zio_t *zio) 3194 { 3195 arc_write_callback_t *callback = zio->io_private; 3196 arc_buf_t *buf = callback->awcb_buf; 3197 arc_buf_hdr_t *hdr = buf->b_hdr; 3198 3199 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3200 callback->awcb_ready(zio, buf, callback->awcb_private); 3201 3202 /* 3203 * If the IO is already in progress, then this is a re-write 3204 * attempt, so we need to thaw and re-compute the cksum. 3205 * It is the responsibility of the callback to handle the 3206 * accounting for any re-write attempt. 3207 */ 3208 if (HDR_IO_IN_PROGRESS(hdr)) { 3209 mutex_enter(&hdr->b_freeze_lock); 3210 if (hdr->b_freeze_cksum != NULL) { 3211 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3212 hdr->b_freeze_cksum = NULL; 3213 } 3214 mutex_exit(&hdr->b_freeze_lock); 3215 } 3216 arc_cksum_compute(buf, B_FALSE); 3217 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3218 } 3219 3220 static void 3221 arc_write_done(zio_t *zio) 3222 { 3223 arc_write_callback_t *callback = zio->io_private; 3224 arc_buf_t *buf = callback->awcb_buf; 3225 arc_buf_hdr_t *hdr = buf->b_hdr; 3226 3227 ASSERT(hdr->b_acb == NULL); 3228 3229 if (zio->io_error == 0) { 3230 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3231 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3232 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3233 } else { 3234 ASSERT(BUF_EMPTY(hdr)); 3235 } 3236 3237 /* 3238 * If the block to be written was all-zero, we may have 3239 * compressed it away. In this case no write was performed 3240 * so there will be no dva/birth/checksum. The buffer must 3241 * therefore remain anonymous (and uncached). 3242 */ 3243 if (!BUF_EMPTY(hdr)) { 3244 arc_buf_hdr_t *exists; 3245 kmutex_t *hash_lock; 3246 3247 ASSERT(zio->io_error == 0); 3248 3249 arc_cksum_verify(buf); 3250 3251 exists = buf_hash_insert(hdr, &hash_lock); 3252 if (exists) { 3253 /* 3254 * This can only happen if we overwrite for 3255 * sync-to-convergence, because we remove 3256 * buffers from the hash table when we arc_free(). 3257 */ 3258 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3259 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3260 panic("bad overwrite, hdr=%p exists=%p", 3261 (void *)hdr, (void *)exists); 3262 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3263 arc_change_state(arc_anon, exists, hash_lock); 3264 mutex_exit(hash_lock); 3265 arc_hdr_destroy(exists); 3266 exists = buf_hash_insert(hdr, &hash_lock); 3267 ASSERT3P(exists, ==, NULL); 3268 } else { 3269 /* Dedup */ 3270 ASSERT(hdr->b_datacnt == 1); 3271 ASSERT(hdr->b_state == arc_anon); 3272 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3273 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3274 } 3275 } 3276 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3277 /* if it's not anon, we are doing a scrub */ 3278 if (!exists && hdr->b_state == arc_anon) 3279 arc_access(hdr, hash_lock); 3280 mutex_exit(hash_lock); 3281 } else { 3282 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3283 } 3284 3285 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3286 callback->awcb_done(zio, buf, callback->awcb_private); 3287 3288 kmem_free(callback, sizeof (arc_write_callback_t)); 3289 } 3290 3291 zio_t * 3292 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3293 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp, 3294 arc_done_func_t *ready, arc_done_func_t *done, void *private, 3295 int priority, int zio_flags, const zbookmark_t *zb) 3296 { 3297 arc_buf_hdr_t *hdr = buf->b_hdr; 3298 arc_write_callback_t *callback; 3299 zio_t *zio; 3300 3301 ASSERT(ready != NULL); 3302 ASSERT(done != NULL); 3303 ASSERT(!HDR_IO_ERROR(hdr)); 3304 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3305 ASSERT(hdr->b_acb == NULL); 3306 if (l2arc) 3307 hdr->b_flags |= ARC_L2CACHE; 3308 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3309 callback->awcb_ready = ready; 3310 callback->awcb_done = done; 3311 callback->awcb_private = private; 3312 callback->awcb_buf = buf; 3313 3314 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3315 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); 3316 3317 return (zio); 3318 } 3319 3320 static int 3321 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg) 3322 { 3323 #ifdef _KERNEL 3324 uint64_t available_memory = ptob(freemem); 3325 static uint64_t page_load = 0; 3326 static uint64_t last_txg = 0; 3327 3328 #if defined(__i386) 3329 available_memory = 3330 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3331 #endif 3332 if (available_memory >= zfs_write_limit_max) 3333 return (0); 3334 3335 if (txg > last_txg) { 3336 last_txg = txg; 3337 page_load = 0; 3338 } 3339 /* 3340 * If we are in pageout, we know that memory is already tight, 3341 * the arc is already going to be evicting, so we just want to 3342 * continue to let page writes occur as quickly as possible. 3343 */ 3344 if (curproc == proc_pageout) { 3345 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3346 return (ERESTART); 3347 /* Note: reserve is inflated, so we deflate */ 3348 page_load += reserve / 8; 3349 return (0); 3350 } else if (page_load > 0 && arc_reclaim_needed()) { 3351 /* memory is low, delay before restarting */ 3352 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3353 return (EAGAIN); 3354 } 3355 page_load = 0; 3356 3357 if (arc_size > arc_c_min) { 3358 uint64_t evictable_memory = 3359 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3360 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3361 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3362 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3363 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3364 } 3365 3366 if (inflight_data > available_memory / 4) { 3367 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3368 return (ERESTART); 3369 } 3370 #endif 3371 return (0); 3372 } 3373 3374 void 3375 arc_tempreserve_clear(uint64_t reserve) 3376 { 3377 atomic_add_64(&arc_tempreserve, -reserve); 3378 ASSERT((int64_t)arc_tempreserve >= 0); 3379 } 3380 3381 int 3382 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3383 { 3384 int error; 3385 uint64_t anon_size; 3386 3387 #ifdef ZFS_DEBUG 3388 /* 3389 * Once in a while, fail for no reason. Everything should cope. 3390 */ 3391 if (spa_get_random(10000) == 0) { 3392 dprintf("forcing random failure\n"); 3393 return (ERESTART); 3394 } 3395 #endif 3396 if (reserve > arc_c/4 && !arc_no_grow) 3397 arc_c = MIN(arc_c_max, reserve * 4); 3398 if (reserve > arc_c) 3399 return (ENOMEM); 3400 3401 /* 3402 * Don't count loaned bufs as in flight dirty data to prevent long 3403 * network delays from blocking transactions that are ready to be 3404 * assigned to a txg. 3405 */ 3406 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3407 3408 /* 3409 * Writes will, almost always, require additional memory allocations 3410 * in order to compress/encrypt/etc the data. We therefor need to 3411 * make sure that there is sufficient available memory for this. 3412 */ 3413 if (error = arc_memory_throttle(reserve, anon_size, txg)) 3414 return (error); 3415 3416 /* 3417 * Throttle writes when the amount of dirty data in the cache 3418 * gets too large. We try to keep the cache less than half full 3419 * of dirty blocks so that our sync times don't grow too large. 3420 * Note: if two requests come in concurrently, we might let them 3421 * both succeed, when one of them should fail. Not a huge deal. 3422 */ 3423 3424 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3425 anon_size > arc_c / 4) { 3426 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3427 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3428 arc_tempreserve>>10, 3429 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3430 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3431 reserve>>10, arc_c>>10); 3432 return (ERESTART); 3433 } 3434 atomic_add_64(&arc_tempreserve, reserve); 3435 return (0); 3436 } 3437 3438 void 3439 arc_init(void) 3440 { 3441 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3442 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3443 3444 /* Convert seconds to clock ticks */ 3445 arc_min_prefetch_lifespan = 1 * hz; 3446 3447 /* Start out with 1/8 of all memory */ 3448 arc_c = physmem * PAGESIZE / 8; 3449 3450 #ifdef _KERNEL 3451 /* 3452 * On architectures where the physical memory can be larger 3453 * than the addressable space (intel in 32-bit mode), we may 3454 * need to limit the cache to 1/8 of VM size. 3455 */ 3456 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3457 #endif 3458 3459 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3460 arc_c_min = MAX(arc_c / 4, 64<<20); 3461 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3462 if (arc_c * 8 >= 1<<30) 3463 arc_c_max = (arc_c * 8) - (1<<30); 3464 else 3465 arc_c_max = arc_c_min; 3466 arc_c_max = MAX(arc_c * 6, arc_c_max); 3467 3468 /* 3469 * Allow the tunables to override our calculations if they are 3470 * reasonable (ie. over 64MB) 3471 */ 3472 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3473 arc_c_max = zfs_arc_max; 3474 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3475 arc_c_min = zfs_arc_min; 3476 3477 arc_c = arc_c_max; 3478 arc_p = (arc_c >> 1); 3479 3480 /* limit meta-data to 1/4 of the arc capacity */ 3481 arc_meta_limit = arc_c_max / 4; 3482 3483 /* Allow the tunable to override if it is reasonable */ 3484 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3485 arc_meta_limit = zfs_arc_meta_limit; 3486 3487 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3488 arc_c_min = arc_meta_limit / 2; 3489 3490 if (zfs_arc_grow_retry > 0) 3491 arc_grow_retry = zfs_arc_grow_retry; 3492 3493 if (zfs_arc_shrink_shift > 0) 3494 arc_shrink_shift = zfs_arc_shrink_shift; 3495 3496 if (zfs_arc_p_min_shift > 0) 3497 arc_p_min_shift = zfs_arc_p_min_shift; 3498 3499 /* if kmem_flags are set, lets try to use less memory */ 3500 if (kmem_debugging()) 3501 arc_c = arc_c / 2; 3502 if (arc_c < arc_c_min) 3503 arc_c = arc_c_min; 3504 3505 arc_anon = &ARC_anon; 3506 arc_mru = &ARC_mru; 3507 arc_mru_ghost = &ARC_mru_ghost; 3508 arc_mfu = &ARC_mfu; 3509 arc_mfu_ghost = &ARC_mfu_ghost; 3510 arc_l2c_only = &ARC_l2c_only; 3511 arc_size = 0; 3512 3513 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3514 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3515 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3516 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3517 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3518 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3519 3520 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3521 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3522 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3523 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3524 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3525 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3526 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3527 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3528 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3529 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3530 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3531 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3532 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3533 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3534 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3535 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3536 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3537 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3538 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3539 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3540 3541 buf_init(); 3542 3543 arc_thread_exit = 0; 3544 arc_eviction_list = NULL; 3545 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3546 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3547 3548 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3549 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3550 3551 if (arc_ksp != NULL) { 3552 arc_ksp->ks_data = &arc_stats; 3553 kstat_install(arc_ksp); 3554 } 3555 3556 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3557 TS_RUN, minclsyspri); 3558 3559 arc_dead = FALSE; 3560 arc_warm = B_FALSE; 3561 3562 if (zfs_write_limit_max == 0) 3563 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 3564 else 3565 zfs_write_limit_shift = 0; 3566 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); 3567 } 3568 3569 void 3570 arc_fini(void) 3571 { 3572 mutex_enter(&arc_reclaim_thr_lock); 3573 arc_thread_exit = 1; 3574 while (arc_thread_exit != 0) 3575 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3576 mutex_exit(&arc_reclaim_thr_lock); 3577 3578 arc_flush(NULL); 3579 3580 arc_dead = TRUE; 3581 3582 if (arc_ksp != NULL) { 3583 kstat_delete(arc_ksp); 3584 arc_ksp = NULL; 3585 } 3586 3587 mutex_destroy(&arc_eviction_mtx); 3588 mutex_destroy(&arc_reclaim_thr_lock); 3589 cv_destroy(&arc_reclaim_thr_cv); 3590 3591 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3592 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3593 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3594 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3595 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3596 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3597 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3598 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3599 3600 mutex_destroy(&arc_anon->arcs_mtx); 3601 mutex_destroy(&arc_mru->arcs_mtx); 3602 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3603 mutex_destroy(&arc_mfu->arcs_mtx); 3604 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3605 mutex_destroy(&arc_l2c_only->arcs_mtx); 3606 3607 mutex_destroy(&zfs_write_limit_lock); 3608 3609 buf_fini(); 3610 3611 ASSERT(arc_loaned_bytes == 0); 3612 } 3613 3614 /* 3615 * Level 2 ARC 3616 * 3617 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3618 * It uses dedicated storage devices to hold cached data, which are populated 3619 * using large infrequent writes. The main role of this cache is to boost 3620 * the performance of random read workloads. The intended L2ARC devices 3621 * include short-stroked disks, solid state disks, and other media with 3622 * substantially faster read latency than disk. 3623 * 3624 * +-----------------------+ 3625 * | ARC | 3626 * +-----------------------+ 3627 * | ^ ^ 3628 * | | | 3629 * l2arc_feed_thread() arc_read() 3630 * | | | 3631 * | l2arc read | 3632 * V | | 3633 * +---------------+ | 3634 * | L2ARC | | 3635 * +---------------+ | 3636 * | ^ | 3637 * l2arc_write() | | 3638 * | | | 3639 * V | | 3640 * +-------+ +-------+ 3641 * | vdev | | vdev | 3642 * | cache | | cache | 3643 * +-------+ +-------+ 3644 * +=========+ .-----. 3645 * : L2ARC : |-_____-| 3646 * : devices : | Disks | 3647 * +=========+ `-_____-' 3648 * 3649 * Read requests are satisfied from the following sources, in order: 3650 * 3651 * 1) ARC 3652 * 2) vdev cache of L2ARC devices 3653 * 3) L2ARC devices 3654 * 4) vdev cache of disks 3655 * 5) disks 3656 * 3657 * Some L2ARC device types exhibit extremely slow write performance. 3658 * To accommodate for this there are some significant differences between 3659 * the L2ARC and traditional cache design: 3660 * 3661 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3662 * the ARC behave as usual, freeing buffers and placing headers on ghost 3663 * lists. The ARC does not send buffers to the L2ARC during eviction as 3664 * this would add inflated write latencies for all ARC memory pressure. 3665 * 3666 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3667 * It does this by periodically scanning buffers from the eviction-end of 3668 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3669 * not already there. It scans until a headroom of buffers is satisfied, 3670 * which itself is a buffer for ARC eviction. The thread that does this is 3671 * l2arc_feed_thread(), illustrated below; example sizes are included to 3672 * provide a better sense of ratio than this diagram: 3673 * 3674 * head --> tail 3675 * +---------------------+----------+ 3676 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3677 * +---------------------+----------+ | o L2ARC eligible 3678 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3679 * +---------------------+----------+ | 3680 * 15.9 Gbytes ^ 32 Mbytes | 3681 * headroom | 3682 * l2arc_feed_thread() 3683 * | 3684 * l2arc write hand <--[oooo]--' 3685 * | 8 Mbyte 3686 * | write max 3687 * V 3688 * +==============================+ 3689 * L2ARC dev |####|#|###|###| |####| ... | 3690 * +==============================+ 3691 * 32 Gbytes 3692 * 3693 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3694 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3695 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3696 * safe to say that this is an uncommon case, since buffers at the end of 3697 * the ARC lists have moved there due to inactivity. 3698 * 3699 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3700 * then the L2ARC simply misses copying some buffers. This serves as a 3701 * pressure valve to prevent heavy read workloads from both stalling the ARC 3702 * with waits and clogging the L2ARC with writes. This also helps prevent 3703 * the potential for the L2ARC to churn if it attempts to cache content too 3704 * quickly, such as during backups of the entire pool. 3705 * 3706 * 5. After system boot and before the ARC has filled main memory, there are 3707 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3708 * lists can remain mostly static. Instead of searching from tail of these 3709 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3710 * for eligible buffers, greatly increasing its chance of finding them. 3711 * 3712 * The L2ARC device write speed is also boosted during this time so that 3713 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3714 * there are no L2ARC reads, and no fear of degrading read performance 3715 * through increased writes. 3716 * 3717 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3718 * the vdev queue can aggregate them into larger and fewer writes. Each 3719 * device is written to in a rotor fashion, sweeping writes through 3720 * available space then repeating. 3721 * 3722 * 7. The L2ARC does not store dirty content. It never needs to flush 3723 * write buffers back to disk based storage. 3724 * 3725 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3726 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3727 * 3728 * The performance of the L2ARC can be tweaked by a number of tunables, which 3729 * may be necessary for different workloads: 3730 * 3731 * l2arc_write_max max write bytes per interval 3732 * l2arc_write_boost extra write bytes during device warmup 3733 * l2arc_noprefetch skip caching prefetched buffers 3734 * l2arc_headroom number of max device writes to precache 3735 * l2arc_feed_secs seconds between L2ARC writing 3736 * 3737 * Tunables may be removed or added as future performance improvements are 3738 * integrated, and also may become zpool properties. 3739 * 3740 * There are three key functions that control how the L2ARC warms up: 3741 * 3742 * l2arc_write_eligible() check if a buffer is eligible to cache 3743 * l2arc_write_size() calculate how much to write 3744 * l2arc_write_interval() calculate sleep delay between writes 3745 * 3746 * These three functions determine what to write, how much, and how quickly 3747 * to send writes. 3748 */ 3749 3750 static boolean_t 3751 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 3752 { 3753 /* 3754 * A buffer is *not* eligible for the L2ARC if it: 3755 * 1. belongs to a different spa. 3756 * 2. is already cached on the L2ARC. 3757 * 3. has an I/O in progress (it may be an incomplete read). 3758 * 4. is flagged not eligible (zfs property). 3759 */ 3760 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 3761 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 3762 return (B_FALSE); 3763 3764 return (B_TRUE); 3765 } 3766 3767 static uint64_t 3768 l2arc_write_size(l2arc_dev_t *dev) 3769 { 3770 uint64_t size; 3771 3772 size = dev->l2ad_write; 3773 3774 if (arc_warm == B_FALSE) 3775 size += dev->l2ad_boost; 3776 3777 return (size); 3778 3779 } 3780 3781 static clock_t 3782 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 3783 { 3784 clock_t interval, next, now; 3785 3786 /* 3787 * If the ARC lists are busy, increase our write rate; if the 3788 * lists are stale, idle back. This is achieved by checking 3789 * how much we previously wrote - if it was more than half of 3790 * what we wanted, schedule the next write much sooner. 3791 */ 3792 if (l2arc_feed_again && wrote > (wanted / 2)) 3793 interval = (hz * l2arc_feed_min_ms) / 1000; 3794 else 3795 interval = hz * l2arc_feed_secs; 3796 3797 now = ddi_get_lbolt(); 3798 next = MAX(now, MIN(now + interval, began + interval)); 3799 3800 return (next); 3801 } 3802 3803 static void 3804 l2arc_hdr_stat_add(void) 3805 { 3806 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3807 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3808 } 3809 3810 static void 3811 l2arc_hdr_stat_remove(void) 3812 { 3813 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3814 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3815 } 3816 3817 /* 3818 * Cycle through L2ARC devices. This is how L2ARC load balances. 3819 * If a device is returned, this also returns holding the spa config lock. 3820 */ 3821 static l2arc_dev_t * 3822 l2arc_dev_get_next(void) 3823 { 3824 l2arc_dev_t *first, *next = NULL; 3825 3826 /* 3827 * Lock out the removal of spas (spa_namespace_lock), then removal 3828 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 3829 * both locks will be dropped and a spa config lock held instead. 3830 */ 3831 mutex_enter(&spa_namespace_lock); 3832 mutex_enter(&l2arc_dev_mtx); 3833 3834 /* if there are no vdevs, there is nothing to do */ 3835 if (l2arc_ndev == 0) 3836 goto out; 3837 3838 first = NULL; 3839 next = l2arc_dev_last; 3840 do { 3841 /* loop around the list looking for a non-faulted vdev */ 3842 if (next == NULL) { 3843 next = list_head(l2arc_dev_list); 3844 } else { 3845 next = list_next(l2arc_dev_list, next); 3846 if (next == NULL) 3847 next = list_head(l2arc_dev_list); 3848 } 3849 3850 /* if we have come back to the start, bail out */ 3851 if (first == NULL) 3852 first = next; 3853 else if (next == first) 3854 break; 3855 3856 } while (vdev_is_dead(next->l2ad_vdev)); 3857 3858 /* if we were unable to find any usable vdevs, return NULL */ 3859 if (vdev_is_dead(next->l2ad_vdev)) 3860 next = NULL; 3861 3862 l2arc_dev_last = next; 3863 3864 out: 3865 mutex_exit(&l2arc_dev_mtx); 3866 3867 /* 3868 * Grab the config lock to prevent the 'next' device from being 3869 * removed while we are writing to it. 3870 */ 3871 if (next != NULL) 3872 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 3873 mutex_exit(&spa_namespace_lock); 3874 3875 return (next); 3876 } 3877 3878 /* 3879 * Free buffers that were tagged for destruction. 3880 */ 3881 static void 3882 l2arc_do_free_on_write() 3883 { 3884 list_t *buflist; 3885 l2arc_data_free_t *df, *df_prev; 3886 3887 mutex_enter(&l2arc_free_on_write_mtx); 3888 buflist = l2arc_free_on_write; 3889 3890 for (df = list_tail(buflist); df; df = df_prev) { 3891 df_prev = list_prev(buflist, df); 3892 ASSERT(df->l2df_data != NULL); 3893 ASSERT(df->l2df_func != NULL); 3894 df->l2df_func(df->l2df_data, df->l2df_size); 3895 list_remove(buflist, df); 3896 kmem_free(df, sizeof (l2arc_data_free_t)); 3897 } 3898 3899 mutex_exit(&l2arc_free_on_write_mtx); 3900 } 3901 3902 /* 3903 * A write to a cache device has completed. Update all headers to allow 3904 * reads from these buffers to begin. 3905 */ 3906 static void 3907 l2arc_write_done(zio_t *zio) 3908 { 3909 l2arc_write_callback_t *cb; 3910 l2arc_dev_t *dev; 3911 list_t *buflist; 3912 arc_buf_hdr_t *head, *ab, *ab_prev; 3913 l2arc_buf_hdr_t *abl2; 3914 kmutex_t *hash_lock; 3915 3916 cb = zio->io_private; 3917 ASSERT(cb != NULL); 3918 dev = cb->l2wcb_dev; 3919 ASSERT(dev != NULL); 3920 head = cb->l2wcb_head; 3921 ASSERT(head != NULL); 3922 buflist = dev->l2ad_buflist; 3923 ASSERT(buflist != NULL); 3924 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3925 l2arc_write_callback_t *, cb); 3926 3927 if (zio->io_error != 0) 3928 ARCSTAT_BUMP(arcstat_l2_writes_error); 3929 3930 mutex_enter(&l2arc_buflist_mtx); 3931 3932 /* 3933 * All writes completed, or an error was hit. 3934 */ 3935 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 3936 ab_prev = list_prev(buflist, ab); 3937 3938 hash_lock = HDR_LOCK(ab); 3939 if (!mutex_tryenter(hash_lock)) { 3940 /* 3941 * This buffer misses out. It may be in a stage 3942 * of eviction. Its ARC_L2_WRITING flag will be 3943 * left set, denying reads to this buffer. 3944 */ 3945 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 3946 continue; 3947 } 3948 3949 if (zio->io_error != 0) { 3950 /* 3951 * Error - drop L2ARC entry. 3952 */ 3953 list_remove(buflist, ab); 3954 abl2 = ab->b_l2hdr; 3955 ab->b_l2hdr = NULL; 3956 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 3957 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 3958 } 3959 3960 /* 3961 * Allow ARC to begin reads to this L2ARC entry. 3962 */ 3963 ab->b_flags &= ~ARC_L2_WRITING; 3964 3965 mutex_exit(hash_lock); 3966 } 3967 3968 atomic_inc_64(&l2arc_writes_done); 3969 list_remove(buflist, head); 3970 kmem_cache_free(hdr_cache, head); 3971 mutex_exit(&l2arc_buflist_mtx); 3972 3973 l2arc_do_free_on_write(); 3974 3975 kmem_free(cb, sizeof (l2arc_write_callback_t)); 3976 } 3977 3978 /* 3979 * A read to a cache device completed. Validate buffer contents before 3980 * handing over to the regular ARC routines. 3981 */ 3982 static void 3983 l2arc_read_done(zio_t *zio) 3984 { 3985 l2arc_read_callback_t *cb; 3986 arc_buf_hdr_t *hdr; 3987 arc_buf_t *buf; 3988 kmutex_t *hash_lock; 3989 int equal; 3990 3991 ASSERT(zio->io_vd != NULL); 3992 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 3993 3994 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 3995 3996 cb = zio->io_private; 3997 ASSERT(cb != NULL); 3998 buf = cb->l2rcb_buf; 3999 ASSERT(buf != NULL); 4000 4001 hash_lock = HDR_LOCK(buf->b_hdr); 4002 mutex_enter(hash_lock); 4003 hdr = buf->b_hdr; 4004 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4005 4006 /* 4007 * Check this survived the L2ARC journey. 4008 */ 4009 equal = arc_cksum_equal(buf); 4010 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4011 mutex_exit(hash_lock); 4012 zio->io_private = buf; 4013 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4014 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4015 arc_read_done(zio); 4016 } else { 4017 mutex_exit(hash_lock); 4018 /* 4019 * Buffer didn't survive caching. Increment stats and 4020 * reissue to the original storage device. 4021 */ 4022 if (zio->io_error != 0) { 4023 ARCSTAT_BUMP(arcstat_l2_io_error); 4024 } else { 4025 zio->io_error = EIO; 4026 } 4027 if (!equal) 4028 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4029 4030 /* 4031 * If there's no waiter, issue an async i/o to the primary 4032 * storage now. If there *is* a waiter, the caller must 4033 * issue the i/o in a context where it's OK to block. 4034 */ 4035 if (zio->io_waiter == NULL) { 4036 zio_t *pio = zio_unique_parent(zio); 4037 4038 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4039 4040 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4041 buf->b_data, zio->io_size, arc_read_done, buf, 4042 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4043 } 4044 } 4045 4046 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4047 } 4048 4049 /* 4050 * This is the list priority from which the L2ARC will search for pages to 4051 * cache. This is used within loops (0..3) to cycle through lists in the 4052 * desired order. This order can have a significant effect on cache 4053 * performance. 4054 * 4055 * Currently the metadata lists are hit first, MFU then MRU, followed by 4056 * the data lists. This function returns a locked list, and also returns 4057 * the lock pointer. 4058 */ 4059 static list_t * 4060 l2arc_list_locked(int list_num, kmutex_t **lock) 4061 { 4062 list_t *list; 4063 4064 ASSERT(list_num >= 0 && list_num <= 3); 4065 4066 switch (list_num) { 4067 case 0: 4068 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4069 *lock = &arc_mfu->arcs_mtx; 4070 break; 4071 case 1: 4072 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4073 *lock = &arc_mru->arcs_mtx; 4074 break; 4075 case 2: 4076 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4077 *lock = &arc_mfu->arcs_mtx; 4078 break; 4079 case 3: 4080 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4081 *lock = &arc_mru->arcs_mtx; 4082 break; 4083 } 4084 4085 ASSERT(!(MUTEX_HELD(*lock))); 4086 mutex_enter(*lock); 4087 return (list); 4088 } 4089 4090 /* 4091 * Evict buffers from the device write hand to the distance specified in 4092 * bytes. This distance may span populated buffers, it may span nothing. 4093 * This is clearing a region on the L2ARC device ready for writing. 4094 * If the 'all' boolean is set, every buffer is evicted. 4095 */ 4096 static void 4097 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4098 { 4099 list_t *buflist; 4100 l2arc_buf_hdr_t *abl2; 4101 arc_buf_hdr_t *ab, *ab_prev; 4102 kmutex_t *hash_lock; 4103 uint64_t taddr; 4104 4105 buflist = dev->l2ad_buflist; 4106 4107 if (buflist == NULL) 4108 return; 4109 4110 if (!all && dev->l2ad_first) { 4111 /* 4112 * This is the first sweep through the device. There is 4113 * nothing to evict. 4114 */ 4115 return; 4116 } 4117 4118 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4119 /* 4120 * When nearing the end of the device, evict to the end 4121 * before the device write hand jumps to the start. 4122 */ 4123 taddr = dev->l2ad_end; 4124 } else { 4125 taddr = dev->l2ad_hand + distance; 4126 } 4127 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4128 uint64_t, taddr, boolean_t, all); 4129 4130 top: 4131 mutex_enter(&l2arc_buflist_mtx); 4132 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4133 ab_prev = list_prev(buflist, ab); 4134 4135 hash_lock = HDR_LOCK(ab); 4136 if (!mutex_tryenter(hash_lock)) { 4137 /* 4138 * Missed the hash lock. Retry. 4139 */ 4140 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4141 mutex_exit(&l2arc_buflist_mtx); 4142 mutex_enter(hash_lock); 4143 mutex_exit(hash_lock); 4144 goto top; 4145 } 4146 4147 if (HDR_L2_WRITE_HEAD(ab)) { 4148 /* 4149 * We hit a write head node. Leave it for 4150 * l2arc_write_done(). 4151 */ 4152 list_remove(buflist, ab); 4153 mutex_exit(hash_lock); 4154 continue; 4155 } 4156 4157 if (!all && ab->b_l2hdr != NULL && 4158 (ab->b_l2hdr->b_daddr > taddr || 4159 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4160 /* 4161 * We've evicted to the target address, 4162 * or the end of the device. 4163 */ 4164 mutex_exit(hash_lock); 4165 break; 4166 } 4167 4168 if (HDR_FREE_IN_PROGRESS(ab)) { 4169 /* 4170 * Already on the path to destruction. 4171 */ 4172 mutex_exit(hash_lock); 4173 continue; 4174 } 4175 4176 if (ab->b_state == arc_l2c_only) { 4177 ASSERT(!HDR_L2_READING(ab)); 4178 /* 4179 * This doesn't exist in the ARC. Destroy. 4180 * arc_hdr_destroy() will call list_remove() 4181 * and decrement arcstat_l2_size. 4182 */ 4183 arc_change_state(arc_anon, ab, hash_lock); 4184 arc_hdr_destroy(ab); 4185 } else { 4186 /* 4187 * Invalidate issued or about to be issued 4188 * reads, since we may be about to write 4189 * over this location. 4190 */ 4191 if (HDR_L2_READING(ab)) { 4192 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4193 ab->b_flags |= ARC_L2_EVICTED; 4194 } 4195 4196 /* 4197 * Tell ARC this no longer exists in L2ARC. 4198 */ 4199 if (ab->b_l2hdr != NULL) { 4200 abl2 = ab->b_l2hdr; 4201 ab->b_l2hdr = NULL; 4202 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4203 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4204 } 4205 list_remove(buflist, ab); 4206 4207 /* 4208 * This may have been leftover after a 4209 * failed write. 4210 */ 4211 ab->b_flags &= ~ARC_L2_WRITING; 4212 } 4213 mutex_exit(hash_lock); 4214 } 4215 mutex_exit(&l2arc_buflist_mtx); 4216 4217 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0); 4218 dev->l2ad_evict = taddr; 4219 } 4220 4221 /* 4222 * Find and write ARC buffers to the L2ARC device. 4223 * 4224 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4225 * for reading until they have completed writing. 4226 */ 4227 static uint64_t 4228 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 4229 { 4230 arc_buf_hdr_t *ab, *ab_prev, *head; 4231 l2arc_buf_hdr_t *hdrl2; 4232 list_t *list; 4233 uint64_t passed_sz, write_sz, buf_sz, headroom; 4234 void *buf_data; 4235 kmutex_t *hash_lock, *list_lock; 4236 boolean_t have_lock, full; 4237 l2arc_write_callback_t *cb; 4238 zio_t *pio, *wzio; 4239 uint64_t guid = spa_load_guid(spa); 4240 4241 ASSERT(dev->l2ad_vdev != NULL); 4242 4243 pio = NULL; 4244 write_sz = 0; 4245 full = B_FALSE; 4246 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4247 head->b_flags |= ARC_L2_WRITE_HEAD; 4248 4249 /* 4250 * Copy buffers for L2ARC writing. 4251 */ 4252 mutex_enter(&l2arc_buflist_mtx); 4253 for (int try = 0; try <= 3; try++) { 4254 list = l2arc_list_locked(try, &list_lock); 4255 passed_sz = 0; 4256 4257 /* 4258 * L2ARC fast warmup. 4259 * 4260 * Until the ARC is warm and starts to evict, read from the 4261 * head of the ARC lists rather than the tail. 4262 */ 4263 headroom = target_sz * l2arc_headroom; 4264 if (arc_warm == B_FALSE) 4265 ab = list_head(list); 4266 else 4267 ab = list_tail(list); 4268 4269 for (; ab; ab = ab_prev) { 4270 if (arc_warm == B_FALSE) 4271 ab_prev = list_next(list, ab); 4272 else 4273 ab_prev = list_prev(list, ab); 4274 4275 hash_lock = HDR_LOCK(ab); 4276 have_lock = MUTEX_HELD(hash_lock); 4277 if (!have_lock && !mutex_tryenter(hash_lock)) { 4278 /* 4279 * Skip this buffer rather than waiting. 4280 */ 4281 continue; 4282 } 4283 4284 passed_sz += ab->b_size; 4285 if (passed_sz > headroom) { 4286 /* 4287 * Searched too far. 4288 */ 4289 mutex_exit(hash_lock); 4290 break; 4291 } 4292 4293 if (!l2arc_write_eligible(guid, ab)) { 4294 mutex_exit(hash_lock); 4295 continue; 4296 } 4297 4298 if ((write_sz + ab->b_size) > target_sz) { 4299 full = B_TRUE; 4300 mutex_exit(hash_lock); 4301 break; 4302 } 4303 4304 if (pio == NULL) { 4305 /* 4306 * Insert a dummy header on the buflist so 4307 * l2arc_write_done() can find where the 4308 * write buffers begin without searching. 4309 */ 4310 list_insert_head(dev->l2ad_buflist, head); 4311 4312 cb = kmem_alloc( 4313 sizeof (l2arc_write_callback_t), KM_SLEEP); 4314 cb->l2wcb_dev = dev; 4315 cb->l2wcb_head = head; 4316 pio = zio_root(spa, l2arc_write_done, cb, 4317 ZIO_FLAG_CANFAIL); 4318 } 4319 4320 /* 4321 * Create and add a new L2ARC header. 4322 */ 4323 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4324 hdrl2->b_dev = dev; 4325 hdrl2->b_daddr = dev->l2ad_hand; 4326 4327 ab->b_flags |= ARC_L2_WRITING; 4328 ab->b_l2hdr = hdrl2; 4329 list_insert_head(dev->l2ad_buflist, ab); 4330 buf_data = ab->b_buf->b_data; 4331 buf_sz = ab->b_size; 4332 4333 /* 4334 * Compute and store the buffer cksum before 4335 * writing. On debug the cksum is verified first. 4336 */ 4337 arc_cksum_verify(ab->b_buf); 4338 arc_cksum_compute(ab->b_buf, B_TRUE); 4339 4340 mutex_exit(hash_lock); 4341 4342 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4343 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4344 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4345 ZIO_FLAG_CANFAIL, B_FALSE); 4346 4347 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4348 zio_t *, wzio); 4349 (void) zio_nowait(wzio); 4350 4351 /* 4352 * Keep the clock hand suitably device-aligned. 4353 */ 4354 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4355 4356 write_sz += buf_sz; 4357 dev->l2ad_hand += buf_sz; 4358 } 4359 4360 mutex_exit(list_lock); 4361 4362 if (full == B_TRUE) 4363 break; 4364 } 4365 mutex_exit(&l2arc_buflist_mtx); 4366 4367 if (pio == NULL) { 4368 ASSERT3U(write_sz, ==, 0); 4369 kmem_cache_free(hdr_cache, head); 4370 return (0); 4371 } 4372 4373 ASSERT3U(write_sz, <=, target_sz); 4374 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4375 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz); 4376 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4377 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0); 4378 4379 /* 4380 * Bump device hand to the device start if it is approaching the end. 4381 * l2arc_evict() will already have evicted ahead for this case. 4382 */ 4383 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4384 vdev_space_update(dev->l2ad_vdev, 4385 dev->l2ad_end - dev->l2ad_hand, 0, 0); 4386 dev->l2ad_hand = dev->l2ad_start; 4387 dev->l2ad_evict = dev->l2ad_start; 4388 dev->l2ad_first = B_FALSE; 4389 } 4390 4391 dev->l2ad_writing = B_TRUE; 4392 (void) zio_wait(pio); 4393 dev->l2ad_writing = B_FALSE; 4394 4395 return (write_sz); 4396 } 4397 4398 /* 4399 * This thread feeds the L2ARC at regular intervals. This is the beating 4400 * heart of the L2ARC. 4401 */ 4402 static void 4403 l2arc_feed_thread(void) 4404 { 4405 callb_cpr_t cpr; 4406 l2arc_dev_t *dev; 4407 spa_t *spa; 4408 uint64_t size, wrote; 4409 clock_t begin, next = ddi_get_lbolt(); 4410 4411 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4412 4413 mutex_enter(&l2arc_feed_thr_lock); 4414 4415 while (l2arc_thread_exit == 0) { 4416 CALLB_CPR_SAFE_BEGIN(&cpr); 4417 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4418 next); 4419 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4420 next = ddi_get_lbolt() + hz; 4421 4422 /* 4423 * Quick check for L2ARC devices. 4424 */ 4425 mutex_enter(&l2arc_dev_mtx); 4426 if (l2arc_ndev == 0) { 4427 mutex_exit(&l2arc_dev_mtx); 4428 continue; 4429 } 4430 mutex_exit(&l2arc_dev_mtx); 4431 begin = ddi_get_lbolt(); 4432 4433 /* 4434 * This selects the next l2arc device to write to, and in 4435 * doing so the next spa to feed from: dev->l2ad_spa. This 4436 * will return NULL if there are now no l2arc devices or if 4437 * they are all faulted. 4438 * 4439 * If a device is returned, its spa's config lock is also 4440 * held to prevent device removal. l2arc_dev_get_next() 4441 * will grab and release l2arc_dev_mtx. 4442 */ 4443 if ((dev = l2arc_dev_get_next()) == NULL) 4444 continue; 4445 4446 spa = dev->l2ad_spa; 4447 ASSERT(spa != NULL); 4448 4449 /* 4450 * If the pool is read-only then force the feed thread to 4451 * sleep a little longer. 4452 */ 4453 if (!spa_writeable(spa)) { 4454 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 4455 spa_config_exit(spa, SCL_L2ARC, dev); 4456 continue; 4457 } 4458 4459 /* 4460 * Avoid contributing to memory pressure. 4461 */ 4462 if (arc_reclaim_needed()) { 4463 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4464 spa_config_exit(spa, SCL_L2ARC, dev); 4465 continue; 4466 } 4467 4468 ARCSTAT_BUMP(arcstat_l2_feeds); 4469 4470 size = l2arc_write_size(dev); 4471 4472 /* 4473 * Evict L2ARC buffers that will be overwritten. 4474 */ 4475 l2arc_evict(dev, size, B_FALSE); 4476 4477 /* 4478 * Write ARC buffers. 4479 */ 4480 wrote = l2arc_write_buffers(spa, dev, size); 4481 4482 /* 4483 * Calculate interval between writes. 4484 */ 4485 next = l2arc_write_interval(begin, size, wrote); 4486 spa_config_exit(spa, SCL_L2ARC, dev); 4487 } 4488 4489 l2arc_thread_exit = 0; 4490 cv_broadcast(&l2arc_feed_thr_cv); 4491 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4492 thread_exit(); 4493 } 4494 4495 boolean_t 4496 l2arc_vdev_present(vdev_t *vd) 4497 { 4498 l2arc_dev_t *dev; 4499 4500 mutex_enter(&l2arc_dev_mtx); 4501 for (dev = list_head(l2arc_dev_list); dev != NULL; 4502 dev = list_next(l2arc_dev_list, dev)) { 4503 if (dev->l2ad_vdev == vd) 4504 break; 4505 } 4506 mutex_exit(&l2arc_dev_mtx); 4507 4508 return (dev != NULL); 4509 } 4510 4511 /* 4512 * Add a vdev for use by the L2ARC. By this point the spa has already 4513 * validated the vdev and opened it. 4514 */ 4515 void 4516 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 4517 { 4518 l2arc_dev_t *adddev; 4519 4520 ASSERT(!l2arc_vdev_present(vd)); 4521 4522 /* 4523 * Create a new l2arc device entry. 4524 */ 4525 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4526 adddev->l2ad_spa = spa; 4527 adddev->l2ad_vdev = vd; 4528 adddev->l2ad_write = l2arc_write_max; 4529 adddev->l2ad_boost = l2arc_write_boost; 4530 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 4531 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 4532 adddev->l2ad_hand = adddev->l2ad_start; 4533 adddev->l2ad_evict = adddev->l2ad_start; 4534 adddev->l2ad_first = B_TRUE; 4535 adddev->l2ad_writing = B_FALSE; 4536 ASSERT3U(adddev->l2ad_write, >, 0); 4537 4538 /* 4539 * This is a list of all ARC buffers that are still valid on the 4540 * device. 4541 */ 4542 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4543 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4544 offsetof(arc_buf_hdr_t, b_l2node)); 4545 4546 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 4547 4548 /* 4549 * Add device to global list 4550 */ 4551 mutex_enter(&l2arc_dev_mtx); 4552 list_insert_head(l2arc_dev_list, adddev); 4553 atomic_inc_64(&l2arc_ndev); 4554 mutex_exit(&l2arc_dev_mtx); 4555 } 4556 4557 /* 4558 * Remove a vdev from the L2ARC. 4559 */ 4560 void 4561 l2arc_remove_vdev(vdev_t *vd) 4562 { 4563 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4564 4565 /* 4566 * Find the device by vdev 4567 */ 4568 mutex_enter(&l2arc_dev_mtx); 4569 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4570 nextdev = list_next(l2arc_dev_list, dev); 4571 if (vd == dev->l2ad_vdev) { 4572 remdev = dev; 4573 break; 4574 } 4575 } 4576 ASSERT(remdev != NULL); 4577 4578 /* 4579 * Remove device from global list 4580 */ 4581 list_remove(l2arc_dev_list, remdev); 4582 l2arc_dev_last = NULL; /* may have been invalidated */ 4583 atomic_dec_64(&l2arc_ndev); 4584 mutex_exit(&l2arc_dev_mtx); 4585 4586 /* 4587 * Clear all buflists and ARC references. L2ARC device flush. 4588 */ 4589 l2arc_evict(remdev, 0, B_TRUE); 4590 list_destroy(remdev->l2ad_buflist); 4591 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4592 kmem_free(remdev, sizeof (l2arc_dev_t)); 4593 } 4594 4595 void 4596 l2arc_init(void) 4597 { 4598 l2arc_thread_exit = 0; 4599 l2arc_ndev = 0; 4600 l2arc_writes_sent = 0; 4601 l2arc_writes_done = 0; 4602 4603 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4604 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4605 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4606 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4607 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4608 4609 l2arc_dev_list = &L2ARC_dev_list; 4610 l2arc_free_on_write = &L2ARC_free_on_write; 4611 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4612 offsetof(l2arc_dev_t, l2ad_node)); 4613 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4614 offsetof(l2arc_data_free_t, l2df_list_node)); 4615 } 4616 4617 void 4618 l2arc_fini(void) 4619 { 4620 /* 4621 * This is called from dmu_fini(), which is called from spa_fini(); 4622 * Because of this, we can assume that all l2arc devices have 4623 * already been removed when the pools themselves were removed. 4624 */ 4625 4626 l2arc_do_free_on_write(); 4627 4628 mutex_destroy(&l2arc_feed_thr_lock); 4629 cv_destroy(&l2arc_feed_thr_cv); 4630 mutex_destroy(&l2arc_dev_mtx); 4631 mutex_destroy(&l2arc_buflist_mtx); 4632 mutex_destroy(&l2arc_free_on_write_mtx); 4633 4634 list_destroy(l2arc_dev_list); 4635 list_destroy(l2arc_free_on_write); 4636 } 4637 4638 void 4639 l2arc_start(void) 4640 { 4641 if (!(spa_mode_global & FWRITE)) 4642 return; 4643 4644 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4645 TS_RUN, minclsyspri); 4646 } 4647 4648 void 4649 l2arc_stop(void) 4650 { 4651 if (!(spa_mode_global & FWRITE)) 4652 return; 4653 4654 mutex_enter(&l2arc_feed_thr_lock); 4655 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4656 l2arc_thread_exit = 1; 4657 while (l2arc_thread_exit != 0) 4658 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4659 mutex_exit(&l2arc_feed_thr_lock); 4660 } 4661