1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All Rights Reserved 29 */ 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/systm.h> 36 #include <sys/cred.h> 37 #include <sys/time.h> 38 #include <sys/vnode.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/file.h> 42 #include <sys/filio.h> 43 #include <sys/uio.h> 44 #include <sys/buf.h> 45 #include <sys/mman.h> 46 #include <sys/pathname.h> 47 #include <sys/dirent.h> 48 #include <sys/debug.h> 49 #include <sys/vmsystm.h> 50 #include <sys/fcntl.h> 51 #include <sys/flock.h> 52 #include <sys/swap.h> 53 #include <sys/errno.h> 54 #include <sys/strsubr.h> 55 #include <sys/sysmacros.h> 56 #include <sys/kmem.h> 57 #include <sys/cmn_err.h> 58 #include <sys/pathconf.h> 59 #include <sys/utsname.h> 60 #include <sys/dnlc.h> 61 #include <sys/acl.h> 62 #include <sys/systeminfo.h> 63 #include <sys/policy.h> 64 #include <sys/sdt.h> 65 #include <sys/list.h> 66 #include <sys/stat.h> 67 68 #include <rpc/types.h> 69 #include <rpc/auth.h> 70 #include <rpc/clnt.h> 71 72 #include <nfs/nfs.h> 73 #include <nfs/nfs_clnt.h> 74 #include <nfs/nfs_acl.h> 75 #include <nfs/lm.h> 76 #include <nfs/nfs4.h> 77 #include <nfs/nfs4_kprot.h> 78 #include <nfs/rnode4.h> 79 #include <nfs/nfs4_clnt.h> 80 81 #include <vm/hat.h> 82 #include <vm/as.h> 83 #include <vm/page.h> 84 #include <vm/pvn.h> 85 #include <vm/seg.h> 86 #include <vm/seg_map.h> 87 #include <vm/seg_kpm.h> 88 #include <vm/seg_vn.h> 89 90 #include <fs/fs_subr.h> 91 92 #include <sys/ddi.h> 93 #include <sys/int_fmtio.h> 94 95 typedef struct { 96 nfs4_ga_res_t *di_garp; 97 cred_t *di_cred; 98 hrtime_t di_time_call; 99 } dirattr_info_t; 100 101 typedef enum nfs4_acl_op { 102 NFS4_ACL_GET, 103 NFS4_ACL_SET 104 } nfs4_acl_op_t; 105 106 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 107 char *, dirattr_info_t *); 108 109 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 110 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 111 nfs4_error_t *, int *); 112 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 113 cred_t *); 114 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 115 stable_how4 *); 116 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 117 cred_t *, bool_t, struct uio *); 118 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 119 vsecattr_t *); 120 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 121 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 122 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 123 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 124 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 125 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 126 int, vnode_t **, cred_t *); 127 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 128 cred_t *, int, int, enum createmode4, int); 129 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 130 caller_context_t *); 131 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 132 vnode_t *, char *, cred_t *, nfsstat4 *); 133 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 134 vnode_t *, char *, cred_t *, nfsstat4 *); 135 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 136 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 137 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 138 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 139 page_t *[], size_t, struct seg *, caddr_t, 140 enum seg_rw, cred_t *); 141 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 142 cred_t *); 143 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 144 int, cred_t *); 145 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 146 int, cred_t *); 147 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 148 static void nfs4_set_mod(vnode_t *); 149 static void nfs4_get_commit(vnode_t *); 150 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 151 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 152 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 153 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 154 cred_t *); 155 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 156 cred_t *); 157 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 158 hrtime_t, vnode_t *, cred_t *); 159 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 160 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 161 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 162 u_offset_t); 163 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 164 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 165 static cred_t *state_to_cred(nfs4_open_stream_t *); 166 static int vtoname(vnode_t *, char *, ssize_t); 167 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 168 static pid_t lo_to_pid(lock_owner4 *); 169 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 170 cred_t *, nfs4_lock_owner_t *); 171 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 172 nfs4_lock_owner_t *); 173 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 174 static void nfs4_delmap_callback(struct as *, void *, uint_t); 175 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 176 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 177 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 178 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 179 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 180 uid_t, gid_t, int); 181 182 /* 183 * Routines that implement the setting of v4 args for the misc. ops 184 */ 185 static void nfs4args_lock_free(nfs_argop4 *); 186 static void nfs4args_lockt_free(nfs_argop4 *); 187 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 188 int, rnode4_t *, cred_t *, bitmap4, int *, 189 nfs4_stateid_types_t *); 190 static void nfs4args_setattr_free(nfs_argop4 *); 191 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 192 bitmap4); 193 static void nfs4args_verify_free(nfs_argop4 *); 194 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 195 WRITE4args **, nfs4_stateid_types_t *); 196 197 /* 198 * These are the vnode ops functions that implement the vnode interface to 199 * the networked file system. See more comments below at nfs4_vnodeops. 200 */ 201 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *); 202 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *, 203 caller_context_t *); 204 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 205 caller_context_t *); 206 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 207 caller_context_t *); 208 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 209 caller_context_t *); 210 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 211 caller_context_t *); 212 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *); 213 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *, 214 caller_context_t *); 215 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *); 216 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 217 int, vnode_t **, cred_t *, int, caller_context_t *, 218 vsecattr_t *); 219 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *, 220 int); 221 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *, 222 caller_context_t *, int); 223 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 224 caller_context_t *, int); 225 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 226 cred_t *, caller_context_t *, int, vsecattr_t *); 227 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 228 caller_context_t *, int); 229 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 230 cred_t *, caller_context_t *, int); 231 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *, 232 caller_context_t *, int); 233 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 234 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 235 page_t *[], size_t, struct seg *, caddr_t, 236 enum seg_rw, cred_t *, caller_context_t *); 237 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 238 caller_context_t *); 239 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 240 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 241 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 242 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 243 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *); 244 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 245 struct flk_callback *, cred_t *, caller_context_t *); 246 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 247 cred_t *, caller_context_t *); 248 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 249 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 250 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 251 cred_t *, caller_context_t *); 252 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *, 253 caller_context_t *); 254 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 255 caller_context_t *); 256 /* 257 * These vnode ops are required to be called from outside this source file, 258 * e.g. by ephemeral mount stub vnode ops, and so may not be declared 259 * as static. 260 */ 261 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 262 caller_context_t *); 263 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *); 264 int nfs4_lookup(vnode_t *, char *, vnode_t **, 265 struct pathname *, int, vnode_t *, cred_t *, 266 caller_context_t *, int *, pathname_t *); 267 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *); 268 int nfs4_rwlock(vnode_t *, int, caller_context_t *); 269 void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 270 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *); 271 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *, 272 caller_context_t *); 273 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 274 caller_context_t *); 275 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 276 caller_context_t *); 277 278 /* 279 * Used for nfs4_commit_vp() to indicate if we should 280 * wait on pending writes. 281 */ 282 #define NFS4_WRITE_NOWAIT 0 283 #define NFS4_WRITE_WAIT 1 284 285 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 286 287 /* 288 * Error flags used to pass information about certain special errors 289 * which need to be handled specially. 290 */ 291 #define NFS_EOF -98 292 #define NFS_VERF_MISMATCH -97 293 294 /* 295 * Flags used to differentiate between which operation drove the 296 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 297 */ 298 #define NFS4_CLOSE_OP 0x1 299 #define NFS4_DELMAP_OP 0x2 300 #define NFS4_INACTIVE_OP 0x3 301 302 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 303 304 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 305 #define ALIGN64(x, ptr, sz) \ 306 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 307 if (x) { \ 308 x = sizeof (uint64_t) - (x); \ 309 sz -= (x); \ 310 ptr += (x); \ 311 } 312 313 #ifdef DEBUG 314 int nfs4_client_attr_debug = 0; 315 int nfs4_client_state_debug = 0; 316 int nfs4_client_shadow_debug = 0; 317 int nfs4_client_lock_debug = 0; 318 int nfs4_seqid_sync = 0; 319 int nfs4_client_map_debug = 0; 320 static int nfs4_pageio_debug = 0; 321 int nfs4_client_inactive_debug = 0; 322 int nfs4_client_recov_debug = 0; 323 int nfs4_client_failover_debug = 0; 324 int nfs4_client_call_debug = 0; 325 int nfs4_client_lookup_debug = 0; 326 int nfs4_client_zone_debug = 0; 327 int nfs4_lost_rqst_debug = 0; 328 int nfs4_rdattrerr_debug = 0; 329 int nfs4_open_stream_debug = 0; 330 331 int nfs4read_error_inject; 332 333 static int nfs4_create_misses = 0; 334 335 static int nfs4_readdir_cache_shorts = 0; 336 static int nfs4_readdir_readahead = 0; 337 338 static int nfs4_bio_do_stop = 0; 339 340 static int nfs4_lostpage = 0; /* number of times we lost original page */ 341 342 int nfs4_mmap_debug = 0; 343 344 static int nfs4_pathconf_cache_hits = 0; 345 static int nfs4_pathconf_cache_misses = 0; 346 347 int nfs4close_all_cnt; 348 int nfs4close_one_debug = 0; 349 int nfs4close_notw_debug = 0; 350 351 int denied_to_flk_debug = 0; 352 void *lockt_denied_debug; 353 354 #endif 355 356 /* 357 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 358 * or NFS4ERR_RESOURCE. 359 */ 360 static int confirm_retry_sec = 30; 361 362 static int nfs4_lookup_neg_cache = 1; 363 364 /* 365 * number of pages to read ahead 366 * optimized for 100 base-T. 367 */ 368 static int nfs4_nra = 4; 369 370 static int nfs4_do_symlink_cache = 1; 371 372 static int nfs4_pathconf_disable_cache = 0; 373 374 /* 375 * These are the vnode ops routines which implement the vnode interface to 376 * the networked file system. These routines just take their parameters, 377 * make them look networkish by putting the right info into interface structs, 378 * and then calling the appropriate remote routine(s) to do the work. 379 * 380 * Note on directory name lookup cacheing: If we detect a stale fhandle, 381 * we purge the directory cache relative to that vnode. This way, the 382 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 383 * more details on rnode locking. 384 */ 385 386 struct vnodeops *nfs4_vnodeops; 387 388 const fs_operation_def_t nfs4_vnodeops_template[] = { 389 VOPNAME_OPEN, { .vop_open = nfs4_open }, 390 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 391 VOPNAME_READ, { .vop_read = nfs4_read }, 392 VOPNAME_WRITE, { .vop_write = nfs4_write }, 393 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 394 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 395 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 396 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 397 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 398 VOPNAME_CREATE, { .vop_create = nfs4_create }, 399 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 400 VOPNAME_LINK, { .vop_link = nfs4_link }, 401 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 402 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 403 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 404 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 405 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 406 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 407 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 408 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 409 VOPNAME_FID, { .vop_fid = nfs4_fid }, 410 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 411 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 412 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 413 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 414 VOPNAME_SPACE, { .vop_space = nfs4_space }, 415 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 416 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 417 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 418 VOPNAME_MAP, { .vop_map = nfs4_map }, 419 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 420 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 421 /* no separate nfs4_dump */ 422 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 423 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 424 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 425 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 426 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 427 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 428 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 429 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 430 NULL, NULL 431 }; 432 433 /* 434 * The following are subroutines and definitions to set args or get res 435 * for the different nfsv4 ops 436 */ 437 438 void 439 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 440 { 441 int i; 442 443 for (i = 0; i < arglen; i++) { 444 if (argop[i].argop == OP_LOOKUP) { 445 kmem_free( 446 argop[i].nfs_argop4_u.oplookup. 447 objname.utf8string_val, 448 argop[i].nfs_argop4_u.oplookup. 449 objname.utf8string_len); 450 } 451 } 452 } 453 454 static void 455 nfs4args_lock_free(nfs_argop4 *argop) 456 { 457 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 458 459 if (locker->new_lock_owner == TRUE) { 460 open_to_lock_owner4 *open_owner; 461 462 open_owner = &locker->locker4_u.open_owner; 463 if (open_owner->lock_owner.owner_val != NULL) { 464 kmem_free(open_owner->lock_owner.owner_val, 465 open_owner->lock_owner.owner_len); 466 } 467 } 468 } 469 470 static void 471 nfs4args_lockt_free(nfs_argop4 *argop) 472 { 473 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 474 475 if (lowner->owner_val != NULL) { 476 kmem_free(lowner->owner_val, lowner->owner_len); 477 } 478 } 479 480 static void 481 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 482 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 483 nfs4_stateid_types_t *sid_types) 484 { 485 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 486 mntinfo4_t *mi; 487 488 argop->argop = OP_SETATTR; 489 /* 490 * The stateid is set to 0 if client is not modifying the size 491 * and otherwise to whatever nfs4_get_stateid() returns. 492 * 493 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 494 * state struct could be found for the process/file pair. We may 495 * want to change this in the future (by OPENing the file). See 496 * bug # 4474852. 497 */ 498 if (vap->va_mask & AT_SIZE) { 499 500 ASSERT(rp != NULL); 501 mi = VTOMI4(RTOV4(rp)); 502 503 argop->nfs_argop4_u.opsetattr.stateid = 504 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 505 OP_SETATTR, sid_types, FALSE); 506 } else { 507 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 508 sizeof (stateid4)); 509 } 510 511 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 512 if (*error) 513 bzero(attr, sizeof (*attr)); 514 } 515 516 static void 517 nfs4args_setattr_free(nfs_argop4 *argop) 518 { 519 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 520 } 521 522 static int 523 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 524 bitmap4 supp) 525 { 526 fattr4 *attr; 527 int error = 0; 528 529 argop->argop = op; 530 switch (op) { 531 case OP_VERIFY: 532 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 533 break; 534 case OP_NVERIFY: 535 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 536 break; 537 default: 538 return (EINVAL); 539 } 540 if (!error) 541 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 542 if (error) 543 bzero(attr, sizeof (*attr)); 544 return (error); 545 } 546 547 static void 548 nfs4args_verify_free(nfs_argop4 *argop) 549 { 550 switch (argop->argop) { 551 case OP_VERIFY: 552 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 553 break; 554 case OP_NVERIFY: 555 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 556 break; 557 default: 558 break; 559 } 560 } 561 562 static void 563 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 564 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 565 { 566 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 567 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 568 569 argop->argop = OP_WRITE; 570 wargs->stable = stable; 571 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 572 mi, OP_WRITE, sid_tp); 573 wargs->mblk = NULL; 574 *wargs_pp = wargs; 575 } 576 577 void 578 nfs4args_copen_free(OPEN4cargs *open_args) 579 { 580 if (open_args->owner.owner_val) { 581 kmem_free(open_args->owner.owner_val, 582 open_args->owner.owner_len); 583 } 584 if ((open_args->opentype == OPEN4_CREATE) && 585 (open_args->mode != EXCLUSIVE4)) { 586 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 587 } 588 } 589 590 /* 591 * XXX: This is referenced in modstubs.s 592 */ 593 struct vnodeops * 594 nfs4_getvnodeops(void) 595 { 596 return (nfs4_vnodeops); 597 } 598 599 /* 600 * The OPEN operation opens a regular file. 601 */ 602 /*ARGSUSED3*/ 603 static int 604 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 605 { 606 vnode_t *dvp = NULL; 607 rnode4_t *rp, *drp; 608 int error; 609 int just_been_created; 610 char fn[MAXNAMELEN]; 611 612 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 613 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 614 return (EIO); 615 rp = VTOR4(*vpp); 616 617 /* 618 * Check to see if opening something besides a regular file; 619 * if so skip the OTW call 620 */ 621 if ((*vpp)->v_type != VREG) { 622 error = nfs4_open_non_reg_file(vpp, flag, cr); 623 return (error); 624 } 625 626 /* 627 * XXX - would like a check right here to know if the file is 628 * executable or not, so as to skip OTW 629 */ 630 631 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 632 return (error); 633 634 drp = VTOR4(dvp); 635 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 636 return (EINTR); 637 638 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 639 nfs_rw_exit(&drp->r_rwlock); 640 return (error); 641 } 642 643 /* 644 * See if this file has just been CREATEd. 645 * If so, clear the flag and update the dnlc, which was previously 646 * skipped in nfs4_create. 647 * XXX need better serilization on this. 648 * XXX move this into the nf4open_otw call, after we have 649 * XXX acquired the open owner seqid sync. 650 */ 651 mutex_enter(&rp->r_statev4_lock); 652 if (rp->created_v4) { 653 rp->created_v4 = 0; 654 mutex_exit(&rp->r_statev4_lock); 655 656 dnlc_update(dvp, fn, *vpp); 657 /* This is needed so we don't bump the open ref count */ 658 just_been_created = 1; 659 } else { 660 mutex_exit(&rp->r_statev4_lock); 661 just_been_created = 0; 662 } 663 664 /* 665 * If caller specified O_TRUNC/FTRUNC, then be sure to set 666 * FWRITE (to drive successful setattr(size=0) after open) 667 */ 668 if (flag & FTRUNC) 669 flag |= FWRITE; 670 671 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 672 just_been_created); 673 674 if (!error && !((*vpp)->v_flag & VROOT)) 675 dnlc_update(dvp, fn, *vpp); 676 677 nfs_rw_exit(&drp->r_rwlock); 678 679 /* release the hold from vtodv */ 680 VN_RELE(dvp); 681 682 /* exchange the shadow for the master vnode, if needed */ 683 684 if (error == 0 && IS_SHADOW(*vpp, rp)) 685 sv_exchange(vpp); 686 687 return (error); 688 } 689 690 /* 691 * See if there's a "lost open" request to be saved and recovered. 692 */ 693 static void 694 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 695 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 696 vnode_t *dvp, OPEN4cargs *open_args) 697 { 698 vfs_t *vfsp; 699 char *srccfp; 700 701 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 702 703 if (error != ETIMEDOUT && error != EINTR && 704 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 705 lost_rqstp->lr_op = 0; 706 return; 707 } 708 709 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 710 "nfs4open_save_lost_rqst: error %d", error)); 711 712 lost_rqstp->lr_op = OP_OPEN; 713 714 /* 715 * The vp (if it is not NULL) and dvp are held and rele'd via 716 * the recovery code. See nfs4_save_lost_rqst. 717 */ 718 lost_rqstp->lr_vp = vp; 719 lost_rqstp->lr_dvp = dvp; 720 lost_rqstp->lr_oop = oop; 721 lost_rqstp->lr_osp = NULL; 722 lost_rqstp->lr_lop = NULL; 723 lost_rqstp->lr_cr = cr; 724 lost_rqstp->lr_flk = NULL; 725 lost_rqstp->lr_oacc = open_args->share_access; 726 lost_rqstp->lr_odeny = open_args->share_deny; 727 lost_rqstp->lr_oclaim = open_args->claim; 728 if (open_args->claim == CLAIM_DELEGATE_CUR) { 729 lost_rqstp->lr_ostateid = 730 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 731 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 732 } else { 733 srccfp = open_args->open_claim4_u.cfile; 734 } 735 lost_rqstp->lr_ofile.utf8string_len = 0; 736 lost_rqstp->lr_ofile.utf8string_val = NULL; 737 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 738 lost_rqstp->lr_putfirst = FALSE; 739 } 740 741 struct nfs4_excl_time { 742 uint32 seconds; 743 uint32 nseconds; 744 }; 745 746 /* 747 * The OPEN operation creates and/or opens a regular file 748 * 749 * ARGSUSED 750 */ 751 static int 752 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 753 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 754 enum createmode4 createmode, int file_just_been_created) 755 { 756 rnode4_t *rp; 757 rnode4_t *drp = VTOR4(dvp); 758 vnode_t *vp = NULL; 759 vnode_t *vpi = *vpp; 760 bool_t needrecov = FALSE; 761 762 int doqueue = 1; 763 764 COMPOUND4args_clnt args; 765 COMPOUND4res_clnt res; 766 nfs_argop4 *argop; 767 nfs_resop4 *resop; 768 int argoplist_size; 769 int idx_open, idx_fattr; 770 771 GETFH4res *gf_res = NULL; 772 OPEN4res *op_res = NULL; 773 nfs4_ga_res_t *garp; 774 fattr4 *attr = NULL; 775 struct nfs4_excl_time verf; 776 bool_t did_excl_setup = FALSE; 777 int created_osp; 778 779 OPEN4cargs *open_args; 780 nfs4_open_owner_t *oop = NULL; 781 nfs4_open_stream_t *osp = NULL; 782 seqid4 seqid = 0; 783 bool_t retry_open = FALSE; 784 nfs4_recov_state_t recov_state; 785 nfs4_lost_rqst_t lost_rqst; 786 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 787 hrtime_t t; 788 int acc = 0; 789 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 790 cred_t *ncr = NULL; 791 792 nfs4_sharedfh_t *otw_sfh; 793 nfs4_sharedfh_t *orig_sfh; 794 int fh_differs = 0; 795 int numops, setgid_flag; 796 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 797 798 /* 799 * Make sure we properly deal with setting the right gid on 800 * a newly created file to reflect the parent's setgid bit 801 */ 802 setgid_flag = 0; 803 if (create_flag && in_va) { 804 805 /* 806 * If the parent's directory has the setgid bit set 807 * _and_ the client was able to get a valid mapping 808 * for the parent dir's owner_group, we want to 809 * append NVERIFY(owner_group == dva.va_gid) and 810 * SETATTR to the CREATE compound. 811 */ 812 mutex_enter(&drp->r_statelock); 813 if (drp->r_attr.va_mode & VSGID && 814 drp->r_attr.va_gid != GID_NOBODY) { 815 in_va->va_gid = drp->r_attr.va_gid; 816 setgid_flag = 1; 817 } 818 mutex_exit(&drp->r_statelock); 819 } 820 821 /* 822 * Normal/non-create compound: 823 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 824 * 825 * Open(create) compound no setgid: 826 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 827 * RESTOREFH + GETATTR 828 * 829 * Open(create) setgid: 830 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 831 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 832 * NVERIFY(grp) + SETATTR 833 */ 834 if (setgid_flag) { 835 numops = 10; 836 idx_open = 1; 837 idx_fattr = 3; 838 } else if (create_flag) { 839 numops = 7; 840 idx_open = 2; 841 idx_fattr = 4; 842 } else { 843 numops = 4; 844 idx_open = 1; 845 idx_fattr = 3; 846 } 847 848 args.array_len = numops; 849 argoplist_size = numops * sizeof (nfs_argop4); 850 argop = kmem_alloc(argoplist_size, KM_SLEEP); 851 852 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 853 "open %s open flag 0x%x cred %p", file_name, open_flag, 854 (void *)cr)); 855 856 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 857 if (create_flag) { 858 /* 859 * We are to create a file. Initialize the passed in vnode 860 * pointer. 861 */ 862 vpi = NULL; 863 } else { 864 /* 865 * Check to see if the client owns a read delegation and is 866 * trying to open for write. If so, then return the delegation 867 * to avoid the server doing a cb_recall and returning DELAY. 868 * NB - we don't use the statev4_lock here because we'd have 869 * to drop the lock anyway and the result would be stale. 870 */ 871 if ((open_flag & FWRITE) && 872 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 873 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 874 875 /* 876 * If the file has a delegation, then do an access check up 877 * front. This avoids having to an access check later after 878 * we've already done start_op, which could deadlock. 879 */ 880 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 881 if (open_flag & FREAD && 882 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0) 883 acc |= VREAD; 884 if (open_flag & FWRITE && 885 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0) 886 acc |= VWRITE; 887 } 888 } 889 890 drp = VTOR4(dvp); 891 892 recov_state.rs_flags = 0; 893 recov_state.rs_num_retry_despite_err = 0; 894 cred_otw = cr; 895 896 recov_retry: 897 fh_differs = 0; 898 nfs4_error_zinit(&e); 899 900 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 901 if (e.error) { 902 if (ncr != NULL) 903 crfree(ncr); 904 kmem_free(argop, argoplist_size); 905 return (e.error); 906 } 907 908 args.ctag = TAG_OPEN; 909 args.array_len = numops; 910 args.array = argop; 911 912 /* putfh directory fh */ 913 argop[0].argop = OP_CPUTFH; 914 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 915 916 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 917 argop[idx_open].argop = OP_COPEN; 918 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 919 open_args->claim = CLAIM_NULL; 920 921 /* name of file */ 922 open_args->open_claim4_u.cfile = file_name; 923 open_args->owner.owner_len = 0; 924 open_args->owner.owner_val = NULL; 925 926 if (create_flag) { 927 /* CREATE a file */ 928 open_args->opentype = OPEN4_CREATE; 929 open_args->mode = createmode; 930 if (createmode == EXCLUSIVE4) { 931 if (did_excl_setup == FALSE) { 932 verf.seconds = nfs_atoi(hw_serial); 933 if (verf.seconds != 0) 934 verf.nseconds = newnum(); 935 else { 936 timestruc_t now; 937 938 gethrestime(&now); 939 verf.seconds = now.tv_sec; 940 verf.nseconds = now.tv_nsec; 941 } 942 /* 943 * Since the server will use this value for the 944 * mtime, make sure that it can't overflow. Zero 945 * out the MSB. The actual value does not matter 946 * here, only its uniqeness. 947 */ 948 verf.seconds &= INT32_MAX; 949 did_excl_setup = TRUE; 950 } 951 952 /* Now copy over verifier to OPEN4args. */ 953 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 954 } else { 955 int v_error; 956 bitmap4 supp_attrs; 957 servinfo4_t *svp; 958 959 attr = &open_args->createhow4_u.createattrs; 960 961 svp = drp->r_server; 962 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 963 supp_attrs = svp->sv_supp_attrs; 964 nfs_rw_exit(&svp->sv_lock); 965 966 /* GUARDED4 or UNCHECKED4 */ 967 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 968 supp_attrs); 969 if (v_error) { 970 bzero(attr, sizeof (*attr)); 971 nfs4args_copen_free(open_args); 972 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 973 &recov_state, FALSE); 974 if (ncr != NULL) 975 crfree(ncr); 976 kmem_free(argop, argoplist_size); 977 return (v_error); 978 } 979 } 980 } else { 981 /* NO CREATE */ 982 open_args->opentype = OPEN4_NOCREATE; 983 } 984 985 if (recov_state.rs_sp != NULL) { 986 mutex_enter(&recov_state.rs_sp->s_lock); 987 open_args->owner.clientid = recov_state.rs_sp->clientid; 988 mutex_exit(&recov_state.rs_sp->s_lock); 989 } else { 990 /* XXX should we just fail here? */ 991 open_args->owner.clientid = 0; 992 } 993 994 /* 995 * This increments oop's ref count or creates a temporary 'just_created' 996 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 997 * completes. 998 */ 999 mutex_enter(&VTOMI4(dvp)->mi_lock); 1000 1001 /* See if a permanent or just created open owner exists */ 1002 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 1003 if (!oop) { 1004 /* 1005 * This open owner does not exist so create a temporary 1006 * just created one. 1007 */ 1008 oop = create_open_owner(cr, VTOMI4(dvp)); 1009 ASSERT(oop != NULL); 1010 } 1011 mutex_exit(&VTOMI4(dvp)->mi_lock); 1012 1013 /* this length never changes, do alloc before seqid sync */ 1014 open_args->owner.owner_len = sizeof (oop->oo_name); 1015 open_args->owner.owner_val = 1016 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1017 1018 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 1019 if (e.error == EAGAIN) { 1020 open_owner_rele(oop); 1021 nfs4args_copen_free(open_args); 1022 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1023 if (ncr != NULL) { 1024 crfree(ncr); 1025 ncr = NULL; 1026 } 1027 goto recov_retry; 1028 } 1029 1030 /* Check to see if we need to do the OTW call */ 1031 if (!create_flag) { 1032 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1033 file_just_been_created, &e.error, acc, &recov_state)) { 1034 1035 /* 1036 * The OTW open is not necessary. Either 1037 * the open can succeed without it (eg. 1038 * delegation, error == 0) or the open 1039 * must fail due to an access failure 1040 * (error != 0). In either case, tidy 1041 * up and return. 1042 */ 1043 1044 nfs4_end_open_seqid_sync(oop); 1045 open_owner_rele(oop); 1046 nfs4args_copen_free(open_args); 1047 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1048 if (ncr != NULL) 1049 crfree(ncr); 1050 kmem_free(argop, argoplist_size); 1051 return (e.error); 1052 } 1053 } 1054 1055 bcopy(&oop->oo_name, open_args->owner.owner_val, 1056 open_args->owner.owner_len); 1057 1058 seqid = nfs4_get_open_seqid(oop) + 1; 1059 open_args->seqid = seqid; 1060 open_args->share_access = 0; 1061 if (open_flag & FREAD) 1062 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1063 if (open_flag & FWRITE) 1064 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1065 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1066 1067 1068 1069 /* 1070 * getfh w/sanity check for idx_open/idx_fattr 1071 */ 1072 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1073 argop[idx_open + 1].argop = OP_GETFH; 1074 1075 /* getattr */ 1076 argop[idx_fattr].argop = OP_GETATTR; 1077 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1078 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1079 1080 if (setgid_flag) { 1081 vattr_t _v; 1082 servinfo4_t *svp; 1083 bitmap4 supp_attrs; 1084 1085 svp = drp->r_server; 1086 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1087 supp_attrs = svp->sv_supp_attrs; 1088 nfs_rw_exit(&svp->sv_lock); 1089 1090 /* 1091 * For setgid case, we need to: 1092 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1093 */ 1094 argop[4].argop = OP_SAVEFH; 1095 1096 argop[5].argop = OP_CPUTFH; 1097 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1098 1099 argop[6].argop = OP_GETATTR; 1100 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1101 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1102 1103 argop[7].argop = OP_RESTOREFH; 1104 1105 /* 1106 * nverify 1107 */ 1108 _v.va_mask = AT_GID; 1109 _v.va_gid = in_va->va_gid; 1110 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1111 supp_attrs))) { 1112 1113 /* 1114 * setattr 1115 * 1116 * We _know_ we're not messing with AT_SIZE or 1117 * AT_XTIME, so no need for stateid or flags. 1118 * Also we specify NULL rp since we're only 1119 * interested in setting owner_group attributes. 1120 */ 1121 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1122 supp_attrs, &e.error, 0); 1123 if (e.error) 1124 nfs4args_verify_free(&argop[8]); 1125 } 1126 1127 if (e.error) { 1128 /* 1129 * XXX - Revisit the last argument to nfs4_end_op() 1130 * once 5020486 is fixed. 1131 */ 1132 nfs4_end_open_seqid_sync(oop); 1133 open_owner_rele(oop); 1134 nfs4args_copen_free(open_args); 1135 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1136 if (ncr != NULL) 1137 crfree(ncr); 1138 kmem_free(argop, argoplist_size); 1139 return (e.error); 1140 } 1141 } else if (create_flag) { 1142 /* 1143 * For setgid case, we need to: 1144 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1145 */ 1146 argop[1].argop = OP_SAVEFH; 1147 1148 argop[5].argop = OP_RESTOREFH; 1149 1150 argop[6].argop = OP_GETATTR; 1151 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1152 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1153 } 1154 1155 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1156 "nfs4open_otw: %s call, nm %s, rp %s", 1157 needrecov ? "recov" : "first", file_name, 1158 rnode4info(VTOR4(dvp)))); 1159 1160 t = gethrtime(); 1161 1162 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1163 1164 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1165 nfs4_set_open_seqid(seqid, oop, args.ctag); 1166 1167 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1168 1169 if (e.error || needrecov) { 1170 bool_t abort = FALSE; 1171 1172 if (needrecov) { 1173 nfs4_bseqid_entry_t *bsep = NULL; 1174 1175 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1176 cred_otw, vpi, dvp, open_args); 1177 1178 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1179 bsep = nfs4_create_bseqid_entry(oop, NULL, 1180 vpi, 0, args.ctag, open_args->seqid); 1181 num_bseqid_retry--; 1182 } 1183 1184 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1185 NULL, lost_rqst.lr_op == OP_OPEN ? 1186 &lost_rqst : NULL, OP_OPEN, bsep); 1187 1188 if (bsep) 1189 kmem_free(bsep, sizeof (*bsep)); 1190 /* give up if we keep getting BAD_SEQID */ 1191 if (num_bseqid_retry == 0) 1192 abort = TRUE; 1193 if (abort == TRUE && e.error == 0) 1194 e.error = geterrno4(res.status); 1195 } 1196 nfs4_end_open_seqid_sync(oop); 1197 open_owner_rele(oop); 1198 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1199 nfs4args_copen_free(open_args); 1200 if (setgid_flag) { 1201 nfs4args_verify_free(&argop[8]); 1202 nfs4args_setattr_free(&argop[9]); 1203 } 1204 if (!e.error) 1205 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1206 if (ncr != NULL) { 1207 crfree(ncr); 1208 ncr = NULL; 1209 } 1210 if (!needrecov || abort == TRUE || e.error == EINTR || 1211 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1212 kmem_free(argop, argoplist_size); 1213 return (e.error); 1214 } 1215 goto recov_retry; 1216 } 1217 1218 /* 1219 * Will check and update lease after checking the rflag for 1220 * OPEN_CONFIRM in the successful OPEN call. 1221 */ 1222 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1223 1224 /* 1225 * XXX what if we're crossing mount points from server1:/drp 1226 * to server2:/drp/rp. 1227 */ 1228 1229 /* Signal our end of use of the open seqid */ 1230 nfs4_end_open_seqid_sync(oop); 1231 1232 /* 1233 * This will destroy the open owner if it was just created, 1234 * and no one else has put a reference on it. 1235 */ 1236 open_owner_rele(oop); 1237 if (create_flag && (createmode != EXCLUSIVE4) && 1238 res.status == NFS4ERR_BADOWNER) 1239 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1240 1241 e.error = geterrno4(res.status); 1242 nfs4args_copen_free(open_args); 1243 if (setgid_flag) { 1244 nfs4args_verify_free(&argop[8]); 1245 nfs4args_setattr_free(&argop[9]); 1246 } 1247 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1248 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1249 /* 1250 * If the reply is NFS4ERR_ACCESS, it may be because 1251 * we are root (no root net access). If the real uid 1252 * is not root, then retry with the real uid instead. 1253 */ 1254 if (ncr != NULL) { 1255 crfree(ncr); 1256 ncr = NULL; 1257 } 1258 if (res.status == NFS4ERR_ACCESS && 1259 (ncr = crnetadjust(cred_otw)) != NULL) { 1260 cred_otw = ncr; 1261 goto recov_retry; 1262 } 1263 kmem_free(argop, argoplist_size); 1264 return (e.error); 1265 } 1266 1267 resop = &res.array[idx_open]; /* open res */ 1268 op_res = &resop->nfs_resop4_u.opopen; 1269 1270 #ifdef DEBUG 1271 /* 1272 * verify attrset bitmap 1273 */ 1274 if (create_flag && 1275 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1276 /* make sure attrset returned is what we asked for */ 1277 /* XXX Ignore this 'error' for now */ 1278 if (attr->attrmask != op_res->attrset) 1279 /* EMPTY */; 1280 } 1281 #endif 1282 1283 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1284 mutex_enter(&VTOMI4(dvp)->mi_lock); 1285 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1286 mutex_exit(&VTOMI4(dvp)->mi_lock); 1287 } 1288 1289 resop = &res.array[idx_open + 1]; /* getfh res */ 1290 gf_res = &resop->nfs_resop4_u.opgetfh; 1291 1292 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1293 1294 /* 1295 * The open stateid has been updated on the server but not 1296 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1297 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1298 * WRITE call. That, however, will use the old stateid, so go ahead 1299 * and upate the open stateid now, before any call to makenfs4node. 1300 */ 1301 if (vpi) { 1302 nfs4_open_stream_t *tmp_osp; 1303 rnode4_t *tmp_rp = VTOR4(vpi); 1304 1305 tmp_osp = find_open_stream(oop, tmp_rp); 1306 if (tmp_osp) { 1307 tmp_osp->open_stateid = op_res->stateid; 1308 mutex_exit(&tmp_osp->os_sync_lock); 1309 open_stream_rele(tmp_osp, tmp_rp); 1310 } 1311 1312 /* 1313 * We must determine if the file handle given by the otw open 1314 * is the same as the file handle which was passed in with 1315 * *vpp. This case can be reached if the file we are trying 1316 * to open has been removed and another file has been created 1317 * having the same file name. The passed in vnode is released 1318 * later. 1319 */ 1320 orig_sfh = VTOR4(vpi)->r_fh; 1321 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1322 } 1323 1324 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1325 1326 if (create_flag || fh_differs) { 1327 int rnode_err = 0; 1328 1329 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1330 dvp, fn_get(VTOSV(dvp)->sv_name, file_name)); 1331 1332 if (e.error) 1333 PURGE_ATTRCACHE4(vp); 1334 /* 1335 * For the newly created vp case, make sure the rnode 1336 * isn't bad before using it. 1337 */ 1338 mutex_enter(&(VTOR4(vp))->r_statelock); 1339 if (VTOR4(vp)->r_flags & R4RECOVERR) 1340 rnode_err = EIO; 1341 mutex_exit(&(VTOR4(vp))->r_statelock); 1342 1343 if (rnode_err) { 1344 nfs4_end_open_seqid_sync(oop); 1345 nfs4args_copen_free(open_args); 1346 if (setgid_flag) { 1347 nfs4args_verify_free(&argop[8]); 1348 nfs4args_setattr_free(&argop[9]); 1349 } 1350 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1351 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1352 needrecov); 1353 open_owner_rele(oop); 1354 VN_RELE(vp); 1355 if (ncr != NULL) 1356 crfree(ncr); 1357 sfh4_rele(&otw_sfh); 1358 kmem_free(argop, argoplist_size); 1359 return (EIO); 1360 } 1361 } else { 1362 vp = vpi; 1363 } 1364 sfh4_rele(&otw_sfh); 1365 1366 /* 1367 * It seems odd to get a full set of attrs and then not update 1368 * the object's attrcache in the non-create case. Create case uses 1369 * the attrs since makenfs4node checks to see if the attrs need to 1370 * be updated (and then updates them). The non-create case should 1371 * update attrs also. 1372 */ 1373 if (! create_flag && ! fh_differs && !e.error) { 1374 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1375 } 1376 1377 nfs4_error_zinit(&e); 1378 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1379 /* This does not do recovery for vp explicitly. */ 1380 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1381 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1382 1383 if (e.error || e.stat) { 1384 nfs4_end_open_seqid_sync(oop); 1385 nfs4args_copen_free(open_args); 1386 if (setgid_flag) { 1387 nfs4args_verify_free(&argop[8]); 1388 nfs4args_setattr_free(&argop[9]); 1389 } 1390 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1391 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1392 needrecov); 1393 open_owner_rele(oop); 1394 if (create_flag || fh_differs) { 1395 /* rele the makenfs4node */ 1396 VN_RELE(vp); 1397 } 1398 if (ncr != NULL) { 1399 crfree(ncr); 1400 ncr = NULL; 1401 } 1402 if (retry_open == TRUE) { 1403 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1404 "nfs4open_otw: retry the open since OPEN " 1405 "CONFIRM failed with error %d stat %d", 1406 e.error, e.stat)); 1407 if (create_flag && createmode == GUARDED4) { 1408 NFS4_DEBUG(nfs4_client_recov_debug, 1409 (CE_NOTE, "nfs4open_otw: switch " 1410 "createmode from GUARDED4 to " 1411 "UNCHECKED4")); 1412 createmode = UNCHECKED4; 1413 } 1414 goto recov_retry; 1415 } 1416 if (!e.error) { 1417 if (create_flag && (createmode != EXCLUSIVE4) && 1418 e.stat == NFS4ERR_BADOWNER) 1419 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1420 1421 e.error = geterrno4(e.stat); 1422 } 1423 kmem_free(argop, argoplist_size); 1424 return (e.error); 1425 } 1426 } 1427 1428 rp = VTOR4(vp); 1429 1430 mutex_enter(&rp->r_statev4_lock); 1431 if (create_flag) 1432 rp->created_v4 = 1; 1433 mutex_exit(&rp->r_statev4_lock); 1434 1435 mutex_enter(&oop->oo_lock); 1436 /* Doesn't matter if 'oo_just_created' already was set as this */ 1437 oop->oo_just_created = NFS4_PERM_CREATED; 1438 if (oop->oo_cred_otw) 1439 crfree(oop->oo_cred_otw); 1440 oop->oo_cred_otw = cred_otw; 1441 crhold(oop->oo_cred_otw); 1442 mutex_exit(&oop->oo_lock); 1443 1444 /* returns with 'os_sync_lock' held */ 1445 osp = find_or_create_open_stream(oop, rp, &created_osp); 1446 if (!osp) { 1447 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1448 "nfs4open_otw: failed to create an open stream")); 1449 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1450 "signal our end of use of the open seqid")); 1451 1452 nfs4_end_open_seqid_sync(oop); 1453 open_owner_rele(oop); 1454 nfs4args_copen_free(open_args); 1455 if (setgid_flag) { 1456 nfs4args_verify_free(&argop[8]); 1457 nfs4args_setattr_free(&argop[9]); 1458 } 1459 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1460 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1461 if (create_flag || fh_differs) 1462 VN_RELE(vp); 1463 if (ncr != NULL) 1464 crfree(ncr); 1465 1466 kmem_free(argop, argoplist_size); 1467 return (EINVAL); 1468 1469 } 1470 1471 osp->open_stateid = op_res->stateid; 1472 1473 if (open_flag & FREAD) 1474 osp->os_share_acc_read++; 1475 if (open_flag & FWRITE) 1476 osp->os_share_acc_write++; 1477 osp->os_share_deny_none++; 1478 1479 /* 1480 * Need to reset this bitfield for the possible case where we were 1481 * going to OTW CLOSE the file, got a non-recoverable error, and before 1482 * we could retry the CLOSE, OPENed the file again. 1483 */ 1484 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1485 osp->os_final_close = 0; 1486 osp->os_force_close = 0; 1487 #ifdef DEBUG 1488 if (osp->os_failed_reopen) 1489 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1490 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1491 (void *)osp, (void *)cr, rnode4info(rp))); 1492 #endif 1493 osp->os_failed_reopen = 0; 1494 1495 mutex_exit(&osp->os_sync_lock); 1496 1497 nfs4_end_open_seqid_sync(oop); 1498 1499 if (created_osp && recov_state.rs_sp != NULL) { 1500 mutex_enter(&recov_state.rs_sp->s_lock); 1501 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1502 mutex_exit(&recov_state.rs_sp->s_lock); 1503 } 1504 1505 /* get rid of our reference to find oop */ 1506 open_owner_rele(oop); 1507 1508 open_stream_rele(osp, rp); 1509 1510 /* accept delegation, if any */ 1511 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1512 1513 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1514 1515 if (createmode == EXCLUSIVE4 && 1516 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1517 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1518 " EXCLUSIVE4: sending a SETATTR")); 1519 /* 1520 * If doing an exclusive create, then generate 1521 * a SETATTR to set the initial attributes. 1522 * Try to set the mtime and the atime to the 1523 * server's current time. It is somewhat 1524 * expected that these fields will be used to 1525 * store the exclusive create cookie. If not, 1526 * server implementors will need to know that 1527 * a SETATTR will follow an exclusive create 1528 * and the cookie should be destroyed if 1529 * appropriate. 1530 * 1531 * The AT_GID and AT_SIZE bits are turned off 1532 * so that the SETATTR request will not attempt 1533 * to process these. The gid will be set 1534 * separately if appropriate. The size is turned 1535 * off because it is assumed that a new file will 1536 * be created empty and if the file wasn't empty, 1537 * then the exclusive create will have failed 1538 * because the file must have existed already. 1539 * Therefore, no truncate operation is needed. 1540 */ 1541 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1542 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1543 1544 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1545 if (e.error) { 1546 /* 1547 * Couldn't correct the attributes of 1548 * the newly created file and the 1549 * attributes are wrong. Remove the 1550 * file and return an error to the 1551 * application. 1552 */ 1553 /* XXX will this take care of client state ? */ 1554 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1555 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1556 " remove file", e.error)); 1557 VN_RELE(vp); 1558 (void) nfs4_remove(dvp, file_name, cr, NULL, 0); 1559 /* 1560 * Since we've reled the vnode and removed 1561 * the file we now need to return the error. 1562 * At this point we don't want to update the 1563 * dircaches, call nfs4_waitfor_purge_complete 1564 * or set vpp to vp so we need to skip these 1565 * as well. 1566 */ 1567 goto skip_update_dircaches; 1568 } 1569 } 1570 1571 /* 1572 * If we created or found the correct vnode, due to create_flag or 1573 * fh_differs being set, then update directory cache attribute, readdir 1574 * and dnlc caches. 1575 */ 1576 if (create_flag || fh_differs) { 1577 dirattr_info_t dinfo, *dinfop; 1578 1579 /* 1580 * Make sure getattr succeeded before using results. 1581 * note: op 7 is getattr(dir) for both flavors of 1582 * open(create). 1583 */ 1584 if (create_flag && res.status == NFS4_OK) { 1585 dinfo.di_time_call = t; 1586 dinfo.di_cred = cr; 1587 dinfo.di_garp = 1588 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1589 dinfop = &dinfo; 1590 } else { 1591 dinfop = NULL; 1592 } 1593 1594 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1595 dinfop); 1596 } 1597 1598 /* 1599 * If the page cache for this file was flushed from actions 1600 * above, it was done asynchronously and if that is true, 1601 * there is a need to wait here for it to complete. This must 1602 * be done outside of start_fop/end_fop. 1603 */ 1604 (void) nfs4_waitfor_purge_complete(vp); 1605 1606 /* 1607 * It is implicit that we are in the open case (create_flag == 0) since 1608 * fh_differs can only be set to a non-zero value in the open case. 1609 */ 1610 if (fh_differs != 0 && vpi != NULL) 1611 VN_RELE(vpi); 1612 1613 /* 1614 * Be sure to set *vpp to the correct value before returning. 1615 */ 1616 *vpp = vp; 1617 1618 skip_update_dircaches: 1619 1620 nfs4args_copen_free(open_args); 1621 if (setgid_flag) { 1622 nfs4args_verify_free(&argop[8]); 1623 nfs4args_setattr_free(&argop[9]); 1624 } 1625 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1626 1627 if (ncr) 1628 crfree(ncr); 1629 kmem_free(argop, argoplist_size); 1630 return (e.error); 1631 } 1632 1633 /* 1634 * Reopen an open instance. cf. nfs4open_otw(). 1635 * 1636 * Errors are returned by the nfs4_error_t parameter. 1637 * - ep->error contains an errno value or zero. 1638 * - if it is zero, ep->stat is set to an NFS status code, if any. 1639 * If the file could not be reopened, but the caller should continue, the 1640 * file is marked dead and no error values are returned. If the caller 1641 * should stop recovering open files and start over, either the ep->error 1642 * value or ep->stat will indicate an error (either something that requires 1643 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1644 * filehandles) may be handled silently by this routine. 1645 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1646 * will be started, so the caller should not do it. 1647 * 1648 * Gotos: 1649 * - kill_file : reopen failed in such a fashion to constitute marking the 1650 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1651 * is for cases where recovery is not possible. 1652 * - failed_reopen : same as above, except that the file has already been 1653 * marked dead, so no need to do it again. 1654 * - bailout : reopen failed but we are able to recover and retry the reopen - 1655 * either within this function immediately or via the calling function. 1656 */ 1657 1658 void 1659 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1660 open_claim_type4 claim, bool_t frc_use_claim_previous, 1661 bool_t is_recov) 1662 { 1663 COMPOUND4args_clnt args; 1664 COMPOUND4res_clnt res; 1665 nfs_argop4 argop[4]; 1666 nfs_resop4 *resop; 1667 OPEN4res *op_res = NULL; 1668 OPEN4cargs *open_args; 1669 GETFH4res *gf_res; 1670 rnode4_t *rp = VTOR4(vp); 1671 int doqueue = 1; 1672 cred_t *cr = NULL, *cred_otw = NULL; 1673 nfs4_open_owner_t *oop = NULL; 1674 seqid4 seqid; 1675 nfs4_ga_res_t *garp; 1676 char fn[MAXNAMELEN]; 1677 nfs4_recov_state_t recov = {NULL, 0}; 1678 nfs4_lost_rqst_t lost_rqst; 1679 mntinfo4_t *mi = VTOMI4(vp); 1680 bool_t abort; 1681 char *failed_msg = ""; 1682 int fh_different; 1683 hrtime_t t; 1684 nfs4_bseqid_entry_t *bsep = NULL; 1685 1686 ASSERT(nfs4_consistent_type(vp)); 1687 ASSERT(nfs_zone() == mi->mi_zone); 1688 1689 nfs4_error_zinit(ep); 1690 1691 /* this is the cred used to find the open owner */ 1692 cr = state_to_cred(osp); 1693 if (cr == NULL) { 1694 failed_msg = "Couldn't reopen: no cred"; 1695 goto kill_file; 1696 } 1697 /* use this cred for OTW operations */ 1698 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1699 1700 top: 1701 nfs4_error_zinit(ep); 1702 1703 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1704 /* File system has been unmounted, quit */ 1705 ep->error = EIO; 1706 failed_msg = "Couldn't reopen: file system has been unmounted"; 1707 goto kill_file; 1708 } 1709 1710 oop = osp->os_open_owner; 1711 1712 ASSERT(oop != NULL); 1713 if (oop == NULL) { /* be defensive in non-DEBUG */ 1714 failed_msg = "can't reopen: no open owner"; 1715 goto kill_file; 1716 } 1717 open_owner_hold(oop); 1718 1719 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1720 if (ep->error) { 1721 open_owner_rele(oop); 1722 oop = NULL; 1723 goto bailout; 1724 } 1725 1726 /* 1727 * If the rnode has a delegation and the delegation has been 1728 * recovered and the server didn't request a recall and the caller 1729 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1730 * recovery) and the rnode hasn't been marked dead, then install 1731 * the delegation stateid in the open stream. Otherwise, proceed 1732 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1733 */ 1734 mutex_enter(&rp->r_statev4_lock); 1735 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1736 !rp->r_deleg_return_pending && 1737 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1738 !rp->r_deleg_needs_recall && 1739 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1740 !(rp->r_flags & R4RECOVERR)) { 1741 mutex_enter(&osp->os_sync_lock); 1742 osp->os_delegation = 1; 1743 osp->open_stateid = rp->r_deleg_stateid; 1744 mutex_exit(&osp->os_sync_lock); 1745 mutex_exit(&rp->r_statev4_lock); 1746 goto bailout; 1747 } 1748 mutex_exit(&rp->r_statev4_lock); 1749 1750 /* 1751 * If the file failed recovery, just quit. This failure need not 1752 * affect other reopens, so don't return an error. 1753 */ 1754 mutex_enter(&rp->r_statelock); 1755 if (rp->r_flags & R4RECOVERR) { 1756 mutex_exit(&rp->r_statelock); 1757 ep->error = 0; 1758 goto failed_reopen; 1759 } 1760 mutex_exit(&rp->r_statelock); 1761 1762 /* 1763 * argop is empty here 1764 * 1765 * PUTFH, OPEN, GETATTR 1766 */ 1767 args.ctag = TAG_REOPEN; 1768 args.array_len = 4; 1769 args.array = argop; 1770 1771 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1772 "nfs4_reopen: file is type %d, id %s", 1773 vp->v_type, rnode4info(VTOR4(vp)))); 1774 1775 argop[0].argop = OP_CPUTFH; 1776 1777 if (claim != CLAIM_PREVIOUS) { 1778 /* 1779 * if this is a file mount then 1780 * use the mntinfo parentfh 1781 */ 1782 argop[0].nfs_argop4_u.opcputfh.sfh = 1783 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1784 VTOSV(vp)->sv_dfh; 1785 } else { 1786 /* putfh fh to reopen */ 1787 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1788 } 1789 1790 argop[1].argop = OP_COPEN; 1791 open_args = &argop[1].nfs_argop4_u.opcopen; 1792 open_args->claim = claim; 1793 1794 if (claim == CLAIM_NULL) { 1795 1796 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1797 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1798 "failed for vp 0x%p for CLAIM_NULL with %m", 1799 (void *)vp); 1800 failed_msg = "Couldn't reopen: vtoname failed for " 1801 "CLAIM_NULL"; 1802 /* nothing allocated yet */ 1803 goto kill_file; 1804 } 1805 1806 open_args->open_claim4_u.cfile = fn; 1807 } else if (claim == CLAIM_PREVIOUS) { 1808 1809 /* 1810 * We have two cases to deal with here: 1811 * 1) We're being called to reopen files in order to satisfy 1812 * a lock operation request which requires us to explicitly 1813 * reopen files which were opened under a delegation. If 1814 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1815 * that case, frc_use_claim_previous is TRUE and we must 1816 * use the rnode's current delegation type (r_deleg_type). 1817 * 2) We're reopening files during some form of recovery. 1818 * In this case, frc_use_claim_previous is FALSE and we 1819 * use the delegation type appropriate for recovery 1820 * (r_deleg_needs_recovery). 1821 */ 1822 mutex_enter(&rp->r_statev4_lock); 1823 open_args->open_claim4_u.delegate_type = 1824 frc_use_claim_previous ? 1825 rp->r_deleg_type : 1826 rp->r_deleg_needs_recovery; 1827 mutex_exit(&rp->r_statev4_lock); 1828 1829 } else if (claim == CLAIM_DELEGATE_CUR) { 1830 1831 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1832 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1833 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1834 "with %m", (void *)vp); 1835 failed_msg = "Couldn't reopen: vtoname failed for " 1836 "CLAIM_DELEGATE_CUR"; 1837 /* nothing allocated yet */ 1838 goto kill_file; 1839 } 1840 1841 mutex_enter(&rp->r_statev4_lock); 1842 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1843 rp->r_deleg_stateid; 1844 mutex_exit(&rp->r_statev4_lock); 1845 1846 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1847 } 1848 open_args->opentype = OPEN4_NOCREATE; 1849 open_args->owner.clientid = mi2clientid(mi); 1850 open_args->owner.owner_len = sizeof (oop->oo_name); 1851 open_args->owner.owner_val = 1852 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1853 bcopy(&oop->oo_name, open_args->owner.owner_val, 1854 open_args->owner.owner_len); 1855 open_args->share_access = 0; 1856 open_args->share_deny = 0; 1857 1858 mutex_enter(&osp->os_sync_lock); 1859 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1860 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1861 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1862 (void *)osp, (void *)rp, osp->os_share_acc_read, 1863 osp->os_share_acc_write, osp->os_open_ref_count, 1864 osp->os_mmap_read, osp->os_mmap_write, claim)); 1865 1866 if (osp->os_share_acc_read || osp->os_mmap_read) 1867 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1868 if (osp->os_share_acc_write || osp->os_mmap_write) 1869 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1870 if (osp->os_share_deny_read) 1871 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1872 if (osp->os_share_deny_write) 1873 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1874 mutex_exit(&osp->os_sync_lock); 1875 1876 seqid = nfs4_get_open_seqid(oop) + 1; 1877 open_args->seqid = seqid; 1878 1879 /* Construct the getfh part of the compound */ 1880 argop[2].argop = OP_GETFH; 1881 1882 /* Construct the getattr part of the compound */ 1883 argop[3].argop = OP_GETATTR; 1884 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1885 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1886 1887 t = gethrtime(); 1888 1889 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1890 1891 if (ep->error) { 1892 if (!is_recov && !frc_use_claim_previous && 1893 (ep->error == EINTR || ep->error == ETIMEDOUT || 1894 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1895 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1896 cred_otw, vp, NULL, open_args); 1897 abort = nfs4_start_recovery(ep, 1898 VTOMI4(vp), vp, NULL, NULL, 1899 lost_rqst.lr_op == OP_OPEN ? 1900 &lost_rqst : NULL, OP_OPEN, NULL); 1901 nfs4args_copen_free(open_args); 1902 goto bailout; 1903 } 1904 1905 nfs4args_copen_free(open_args); 1906 1907 if (ep->error == EACCES && cred_otw != cr) { 1908 crfree(cred_otw); 1909 cred_otw = cr; 1910 crhold(cred_otw); 1911 nfs4_end_open_seqid_sync(oop); 1912 open_owner_rele(oop); 1913 oop = NULL; 1914 goto top; 1915 } 1916 if (ep->error == ETIMEDOUT) 1917 goto bailout; 1918 failed_msg = "Couldn't reopen: rpc error"; 1919 goto kill_file; 1920 } 1921 1922 if (nfs4_need_to_bump_seqid(&res)) 1923 nfs4_set_open_seqid(seqid, oop, args.ctag); 1924 1925 switch (res.status) { 1926 case NFS4_OK: 1927 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1928 mutex_enter(&rp->r_statelock); 1929 rp->r_delay_interval = 0; 1930 mutex_exit(&rp->r_statelock); 1931 } 1932 break; 1933 case NFS4ERR_BAD_SEQID: 1934 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1935 args.ctag, open_args->seqid); 1936 1937 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1938 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1939 NULL, OP_OPEN, bsep); 1940 1941 nfs4args_copen_free(open_args); 1942 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1943 nfs4_end_open_seqid_sync(oop); 1944 open_owner_rele(oop); 1945 oop = NULL; 1946 kmem_free(bsep, sizeof (*bsep)); 1947 1948 goto kill_file; 1949 case NFS4ERR_NO_GRACE: 1950 nfs4args_copen_free(open_args); 1951 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1952 nfs4_end_open_seqid_sync(oop); 1953 open_owner_rele(oop); 1954 oop = NULL; 1955 if (claim == CLAIM_PREVIOUS) { 1956 /* 1957 * Retry as a plain open. We don't need to worry about 1958 * checking the changeinfo: it is acceptable for a 1959 * client to re-open a file and continue processing 1960 * (in the absence of locks). 1961 */ 1962 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1963 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1964 "will retry as CLAIM_NULL")); 1965 claim = CLAIM_NULL; 1966 nfs4_mi_kstat_inc_no_grace(mi); 1967 goto top; 1968 } 1969 failed_msg = 1970 "Couldn't reopen: tried reclaim outside grace period. "; 1971 goto kill_file; 1972 case NFS4ERR_GRACE: 1973 nfs4_set_grace_wait(mi); 1974 nfs4args_copen_free(open_args); 1975 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1976 nfs4_end_open_seqid_sync(oop); 1977 open_owner_rele(oop); 1978 oop = NULL; 1979 ep->error = nfs4_wait_for_grace(mi, &recov); 1980 if (ep->error != 0) 1981 goto bailout; 1982 goto top; 1983 case NFS4ERR_DELAY: 1984 nfs4_set_delay_wait(vp); 1985 nfs4args_copen_free(open_args); 1986 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1987 nfs4_end_open_seqid_sync(oop); 1988 open_owner_rele(oop); 1989 oop = NULL; 1990 ep->error = nfs4_wait_for_delay(vp, &recov); 1991 nfs4_mi_kstat_inc_delay(mi); 1992 if (ep->error != 0) 1993 goto bailout; 1994 goto top; 1995 case NFS4ERR_FHEXPIRED: 1996 /* recover filehandle and retry */ 1997 abort = nfs4_start_recovery(ep, 1998 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL); 1999 nfs4args_copen_free(open_args); 2000 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2001 nfs4_end_open_seqid_sync(oop); 2002 open_owner_rele(oop); 2003 oop = NULL; 2004 if (abort == FALSE) 2005 goto top; 2006 failed_msg = "Couldn't reopen: recovery aborted"; 2007 goto kill_file; 2008 case NFS4ERR_RESOURCE: 2009 case NFS4ERR_STALE_CLIENTID: 2010 case NFS4ERR_WRONGSEC: 2011 case NFS4ERR_EXPIRED: 2012 /* 2013 * Do not mark the file dead and let the calling 2014 * function initiate recovery. 2015 */ 2016 nfs4args_copen_free(open_args); 2017 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2018 nfs4_end_open_seqid_sync(oop); 2019 open_owner_rele(oop); 2020 oop = NULL; 2021 goto bailout; 2022 case NFS4ERR_ACCESS: 2023 if (cred_otw != cr) { 2024 crfree(cred_otw); 2025 cred_otw = cr; 2026 crhold(cred_otw); 2027 nfs4args_copen_free(open_args); 2028 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2029 nfs4_end_open_seqid_sync(oop); 2030 open_owner_rele(oop); 2031 oop = NULL; 2032 goto top; 2033 } 2034 /* fall through */ 2035 default: 2036 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2037 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2038 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2039 rnode4info(VTOR4(vp)))); 2040 failed_msg = "Couldn't reopen: NFSv4 error"; 2041 nfs4args_copen_free(open_args); 2042 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2043 goto kill_file; 2044 } 2045 2046 resop = &res.array[1]; /* open res */ 2047 op_res = &resop->nfs_resop4_u.opopen; 2048 2049 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2050 2051 /* 2052 * Check if the path we reopened really is the same 2053 * file. We could end up in a situation where the file 2054 * was removed and a new file created with the same name. 2055 */ 2056 resop = &res.array[2]; 2057 gf_res = &resop->nfs_resop4_u.opgetfh; 2058 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2059 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2060 if (fh_different) { 2061 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2062 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2063 /* Oops, we don't have the same file */ 2064 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2065 failed_msg = "Couldn't reopen: Persistent " 2066 "file handle changed"; 2067 else 2068 failed_msg = "Couldn't reopen: Volatile " 2069 "(no expire on open) file handle changed"; 2070 2071 nfs4args_copen_free(open_args); 2072 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2073 nfs_rw_exit(&mi->mi_fh_lock); 2074 goto kill_file; 2075 2076 } else { 2077 /* 2078 * We have volatile file handles that don't compare. 2079 * If the fids are the same then we assume that the 2080 * file handle expired but the rnode still refers to 2081 * the same file object. 2082 * 2083 * First check that we have fids or not. 2084 * If we don't we have a dumb server so we will 2085 * just assume every thing is ok for now. 2086 */ 2087 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2088 rp->r_attr.va_mask & AT_NODEID && 2089 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2090 /* 2091 * We have fids, but they don't 2092 * compare. So kill the file. 2093 */ 2094 failed_msg = 2095 "Couldn't reopen: file handle changed" 2096 " due to mismatched fids"; 2097 nfs4args_copen_free(open_args); 2098 (void) xdr_free(xdr_COMPOUND4res_clnt, 2099 (caddr_t)&res); 2100 nfs_rw_exit(&mi->mi_fh_lock); 2101 goto kill_file; 2102 } else { 2103 /* 2104 * We have volatile file handles that refers 2105 * to the same file (at least they have the 2106 * same fid) or we don't have fids so we 2107 * can't tell. :(. We'll be a kind and accepting 2108 * client so we'll update the rnode's file 2109 * handle with the otw handle. 2110 * 2111 * We need to drop mi->mi_fh_lock since 2112 * sh4_update acquires it. Since there is 2113 * only one recovery thread there is no 2114 * race. 2115 */ 2116 nfs_rw_exit(&mi->mi_fh_lock); 2117 sfh4_update(rp->r_fh, &gf_res->object); 2118 } 2119 } 2120 } else { 2121 nfs_rw_exit(&mi->mi_fh_lock); 2122 } 2123 2124 ASSERT(nfs4_consistent_type(vp)); 2125 2126 /* 2127 * If the server wanted an OPEN_CONFIRM but that fails, just start 2128 * over. Presumably if there is a persistent error it will show up 2129 * when we resend the OPEN. 2130 */ 2131 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2132 bool_t retry_open = FALSE; 2133 2134 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2135 cred_otw, is_recov, &retry_open, 2136 oop, FALSE, ep, NULL); 2137 if (ep->error || ep->stat) { 2138 nfs4args_copen_free(open_args); 2139 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2140 nfs4_end_open_seqid_sync(oop); 2141 open_owner_rele(oop); 2142 oop = NULL; 2143 goto top; 2144 } 2145 } 2146 2147 mutex_enter(&osp->os_sync_lock); 2148 osp->open_stateid = op_res->stateid; 2149 osp->os_delegation = 0; 2150 /* 2151 * Need to reset this bitfield for the possible case where we were 2152 * going to OTW CLOSE the file, got a non-recoverable error, and before 2153 * we could retry the CLOSE, OPENed the file again. 2154 */ 2155 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2156 osp->os_final_close = 0; 2157 osp->os_force_close = 0; 2158 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2159 osp->os_dc_openacc = open_args->share_access; 2160 mutex_exit(&osp->os_sync_lock); 2161 2162 nfs4_end_open_seqid_sync(oop); 2163 2164 /* accept delegation, if any */ 2165 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2166 2167 nfs4args_copen_free(open_args); 2168 2169 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2170 2171 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2172 2173 ASSERT(nfs4_consistent_type(vp)); 2174 2175 open_owner_rele(oop); 2176 crfree(cr); 2177 crfree(cred_otw); 2178 return; 2179 2180 kill_file: 2181 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2182 failed_reopen: 2183 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2184 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2185 (void *)osp, (void *)cr, rnode4info(rp))); 2186 mutex_enter(&osp->os_sync_lock); 2187 osp->os_failed_reopen = 1; 2188 mutex_exit(&osp->os_sync_lock); 2189 bailout: 2190 if (oop != NULL) { 2191 nfs4_end_open_seqid_sync(oop); 2192 open_owner_rele(oop); 2193 } 2194 if (cr != NULL) 2195 crfree(cr); 2196 if (cred_otw != NULL) 2197 crfree(cred_otw); 2198 } 2199 2200 /* for . and .. OPENs */ 2201 /* ARGSUSED */ 2202 static int 2203 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2204 { 2205 rnode4_t *rp; 2206 nfs4_ga_res_t gar; 2207 2208 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2209 2210 /* 2211 * If close-to-open consistency checking is turned off or 2212 * if there is no cached data, we can avoid 2213 * the over the wire getattr. Otherwise, force a 2214 * call to the server to get fresh attributes and to 2215 * check caches. This is required for close-to-open 2216 * consistency. 2217 */ 2218 rp = VTOR4(*vpp); 2219 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2220 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2221 return (0); 2222 2223 gar.n4g_va.va_mask = AT_ALL; 2224 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2225 } 2226 2227 /* 2228 * CLOSE a file 2229 */ 2230 /* ARGSUSED */ 2231 static int 2232 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 2233 caller_context_t *ct) 2234 { 2235 rnode4_t *rp; 2236 int error = 0; 2237 int r_error = 0; 2238 int n4error = 0; 2239 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2240 2241 /* 2242 * Remove client state for this (lockowner, file) pair. 2243 * Issue otw v4 call to have the server do the same. 2244 */ 2245 2246 rp = VTOR4(vp); 2247 2248 /* 2249 * zone_enter(2) prevents processes from changing zones with NFS files 2250 * open; if we happen to get here from the wrong zone we can't do 2251 * anything over the wire. 2252 */ 2253 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2254 /* 2255 * We could attempt to clean up locks, except we're sure 2256 * that the current process didn't acquire any locks on 2257 * the file: any attempt to lock a file belong to another zone 2258 * will fail, and one can't lock an NFS file and then change 2259 * zones, as that fails too. 2260 * 2261 * Returning an error here is the sane thing to do. A 2262 * subsequent call to VN_RELE() which translates to a 2263 * nfs4_inactive() will clean up state: if the zone of the 2264 * vnode's origin is still alive and kicking, the inactive 2265 * thread will handle the request (from the correct zone), and 2266 * everything (minus the OTW close call) should be OK. If the 2267 * zone is going away nfs4_async_inactive() will throw away 2268 * delegations, open streams and cached pages inline. 2269 */ 2270 return (EIO); 2271 } 2272 2273 /* 2274 * If we are using local locking for this filesystem, then 2275 * release all of the SYSV style record locks. Otherwise, 2276 * we are doing network locking and we need to release all 2277 * of the network locks. All of the locks held by this 2278 * process on this file are released no matter what the 2279 * incoming reference count is. 2280 */ 2281 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2282 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2283 cleanshares(vp, ttoproc(curthread)->p_pid); 2284 } else 2285 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2286 2287 if (e.error) 2288 return (e.error); 2289 2290 if (count > 1) 2291 return (0); 2292 2293 /* 2294 * If the file has been `unlinked', then purge the 2295 * DNLC so that this vnode will get reycled quicker 2296 * and the .nfs* file on the server will get removed. 2297 */ 2298 if (rp->r_unldvp != NULL) 2299 dnlc_purge_vp(vp); 2300 2301 /* 2302 * If the file was open for write and there are pages, 2303 * do a synchronous flush and commit of all of the 2304 * dirty and uncommitted pages. 2305 */ 2306 ASSERT(!e.error); 2307 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2308 error = nfs4_putpage_commit(vp, 0, 0, cr); 2309 2310 mutex_enter(&rp->r_statelock); 2311 r_error = rp->r_error; 2312 rp->r_error = 0; 2313 mutex_exit(&rp->r_statelock); 2314 2315 /* 2316 * If this file type is one for which no explicit 'open' was 2317 * done, then bail now (ie. no need for protocol 'close'). If 2318 * there was an error w/the vm subsystem, return _that_ error, 2319 * otherwise, return any errors that may've been reported via 2320 * the rnode. 2321 */ 2322 if (vp->v_type != VREG) 2323 return (error ? error : r_error); 2324 2325 /* 2326 * The sync putpage commit may have failed above, but since 2327 * we're working w/a regular file, we need to do the protocol 2328 * 'close' (nfs4close_one will figure out if an otw close is 2329 * needed or not). Report any errors _after_ doing the protocol 2330 * 'close'. 2331 */ 2332 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2333 n4error = e.error ? e.error : geterrno4(e.stat); 2334 2335 /* 2336 * Error reporting prio (Hi -> Lo) 2337 * 2338 * i) nfs4_putpage_commit (error) 2339 * ii) rnode's (r_error) 2340 * iii) nfs4close_one (n4error) 2341 */ 2342 return (error ? error : (r_error ? r_error : n4error)); 2343 } 2344 2345 /* 2346 * Initialize *lost_rqstp. 2347 */ 2348 2349 static void 2350 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2351 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2352 vnode_t *vp) 2353 { 2354 if (error != ETIMEDOUT && error != EINTR && 2355 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2356 lost_rqstp->lr_op = 0; 2357 return; 2358 } 2359 2360 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2361 "nfs4close_save_lost_rqst: error %d", error)); 2362 2363 lost_rqstp->lr_op = OP_CLOSE; 2364 /* 2365 * The vp is held and rele'd via the recovery code. 2366 * See nfs4_save_lost_rqst. 2367 */ 2368 lost_rqstp->lr_vp = vp; 2369 lost_rqstp->lr_dvp = NULL; 2370 lost_rqstp->lr_oop = oop; 2371 lost_rqstp->lr_osp = osp; 2372 ASSERT(osp != NULL); 2373 ASSERT(mutex_owned(&osp->os_sync_lock)); 2374 osp->os_pending_close = 1; 2375 lost_rqstp->lr_lop = NULL; 2376 lost_rqstp->lr_cr = cr; 2377 lost_rqstp->lr_flk = NULL; 2378 lost_rqstp->lr_putfirst = FALSE; 2379 } 2380 2381 /* 2382 * Assumes you already have the open seqid sync grabbed as well as the 2383 * 'os_sync_lock'. Note: this will release the open seqid sync and 2384 * 'os_sync_lock' if client recovery starts. Calling functions have to 2385 * be prepared to handle this. 2386 * 2387 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2388 * was needed and was started, and that the calling function should retry 2389 * this function; otherwise it is returned as 0. 2390 * 2391 * Errors are returned via the nfs4_error_t parameter. 2392 */ 2393 static void 2394 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2395 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2396 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2397 { 2398 COMPOUND4args_clnt args; 2399 COMPOUND4res_clnt res; 2400 CLOSE4args *close_args; 2401 nfs_resop4 *resop; 2402 nfs_argop4 argop[3]; 2403 int doqueue = 1; 2404 mntinfo4_t *mi; 2405 seqid4 seqid; 2406 vnode_t *vp; 2407 bool_t needrecov = FALSE; 2408 nfs4_lost_rqst_t lost_rqst; 2409 hrtime_t t; 2410 2411 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2412 2413 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2414 2415 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2416 2417 /* Only set this to 1 if recovery is started */ 2418 *recov = 0; 2419 2420 /* do the OTW call to close the file */ 2421 2422 if (close_type == CLOSE_RESEND) 2423 args.ctag = TAG_CLOSE_LOST; 2424 else if (close_type == CLOSE_AFTER_RESEND) 2425 args.ctag = TAG_CLOSE_UNDO; 2426 else 2427 args.ctag = TAG_CLOSE; 2428 2429 args.array_len = 3; 2430 args.array = argop; 2431 2432 vp = RTOV4(rp); 2433 2434 mi = VTOMI4(vp); 2435 2436 /* putfh target fh */ 2437 argop[0].argop = OP_CPUTFH; 2438 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2439 2440 argop[1].argop = OP_GETATTR; 2441 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2442 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2443 2444 argop[2].argop = OP_CLOSE; 2445 close_args = &argop[2].nfs_argop4_u.opclose; 2446 2447 seqid = nfs4_get_open_seqid(oop) + 1; 2448 2449 close_args->seqid = seqid; 2450 close_args->open_stateid = osp->open_stateid; 2451 2452 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2453 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2454 rnode4info(rp))); 2455 2456 t = gethrtime(); 2457 2458 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2459 2460 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2461 nfs4_set_open_seqid(seqid, oop, args.ctag); 2462 } 2463 2464 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2465 if (ep->error && !needrecov) { 2466 /* 2467 * if there was an error and no recovery is to be done 2468 * then then set up the file to flush its cache if 2469 * needed for the next caller. 2470 */ 2471 mutex_enter(&rp->r_statelock); 2472 PURGE_ATTRCACHE4_LOCKED(rp); 2473 rp->r_flags &= ~R4WRITEMODIFIED; 2474 mutex_exit(&rp->r_statelock); 2475 return; 2476 } 2477 2478 if (needrecov) { 2479 bool_t abort; 2480 nfs4_bseqid_entry_t *bsep = NULL; 2481 2482 if (close_type != CLOSE_RESEND) 2483 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2484 osp, cred_otw, vp); 2485 2486 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2487 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2488 0, args.ctag, close_args->seqid); 2489 2490 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2491 "nfs4close_otw: initiating recovery. error %d " 2492 "res.status %d", ep->error, res.status)); 2493 2494 /* 2495 * Drop the 'os_sync_lock' here so we don't hit 2496 * a potential recursive mutex_enter via an 2497 * 'open_stream_hold()'. 2498 */ 2499 mutex_exit(&osp->os_sync_lock); 2500 *have_sync_lockp = 0; 2501 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2502 (close_type != CLOSE_RESEND && 2503 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2504 OP_CLOSE, bsep); 2505 2506 /* drop open seq sync, and let the calling function regrab it */ 2507 nfs4_end_open_seqid_sync(oop); 2508 *did_start_seqid_syncp = 0; 2509 2510 if (bsep) 2511 kmem_free(bsep, sizeof (*bsep)); 2512 /* 2513 * For signals, the caller wants to quit, so don't say to 2514 * retry. For forced unmount, if it's a user thread, it 2515 * wants to quit. If it's a recovery thread, the retry 2516 * will happen higher-up on the call stack. Either way, 2517 * don't say to retry. 2518 */ 2519 if (abort == FALSE && ep->error != EINTR && 2520 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2521 close_type != CLOSE_RESEND && 2522 close_type != CLOSE_AFTER_RESEND) 2523 *recov = 1; 2524 else 2525 *recov = 0; 2526 2527 if (!ep->error) 2528 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2529 return; 2530 } 2531 2532 if (res.status) { 2533 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2534 return; 2535 } 2536 2537 mutex_enter(&rp->r_statev4_lock); 2538 rp->created_v4 = 0; 2539 mutex_exit(&rp->r_statev4_lock); 2540 2541 resop = &res.array[2]; 2542 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2543 osp->os_valid = 0; 2544 2545 /* 2546 * This removes the reference obtained at OPEN; ie, when the 2547 * open stream structure was created. 2548 * 2549 * We don't have to worry about calling 'open_stream_rele' 2550 * since we our currently holding a reference to the open 2551 * stream which means the count cannot go to 0 with this 2552 * decrement. 2553 */ 2554 ASSERT(osp->os_ref_count >= 2); 2555 osp->os_ref_count--; 2556 2557 if (!ep->error) 2558 nfs4_attr_cache(vp, 2559 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2560 t, cred_otw, TRUE, NULL); 2561 2562 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2563 " returning %d", ep->error)); 2564 2565 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2566 } 2567 2568 /* ARGSUSED */ 2569 static int 2570 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2571 caller_context_t *ct) 2572 { 2573 rnode4_t *rp; 2574 u_offset_t off; 2575 offset_t diff; 2576 uint_t on; 2577 uint_t n; 2578 caddr_t base; 2579 uint_t flags; 2580 int error; 2581 mntinfo4_t *mi; 2582 2583 rp = VTOR4(vp); 2584 2585 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2586 2587 if (IS_SHADOW(vp, rp)) 2588 vp = RTOV4(rp); 2589 2590 if (vp->v_type != VREG) 2591 return (EISDIR); 2592 2593 mi = VTOMI4(vp); 2594 2595 if (nfs_zone() != mi->mi_zone) 2596 return (EIO); 2597 2598 if (uiop->uio_resid == 0) 2599 return (0); 2600 2601 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2602 return (EINVAL); 2603 2604 mutex_enter(&rp->r_statelock); 2605 if (rp->r_flags & R4RECOVERRP) 2606 error = (rp->r_error ? rp->r_error : EIO); 2607 else 2608 error = 0; 2609 mutex_exit(&rp->r_statelock); 2610 if (error) 2611 return (error); 2612 2613 /* 2614 * Bypass VM if caching has been disabled (e.g., locking) or if 2615 * using client-side direct I/O and the file is not mmap'd and 2616 * there are no cached pages. 2617 */ 2618 if ((vp->v_flag & VNOCACHE) || 2619 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2620 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2621 size_t resid = 0; 2622 2623 return (nfs4read(vp, NULL, uiop->uio_loffset, 2624 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2625 } 2626 2627 error = 0; 2628 2629 do { 2630 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2631 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2632 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2633 2634 if (error = nfs4_validate_caches(vp, cr)) 2635 break; 2636 2637 mutex_enter(&rp->r_statelock); 2638 while (rp->r_flags & R4INCACHEPURGE) { 2639 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2640 mutex_exit(&rp->r_statelock); 2641 return (EINTR); 2642 } 2643 } 2644 diff = rp->r_size - uiop->uio_loffset; 2645 mutex_exit(&rp->r_statelock); 2646 if (diff <= 0) 2647 break; 2648 if (diff < n) 2649 n = (uint_t)diff; 2650 2651 if (vpm_enable) { 2652 /* 2653 * Copy data. 2654 */ 2655 error = vpm_data_copy(vp, off + on, n, uiop, 2656 1, NULL, 0, S_READ); 2657 } else { 2658 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2659 S_READ); 2660 2661 error = uiomove(base + on, n, UIO_READ, uiop); 2662 } 2663 2664 if (!error) { 2665 /* 2666 * If read a whole block or read to eof, 2667 * won't need this buffer again soon. 2668 */ 2669 mutex_enter(&rp->r_statelock); 2670 if (n + on == MAXBSIZE || 2671 uiop->uio_loffset == rp->r_size) 2672 flags = SM_DONTNEED; 2673 else 2674 flags = 0; 2675 mutex_exit(&rp->r_statelock); 2676 if (vpm_enable) { 2677 error = vpm_sync_pages(vp, off, n, flags); 2678 } else { 2679 error = segmap_release(segkmap, base, flags); 2680 } 2681 } else { 2682 if (vpm_enable) { 2683 (void) vpm_sync_pages(vp, off, n, 0); 2684 } else { 2685 (void) segmap_release(segkmap, base, 0); 2686 } 2687 } 2688 } while (!error && uiop->uio_resid > 0); 2689 2690 return (error); 2691 } 2692 2693 /* ARGSUSED */ 2694 static int 2695 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2696 caller_context_t *ct) 2697 { 2698 rlim64_t limit = uiop->uio_llimit; 2699 rnode4_t *rp; 2700 u_offset_t off; 2701 caddr_t base; 2702 uint_t flags; 2703 int remainder; 2704 size_t n; 2705 int on; 2706 int error; 2707 int resid; 2708 u_offset_t offset; 2709 mntinfo4_t *mi; 2710 uint_t bsize; 2711 2712 rp = VTOR4(vp); 2713 2714 if (IS_SHADOW(vp, rp)) 2715 vp = RTOV4(rp); 2716 2717 if (vp->v_type != VREG) 2718 return (EISDIR); 2719 2720 mi = VTOMI4(vp); 2721 2722 if (nfs_zone() != mi->mi_zone) 2723 return (EIO); 2724 2725 if (uiop->uio_resid == 0) 2726 return (0); 2727 2728 mutex_enter(&rp->r_statelock); 2729 if (rp->r_flags & R4RECOVERRP) 2730 error = (rp->r_error ? rp->r_error : EIO); 2731 else 2732 error = 0; 2733 mutex_exit(&rp->r_statelock); 2734 if (error) 2735 return (error); 2736 2737 if (ioflag & FAPPEND) { 2738 struct vattr va; 2739 2740 /* 2741 * Must serialize if appending. 2742 */ 2743 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2744 nfs_rw_exit(&rp->r_rwlock); 2745 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2746 INTR(vp))) 2747 return (EINTR); 2748 } 2749 2750 va.va_mask = AT_SIZE; 2751 error = nfs4getattr(vp, &va, cr); 2752 if (error) 2753 return (error); 2754 uiop->uio_loffset = va.va_size; 2755 } 2756 2757 offset = uiop->uio_loffset + uiop->uio_resid; 2758 2759 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2760 return (EINVAL); 2761 2762 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2763 limit = MAXOFFSET_T; 2764 2765 /* 2766 * Check to make sure that the process will not exceed 2767 * its limit on file size. It is okay to write up to 2768 * the limit, but not beyond. Thus, the write which 2769 * reaches the limit will be short and the next write 2770 * will return an error. 2771 */ 2772 remainder = 0; 2773 if (offset > uiop->uio_llimit) { 2774 remainder = offset - uiop->uio_llimit; 2775 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2776 if (uiop->uio_resid <= 0) { 2777 proc_t *p = ttoproc(curthread); 2778 2779 uiop->uio_resid += remainder; 2780 mutex_enter(&p->p_lock); 2781 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2782 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2783 mutex_exit(&p->p_lock); 2784 return (EFBIG); 2785 } 2786 } 2787 2788 /* update the change attribute, if we have a write delegation */ 2789 2790 mutex_enter(&rp->r_statev4_lock); 2791 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2792 rp->r_deleg_change++; 2793 2794 mutex_exit(&rp->r_statev4_lock); 2795 2796 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2797 return (EINTR); 2798 2799 /* 2800 * Bypass VM if caching has been disabled (e.g., locking) or if 2801 * using client-side direct I/O and the file is not mmap'd and 2802 * there are no cached pages. 2803 */ 2804 if ((vp->v_flag & VNOCACHE) || 2805 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2806 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2807 size_t bufsize; 2808 int count; 2809 u_offset_t org_offset; 2810 stable_how4 stab_comm; 2811 nfs4_fwrite: 2812 if (rp->r_flags & R4STALE) { 2813 resid = uiop->uio_resid; 2814 offset = uiop->uio_loffset; 2815 error = rp->r_error; 2816 goto bottom; 2817 } 2818 2819 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2820 base = kmem_alloc(bufsize, KM_SLEEP); 2821 do { 2822 if (ioflag & FDSYNC) 2823 stab_comm = DATA_SYNC4; 2824 else 2825 stab_comm = FILE_SYNC4; 2826 resid = uiop->uio_resid; 2827 offset = uiop->uio_loffset; 2828 count = MIN(uiop->uio_resid, bufsize); 2829 org_offset = uiop->uio_loffset; 2830 error = uiomove(base, count, UIO_WRITE, uiop); 2831 if (!error) { 2832 error = nfs4write(vp, base, org_offset, 2833 count, cr, &stab_comm); 2834 if (!error) { 2835 mutex_enter(&rp->r_statelock); 2836 if (rp->r_size < uiop->uio_loffset) 2837 rp->r_size = uiop->uio_loffset; 2838 mutex_exit(&rp->r_statelock); 2839 } 2840 } 2841 } while (!error && uiop->uio_resid > 0); 2842 kmem_free(base, bufsize); 2843 goto bottom; 2844 } 2845 2846 bsize = vp->v_vfsp->vfs_bsize; 2847 2848 do { 2849 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2850 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2851 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2852 2853 resid = uiop->uio_resid; 2854 offset = uiop->uio_loffset; 2855 2856 if (rp->r_flags & R4STALE) { 2857 error = rp->r_error; 2858 break; 2859 } 2860 2861 /* 2862 * Don't create dirty pages faster than they 2863 * can be cleaned so that the system doesn't 2864 * get imbalanced. If the async queue is 2865 * maxed out, then wait for it to drain before 2866 * creating more dirty pages. Also, wait for 2867 * any threads doing pagewalks in the vop_getattr 2868 * entry points so that they don't block for 2869 * long periods. 2870 */ 2871 mutex_enter(&rp->r_statelock); 2872 while ((mi->mi_max_threads != 0 && 2873 rp->r_awcount > 2 * mi->mi_max_threads) || 2874 rp->r_gcount > 0) 2875 cv_wait(&rp->r_cv, &rp->r_statelock); 2876 mutex_exit(&rp->r_statelock); 2877 2878 if (vpm_enable) { 2879 /* 2880 * It will use kpm mappings, so no need to 2881 * pass an address. 2882 */ 2883 error = writerp4(rp, NULL, n, uiop, 0); 2884 } else { 2885 if (segmap_kpm) { 2886 int pon = uiop->uio_loffset & PAGEOFFSET; 2887 size_t pn = MIN(PAGESIZE - pon, 2888 uiop->uio_resid); 2889 int pagecreate; 2890 2891 mutex_enter(&rp->r_statelock); 2892 pagecreate = (pon == 0) && (pn == PAGESIZE || 2893 uiop->uio_loffset + pn >= rp->r_size); 2894 mutex_exit(&rp->r_statelock); 2895 2896 base = segmap_getmapflt(segkmap, vp, off + on, 2897 pn, !pagecreate, S_WRITE); 2898 2899 error = writerp4(rp, base + pon, n, uiop, 2900 pagecreate); 2901 2902 } else { 2903 base = segmap_getmapflt(segkmap, vp, off + on, 2904 n, 0, S_READ); 2905 error = writerp4(rp, base + on, n, uiop, 0); 2906 } 2907 } 2908 2909 if (!error) { 2910 if (mi->mi_flags & MI4_NOAC) 2911 flags = SM_WRITE; 2912 else if ((uiop->uio_loffset % bsize) == 0 || 2913 IS_SWAPVP(vp)) { 2914 /* 2915 * Have written a whole block. 2916 * Start an asynchronous write 2917 * and mark the buffer to 2918 * indicate that it won't be 2919 * needed again soon. 2920 */ 2921 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2922 } else 2923 flags = 0; 2924 if ((ioflag & (FSYNC|FDSYNC)) || 2925 (rp->r_flags & R4OUTOFSPACE)) { 2926 flags &= ~SM_ASYNC; 2927 flags |= SM_WRITE; 2928 } 2929 if (vpm_enable) { 2930 error = vpm_sync_pages(vp, off, n, flags); 2931 } else { 2932 error = segmap_release(segkmap, base, flags); 2933 } 2934 } else { 2935 if (vpm_enable) { 2936 (void) vpm_sync_pages(vp, off, n, 0); 2937 } else { 2938 (void) segmap_release(segkmap, base, 0); 2939 } 2940 /* 2941 * In the event that we got an access error while 2942 * faulting in a page for a write-only file just 2943 * force a write. 2944 */ 2945 if (error == EACCES) 2946 goto nfs4_fwrite; 2947 } 2948 } while (!error && uiop->uio_resid > 0); 2949 2950 bottom: 2951 if (error) { 2952 uiop->uio_resid = resid + remainder; 2953 uiop->uio_loffset = offset; 2954 } else { 2955 uiop->uio_resid += remainder; 2956 2957 mutex_enter(&rp->r_statev4_lock); 2958 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 2959 gethrestime(&rp->r_attr.va_mtime); 2960 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 2961 } 2962 mutex_exit(&rp->r_statev4_lock); 2963 } 2964 2965 nfs_rw_exit(&rp->r_lkserlock); 2966 2967 return (error); 2968 } 2969 2970 /* 2971 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 2972 */ 2973 static int 2974 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 2975 int flags, cred_t *cr) 2976 { 2977 struct buf *bp; 2978 int error; 2979 page_t *savepp; 2980 uchar_t fsdata; 2981 stable_how4 stab_comm; 2982 2983 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 2984 bp = pageio_setup(pp, len, vp, flags); 2985 ASSERT(bp != NULL); 2986 2987 /* 2988 * pageio_setup should have set b_addr to 0. This 2989 * is correct since we want to do I/O on a page 2990 * boundary. bp_mapin will use this addr to calculate 2991 * an offset, and then set b_addr to the kernel virtual 2992 * address it allocated for us. 2993 */ 2994 ASSERT(bp->b_un.b_addr == 0); 2995 2996 bp->b_edev = 0; 2997 bp->b_dev = 0; 2998 bp->b_lblkno = lbtodb(off); 2999 bp->b_file = vp; 3000 bp->b_offset = (offset_t)off; 3001 bp_mapin(bp); 3002 3003 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 3004 freemem > desfree) 3005 stab_comm = UNSTABLE4; 3006 else 3007 stab_comm = FILE_SYNC4; 3008 3009 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 3010 3011 bp_mapout(bp); 3012 pageio_done(bp); 3013 3014 if (stab_comm == UNSTABLE4) 3015 fsdata = C_DELAYCOMMIT; 3016 else 3017 fsdata = C_NOCOMMIT; 3018 3019 savepp = pp; 3020 do { 3021 pp->p_fsdata = fsdata; 3022 } while ((pp = pp->p_next) != savepp); 3023 3024 return (error); 3025 } 3026 3027 /* 3028 */ 3029 static int 3030 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 3031 { 3032 nfs4_open_owner_t *oop; 3033 nfs4_open_stream_t *osp; 3034 rnode4_t *rp = VTOR4(vp); 3035 mntinfo4_t *mi = VTOMI4(vp); 3036 int reopen_needed; 3037 3038 ASSERT(nfs_zone() == mi->mi_zone); 3039 3040 3041 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3042 if (!oop) 3043 return (EIO); 3044 3045 /* returns with 'os_sync_lock' held */ 3046 osp = find_open_stream(oop, rp); 3047 if (!osp) { 3048 open_owner_rele(oop); 3049 return (EIO); 3050 } 3051 3052 if (osp->os_failed_reopen) { 3053 mutex_exit(&osp->os_sync_lock); 3054 open_stream_rele(osp, rp); 3055 open_owner_rele(oop); 3056 return (EIO); 3057 } 3058 3059 /* 3060 * Determine whether a reopen is needed. If this 3061 * is a delegation open stream, then the os_delegation bit 3062 * should be set. 3063 */ 3064 3065 reopen_needed = osp->os_delegation; 3066 3067 mutex_exit(&osp->os_sync_lock); 3068 open_owner_rele(oop); 3069 3070 if (reopen_needed) { 3071 nfs4_error_zinit(ep); 3072 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3073 mutex_enter(&osp->os_sync_lock); 3074 if (ep->error || ep->stat || osp->os_failed_reopen) { 3075 mutex_exit(&osp->os_sync_lock); 3076 open_stream_rele(osp, rp); 3077 return (EIO); 3078 } 3079 mutex_exit(&osp->os_sync_lock); 3080 } 3081 open_stream_rele(osp, rp); 3082 3083 return (0); 3084 } 3085 3086 /* 3087 * Write to file. Writes to remote server in largest size 3088 * chunks that the server can handle. Write is synchronous. 3089 */ 3090 static int 3091 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3092 stable_how4 *stab_comm) 3093 { 3094 mntinfo4_t *mi; 3095 COMPOUND4args_clnt args; 3096 COMPOUND4res_clnt res; 3097 WRITE4args *wargs; 3098 WRITE4res *wres; 3099 nfs_argop4 argop[2]; 3100 nfs_resop4 *resop; 3101 int tsize; 3102 stable_how4 stable; 3103 rnode4_t *rp; 3104 int doqueue = 1; 3105 bool_t needrecov; 3106 nfs4_recov_state_t recov_state; 3107 nfs4_stateid_types_t sid_types; 3108 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3109 3110 rp = VTOR4(vp); 3111 mi = VTOMI4(vp); 3112 3113 ASSERT(nfs_zone() == mi->mi_zone); 3114 3115 stable = *stab_comm; 3116 *stab_comm = FILE_SYNC4; 3117 3118 needrecov = FALSE; 3119 recov_state.rs_flags = 0; 3120 recov_state.rs_num_retry_despite_err = 0; 3121 nfs4_init_stateid_types(&sid_types); 3122 3123 recov_retry: 3124 args.ctag = TAG_WRITE; 3125 args.array_len = 2; 3126 args.array = argop; 3127 3128 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3129 &recov_state, NULL); 3130 if (e.error) 3131 return (e.error); 3132 3133 /* 0. putfh target fh */ 3134 argop[0].argop = OP_CPUTFH; 3135 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3136 3137 /* 1. write */ 3138 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3139 3140 do { 3141 3142 wargs->offset = (offset4)offset; 3143 wargs->data_val = base; 3144 3145 if (mi->mi_io_kstats) { 3146 mutex_enter(&mi->mi_lock); 3147 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3148 mutex_exit(&mi->mi_lock); 3149 } 3150 3151 if ((vp->v_flag & VNOCACHE) || 3152 (rp->r_flags & R4DIRECTIO) || 3153 (mi->mi_flags & MI4_DIRECTIO)) 3154 tsize = MIN(mi->mi_stsize, count); 3155 else 3156 tsize = MIN(mi->mi_curwrite, count); 3157 wargs->data_len = (uint_t)tsize; 3158 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3159 3160 if (mi->mi_io_kstats) { 3161 mutex_enter(&mi->mi_lock); 3162 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3163 mutex_exit(&mi->mi_lock); 3164 } 3165 3166 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3167 if (e.error && !needrecov) { 3168 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3169 &recov_state, needrecov); 3170 return (e.error); 3171 } 3172 3173 3174 /* 3175 * Do handling of OLD_STATEID outside 3176 * of the normal recovery framework. 3177 * 3178 * If write receives a BAD stateid error while using a 3179 * delegation stateid, retry using the open stateid (if it 3180 * exists). If it doesn't have an open stateid, reopen the 3181 * file first, then retry. 3182 */ 3183 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3184 sid_types.cur_sid_type != SPEC_SID) { 3185 nfs4_save_stateid(&wargs->stateid, &sid_types); 3186 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3187 &recov_state, needrecov); 3188 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3189 goto recov_retry; 3190 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3191 sid_types.cur_sid_type == DEL_SID) { 3192 nfs4_save_stateid(&wargs->stateid, &sid_types); 3193 mutex_enter(&rp->r_statev4_lock); 3194 rp->r_deleg_return_pending = TRUE; 3195 mutex_exit(&rp->r_statev4_lock); 3196 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3197 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3198 &recov_state, needrecov); 3199 (void) xdr_free(xdr_COMPOUND4res_clnt, 3200 (caddr_t)&res); 3201 return (EIO); 3202 } 3203 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3204 &recov_state, needrecov); 3205 /* hold needed for nfs4delegreturn_thread */ 3206 VN_HOLD(vp); 3207 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3208 NFS4_DR_DISCARD), FALSE); 3209 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3210 goto recov_retry; 3211 } 3212 3213 if (needrecov) { 3214 bool_t abort; 3215 3216 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3217 "nfs4write: client got error %d, res.status %d" 3218 ", so start recovery", e.error, res.status)); 3219 3220 abort = nfs4_start_recovery(&e, 3221 VTOMI4(vp), vp, NULL, &wargs->stateid, 3222 NULL, OP_WRITE, NULL); 3223 if (!e.error) { 3224 e.error = geterrno4(res.status); 3225 (void) xdr_free(xdr_COMPOUND4res_clnt, 3226 (caddr_t)&res); 3227 } 3228 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3229 &recov_state, needrecov); 3230 if (abort == FALSE) 3231 goto recov_retry; 3232 return (e.error); 3233 } 3234 3235 if (res.status) { 3236 e.error = geterrno4(res.status); 3237 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3238 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3239 &recov_state, needrecov); 3240 return (e.error); 3241 } 3242 3243 resop = &res.array[1]; /* write res */ 3244 wres = &resop->nfs_resop4_u.opwrite; 3245 3246 if ((int)wres->count > tsize) { 3247 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3248 3249 zcmn_err(getzoneid(), CE_WARN, 3250 "nfs4write: server wrote %u, requested was %u", 3251 (int)wres->count, tsize); 3252 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3253 &recov_state, needrecov); 3254 return (EIO); 3255 } 3256 if (wres->committed == UNSTABLE4) { 3257 *stab_comm = UNSTABLE4; 3258 if (wargs->stable == DATA_SYNC4 || 3259 wargs->stable == FILE_SYNC4) { 3260 (void) xdr_free(xdr_COMPOUND4res_clnt, 3261 (caddr_t)&res); 3262 zcmn_err(getzoneid(), CE_WARN, 3263 "nfs4write: server %s did not commit " 3264 "to stable storage", 3265 rp->r_server->sv_hostname); 3266 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3267 &recov_state, needrecov); 3268 return (EIO); 3269 } 3270 } 3271 3272 tsize = (int)wres->count; 3273 count -= tsize; 3274 base += tsize; 3275 offset += tsize; 3276 if (mi->mi_io_kstats) { 3277 mutex_enter(&mi->mi_lock); 3278 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3279 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3280 tsize; 3281 mutex_exit(&mi->mi_lock); 3282 } 3283 lwp_stat_update(LWP_STAT_OUBLK, 1); 3284 mutex_enter(&rp->r_statelock); 3285 if (rp->r_flags & R4HAVEVERF) { 3286 if (rp->r_writeverf != wres->writeverf) { 3287 nfs4_set_mod(vp); 3288 rp->r_writeverf = wres->writeverf; 3289 } 3290 } else { 3291 rp->r_writeverf = wres->writeverf; 3292 rp->r_flags |= R4HAVEVERF; 3293 } 3294 PURGE_ATTRCACHE4_LOCKED(rp); 3295 rp->r_flags |= R4WRITEMODIFIED; 3296 gethrestime(&rp->r_attr.va_mtime); 3297 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3298 mutex_exit(&rp->r_statelock); 3299 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3300 } while (count); 3301 3302 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, needrecov); 3303 3304 return (e.error); 3305 } 3306 3307 /* 3308 * Read from a file. Reads data in largest chunks our interface can handle. 3309 */ 3310 static int 3311 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3312 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3313 { 3314 mntinfo4_t *mi; 3315 COMPOUND4args_clnt args; 3316 COMPOUND4res_clnt res; 3317 READ4args *rargs; 3318 nfs_argop4 argop[2]; 3319 int tsize; 3320 int doqueue; 3321 rnode4_t *rp; 3322 int data_len; 3323 bool_t is_eof; 3324 bool_t needrecov = FALSE; 3325 nfs4_recov_state_t recov_state; 3326 nfs4_stateid_types_t sid_types; 3327 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3328 3329 rp = VTOR4(vp); 3330 mi = VTOMI4(vp); 3331 doqueue = 1; 3332 3333 ASSERT(nfs_zone() == mi->mi_zone); 3334 3335 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3336 3337 args.array_len = 2; 3338 args.array = argop; 3339 3340 nfs4_init_stateid_types(&sid_types); 3341 3342 recov_state.rs_flags = 0; 3343 recov_state.rs_num_retry_despite_err = 0; 3344 3345 recov_retry: 3346 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3347 &recov_state, NULL); 3348 if (e.error) 3349 return (e.error); 3350 3351 /* putfh target fh */ 3352 argop[0].argop = OP_CPUTFH; 3353 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3354 3355 /* read */ 3356 argop[1].argop = OP_READ; 3357 rargs = &argop[1].nfs_argop4_u.opread; 3358 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3359 OP_READ, &sid_types, async); 3360 3361 do { 3362 if (mi->mi_io_kstats) { 3363 mutex_enter(&mi->mi_lock); 3364 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3365 mutex_exit(&mi->mi_lock); 3366 } 3367 3368 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3369 "nfs4read: %s call, rp %s", 3370 needrecov ? "recov" : "first", 3371 rnode4info(rp))); 3372 3373 if ((vp->v_flag & VNOCACHE) || 3374 (rp->r_flags & R4DIRECTIO) || 3375 (mi->mi_flags & MI4_DIRECTIO)) 3376 tsize = MIN(mi->mi_tsize, count); 3377 else 3378 tsize = MIN(mi->mi_curread, count); 3379 rargs->offset = (offset4)offset; 3380 rargs->count = (count4)tsize; 3381 rargs->res_data_val_alt = NULL; 3382 rargs->res_mblk = NULL; 3383 rargs->res_uiop = NULL; 3384 rargs->res_maxsize = 0; 3385 if (uiop) 3386 rargs->res_uiop = uiop; 3387 else 3388 rargs->res_data_val_alt = base; 3389 rargs->res_maxsize = tsize; 3390 3391 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3392 #ifdef DEBUG 3393 if (nfs4read_error_inject) { 3394 res.status = nfs4read_error_inject; 3395 nfs4read_error_inject = 0; 3396 } 3397 #endif 3398 3399 if (mi->mi_io_kstats) { 3400 mutex_enter(&mi->mi_lock); 3401 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3402 mutex_exit(&mi->mi_lock); 3403 } 3404 3405 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3406 if (e.error != 0 && !needrecov) { 3407 nfs4_end_fop(mi, vp, NULL, OH_READ, 3408 &recov_state, needrecov); 3409 return (e.error); 3410 } 3411 3412 /* 3413 * Do proper retry for OLD and BAD stateid errors outside 3414 * of the normal recovery framework. There are two differences 3415 * between async and sync reads. The first is that we allow 3416 * retry on BAD_STATEID for async reads, but not sync reads. 3417 * The second is that we mark the file dead for a failed 3418 * attempt with a special stateid for sync reads, but just 3419 * return EIO for async reads. 3420 * 3421 * If a sync read receives a BAD stateid error while using a 3422 * delegation stateid, retry using the open stateid (if it 3423 * exists). If it doesn't have an open stateid, reopen the 3424 * file first, then retry. 3425 */ 3426 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3427 res.status == NFS4ERR_BAD_STATEID) && async) { 3428 nfs4_end_fop(mi, vp, NULL, OH_READ, 3429 &recov_state, needrecov); 3430 if (sid_types.cur_sid_type == SPEC_SID) { 3431 (void) xdr_free(xdr_COMPOUND4res_clnt, 3432 (caddr_t)&res); 3433 return (EIO); 3434 } 3435 nfs4_save_stateid(&rargs->stateid, &sid_types); 3436 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3437 goto recov_retry; 3438 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3439 !async && sid_types.cur_sid_type != SPEC_SID) { 3440 nfs4_save_stateid(&rargs->stateid, &sid_types); 3441 nfs4_end_fop(mi, vp, NULL, OH_READ, 3442 &recov_state, needrecov); 3443 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3444 goto recov_retry; 3445 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3446 sid_types.cur_sid_type == DEL_SID) { 3447 nfs4_save_stateid(&rargs->stateid, &sid_types); 3448 mutex_enter(&rp->r_statev4_lock); 3449 rp->r_deleg_return_pending = TRUE; 3450 mutex_exit(&rp->r_statev4_lock); 3451 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3452 nfs4_end_fop(mi, vp, NULL, OH_READ, 3453 &recov_state, needrecov); 3454 (void) xdr_free(xdr_COMPOUND4res_clnt, 3455 (caddr_t)&res); 3456 return (EIO); 3457 } 3458 nfs4_end_fop(mi, vp, NULL, OH_READ, 3459 &recov_state, needrecov); 3460 /* hold needed for nfs4delegreturn_thread */ 3461 VN_HOLD(vp); 3462 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3463 NFS4_DR_DISCARD), FALSE); 3464 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3465 goto recov_retry; 3466 } 3467 if (needrecov) { 3468 bool_t abort; 3469 3470 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3471 "nfs4read: initiating recovery\n")); 3472 3473 abort = nfs4_start_recovery(&e, 3474 mi, vp, NULL, &rargs->stateid, 3475 NULL, OP_READ, NULL); 3476 nfs4_end_fop(mi, vp, NULL, OH_READ, 3477 &recov_state, needrecov); 3478 /* 3479 * Do not retry if we got OLD_STATEID using a special 3480 * stateid. This avoids looping with a broken server. 3481 */ 3482 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3483 sid_types.cur_sid_type == SPEC_SID) 3484 abort = TRUE; 3485 3486 if (abort == FALSE) { 3487 /* 3488 * Need to retry all possible stateids in 3489 * case the recovery error wasn't stateid 3490 * related or the stateids have become 3491 * stale (server reboot). 3492 */ 3493 nfs4_init_stateid_types(&sid_types); 3494 (void) xdr_free(xdr_COMPOUND4res_clnt, 3495 (caddr_t)&res); 3496 goto recov_retry; 3497 } 3498 3499 if (!e.error) { 3500 e.error = geterrno4(res.status); 3501 (void) xdr_free(xdr_COMPOUND4res_clnt, 3502 (caddr_t)&res); 3503 } 3504 return (e.error); 3505 } 3506 3507 if (res.status) { 3508 e.error = geterrno4(res.status); 3509 nfs4_end_fop(mi, vp, NULL, OH_READ, 3510 &recov_state, needrecov); 3511 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3512 return (e.error); 3513 } 3514 3515 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3516 count -= data_len; 3517 if (base) 3518 base += data_len; 3519 offset += data_len; 3520 if (mi->mi_io_kstats) { 3521 mutex_enter(&mi->mi_lock); 3522 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3523 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3524 mutex_exit(&mi->mi_lock); 3525 } 3526 lwp_stat_update(LWP_STAT_INBLK, 1); 3527 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3528 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3529 3530 } while (count && !is_eof); 3531 3532 *residp = count; 3533 3534 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3535 3536 return (e.error); 3537 } 3538 3539 /* ARGSUSED */ 3540 static int 3541 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 3542 caller_context_t *ct) 3543 { 3544 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3545 return (EIO); 3546 switch (cmd) { 3547 case _FIODIRECTIO: 3548 return (nfs4_directio(vp, (int)arg, cr)); 3549 default: 3550 return (ENOTTY); 3551 } 3552 } 3553 3554 /* ARGSUSED */ 3555 int 3556 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3557 caller_context_t *ct) 3558 { 3559 int error; 3560 rnode4_t *rp = VTOR4(vp); 3561 3562 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3563 return (EIO); 3564 /* 3565 * If it has been specified that the return value will 3566 * just be used as a hint, and we are only being asked 3567 * for size, fsid or rdevid, then return the client's 3568 * notion of these values without checking to make sure 3569 * that the attribute cache is up to date. 3570 * The whole point is to avoid an over the wire GETATTR 3571 * call. 3572 */ 3573 if (flags & ATTR_HINT) { 3574 if (vap->va_mask == 3575 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 3576 mutex_enter(&rp->r_statelock); 3577 if (vap->va_mask | AT_SIZE) 3578 vap->va_size = rp->r_size; 3579 if (vap->va_mask | AT_FSID) 3580 vap->va_fsid = rp->r_attr.va_fsid; 3581 if (vap->va_mask | AT_RDEV) 3582 vap->va_rdev = rp->r_attr.va_rdev; 3583 mutex_exit(&rp->r_statelock); 3584 return (0); 3585 } 3586 } 3587 3588 /* 3589 * Only need to flush pages if asking for the mtime 3590 * and if there any dirty pages or any outstanding 3591 * asynchronous (write) requests for this file. 3592 */ 3593 if (vap->va_mask & AT_MTIME) { 3594 rp = VTOR4(vp); 3595 if (nfs4_has_pages(vp)) { 3596 mutex_enter(&rp->r_statev4_lock); 3597 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3598 mutex_exit(&rp->r_statev4_lock); 3599 if (rp->r_flags & R4DIRTY || 3600 rp->r_awcount > 0) { 3601 mutex_enter(&rp->r_statelock); 3602 rp->r_gcount++; 3603 mutex_exit(&rp->r_statelock); 3604 error = 3605 nfs4_putpage(vp, (u_offset_t)0, 3606 0, 0, cr, NULL); 3607 mutex_enter(&rp->r_statelock); 3608 if (error && (error == ENOSPC || 3609 error == EDQUOT)) { 3610 if (!rp->r_error) 3611 rp->r_error = error; 3612 } 3613 if (--rp->r_gcount == 0) 3614 cv_broadcast(&rp->r_cv); 3615 mutex_exit(&rp->r_statelock); 3616 } 3617 } else { 3618 mutex_exit(&rp->r_statev4_lock); 3619 } 3620 } 3621 } 3622 return (nfs4getattr(vp, vap, cr)); 3623 } 3624 3625 int 3626 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3627 { 3628 /* 3629 * If these are the only two bits cleared 3630 * on the server then return 0 (OK) else 3631 * return 1 (BAD). 3632 */ 3633 on_client &= ~(S_ISUID|S_ISGID); 3634 if (on_client == from_server) 3635 return (0); 3636 else 3637 return (1); 3638 } 3639 3640 /*ARGSUSED4*/ 3641 static int 3642 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3643 caller_context_t *ct) 3644 { 3645 if (vap->va_mask & AT_NOSET) 3646 return (EINVAL); 3647 3648 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3649 return (EIO); 3650 3651 /* 3652 * Don't call secpolicy_vnode_setattr, the client cannot 3653 * use its cached attributes to make security decisions 3654 * as the server may be faking mode bits or mapping uid/gid. 3655 * Always just let the server to the checking. 3656 * If we provide the ability to remove basic priviledges 3657 * to setattr (e.g. basic without chmod) then we will 3658 * need to add a check here before calling the server. 3659 */ 3660 3661 return (nfs4setattr(vp, vap, flags, cr, NULL)); 3662 } 3663 3664 /* 3665 * To replace the "guarded" version 3 setattr, we use two types of compound 3666 * setattr requests: 3667 * 1. The "normal" setattr, used when the size of the file isn't being 3668 * changed - { Putfh <fh>; Setattr; Getattr }/ 3669 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3670 * with only ctime as the argument. If the server ctime differs from 3671 * what is cached on the client, the verify will fail, but we would 3672 * already have the ctime from the preceding getattr, so just set it 3673 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3674 * Setattr; Getattr }. 3675 * 3676 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3677 * this setattr and NULL if they are not. 3678 */ 3679 static int 3680 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3681 vsecattr_t *vsap) 3682 { 3683 COMPOUND4args_clnt args; 3684 COMPOUND4res_clnt res, *resp = NULL; 3685 nfs4_ga_res_t *garp = NULL; 3686 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3687 nfs_argop4 argop[5]; 3688 int verify_argop = -1; 3689 int setattr_argop = 1; 3690 nfs_resop4 *resop; 3691 vattr_t va; 3692 rnode4_t *rp; 3693 int doqueue = 1; 3694 uint_t mask = vap->va_mask; 3695 mode_t omode; 3696 vsecattr_t *vsp; 3697 timestruc_t ctime; 3698 bool_t needrecov = FALSE; 3699 nfs4_recov_state_t recov_state; 3700 nfs4_stateid_types_t sid_types; 3701 stateid4 stateid; 3702 hrtime_t t; 3703 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3704 servinfo4_t *svp; 3705 bitmap4 supp_attrs; 3706 3707 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3708 rp = VTOR4(vp); 3709 nfs4_init_stateid_types(&sid_types); 3710 3711 /* 3712 * Only need to flush pages if there are any pages and 3713 * if the file is marked as dirty in some fashion. The 3714 * file must be flushed so that we can accurately 3715 * determine the size of the file and the cached data 3716 * after the SETATTR returns. A file is considered to 3717 * be dirty if it is either marked with R4DIRTY, has 3718 * outstanding i/o's active, or is mmap'd. In this 3719 * last case, we can't tell whether there are dirty 3720 * pages, so we flush just to be sure. 3721 */ 3722 if (nfs4_has_pages(vp) && 3723 ((rp->r_flags & R4DIRTY) || 3724 rp->r_count > 0 || 3725 rp->r_mapcnt > 0)) { 3726 ASSERT(vp->v_type != VCHR); 3727 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 3728 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3729 mutex_enter(&rp->r_statelock); 3730 if (!rp->r_error) 3731 rp->r_error = e.error; 3732 mutex_exit(&rp->r_statelock); 3733 } 3734 } 3735 3736 if (mask & AT_SIZE) { 3737 /* 3738 * Verification setattr compound for non-deleg AT_SIZE: 3739 * { Putfh; Getattr; Verify; Setattr; Getattr } 3740 * Set ctime local here (outside the do_again label) 3741 * so that subsequent retries (after failed VERIFY) 3742 * will use ctime from GETATTR results (from failed 3743 * verify compound) as VERIFY arg. 3744 * If file has delegation, then VERIFY(time_metadata) 3745 * is of little added value, so don't bother. 3746 */ 3747 mutex_enter(&rp->r_statev4_lock); 3748 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3749 rp->r_deleg_return_pending) { 3750 numops = 5; 3751 ctime = rp->r_attr.va_ctime; 3752 } 3753 mutex_exit(&rp->r_statev4_lock); 3754 } 3755 3756 recov_state.rs_flags = 0; 3757 recov_state.rs_num_retry_despite_err = 0; 3758 3759 args.ctag = TAG_SETATTR; 3760 do_again: 3761 recov_retry: 3762 setattr_argop = numops - 2; 3763 3764 args.array = argop; 3765 args.array_len = numops; 3766 3767 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3768 if (e.error) 3769 return (e.error); 3770 3771 3772 /* putfh target fh */ 3773 argop[0].argop = OP_CPUTFH; 3774 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3775 3776 if (numops == 5) { 3777 /* 3778 * We only care about the ctime, but need to get mtime 3779 * and size for proper cache update. 3780 */ 3781 /* getattr */ 3782 argop[1].argop = OP_GETATTR; 3783 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3784 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3785 3786 /* verify - set later in loop */ 3787 verify_argop = 2; 3788 } 3789 3790 /* setattr */ 3791 svp = rp->r_server; 3792 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3793 supp_attrs = svp->sv_supp_attrs; 3794 nfs_rw_exit(&svp->sv_lock); 3795 3796 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3797 supp_attrs, &e.error, &sid_types); 3798 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3799 if (e.error) { 3800 /* req time field(s) overflow - return immediately */ 3801 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3802 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3803 opsetattr.obj_attributes); 3804 return (e.error); 3805 } 3806 omode = rp->r_attr.va_mode; 3807 3808 /* getattr */ 3809 argop[numops-1].argop = OP_GETATTR; 3810 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3811 /* 3812 * If we are setting the ACL (indicated only by vsap != NULL), request 3813 * the ACL in this getattr. The ACL returned from this getattr will be 3814 * used in updating the ACL cache. 3815 */ 3816 if (vsap != NULL) 3817 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3818 FATTR4_ACL_MASK; 3819 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3820 3821 /* 3822 * setattr iterates if the object size is set and the cached ctime 3823 * does not match the file ctime. In that case, verify the ctime first. 3824 */ 3825 3826 do { 3827 if (verify_argop != -1) { 3828 /* 3829 * Verify that the ctime match before doing setattr. 3830 */ 3831 va.va_mask = AT_CTIME; 3832 va.va_ctime = ctime; 3833 svp = rp->r_server; 3834 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3835 supp_attrs = svp->sv_supp_attrs; 3836 nfs_rw_exit(&svp->sv_lock); 3837 e.error = nfs4args_verify(&argop[verify_argop], &va, 3838 OP_VERIFY, supp_attrs); 3839 if (e.error) { 3840 /* req time field(s) overflow - return */ 3841 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3842 needrecov); 3843 break; 3844 } 3845 } 3846 3847 doqueue = 1; 3848 3849 t = gethrtime(); 3850 3851 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3852 3853 /* 3854 * Purge the access cache and ACL cache if changing either the 3855 * owner of the file, the group owner, or the mode. These may 3856 * change the access permissions of the file, so purge old 3857 * information and start over again. 3858 */ 3859 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3860 (void) nfs4_access_purge_rp(rp); 3861 if (rp->r_secattr != NULL) { 3862 mutex_enter(&rp->r_statelock); 3863 vsp = rp->r_secattr; 3864 rp->r_secattr = NULL; 3865 mutex_exit(&rp->r_statelock); 3866 if (vsp != NULL) 3867 nfs4_acl_free_cache(vsp); 3868 } 3869 } 3870 3871 /* 3872 * If res.array_len == numops, then everything succeeded, 3873 * except for possibly the final getattr. If only the 3874 * last getattr failed, give up, and don't try recovery. 3875 */ 3876 if (res.array_len == numops) { 3877 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3878 needrecov); 3879 if (! e.error) 3880 resp = &res; 3881 break; 3882 } 3883 3884 /* 3885 * if either rpc call failed or completely succeeded - done 3886 */ 3887 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3888 if (e.error) { 3889 PURGE_ATTRCACHE4(vp); 3890 if (!needrecov) { 3891 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3892 needrecov); 3893 break; 3894 } 3895 } 3896 3897 /* 3898 * Do proper retry for OLD_STATEID outside of the normal 3899 * recovery framework. 3900 */ 3901 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3902 sid_types.cur_sid_type != SPEC_SID && 3903 sid_types.cur_sid_type != NO_SID) { 3904 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3905 needrecov); 3906 nfs4_save_stateid(&stateid, &sid_types); 3907 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3908 opsetattr.obj_attributes); 3909 if (verify_argop != -1) { 3910 nfs4args_verify_free(&argop[verify_argop]); 3911 verify_argop = -1; 3912 } 3913 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3914 goto recov_retry; 3915 } 3916 3917 if (needrecov) { 3918 bool_t abort; 3919 3920 abort = nfs4_start_recovery(&e, 3921 VTOMI4(vp), vp, NULL, NULL, NULL, 3922 OP_SETATTR, NULL); 3923 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3924 needrecov); 3925 /* 3926 * Do not retry if we failed with OLD_STATEID using 3927 * a special stateid. This is done to avoid looping 3928 * with a broken server. 3929 */ 3930 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3931 (sid_types.cur_sid_type == SPEC_SID || 3932 sid_types.cur_sid_type == NO_SID)) 3933 abort = TRUE; 3934 if (!e.error) { 3935 if (res.status == NFS4ERR_BADOWNER) 3936 nfs4_log_badowner(VTOMI4(vp), 3937 OP_SETATTR); 3938 3939 e.error = geterrno4(res.status); 3940 (void) xdr_free(xdr_COMPOUND4res_clnt, 3941 (caddr_t)&res); 3942 } 3943 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3944 opsetattr.obj_attributes); 3945 if (verify_argop != -1) { 3946 nfs4args_verify_free(&argop[verify_argop]); 3947 verify_argop = -1; 3948 } 3949 if (abort == FALSE) { 3950 /* 3951 * Need to retry all possible stateids in 3952 * case the recovery error wasn't stateid 3953 * related or the stateids have become 3954 * stale (server reboot). 3955 */ 3956 nfs4_init_stateid_types(&sid_types); 3957 goto recov_retry; 3958 } 3959 return (e.error); 3960 } 3961 3962 /* 3963 * Need to call nfs4_end_op before nfs4getattr to 3964 * avoid potential nfs4_start_op deadlock. See RFE 3965 * 4777612. Calls to nfs4_invalidate_pages() and 3966 * nfs4_purge_stale_fh() might also generate over the 3967 * wire calls which my cause nfs4_start_op() deadlock. 3968 */ 3969 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3970 3971 /* 3972 * Check to update lease. 3973 */ 3974 resp = &res; 3975 if (res.status == NFS4_OK) { 3976 break; 3977 } 3978 3979 /* 3980 * Check if verify failed to see if try again 3981 */ 3982 if ((verify_argop == -1) || (res.array_len != 3)) { 3983 /* 3984 * can't continue... 3985 */ 3986 if (res.status == NFS4ERR_BADOWNER) 3987 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 3988 3989 e.error = geterrno4(res.status); 3990 } else { 3991 /* 3992 * When the verify request fails, the client ctime is 3993 * not in sync with the server. This is the same as 3994 * the version 3 "not synchronized" error, and we 3995 * handle it in a similar manner (XXX do we need to???). 3996 * Use the ctime returned in the first getattr for 3997 * the input to the next verify. 3998 * If we couldn't get the attributes, then we give up 3999 * because we can't complete the operation as required. 4000 */ 4001 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 4002 } 4003 if (e.error) { 4004 PURGE_ATTRCACHE4(vp); 4005 nfs4_purge_stale_fh(e.error, vp, cr); 4006 } else { 4007 /* 4008 * retry with a new verify value 4009 */ 4010 ctime = garp->n4g_va.va_ctime; 4011 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4012 resp = NULL; 4013 } 4014 if (!e.error) { 4015 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4016 opsetattr.obj_attributes); 4017 if (verify_argop != -1) { 4018 nfs4args_verify_free(&argop[verify_argop]); 4019 verify_argop = -1; 4020 } 4021 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4022 goto do_again; 4023 } 4024 } while (!e.error); 4025 4026 if (e.error) { 4027 /* 4028 * If we are here, rfs4call has an irrecoverable error - return 4029 */ 4030 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4031 opsetattr.obj_attributes); 4032 if (verify_argop != -1) { 4033 nfs4args_verify_free(&argop[verify_argop]); 4034 verify_argop = -1; 4035 } 4036 if (resp) 4037 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4038 return (e.error); 4039 } 4040 4041 4042 4043 /* 4044 * If changing the size of the file, invalidate 4045 * any local cached data which is no longer part 4046 * of the file. We also possibly invalidate the 4047 * last page in the file. We could use 4048 * pvn_vpzero(), but this would mark the page as 4049 * modified and require it to be written back to 4050 * the server for no particularly good reason. 4051 * This way, if we access it, then we bring it 4052 * back in. A read should be cheaper than a 4053 * write. 4054 */ 4055 if (mask & AT_SIZE) { 4056 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4057 } 4058 4059 /* either no error or one of the postop getattr failed */ 4060 4061 /* 4062 * XXX Perform a simplified version of wcc checking. Instead of 4063 * have another getattr to get pre-op, just purge cache if 4064 * any of the ops prior to and including the getattr failed. 4065 * If the getattr succeeded then update the attrcache accordingly. 4066 */ 4067 4068 garp = NULL; 4069 if (res.status == NFS4_OK) { 4070 /* 4071 * Last getattr 4072 */ 4073 resop = &res.array[numops - 1]; 4074 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4075 } 4076 /* 4077 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4078 * rather than filling it. See the function itself for details. 4079 */ 4080 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4081 if (garp != NULL) { 4082 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4083 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4084 vs_ace4_destroy(&garp->n4g_vsa); 4085 } else { 4086 if (vsap != NULL) { 4087 /* 4088 * The ACL was supposed to be set and to be 4089 * returned in the last getattr of this 4090 * compound, but for some reason the getattr 4091 * result doesn't contain the ACL. In this 4092 * case, purge the ACL cache. 4093 */ 4094 if (rp->r_secattr != NULL) { 4095 mutex_enter(&rp->r_statelock); 4096 vsp = rp->r_secattr; 4097 rp->r_secattr = NULL; 4098 mutex_exit(&rp->r_statelock); 4099 if (vsp != NULL) 4100 nfs4_acl_free_cache(vsp); 4101 } 4102 } 4103 } 4104 } 4105 4106 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4107 /* 4108 * Set the size, rather than relying on getting it updated 4109 * via a GETATTR. With delegations the client tries to 4110 * suppress GETATTR calls. 4111 */ 4112 mutex_enter(&rp->r_statelock); 4113 rp->r_size = vap->va_size; 4114 mutex_exit(&rp->r_statelock); 4115 } 4116 4117 /* 4118 * Can free up request args and res 4119 */ 4120 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4121 opsetattr.obj_attributes); 4122 if (verify_argop != -1) { 4123 nfs4args_verify_free(&argop[verify_argop]); 4124 verify_argop = -1; 4125 } 4126 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4127 4128 /* 4129 * Some servers will change the mode to clear the setuid 4130 * and setgid bits when changing the uid or gid. The 4131 * client needs to compensate appropriately. 4132 */ 4133 if (mask & (AT_UID | AT_GID)) { 4134 int terror, do_setattr; 4135 4136 do_setattr = 0; 4137 va.va_mask = AT_MODE; 4138 terror = nfs4getattr(vp, &va, cr); 4139 if (!terror && 4140 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4141 (!(mask & AT_MODE) && va.va_mode != omode))) { 4142 va.va_mask = AT_MODE; 4143 if (mask & AT_MODE) { 4144 /* 4145 * We asked the mode to be changed and what 4146 * we just got from the server in getattr is 4147 * not what we wanted it to be, so set it now. 4148 */ 4149 va.va_mode = vap->va_mode; 4150 do_setattr = 1; 4151 } else { 4152 /* 4153 * We did not ask the mode to be changed, 4154 * Check to see that the server just cleared 4155 * I_SUID and I_GUID from it. If not then 4156 * set mode to omode with UID/GID cleared. 4157 */ 4158 if (nfs4_compare_modes(va.va_mode, omode)) { 4159 omode &= ~(S_ISUID|S_ISGID); 4160 va.va_mode = omode; 4161 do_setattr = 1; 4162 } 4163 } 4164 4165 if (do_setattr) 4166 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4167 } 4168 } 4169 4170 return (e.error); 4171 } 4172 4173 /* ARGSUSED */ 4174 static int 4175 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 4176 { 4177 COMPOUND4args_clnt args; 4178 COMPOUND4res_clnt res; 4179 int doqueue; 4180 uint32_t acc, resacc, argacc; 4181 rnode4_t *rp; 4182 cred_t *cred, *ncr, *ncrfree = NULL; 4183 nfs4_access_type_t cacc; 4184 int num_ops; 4185 nfs_argop4 argop[3]; 4186 nfs_resop4 *resop; 4187 bool_t needrecov = FALSE, do_getattr; 4188 nfs4_recov_state_t recov_state; 4189 int rpc_error; 4190 hrtime_t t; 4191 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4192 mntinfo4_t *mi = VTOMI4(vp); 4193 4194 if (nfs_zone() != mi->mi_zone) 4195 return (EIO); 4196 4197 acc = 0; 4198 if (mode & VREAD) 4199 acc |= ACCESS4_READ; 4200 if (mode & VWRITE) { 4201 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4202 return (EROFS); 4203 if (vp->v_type == VDIR) 4204 acc |= ACCESS4_DELETE; 4205 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4206 } 4207 if (mode & VEXEC) { 4208 if (vp->v_type == VDIR) 4209 acc |= ACCESS4_LOOKUP; 4210 else 4211 acc |= ACCESS4_EXECUTE; 4212 } 4213 4214 if (VTOR4(vp)->r_acache != NULL) { 4215 e.error = nfs4_validate_caches(vp, cr); 4216 if (e.error) 4217 return (e.error); 4218 } 4219 4220 rp = VTOR4(vp); 4221 if (vp->v_type == VDIR) 4222 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4223 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4224 else 4225 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4226 ACCESS4_EXECUTE; 4227 recov_state.rs_flags = 0; 4228 recov_state.rs_num_retry_despite_err = 0; 4229 4230 cred = cr; 4231 /* 4232 * ncr and ncrfree both initially 4233 * point to the memory area returned 4234 * by crnetadjust(); 4235 * ncrfree not NULL when exiting means 4236 * that we need to release it 4237 */ 4238 ncr = crnetadjust(cred); 4239 ncrfree = ncr; 4240 4241 tryagain: 4242 cacc = nfs4_access_check(rp, acc, cred); 4243 if (cacc == NFS4_ACCESS_ALLOWED) { 4244 if (ncrfree != NULL) 4245 crfree(ncrfree); 4246 return (0); 4247 } 4248 if (cacc == NFS4_ACCESS_DENIED) { 4249 /* 4250 * If the cred can be adjusted, try again 4251 * with the new cred. 4252 */ 4253 if (ncr != NULL) { 4254 cred = ncr; 4255 ncr = NULL; 4256 goto tryagain; 4257 } 4258 if (ncrfree != NULL) 4259 crfree(ncrfree); 4260 return (EACCES); 4261 } 4262 4263 recov_retry: 4264 /* 4265 * Don't take with r_statev4_lock here. r_deleg_type could 4266 * change as soon as lock is released. Since it is an int, 4267 * there is no atomicity issue. 4268 */ 4269 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4270 num_ops = do_getattr ? 3 : 2; 4271 4272 args.ctag = TAG_ACCESS; 4273 4274 args.array_len = num_ops; 4275 args.array = argop; 4276 4277 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4278 &recov_state, NULL)) { 4279 if (ncrfree != NULL) 4280 crfree(ncrfree); 4281 return (e.error); 4282 } 4283 4284 /* putfh target fh */ 4285 argop[0].argop = OP_CPUTFH; 4286 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4287 4288 /* access */ 4289 argop[1].argop = OP_ACCESS; 4290 argop[1].nfs_argop4_u.opaccess.access = argacc; 4291 4292 /* getattr */ 4293 if (do_getattr) { 4294 argop[2].argop = OP_GETATTR; 4295 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4296 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4297 } 4298 4299 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4300 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4301 rnode4info(VTOR4(vp)))); 4302 4303 doqueue = 1; 4304 t = gethrtime(); 4305 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4306 rpc_error = e.error; 4307 4308 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4309 if (needrecov) { 4310 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4311 "nfs4_access: initiating recovery\n")); 4312 4313 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4314 NULL, OP_ACCESS, NULL) == FALSE) { 4315 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4316 &recov_state, needrecov); 4317 if (!e.error) 4318 (void) xdr_free(xdr_COMPOUND4res_clnt, 4319 (caddr_t)&res); 4320 goto recov_retry; 4321 } 4322 } 4323 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4324 4325 if (e.error) 4326 goto out; 4327 4328 if (res.status) { 4329 e.error = geterrno4(res.status); 4330 /* 4331 * This might generate over the wire calls throught 4332 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4333 * here to avoid a deadlock. 4334 */ 4335 nfs4_purge_stale_fh(e.error, vp, cr); 4336 goto out; 4337 } 4338 resop = &res.array[1]; /* access res */ 4339 4340 resacc = resop->nfs_resop4_u.opaccess.access; 4341 4342 if (do_getattr) { 4343 resop++; /* getattr res */ 4344 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4345 t, cr, FALSE, NULL); 4346 } 4347 4348 if (!e.error) { 4349 nfs4_access_cache(rp, argacc, resacc, cred); 4350 /* 4351 * we just cached results with cred; if cred is the 4352 * adjusted credentials from crnetadjust, we do not want 4353 * to release them before exiting: hence setting ncrfree 4354 * to NULL 4355 */ 4356 if (cred != cr) 4357 ncrfree = NULL; 4358 /* XXX check the supported bits too? */ 4359 if ((acc & resacc) != acc) { 4360 /* 4361 * The following code implements the semantic 4362 * that a setuid root program has *at least* the 4363 * permissions of the user that is running the 4364 * program. See rfs3call() for more portions 4365 * of the implementation of this functionality. 4366 */ 4367 /* XXX-LP */ 4368 if (ncr != NULL) { 4369 (void) xdr_free(xdr_COMPOUND4res_clnt, 4370 (caddr_t)&res); 4371 cred = ncr; 4372 ncr = NULL; 4373 goto tryagain; 4374 } 4375 e.error = EACCES; 4376 } 4377 } 4378 4379 out: 4380 if (!rpc_error) 4381 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4382 4383 if (ncrfree != NULL) 4384 crfree(ncrfree); 4385 4386 return (e.error); 4387 } 4388 4389 /* ARGSUSED */ 4390 static int 4391 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4392 { 4393 COMPOUND4args_clnt args; 4394 COMPOUND4res_clnt res; 4395 int doqueue; 4396 rnode4_t *rp; 4397 nfs_argop4 argop[3]; 4398 nfs_resop4 *resop; 4399 READLINK4res *lr_res; 4400 nfs4_ga_res_t *garp; 4401 uint_t len; 4402 char *linkdata; 4403 bool_t needrecov = FALSE; 4404 nfs4_recov_state_t recov_state; 4405 hrtime_t t; 4406 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4407 4408 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4409 return (EIO); 4410 /* 4411 * Can't readlink anything other than a symbolic link. 4412 */ 4413 if (vp->v_type != VLNK) 4414 return (EINVAL); 4415 4416 rp = VTOR4(vp); 4417 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4418 e.error = nfs4_validate_caches(vp, cr); 4419 if (e.error) 4420 return (e.error); 4421 mutex_enter(&rp->r_statelock); 4422 if (rp->r_symlink.contents != NULL) { 4423 e.error = uiomove(rp->r_symlink.contents, 4424 rp->r_symlink.len, UIO_READ, uiop); 4425 mutex_exit(&rp->r_statelock); 4426 return (e.error); 4427 } 4428 mutex_exit(&rp->r_statelock); 4429 } 4430 recov_state.rs_flags = 0; 4431 recov_state.rs_num_retry_despite_err = 0; 4432 4433 recov_retry: 4434 args.array_len = 3; 4435 args.array = argop; 4436 args.ctag = TAG_READLINK; 4437 4438 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4439 if (e.error) { 4440 return (e.error); 4441 } 4442 4443 /* 0. putfh symlink fh */ 4444 argop[0].argop = OP_CPUTFH; 4445 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4446 4447 /* 1. readlink */ 4448 argop[1].argop = OP_READLINK; 4449 4450 /* 2. getattr */ 4451 argop[2].argop = OP_GETATTR; 4452 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4453 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4454 4455 doqueue = 1; 4456 4457 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4458 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4459 rnode4info(VTOR4(vp)))); 4460 4461 t = gethrtime(); 4462 4463 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4464 4465 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4466 if (needrecov) { 4467 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4468 "nfs4_readlink: initiating recovery\n")); 4469 4470 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4471 NULL, OP_READLINK, NULL) == FALSE) { 4472 if (!e.error) 4473 (void) xdr_free(xdr_COMPOUND4res_clnt, 4474 (caddr_t)&res); 4475 4476 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4477 needrecov); 4478 goto recov_retry; 4479 } 4480 } 4481 4482 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4483 4484 if (e.error) 4485 return (e.error); 4486 4487 /* 4488 * There is an path in the code below which calls 4489 * nfs4_purge_stale_fh(), which may generate otw calls through 4490 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4491 * here to avoid nfs4_start_op() deadlock. 4492 */ 4493 4494 if (res.status && (res.array_len < args.array_len)) { 4495 /* 4496 * either Putfh or Link failed 4497 */ 4498 e.error = geterrno4(res.status); 4499 nfs4_purge_stale_fh(e.error, vp, cr); 4500 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4501 return (e.error); 4502 } 4503 4504 resop = &res.array[1]; /* readlink res */ 4505 lr_res = &resop->nfs_resop4_u.opreadlink; 4506 4507 /* 4508 * treat symlink names as data 4509 */ 4510 linkdata = utf8_to_str(&lr_res->link, &len, NULL); 4511 if (linkdata != NULL) { 4512 int uio_len = len - 1; 4513 /* len includes null byte, which we won't uiomove */ 4514 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4515 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4516 mutex_enter(&rp->r_statelock); 4517 if (rp->r_symlink.contents == NULL) { 4518 rp->r_symlink.contents = linkdata; 4519 rp->r_symlink.len = uio_len; 4520 rp->r_symlink.size = len; 4521 mutex_exit(&rp->r_statelock); 4522 } else { 4523 mutex_exit(&rp->r_statelock); 4524 kmem_free(linkdata, len); 4525 } 4526 } else { 4527 kmem_free(linkdata, len); 4528 } 4529 } 4530 if (res.status == NFS4_OK) { 4531 resop++; /* getattr res */ 4532 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4533 } 4534 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4535 4536 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4537 4538 /* 4539 * The over the wire error for attempting to readlink something 4540 * other than a symbolic link is ENXIO. However, we need to 4541 * return EINVAL instead of ENXIO, so we map it here. 4542 */ 4543 return (e.error == ENXIO ? EINVAL : e.error); 4544 } 4545 4546 /* 4547 * Flush local dirty pages to stable storage on the server. 4548 * 4549 * If FNODSYNC is specified, then there is nothing to do because 4550 * metadata changes are not cached on the client before being 4551 * sent to the server. 4552 */ 4553 /* ARGSUSED */ 4554 static int 4555 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 4556 { 4557 int error; 4558 4559 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4560 return (0); 4561 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4562 return (EIO); 4563 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4564 if (!error) 4565 error = VTOR4(vp)->r_error; 4566 return (error); 4567 } 4568 4569 /* 4570 * Weirdness: if the file was removed or the target of a rename 4571 * operation while it was open, it got renamed instead. Here we 4572 * remove the renamed file. 4573 */ 4574 /* ARGSUSED */ 4575 void 4576 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4577 { 4578 rnode4_t *rp; 4579 4580 ASSERT(vp != DNLC_NO_VNODE); 4581 4582 rp = VTOR4(vp); 4583 4584 if (IS_SHADOW(vp, rp)) { 4585 sv_inactive(vp); 4586 return; 4587 } 4588 4589 /* 4590 * If this is coming from the wrong zone, we let someone in the right 4591 * zone take care of it asynchronously. We can get here due to 4592 * VN_RELE() being called from pageout() or fsflush(). This call may 4593 * potentially turn into an expensive no-op if, for instance, v_count 4594 * gets incremented in the meantime, but it's still correct. 4595 */ 4596 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4597 nfs4_async_inactive(vp, cr); 4598 return; 4599 } 4600 4601 /* 4602 * Some of the cleanup steps might require over-the-wire 4603 * operations. Since VOP_INACTIVE can get called as a result of 4604 * other over-the-wire operations (e.g., an attribute cache update 4605 * can lead to a DNLC purge), doing those steps now would lead to a 4606 * nested call to the recovery framework, which can deadlock. So 4607 * do any over-the-wire cleanups asynchronously, in a separate 4608 * thread. 4609 */ 4610 4611 mutex_enter(&rp->r_os_lock); 4612 mutex_enter(&rp->r_statelock); 4613 mutex_enter(&rp->r_statev4_lock); 4614 4615 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4616 mutex_exit(&rp->r_statev4_lock); 4617 mutex_exit(&rp->r_statelock); 4618 mutex_exit(&rp->r_os_lock); 4619 nfs4_async_inactive(vp, cr); 4620 return; 4621 } 4622 4623 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4624 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4625 mutex_exit(&rp->r_statev4_lock); 4626 mutex_exit(&rp->r_statelock); 4627 mutex_exit(&rp->r_os_lock); 4628 nfs4_async_inactive(vp, cr); 4629 return; 4630 } 4631 4632 if (rp->r_unldvp != NULL) { 4633 mutex_exit(&rp->r_statev4_lock); 4634 mutex_exit(&rp->r_statelock); 4635 mutex_exit(&rp->r_os_lock); 4636 nfs4_async_inactive(vp, cr); 4637 return; 4638 } 4639 mutex_exit(&rp->r_statev4_lock); 4640 mutex_exit(&rp->r_statelock); 4641 mutex_exit(&rp->r_os_lock); 4642 4643 rp4_addfree(rp, cr); 4644 } 4645 4646 /* 4647 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4648 * various bits of state. The caller must not refer to vp after this call. 4649 */ 4650 4651 void 4652 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4653 { 4654 rnode4_t *rp = VTOR4(vp); 4655 nfs4_recov_state_t recov_state; 4656 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4657 vnode_t *unldvp; 4658 char *unlname; 4659 cred_t *unlcred; 4660 COMPOUND4args_clnt args; 4661 COMPOUND4res_clnt res, *resp; 4662 nfs_argop4 argop[2]; 4663 int doqueue; 4664 #ifdef DEBUG 4665 char *name; 4666 #endif 4667 4668 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4669 ASSERT(!IS_SHADOW(vp, rp)); 4670 4671 #ifdef DEBUG 4672 name = fn_name(VTOSV(vp)->sv_name); 4673 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4674 "release vnode %s", name)); 4675 kmem_free(name, MAXNAMELEN); 4676 #endif 4677 4678 if (vp->v_type == VREG) { 4679 bool_t recov_failed = FALSE; 4680 4681 e.error = nfs4close_all(vp, cr); 4682 if (e.error) { 4683 /* Check to see if recovery failed */ 4684 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4685 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4686 recov_failed = TRUE; 4687 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4688 if (!recov_failed) { 4689 mutex_enter(&rp->r_statelock); 4690 if (rp->r_flags & R4RECOVERR) 4691 recov_failed = TRUE; 4692 mutex_exit(&rp->r_statelock); 4693 } 4694 if (recov_failed) { 4695 NFS4_DEBUG(nfs4_client_recov_debug, 4696 (CE_NOTE, "nfs4_inactive_otw: " 4697 "close failed (recovery failure)")); 4698 } 4699 } 4700 } 4701 4702 redo: 4703 if (rp->r_unldvp == NULL) { 4704 rp4_addfree(rp, cr); 4705 return; 4706 } 4707 4708 /* 4709 * Save the vnode pointer for the directory where the 4710 * unlinked-open file got renamed, then set it to NULL 4711 * to prevent another thread from getting here before 4712 * we're done with the remove. While we have the 4713 * statelock, make local copies of the pertinent rnode 4714 * fields. If we weren't to do this in an atomic way, the 4715 * the unl* fields could become inconsistent with respect 4716 * to each other due to a race condition between this 4717 * code and nfs_remove(). See bug report 1034328. 4718 */ 4719 mutex_enter(&rp->r_statelock); 4720 if (rp->r_unldvp == NULL) { 4721 mutex_exit(&rp->r_statelock); 4722 rp4_addfree(rp, cr); 4723 return; 4724 } 4725 4726 unldvp = rp->r_unldvp; 4727 rp->r_unldvp = NULL; 4728 unlname = rp->r_unlname; 4729 rp->r_unlname = NULL; 4730 unlcred = rp->r_unlcred; 4731 rp->r_unlcred = NULL; 4732 mutex_exit(&rp->r_statelock); 4733 4734 /* 4735 * If there are any dirty pages left, then flush 4736 * them. This is unfortunate because they just 4737 * may get thrown away during the remove operation, 4738 * but we have to do this for correctness. 4739 */ 4740 if (nfs4_has_pages(vp) && 4741 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4742 ASSERT(vp->v_type != VCHR); 4743 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL); 4744 if (e.error) { 4745 mutex_enter(&rp->r_statelock); 4746 if (!rp->r_error) 4747 rp->r_error = e.error; 4748 mutex_exit(&rp->r_statelock); 4749 } 4750 } 4751 4752 recov_state.rs_flags = 0; 4753 recov_state.rs_num_retry_despite_err = 0; 4754 recov_retry_remove: 4755 /* 4756 * Do the remove operation on the renamed file 4757 */ 4758 args.ctag = TAG_INACTIVE; 4759 4760 /* 4761 * Remove ops: putfh dir; remove 4762 */ 4763 args.array_len = 2; 4764 args.array = argop; 4765 4766 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4767 if (e.error) { 4768 kmem_free(unlname, MAXNAMELEN); 4769 crfree(unlcred); 4770 VN_RELE(unldvp); 4771 /* 4772 * Try again; this time around r_unldvp will be NULL, so we'll 4773 * just call rp4_addfree() and return. 4774 */ 4775 goto redo; 4776 } 4777 4778 /* putfh directory */ 4779 argop[0].argop = OP_CPUTFH; 4780 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4781 4782 /* remove */ 4783 argop[1].argop = OP_CREMOVE; 4784 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4785 4786 doqueue = 1; 4787 resp = &res; 4788 4789 #if 0 /* notyet */ 4790 /* 4791 * Can't do this yet. We may be being called from 4792 * dnlc_purge_XXX while that routine is holding a 4793 * mutex lock to the nc_rele list. The calls to 4794 * nfs3_cache_wcc_data may result in calls to 4795 * dnlc_purge_XXX. This will result in a deadlock. 4796 */ 4797 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4798 if (e.error) { 4799 PURGE_ATTRCACHE4(unldvp); 4800 resp = NULL; 4801 } else if (res.status) { 4802 e.error = geterrno4(res.status); 4803 PURGE_ATTRCACHE4(unldvp); 4804 /* 4805 * This code is inactive right now 4806 * but if made active there should 4807 * be a nfs4_end_op() call before 4808 * nfs4_purge_stale_fh to avoid start_op() 4809 * deadlock. See BugId: 4948726 4810 */ 4811 nfs4_purge_stale_fh(error, unldvp, cr); 4812 } else { 4813 nfs_resop4 *resop; 4814 REMOVE4res *rm_res; 4815 4816 resop = &res.array[1]; 4817 rm_res = &resop->nfs_resop4_u.opremove; 4818 /* 4819 * Update directory cache attribute, 4820 * readdir and dnlc caches. 4821 */ 4822 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4823 } 4824 #else 4825 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4826 4827 PURGE_ATTRCACHE4(unldvp); 4828 #endif 4829 4830 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4831 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4832 NULL, NULL, OP_REMOVE, NULL) == FALSE) { 4833 if (!e.error) 4834 (void) xdr_free(xdr_COMPOUND4res_clnt, 4835 (caddr_t)&res); 4836 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4837 &recov_state, TRUE); 4838 goto recov_retry_remove; 4839 } 4840 } 4841 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4842 4843 /* 4844 * Release stuff held for the remove 4845 */ 4846 VN_RELE(unldvp); 4847 if (!e.error && resp) 4848 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4849 4850 kmem_free(unlname, MAXNAMELEN); 4851 crfree(unlcred); 4852 goto redo; 4853 } 4854 4855 /* 4856 * Remote file system operations having to do with directory manipulation. 4857 */ 4858 /* ARGSUSED3 */ 4859 int 4860 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4861 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 4862 int *direntflags, pathname_t *realpnp) 4863 { 4864 int error; 4865 vnode_t *vp, *avp = NULL; 4866 rnode4_t *drp; 4867 4868 *vpp = NULL; 4869 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4870 return (EPERM); 4871 /* 4872 * if LOOKUP_XATTR, must replace dvp (object) with 4873 * object's attrdir before continuing with lookup 4874 */ 4875 if (flags & LOOKUP_XATTR) { 4876 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4877 if (error) 4878 return (error); 4879 4880 dvp = avp; 4881 4882 /* 4883 * If lookup is for "", just return dvp now. The attrdir 4884 * has already been activated (from nfs4lookup_xattr), and 4885 * the caller will RELE the original dvp -- not 4886 * the attrdir. So, set vpp and return. 4887 * Currently, when the LOOKUP_XATTR flag is 4888 * passed to VOP_LOOKUP, the name is always empty, and 4889 * shortcircuiting here avoids 3 unneeded lock/unlock 4890 * pairs. 4891 * 4892 * If a non-empty name was provided, then it is the 4893 * attribute name, and it will be looked up below. 4894 */ 4895 if (*nm == '\0') { 4896 *vpp = dvp; 4897 return (0); 4898 } 4899 4900 /* 4901 * The vfs layer never sends a name when asking for the 4902 * attrdir, so we should never get here (unless of course 4903 * name is passed at some time in future -- at which time 4904 * we'll blow up here). 4905 */ 4906 ASSERT(0); 4907 } 4908 4909 drp = VTOR4(dvp); 4910 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4911 return (EINTR); 4912 4913 error = nfs4lookup(dvp, nm, vpp, cr, 0); 4914 nfs_rw_exit(&drp->r_rwlock); 4915 4916 /* 4917 * If vnode is a device, create special vnode. 4918 */ 4919 if (!error && ISVDEV((*vpp)->v_type)) { 4920 vp = *vpp; 4921 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 4922 VN_RELE(vp); 4923 } 4924 4925 return (error); 4926 } 4927 4928 /* ARGSUSED */ 4929 static int 4930 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 4931 { 4932 int error; 4933 rnode4_t *drp; 4934 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 4935 mntinfo4_t *mi; 4936 4937 mi = VTOMI4(dvp); 4938 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) && 4939 !vfs_has_feature(mi->mi_vfsp, VFSFT_XVATTR)) 4940 return (EINVAL); 4941 4942 drp = VTOR4(dvp); 4943 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4944 return (EINTR); 4945 4946 mutex_enter(&drp->r_statelock); 4947 /* 4948 * If the server doesn't support xattrs just return EINVAL 4949 */ 4950 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 4951 mutex_exit(&drp->r_statelock); 4952 nfs_rw_exit(&drp->r_rwlock); 4953 return (EINVAL); 4954 } 4955 4956 /* 4957 * If there is a cached xattr directory entry, 4958 * use it as long as the attributes are valid. If the 4959 * attributes are not valid, take the simple approach and 4960 * free the cached value and re-fetch a new value. 4961 * 4962 * We don't negative entry cache for now, if we did we 4963 * would need to check if the file has changed on every 4964 * lookup. But xattrs don't exist very often and failing 4965 * an openattr is not much more expensive than and NVERIFY or GETATTR 4966 * so do an openattr over the wire for now. 4967 */ 4968 if (drp->r_xattr_dir != NULL) { 4969 if (ATTRCACHE4_VALID(dvp)) { 4970 VN_HOLD(drp->r_xattr_dir); 4971 *vpp = drp->r_xattr_dir; 4972 mutex_exit(&drp->r_statelock); 4973 nfs_rw_exit(&drp->r_rwlock); 4974 return (0); 4975 } 4976 VN_RELE(drp->r_xattr_dir); 4977 drp->r_xattr_dir = NULL; 4978 } 4979 mutex_exit(&drp->r_statelock); 4980 4981 error = nfs4openattr(dvp, vpp, cflag, cr); 4982 4983 nfs_rw_exit(&drp->r_rwlock); 4984 4985 return (error); 4986 } 4987 4988 static int 4989 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 4990 { 4991 int error; 4992 rnode4_t *drp; 4993 4994 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 4995 4996 /* 4997 * If lookup is for "", just return dvp. Don't need 4998 * to send it over the wire, look it up in the dnlc, 4999 * or perform any access checks. 5000 */ 5001 if (*nm == '\0') { 5002 VN_HOLD(dvp); 5003 *vpp = dvp; 5004 return (0); 5005 } 5006 5007 /* 5008 * Can't do lookups in non-directories. 5009 */ 5010 if (dvp->v_type != VDIR) 5011 return (ENOTDIR); 5012 5013 /* 5014 * If lookup is for ".", just return dvp. Don't need 5015 * to send it over the wire or look it up in the dnlc, 5016 * just need to check access. 5017 */ 5018 if (nm[0] == '.' && nm[1] == '\0') { 5019 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5020 if (error) 5021 return (error); 5022 VN_HOLD(dvp); 5023 *vpp = dvp; 5024 return (0); 5025 } 5026 5027 drp = VTOR4(dvp); 5028 if (!(drp->r_flags & R4LOOKUP)) { 5029 mutex_enter(&drp->r_statelock); 5030 drp->r_flags |= R4LOOKUP; 5031 mutex_exit(&drp->r_statelock); 5032 } 5033 5034 *vpp = NULL; 5035 /* 5036 * Lookup this name in the DNLC. If there is no entry 5037 * lookup over the wire. 5038 */ 5039 if (!skipdnlc) 5040 *vpp = dnlc_lookup(dvp, nm); 5041 if (*vpp == NULL) { 5042 /* 5043 * We need to go over the wire to lookup the name. 5044 */ 5045 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5046 } 5047 5048 /* 5049 * We hit on the dnlc 5050 */ 5051 if (*vpp != DNLC_NO_VNODE || 5052 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5053 /* 5054 * But our attrs may not be valid. 5055 */ 5056 if (ATTRCACHE4_VALID(dvp)) { 5057 error = nfs4_waitfor_purge_complete(dvp); 5058 if (error) { 5059 VN_RELE(*vpp); 5060 *vpp = NULL; 5061 return (error); 5062 } 5063 5064 /* 5065 * If after the purge completes, check to make sure 5066 * our attrs are still valid. 5067 */ 5068 if (ATTRCACHE4_VALID(dvp)) { 5069 /* 5070 * If we waited for a purge we may have 5071 * lost our vnode so look it up again. 5072 */ 5073 VN_RELE(*vpp); 5074 *vpp = dnlc_lookup(dvp, nm); 5075 if (*vpp == NULL) 5076 return (nfs4lookupnew_otw(dvp, 5077 nm, vpp, cr)); 5078 5079 /* 5080 * The access cache should almost always hit 5081 */ 5082 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5083 5084 if (error) { 5085 VN_RELE(*vpp); 5086 *vpp = NULL; 5087 return (error); 5088 } 5089 if (*vpp == DNLC_NO_VNODE) { 5090 VN_RELE(*vpp); 5091 *vpp = NULL; 5092 return (ENOENT); 5093 } 5094 return (0); 5095 } 5096 } 5097 } 5098 5099 ASSERT(*vpp != NULL); 5100 5101 /* 5102 * We may have gotten here we have one of the following cases: 5103 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5104 * need to validate them. 5105 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5106 * must validate. 5107 * 5108 * Go to the server and check if the directory has changed, if 5109 * it hasn't we are done and can use the dnlc entry. 5110 */ 5111 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5112 } 5113 5114 /* 5115 * Go to the server and check if the directory has changed, if 5116 * it hasn't we are done and can use the dnlc entry. If it 5117 * has changed we get a new copy of its attributes and check 5118 * the access for VEXEC, then relookup the filename and 5119 * get its filehandle and attributes. 5120 * 5121 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5122 * if the NVERIFY failed we must 5123 * purge the caches 5124 * cache new attributes (will set r_time_attr_inval) 5125 * cache new access 5126 * recheck VEXEC access 5127 * add name to dnlc, possibly negative 5128 * if LOOKUP succeeded 5129 * cache new attributes 5130 * else 5131 * set a new r_time_attr_inval for dvp 5132 * check to make sure we have access 5133 * 5134 * The vpp returned is the vnode passed in if the directory is valid, 5135 * a new vnode if successful lookup, or NULL on error. 5136 */ 5137 static int 5138 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5139 { 5140 COMPOUND4args_clnt args; 5141 COMPOUND4res_clnt res; 5142 fattr4 *ver_fattr; 5143 fattr4_change dchange; 5144 int32_t *ptr; 5145 int argoplist_size = 7 * sizeof (nfs_argop4); 5146 nfs_argop4 *argop; 5147 int doqueue; 5148 mntinfo4_t *mi; 5149 nfs4_recov_state_t recov_state; 5150 hrtime_t t; 5151 int isdotdot; 5152 vnode_t *nvp; 5153 nfs_fh4 *fhp; 5154 nfs4_sharedfh_t *sfhp; 5155 nfs4_access_type_t cacc; 5156 rnode4_t *nrp; 5157 rnode4_t *drp = VTOR4(dvp); 5158 nfs4_ga_res_t *garp = NULL; 5159 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5160 5161 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5162 ASSERT(nm != NULL); 5163 ASSERT(nm[0] != '\0'); 5164 ASSERT(dvp->v_type == VDIR); 5165 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5166 ASSERT(*vpp != NULL); 5167 5168 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5169 isdotdot = 1; 5170 args.ctag = TAG_LOOKUP_VPARENT; 5171 } else { 5172 /* 5173 * If dvp were a stub, it should have triggered and caused 5174 * a mount for us to get this far. 5175 */ 5176 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5177 5178 isdotdot = 0; 5179 args.ctag = TAG_LOOKUP_VALID; 5180 } 5181 5182 mi = VTOMI4(dvp); 5183 recov_state.rs_flags = 0; 5184 recov_state.rs_num_retry_despite_err = 0; 5185 5186 nvp = NULL; 5187 5188 /* Save the original mount point security information */ 5189 (void) save_mnt_secinfo(mi->mi_curr_serv); 5190 5191 recov_retry: 5192 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5193 &recov_state, NULL); 5194 if (e.error) { 5195 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5196 VN_RELE(*vpp); 5197 *vpp = NULL; 5198 return (e.error); 5199 } 5200 5201 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5202 5203 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5204 args.array_len = 7; 5205 args.array = argop; 5206 5207 /* 0. putfh file */ 5208 argop[0].argop = OP_CPUTFH; 5209 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5210 5211 /* 1. nverify the change info */ 5212 argop[1].argop = OP_NVERIFY; 5213 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5214 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5215 ver_fattr->attrlist4 = (char *)&dchange; 5216 ptr = (int32_t *)&dchange; 5217 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5218 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5219 5220 /* 2. getattr directory */ 5221 argop[2].argop = OP_GETATTR; 5222 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5223 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5224 5225 /* 3. access directory */ 5226 argop[3].argop = OP_ACCESS; 5227 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5228 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5229 5230 /* 4. lookup name */ 5231 if (isdotdot) { 5232 argop[4].argop = OP_LOOKUPP; 5233 } else { 5234 argop[4].argop = OP_CLOOKUP; 5235 argop[4].nfs_argop4_u.opclookup.cname = nm; 5236 } 5237 5238 /* 5. resulting file handle */ 5239 argop[5].argop = OP_GETFH; 5240 5241 /* 6. resulting file attributes */ 5242 argop[6].argop = OP_GETATTR; 5243 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5244 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5245 5246 doqueue = 1; 5247 t = gethrtime(); 5248 5249 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5250 5251 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5252 /* 5253 * For WRONGSEC of a non-dotdot case, send secinfo directly 5254 * from this thread, do not go thru the recovery thread since 5255 * we need the nm information. 5256 * 5257 * Not doing dotdot case because there is no specification 5258 * for (PUTFH, SECINFO "..") yet. 5259 */ 5260 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5261 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5262 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5263 &recov_state, FALSE); 5264 else 5265 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5266 &recov_state, TRUE); 5267 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5268 kmem_free(argop, argoplist_size); 5269 if (!e.error) 5270 goto recov_retry; 5271 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5272 VN_RELE(*vpp); 5273 *vpp = NULL; 5274 return (e.error); 5275 } 5276 5277 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5278 OP_LOOKUP, NULL) == FALSE) { 5279 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5280 &recov_state, TRUE); 5281 5282 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5283 kmem_free(argop, argoplist_size); 5284 goto recov_retry; 5285 } 5286 } 5287 5288 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5289 5290 if (e.error || res.array_len == 0) { 5291 /* 5292 * If e.error isn't set, then reply has no ops (or we couldn't 5293 * be here). The only legal way to reply without an op array 5294 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5295 * be in the reply for all other status values. 5296 * 5297 * For valid replies without an ops array, return ENOTSUP 5298 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5299 * return EIO -- don't trust status. 5300 */ 5301 if (e.error == 0) 5302 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5303 ENOTSUP : EIO; 5304 VN_RELE(*vpp); 5305 *vpp = NULL; 5306 kmem_free(argop, argoplist_size); 5307 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5308 return (e.error); 5309 } 5310 5311 if (res.status != NFS4ERR_SAME) { 5312 e.error = geterrno4(res.status); 5313 5314 /* 5315 * The NVERIFY "failed" so the directory has changed 5316 * First make sure PUTFH succeeded and NVERIFY "failed" 5317 * cleanly. 5318 */ 5319 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5320 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5321 nfs4_purge_stale_fh(e.error, dvp, cr); 5322 VN_RELE(*vpp); 5323 *vpp = NULL; 5324 goto exit; 5325 } 5326 5327 /* 5328 * We know the NVERIFY "failed" so we must: 5329 * purge the caches (access and indirectly dnlc if needed) 5330 */ 5331 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5332 5333 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5334 nfs4_purge_stale_fh(e.error, dvp, cr); 5335 VN_RELE(*vpp); 5336 *vpp = NULL; 5337 goto exit; 5338 } 5339 5340 /* 5341 * Install new cached attributes for the directory 5342 */ 5343 nfs4_attr_cache(dvp, 5344 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5345 t, cr, FALSE, NULL); 5346 5347 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5348 nfs4_purge_stale_fh(e.error, dvp, cr); 5349 VN_RELE(*vpp); 5350 *vpp = NULL; 5351 e.error = geterrno4(res.status); 5352 goto exit; 5353 } 5354 5355 /* 5356 * Now we know the directory is valid, 5357 * cache new directory access 5358 */ 5359 nfs4_access_cache(drp, 5360 args.array[3].nfs_argop4_u.opaccess.access, 5361 res.array[3].nfs_resop4_u.opaccess.access, cr); 5362 5363 /* 5364 * recheck VEXEC access 5365 */ 5366 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5367 if (cacc != NFS4_ACCESS_ALLOWED) { 5368 /* 5369 * Directory permissions might have been revoked 5370 */ 5371 if (cacc == NFS4_ACCESS_DENIED) { 5372 e.error = EACCES; 5373 VN_RELE(*vpp); 5374 *vpp = NULL; 5375 goto exit; 5376 } 5377 5378 /* 5379 * Somehow we must not have asked for enough 5380 * so try a singleton ACCESS, should never happen. 5381 */ 5382 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5383 if (e.error) { 5384 VN_RELE(*vpp); 5385 *vpp = NULL; 5386 goto exit; 5387 } 5388 } 5389 5390 e.error = geterrno4(res.status); 5391 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5392 /* 5393 * The lookup failed, probably no entry 5394 */ 5395 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5396 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5397 } else { 5398 /* 5399 * Might be some other error, so remove 5400 * the dnlc entry to make sure we start all 5401 * over again, next time. 5402 */ 5403 dnlc_remove(dvp, nm); 5404 } 5405 VN_RELE(*vpp); 5406 *vpp = NULL; 5407 goto exit; 5408 } 5409 5410 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5411 /* 5412 * The file exists but we can't get its fh for 5413 * some unknown reason. Remove it from the dnlc 5414 * and error out to be safe. 5415 */ 5416 dnlc_remove(dvp, nm); 5417 VN_RELE(*vpp); 5418 *vpp = NULL; 5419 goto exit; 5420 } 5421 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5422 if (fhp->nfs_fh4_len == 0) { 5423 /* 5424 * The file exists but a bogus fh 5425 * some unknown reason. Remove it from the dnlc 5426 * and error out to be safe. 5427 */ 5428 e.error = ENOENT; 5429 dnlc_remove(dvp, nm); 5430 VN_RELE(*vpp); 5431 *vpp = NULL; 5432 goto exit; 5433 } 5434 sfhp = sfh4_get(fhp, mi); 5435 5436 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5437 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5438 5439 /* 5440 * Make the new rnode 5441 */ 5442 if (isdotdot) { 5443 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5444 if (e.error) { 5445 sfh4_rele(&sfhp); 5446 VN_RELE(*vpp); 5447 *vpp = NULL; 5448 goto exit; 5449 } 5450 /* 5451 * XXX if nfs4_make_dotdot uses an existing rnode 5452 * XXX it doesn't update the attributes. 5453 * XXX for now just save them again to save an OTW 5454 */ 5455 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5456 } else { 5457 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5458 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5459 /* 5460 * If v_type == VNON, then garp was NULL because 5461 * the last op in the compound failed and makenfs4node 5462 * could not find the vnode for sfhp. It created 5463 * a new vnode, so we have nothing to purge here. 5464 */ 5465 if (nvp->v_type == VNON) { 5466 vattr_t vattr; 5467 5468 vattr.va_mask = AT_TYPE; 5469 /* 5470 * N.B. We've already called nfs4_end_fop above. 5471 */ 5472 e.error = nfs4getattr(nvp, &vattr, cr); 5473 if (e.error) { 5474 sfh4_rele(&sfhp); 5475 VN_RELE(*vpp); 5476 *vpp = NULL; 5477 VN_RELE(nvp); 5478 goto exit; 5479 } 5480 nvp->v_type = vattr.va_type; 5481 } 5482 } 5483 sfh4_rele(&sfhp); 5484 5485 nrp = VTOR4(nvp); 5486 mutex_enter(&nrp->r_statev4_lock); 5487 if (!nrp->created_v4) { 5488 mutex_exit(&nrp->r_statev4_lock); 5489 dnlc_update(dvp, nm, nvp); 5490 } else 5491 mutex_exit(&nrp->r_statev4_lock); 5492 5493 VN_RELE(*vpp); 5494 *vpp = nvp; 5495 } else { 5496 hrtime_t now; 5497 hrtime_t delta = 0; 5498 5499 e.error = 0; 5500 5501 /* 5502 * Because the NVERIFY "succeeded" we know that the 5503 * directory attributes are still valid 5504 * so update r_time_attr_inval 5505 */ 5506 now = gethrtime(); 5507 mutex_enter(&drp->r_statelock); 5508 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5509 delta = now - drp->r_time_attr_saved; 5510 if (delta < mi->mi_acdirmin) 5511 delta = mi->mi_acdirmin; 5512 else if (delta > mi->mi_acdirmax) 5513 delta = mi->mi_acdirmax; 5514 } 5515 drp->r_time_attr_inval = now + delta; 5516 mutex_exit(&drp->r_statelock); 5517 dnlc_update(dvp, nm, *vpp); 5518 5519 /* 5520 * Even though we have a valid directory attr cache 5521 * and dnlc entry, we may not have access. 5522 * This should almost always hit the cache. 5523 */ 5524 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5525 if (e.error) { 5526 VN_RELE(*vpp); 5527 *vpp = NULL; 5528 } 5529 5530 if (*vpp == DNLC_NO_VNODE) { 5531 VN_RELE(*vpp); 5532 *vpp = NULL; 5533 e.error = ENOENT; 5534 } 5535 } 5536 5537 exit: 5538 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5539 kmem_free(argop, argoplist_size); 5540 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5541 return (e.error); 5542 } 5543 5544 /* 5545 * We need to go over the wire to lookup the name, but 5546 * while we are there verify the directory has not 5547 * changed but if it has, get new attributes and check access 5548 * 5549 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5550 * NVERIFY GETATTR ACCESS 5551 * 5552 * With the results: 5553 * if the NVERIFY failed we must purge the caches, add new attributes, 5554 * and cache new access. 5555 * set a new r_time_attr_inval 5556 * add name to dnlc, possibly negative 5557 * if LOOKUP succeeded 5558 * cache new attributes 5559 */ 5560 static int 5561 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5562 { 5563 COMPOUND4args_clnt args; 5564 COMPOUND4res_clnt res; 5565 fattr4 *ver_fattr; 5566 fattr4_change dchange; 5567 int32_t *ptr; 5568 nfs4_ga_res_t *garp = NULL; 5569 int argoplist_size = 9 * sizeof (nfs_argop4); 5570 nfs_argop4 *argop; 5571 int doqueue; 5572 mntinfo4_t *mi; 5573 nfs4_recov_state_t recov_state; 5574 hrtime_t t; 5575 int isdotdot; 5576 vnode_t *nvp; 5577 nfs_fh4 *fhp; 5578 nfs4_sharedfh_t *sfhp; 5579 nfs4_access_type_t cacc; 5580 rnode4_t *nrp; 5581 rnode4_t *drp = VTOR4(dvp); 5582 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5583 5584 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5585 ASSERT(nm != NULL); 5586 ASSERT(nm[0] != '\0'); 5587 ASSERT(dvp->v_type == VDIR); 5588 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5589 ASSERT(*vpp == NULL); 5590 5591 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5592 isdotdot = 1; 5593 args.ctag = TAG_LOOKUP_PARENT; 5594 } else { 5595 /* 5596 * If dvp were a stub, it should have triggered and caused 5597 * a mount for us to get this far. 5598 */ 5599 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5600 5601 isdotdot = 0; 5602 args.ctag = TAG_LOOKUP; 5603 } 5604 5605 mi = VTOMI4(dvp); 5606 recov_state.rs_flags = 0; 5607 recov_state.rs_num_retry_despite_err = 0; 5608 5609 nvp = NULL; 5610 5611 /* Save the original mount point security information */ 5612 (void) save_mnt_secinfo(mi->mi_curr_serv); 5613 5614 recov_retry: 5615 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5616 &recov_state, NULL); 5617 if (e.error) { 5618 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5619 return (e.error); 5620 } 5621 5622 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5623 5624 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5625 args.array_len = 9; 5626 args.array = argop; 5627 5628 /* 0. putfh file */ 5629 argop[0].argop = OP_CPUTFH; 5630 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5631 5632 /* 1. savefh for the nverify */ 5633 argop[1].argop = OP_SAVEFH; 5634 5635 /* 2. lookup name */ 5636 if (isdotdot) { 5637 argop[2].argop = OP_LOOKUPP; 5638 } else { 5639 argop[2].argop = OP_CLOOKUP; 5640 argop[2].nfs_argop4_u.opclookup.cname = nm; 5641 } 5642 5643 /* 3. resulting file handle */ 5644 argop[3].argop = OP_GETFH; 5645 5646 /* 4. resulting file attributes */ 5647 argop[4].argop = OP_GETATTR; 5648 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5649 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5650 5651 /* 5. restorefh back the directory for the nverify */ 5652 argop[5].argop = OP_RESTOREFH; 5653 5654 /* 6. nverify the change info */ 5655 argop[6].argop = OP_NVERIFY; 5656 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5657 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5658 ver_fattr->attrlist4 = (char *)&dchange; 5659 ptr = (int32_t *)&dchange; 5660 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5661 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5662 5663 /* 7. getattr directory */ 5664 argop[7].argop = OP_GETATTR; 5665 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5666 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5667 5668 /* 8. access directory */ 5669 argop[8].argop = OP_ACCESS; 5670 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5671 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5672 5673 doqueue = 1; 5674 t = gethrtime(); 5675 5676 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5677 5678 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5679 /* 5680 * For WRONGSEC of a non-dotdot case, send secinfo directly 5681 * from this thread, do not go thru the recovery thread since 5682 * we need the nm information. 5683 * 5684 * Not doing dotdot case because there is no specification 5685 * for (PUTFH, SECINFO "..") yet. 5686 */ 5687 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5688 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5689 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5690 &recov_state, FALSE); 5691 else 5692 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5693 &recov_state, TRUE); 5694 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5695 kmem_free(argop, argoplist_size); 5696 if (!e.error) 5697 goto recov_retry; 5698 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5699 return (e.error); 5700 } 5701 5702 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5703 OP_LOOKUP, NULL) == FALSE) { 5704 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5705 &recov_state, TRUE); 5706 5707 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5708 kmem_free(argop, argoplist_size); 5709 goto recov_retry; 5710 } 5711 } 5712 5713 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5714 5715 if (e.error || res.array_len == 0) { 5716 /* 5717 * If e.error isn't set, then reply has no ops (or we couldn't 5718 * be here). The only legal way to reply without an op array 5719 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5720 * be in the reply for all other status values. 5721 * 5722 * For valid replies without an ops array, return ENOTSUP 5723 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5724 * return EIO -- don't trust status. 5725 */ 5726 if (e.error == 0) 5727 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5728 ENOTSUP : EIO; 5729 5730 kmem_free(argop, argoplist_size); 5731 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5732 return (e.error); 5733 } 5734 5735 e.error = geterrno4(res.status); 5736 5737 /* 5738 * The PUTFH and SAVEFH may have failed. 5739 */ 5740 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5741 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5742 nfs4_purge_stale_fh(e.error, dvp, cr); 5743 goto exit; 5744 } 5745 5746 /* 5747 * Check if the file exists, if it does delay entering 5748 * into the dnlc until after we update the directory 5749 * attributes so we don't cause it to get purged immediately. 5750 */ 5751 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5752 /* 5753 * The lookup failed, probably no entry 5754 */ 5755 if (e.error == ENOENT && nfs4_lookup_neg_cache) 5756 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5757 goto exit; 5758 } 5759 5760 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5761 /* 5762 * The file exists but we can't get its fh for 5763 * some unknown reason. Error out to be safe. 5764 */ 5765 goto exit; 5766 } 5767 5768 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5769 if (fhp->nfs_fh4_len == 0) { 5770 /* 5771 * The file exists but a bogus fh 5772 * some unknown reason. Error out to be safe. 5773 */ 5774 e.error = EIO; 5775 goto exit; 5776 } 5777 sfhp = sfh4_get(fhp, mi); 5778 5779 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5780 sfh4_rele(&sfhp); 5781 e.error = EIO; 5782 goto exit; 5783 } 5784 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5785 5786 /* 5787 * The RESTOREFH may have failed 5788 */ 5789 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5790 sfh4_rele(&sfhp); 5791 e.error = EIO; 5792 goto exit; 5793 } 5794 5795 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5796 /* 5797 * First make sure the NVERIFY failed as we expected, 5798 * if it didn't then be conservative and error out 5799 * as we can't trust the directory. 5800 */ 5801 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5802 sfh4_rele(&sfhp); 5803 e.error = EIO; 5804 goto exit; 5805 } 5806 5807 /* 5808 * We know the NVERIFY "failed" so the directory has changed, 5809 * so we must: 5810 * purge the caches (access and indirectly dnlc if needed) 5811 */ 5812 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5813 5814 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5815 sfh4_rele(&sfhp); 5816 goto exit; 5817 } 5818 nfs4_attr_cache(dvp, 5819 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5820 t, cr, FALSE, NULL); 5821 5822 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5823 nfs4_purge_stale_fh(e.error, dvp, cr); 5824 sfh4_rele(&sfhp); 5825 e.error = geterrno4(res.status); 5826 goto exit; 5827 } 5828 5829 /* 5830 * Now we know the directory is valid, 5831 * cache new directory access 5832 */ 5833 nfs4_access_cache(drp, 5834 args.array[8].nfs_argop4_u.opaccess.access, 5835 res.array[8].nfs_resop4_u.opaccess.access, cr); 5836 5837 /* 5838 * recheck VEXEC access 5839 */ 5840 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5841 if (cacc != NFS4_ACCESS_ALLOWED) { 5842 /* 5843 * Directory permissions might have been revoked 5844 */ 5845 if (cacc == NFS4_ACCESS_DENIED) { 5846 sfh4_rele(&sfhp); 5847 e.error = EACCES; 5848 goto exit; 5849 } 5850 5851 /* 5852 * Somehow we must not have asked for enough 5853 * so try a singleton ACCESS should never happen 5854 */ 5855 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5856 if (e.error) { 5857 sfh4_rele(&sfhp); 5858 goto exit; 5859 } 5860 } 5861 5862 e.error = geterrno4(res.status); 5863 } else { 5864 hrtime_t now; 5865 hrtime_t delta = 0; 5866 5867 e.error = 0; 5868 5869 /* 5870 * Because the NVERIFY "succeeded" we know that the 5871 * directory attributes are still valid 5872 * so update r_time_attr_inval 5873 */ 5874 now = gethrtime(); 5875 mutex_enter(&drp->r_statelock); 5876 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5877 delta = now - drp->r_time_attr_saved; 5878 if (delta < mi->mi_acdirmin) 5879 delta = mi->mi_acdirmin; 5880 else if (delta > mi->mi_acdirmax) 5881 delta = mi->mi_acdirmax; 5882 } 5883 drp->r_time_attr_inval = now + delta; 5884 mutex_exit(&drp->r_statelock); 5885 5886 /* 5887 * Even though we have a valid directory attr cache, 5888 * we may not have access. 5889 * This should almost always hit the cache. 5890 */ 5891 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5892 if (e.error) { 5893 sfh4_rele(&sfhp); 5894 goto exit; 5895 } 5896 } 5897 5898 /* 5899 * Now we have successfully completed the lookup, if the 5900 * directory has changed we now have the valid attributes. 5901 * We also know we have directory access. 5902 * Create the new rnode and insert it in the dnlc. 5903 */ 5904 if (isdotdot) { 5905 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5906 if (e.error) { 5907 sfh4_rele(&sfhp); 5908 goto exit; 5909 } 5910 /* 5911 * XXX if nfs4_make_dotdot uses an existing rnode 5912 * XXX it doesn't update the attributes. 5913 * XXX for now just save them again to save an OTW 5914 */ 5915 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5916 } else { 5917 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5918 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5919 } 5920 sfh4_rele(&sfhp); 5921 5922 nrp = VTOR4(nvp); 5923 mutex_enter(&nrp->r_statev4_lock); 5924 if (!nrp->created_v4) { 5925 mutex_exit(&nrp->r_statev4_lock); 5926 dnlc_update(dvp, nm, nvp); 5927 } else 5928 mutex_exit(&nrp->r_statev4_lock); 5929 5930 *vpp = nvp; 5931 5932 exit: 5933 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5934 kmem_free(argop, argoplist_size); 5935 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5936 return (e.error); 5937 } 5938 5939 #ifdef DEBUG 5940 void 5941 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 5942 { 5943 uint_t i, len; 5944 zoneid_t zoneid = getzoneid(); 5945 char *s; 5946 5947 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 5948 for (i = 0; i < argcnt; i++) { 5949 nfs_argop4 *op = &argbase[i]; 5950 switch (op->argop) { 5951 case OP_CPUTFH: 5952 case OP_PUTFH: 5953 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 5954 break; 5955 case OP_PUTROOTFH: 5956 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 5957 break; 5958 case OP_CLOOKUP: 5959 s = op->nfs_argop4_u.opclookup.cname; 5960 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5961 break; 5962 case OP_LOOKUP: 5963 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 5964 &len, NULL); 5965 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5966 kmem_free(s, len); 5967 break; 5968 case OP_LOOKUPP: 5969 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 5970 break; 5971 case OP_GETFH: 5972 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 5973 break; 5974 case OP_GETATTR: 5975 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 5976 break; 5977 case OP_OPENATTR: 5978 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 5979 break; 5980 default: 5981 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 5982 op->argop); 5983 break; 5984 } 5985 } 5986 } 5987 #endif 5988 5989 /* 5990 * nfs4lookup_setup - constructs a multi-lookup compound request. 5991 * 5992 * Given the path "nm1/nm2/.../nmn", the following compound requests 5993 * may be created: 5994 * 5995 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 5996 * is faster, for now. 5997 * 5998 * l4_getattrs indicates the type of compound requested. 5999 * 6000 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 6001 * 6002 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 6003 * 6004 * total number of ops is n + 1. 6005 * 6006 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 6007 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 6008 * before the last component, and only get attributes 6009 * for the last component. Note that the second-to-last 6010 * pathname component is XATTR_RPATH, which does NOT go 6011 * over-the-wire as a lookup. 6012 * 6013 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 6014 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 6015 * 6016 * and total number of ops is n + 5. 6017 * 6018 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 6019 * attribute directory: create lookups plus an OPENATTR 6020 * replacing the last lookup. Note that the last pathname 6021 * component is XATTR_RPATH, which does NOT go over-the-wire 6022 * as a lookup. 6023 * 6024 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 6025 * Openattr; Getfh; Getattr } 6026 * 6027 * and total number of ops is n + 5. 6028 * 6029 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6030 * nodes too. 6031 * 6032 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6033 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6034 * 6035 * and total number of ops is 3*n + 1. 6036 * 6037 * All cases: returns the index in the arg array of the final LOOKUP op, or 6038 * -1 if no LOOKUPs were used. 6039 */ 6040 int 6041 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6042 { 6043 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6044 nfs_argop4 *argbase, *argop; 6045 int arglen, argcnt; 6046 int n = 1; /* number of components */ 6047 int nga = 1; /* number of Getattr's in request */ 6048 char c = '\0', *s, *p; 6049 int lookup_idx = -1; 6050 int argoplist_size; 6051 6052 /* set lookuparg response result to 0 */ 6053 lookupargp->resp->status = NFS4_OK; 6054 6055 /* skip leading "/" or "." e.g. ".//./" if there is */ 6056 for (; ; nm++) { 6057 if (*nm != '/' && *nm != '.') 6058 break; 6059 6060 /* ".." is counted as 1 component */ 6061 if (*nm == '.' && *(nm + 1) == '.') 6062 break; 6063 } 6064 6065 /* 6066 * Find n = number of components - nm must be null terminated 6067 * Skip "." components. 6068 */ 6069 if (*nm != '\0') 6070 for (n = 1, s = nm; *s != '\0'; s++) { 6071 if ((*s == '/') && (*(s + 1) != '/') && 6072 (*(s + 1) != '\0') && 6073 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6074 *(s + 2) == '\0'))) 6075 n++; 6076 } 6077 else 6078 n = 0; 6079 6080 /* 6081 * nga is number of components that need Getfh+Getattr 6082 */ 6083 switch (l4_getattrs) { 6084 case LKP4_NO_ATTRIBUTES: 6085 nga = 0; 6086 break; 6087 case LKP4_ALL_ATTRIBUTES: 6088 nga = n; 6089 /* 6090 * Always have at least 1 getfh, getattr pair 6091 */ 6092 if (nga == 0) 6093 nga++; 6094 break; 6095 case LKP4_LAST_ATTRDIR: 6096 case LKP4_LAST_NAMED_ATTR: 6097 nga = n+1; 6098 break; 6099 } 6100 6101 /* 6102 * If change to use the filehandle attr instead of getfh 6103 * the following line can be deleted. 6104 */ 6105 nga *= 2; 6106 6107 /* 6108 * calculate number of ops in request as 6109 * header + trailer + lookups + getattrs 6110 */ 6111 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6112 6113 argoplist_size = arglen * sizeof (nfs_argop4); 6114 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6115 lookupargp->argsp->array = argop; 6116 6117 argcnt = lookupargp->header_len; 6118 argop += argcnt; 6119 6120 /* 6121 * loop and create a lookup op and possibly getattr/getfh for 6122 * each component. Skip "." components. 6123 */ 6124 for (s = nm; *s != '\0'; s = p) { 6125 /* 6126 * Set up a pathname struct for each component if needed 6127 */ 6128 while (*s == '/') 6129 s++; 6130 if (*s == '\0') 6131 break; 6132 6133 for (p = s; (*p != '/') && (*p != '\0'); p++) 6134 ; 6135 c = *p; 6136 *p = '\0'; 6137 6138 if (s[0] == '.' && s[1] == '\0') { 6139 *p = c; 6140 continue; 6141 } 6142 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6143 strcmp(s, XATTR_RPATH) == 0) { 6144 /* getfh XXX may not be needed in future */ 6145 argop->argop = OP_GETFH; 6146 argop++; 6147 argcnt++; 6148 6149 /* getattr */ 6150 argop->argop = OP_GETATTR; 6151 argop->nfs_argop4_u.opgetattr.attr_request = 6152 lookupargp->ga_bits; 6153 argop->nfs_argop4_u.opgetattr.mi = 6154 lookupargp->mi; 6155 argop++; 6156 argcnt++; 6157 6158 /* openattr */ 6159 argop->argop = OP_OPENATTR; 6160 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6161 strcmp(s, XATTR_RPATH) == 0) { 6162 /* openattr */ 6163 argop->argop = OP_OPENATTR; 6164 argop++; 6165 argcnt++; 6166 6167 /* getfh XXX may not be needed in future */ 6168 argop->argop = OP_GETFH; 6169 argop++; 6170 argcnt++; 6171 6172 /* getattr */ 6173 argop->argop = OP_GETATTR; 6174 argop->nfs_argop4_u.opgetattr.attr_request = 6175 lookupargp->ga_bits; 6176 argop->nfs_argop4_u.opgetattr.mi = 6177 lookupargp->mi; 6178 argop++; 6179 argcnt++; 6180 *p = c; 6181 continue; 6182 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6183 /* lookupp */ 6184 argop->argop = OP_LOOKUPP; 6185 } else { 6186 /* lookup */ 6187 argop->argop = OP_LOOKUP; 6188 (void) str_to_utf8(s, 6189 &argop->nfs_argop4_u.oplookup.objname); 6190 } 6191 lookup_idx = argcnt; 6192 argop++; 6193 argcnt++; 6194 6195 *p = c; 6196 6197 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6198 /* getfh XXX may not be needed in future */ 6199 argop->argop = OP_GETFH; 6200 argop++; 6201 argcnt++; 6202 6203 /* getattr */ 6204 argop->argop = OP_GETATTR; 6205 argop->nfs_argop4_u.opgetattr.attr_request = 6206 lookupargp->ga_bits; 6207 argop->nfs_argop4_u.opgetattr.mi = 6208 lookupargp->mi; 6209 argop++; 6210 argcnt++; 6211 } 6212 } 6213 6214 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6215 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6216 if (needgetfh) { 6217 /* stick in a post-lookup getfh */ 6218 argop->argop = OP_GETFH; 6219 argcnt++; 6220 argop++; 6221 } 6222 /* post-lookup getattr */ 6223 argop->argop = OP_GETATTR; 6224 argop->nfs_argop4_u.opgetattr.attr_request = 6225 lookupargp->ga_bits; 6226 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6227 argcnt++; 6228 } 6229 argcnt += lookupargp->trailer_len; /* actual op count */ 6230 lookupargp->argsp->array_len = argcnt; 6231 lookupargp->arglen = arglen; 6232 6233 #ifdef DEBUG 6234 if (nfs4_client_lookup_debug) 6235 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6236 #endif 6237 6238 return (lookup_idx); 6239 } 6240 6241 static int 6242 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6243 { 6244 COMPOUND4args_clnt args; 6245 COMPOUND4res_clnt res; 6246 GETFH4res *gf_res = NULL; 6247 nfs_argop4 argop[4]; 6248 nfs_resop4 *resop = NULL; 6249 nfs4_sharedfh_t *sfhp; 6250 hrtime_t t; 6251 nfs4_error_t e; 6252 6253 rnode4_t *drp; 6254 int doqueue = 1; 6255 vnode_t *vp; 6256 int needrecov = 0; 6257 nfs4_recov_state_t recov_state; 6258 6259 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6260 6261 *avp = NULL; 6262 recov_state.rs_flags = 0; 6263 recov_state.rs_num_retry_despite_err = 0; 6264 6265 recov_retry: 6266 /* COMPOUND: putfh, openattr, getfh, getattr */ 6267 args.array_len = 4; 6268 args.array = argop; 6269 args.ctag = TAG_OPENATTR; 6270 6271 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6272 if (e.error) 6273 return (e.error); 6274 6275 drp = VTOR4(dvp); 6276 6277 /* putfh */ 6278 argop[0].argop = OP_CPUTFH; 6279 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6280 6281 /* openattr */ 6282 argop[1].argop = OP_OPENATTR; 6283 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6284 6285 /* getfh */ 6286 argop[2].argop = OP_GETFH; 6287 6288 /* getattr */ 6289 argop[3].argop = OP_GETATTR; 6290 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6291 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6292 6293 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6294 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6295 rnode4info(drp))); 6296 6297 t = gethrtime(); 6298 6299 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6300 6301 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6302 if (needrecov) { 6303 bool_t abort; 6304 6305 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6306 "nfs4openattr: initiating recovery\n")); 6307 6308 abort = nfs4_start_recovery(&e, 6309 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6310 OP_OPENATTR, NULL); 6311 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6312 if (!e.error) { 6313 e.error = geterrno4(res.status); 6314 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6315 } 6316 if (abort == FALSE) 6317 goto recov_retry; 6318 return (e.error); 6319 } 6320 6321 if (e.error) { 6322 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6323 return (e.error); 6324 } 6325 6326 if (res.status) { 6327 /* 6328 * If OTW errro is NOTSUPP, then it should be 6329 * translated to EINVAL. All Solaris file system 6330 * implementations return EINVAL to the syscall layer 6331 * when the attrdir cannot be created due to an 6332 * implementation restriction or noxattr mount option. 6333 */ 6334 if (res.status == NFS4ERR_NOTSUPP) { 6335 mutex_enter(&drp->r_statelock); 6336 if (drp->r_xattr_dir) 6337 VN_RELE(drp->r_xattr_dir); 6338 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6339 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6340 mutex_exit(&drp->r_statelock); 6341 6342 e.error = EINVAL; 6343 } else { 6344 e.error = geterrno4(res.status); 6345 } 6346 6347 if (e.error) { 6348 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6349 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6350 needrecov); 6351 return (e.error); 6352 } 6353 } 6354 6355 resop = &res.array[0]; /* putfh res */ 6356 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6357 6358 resop = &res.array[1]; /* openattr res */ 6359 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6360 6361 resop = &res.array[2]; /* getfh res */ 6362 gf_res = &resop->nfs_resop4_u.opgetfh; 6363 if (gf_res->object.nfs_fh4_len == 0) { 6364 *avp = NULL; 6365 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6366 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6367 return (ENOENT); 6368 } 6369 6370 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6371 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6372 dvp->v_vfsp, t, cr, dvp, 6373 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH)); 6374 sfh4_rele(&sfhp); 6375 6376 if (e.error) 6377 PURGE_ATTRCACHE4(vp); 6378 6379 mutex_enter(&vp->v_lock); 6380 vp->v_flag |= V_XATTRDIR; 6381 mutex_exit(&vp->v_lock); 6382 6383 *avp = vp; 6384 6385 mutex_enter(&drp->r_statelock); 6386 if (drp->r_xattr_dir) 6387 VN_RELE(drp->r_xattr_dir); 6388 VN_HOLD(vp); 6389 drp->r_xattr_dir = vp; 6390 6391 /* 6392 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6393 * NULL. xattrs could be created at any time, and we have no 6394 * way to update pc4_xattr_exists in the base object if/when 6395 * it happens. 6396 */ 6397 drp->r_pathconf.pc4_xattr_valid = 0; 6398 6399 mutex_exit(&drp->r_statelock); 6400 6401 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6402 6403 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6404 6405 return (0); 6406 } 6407 6408 /* ARGSUSED */ 6409 static int 6410 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6411 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, 6412 vsecattr_t *vsecp) 6413 { 6414 int error; 6415 vnode_t *vp = NULL; 6416 rnode4_t *rp; 6417 struct vattr vattr; 6418 rnode4_t *drp; 6419 vnode_t *tempvp; 6420 enum createmode4 createmode; 6421 bool_t must_trunc = FALSE; 6422 int truncating = 0; 6423 6424 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6425 return (EPERM); 6426 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6427 return (EINVAL); 6428 } 6429 6430 /* . and .. have special meaning in the protocol, reject them. */ 6431 6432 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6433 return (EISDIR); 6434 6435 drp = VTOR4(dvp); 6436 6437 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6438 return (EINTR); 6439 6440 top: 6441 /* 6442 * We make a copy of the attributes because the caller does not 6443 * expect us to change what va points to. 6444 */ 6445 vattr = *va; 6446 6447 /* 6448 * If the pathname is "", then dvp is the root vnode of 6449 * a remote file mounted over a local directory. 6450 * All that needs to be done is access 6451 * checking and truncation. Note that we avoid doing 6452 * open w/ create because the parent directory might 6453 * be in pseudo-fs and the open would fail. 6454 */ 6455 if (*nm == '\0') { 6456 error = 0; 6457 VN_HOLD(dvp); 6458 vp = dvp; 6459 must_trunc = TRUE; 6460 } else { 6461 /* 6462 * We need to go over the wire, just to be sure whether the 6463 * file exists or not. Using the DNLC can be dangerous in 6464 * this case when making a decision regarding existence. 6465 */ 6466 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6467 } 6468 6469 if (exclusive) 6470 createmode = EXCLUSIVE4; 6471 else 6472 createmode = GUARDED4; 6473 6474 /* 6475 * error would be set if the file does not exist on the 6476 * server, so lets go create it. 6477 */ 6478 if (error) { 6479 goto create_otw; 6480 } 6481 6482 /* 6483 * File does exist on the server 6484 */ 6485 if (exclusive == EXCL) 6486 error = EEXIST; 6487 else if (vp->v_type == VDIR && (mode & VWRITE)) 6488 error = EISDIR; 6489 else { 6490 /* 6491 * If vnode is a device, create special vnode. 6492 */ 6493 if (ISVDEV(vp->v_type)) { 6494 tempvp = vp; 6495 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6496 VN_RELE(tempvp); 6497 } 6498 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 6499 if ((vattr.va_mask & AT_SIZE) && 6500 vp->v_type == VREG) { 6501 rp = VTOR4(vp); 6502 /* 6503 * Check here for large file handled 6504 * by LF-unaware process (as 6505 * ufs_create() does) 6506 */ 6507 if (!(flags & FOFFMAX)) { 6508 mutex_enter(&rp->r_statelock); 6509 if (rp->r_size > MAXOFF32_T) 6510 error = EOVERFLOW; 6511 mutex_exit(&rp->r_statelock); 6512 } 6513 6514 /* if error is set then we need to return */ 6515 if (error) { 6516 nfs_rw_exit(&drp->r_rwlock); 6517 VN_RELE(vp); 6518 return (error); 6519 } 6520 6521 if (must_trunc) { 6522 vattr.va_mask = AT_SIZE; 6523 error = nfs4setattr(vp, &vattr, 0, cr, 6524 NULL); 6525 } else { 6526 /* 6527 * we know we have a regular file that already 6528 * exists and we may end up truncating the file 6529 * as a result of the open_otw, so flush out 6530 * any dirty pages for this file first. 6531 */ 6532 if (nfs4_has_pages(vp) && 6533 ((rp->r_flags & R4DIRTY) || 6534 rp->r_count > 0 || 6535 rp->r_mapcnt > 0)) { 6536 error = nfs4_putpage(vp, 6537 (offset_t)0, 0, 0, cr, ct); 6538 if (error && (error == ENOSPC || 6539 error == EDQUOT)) { 6540 mutex_enter( 6541 &rp->r_statelock); 6542 if (!rp->r_error) 6543 rp->r_error = 6544 error; 6545 mutex_exit( 6546 &rp->r_statelock); 6547 } 6548 } 6549 vattr.va_mask = (AT_SIZE | 6550 AT_TYPE | AT_MODE); 6551 vattr.va_type = VREG; 6552 createmode = UNCHECKED4; 6553 truncating = 1; 6554 goto create_otw; 6555 } 6556 } 6557 } 6558 } 6559 nfs_rw_exit(&drp->r_rwlock); 6560 if (error) { 6561 VN_RELE(vp); 6562 } else { 6563 vnode_t *tvp; 6564 rnode4_t *trp; 6565 /* 6566 * existing file got truncated, notify. 6567 */ 6568 tvp = vp; 6569 if (vp->v_type == VREG) { 6570 trp = VTOR4(vp); 6571 if (IS_SHADOW(vp, trp)) 6572 tvp = RTOV4(trp); 6573 } 6574 vnevent_create(tvp, ct); 6575 *vpp = vp; 6576 } 6577 return (error); 6578 6579 create_otw: 6580 dnlc_remove(dvp, nm); 6581 6582 ASSERT(vattr.va_mask & AT_TYPE); 6583 6584 /* 6585 * If not a regular file let nfs4mknod() handle it. 6586 */ 6587 if (vattr.va_type != VREG) { 6588 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6589 nfs_rw_exit(&drp->r_rwlock); 6590 return (error); 6591 } 6592 6593 /* 6594 * It _is_ a regular file. 6595 */ 6596 ASSERT(vattr.va_mask & AT_MODE); 6597 if (MANDMODE(vattr.va_mode)) { 6598 nfs_rw_exit(&drp->r_rwlock); 6599 return (EACCES); 6600 } 6601 6602 /* 6603 * If this happens to be a mknod of a regular file, then flags will 6604 * have neither FREAD or FWRITE. However, we must set at least one 6605 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6606 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6607 * set (based on openmode specified by app). 6608 */ 6609 if ((flags & (FREAD|FWRITE)) == 0) 6610 flags |= (FREAD|FWRITE); 6611 6612 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6613 6614 if (vp != NULL) { 6615 /* if create was successful, throw away the file's pages */ 6616 if (!error && (vattr.va_mask & AT_SIZE)) 6617 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6618 cr); 6619 /* release the lookup hold */ 6620 VN_RELE(vp); 6621 vp = NULL; 6622 } 6623 6624 /* 6625 * validate that we opened a regular file. This handles a misbehaving 6626 * server that returns an incorrect FH. 6627 */ 6628 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6629 error = EISDIR; 6630 VN_RELE(*vpp); 6631 } 6632 6633 /* 6634 * If this is not an exclusive create, then the CREATE 6635 * request will be made with the GUARDED mode set. This 6636 * means that the server will return EEXIST if the file 6637 * exists. The file could exist because of a retransmitted 6638 * request. In this case, we recover by starting over and 6639 * checking to see whether the file exists. This second 6640 * time through it should and a CREATE request will not be 6641 * sent. 6642 * 6643 * This handles the problem of a dangling CREATE request 6644 * which contains attributes which indicate that the file 6645 * should be truncated. This retransmitted request could 6646 * possibly truncate valid data in the file if not caught 6647 * by the duplicate request mechanism on the server or if 6648 * not caught by other means. The scenario is: 6649 * 6650 * Client transmits CREATE request with size = 0 6651 * Client times out, retransmits request. 6652 * Response to the first request arrives from the server 6653 * and the client proceeds on. 6654 * Client writes data to the file. 6655 * The server now processes retransmitted CREATE request 6656 * and truncates file. 6657 * 6658 * The use of the GUARDED CREATE request prevents this from 6659 * happening because the retransmitted CREATE would fail 6660 * with EEXIST and would not truncate the file. 6661 */ 6662 if (error == EEXIST && exclusive == NONEXCL) { 6663 #ifdef DEBUG 6664 nfs4_create_misses++; 6665 #endif 6666 goto top; 6667 } 6668 nfs_rw_exit(&drp->r_rwlock); 6669 if (truncating && !error && *vpp) { 6670 vnode_t *tvp; 6671 rnode4_t *trp; 6672 /* 6673 * existing file got truncated, notify. 6674 */ 6675 tvp = *vpp; 6676 trp = VTOR4(tvp); 6677 if (IS_SHADOW(tvp, trp)) 6678 tvp = RTOV4(trp); 6679 vnevent_create(tvp, ct); 6680 } 6681 return (error); 6682 } 6683 6684 /* 6685 * Create compound (for mkdir, mknod, symlink): 6686 * { Putfh <dfh>; Create; Getfh; Getattr } 6687 * It's okay if setattr failed to set gid - this is not considered 6688 * an error, but purge attrs in that case. 6689 */ 6690 static int 6691 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6692 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6693 { 6694 int need_end_op = FALSE; 6695 COMPOUND4args_clnt args; 6696 COMPOUND4res_clnt res, *resp = NULL; 6697 nfs_argop4 *argop; 6698 nfs_resop4 *resop; 6699 int doqueue; 6700 mntinfo4_t *mi; 6701 rnode4_t *drp = VTOR4(dvp); 6702 change_info4 *cinfo; 6703 GETFH4res *gf_res; 6704 struct vattr vattr; 6705 vnode_t *vp; 6706 fattr4 *crattr; 6707 bool_t needrecov = FALSE; 6708 nfs4_recov_state_t recov_state; 6709 nfs4_sharedfh_t *sfhp = NULL; 6710 hrtime_t t; 6711 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6712 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6713 dirattr_info_t dinfo, *dinfop; 6714 servinfo4_t *svp; 6715 bitmap4 supp_attrs; 6716 6717 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6718 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6719 6720 mi = VTOMI4(dvp); 6721 6722 /* 6723 * Make sure we properly deal with setting the right gid 6724 * on a new directory to reflect the parent's setgid bit 6725 */ 6726 setgid_flag = 0; 6727 if (type == NF4DIR) { 6728 struct vattr dva; 6729 6730 va->va_mode &= ~VSGID; 6731 dva.va_mask = AT_MODE | AT_GID; 6732 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) { 6733 6734 /* 6735 * If the parent's directory has the setgid bit set 6736 * _and_ the client was able to get a valid mapping 6737 * for the parent dir's owner_group, we want to 6738 * append NVERIFY(owner_group == dva.va_gid) and 6739 * SETTATTR to the CREATE compound. 6740 */ 6741 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6742 setgid_flag = 1; 6743 va->va_mode |= VSGID; 6744 if (dva.va_gid != GID_NOBODY) { 6745 va->va_mask |= AT_GID; 6746 va->va_gid = dva.va_gid; 6747 } 6748 } 6749 } 6750 } 6751 6752 /* 6753 * Create ops: 6754 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6755 * 5:restorefh(dir) 6:getattr(dir) 6756 * 6757 * if (setgid) 6758 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6759 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6760 * 8:nverify 9:setattr 6761 */ 6762 if (setgid_flag) { 6763 numops = 10; 6764 idx_create = 1; 6765 idx_fattr = 3; 6766 } else { 6767 numops = 7; 6768 idx_create = 2; 6769 idx_fattr = 4; 6770 } 6771 6772 ASSERT(nfs_zone() == mi->mi_zone); 6773 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6774 return (EINTR); 6775 } 6776 recov_state.rs_flags = 0; 6777 recov_state.rs_num_retry_despite_err = 0; 6778 6779 argoplist_size = numops * sizeof (nfs_argop4); 6780 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6781 6782 recov_retry: 6783 if (type == NF4LNK) 6784 args.ctag = TAG_SYMLINK; 6785 else if (type == NF4DIR) 6786 args.ctag = TAG_MKDIR; 6787 else 6788 args.ctag = TAG_MKNOD; 6789 6790 args.array_len = numops; 6791 args.array = argop; 6792 6793 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6794 nfs_rw_exit(&drp->r_rwlock); 6795 kmem_free(argop, argoplist_size); 6796 return (e.error); 6797 } 6798 need_end_op = TRUE; 6799 6800 6801 /* 0: putfh directory */ 6802 argop[0].argop = OP_CPUTFH; 6803 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6804 6805 /* 1/2: Create object */ 6806 argop[idx_create].argop = OP_CCREATE; 6807 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6808 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6809 if (type == NF4LNK) { 6810 /* 6811 * symlink, treat name as data 6812 */ 6813 ASSERT(data != NULL); 6814 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6815 (char *)data; 6816 } 6817 if (type == NF4BLK || type == NF4CHR) { 6818 ASSERT(data != NULL); 6819 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6820 *((specdata4 *)data); 6821 } 6822 6823 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6824 6825 svp = drp->r_server; 6826 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6827 supp_attrs = svp->sv_supp_attrs; 6828 nfs_rw_exit(&svp->sv_lock); 6829 6830 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6831 nfs_rw_exit(&drp->r_rwlock); 6832 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6833 e.error = EINVAL; 6834 kmem_free(argop, argoplist_size); 6835 return (e.error); 6836 } 6837 6838 /* 2/3: getfh fh of created object */ 6839 ASSERT(idx_create + 1 == idx_fattr - 1); 6840 argop[idx_create + 1].argop = OP_GETFH; 6841 6842 /* 3/4: getattr of new object */ 6843 argop[idx_fattr].argop = OP_GETATTR; 6844 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6845 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6846 6847 if (setgid_flag) { 6848 vattr_t _v; 6849 6850 argop[4].argop = OP_SAVEFH; 6851 6852 argop[5].argop = OP_CPUTFH; 6853 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6854 6855 argop[6].argop = OP_GETATTR; 6856 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6857 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6858 6859 argop[7].argop = OP_RESTOREFH; 6860 6861 /* 6862 * nverify 6863 * 6864 * XXX - Revisit the last argument to nfs4_end_op() 6865 * once 5020486 is fixed. 6866 */ 6867 _v.va_mask = AT_GID; 6868 _v.va_gid = va->va_gid; 6869 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6870 supp_attrs)) { 6871 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6872 nfs_rw_exit(&drp->r_rwlock); 6873 nfs4_fattr4_free(crattr); 6874 kmem_free(argop, argoplist_size); 6875 return (e.error); 6876 } 6877 6878 /* 6879 * setattr 6880 * 6881 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 6882 * so no need for stateid or flags. Also we specify NULL 6883 * rp since we're only interested in setting owner_group 6884 * attributes. 6885 */ 6886 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 6887 &e.error, 0); 6888 6889 if (e.error) { 6890 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6891 nfs_rw_exit(&drp->r_rwlock); 6892 nfs4_fattr4_free(crattr); 6893 nfs4args_verify_free(&argop[8]); 6894 kmem_free(argop, argoplist_size); 6895 return (e.error); 6896 } 6897 } else { 6898 argop[1].argop = OP_SAVEFH; 6899 6900 argop[5].argop = OP_RESTOREFH; 6901 6902 argop[6].argop = OP_GETATTR; 6903 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6904 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6905 } 6906 6907 dnlc_remove(dvp, nm); 6908 6909 doqueue = 1; 6910 t = gethrtime(); 6911 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 6912 6913 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 6914 if (e.error) { 6915 PURGE_ATTRCACHE4(dvp); 6916 if (!needrecov) 6917 goto out; 6918 } 6919 6920 if (needrecov) { 6921 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 6922 OP_CREATE, NULL) == FALSE) { 6923 nfs4_end_op(mi, dvp, NULL, &recov_state, 6924 needrecov); 6925 need_end_op = FALSE; 6926 nfs4_fattr4_free(crattr); 6927 if (setgid_flag) { 6928 nfs4args_verify_free(&argop[8]); 6929 nfs4args_setattr_free(&argop[9]); 6930 } 6931 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6932 goto recov_retry; 6933 } 6934 } 6935 6936 resp = &res; 6937 6938 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 6939 6940 if (res.status == NFS4ERR_BADOWNER) 6941 nfs4_log_badowner(mi, OP_CREATE); 6942 6943 e.error = geterrno4(res.status); 6944 6945 /* 6946 * This check is left over from when create was implemented 6947 * using a setattr op (instead of createattrs). If the 6948 * putfh/create/getfh failed, the error was returned. If 6949 * setattr/getattr failed, we keep going. 6950 * 6951 * It might be better to get rid of the GETFH also, and just 6952 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 6953 * Then if any of the operations failed, we could return the 6954 * error now, and remove much of the error code below. 6955 */ 6956 if (res.array_len <= idx_fattr) { 6957 /* 6958 * Either Putfh, Create or Getfh failed. 6959 */ 6960 PURGE_ATTRCACHE4(dvp); 6961 /* 6962 * nfs4_purge_stale_fh() may generate otw calls through 6963 * nfs4_invalidate_pages. Hence the need to call 6964 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 6965 */ 6966 nfs4_end_op(mi, dvp, NULL, &recov_state, 6967 needrecov); 6968 need_end_op = FALSE; 6969 nfs4_purge_stale_fh(e.error, dvp, cr); 6970 goto out; 6971 } 6972 } 6973 6974 resop = &res.array[idx_create]; /* create res */ 6975 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 6976 6977 resop = &res.array[idx_create + 1]; /* getfh res */ 6978 gf_res = &resop->nfs_resop4_u.opgetfh; 6979 6980 sfhp = sfh4_get(&gf_res->object, mi); 6981 if (e.error) { 6982 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 6983 fn_get(VTOSV(dvp)->sv_name, nm)); 6984 if (vp->v_type == VNON) { 6985 vattr.va_mask = AT_TYPE; 6986 /* 6987 * Need to call nfs4_end_op before nfs4getattr to avoid 6988 * potential nfs4_start_op deadlock. See RFE 4777612. 6989 */ 6990 nfs4_end_op(mi, dvp, NULL, &recov_state, 6991 needrecov); 6992 need_end_op = FALSE; 6993 e.error = nfs4getattr(vp, &vattr, cr); 6994 if (e.error) { 6995 VN_RELE(vp); 6996 *vpp = NULL; 6997 goto out; 6998 } 6999 vp->v_type = vattr.va_type; 7000 } 7001 e.error = 0; 7002 } else { 7003 *vpp = vp = makenfs4node(sfhp, 7004 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 7005 dvp->v_vfsp, t, cr, 7006 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 7007 } 7008 7009 /* 7010 * If compound succeeded, then update dir attrs 7011 */ 7012 if (res.status == NFS4_OK) { 7013 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 7014 dinfo.di_cred = cr; 7015 dinfo.di_time_call = t; 7016 dinfop = &dinfo; 7017 } else 7018 dinfop = NULL; 7019 7020 /* Update directory cache attribute, readdir and dnlc caches */ 7021 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 7022 7023 out: 7024 if (sfhp != NULL) 7025 sfh4_rele(&sfhp); 7026 nfs_rw_exit(&drp->r_rwlock); 7027 nfs4_fattr4_free(crattr); 7028 if (setgid_flag) { 7029 nfs4args_verify_free(&argop[8]); 7030 nfs4args_setattr_free(&argop[9]); 7031 } 7032 if (resp) 7033 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7034 if (need_end_op) 7035 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7036 7037 kmem_free(argop, argoplist_size); 7038 return (e.error); 7039 } 7040 7041 /* ARGSUSED */ 7042 static int 7043 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7044 int mode, vnode_t **vpp, cred_t *cr) 7045 { 7046 int error; 7047 vnode_t *vp; 7048 nfs_ftype4 type; 7049 specdata4 spec, *specp = NULL; 7050 7051 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7052 7053 switch (va->va_type) { 7054 case VCHR: 7055 case VBLK: 7056 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7057 spec.specdata1 = getmajor(va->va_rdev); 7058 spec.specdata2 = getminor(va->va_rdev); 7059 specp = &spec; 7060 break; 7061 7062 case VFIFO: 7063 type = NF4FIFO; 7064 break; 7065 case VSOCK: 7066 type = NF4SOCK; 7067 break; 7068 7069 default: 7070 return (EINVAL); 7071 } 7072 7073 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7074 if (error) { 7075 return (error); 7076 } 7077 7078 /* 7079 * This might not be needed any more; special case to deal 7080 * with problematic v2/v3 servers. Since create was unable 7081 * to set group correctly, not sure what hope setattr has. 7082 */ 7083 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7084 va->va_mask = AT_GID; 7085 (void) nfs4setattr(vp, va, 0, cr, NULL); 7086 } 7087 7088 /* 7089 * If vnode is a device create special vnode 7090 */ 7091 if (ISVDEV(vp->v_type)) { 7092 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7093 VN_RELE(vp); 7094 } else { 7095 *vpp = vp; 7096 } 7097 return (error); 7098 } 7099 7100 /* 7101 * Remove requires that the current fh be the target directory. 7102 * After the operation, the current fh is unchanged. 7103 * The compound op structure is: 7104 * PUTFH(targetdir), REMOVE 7105 * 7106 * Weirdness: if the vnode to be removed is open 7107 * we rename it instead of removing it and nfs_inactive 7108 * will remove the new name. 7109 */ 7110 /* ARGSUSED */ 7111 static int 7112 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 7113 { 7114 COMPOUND4args_clnt args; 7115 COMPOUND4res_clnt res, *resp = NULL; 7116 REMOVE4res *rm_res; 7117 nfs_argop4 argop[3]; 7118 nfs_resop4 *resop; 7119 vnode_t *vp; 7120 char *tmpname; 7121 int doqueue; 7122 mntinfo4_t *mi; 7123 rnode4_t *rp; 7124 rnode4_t *drp; 7125 int needrecov = 0; 7126 nfs4_recov_state_t recov_state; 7127 int isopen; 7128 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7129 dirattr_info_t dinfo; 7130 7131 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7132 return (EPERM); 7133 drp = VTOR4(dvp); 7134 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7135 return (EINTR); 7136 7137 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7138 if (e.error) { 7139 nfs_rw_exit(&drp->r_rwlock); 7140 return (e.error); 7141 } 7142 7143 if (vp->v_type == VDIR) { 7144 VN_RELE(vp); 7145 nfs_rw_exit(&drp->r_rwlock); 7146 return (EISDIR); 7147 } 7148 7149 /* 7150 * First just remove the entry from the name cache, as it 7151 * is most likely the only entry for this vp. 7152 */ 7153 dnlc_remove(dvp, nm); 7154 7155 rp = VTOR4(vp); 7156 7157 /* 7158 * For regular file types, check to see if the file is open by looking 7159 * at the open streams. 7160 * For all other types, check the reference count on the vnode. Since 7161 * they are not opened OTW they never have an open stream. 7162 * 7163 * If the file is open, rename it to .nfsXXXX. 7164 */ 7165 if (vp->v_type != VREG) { 7166 /* 7167 * If the file has a v_count > 1 then there may be more than one 7168 * entry in the name cache due multiple links or an open file, 7169 * but we don't have the real reference count so flush all 7170 * possible entries. 7171 */ 7172 if (vp->v_count > 1) 7173 dnlc_purge_vp(vp); 7174 7175 /* 7176 * Now we have the real reference count. 7177 */ 7178 isopen = vp->v_count > 1; 7179 } else { 7180 mutex_enter(&rp->r_os_lock); 7181 isopen = list_head(&rp->r_open_streams) != NULL; 7182 mutex_exit(&rp->r_os_lock); 7183 } 7184 7185 mutex_enter(&rp->r_statelock); 7186 if (isopen && 7187 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7188 mutex_exit(&rp->r_statelock); 7189 tmpname = newname(); 7190 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct); 7191 if (e.error) 7192 kmem_free(tmpname, MAXNAMELEN); 7193 else { 7194 mutex_enter(&rp->r_statelock); 7195 if (rp->r_unldvp == NULL) { 7196 VN_HOLD(dvp); 7197 rp->r_unldvp = dvp; 7198 if (rp->r_unlcred != NULL) 7199 crfree(rp->r_unlcred); 7200 crhold(cr); 7201 rp->r_unlcred = cr; 7202 rp->r_unlname = tmpname; 7203 } else { 7204 kmem_free(rp->r_unlname, MAXNAMELEN); 7205 rp->r_unlname = tmpname; 7206 } 7207 mutex_exit(&rp->r_statelock); 7208 } 7209 VN_RELE(vp); 7210 nfs_rw_exit(&drp->r_rwlock); 7211 return (e.error); 7212 } 7213 /* 7214 * Actually remove the file/dir 7215 */ 7216 mutex_exit(&rp->r_statelock); 7217 7218 /* 7219 * We need to flush any dirty pages which happen to 7220 * be hanging around before removing the file. 7221 * This shouldn't happen very often since in NFSv4 7222 * we should be close to open consistent. 7223 */ 7224 if (nfs4_has_pages(vp) && 7225 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7226 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct); 7227 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7228 mutex_enter(&rp->r_statelock); 7229 if (!rp->r_error) 7230 rp->r_error = e.error; 7231 mutex_exit(&rp->r_statelock); 7232 } 7233 } 7234 7235 mi = VTOMI4(dvp); 7236 7237 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7238 recov_state.rs_flags = 0; 7239 recov_state.rs_num_retry_despite_err = 0; 7240 7241 recov_retry: 7242 /* 7243 * Remove ops: putfh dir; remove 7244 */ 7245 args.ctag = TAG_REMOVE; 7246 args.array_len = 3; 7247 args.array = argop; 7248 7249 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7250 if (e.error) { 7251 nfs_rw_exit(&drp->r_rwlock); 7252 VN_RELE(vp); 7253 return (e.error); 7254 } 7255 7256 /* putfh directory */ 7257 argop[0].argop = OP_CPUTFH; 7258 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7259 7260 /* remove */ 7261 argop[1].argop = OP_CREMOVE; 7262 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7263 7264 /* getattr dir */ 7265 argop[2].argop = OP_GETATTR; 7266 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7267 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7268 7269 doqueue = 1; 7270 dinfo.di_time_call = gethrtime(); 7271 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7272 7273 PURGE_ATTRCACHE4(vp); 7274 7275 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7276 if (e.error) 7277 PURGE_ATTRCACHE4(dvp); 7278 7279 if (needrecov) { 7280 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7281 NULL, NULL, NULL, OP_REMOVE, NULL) == FALSE) { 7282 if (!e.error) 7283 (void) xdr_free(xdr_COMPOUND4res_clnt, 7284 (caddr_t)&res); 7285 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7286 needrecov); 7287 goto recov_retry; 7288 } 7289 } 7290 7291 /* 7292 * Matching nfs4_end_op() for start_op() above. 7293 * There is a path in the code below which calls 7294 * nfs4_purge_stale_fh(), which may generate otw calls through 7295 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7296 * here to avoid nfs4_start_op() deadlock. 7297 */ 7298 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7299 7300 if (!e.error) { 7301 resp = &res; 7302 7303 if (res.status) { 7304 e.error = geterrno4(res.status); 7305 PURGE_ATTRCACHE4(dvp); 7306 nfs4_purge_stale_fh(e.error, dvp, cr); 7307 } else { 7308 resop = &res.array[1]; /* remove res */ 7309 rm_res = &resop->nfs_resop4_u.opremove; 7310 7311 dinfo.di_garp = 7312 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7313 dinfo.di_cred = cr; 7314 7315 /* Update directory attr, readdir and dnlc caches */ 7316 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7317 &dinfo); 7318 } 7319 } 7320 nfs_rw_exit(&drp->r_rwlock); 7321 if (resp) 7322 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7323 7324 if (e.error == 0) { 7325 vnode_t *tvp; 7326 rnode4_t *trp; 7327 trp = VTOR4(vp); 7328 tvp = vp; 7329 if (IS_SHADOW(vp, trp)) 7330 tvp = RTOV4(trp); 7331 vnevent_remove(tvp, dvp, nm, ct); 7332 } 7333 VN_RELE(vp); 7334 return (e.error); 7335 } 7336 7337 /* 7338 * Link requires that the current fh be the target directory and the 7339 * saved fh be the source fh. After the operation, the current fh is unchanged. 7340 * Thus the compound op structure is: 7341 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7342 * GETATTR(file) 7343 */ 7344 /* ARGSUSED */ 7345 static int 7346 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 7347 caller_context_t *ct, int flags) 7348 { 7349 COMPOUND4args_clnt args; 7350 COMPOUND4res_clnt res, *resp = NULL; 7351 LINK4res *ln_res; 7352 int argoplist_size = 7 * sizeof (nfs_argop4); 7353 nfs_argop4 *argop; 7354 nfs_resop4 *resop; 7355 vnode_t *realvp, *nvp; 7356 int doqueue; 7357 mntinfo4_t *mi; 7358 rnode4_t *tdrp; 7359 bool_t needrecov = FALSE; 7360 nfs4_recov_state_t recov_state; 7361 hrtime_t t; 7362 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7363 dirattr_info_t dinfo; 7364 7365 ASSERT(*tnm != '\0'); 7366 ASSERT(tdvp->v_type == VDIR); 7367 ASSERT(nfs4_consistent_type(tdvp)); 7368 ASSERT(nfs4_consistent_type(svp)); 7369 7370 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7371 return (EPERM); 7372 if (VOP_REALVP(svp, &realvp, ct) == 0) { 7373 svp = realvp; 7374 ASSERT(nfs4_consistent_type(svp)); 7375 } 7376 7377 tdrp = VTOR4(tdvp); 7378 mi = VTOMI4(svp); 7379 7380 if (!(mi->mi_flags & MI4_LINK)) { 7381 return (EOPNOTSUPP); 7382 } 7383 recov_state.rs_flags = 0; 7384 recov_state.rs_num_retry_despite_err = 0; 7385 7386 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7387 return (EINTR); 7388 7389 recov_retry: 7390 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7391 7392 args.ctag = TAG_LINK; 7393 7394 /* 7395 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7396 * restorefh; getattr(fl) 7397 */ 7398 args.array_len = 7; 7399 args.array = argop; 7400 7401 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7402 if (e.error) { 7403 kmem_free(argop, argoplist_size); 7404 nfs_rw_exit(&tdrp->r_rwlock); 7405 return (e.error); 7406 } 7407 7408 /* 0. putfh file */ 7409 argop[0].argop = OP_CPUTFH; 7410 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7411 7412 /* 1. save current fh to free up the space for the dir */ 7413 argop[1].argop = OP_SAVEFH; 7414 7415 /* 2. putfh targetdir */ 7416 argop[2].argop = OP_CPUTFH; 7417 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7418 7419 /* 3. link: current_fh is targetdir, saved_fh is source */ 7420 argop[3].argop = OP_CLINK; 7421 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7422 7423 /* 4. Get attributes of dir */ 7424 argop[4].argop = OP_GETATTR; 7425 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7426 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7427 7428 /* 5. If link was successful, restore current vp to file */ 7429 argop[5].argop = OP_RESTOREFH; 7430 7431 /* 6. Get attributes of linked object */ 7432 argop[6].argop = OP_GETATTR; 7433 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7434 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7435 7436 dnlc_remove(tdvp, tnm); 7437 7438 doqueue = 1; 7439 t = gethrtime(); 7440 7441 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7442 7443 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7444 if (e.error != 0 && !needrecov) { 7445 PURGE_ATTRCACHE4(tdvp); 7446 PURGE_ATTRCACHE4(svp); 7447 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7448 goto out; 7449 } 7450 7451 if (needrecov) { 7452 bool_t abort; 7453 7454 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7455 NULL, NULL, OP_LINK, NULL); 7456 if (abort == FALSE) { 7457 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7458 needrecov); 7459 kmem_free(argop, argoplist_size); 7460 if (!e.error) 7461 (void) xdr_free(xdr_COMPOUND4res_clnt, 7462 (caddr_t)&res); 7463 goto recov_retry; 7464 } else { 7465 if (e.error != 0) { 7466 PURGE_ATTRCACHE4(tdvp); 7467 PURGE_ATTRCACHE4(svp); 7468 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7469 &recov_state, needrecov); 7470 goto out; 7471 } 7472 /* fall through for res.status case */ 7473 } 7474 } 7475 7476 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7477 7478 resp = &res; 7479 if (res.status) { 7480 /* If link succeeded, then don't return error */ 7481 e.error = geterrno4(res.status); 7482 if (res.array_len <= 4) { 7483 /* 7484 * Either Putfh, Savefh, Putfh dir, or Link failed 7485 */ 7486 PURGE_ATTRCACHE4(svp); 7487 PURGE_ATTRCACHE4(tdvp); 7488 if (e.error == EOPNOTSUPP) { 7489 mutex_enter(&mi->mi_lock); 7490 mi->mi_flags &= ~MI4_LINK; 7491 mutex_exit(&mi->mi_lock); 7492 } 7493 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7494 /* XXX-LP */ 7495 if (e.error == EISDIR && crgetuid(cr) != 0) 7496 e.error = EPERM; 7497 goto out; 7498 } 7499 } 7500 7501 /* either no error or one of the postop getattr failed */ 7502 7503 /* 7504 * XXX - if LINK succeeded, but no attrs were returned for link 7505 * file, purge its cache. 7506 * 7507 * XXX Perform a simplified version of wcc checking. Instead of 7508 * have another getattr to get pre-op, just purge cache if 7509 * any of the ops prior to and including the getattr failed. 7510 * If the getattr succeeded then update the attrcache accordingly. 7511 */ 7512 7513 /* 7514 * update cache with link file postattrs. 7515 * Note: at this point resop points to link res. 7516 */ 7517 resop = &res.array[3]; /* link res */ 7518 ln_res = &resop->nfs_resop4_u.oplink; 7519 if (res.status == NFS4_OK) 7520 e.error = nfs4_update_attrcache(res.status, 7521 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7522 t, svp, cr); 7523 7524 /* 7525 * Call makenfs4node to create the new shadow vp for tnm. 7526 * We pass NULL attrs because we just cached attrs for 7527 * the src object. All we're trying to accomplish is to 7528 * to create the new shadow vnode. 7529 */ 7530 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7531 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm)); 7532 7533 /* Update target cache attribute, readdir and dnlc caches */ 7534 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7535 dinfo.di_time_call = t; 7536 dinfo.di_cred = cr; 7537 7538 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7539 ASSERT(nfs4_consistent_type(tdvp)); 7540 ASSERT(nfs4_consistent_type(svp)); 7541 ASSERT(nfs4_consistent_type(nvp)); 7542 VN_RELE(nvp); 7543 7544 if (!e.error) { 7545 vnode_t *tvp; 7546 rnode4_t *trp; 7547 /* 7548 * Notify the source file of this link operation. 7549 */ 7550 trp = VTOR4(svp); 7551 tvp = svp; 7552 if (IS_SHADOW(svp, trp)) 7553 tvp = RTOV4(trp); 7554 vnevent_link(tvp, ct); 7555 } 7556 out: 7557 kmem_free(argop, argoplist_size); 7558 if (resp) 7559 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7560 7561 nfs_rw_exit(&tdrp->r_rwlock); 7562 7563 return (e.error); 7564 } 7565 7566 /* ARGSUSED */ 7567 static int 7568 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7569 caller_context_t *ct, int flags) 7570 { 7571 vnode_t *realvp; 7572 7573 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7574 return (EPERM); 7575 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 7576 ndvp = realvp; 7577 7578 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct)); 7579 } 7580 7581 /* 7582 * nfs4rename does the real work of renaming in NFS Version 4. 7583 * 7584 * A file handle is considered volatile for renaming purposes if either 7585 * of the volatile bits are turned on. However, the compound may differ 7586 * based on the likelihood of the filehandle to change during rename. 7587 */ 7588 static int 7589 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7590 caller_context_t *ct) 7591 { 7592 int error; 7593 mntinfo4_t *mi; 7594 vnode_t *nvp = NULL; 7595 vnode_t *ovp = NULL; 7596 char *tmpname = NULL; 7597 rnode4_t *rp; 7598 rnode4_t *odrp; 7599 rnode4_t *ndrp; 7600 int did_link = 0; 7601 int do_link = 1; 7602 nfsstat4 stat = NFS4_OK; 7603 7604 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7605 ASSERT(nfs4_consistent_type(odvp)); 7606 ASSERT(nfs4_consistent_type(ndvp)); 7607 7608 if (onm[0] == '.' && (onm[1] == '\0' || 7609 (onm[1] == '.' && onm[2] == '\0'))) 7610 return (EINVAL); 7611 7612 if (nnm[0] == '.' && (nnm[1] == '\0' || 7613 (nnm[1] == '.' && nnm[2] == '\0'))) 7614 return (EINVAL); 7615 7616 odrp = VTOR4(odvp); 7617 ndrp = VTOR4(ndvp); 7618 if ((intptr_t)odrp < (intptr_t)ndrp) { 7619 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7620 return (EINTR); 7621 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7622 nfs_rw_exit(&odrp->r_rwlock); 7623 return (EINTR); 7624 } 7625 } else { 7626 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7627 return (EINTR); 7628 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7629 nfs_rw_exit(&ndrp->r_rwlock); 7630 return (EINTR); 7631 } 7632 } 7633 7634 /* 7635 * Lookup the target file. If it exists, it needs to be 7636 * checked to see whether it is a mount point and whether 7637 * it is active (open). 7638 */ 7639 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7640 if (!error) { 7641 int isactive; 7642 7643 ASSERT(nfs4_consistent_type(nvp)); 7644 /* 7645 * If this file has been mounted on, then just 7646 * return busy because renaming to it would remove 7647 * the mounted file system from the name space. 7648 */ 7649 if (vn_ismntpt(nvp)) { 7650 VN_RELE(nvp); 7651 nfs_rw_exit(&odrp->r_rwlock); 7652 nfs_rw_exit(&ndrp->r_rwlock); 7653 return (EBUSY); 7654 } 7655 7656 /* 7657 * First just remove the entry from the name cache, as it 7658 * is most likely the only entry for this vp. 7659 */ 7660 dnlc_remove(ndvp, nnm); 7661 7662 rp = VTOR4(nvp); 7663 7664 if (nvp->v_type != VREG) { 7665 /* 7666 * Purge the name cache of all references to this vnode 7667 * so that we can check the reference count to infer 7668 * whether it is active or not. 7669 */ 7670 if (nvp->v_count > 1) 7671 dnlc_purge_vp(nvp); 7672 7673 isactive = nvp->v_count > 1; 7674 } else { 7675 mutex_enter(&rp->r_os_lock); 7676 isactive = list_head(&rp->r_open_streams) != NULL; 7677 mutex_exit(&rp->r_os_lock); 7678 } 7679 7680 /* 7681 * If the vnode is active and is not a directory, 7682 * arrange to rename it to a 7683 * temporary file so that it will continue to be 7684 * accessible. This implements the "unlink-open-file" 7685 * semantics for the target of a rename operation. 7686 * Before doing this though, make sure that the 7687 * source and target files are not already the same. 7688 */ 7689 if (isactive && nvp->v_type != VDIR) { 7690 /* 7691 * Lookup the source name. 7692 */ 7693 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7694 7695 /* 7696 * The source name *should* already exist. 7697 */ 7698 if (error) { 7699 VN_RELE(nvp); 7700 nfs_rw_exit(&odrp->r_rwlock); 7701 nfs_rw_exit(&ndrp->r_rwlock); 7702 return (error); 7703 } 7704 7705 ASSERT(nfs4_consistent_type(ovp)); 7706 7707 /* 7708 * Compare the two vnodes. If they are the same, 7709 * just release all held vnodes and return success. 7710 */ 7711 if (VN_CMP(ovp, nvp)) { 7712 VN_RELE(ovp); 7713 VN_RELE(nvp); 7714 nfs_rw_exit(&odrp->r_rwlock); 7715 nfs_rw_exit(&ndrp->r_rwlock); 7716 return (0); 7717 } 7718 7719 /* 7720 * Can't mix and match directories and non- 7721 * directories in rename operations. We already 7722 * know that the target is not a directory. If 7723 * the source is a directory, return an error. 7724 */ 7725 if (ovp->v_type == VDIR) { 7726 VN_RELE(ovp); 7727 VN_RELE(nvp); 7728 nfs_rw_exit(&odrp->r_rwlock); 7729 nfs_rw_exit(&ndrp->r_rwlock); 7730 return (ENOTDIR); 7731 } 7732 link_call: 7733 /* 7734 * The target file exists, is not the same as 7735 * the source file, and is active. We first 7736 * try to Link it to a temporary filename to 7737 * avoid having the server removing the file 7738 * completely (which could cause data loss to 7739 * the user's POV in the event the Rename fails 7740 * -- see bug 1165874). 7741 */ 7742 /* 7743 * The do_link and did_link booleans are 7744 * introduced in the event we get NFS4ERR_FILE_OPEN 7745 * returned for the Rename. Some servers can 7746 * not Rename over an Open file, so they return 7747 * this error. The client needs to Remove the 7748 * newly created Link and do two Renames, just 7749 * as if the server didn't support LINK. 7750 */ 7751 tmpname = newname(); 7752 error = 0; 7753 7754 if (do_link) { 7755 error = nfs4_link(ndvp, nvp, tmpname, cr, 7756 NULL, 0); 7757 } 7758 if (error == EOPNOTSUPP || !do_link) { 7759 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7760 cr, NULL, 0); 7761 did_link = 0; 7762 } else { 7763 did_link = 1; 7764 } 7765 if (error) { 7766 kmem_free(tmpname, MAXNAMELEN); 7767 VN_RELE(ovp); 7768 VN_RELE(nvp); 7769 nfs_rw_exit(&odrp->r_rwlock); 7770 nfs_rw_exit(&ndrp->r_rwlock); 7771 return (error); 7772 } 7773 7774 mutex_enter(&rp->r_statelock); 7775 if (rp->r_unldvp == NULL) { 7776 VN_HOLD(ndvp); 7777 rp->r_unldvp = ndvp; 7778 if (rp->r_unlcred != NULL) 7779 crfree(rp->r_unlcred); 7780 crhold(cr); 7781 rp->r_unlcred = cr; 7782 rp->r_unlname = tmpname; 7783 } else { 7784 if (rp->r_unlname) 7785 kmem_free(rp->r_unlname, MAXNAMELEN); 7786 rp->r_unlname = tmpname; 7787 } 7788 mutex_exit(&rp->r_statelock); 7789 } 7790 7791 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7792 7793 ASSERT(nfs4_consistent_type(nvp)); 7794 } 7795 7796 if (ovp == NULL) { 7797 /* 7798 * When renaming directories to be a subdirectory of a 7799 * different parent, the dnlc entry for ".." will no 7800 * longer be valid, so it must be removed. 7801 * 7802 * We do a lookup here to determine whether we are renaming 7803 * a directory and we need to check if we are renaming 7804 * an unlinked file. This might have already been done 7805 * in previous code, so we check ovp == NULL to avoid 7806 * doing it twice. 7807 */ 7808 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7809 /* 7810 * The source name *should* already exist. 7811 */ 7812 if (error) { 7813 nfs_rw_exit(&odrp->r_rwlock); 7814 nfs_rw_exit(&ndrp->r_rwlock); 7815 if (nvp) { 7816 VN_RELE(nvp); 7817 } 7818 return (error); 7819 } 7820 ASSERT(ovp != NULL); 7821 ASSERT(nfs4_consistent_type(ovp)); 7822 } 7823 7824 /* 7825 * Is the object being renamed a dir, and if so, is 7826 * it being renamed to a child of itself? The underlying 7827 * fs should ultimately return EINVAL for this case; 7828 * however, buggy beta non-Solaris NFSv4 servers at 7829 * interop testing events have allowed this behavior, 7830 * and it caused our client to panic due to a recursive 7831 * mutex_enter in fn_move. 7832 * 7833 * The tedious locking in fn_move could be changed to 7834 * deal with this case, and the client could avoid the 7835 * panic; however, the client would just confuse itself 7836 * later and misbehave. A better way to handle the broken 7837 * server is to detect this condition and return EINVAL 7838 * without ever sending the the bogus rename to the server. 7839 * We know the rename is invalid -- just fail it now. 7840 */ 7841 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7842 VN_RELE(ovp); 7843 nfs_rw_exit(&odrp->r_rwlock); 7844 nfs_rw_exit(&ndrp->r_rwlock); 7845 if (nvp) { 7846 VN_RELE(nvp); 7847 } 7848 return (EINVAL); 7849 } 7850 7851 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7852 7853 /* 7854 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7855 * possible for the filehandle to change due to the rename. 7856 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7857 * the fh will not change because of the rename, but we still need 7858 * to update its rnode entry with the new name for 7859 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7860 * has no effect on these for now, but for future improvements, 7861 * we might want to use it too to simplify handling of files 7862 * that are open with that flag on. (XXX) 7863 */ 7864 mi = VTOMI4(odvp); 7865 if (NFS4_VOLATILE_FH(mi)) 7866 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7867 &stat); 7868 else 7869 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7870 &stat); 7871 7872 ASSERT(nfs4_consistent_type(odvp)); 7873 ASSERT(nfs4_consistent_type(ndvp)); 7874 ASSERT(nfs4_consistent_type(ovp)); 7875 7876 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7877 do_link = 0; 7878 /* 7879 * Before the 'link_call' code, we did a nfs4_lookup 7880 * that puts a VN_HOLD on nvp. After the nfs4_link 7881 * call we call VN_RELE to match that hold. We need 7882 * to place an additional VN_HOLD here since we will 7883 * be hitting that VN_RELE again. 7884 */ 7885 VN_HOLD(nvp); 7886 7887 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0); 7888 7889 /* Undo the unlinked file naming stuff we just did */ 7890 mutex_enter(&rp->r_statelock); 7891 if (rp->r_unldvp) { 7892 VN_RELE(ndvp); 7893 rp->r_unldvp = NULL; 7894 if (rp->r_unlcred != NULL) 7895 crfree(rp->r_unlcred); 7896 rp->r_unlcred = NULL; 7897 /* rp->r_unlanme points to tmpname */ 7898 if (rp->r_unlname) 7899 kmem_free(rp->r_unlname, MAXNAMELEN); 7900 rp->r_unlname = NULL; 7901 } 7902 mutex_exit(&rp->r_statelock); 7903 7904 if (nvp) { 7905 VN_RELE(nvp); 7906 } 7907 goto link_call; 7908 } 7909 7910 if (error) { 7911 VN_RELE(ovp); 7912 nfs_rw_exit(&odrp->r_rwlock); 7913 nfs_rw_exit(&ndrp->r_rwlock); 7914 if (nvp) { 7915 VN_RELE(nvp); 7916 } 7917 return (error); 7918 } 7919 7920 /* 7921 * when renaming directories to be a subdirectory of a 7922 * different parent, the dnlc entry for ".." will no 7923 * longer be valid, so it must be removed 7924 */ 7925 rp = VTOR4(ovp); 7926 if (ndvp != odvp) { 7927 if (ovp->v_type == VDIR) { 7928 dnlc_remove(ovp, ".."); 7929 if (rp->r_dir != NULL) 7930 nfs4_purge_rddir_cache(ovp); 7931 } 7932 } 7933 7934 /* 7935 * If we are renaming the unlinked file, update the 7936 * r_unldvp and r_unlname as needed. 7937 */ 7938 mutex_enter(&rp->r_statelock); 7939 if (rp->r_unldvp != NULL) { 7940 if (strcmp(rp->r_unlname, onm) == 0) { 7941 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 7942 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 7943 if (ndvp != rp->r_unldvp) { 7944 VN_RELE(rp->r_unldvp); 7945 rp->r_unldvp = ndvp; 7946 VN_HOLD(ndvp); 7947 } 7948 } 7949 } 7950 mutex_exit(&rp->r_statelock); 7951 7952 /* 7953 * Notify the rename vnevents to source vnode, and to the target 7954 * vnode if it already existed. 7955 */ 7956 if (error == 0) { 7957 vnode_t *tvp; 7958 rnode4_t *trp; 7959 /* 7960 * Notify the vnode. Each links is represented by 7961 * a different vnode, in nfsv4. 7962 */ 7963 if (nvp) { 7964 trp = VTOR4(nvp); 7965 tvp = nvp; 7966 if (IS_SHADOW(nvp, trp)) 7967 tvp = RTOV4(trp); 7968 vnevent_rename_dest(tvp, ndvp, nnm, ct); 7969 } 7970 7971 /* 7972 * if the source and destination directory are not the 7973 * same notify the destination directory. 7974 */ 7975 if (VTOR4(odvp) != VTOR4(ndvp)) { 7976 trp = VTOR4(ndvp); 7977 tvp = ndvp; 7978 if (IS_SHADOW(ndvp, trp)) 7979 tvp = RTOV4(trp); 7980 vnevent_rename_dest_dir(tvp, ct); 7981 } 7982 7983 trp = VTOR4(ovp); 7984 tvp = ovp; 7985 if (IS_SHADOW(ovp, trp)) 7986 tvp = RTOV4(trp); 7987 vnevent_rename_src(tvp, odvp, onm, ct); 7988 } 7989 7990 if (nvp) { 7991 VN_RELE(nvp); 7992 } 7993 VN_RELE(ovp); 7994 7995 nfs_rw_exit(&odrp->r_rwlock); 7996 nfs_rw_exit(&ndrp->r_rwlock); 7997 7998 return (error); 7999 } 8000 8001 /* 8002 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 8003 * when it is known that the filehandle is persistent through rename. 8004 * 8005 * Rename requires that the current fh be the target directory and the 8006 * saved fh be the source directory. After the operation, the current fh 8007 * is unchanged. 8008 * The compound op structure for persistent fh rename is: 8009 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 8010 * Rather than bother with the directory postop args, we'll simply 8011 * update that a change occurred in the cache, so no post-op getattrs. 8012 */ 8013 static int 8014 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 8015 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8016 { 8017 COMPOUND4args_clnt args; 8018 COMPOUND4res_clnt res, *resp = NULL; 8019 nfs_argop4 *argop; 8020 nfs_resop4 *resop; 8021 int doqueue, argoplist_size; 8022 mntinfo4_t *mi; 8023 rnode4_t *odrp = VTOR4(odvp); 8024 rnode4_t *ndrp = VTOR4(ndvp); 8025 RENAME4res *rn_res; 8026 bool_t needrecov; 8027 nfs4_recov_state_t recov_state; 8028 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8029 dirattr_info_t dinfo, *dinfop; 8030 8031 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8032 8033 recov_state.rs_flags = 0; 8034 recov_state.rs_num_retry_despite_err = 0; 8035 8036 /* 8037 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8038 * 8039 * If source/target are different dirs, then append putfh(src); getattr 8040 */ 8041 args.array_len = (odvp == ndvp) ? 5 : 7; 8042 argoplist_size = args.array_len * sizeof (nfs_argop4); 8043 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8044 8045 recov_retry: 8046 *statp = NFS4_OK; 8047 8048 /* No need to Lookup the file, persistent fh */ 8049 args.ctag = TAG_RENAME; 8050 8051 mi = VTOMI4(odvp); 8052 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8053 if (e.error) { 8054 kmem_free(argop, argoplist_size); 8055 return (e.error); 8056 } 8057 8058 /* 0: putfh source directory */ 8059 argop[0].argop = OP_CPUTFH; 8060 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8061 8062 /* 1: Save source fh to free up current for target */ 8063 argop[1].argop = OP_SAVEFH; 8064 8065 /* 2: putfh targetdir */ 8066 argop[2].argop = OP_CPUTFH; 8067 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8068 8069 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8070 argop[3].argop = OP_CRENAME; 8071 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8072 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8073 8074 /* 4: getattr (targetdir) */ 8075 argop[4].argop = OP_GETATTR; 8076 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8077 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8078 8079 if (ndvp != odvp) { 8080 8081 /* 5: putfh (sourcedir) */ 8082 argop[5].argop = OP_CPUTFH; 8083 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8084 8085 /* 6: getattr (sourcedir) */ 8086 argop[6].argop = OP_GETATTR; 8087 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8088 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8089 } 8090 8091 dnlc_remove(odvp, onm); 8092 dnlc_remove(ndvp, nnm); 8093 8094 doqueue = 1; 8095 dinfo.di_time_call = gethrtime(); 8096 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8097 8098 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8099 if (e.error) { 8100 PURGE_ATTRCACHE4(odvp); 8101 PURGE_ATTRCACHE4(ndvp); 8102 } else { 8103 *statp = res.status; 8104 } 8105 8106 if (needrecov) { 8107 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8108 OP_RENAME, NULL) == FALSE) { 8109 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8110 if (!e.error) 8111 (void) xdr_free(xdr_COMPOUND4res_clnt, 8112 (caddr_t)&res); 8113 goto recov_retry; 8114 } 8115 } 8116 8117 if (!e.error) { 8118 resp = &res; 8119 /* 8120 * as long as OP_RENAME 8121 */ 8122 if (res.status != NFS4_OK && res.array_len <= 4) { 8123 e.error = geterrno4(res.status); 8124 PURGE_ATTRCACHE4(odvp); 8125 PURGE_ATTRCACHE4(ndvp); 8126 /* 8127 * System V defines rename to return EEXIST, not 8128 * ENOTEMPTY if the target directory is not empty. 8129 * Over the wire, the error is NFSERR_ENOTEMPTY 8130 * which geterrno4 maps to ENOTEMPTY. 8131 */ 8132 if (e.error == ENOTEMPTY) 8133 e.error = EEXIST; 8134 } else { 8135 8136 resop = &res.array[3]; /* rename res */ 8137 rn_res = &resop->nfs_resop4_u.oprename; 8138 8139 if (res.status == NFS4_OK) { 8140 /* 8141 * Update target attribute, readdir and dnlc 8142 * caches. 8143 */ 8144 dinfo.di_garp = 8145 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8146 dinfo.di_cred = cr; 8147 dinfop = &dinfo; 8148 } else 8149 dinfop = NULL; 8150 8151 nfs4_update_dircaches(&rn_res->target_cinfo, 8152 ndvp, NULL, NULL, dinfop); 8153 8154 /* 8155 * Update source attribute, readdir and dnlc caches 8156 * 8157 */ 8158 if (ndvp != odvp) { 8159 if (dinfop) 8160 dinfo.di_garp = 8161 &(res.array[6].nfs_resop4_u. 8162 opgetattr.ga_res); 8163 8164 nfs4_update_dircaches(&rn_res->source_cinfo, 8165 odvp, NULL, NULL, dinfop); 8166 } 8167 8168 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8169 nnm); 8170 } 8171 } 8172 8173 if (resp) 8174 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8175 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8176 kmem_free(argop, argoplist_size); 8177 8178 return (e.error); 8179 } 8180 8181 /* 8182 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8183 * it is possible for the filehandle to change due to the rename. 8184 * 8185 * The compound req in this case includes a post-rename lookup and getattr 8186 * to ensure that we have the correct fh and attributes for the object. 8187 * 8188 * Rename requires that the current fh be the target directory and the 8189 * saved fh be the source directory. After the operation, the current fh 8190 * is unchanged. 8191 * 8192 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8193 * update the filehandle for the renamed object. We also get the old 8194 * filehandle for historical reasons; this should be taken out sometime. 8195 * This results in a rather cumbersome compound... 8196 * 8197 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8198 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8199 * 8200 */ 8201 static int 8202 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8203 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8204 { 8205 COMPOUND4args_clnt args; 8206 COMPOUND4res_clnt res, *resp = NULL; 8207 int argoplist_size; 8208 nfs_argop4 *argop; 8209 nfs_resop4 *resop; 8210 int doqueue; 8211 mntinfo4_t *mi; 8212 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8213 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8214 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8215 RENAME4res *rn_res; 8216 GETFH4res *ngf_res; 8217 bool_t needrecov; 8218 nfs4_recov_state_t recov_state; 8219 hrtime_t t; 8220 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8221 dirattr_info_t dinfo, *dinfop = &dinfo; 8222 8223 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8224 8225 recov_state.rs_flags = 0; 8226 recov_state.rs_num_retry_despite_err = 0; 8227 8228 recov_retry: 8229 *statp = NFS4_OK; 8230 8231 /* 8232 * There is a window between the RPC and updating the path and 8233 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8234 * code, so that it doesn't try to use the old path during that 8235 * window. 8236 */ 8237 mutex_enter(&orp->r_statelock); 8238 while (orp->r_flags & R4RECEXPFH) { 8239 klwp_t *lwp = ttolwp(curthread); 8240 8241 if (lwp != NULL) 8242 lwp->lwp_nostop++; 8243 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8244 mutex_exit(&orp->r_statelock); 8245 if (lwp != NULL) 8246 lwp->lwp_nostop--; 8247 return (EINTR); 8248 } 8249 if (lwp != NULL) 8250 lwp->lwp_nostop--; 8251 } 8252 orp->r_flags |= R4RECEXPFH; 8253 mutex_exit(&orp->r_statelock); 8254 8255 mi = VTOMI4(odvp); 8256 8257 args.ctag = TAG_RENAME_VFH; 8258 args.array_len = (odvp == ndvp) ? 10 : 12; 8259 argoplist_size = args.array_len * sizeof (nfs_argop4); 8260 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8261 8262 /* 8263 * Rename ops: 8264 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8265 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8266 * LOOKUP(trgt), GETFH(new), GETATTR, 8267 * 8268 * if (odvp != ndvp) 8269 * add putfh(sourcedir), getattr(sourcedir) } 8270 */ 8271 args.array = argop; 8272 8273 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8274 &recov_state, NULL); 8275 if (e.error) { 8276 kmem_free(argop, argoplist_size); 8277 mutex_enter(&orp->r_statelock); 8278 orp->r_flags &= ~R4RECEXPFH; 8279 cv_broadcast(&orp->r_cv); 8280 mutex_exit(&orp->r_statelock); 8281 return (e.error); 8282 } 8283 8284 /* 0: putfh source directory */ 8285 argop[0].argop = OP_CPUTFH; 8286 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8287 8288 /* 1: Save source fh to free up current for target */ 8289 argop[1].argop = OP_SAVEFH; 8290 8291 /* 2: Lookup pre-rename fh of renamed object */ 8292 argop[2].argop = OP_CLOOKUP; 8293 argop[2].nfs_argop4_u.opclookup.cname = onm; 8294 8295 /* 3: getfh fh of renamed object (before rename) */ 8296 argop[3].argop = OP_GETFH; 8297 8298 /* 4: putfh targetdir */ 8299 argop[4].argop = OP_CPUTFH; 8300 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8301 8302 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8303 argop[5].argop = OP_CRENAME; 8304 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8305 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8306 8307 /* 6: getattr of target dir (post op attrs) */ 8308 argop[6].argop = OP_GETATTR; 8309 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8310 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8311 8312 /* 7: Lookup post-rename fh of renamed object */ 8313 argop[7].argop = OP_CLOOKUP; 8314 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8315 8316 /* 8: getfh fh of renamed object (after rename) */ 8317 argop[8].argop = OP_GETFH; 8318 8319 /* 9: getattr of renamed object */ 8320 argop[9].argop = OP_GETATTR; 8321 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8322 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8323 8324 /* 8325 * If source/target dirs are different, then get new post-op 8326 * attrs for source dir also. 8327 */ 8328 if (ndvp != odvp) { 8329 /* 10: putfh (sourcedir) */ 8330 argop[10].argop = OP_CPUTFH; 8331 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8332 8333 /* 11: getattr (sourcedir) */ 8334 argop[11].argop = OP_GETATTR; 8335 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8336 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8337 } 8338 8339 dnlc_remove(odvp, onm); 8340 dnlc_remove(ndvp, nnm); 8341 8342 doqueue = 1; 8343 t = gethrtime(); 8344 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8345 8346 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8347 if (e.error) { 8348 PURGE_ATTRCACHE4(odvp); 8349 PURGE_ATTRCACHE4(ndvp); 8350 if (!needrecov) { 8351 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8352 &recov_state, needrecov); 8353 goto out; 8354 } 8355 } else { 8356 *statp = res.status; 8357 } 8358 8359 if (needrecov) { 8360 bool_t abort; 8361 8362 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8363 OP_RENAME, NULL); 8364 if (abort == FALSE) { 8365 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8366 &recov_state, needrecov); 8367 kmem_free(argop, argoplist_size); 8368 if (!e.error) 8369 (void) xdr_free(xdr_COMPOUND4res_clnt, 8370 (caddr_t)&res); 8371 mutex_enter(&orp->r_statelock); 8372 orp->r_flags &= ~R4RECEXPFH; 8373 cv_broadcast(&orp->r_cv); 8374 mutex_exit(&orp->r_statelock); 8375 goto recov_retry; 8376 } else { 8377 if (e.error != 0) { 8378 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8379 &recov_state, needrecov); 8380 goto out; 8381 } 8382 /* fall through for res.status case */ 8383 } 8384 } 8385 8386 resp = &res; 8387 /* 8388 * If OP_RENAME (or any prev op) failed, then return an error. 8389 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8390 */ 8391 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8392 /* 8393 * Error in an op other than last Getattr 8394 */ 8395 e.error = geterrno4(res.status); 8396 PURGE_ATTRCACHE4(odvp); 8397 PURGE_ATTRCACHE4(ndvp); 8398 /* 8399 * System V defines rename to return EEXIST, not 8400 * ENOTEMPTY if the target directory is not empty. 8401 * Over the wire, the error is NFSERR_ENOTEMPTY 8402 * which geterrno4 maps to ENOTEMPTY. 8403 */ 8404 if (e.error == ENOTEMPTY) 8405 e.error = EEXIST; 8406 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8407 needrecov); 8408 goto out; 8409 } 8410 8411 /* rename results */ 8412 rn_res = &res.array[5].nfs_resop4_u.oprename; 8413 8414 if (res.status == NFS4_OK) { 8415 /* Update target attribute, readdir and dnlc caches */ 8416 dinfo.di_garp = 8417 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8418 dinfo.di_cred = cr; 8419 dinfo.di_time_call = t; 8420 } else 8421 dinfop = NULL; 8422 8423 /* Update source cache attribute, readdir and dnlc caches */ 8424 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8425 8426 /* Update source cache attribute, readdir and dnlc caches */ 8427 if (ndvp != odvp) { 8428 8429 /* 8430 * If dinfop is non-NULL, then compound succeded, so 8431 * set di_garp to attrs for source dir. dinfop is only 8432 * set to NULL when compound fails. 8433 */ 8434 if (dinfop) 8435 dinfo.di_garp = 8436 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8437 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8438 dinfop); 8439 } 8440 8441 /* 8442 * Update the rnode with the new component name and args, 8443 * and if the file handle changed, also update it with the new fh. 8444 * This is only necessary if the target object has an rnode 8445 * entry and there is no need to create one for it. 8446 */ 8447 resop = &res.array[8]; /* getfh new res */ 8448 ngf_res = &resop->nfs_resop4_u.opgetfh; 8449 8450 /* 8451 * Update the path and filehandle for the renamed object. 8452 */ 8453 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8454 8455 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8456 8457 if (res.status == NFS4_OK) { 8458 resop++; /* getattr res */ 8459 e.error = nfs4_update_attrcache(res.status, 8460 &resop->nfs_resop4_u.opgetattr.ga_res, 8461 t, ovp, cr); 8462 } 8463 8464 out: 8465 kmem_free(argop, argoplist_size); 8466 if (resp) 8467 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8468 mutex_enter(&orp->r_statelock); 8469 orp->r_flags &= ~R4RECEXPFH; 8470 cv_broadcast(&orp->r_cv); 8471 mutex_exit(&orp->r_statelock); 8472 8473 return (e.error); 8474 } 8475 8476 /* ARGSUSED */ 8477 static int 8478 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 8479 caller_context_t *ct, int flags, vsecattr_t *vsecp) 8480 { 8481 int error; 8482 vnode_t *vp; 8483 8484 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8485 return (EPERM); 8486 /* 8487 * As ".." has special meaning and rather than send a mkdir 8488 * over the wire to just let the server freak out, we just 8489 * short circuit it here and return EEXIST 8490 */ 8491 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8492 return (EEXIST); 8493 8494 /* 8495 * Decision to get the right gid and setgid bit of the 8496 * new directory is now made in call_nfs4_create_req. 8497 */ 8498 va->va_mask |= AT_MODE; 8499 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8500 if (error) 8501 return (error); 8502 8503 *vpp = vp; 8504 return (0); 8505 } 8506 8507 8508 /* 8509 * rmdir is using the same remove v4 op as does remove. 8510 * Remove requires that the current fh be the target directory. 8511 * After the operation, the current fh is unchanged. 8512 * The compound op structure is: 8513 * PUTFH(targetdir), REMOVE 8514 */ 8515 /*ARGSUSED4*/ 8516 static int 8517 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 8518 caller_context_t *ct, int flags) 8519 { 8520 int need_end_op = FALSE; 8521 COMPOUND4args_clnt args; 8522 COMPOUND4res_clnt res, *resp = NULL; 8523 REMOVE4res *rm_res; 8524 nfs_argop4 argop[3]; 8525 nfs_resop4 *resop; 8526 vnode_t *vp; 8527 int doqueue; 8528 mntinfo4_t *mi; 8529 rnode4_t *drp; 8530 bool_t needrecov = FALSE; 8531 nfs4_recov_state_t recov_state; 8532 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8533 dirattr_info_t dinfo, *dinfop; 8534 8535 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8536 return (EPERM); 8537 /* 8538 * As ".." has special meaning and rather than send a rmdir 8539 * over the wire to just let the server freak out, we just 8540 * short circuit it here and return EEXIST 8541 */ 8542 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8543 return (EEXIST); 8544 8545 drp = VTOR4(dvp); 8546 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8547 return (EINTR); 8548 8549 /* 8550 * Attempt to prevent a rmdir(".") from succeeding. 8551 */ 8552 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8553 if (e.error) { 8554 nfs_rw_exit(&drp->r_rwlock); 8555 return (e.error); 8556 } 8557 if (vp == cdir) { 8558 VN_RELE(vp); 8559 nfs_rw_exit(&drp->r_rwlock); 8560 return (EINVAL); 8561 } 8562 8563 /* 8564 * Since nfsv4 remove op works on both files and directories, 8565 * check that the removed object is indeed a directory. 8566 */ 8567 if (vp->v_type != VDIR) { 8568 VN_RELE(vp); 8569 nfs_rw_exit(&drp->r_rwlock); 8570 return (ENOTDIR); 8571 } 8572 8573 /* 8574 * First just remove the entry from the name cache, as it 8575 * is most likely an entry for this vp. 8576 */ 8577 dnlc_remove(dvp, nm); 8578 8579 /* 8580 * If there vnode reference count is greater than one, then 8581 * there may be additional references in the DNLC which will 8582 * need to be purged. First, trying removing the entry for 8583 * the parent directory and see if that removes the additional 8584 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8585 * to completely remove any references to the directory which 8586 * might still exist in the DNLC. 8587 */ 8588 if (vp->v_count > 1) { 8589 dnlc_remove(vp, ".."); 8590 if (vp->v_count > 1) 8591 dnlc_purge_vp(vp); 8592 } 8593 8594 mi = VTOMI4(dvp); 8595 recov_state.rs_flags = 0; 8596 recov_state.rs_num_retry_despite_err = 0; 8597 8598 recov_retry: 8599 args.ctag = TAG_RMDIR; 8600 8601 /* 8602 * Rmdir ops: putfh dir; remove 8603 */ 8604 args.array_len = 3; 8605 args.array = argop; 8606 8607 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8608 if (e.error) { 8609 nfs_rw_exit(&drp->r_rwlock); 8610 return (e.error); 8611 } 8612 need_end_op = TRUE; 8613 8614 /* putfh directory */ 8615 argop[0].argop = OP_CPUTFH; 8616 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8617 8618 /* remove */ 8619 argop[1].argop = OP_CREMOVE; 8620 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8621 8622 /* getattr (postop attrs for dir that contained removed dir) */ 8623 argop[2].argop = OP_GETATTR; 8624 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8625 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8626 8627 dinfo.di_time_call = gethrtime(); 8628 doqueue = 1; 8629 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8630 8631 PURGE_ATTRCACHE4(vp); 8632 8633 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8634 if (e.error) { 8635 PURGE_ATTRCACHE4(dvp); 8636 } 8637 8638 if (needrecov) { 8639 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8640 NULL, OP_REMOVE, NULL) == FALSE) { 8641 if (!e.error) 8642 (void) xdr_free(xdr_COMPOUND4res_clnt, 8643 (caddr_t)&res); 8644 8645 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8646 needrecov); 8647 need_end_op = FALSE; 8648 goto recov_retry; 8649 } 8650 } 8651 8652 if (!e.error) { 8653 resp = &res; 8654 8655 /* 8656 * Only return error if first 2 ops (OP_REMOVE or earlier) 8657 * failed. 8658 */ 8659 if (res.status != NFS4_OK && res.array_len <= 2) { 8660 e.error = geterrno4(res.status); 8661 PURGE_ATTRCACHE4(dvp); 8662 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8663 &recov_state, needrecov); 8664 need_end_op = FALSE; 8665 nfs4_purge_stale_fh(e.error, dvp, cr); 8666 /* 8667 * System V defines rmdir to return EEXIST, not 8668 * ENOTEMPTY if the directory is not empty. Over 8669 * the wire, the error is NFSERR_ENOTEMPTY which 8670 * geterrno4 maps to ENOTEMPTY. 8671 */ 8672 if (e.error == ENOTEMPTY) 8673 e.error = EEXIST; 8674 } else { 8675 resop = &res.array[1]; /* remove res */ 8676 rm_res = &resop->nfs_resop4_u.opremove; 8677 8678 if (res.status == NFS4_OK) { 8679 resop = &res.array[2]; /* dir attrs */ 8680 dinfo.di_garp = 8681 &resop->nfs_resop4_u.opgetattr.ga_res; 8682 dinfo.di_cred = cr; 8683 dinfop = &dinfo; 8684 } else 8685 dinfop = NULL; 8686 8687 /* Update dir attribute, readdir and dnlc caches */ 8688 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8689 dinfop); 8690 8691 /* destroy rddir cache for dir that was removed */ 8692 if (VTOR4(vp)->r_dir != NULL) 8693 nfs4_purge_rddir_cache(vp); 8694 } 8695 } 8696 8697 if (need_end_op) 8698 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8699 8700 nfs_rw_exit(&drp->r_rwlock); 8701 8702 if (resp) 8703 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8704 8705 if (e.error == 0) { 8706 vnode_t *tvp; 8707 rnode4_t *trp; 8708 trp = VTOR4(vp); 8709 tvp = vp; 8710 if (IS_SHADOW(vp, trp)) 8711 tvp = RTOV4(trp); 8712 vnevent_rmdir(tvp, dvp, nm, ct); 8713 } 8714 8715 VN_RELE(vp); 8716 8717 return (e.error); 8718 } 8719 8720 /* ARGSUSED */ 8721 static int 8722 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 8723 caller_context_t *ct, int flags) 8724 { 8725 int error; 8726 vnode_t *vp; 8727 rnode4_t *rp; 8728 char *contents; 8729 mntinfo4_t *mi = VTOMI4(dvp); 8730 8731 if (nfs_zone() != mi->mi_zone) 8732 return (EPERM); 8733 if (!(mi->mi_flags & MI4_SYMLINK)) 8734 return (EOPNOTSUPP); 8735 8736 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8737 if (error) 8738 return (error); 8739 8740 ASSERT(nfs4_consistent_type(vp)); 8741 rp = VTOR4(vp); 8742 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8743 8744 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8745 8746 if (contents != NULL) { 8747 mutex_enter(&rp->r_statelock); 8748 if (rp->r_symlink.contents == NULL) { 8749 rp->r_symlink.len = strlen(tnm); 8750 bcopy(tnm, contents, rp->r_symlink.len); 8751 rp->r_symlink.contents = contents; 8752 rp->r_symlink.size = MAXPATHLEN; 8753 mutex_exit(&rp->r_statelock); 8754 } else { 8755 mutex_exit(&rp->r_statelock); 8756 kmem_free((void *)contents, MAXPATHLEN); 8757 } 8758 } 8759 } 8760 VN_RELE(vp); 8761 8762 return (error); 8763 } 8764 8765 8766 /* 8767 * Read directory entries. 8768 * There are some weird things to look out for here. The uio_loffset 8769 * field is either 0 or it is the offset returned from a previous 8770 * readdir. It is an opaque value used by the server to find the 8771 * correct directory block to read. The count field is the number 8772 * of blocks to read on the server. This is advisory only, the server 8773 * may return only one block's worth of entries. Entries may be compressed 8774 * on the server. 8775 */ 8776 /* ARGSUSED */ 8777 static int 8778 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 8779 caller_context_t *ct, int flags) 8780 { 8781 int error; 8782 uint_t count; 8783 rnode4_t *rp; 8784 rddir4_cache *rdc; 8785 rddir4_cache *rrdc; 8786 8787 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8788 return (EIO); 8789 rp = VTOR4(vp); 8790 8791 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8792 8793 /* 8794 * Make sure that the directory cache is valid. 8795 */ 8796 if (rp->r_dir != NULL) { 8797 if (nfs_disable_rddir_cache != 0) { 8798 /* 8799 * Setting nfs_disable_rddir_cache in /etc/system 8800 * allows interoperability with servers that do not 8801 * properly update the attributes of directories. 8802 * Any cached information gets purged before an 8803 * access is made to it. 8804 */ 8805 nfs4_purge_rddir_cache(vp); 8806 } 8807 8808 error = nfs4_validate_caches(vp, cr); 8809 if (error) 8810 return (error); 8811 } 8812 8813 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8814 8815 /* 8816 * Short circuit last readdir which always returns 0 bytes. 8817 * This can be done after the directory has been read through 8818 * completely at least once. This will set r_direof which 8819 * can be used to find the value of the last cookie. 8820 */ 8821 mutex_enter(&rp->r_statelock); 8822 if (rp->r_direof != NULL && 8823 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8824 mutex_exit(&rp->r_statelock); 8825 #ifdef DEBUG 8826 nfs4_readdir_cache_shorts++; 8827 #endif 8828 if (eofp) 8829 *eofp = 1; 8830 return (0); 8831 } 8832 8833 /* 8834 * Look for a cache entry. Cache entries are identified 8835 * by the NFS cookie value and the byte count requested. 8836 */ 8837 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8838 8839 /* 8840 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8841 */ 8842 if (rdc == NULL) { 8843 mutex_exit(&rp->r_statelock); 8844 return (EINTR); 8845 } 8846 8847 /* 8848 * Check to see if we need to fill this entry in. 8849 */ 8850 if (rdc->flags & RDDIRREQ) { 8851 rdc->flags &= ~RDDIRREQ; 8852 rdc->flags |= RDDIR; 8853 mutex_exit(&rp->r_statelock); 8854 8855 /* 8856 * Do the readdir. 8857 */ 8858 nfs4readdir(vp, rdc, cr); 8859 8860 /* 8861 * Reacquire the lock, so that we can continue 8862 */ 8863 mutex_enter(&rp->r_statelock); 8864 /* 8865 * The entry is now complete 8866 */ 8867 rdc->flags &= ~RDDIR; 8868 } 8869 8870 ASSERT(!(rdc->flags & RDDIR)); 8871 8872 /* 8873 * If an error occurred while attempting 8874 * to fill the cache entry, mark the entry invalid and 8875 * just return the error. 8876 */ 8877 if (rdc->error) { 8878 error = rdc->error; 8879 rdc->flags |= RDDIRREQ; 8880 rddir4_cache_rele(rp, rdc); 8881 mutex_exit(&rp->r_statelock); 8882 return (error); 8883 } 8884 8885 /* 8886 * The cache entry is complete and good, 8887 * copyout the dirent structs to the calling 8888 * thread. 8889 */ 8890 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 8891 8892 /* 8893 * If no error occurred during the copyout, 8894 * update the offset in the uio struct to 8895 * contain the value of the next NFS 4 cookie 8896 * and set the eof value appropriately. 8897 */ 8898 if (!error) { 8899 uiop->uio_loffset = rdc->nfs4_ncookie; 8900 if (eofp) 8901 *eofp = rdc->eof; 8902 } 8903 8904 /* 8905 * Decide whether to do readahead. Don't if we 8906 * have already read to the end of directory. 8907 */ 8908 if (rdc->eof) { 8909 /* 8910 * Make the entry the direof only if it is cached 8911 */ 8912 if (rdc->flags & RDDIRCACHED) 8913 rp->r_direof = rdc; 8914 rddir4_cache_rele(rp, rdc); 8915 mutex_exit(&rp->r_statelock); 8916 return (error); 8917 } 8918 8919 /* Determine if a readdir readahead should be done */ 8920 if (!(rp->r_flags & R4LOOKUP)) { 8921 rddir4_cache_rele(rp, rdc); 8922 mutex_exit(&rp->r_statelock); 8923 return (error); 8924 } 8925 8926 /* 8927 * Now look for a readahead entry. 8928 * 8929 * Check to see whether we found an entry for the readahead. 8930 * If so, we don't need to do anything further, so free the new 8931 * entry if one was allocated. Otherwise, allocate a new entry, add 8932 * it to the cache, and then initiate an asynchronous readdir 8933 * operation to fill it. 8934 */ 8935 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 8936 8937 /* 8938 * A readdir cache entry could not be obtained for the readahead. In 8939 * this case we skip the readahead and return. 8940 */ 8941 if (rrdc == NULL) { 8942 rddir4_cache_rele(rp, rdc); 8943 mutex_exit(&rp->r_statelock); 8944 return (error); 8945 } 8946 8947 /* 8948 * Check to see if we need to fill this entry in. 8949 */ 8950 if (rrdc->flags & RDDIRREQ) { 8951 rrdc->flags &= ~RDDIRREQ; 8952 rrdc->flags |= RDDIR; 8953 rddir4_cache_rele(rp, rdc); 8954 mutex_exit(&rp->r_statelock); 8955 #ifdef DEBUG 8956 nfs4_readdir_readahead++; 8957 #endif 8958 /* 8959 * Do the readdir. 8960 */ 8961 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 8962 return (error); 8963 } 8964 8965 rddir4_cache_rele(rp, rrdc); 8966 rddir4_cache_rele(rp, rdc); 8967 mutex_exit(&rp->r_statelock); 8968 return (error); 8969 } 8970 8971 static int 8972 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 8973 { 8974 int error; 8975 rnode4_t *rp; 8976 8977 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 8978 8979 rp = VTOR4(vp); 8980 8981 /* 8982 * Obtain the readdir results for the caller. 8983 */ 8984 nfs4readdir(vp, rdc, cr); 8985 8986 mutex_enter(&rp->r_statelock); 8987 /* 8988 * The entry is now complete 8989 */ 8990 rdc->flags &= ~RDDIR; 8991 8992 error = rdc->error; 8993 if (error) 8994 rdc->flags |= RDDIRREQ; 8995 rddir4_cache_rele(rp, rdc); 8996 mutex_exit(&rp->r_statelock); 8997 8998 return (error); 8999 } 9000 9001 /* 9002 * Read directory entries. 9003 * There are some weird things to look out for here. The uio_loffset 9004 * field is either 0 or it is the offset returned from a previous 9005 * readdir. It is an opaque value used by the server to find the 9006 * correct directory block to read. The count field is the number 9007 * of blocks to read on the server. This is advisory only, the server 9008 * may return only one block's worth of entries. Entries may be compressed 9009 * on the server. 9010 * 9011 * Generates the following compound request: 9012 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9013 * must include a Lookupp as well. In this case, send: 9014 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9015 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9016 * 9017 * Get complete attributes and filehandles for entries if this is the 9018 * first read of the directory. Otherwise, just get fileid's. 9019 */ 9020 static void 9021 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9022 { 9023 COMPOUND4args_clnt args; 9024 COMPOUND4res_clnt res; 9025 READDIR4args *rargs; 9026 READDIR4res_clnt *rd_res; 9027 bitmap4 rd_bitsval; 9028 nfs_argop4 argop[5]; 9029 nfs_resop4 *resop; 9030 rnode4_t *rp = VTOR4(vp); 9031 mntinfo4_t *mi = VTOMI4(vp); 9032 int doqueue; 9033 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9034 vnode_t *dvp; 9035 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9036 int num_ops, res_opcnt; 9037 bool_t needrecov = FALSE; 9038 nfs4_recov_state_t recov_state; 9039 hrtime_t t; 9040 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9041 9042 ASSERT(nfs_zone() == mi->mi_zone); 9043 ASSERT(rdc->flags & RDDIR); 9044 ASSERT(rdc->entries == NULL); 9045 9046 /* 9047 * If rp were a stub, it should have triggered and caused 9048 * a mount for us to get this far. 9049 */ 9050 ASSERT(!RP_ISSTUB(rp)); 9051 9052 num_ops = 2; 9053 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9054 /* 9055 * Since nfsv4 readdir may not return entries for "." and "..", 9056 * the client must recreate them: 9057 * To find the correct nodeid, do the following: 9058 * For current node, get nodeid from dnlc. 9059 * - if current node is rootvp, set pnodeid to nodeid. 9060 * - else if parent is in the dnlc, get its nodeid from there. 9061 * - else add LOOKUPP+GETATTR to compound. 9062 */ 9063 nodeid = rp->r_attr.va_nodeid; 9064 if (vp->v_flag & VROOT) { 9065 pnodeid = nodeid; /* root of mount point */ 9066 } else { 9067 dvp = dnlc_lookup(vp, ".."); 9068 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9069 /* parent in dnlc cache - no need for otw */ 9070 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9071 } else { 9072 /* 9073 * parent not in dnlc cache, 9074 * do lookupp to get its id 9075 */ 9076 num_ops = 5; 9077 pnodeid = 0; /* set later by getattr parent */ 9078 } 9079 if (dvp) 9080 VN_RELE(dvp); 9081 } 9082 } 9083 recov_state.rs_flags = 0; 9084 recov_state.rs_num_retry_despite_err = 0; 9085 9086 /* Save the original mount point security flavor */ 9087 (void) save_mnt_secinfo(mi->mi_curr_serv); 9088 9089 recov_retry: 9090 args.ctag = TAG_READDIR; 9091 9092 args.array = argop; 9093 args.array_len = num_ops; 9094 9095 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9096 &recov_state, NULL)) { 9097 /* 9098 * If readdir a node that is a stub for a crossed mount point, 9099 * keep the original secinfo flavor for the current file 9100 * system, not the crossed one. 9101 */ 9102 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9103 rdc->error = e.error; 9104 return; 9105 } 9106 9107 /* 9108 * Determine which attrs to request for dirents. This code 9109 * must be protected by nfs4_start/end_fop because of r_server 9110 * (which will change during failover recovery). 9111 * 9112 */ 9113 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9114 /* 9115 * Get all vattr attrs plus filehandle and rdattr_error 9116 */ 9117 rd_bitsval = NFS4_VATTR_MASK | 9118 FATTR4_RDATTR_ERROR_MASK | 9119 FATTR4_FILEHANDLE_MASK; 9120 9121 if (rp->r_flags & R4READDIRWATTR) { 9122 mutex_enter(&rp->r_statelock); 9123 rp->r_flags &= ~R4READDIRWATTR; 9124 mutex_exit(&rp->r_statelock); 9125 } 9126 } else { 9127 servinfo4_t *svp = rp->r_server; 9128 9129 /* 9130 * Already read directory. Use readdir with 9131 * no attrs (except for mounted_on_fileid) for updates. 9132 */ 9133 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9134 9135 /* 9136 * request mounted on fileid if supported, else request 9137 * fileid. maybe we should verify that fileid is supported 9138 * and request something else if not. 9139 */ 9140 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9141 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9142 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9143 nfs_rw_exit(&svp->sv_lock); 9144 } 9145 9146 /* putfh directory fh */ 9147 argop[0].argop = OP_CPUTFH; 9148 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9149 9150 argop[1].argop = OP_READDIR; 9151 rargs = &argop[1].nfs_argop4_u.opreaddir; 9152 /* 9153 * 1 and 2 are reserved for client "." and ".." entry offset. 9154 * cookie 0 should be used over-the-wire to start reading at 9155 * the beginning of the directory excluding "." and "..". 9156 */ 9157 if (rdc->nfs4_cookie == 0 || 9158 rdc->nfs4_cookie == 1 || 9159 rdc->nfs4_cookie == 2) { 9160 rargs->cookie = (nfs_cookie4)0; 9161 rargs->cookieverf = 0; 9162 } else { 9163 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9164 mutex_enter(&rp->r_statelock); 9165 rargs->cookieverf = rp->r_cookieverf4; 9166 mutex_exit(&rp->r_statelock); 9167 } 9168 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9169 rargs->maxcount = mi->mi_tsize; 9170 rargs->attr_request = rd_bitsval; 9171 rargs->rdc = rdc; 9172 rargs->dvp = vp; 9173 rargs->mi = mi; 9174 rargs->cr = cr; 9175 9176 9177 /* 9178 * If count < than the minimum required, we return no entries 9179 * and fail with EINVAL 9180 */ 9181 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9182 rdc->error = EINVAL; 9183 goto out; 9184 } 9185 9186 if (args.array_len == 5) { 9187 /* 9188 * Add lookupp and getattr for parent nodeid. 9189 */ 9190 argop[2].argop = OP_LOOKUPP; 9191 9192 argop[3].argop = OP_GETFH; 9193 9194 /* getattr parent */ 9195 argop[4].argop = OP_GETATTR; 9196 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9197 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9198 } 9199 9200 doqueue = 1; 9201 9202 if (mi->mi_io_kstats) { 9203 mutex_enter(&mi->mi_lock); 9204 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9205 mutex_exit(&mi->mi_lock); 9206 } 9207 9208 /* capture the time of this call */ 9209 rargs->t = t = gethrtime(); 9210 9211 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9212 9213 if (mi->mi_io_kstats) { 9214 mutex_enter(&mi->mi_lock); 9215 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9216 mutex_exit(&mi->mi_lock); 9217 } 9218 9219 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9220 9221 /* 9222 * If RPC error occurred and it isn't an error that 9223 * triggers recovery, then go ahead and fail now. 9224 */ 9225 if (e.error != 0 && !needrecov) { 9226 rdc->error = e.error; 9227 goto out; 9228 } 9229 9230 if (needrecov) { 9231 bool_t abort; 9232 9233 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9234 "nfs4readdir: initiating recovery.\n")); 9235 9236 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9237 NULL, OP_READDIR, NULL); 9238 if (abort == FALSE) { 9239 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9240 &recov_state, needrecov); 9241 if (!e.error) 9242 (void) xdr_free(xdr_COMPOUND4res_clnt, 9243 (caddr_t)&res); 9244 if (rdc->entries != NULL) { 9245 kmem_free(rdc->entries, rdc->entlen); 9246 rdc->entries = NULL; 9247 } 9248 goto recov_retry; 9249 } 9250 9251 if (e.error != 0) { 9252 rdc->error = e.error; 9253 goto out; 9254 } 9255 9256 /* fall through for res.status case */ 9257 } 9258 9259 res_opcnt = res.array_len; 9260 9261 /* 9262 * If compound failed first 2 ops (PUTFH+READDIR), then return 9263 * failure here. Subsequent ops are for filling out dot-dot 9264 * dirent, and if they fail, we still want to give the caller 9265 * the dirents returned by (the successful) READDIR op, so we need 9266 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9267 * 9268 * One example where PUTFH+READDIR ops would succeed but 9269 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9270 * but lacks x. In this case, a POSIX server's VOP_READDIR 9271 * would succeed; however, VOP_LOOKUP(..) would fail since no 9272 * x perm. We need to come up with a non-vendor-specific way 9273 * for a POSIX server to return d_ino from dotdot's dirent if 9274 * client only requests mounted_on_fileid, and just say the 9275 * LOOKUPP succeeded and fill out the GETATTR. However, if 9276 * client requested any mandatory attrs, server would be required 9277 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9278 * for dotdot. 9279 */ 9280 9281 if (res.status) { 9282 if (res_opcnt <= 2) { 9283 e.error = geterrno4(res.status); 9284 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9285 &recov_state, needrecov); 9286 nfs4_purge_stale_fh(e.error, vp, cr); 9287 rdc->error = e.error; 9288 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9289 if (rdc->entries != NULL) { 9290 kmem_free(rdc->entries, rdc->entlen); 9291 rdc->entries = NULL; 9292 } 9293 /* 9294 * If readdir a node that is a stub for a 9295 * crossed mount point, keep the original 9296 * secinfo flavor for the current file system, 9297 * not the crossed one. 9298 */ 9299 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9300 return; 9301 } 9302 } 9303 9304 resop = &res.array[1]; /* readdir res */ 9305 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9306 9307 mutex_enter(&rp->r_statelock); 9308 rp->r_cookieverf4 = rd_res->cookieverf; 9309 mutex_exit(&rp->r_statelock); 9310 9311 /* 9312 * For "." and ".." entries 9313 * e.g. 9314 * seek(cookie=0) -> "." entry with d_off = 1 9315 * seek(cookie=1) -> ".." entry with d_off = 2 9316 */ 9317 if (cookie == (nfs_cookie4) 0) { 9318 if (rd_res->dotp) 9319 rd_res->dotp->d_ino = nodeid; 9320 if (rd_res->dotdotp) 9321 rd_res->dotdotp->d_ino = pnodeid; 9322 } 9323 if (cookie == (nfs_cookie4) 1) { 9324 if (rd_res->dotdotp) 9325 rd_res->dotdotp->d_ino = pnodeid; 9326 } 9327 9328 9329 /* LOOKUPP+GETATTR attemped */ 9330 if (args.array_len == 5 && rd_res->dotdotp) { 9331 if (res.status == NFS4_OK && res_opcnt == 5) { 9332 nfs_fh4 *fhp; 9333 nfs4_sharedfh_t *sfhp; 9334 vnode_t *pvp; 9335 nfs4_ga_res_t *garp; 9336 9337 resop++; /* lookupp */ 9338 resop++; /* getfh */ 9339 fhp = &resop->nfs_resop4_u.opgetfh.object; 9340 9341 resop++; /* getattr of parent */ 9342 9343 /* 9344 * First, take care of finishing the 9345 * readdir results. 9346 */ 9347 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9348 /* 9349 * The d_ino of .. must be the inode number 9350 * of the mounted filesystem. 9351 */ 9352 if (garp->n4g_va.va_mask & AT_NODEID) 9353 rd_res->dotdotp->d_ino = 9354 garp->n4g_va.va_nodeid; 9355 9356 9357 /* 9358 * Next, create the ".." dnlc entry 9359 */ 9360 sfhp = sfh4_get(fhp, mi); 9361 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9362 dnlc_update(vp, "..", pvp); 9363 VN_RELE(pvp); 9364 } 9365 sfh4_rele(&sfhp); 9366 } 9367 } 9368 9369 if (mi->mi_io_kstats) { 9370 mutex_enter(&mi->mi_lock); 9371 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9372 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9373 mutex_exit(&mi->mi_lock); 9374 } 9375 9376 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9377 9378 out: 9379 /* 9380 * If readdir a node that is a stub for a crossed mount point, 9381 * keep the original secinfo flavor for the current file system, 9382 * not the crossed one. 9383 */ 9384 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9385 9386 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9387 } 9388 9389 9390 static int 9391 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9392 { 9393 rnode4_t *rp = VTOR4(bp->b_vp); 9394 int count; 9395 int error; 9396 cred_t *cred_otw = NULL; 9397 offset_t offset; 9398 nfs4_open_stream_t *osp = NULL; 9399 bool_t first_time = TRUE; /* first time getting otw cred */ 9400 bool_t last_time = FALSE; /* last time getting otw cred */ 9401 9402 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9403 9404 DTRACE_IO1(start, struct buf *, bp); 9405 offset = ldbtob(bp->b_lblkno); 9406 9407 if (bp->b_flags & B_READ) { 9408 read_again: 9409 /* 9410 * Releases the osp, if it is provided. 9411 * Puts a hold on the cred_otw and the new osp (if found). 9412 */ 9413 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9414 &first_time, &last_time); 9415 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9416 offset, bp->b_bcount, &bp->b_resid, cred_otw, 9417 readahead, NULL); 9418 crfree(cred_otw); 9419 if (!error) { 9420 if (bp->b_resid) { 9421 /* 9422 * Didn't get it all because we hit EOF, 9423 * zero all the memory beyond the EOF. 9424 */ 9425 /* bzero(rdaddr + */ 9426 bzero(bp->b_un.b_addr + 9427 bp->b_bcount - bp->b_resid, bp->b_resid); 9428 } 9429 mutex_enter(&rp->r_statelock); 9430 if (bp->b_resid == bp->b_bcount && 9431 offset >= rp->r_size) { 9432 /* 9433 * We didn't read anything at all as we are 9434 * past EOF. Return an error indicator back 9435 * but don't destroy the pages (yet). 9436 */ 9437 error = NFS_EOF; 9438 } 9439 mutex_exit(&rp->r_statelock); 9440 } else if (error == EACCES && last_time == FALSE) { 9441 goto read_again; 9442 } 9443 } else { 9444 if (!(rp->r_flags & R4STALE)) { 9445 write_again: 9446 /* 9447 * Releases the osp, if it is provided. 9448 * Puts a hold on the cred_otw and the new 9449 * osp (if found). 9450 */ 9451 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9452 &first_time, &last_time); 9453 mutex_enter(&rp->r_statelock); 9454 count = MIN(bp->b_bcount, rp->r_size - offset); 9455 mutex_exit(&rp->r_statelock); 9456 if (count < 0) 9457 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9458 #ifdef DEBUG 9459 if (count == 0) { 9460 zoneid_t zoneid = getzoneid(); 9461 9462 zcmn_err(zoneid, CE_WARN, 9463 "nfs4_bio: zero length write at %lld", 9464 offset); 9465 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9466 "b_bcount=%ld, file size=%lld", 9467 rp->r_flags, (long)bp->b_bcount, 9468 rp->r_size); 9469 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9470 if (nfs4_bio_do_stop) 9471 debug_enter("nfs4_bio"); 9472 } 9473 #endif 9474 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9475 count, cred_otw, stab_comm); 9476 if (error == EACCES && last_time == FALSE) { 9477 crfree(cred_otw); 9478 goto write_again; 9479 } 9480 bp->b_error = error; 9481 if (error && error != EINTR && 9482 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9483 /* 9484 * Don't print EDQUOT errors on the console. 9485 * Don't print asynchronous EACCES errors. 9486 * Don't print EFBIG errors. 9487 * Print all other write errors. 9488 */ 9489 if (error != EDQUOT && error != EFBIG && 9490 (error != EACCES || 9491 !(bp->b_flags & B_ASYNC))) 9492 nfs4_write_error(bp->b_vp, 9493 error, cred_otw); 9494 /* 9495 * Update r_error and r_flags as appropriate. 9496 * If the error was ESTALE, then mark the 9497 * rnode as not being writeable and save 9498 * the error status. Otherwise, save any 9499 * errors which occur from asynchronous 9500 * page invalidations. Any errors occurring 9501 * from other operations should be saved 9502 * by the caller. 9503 */ 9504 mutex_enter(&rp->r_statelock); 9505 if (error == ESTALE) { 9506 rp->r_flags |= R4STALE; 9507 if (!rp->r_error) 9508 rp->r_error = error; 9509 } else if (!rp->r_error && 9510 (bp->b_flags & 9511 (B_INVAL|B_FORCE|B_ASYNC)) == 9512 (B_INVAL|B_FORCE|B_ASYNC)) { 9513 rp->r_error = error; 9514 } 9515 mutex_exit(&rp->r_statelock); 9516 } 9517 crfree(cred_otw); 9518 } else 9519 error = rp->r_error; 9520 } 9521 9522 if (error != 0 && error != NFS_EOF) 9523 bp->b_flags |= B_ERROR; 9524 9525 if (osp) 9526 open_stream_rele(osp, rp); 9527 9528 DTRACE_IO1(done, struct buf *, bp); 9529 9530 return (error); 9531 } 9532 9533 /* ARGSUSED */ 9534 int 9535 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9536 { 9537 return (EREMOTE); 9538 } 9539 9540 /* ARGSUSED2 */ 9541 int 9542 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9543 { 9544 rnode4_t *rp = VTOR4(vp); 9545 9546 if (!write_lock) { 9547 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9548 return (V_WRITELOCK_FALSE); 9549 } 9550 9551 if ((rp->r_flags & R4DIRECTIO) || 9552 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9553 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9554 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9555 return (V_WRITELOCK_FALSE); 9556 nfs_rw_exit(&rp->r_rwlock); 9557 } 9558 9559 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9560 return (V_WRITELOCK_TRUE); 9561 } 9562 9563 /* ARGSUSED */ 9564 void 9565 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9566 { 9567 rnode4_t *rp = VTOR4(vp); 9568 9569 nfs_rw_exit(&rp->r_rwlock); 9570 } 9571 9572 /* ARGSUSED */ 9573 static int 9574 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 9575 { 9576 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9577 return (EIO); 9578 9579 /* 9580 * Because we stuff the readdir cookie into the offset field 9581 * someone may attempt to do an lseek with the cookie which 9582 * we want to succeed. 9583 */ 9584 if (vp->v_type == VDIR) 9585 return (0); 9586 if (*noffp < 0) 9587 return (EINVAL); 9588 return (0); 9589 } 9590 9591 9592 /* 9593 * Return all the pages from [off..off+len) in file 9594 */ 9595 /* ARGSUSED */ 9596 static int 9597 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9598 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9599 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 9600 { 9601 rnode4_t *rp; 9602 int error; 9603 mntinfo4_t *mi; 9604 9605 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9606 return (EIO); 9607 rp = VTOR4(vp); 9608 if (IS_SHADOW(vp, rp)) 9609 vp = RTOV4(rp); 9610 9611 if (vp->v_flag & VNOMAP) 9612 return (ENOSYS); 9613 9614 if (protp != NULL) 9615 *protp = PROT_ALL; 9616 9617 /* 9618 * Now validate that the caches are up to date. 9619 */ 9620 if (error = nfs4_validate_caches(vp, cr)) 9621 return (error); 9622 9623 mi = VTOMI4(vp); 9624 retry: 9625 mutex_enter(&rp->r_statelock); 9626 9627 /* 9628 * Don't create dirty pages faster than they 9629 * can be cleaned so that the system doesn't 9630 * get imbalanced. If the async queue is 9631 * maxed out, then wait for it to drain before 9632 * creating more dirty pages. Also, wait for 9633 * any threads doing pagewalks in the vop_getattr 9634 * entry points so that they don't block for 9635 * long periods. 9636 */ 9637 if (rw == S_CREATE) { 9638 while ((mi->mi_max_threads != 0 && 9639 rp->r_awcount > 2 * mi->mi_max_threads) || 9640 rp->r_gcount > 0) 9641 cv_wait(&rp->r_cv, &rp->r_statelock); 9642 } 9643 9644 /* 9645 * If we are getting called as a side effect of an nfs_write() 9646 * operation the local file size might not be extended yet. 9647 * In this case we want to be able to return pages of zeroes. 9648 */ 9649 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9650 NFS4_DEBUG(nfs4_pageio_debug, 9651 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9652 "len=%llu, size=%llu, attrsize =%llu", off, 9653 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9654 mutex_exit(&rp->r_statelock); 9655 return (EFAULT); /* beyond EOF */ 9656 } 9657 9658 mutex_exit(&rp->r_statelock); 9659 9660 if (len <= PAGESIZE) { 9661 error = nfs4_getapage(vp, off, len, protp, pl, plsz, 9662 seg, addr, rw, cr); 9663 NFS4_DEBUG(nfs4_pageio_debug && error, 9664 (CE_NOTE, "getpage error %d; off=%lld, " 9665 "len=%lld", error, off, (u_longlong_t)len)); 9666 } else { 9667 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9668 pl, plsz, seg, addr, rw, cr); 9669 NFS4_DEBUG(nfs4_pageio_debug && error, 9670 (CE_NOTE, "getpages error %d; off=%lld, " 9671 "len=%lld", error, off, (u_longlong_t)len)); 9672 } 9673 9674 switch (error) { 9675 case NFS_EOF: 9676 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9677 goto retry; 9678 case ESTALE: 9679 nfs4_purge_stale_fh(error, vp, cr); 9680 } 9681 9682 return (error); 9683 } 9684 9685 /* 9686 * Called from pvn_getpages or nfs4_getpage to get a particular page. 9687 */ 9688 /* ARGSUSED */ 9689 static int 9690 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9691 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9692 enum seg_rw rw, cred_t *cr) 9693 { 9694 rnode4_t *rp; 9695 uint_t bsize; 9696 struct buf *bp; 9697 page_t *pp; 9698 u_offset_t lbn; 9699 u_offset_t io_off; 9700 u_offset_t blkoff; 9701 u_offset_t rablkoff; 9702 size_t io_len; 9703 uint_t blksize; 9704 int error; 9705 int readahead; 9706 int readahead_issued = 0; 9707 int ra_window; /* readahead window */ 9708 page_t *pagefound; 9709 page_t *savepp; 9710 9711 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9712 return (EIO); 9713 9714 rp = VTOR4(vp); 9715 ASSERT(!IS_SHADOW(vp, rp)); 9716 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9717 9718 reread: 9719 bp = NULL; 9720 pp = NULL; 9721 pagefound = NULL; 9722 9723 if (pl != NULL) 9724 pl[0] = NULL; 9725 9726 error = 0; 9727 lbn = off / bsize; 9728 blkoff = lbn * bsize; 9729 9730 /* 9731 * Queueing up the readahead before doing the synchronous read 9732 * results in a significant increase in read throughput because 9733 * of the increased parallelism between the async threads and 9734 * the process context. 9735 */ 9736 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9737 rw != S_CREATE && 9738 !(vp->v_flag & VNOCACHE)) { 9739 mutex_enter(&rp->r_statelock); 9740 9741 /* 9742 * Calculate the number of readaheads to do. 9743 * a) No readaheads at offset = 0. 9744 * b) Do maximum(nfs4_nra) readaheads when the readahead 9745 * window is closed. 9746 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9747 * upon how far the readahead window is open or close. 9748 * d) No readaheads if rp->r_nextr is not within the scope 9749 * of the readahead window (random i/o). 9750 */ 9751 9752 if (off == 0) 9753 readahead = 0; 9754 else if (blkoff == rp->r_nextr) 9755 readahead = nfs4_nra; 9756 else if (rp->r_nextr > blkoff && 9757 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9758 <= (nfs4_nra - 1))) 9759 readahead = nfs4_nra - ra_window; 9760 else 9761 readahead = 0; 9762 9763 rablkoff = rp->r_nextr; 9764 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9765 mutex_exit(&rp->r_statelock); 9766 if (nfs4_async_readahead(vp, rablkoff + bsize, 9767 addr + (rablkoff + bsize - off), 9768 seg, cr, nfs4_readahead) < 0) { 9769 mutex_enter(&rp->r_statelock); 9770 break; 9771 } 9772 readahead--; 9773 rablkoff += bsize; 9774 /* 9775 * Indicate that we did a readahead so 9776 * readahead offset is not updated 9777 * by the synchronous read below. 9778 */ 9779 readahead_issued = 1; 9780 mutex_enter(&rp->r_statelock); 9781 /* 9782 * set readahead offset to 9783 * offset of last async readahead 9784 * request. 9785 */ 9786 rp->r_nextr = rablkoff; 9787 } 9788 mutex_exit(&rp->r_statelock); 9789 } 9790 9791 again: 9792 if ((pagefound = page_exists(vp, off)) == NULL) { 9793 if (pl == NULL) { 9794 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9795 nfs4_readahead); 9796 } else if (rw == S_CREATE) { 9797 /* 9798 * Block for this page is not allocated, or the offset 9799 * is beyond the current allocation size, or we're 9800 * allocating a swap slot and the page was not found, 9801 * so allocate it and return a zero page. 9802 */ 9803 if ((pp = page_create_va(vp, off, 9804 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9805 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9806 io_len = PAGESIZE; 9807 mutex_enter(&rp->r_statelock); 9808 rp->r_nextr = off + PAGESIZE; 9809 mutex_exit(&rp->r_statelock); 9810 } else { 9811 /* 9812 * Need to go to server to get a block 9813 */ 9814 mutex_enter(&rp->r_statelock); 9815 if (blkoff < rp->r_size && 9816 blkoff + bsize > rp->r_size) { 9817 /* 9818 * If less than a block left in 9819 * file read less than a block. 9820 */ 9821 if (rp->r_size <= off) { 9822 /* 9823 * Trying to access beyond EOF, 9824 * set up to get at least one page. 9825 */ 9826 blksize = off + PAGESIZE - blkoff; 9827 } else 9828 blksize = rp->r_size - blkoff; 9829 } else if ((off == 0) || 9830 (off != rp->r_nextr && !readahead_issued)) { 9831 blksize = PAGESIZE; 9832 blkoff = off; /* block = page here */ 9833 } else 9834 blksize = bsize; 9835 mutex_exit(&rp->r_statelock); 9836 9837 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9838 &io_len, blkoff, blksize, 0); 9839 9840 /* 9841 * Some other thread has entered the page, 9842 * so just use it. 9843 */ 9844 if (pp == NULL) 9845 goto again; 9846 9847 /* 9848 * Now round the request size up to page boundaries. 9849 * This ensures that the entire page will be 9850 * initialized to zeroes if EOF is encountered. 9851 */ 9852 io_len = ptob(btopr(io_len)); 9853 9854 bp = pageio_setup(pp, io_len, vp, B_READ); 9855 ASSERT(bp != NULL); 9856 9857 /* 9858 * pageio_setup should have set b_addr to 0. This 9859 * is correct since we want to do I/O on a page 9860 * boundary. bp_mapin will use this addr to calculate 9861 * an offset, and then set b_addr to the kernel virtual 9862 * address it allocated for us. 9863 */ 9864 ASSERT(bp->b_un.b_addr == 0); 9865 9866 bp->b_edev = 0; 9867 bp->b_dev = 0; 9868 bp->b_lblkno = lbtodb(io_off); 9869 bp->b_file = vp; 9870 bp->b_offset = (offset_t)off; 9871 bp_mapin(bp); 9872 9873 /* 9874 * If doing a write beyond what we believe is EOF, 9875 * don't bother trying to read the pages from the 9876 * server, we'll just zero the pages here. We 9877 * don't check that the rw flag is S_WRITE here 9878 * because some implementations may attempt a 9879 * read access to the buffer before copying data. 9880 */ 9881 mutex_enter(&rp->r_statelock); 9882 if (io_off >= rp->r_size && seg == segkmap) { 9883 mutex_exit(&rp->r_statelock); 9884 bzero(bp->b_un.b_addr, io_len); 9885 } else { 9886 mutex_exit(&rp->r_statelock); 9887 error = nfs4_bio(bp, NULL, cr, FALSE); 9888 } 9889 9890 /* 9891 * Unmap the buffer before freeing it. 9892 */ 9893 bp_mapout(bp); 9894 pageio_done(bp); 9895 9896 savepp = pp; 9897 do { 9898 pp->p_fsdata = C_NOCOMMIT; 9899 } while ((pp = pp->p_next) != savepp); 9900 9901 if (error == NFS_EOF) { 9902 /* 9903 * If doing a write system call just return 9904 * zeroed pages, else user tried to get pages 9905 * beyond EOF, return error. We don't check 9906 * that the rw flag is S_WRITE here because 9907 * some implementations may attempt a read 9908 * access to the buffer before copying data. 9909 */ 9910 if (seg == segkmap) 9911 error = 0; 9912 else 9913 error = EFAULT; 9914 } 9915 9916 if (!readahead_issued && !error) { 9917 mutex_enter(&rp->r_statelock); 9918 rp->r_nextr = io_off + io_len; 9919 mutex_exit(&rp->r_statelock); 9920 } 9921 } 9922 } 9923 9924 out: 9925 if (pl == NULL) 9926 return (error); 9927 9928 if (error) { 9929 if (pp != NULL) 9930 pvn_read_done(pp, B_ERROR); 9931 return (error); 9932 } 9933 9934 if (pagefound) { 9935 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 9936 9937 /* 9938 * Page exists in the cache, acquire the appropriate lock. 9939 * If this fails, start all over again. 9940 */ 9941 if ((pp = page_lookup(vp, off, se)) == NULL) { 9942 #ifdef DEBUG 9943 nfs4_lostpage++; 9944 #endif 9945 goto reread; 9946 } 9947 pl[0] = pp; 9948 pl[1] = NULL; 9949 return (0); 9950 } 9951 9952 if (pp != NULL) 9953 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 9954 9955 return (error); 9956 } 9957 9958 static void 9959 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 9960 cred_t *cr) 9961 { 9962 int error; 9963 page_t *pp; 9964 u_offset_t io_off; 9965 size_t io_len; 9966 struct buf *bp; 9967 uint_t bsize, blksize; 9968 rnode4_t *rp = VTOR4(vp); 9969 page_t *savepp; 9970 9971 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9972 9973 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9974 9975 mutex_enter(&rp->r_statelock); 9976 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 9977 /* 9978 * If less than a block left in file read less 9979 * than a block. 9980 */ 9981 blksize = rp->r_size - blkoff; 9982 } else 9983 blksize = bsize; 9984 mutex_exit(&rp->r_statelock); 9985 9986 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 9987 &io_off, &io_len, blkoff, blksize, 1); 9988 /* 9989 * The isra flag passed to the kluster function is 1, we may have 9990 * gotten a return value of NULL for a variety of reasons (# of free 9991 * pages < minfree, someone entered the page on the vnode etc). In all 9992 * cases, we want to punt on the readahead. 9993 */ 9994 if (pp == NULL) 9995 return; 9996 9997 /* 9998 * Now round the request size up to page boundaries. 9999 * This ensures that the entire page will be 10000 * initialized to zeroes if EOF is encountered. 10001 */ 10002 io_len = ptob(btopr(io_len)); 10003 10004 bp = pageio_setup(pp, io_len, vp, B_READ); 10005 ASSERT(bp != NULL); 10006 10007 /* 10008 * pageio_setup should have set b_addr to 0. This is correct since 10009 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10010 * to calculate an offset, and then set b_addr to the kernel virtual 10011 * address it allocated for us. 10012 */ 10013 ASSERT(bp->b_un.b_addr == 0); 10014 10015 bp->b_edev = 0; 10016 bp->b_dev = 0; 10017 bp->b_lblkno = lbtodb(io_off); 10018 bp->b_file = vp; 10019 bp->b_offset = (offset_t)blkoff; 10020 bp_mapin(bp); 10021 10022 /* 10023 * If doing a write beyond what we believe is EOF, don't bother trying 10024 * to read the pages from the server, we'll just zero the pages here. 10025 * We don't check that the rw flag is S_WRITE here because some 10026 * implementations may attempt a read access to the buffer before 10027 * copying data. 10028 */ 10029 mutex_enter(&rp->r_statelock); 10030 if (io_off >= rp->r_size && seg == segkmap) { 10031 mutex_exit(&rp->r_statelock); 10032 bzero(bp->b_un.b_addr, io_len); 10033 error = 0; 10034 } else { 10035 mutex_exit(&rp->r_statelock); 10036 error = nfs4_bio(bp, NULL, cr, TRUE); 10037 if (error == NFS_EOF) 10038 error = 0; 10039 } 10040 10041 /* 10042 * Unmap the buffer before freeing it. 10043 */ 10044 bp_mapout(bp); 10045 pageio_done(bp); 10046 10047 savepp = pp; 10048 do { 10049 pp->p_fsdata = C_NOCOMMIT; 10050 } while ((pp = pp->p_next) != savepp); 10051 10052 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10053 10054 /* 10055 * In case of error set readahead offset 10056 * to the lowest offset. 10057 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10058 */ 10059 if (error && rp->r_nextr > io_off) { 10060 mutex_enter(&rp->r_statelock); 10061 if (rp->r_nextr > io_off) 10062 rp->r_nextr = io_off; 10063 mutex_exit(&rp->r_statelock); 10064 } 10065 } 10066 10067 /* 10068 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10069 * If len == 0, do from off to EOF. 10070 * 10071 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10072 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10073 * (from pageout). 10074 */ 10075 /* ARGSUSED */ 10076 static int 10077 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10078 caller_context_t *ct) 10079 { 10080 int error; 10081 rnode4_t *rp; 10082 10083 ASSERT(cr != NULL); 10084 10085 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10086 return (EIO); 10087 10088 rp = VTOR4(vp); 10089 if (IS_SHADOW(vp, rp)) 10090 vp = RTOV4(rp); 10091 10092 /* 10093 * XXX - Why should this check be made here? 10094 */ 10095 if (vp->v_flag & VNOMAP) 10096 return (ENOSYS); 10097 10098 if (len == 0 && !(flags & B_INVAL) && 10099 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10100 return (0); 10101 10102 mutex_enter(&rp->r_statelock); 10103 rp->r_count++; 10104 mutex_exit(&rp->r_statelock); 10105 error = nfs4_putpages(vp, off, len, flags, cr); 10106 mutex_enter(&rp->r_statelock); 10107 rp->r_count--; 10108 cv_broadcast(&rp->r_cv); 10109 mutex_exit(&rp->r_statelock); 10110 10111 return (error); 10112 } 10113 10114 /* 10115 * Write out a single page, possibly klustering adjacent dirty pages. 10116 */ 10117 int 10118 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10119 int flags, cred_t *cr) 10120 { 10121 u_offset_t io_off; 10122 u_offset_t lbn_off; 10123 u_offset_t lbn; 10124 size_t io_len; 10125 uint_t bsize; 10126 int error; 10127 rnode4_t *rp; 10128 10129 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10130 ASSERT(pp != NULL); 10131 ASSERT(cr != NULL); 10132 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10133 10134 rp = VTOR4(vp); 10135 ASSERT(rp->r_count > 0); 10136 ASSERT(!IS_SHADOW(vp, rp)); 10137 10138 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10139 lbn = pp->p_offset / bsize; 10140 lbn_off = lbn * bsize; 10141 10142 /* 10143 * Find a kluster that fits in one block, or in 10144 * one page if pages are bigger than blocks. If 10145 * there is less file space allocated than a whole 10146 * page, we'll shorten the i/o request below. 10147 */ 10148 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10149 roundup(bsize, PAGESIZE), flags); 10150 10151 /* 10152 * pvn_write_kluster shouldn't have returned a page with offset 10153 * behind the original page we were given. Verify that. 10154 */ 10155 ASSERT((pp->p_offset / bsize) >= lbn); 10156 10157 /* 10158 * Now pp will have the list of kept dirty pages marked for 10159 * write back. It will also handle invalidation and freeing 10160 * of pages that are not dirty. Check for page length rounding 10161 * problems. 10162 */ 10163 if (io_off + io_len > lbn_off + bsize) { 10164 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10165 io_len = lbn_off + bsize - io_off; 10166 } 10167 /* 10168 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10169 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10170 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10171 * progress and the r_size has not been made consistent with the 10172 * new size of the file. When the uiomove() completes the r_size is 10173 * updated and the R4MODINPROGRESS flag is cleared. 10174 * 10175 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10176 * consistent value of r_size. Without this handshaking, it is 10177 * possible that nfs4_bio() picks up the old value of r_size 10178 * before the uiomove() in writerp4() completes. This will result 10179 * in the write through nfs4_bio() being dropped. 10180 * 10181 * More precisely, there is a window between the time the uiomove() 10182 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10183 * operation intervenes in this window, the page will be picked up, 10184 * because it is dirty (it will be unlocked, unless it was 10185 * pagecreate'd). When the page is picked up as dirty, the dirty 10186 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10187 * checked. This will still be the old size. Therefore the page will 10188 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10189 * the page will be found to be clean and the write will be dropped. 10190 */ 10191 if (rp->r_flags & R4MODINPROGRESS) { 10192 mutex_enter(&rp->r_statelock); 10193 if ((rp->r_flags & R4MODINPROGRESS) && 10194 rp->r_modaddr + MAXBSIZE > io_off && 10195 rp->r_modaddr < io_off + io_len) { 10196 page_t *plist; 10197 /* 10198 * A write is in progress for this region of the file. 10199 * If we did not detect R4MODINPROGRESS here then this 10200 * path through nfs_putapage() would eventually go to 10201 * nfs4_bio() and may not write out all of the data 10202 * in the pages. We end up losing data. So we decide 10203 * to set the modified bit on each page in the page 10204 * list and mark the rnode with R4DIRTY. This write 10205 * will be restarted at some later time. 10206 */ 10207 plist = pp; 10208 while (plist != NULL) { 10209 pp = plist; 10210 page_sub(&plist, pp); 10211 hat_setmod(pp); 10212 page_io_unlock(pp); 10213 page_unlock(pp); 10214 } 10215 rp->r_flags |= R4DIRTY; 10216 mutex_exit(&rp->r_statelock); 10217 if (offp) 10218 *offp = io_off; 10219 if (lenp) 10220 *lenp = io_len; 10221 return (0); 10222 } 10223 mutex_exit(&rp->r_statelock); 10224 } 10225 10226 if (flags & B_ASYNC) { 10227 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10228 nfs4_sync_putapage); 10229 } else 10230 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10231 10232 if (offp) 10233 *offp = io_off; 10234 if (lenp) 10235 *lenp = io_len; 10236 return (error); 10237 } 10238 10239 static int 10240 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10241 int flags, cred_t *cr) 10242 { 10243 int error; 10244 rnode4_t *rp; 10245 10246 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10247 10248 flags |= B_WRITE; 10249 10250 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10251 10252 rp = VTOR4(vp); 10253 10254 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10255 error == EACCES) && 10256 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10257 if (!(rp->r_flags & R4OUTOFSPACE)) { 10258 mutex_enter(&rp->r_statelock); 10259 rp->r_flags |= R4OUTOFSPACE; 10260 mutex_exit(&rp->r_statelock); 10261 } 10262 flags |= B_ERROR; 10263 pvn_write_done(pp, flags); 10264 /* 10265 * If this was not an async thread, then try again to 10266 * write out the pages, but this time, also destroy 10267 * them whether or not the write is successful. This 10268 * will prevent memory from filling up with these 10269 * pages and destroying them is the only alternative 10270 * if they can't be written out. 10271 * 10272 * Don't do this if this is an async thread because 10273 * when the pages are unlocked in pvn_write_done, 10274 * some other thread could have come along, locked 10275 * them, and queued for an async thread. It would be 10276 * possible for all of the async threads to be tied 10277 * up waiting to lock the pages again and they would 10278 * all already be locked and waiting for an async 10279 * thread to handle them. Deadlock. 10280 */ 10281 if (!(flags & B_ASYNC)) { 10282 error = nfs4_putpage(vp, io_off, io_len, 10283 B_INVAL | B_FORCE, cr, NULL); 10284 } 10285 } else { 10286 if (error) 10287 flags |= B_ERROR; 10288 else if (rp->r_flags & R4OUTOFSPACE) { 10289 mutex_enter(&rp->r_statelock); 10290 rp->r_flags &= ~R4OUTOFSPACE; 10291 mutex_exit(&rp->r_statelock); 10292 } 10293 pvn_write_done(pp, flags); 10294 if (freemem < desfree) 10295 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10296 NFS4_WRITE_NOWAIT); 10297 } 10298 10299 return (error); 10300 } 10301 10302 #ifdef DEBUG 10303 int nfs4_force_open_before_mmap = 0; 10304 #endif 10305 10306 /* ARGSUSED */ 10307 static int 10308 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10309 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10310 caller_context_t *ct) 10311 { 10312 struct segvn_crargs vn_a; 10313 int error = 0; 10314 rnode4_t *rp = VTOR4(vp); 10315 mntinfo4_t *mi = VTOMI4(vp); 10316 10317 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10318 return (EIO); 10319 10320 if (vp->v_flag & VNOMAP) 10321 return (ENOSYS); 10322 10323 if (off < 0 || (off + len) < 0) 10324 return (ENXIO); 10325 10326 if (vp->v_type != VREG) 10327 return (ENODEV); 10328 10329 /* 10330 * If the file is delegated to the client don't do anything. 10331 * If the file is not delegated, then validate the data cache. 10332 */ 10333 mutex_enter(&rp->r_statev4_lock); 10334 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10335 mutex_exit(&rp->r_statev4_lock); 10336 error = nfs4_validate_caches(vp, cr); 10337 if (error) 10338 return (error); 10339 } else { 10340 mutex_exit(&rp->r_statev4_lock); 10341 } 10342 10343 /* 10344 * Check to see if the vnode is currently marked as not cachable. 10345 * This means portions of the file are locked (through VOP_FRLOCK). 10346 * In this case the map request must be refused. We use 10347 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10348 */ 10349 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 10350 return (EINTR); 10351 10352 if (vp->v_flag & VNOCACHE) { 10353 error = EAGAIN; 10354 goto done; 10355 } 10356 10357 /* 10358 * Don't allow concurrent locks and mapping if mandatory locking is 10359 * enabled. 10360 */ 10361 if (flk_has_remote_locks(vp)) { 10362 struct vattr va; 10363 va.va_mask = AT_MODE; 10364 error = nfs4getattr(vp, &va, cr); 10365 if (error != 0) 10366 goto done; 10367 if (MANDLOCK(vp, va.va_mode)) { 10368 error = EAGAIN; 10369 goto done; 10370 } 10371 } 10372 10373 /* 10374 * It is possible that the rnode has a lost lock request that we 10375 * are still trying to recover, and that the request conflicts with 10376 * this map request. 10377 * 10378 * An alternative approach would be for nfs4_safemap() to consider 10379 * queued lock requests when deciding whether to set or clear 10380 * VNOCACHE. This would require the frlock code path to call 10381 * nfs4_safemap() after enqueing a lost request. 10382 */ 10383 if (nfs4_map_lost_lock_conflict(vp)) { 10384 error = EAGAIN; 10385 goto done; 10386 } 10387 10388 as_rangelock(as); 10389 if (!(flags & MAP_FIXED)) { 10390 map_addr(addrp, len, off, 1, flags); 10391 if (*addrp == NULL) { 10392 as_rangeunlock(as); 10393 error = ENOMEM; 10394 goto done; 10395 } 10396 } else { 10397 /* 10398 * User specified address - blow away any previous mappings 10399 */ 10400 (void) as_unmap(as, *addrp, len); 10401 } 10402 10403 if (vp->v_type == VREG) { 10404 /* 10405 * We need to retrieve the open stream 10406 */ 10407 nfs4_open_stream_t *osp = NULL; 10408 nfs4_open_owner_t *oop = NULL; 10409 10410 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10411 if (oop != NULL) { 10412 /* returns with 'os_sync_lock' held */ 10413 osp = find_open_stream(oop, rp); 10414 open_owner_rele(oop); 10415 } 10416 if (osp == NULL) { 10417 #ifdef DEBUG 10418 if (nfs4_force_open_before_mmap) { 10419 error = EIO; 10420 goto done; 10421 } 10422 #endif 10423 /* returns with 'os_sync_lock' held */ 10424 error = open_and_get_osp(vp, cr, &osp); 10425 if (osp == NULL) { 10426 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10427 "nfs4_map: we tried to OPEN the file " 10428 "but again no osp, so fail with EIO")); 10429 goto done; 10430 } 10431 } 10432 10433 if (osp->os_failed_reopen) { 10434 mutex_exit(&osp->os_sync_lock); 10435 open_stream_rele(osp, rp); 10436 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10437 "nfs4_map: os_failed_reopen set on " 10438 "osp %p, cr %p, rp %s", (void *)osp, 10439 (void *)cr, rnode4info(rp))); 10440 error = EIO; 10441 goto done; 10442 } 10443 mutex_exit(&osp->os_sync_lock); 10444 open_stream_rele(osp, rp); 10445 } 10446 10447 vn_a.vp = vp; 10448 vn_a.offset = off; 10449 vn_a.type = (flags & MAP_TYPE); 10450 vn_a.prot = (uchar_t)prot; 10451 vn_a.maxprot = (uchar_t)maxprot; 10452 vn_a.flags = (flags & ~MAP_TYPE); 10453 vn_a.cred = cr; 10454 vn_a.amp = NULL; 10455 vn_a.szc = 0; 10456 vn_a.lgrp_mem_policy_flags = 0; 10457 10458 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10459 as_rangeunlock(as); 10460 10461 done: 10462 nfs_rw_exit(&rp->r_lkserlock); 10463 return (error); 10464 } 10465 10466 /* 10467 * We're most likely dealing with a kernel module that likes to READ 10468 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10469 * officially OPEN the file to create the necessary client state 10470 * for bookkeeping of os_mmap_read/write counts. 10471 * 10472 * Since VOP_MAP only passes in a pointer to the vnode rather than 10473 * a double pointer, we can't handle the case where nfs4open_otw() 10474 * returns a different vnode than the one passed into VOP_MAP (since 10475 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10476 * we return NULL and let nfs4_map() fail. Note: the only case where 10477 * this should happen is if the file got removed and replaced with the 10478 * same name on the server (in addition to the fact that we're trying 10479 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10480 */ 10481 static int 10482 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10483 { 10484 rnode4_t *rp, *drp; 10485 vnode_t *dvp, *open_vp; 10486 char file_name[MAXNAMELEN]; 10487 int just_created; 10488 nfs4_open_stream_t *osp; 10489 nfs4_open_owner_t *oop; 10490 int error; 10491 10492 *ospp = NULL; 10493 open_vp = map_vp; 10494 10495 rp = VTOR4(open_vp); 10496 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10497 return (error); 10498 drp = VTOR4(dvp); 10499 10500 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10501 VN_RELE(dvp); 10502 return (EINTR); 10503 } 10504 10505 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10506 nfs_rw_exit(&drp->r_rwlock); 10507 VN_RELE(dvp); 10508 return (error); 10509 } 10510 10511 mutex_enter(&rp->r_statev4_lock); 10512 if (rp->created_v4) { 10513 rp->created_v4 = 0; 10514 mutex_exit(&rp->r_statev4_lock); 10515 10516 dnlc_update(dvp, file_name, open_vp); 10517 /* This is needed so we don't bump the open ref count */ 10518 just_created = 1; 10519 } else { 10520 mutex_exit(&rp->r_statev4_lock); 10521 just_created = 0; 10522 } 10523 10524 VN_HOLD(map_vp); 10525 10526 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10527 just_created); 10528 if (error) { 10529 nfs_rw_exit(&drp->r_rwlock); 10530 VN_RELE(dvp); 10531 VN_RELE(map_vp); 10532 return (error); 10533 } 10534 10535 nfs_rw_exit(&drp->r_rwlock); 10536 VN_RELE(dvp); 10537 10538 /* 10539 * If nfs4open_otw() returned a different vnode then "undo" 10540 * the open and return failure to the caller. 10541 */ 10542 if (!VN_CMP(open_vp, map_vp)) { 10543 nfs4_error_t e; 10544 10545 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10546 "open returned a different vnode")); 10547 /* 10548 * If there's an error, ignore it, 10549 * and let VOP_INACTIVE handle it. 10550 */ 10551 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10552 CLOSE_NORM, 0, 0, 0); 10553 VN_RELE(map_vp); 10554 return (EIO); 10555 } 10556 10557 VN_RELE(map_vp); 10558 10559 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10560 if (!oop) { 10561 nfs4_error_t e; 10562 10563 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10564 "no open owner")); 10565 /* 10566 * If there's an error, ignore it, 10567 * and let VOP_INACTIVE handle it. 10568 */ 10569 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10570 CLOSE_NORM, 0, 0, 0); 10571 return (EIO); 10572 } 10573 osp = find_open_stream(oop, rp); 10574 open_owner_rele(oop); 10575 *ospp = osp; 10576 return (0); 10577 } 10578 10579 /* 10580 * Please be aware that when this function is called, the address space write 10581 * a_lock is held. Do not put over the wire calls in this function. 10582 */ 10583 /* ARGSUSED */ 10584 static int 10585 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10586 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10587 caller_context_t *ct) 10588 { 10589 rnode4_t *rp; 10590 int error = 0; 10591 mntinfo4_t *mi; 10592 10593 mi = VTOMI4(vp); 10594 rp = VTOR4(vp); 10595 10596 if (nfs_zone() != mi->mi_zone) 10597 return (EIO); 10598 if (vp->v_flag & VNOMAP) 10599 return (ENOSYS); 10600 10601 /* 10602 * Need to hold rwlock while incrementing the mapcnt so that 10603 * mmap'ing can be serialized with writes so that the caching 10604 * can be handled correctly. 10605 * 10606 * Don't need to update the open stream first, since this 10607 * mmap can't add any additional share access that isn't 10608 * already contained in the open stream (for the case where we 10609 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10610 * take into account os_mmap_read[write] counts). 10611 */ 10612 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 10613 return (EINTR); 10614 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10615 nfs_rw_exit(&rp->r_rwlock); 10616 10617 if (vp->v_type == VREG) { 10618 /* 10619 * We need to retrieve the open stream and update the counts. 10620 * If there is no open stream here, something is wrong. 10621 */ 10622 nfs4_open_stream_t *osp = NULL; 10623 nfs4_open_owner_t *oop = NULL; 10624 10625 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10626 if (oop != NULL) { 10627 /* returns with 'os_sync_lock' held */ 10628 osp = find_open_stream(oop, rp); 10629 open_owner_rele(oop); 10630 } 10631 if (osp == NULL) { 10632 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10633 "nfs4_addmap: we should have an osp" 10634 "but we don't, so fail with EIO")); 10635 error = EIO; 10636 goto out; 10637 } 10638 10639 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10640 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10641 10642 /* 10643 * Update the map count in the open stream. 10644 * This is necessary in the case where we 10645 * open/mmap/close/, then the server reboots, and we 10646 * attempt to reopen. If the mmap doesn't add share 10647 * access then we send an invalid reopen with 10648 * access = NONE. 10649 * 10650 * We need to specifically check each PROT_* so a mmap 10651 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10652 * read and write access. A simple comparison of prot 10653 * to ~PROT_WRITE to determine read access is insufficient 10654 * since prot can be |= with PROT_USER, etc. 10655 */ 10656 10657 /* 10658 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10659 */ 10660 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10661 osp->os_mmap_write += btopr(len); 10662 if (maxprot & PROT_READ) 10663 osp->os_mmap_read += btopr(len); 10664 if (maxprot & PROT_EXEC) 10665 osp->os_mmap_read += btopr(len); 10666 /* 10667 * Ensure that os_mmap_read gets incremented, even if 10668 * maxprot were to look like PROT_NONE. 10669 */ 10670 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10671 !(maxprot & PROT_EXEC)) 10672 osp->os_mmap_read += btopr(len); 10673 osp->os_mapcnt += btopr(len); 10674 mutex_exit(&osp->os_sync_lock); 10675 open_stream_rele(osp, rp); 10676 } 10677 10678 out: 10679 /* 10680 * If we got an error, then undo our 10681 * incrementing of 'r_mapcnt'. 10682 */ 10683 10684 if (error) { 10685 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10686 ASSERT(rp->r_mapcnt >= 0); 10687 } 10688 return (error); 10689 } 10690 10691 /* ARGSUSED */ 10692 static int 10693 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) 10694 { 10695 10696 return (VTOR4(vp1) == VTOR4(vp2)); 10697 } 10698 10699 /* ARGSUSED */ 10700 static int 10701 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10702 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 10703 caller_context_t *ct) 10704 { 10705 int rc; 10706 u_offset_t start, end; 10707 rnode4_t *rp; 10708 int error = 0, intr = INTR4(vp); 10709 nfs4_error_t e; 10710 10711 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10712 return (EIO); 10713 10714 /* check for valid cmd parameter */ 10715 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10716 return (EINVAL); 10717 10718 /* Verify l_type. */ 10719 switch (bfp->l_type) { 10720 case F_RDLCK: 10721 if (cmd != F_GETLK && !(flag & FREAD)) 10722 return (EBADF); 10723 break; 10724 case F_WRLCK: 10725 if (cmd != F_GETLK && !(flag & FWRITE)) 10726 return (EBADF); 10727 break; 10728 case F_UNLCK: 10729 intr = 0; 10730 break; 10731 10732 default: 10733 return (EINVAL); 10734 } 10735 10736 /* check the validity of the lock range */ 10737 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10738 return (rc); 10739 if (rc = flk_check_lock_data(start, end, MAXEND)) 10740 return (rc); 10741 10742 /* 10743 * If the filesystem is mounted using local locking, pass the 10744 * request off to the local locking code. 10745 */ 10746 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10747 if (cmd == F_SETLK || cmd == F_SETLKW) { 10748 /* 10749 * For complete safety, we should be holding 10750 * r_lkserlock. However, we can't call 10751 * nfs4_safelock and then fs_frlock while 10752 * holding r_lkserlock, so just invoke 10753 * nfs4_safelock and expect that this will 10754 * catch enough of the cases. 10755 */ 10756 if (!nfs4_safelock(vp, bfp, cr)) 10757 return (EAGAIN); 10758 } 10759 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 10760 } 10761 10762 rp = VTOR4(vp); 10763 10764 /* 10765 * Check whether the given lock request can proceed, given the 10766 * current file mappings. 10767 */ 10768 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10769 return (EINTR); 10770 if (cmd == F_SETLK || cmd == F_SETLKW) { 10771 if (!nfs4_safelock(vp, bfp, cr)) { 10772 rc = EAGAIN; 10773 goto done; 10774 } 10775 } 10776 10777 /* 10778 * Flush the cache after waiting for async I/O to finish. For new 10779 * locks, this is so that the process gets the latest bits from the 10780 * server. For unlocks, this is so that other clients see the 10781 * latest bits once the file has been unlocked. If currently dirty 10782 * pages can't be flushed, then don't allow a lock to be set. But 10783 * allow unlocks to succeed, to avoid having orphan locks on the 10784 * server. 10785 */ 10786 if (cmd != F_GETLK) { 10787 mutex_enter(&rp->r_statelock); 10788 while (rp->r_count > 0) { 10789 if (intr) { 10790 klwp_t *lwp = ttolwp(curthread); 10791 10792 if (lwp != NULL) 10793 lwp->lwp_nostop++; 10794 if (cv_wait_sig(&rp->r_cv, 10795 &rp->r_statelock) == 0) { 10796 if (lwp != NULL) 10797 lwp->lwp_nostop--; 10798 rc = EINTR; 10799 break; 10800 } 10801 if (lwp != NULL) 10802 lwp->lwp_nostop--; 10803 } else 10804 cv_wait(&rp->r_cv, &rp->r_statelock); 10805 } 10806 mutex_exit(&rp->r_statelock); 10807 if (rc != 0) 10808 goto done; 10809 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 10810 if (error) { 10811 if (error == ENOSPC || error == EDQUOT) { 10812 mutex_enter(&rp->r_statelock); 10813 if (!rp->r_error) 10814 rp->r_error = error; 10815 mutex_exit(&rp->r_statelock); 10816 } 10817 if (bfp->l_type != F_UNLCK) { 10818 rc = ENOLCK; 10819 goto done; 10820 } 10821 } 10822 } 10823 10824 /* 10825 * Call the lock manager to do the real work of contacting 10826 * the server and obtaining the lock. 10827 */ 10828 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10829 cr, &e, NULL, NULL); 10830 rc = e.error; 10831 10832 if (rc == 0) 10833 nfs4_lockcompletion(vp, cmd); 10834 10835 done: 10836 nfs_rw_exit(&rp->r_lkserlock); 10837 10838 return (rc); 10839 } 10840 10841 /* 10842 * Free storage space associated with the specified vnode. The portion 10843 * to be freed is specified by bfp->l_start and bfp->l_len (already 10844 * normalized to a "whence" of 0). 10845 * 10846 * This is an experimental facility whose continued existence is not 10847 * guaranteed. Currently, we only support the special case 10848 * of l_len == 0, meaning free to end of file. 10849 */ 10850 /* ARGSUSED */ 10851 static int 10852 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10853 offset_t offset, cred_t *cr, caller_context_t *ct) 10854 { 10855 int error; 10856 10857 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10858 return (EIO); 10859 ASSERT(vp->v_type == VREG); 10860 if (cmd != F_FREESP) 10861 return (EINVAL); 10862 10863 error = convoff(vp, bfp, 0, offset); 10864 if (!error) { 10865 ASSERT(bfp->l_start >= 0); 10866 if (bfp->l_len == 0) { 10867 struct vattr va; 10868 10869 va.va_mask = AT_SIZE; 10870 va.va_size = bfp->l_start; 10871 error = nfs4setattr(vp, &va, 0, cr, NULL); 10872 } else 10873 error = EINVAL; 10874 } 10875 10876 return (error); 10877 } 10878 10879 /* ARGSUSED */ 10880 int 10881 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 10882 { 10883 rnode4_t *rp; 10884 rp = VTOR4(vp); 10885 10886 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 10887 vp = RTOV4(rp); 10888 } 10889 *vpp = vp; 10890 return (0); 10891 } 10892 10893 /* 10894 * Setup and add an address space callback to do the work of the delmap call. 10895 * The callback will (and must be) deleted in the actual callback function. 10896 * 10897 * This is done in order to take care of the problem that we have with holding 10898 * the address space's a_lock for a long period of time (e.g. if the NFS server 10899 * is down). Callbacks will be executed in the address space code while the 10900 * a_lock is not held. Holding the address space's a_lock causes things such 10901 * as ps and fork to hang because they are trying to acquire this lock as well. 10902 */ 10903 /* ARGSUSED */ 10904 static int 10905 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10906 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 10907 caller_context_t *ct) 10908 { 10909 int caller_found; 10910 int error; 10911 rnode4_t *rp; 10912 nfs4_delmap_args_t *dmapp; 10913 nfs4_delmapcall_t *delmap_call; 10914 10915 if (vp->v_flag & VNOMAP) 10916 return (ENOSYS); 10917 10918 /* 10919 * A process may not change zones if it has NFS pages mmap'ed 10920 * in, so we can't legitimately get here from the wrong zone. 10921 */ 10922 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10923 10924 rp = VTOR4(vp); 10925 10926 /* 10927 * The way that the address space of this process deletes its mapping 10928 * of this file is via the following call chains: 10929 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10930 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10931 * 10932 * With the use of address space callbacks we are allowed to drop the 10933 * address space lock, a_lock, while executing the NFS operations that 10934 * need to go over the wire. Returning EAGAIN to the caller of this 10935 * function is what drives the execution of the callback that we add 10936 * below. The callback will be executed by the address space code 10937 * after dropping the a_lock. When the callback is finished, since 10938 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 10939 * is called again on the same segment to finish the rest of the work 10940 * that needs to happen during unmapping. 10941 * 10942 * This action of calling back into the segment driver causes 10943 * nfs4_delmap() to get called again, but since the callback was 10944 * already executed at this point, it already did the work and there 10945 * is nothing left for us to do. 10946 * 10947 * To Summarize: 10948 * - The first time nfs4_delmap is called by the current thread is when 10949 * we add the caller associated with this delmap to the delmap caller 10950 * list, add the callback, and return EAGAIN. 10951 * - The second time in this call chain when nfs4_delmap is called we 10952 * will find this caller in the delmap caller list and realize there 10953 * is no more work to do thus removing this caller from the list and 10954 * returning the error that was set in the callback execution. 10955 */ 10956 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 10957 if (caller_found) { 10958 /* 10959 * 'error' is from the actual delmap operations. To avoid 10960 * hangs, we need to handle the return of EAGAIN differently 10961 * since this is what drives the callback execution. 10962 * In this case, we don't want to return EAGAIN and do the 10963 * callback execution because there are none to execute. 10964 */ 10965 if (error == EAGAIN) 10966 return (0); 10967 else 10968 return (error); 10969 } 10970 10971 /* current caller was not in the list */ 10972 delmap_call = nfs4_init_delmapcall(); 10973 10974 mutex_enter(&rp->r_statelock); 10975 list_insert_tail(&rp->r_indelmap, delmap_call); 10976 mutex_exit(&rp->r_statelock); 10977 10978 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 10979 10980 dmapp->vp = vp; 10981 dmapp->off = off; 10982 dmapp->addr = addr; 10983 dmapp->len = len; 10984 dmapp->prot = prot; 10985 dmapp->maxprot = maxprot; 10986 dmapp->flags = flags; 10987 dmapp->cr = cr; 10988 dmapp->caller = delmap_call; 10989 10990 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 10991 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 10992 10993 return (error ? error : EAGAIN); 10994 } 10995 10996 static nfs4_delmapcall_t * 10997 nfs4_init_delmapcall() 10998 { 10999 nfs4_delmapcall_t *delmap_call; 11000 11001 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 11002 delmap_call->call_id = curthread; 11003 delmap_call->error = 0; 11004 11005 return (delmap_call); 11006 } 11007 11008 static void 11009 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11010 { 11011 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11012 } 11013 11014 /* 11015 * Searches for the current delmap caller (based on curthread) in the list of 11016 * callers. If it is found, we remove it and free the delmap caller. 11017 * Returns: 11018 * 0 if the caller wasn't found 11019 * 1 if the caller was found, removed and freed. *errp will be set 11020 * to what the result of the delmap was. 11021 */ 11022 static int 11023 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11024 { 11025 nfs4_delmapcall_t *delmap_call; 11026 11027 /* 11028 * If the list doesn't exist yet, we create it and return 11029 * that the caller wasn't found. No list = no callers. 11030 */ 11031 mutex_enter(&rp->r_statelock); 11032 if (!(rp->r_flags & R4DELMAPLIST)) { 11033 /* The list does not exist */ 11034 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11035 offsetof(nfs4_delmapcall_t, call_node)); 11036 rp->r_flags |= R4DELMAPLIST; 11037 mutex_exit(&rp->r_statelock); 11038 return (0); 11039 } else { 11040 /* The list exists so search it */ 11041 for (delmap_call = list_head(&rp->r_indelmap); 11042 delmap_call != NULL; 11043 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11044 if (delmap_call->call_id == curthread) { 11045 /* current caller is in the list */ 11046 *errp = delmap_call->error; 11047 list_remove(&rp->r_indelmap, delmap_call); 11048 mutex_exit(&rp->r_statelock); 11049 nfs4_free_delmapcall(delmap_call); 11050 return (1); 11051 } 11052 } 11053 } 11054 mutex_exit(&rp->r_statelock); 11055 return (0); 11056 } 11057 11058 /* 11059 * Remove some pages from an mmap'd vnode. Just update the 11060 * count of pages. If doing close-to-open, then flush and 11061 * commit all of the pages associated with this file. 11062 * Otherwise, start an asynchronous page flush to write out 11063 * any dirty pages. This will also associate a credential 11064 * with the rnode which can be used to write the pages. 11065 */ 11066 /* ARGSUSED */ 11067 static void 11068 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11069 { 11070 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11071 rnode4_t *rp; 11072 mntinfo4_t *mi; 11073 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11074 11075 rp = VTOR4(dmapp->vp); 11076 mi = VTOMI4(dmapp->vp); 11077 11078 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11079 ASSERT(rp->r_mapcnt >= 0); 11080 11081 /* 11082 * Initiate a page flush and potential commit if there are 11083 * pages, the file system was not mounted readonly, the segment 11084 * was mapped shared, and the pages themselves were writeable. 11085 */ 11086 if (nfs4_has_pages(dmapp->vp) && 11087 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11088 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11089 mutex_enter(&rp->r_statelock); 11090 rp->r_flags |= R4DIRTY; 11091 mutex_exit(&rp->r_statelock); 11092 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11093 dmapp->len, dmapp->cr); 11094 if (!e.error) { 11095 mutex_enter(&rp->r_statelock); 11096 e.error = rp->r_error; 11097 rp->r_error = 0; 11098 mutex_exit(&rp->r_statelock); 11099 } 11100 } else 11101 e.error = 0; 11102 11103 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11104 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11105 B_INVAL, dmapp->cr, NULL); 11106 11107 if (e.error) { 11108 e.stat = puterrno4(e.error); 11109 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11110 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11111 dmapp->caller->error = e.error; 11112 } 11113 11114 /* Check to see if we need to close the file */ 11115 11116 if (dmapp->vp->v_type == VREG) { 11117 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11118 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11119 11120 if (e.error != 0 || e.stat != NFS4_OK) { 11121 /* 11122 * Since it is possible that e.error == 0 and 11123 * e.stat != NFS4_OK (and vice versa), 11124 * we do the proper checking in order to get both 11125 * e.error and e.stat reporting the correct info. 11126 */ 11127 if (e.stat == NFS4_OK) 11128 e.stat = puterrno4(e.error); 11129 if (e.error == 0) 11130 e.error = geterrno4(e.stat); 11131 11132 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11133 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11134 dmapp->caller->error = e.error; 11135 } 11136 } 11137 11138 (void) as_delete_callback(as, arg); 11139 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11140 } 11141 11142 11143 static uint_t 11144 fattr4_maxfilesize_to_bits(uint64_t ll) 11145 { 11146 uint_t l = 1; 11147 11148 if (ll == 0) { 11149 return (0); 11150 } 11151 11152 if (ll & 0xffffffff00000000) { 11153 l += 32; ll >>= 32; 11154 } 11155 if (ll & 0xffff0000) { 11156 l += 16; ll >>= 16; 11157 } 11158 if (ll & 0xff00) { 11159 l += 8; ll >>= 8; 11160 } 11161 if (ll & 0xf0) { 11162 l += 4; ll >>= 4; 11163 } 11164 if (ll & 0xc) { 11165 l += 2; ll >>= 2; 11166 } 11167 if (ll & 0x2) { 11168 l += 1; 11169 } 11170 return (l); 11171 } 11172 11173 /* ARGSUSED */ 11174 int 11175 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 11176 caller_context_t *ct) 11177 { 11178 int error; 11179 hrtime_t t; 11180 rnode4_t *rp; 11181 nfs4_ga_res_t gar; 11182 nfs4_ga_ext_res_t ger; 11183 11184 gar.n4g_ext_res = &ger; 11185 11186 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11187 return (EIO); 11188 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11189 *valp = MAXPATHLEN; 11190 return (0); 11191 } 11192 if (cmd == _PC_ACL_ENABLED) { 11193 *valp = _ACL_ACE_ENABLED; 11194 return (0); 11195 } 11196 11197 rp = VTOR4(vp); 11198 if (cmd == _PC_XATTR_EXISTS) { 11199 /* 11200 * Eventually should attempt small client readdir before 11201 * going otw with GETATTR(FATTR4_NAMED_ATTR). For now 11202 * just drive the OTW getattr. This is required because 11203 * _PC_XATTR_EXISTS can only return true if attributes 11204 * exist -- simply checking for existence of the attrdir 11205 * is not sufficient. 11206 * 11207 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11208 * is NULL. Once the xadir vp exists, we can create xattrs, 11209 * and we don't have any way to update the "base" object's 11210 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11211 * could help out. 11212 */ 11213 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11214 rp->r_xattr_dir == NULL) { 11215 *valp = rp->r_pathconf.pc4_xattr_exists; 11216 return (0); 11217 } 11218 } else { /* OLD CODE */ 11219 if (ATTRCACHE4_VALID(vp)) { 11220 mutex_enter(&rp->r_statelock); 11221 if (rp->r_pathconf.pc4_cache_valid) { 11222 error = 0; 11223 switch (cmd) { 11224 case _PC_FILESIZEBITS: 11225 *valp = 11226 rp->r_pathconf.pc4_filesizebits; 11227 break; 11228 case _PC_LINK_MAX: 11229 *valp = 11230 rp->r_pathconf.pc4_link_max; 11231 break; 11232 case _PC_NAME_MAX: 11233 *valp = 11234 rp->r_pathconf.pc4_name_max; 11235 break; 11236 case _PC_CHOWN_RESTRICTED: 11237 *valp = 11238 rp->r_pathconf.pc4_chown_restricted; 11239 break; 11240 case _PC_NO_TRUNC: 11241 *valp = 11242 rp->r_pathconf.pc4_no_trunc; 11243 break; 11244 default: 11245 error = EINVAL; 11246 break; 11247 } 11248 mutex_exit(&rp->r_statelock); 11249 #ifdef DEBUG 11250 nfs4_pathconf_cache_hits++; 11251 #endif 11252 return (error); 11253 } 11254 mutex_exit(&rp->r_statelock); 11255 } 11256 } 11257 #ifdef DEBUG 11258 nfs4_pathconf_cache_misses++; 11259 #endif 11260 11261 t = gethrtime(); 11262 11263 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11264 11265 if (error) { 11266 mutex_enter(&rp->r_statelock); 11267 rp->r_pathconf.pc4_cache_valid = FALSE; 11268 rp->r_pathconf.pc4_xattr_valid = FALSE; 11269 mutex_exit(&rp->r_statelock); 11270 return (error); 11271 } 11272 11273 /* interpret the max filesize */ 11274 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11275 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11276 11277 /* Store the attributes we just received */ 11278 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11279 11280 switch (cmd) { 11281 case _PC_FILESIZEBITS: 11282 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11283 break; 11284 case _PC_LINK_MAX: 11285 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11286 break; 11287 case _PC_NAME_MAX: 11288 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11289 break; 11290 case _PC_CHOWN_RESTRICTED: 11291 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11292 break; 11293 case _PC_NO_TRUNC: 11294 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11295 break; 11296 case _PC_XATTR_EXISTS: 11297 *valp = gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists; 11298 break; 11299 default: 11300 return (EINVAL); 11301 } 11302 11303 return (0); 11304 } 11305 11306 /* 11307 * Called by async thread to do synchronous pageio. Do the i/o, wait 11308 * for it to complete, and cleanup the page list when done. 11309 */ 11310 static int 11311 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11312 int flags, cred_t *cr) 11313 { 11314 int error; 11315 11316 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11317 11318 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11319 if (flags & B_READ) 11320 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11321 else 11322 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11323 return (error); 11324 } 11325 11326 /* ARGSUSED */ 11327 static int 11328 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11329 int flags, cred_t *cr, caller_context_t *ct) 11330 { 11331 int error; 11332 rnode4_t *rp; 11333 11334 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11335 return (EIO); 11336 11337 if (pp == NULL) 11338 return (EINVAL); 11339 11340 rp = VTOR4(vp); 11341 mutex_enter(&rp->r_statelock); 11342 rp->r_count++; 11343 mutex_exit(&rp->r_statelock); 11344 11345 if (flags & B_ASYNC) { 11346 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11347 nfs4_sync_pageio); 11348 } else 11349 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11350 mutex_enter(&rp->r_statelock); 11351 rp->r_count--; 11352 cv_broadcast(&rp->r_cv); 11353 mutex_exit(&rp->r_statelock); 11354 return (error); 11355 } 11356 11357 /* ARGSUSED */ 11358 static void 11359 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 11360 caller_context_t *ct) 11361 { 11362 int error; 11363 rnode4_t *rp; 11364 page_t *plist; 11365 page_t *pptr; 11366 offset3 offset; 11367 count3 len; 11368 k_sigset_t smask; 11369 11370 /* 11371 * We should get called with fl equal to either B_FREE or 11372 * B_INVAL. Any other value is illegal. 11373 * 11374 * The page that we are either supposed to free or destroy 11375 * should be exclusive locked and its io lock should not 11376 * be held. 11377 */ 11378 ASSERT(fl == B_FREE || fl == B_INVAL); 11379 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11380 11381 rp = VTOR4(vp); 11382 11383 /* 11384 * If the page doesn't need to be committed or we shouldn't 11385 * even bother attempting to commit it, then just make sure 11386 * that the p_fsdata byte is clear and then either free or 11387 * destroy the page as appropriate. 11388 */ 11389 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11390 pp->p_fsdata = C_NOCOMMIT; 11391 if (fl == B_FREE) 11392 page_free(pp, dn); 11393 else 11394 page_destroy(pp, dn); 11395 return; 11396 } 11397 11398 /* 11399 * If there is a page invalidation operation going on, then 11400 * if this is one of the pages being destroyed, then just 11401 * clear the p_fsdata byte and then either free or destroy 11402 * the page as appropriate. 11403 */ 11404 mutex_enter(&rp->r_statelock); 11405 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11406 mutex_exit(&rp->r_statelock); 11407 pp->p_fsdata = C_NOCOMMIT; 11408 if (fl == B_FREE) 11409 page_free(pp, dn); 11410 else 11411 page_destroy(pp, dn); 11412 return; 11413 } 11414 11415 /* 11416 * If we are freeing this page and someone else is already 11417 * waiting to do a commit, then just unlock the page and 11418 * return. That other thread will take care of commiting 11419 * this page. The page can be freed sometime after the 11420 * commit has finished. Otherwise, if the page is marked 11421 * as delay commit, then we may be getting called from 11422 * pvn_write_done, one page at a time. This could result 11423 * in one commit per page, so we end up doing lots of small 11424 * commits instead of fewer larger commits. This is bad, 11425 * we want do as few commits as possible. 11426 */ 11427 if (fl == B_FREE) { 11428 if (rp->r_flags & R4COMMITWAIT) { 11429 page_unlock(pp); 11430 mutex_exit(&rp->r_statelock); 11431 return; 11432 } 11433 if (pp->p_fsdata == C_DELAYCOMMIT) { 11434 pp->p_fsdata = C_COMMIT; 11435 page_unlock(pp); 11436 mutex_exit(&rp->r_statelock); 11437 return; 11438 } 11439 } 11440 11441 /* 11442 * Check to see if there is a signal which would prevent an 11443 * attempt to commit the pages from being successful. If so, 11444 * then don't bother with all of the work to gather pages and 11445 * generate the unsuccessful RPC. Just return from here and 11446 * let the page be committed at some later time. 11447 */ 11448 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11449 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11450 sigunintr(&smask); 11451 page_unlock(pp); 11452 mutex_exit(&rp->r_statelock); 11453 return; 11454 } 11455 sigunintr(&smask); 11456 11457 /* 11458 * We are starting to need to commit pages, so let's try 11459 * to commit as many as possible at once to reduce the 11460 * overhead. 11461 * 11462 * Set the `commit inprogress' state bit. We must 11463 * first wait until any current one finishes. Then 11464 * we initialize the c_pages list with this page. 11465 */ 11466 while (rp->r_flags & R4COMMIT) { 11467 rp->r_flags |= R4COMMITWAIT; 11468 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11469 rp->r_flags &= ~R4COMMITWAIT; 11470 } 11471 rp->r_flags |= R4COMMIT; 11472 mutex_exit(&rp->r_statelock); 11473 ASSERT(rp->r_commit.c_pages == NULL); 11474 rp->r_commit.c_pages = pp; 11475 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11476 rp->r_commit.c_commlen = PAGESIZE; 11477 11478 /* 11479 * Gather together all other pages which can be committed. 11480 * They will all be chained off r_commit.c_pages. 11481 */ 11482 nfs4_get_commit(vp); 11483 11484 /* 11485 * Clear the `commit inprogress' status and disconnect 11486 * the list of pages to be committed from the rnode. 11487 * At this same time, we also save the starting offset 11488 * and length of data to be committed on the server. 11489 */ 11490 plist = rp->r_commit.c_pages; 11491 rp->r_commit.c_pages = NULL; 11492 offset = rp->r_commit.c_commbase; 11493 len = rp->r_commit.c_commlen; 11494 mutex_enter(&rp->r_statelock); 11495 rp->r_flags &= ~R4COMMIT; 11496 cv_broadcast(&rp->r_commit.c_cv); 11497 mutex_exit(&rp->r_statelock); 11498 11499 if (curproc == proc_pageout || curproc == proc_fsflush || 11500 nfs_zone() != VTOMI4(vp)->mi_zone) { 11501 nfs4_async_commit(vp, plist, offset, len, 11502 cr, do_nfs4_async_commit); 11503 return; 11504 } 11505 11506 /* 11507 * Actually generate the COMMIT op over the wire operation. 11508 */ 11509 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11510 11511 /* 11512 * If we got an error during the commit, just unlock all 11513 * of the pages. The pages will get retransmitted to the 11514 * server during a putpage operation. 11515 */ 11516 if (error) { 11517 while (plist != NULL) { 11518 pptr = plist; 11519 page_sub(&plist, pptr); 11520 page_unlock(pptr); 11521 } 11522 return; 11523 } 11524 11525 /* 11526 * We've tried as hard as we can to commit the data to stable 11527 * storage on the server. We just unlock the rest of the pages 11528 * and clear the commit required state. They will be put 11529 * onto the tail of the cachelist if they are nolonger 11530 * mapped. 11531 */ 11532 while (plist != pp) { 11533 pptr = plist; 11534 page_sub(&plist, pptr); 11535 pptr->p_fsdata = C_NOCOMMIT; 11536 page_unlock(pptr); 11537 } 11538 11539 /* 11540 * It is possible that nfs4_commit didn't return error but 11541 * some other thread has modified the page we are going 11542 * to free/destroy. 11543 * In this case we need to rewrite the page. Do an explicit check 11544 * before attempting to free/destroy the page. If modified, needs to 11545 * be rewritten so unlock the page and return. 11546 */ 11547 if (hat_ismod(pp)) { 11548 pp->p_fsdata = C_NOCOMMIT; 11549 page_unlock(pp); 11550 return; 11551 } 11552 11553 /* 11554 * Now, as appropriate, either free or destroy the page 11555 * that we were called with. 11556 */ 11557 pp->p_fsdata = C_NOCOMMIT; 11558 if (fl == B_FREE) 11559 page_free(pp, dn); 11560 else 11561 page_destroy(pp, dn); 11562 } 11563 11564 /* 11565 * Commit requires that the current fh be the file written to. 11566 * The compound op structure is: 11567 * PUTFH(file), COMMIT 11568 */ 11569 static int 11570 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11571 { 11572 COMPOUND4args_clnt args; 11573 COMPOUND4res_clnt res; 11574 COMMIT4res *cm_res; 11575 nfs_argop4 argop[2]; 11576 nfs_resop4 *resop; 11577 int doqueue; 11578 mntinfo4_t *mi; 11579 rnode4_t *rp; 11580 cred_t *cred_otw = NULL; 11581 bool_t needrecov = FALSE; 11582 nfs4_recov_state_t recov_state; 11583 nfs4_open_stream_t *osp = NULL; 11584 bool_t first_time = TRUE; /* first time getting OTW cred */ 11585 bool_t last_time = FALSE; /* last time getting OTW cred */ 11586 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11587 11588 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11589 11590 rp = VTOR4(vp); 11591 11592 mi = VTOMI4(vp); 11593 recov_state.rs_flags = 0; 11594 recov_state.rs_num_retry_despite_err = 0; 11595 get_commit_cred: 11596 /* 11597 * Releases the osp, if a valid open stream is provided. 11598 * Puts a hold on the cred_otw and the new osp (if found). 11599 */ 11600 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11601 &first_time, &last_time); 11602 args.ctag = TAG_COMMIT; 11603 recov_retry: 11604 /* 11605 * Commit ops: putfh file; commit 11606 */ 11607 args.array_len = 2; 11608 args.array = argop; 11609 11610 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11611 &recov_state, NULL); 11612 if (e.error) { 11613 crfree(cred_otw); 11614 if (osp != NULL) 11615 open_stream_rele(osp, rp); 11616 return (e.error); 11617 } 11618 11619 /* putfh directory */ 11620 argop[0].argop = OP_CPUTFH; 11621 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11622 11623 /* commit */ 11624 argop[1].argop = OP_COMMIT; 11625 argop[1].nfs_argop4_u.opcommit.offset = offset; 11626 argop[1].nfs_argop4_u.opcommit.count = count; 11627 11628 doqueue = 1; 11629 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11630 11631 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11632 if (!needrecov && e.error) { 11633 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11634 needrecov); 11635 crfree(cred_otw); 11636 if (e.error == EACCES && last_time == FALSE) 11637 goto get_commit_cred; 11638 if (osp != NULL) 11639 open_stream_rele(osp, rp); 11640 return (e.error); 11641 } 11642 11643 if (needrecov) { 11644 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11645 NULL, OP_COMMIT, NULL) == FALSE) { 11646 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11647 &recov_state, needrecov); 11648 if (!e.error) 11649 (void) xdr_free(xdr_COMPOUND4res_clnt, 11650 (caddr_t)&res); 11651 goto recov_retry; 11652 } 11653 if (e.error) { 11654 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11655 &recov_state, needrecov); 11656 crfree(cred_otw); 11657 if (osp != NULL) 11658 open_stream_rele(osp, rp); 11659 return (e.error); 11660 } 11661 /* fall through for res.status case */ 11662 } 11663 11664 if (res.status) { 11665 e.error = geterrno4(res.status); 11666 if (e.error == EACCES && last_time == FALSE) { 11667 crfree(cred_otw); 11668 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11669 &recov_state, needrecov); 11670 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11671 goto get_commit_cred; 11672 } 11673 /* 11674 * Can't do a nfs4_purge_stale_fh here because this 11675 * can cause a deadlock. nfs4_commit can 11676 * be called from nfs4_dispose which can be called 11677 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11678 * can call back to pvn_vplist_dirty. 11679 */ 11680 if (e.error == ESTALE) { 11681 mutex_enter(&rp->r_statelock); 11682 rp->r_flags |= R4STALE; 11683 if (!rp->r_error) 11684 rp->r_error = e.error; 11685 mutex_exit(&rp->r_statelock); 11686 PURGE_ATTRCACHE4(vp); 11687 } else { 11688 mutex_enter(&rp->r_statelock); 11689 if (!rp->r_error) 11690 rp->r_error = e.error; 11691 mutex_exit(&rp->r_statelock); 11692 } 11693 } else { 11694 ASSERT(rp->r_flags & R4HAVEVERF); 11695 resop = &res.array[1]; /* commit res */ 11696 cm_res = &resop->nfs_resop4_u.opcommit; 11697 mutex_enter(&rp->r_statelock); 11698 if (cm_res->writeverf == rp->r_writeverf) { 11699 mutex_exit(&rp->r_statelock); 11700 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11701 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11702 &recov_state, needrecov); 11703 crfree(cred_otw); 11704 if (osp != NULL) 11705 open_stream_rele(osp, rp); 11706 return (0); 11707 } 11708 nfs4_set_mod(vp); 11709 rp->r_writeverf = cm_res->writeverf; 11710 mutex_exit(&rp->r_statelock); 11711 e.error = NFS_VERF_MISMATCH; 11712 } 11713 11714 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11715 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11716 crfree(cred_otw); 11717 if (osp != NULL) 11718 open_stream_rele(osp, rp); 11719 11720 return (e.error); 11721 } 11722 11723 static void 11724 nfs4_set_mod(vnode_t *vp) 11725 { 11726 page_t *pp; 11727 kmutex_t *vphm; 11728 rnode4_t *rp; 11729 11730 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11731 11732 /* make sure we're looking at the master vnode, not a shadow */ 11733 11734 rp = VTOR4(vp); 11735 if (IS_SHADOW(vp, rp)) 11736 vp = RTOV4(rp); 11737 11738 vphm = page_vnode_mutex(vp); 11739 mutex_enter(vphm); 11740 /* 11741 * If there are no pages associated with this vnode, then 11742 * just return. 11743 */ 11744 if ((pp = vp->v_pages) == NULL) { 11745 mutex_exit(vphm); 11746 return; 11747 } 11748 11749 do { 11750 if (pp->p_fsdata != C_NOCOMMIT) { 11751 hat_setmod(pp); 11752 pp->p_fsdata = C_NOCOMMIT; 11753 } 11754 } while ((pp = pp->p_vpnext) != vp->v_pages); 11755 mutex_exit(vphm); 11756 } 11757 11758 /* 11759 * This function is used to gather a page list of the pages which 11760 * can be committed on the server. 11761 * 11762 * The calling thread must have set R4COMMIT. This bit is used to 11763 * serialize access to the commit structure in the rnode. As long 11764 * as the thread has set R4COMMIT, then it can manipulate the commit 11765 * structure without requiring any other locks. 11766 * 11767 * When this function is called from nfs4_dispose() the page passed 11768 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11769 * will skip it. This is not a problem since we initially add the 11770 * page to the r_commit page list. 11771 * 11772 */ 11773 static void 11774 nfs4_get_commit(vnode_t *vp) 11775 { 11776 rnode4_t *rp; 11777 page_t *pp; 11778 kmutex_t *vphm; 11779 11780 rp = VTOR4(vp); 11781 11782 ASSERT(rp->r_flags & R4COMMIT); 11783 11784 /* make sure we're looking at the master vnode, not a shadow */ 11785 11786 if (IS_SHADOW(vp, rp)) 11787 vp = RTOV4(rp); 11788 11789 vphm = page_vnode_mutex(vp); 11790 mutex_enter(vphm); 11791 11792 /* 11793 * If there are no pages associated with this vnode, then 11794 * just return. 11795 */ 11796 if ((pp = vp->v_pages) == NULL) { 11797 mutex_exit(vphm); 11798 return; 11799 } 11800 11801 /* 11802 * Step through all of the pages associated with this vnode 11803 * looking for pages which need to be committed. 11804 */ 11805 do { 11806 /* 11807 * First short-cut everything (without the page_lock) 11808 * and see if this page does not need to be committed 11809 * or is modified if so then we'll just skip it. 11810 */ 11811 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11812 continue; 11813 11814 /* 11815 * Attempt to lock the page. If we can't, then 11816 * someone else is messing with it or we have been 11817 * called from nfs4_dispose and this is the page that 11818 * nfs4_dispose was called with.. anyway just skip it. 11819 */ 11820 if (!page_trylock(pp, SE_EXCL)) 11821 continue; 11822 11823 /* 11824 * Lets check again now that we have the page lock. 11825 */ 11826 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11827 page_unlock(pp); 11828 continue; 11829 } 11830 11831 /* this had better not be a free page */ 11832 ASSERT(PP_ISFREE(pp) == 0); 11833 11834 /* 11835 * The page needs to be committed and we locked it. 11836 * Update the base and length parameters and add it 11837 * to r_pages. 11838 */ 11839 if (rp->r_commit.c_pages == NULL) { 11840 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11841 rp->r_commit.c_commlen = PAGESIZE; 11842 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11843 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11844 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11845 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11846 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11847 <= pp->p_offset) { 11848 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11849 rp->r_commit.c_commbase + PAGESIZE; 11850 } 11851 page_add(&rp->r_commit.c_pages, pp); 11852 } while ((pp = pp->p_vpnext) != vp->v_pages); 11853 11854 mutex_exit(vphm); 11855 } 11856 11857 /* 11858 * This routine is used to gather together a page list of the pages 11859 * which are to be committed on the server. This routine must not 11860 * be called if the calling thread holds any locked pages. 11861 * 11862 * The calling thread must have set R4COMMIT. This bit is used to 11863 * serialize access to the commit structure in the rnode. As long 11864 * as the thread has set R4COMMIT, then it can manipulate the commit 11865 * structure without requiring any other locks. 11866 */ 11867 static void 11868 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 11869 { 11870 11871 rnode4_t *rp; 11872 page_t *pp; 11873 u_offset_t end; 11874 u_offset_t off; 11875 ASSERT(len != 0); 11876 rp = VTOR4(vp); 11877 ASSERT(rp->r_flags & R4COMMIT); 11878 11879 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11880 11881 /* make sure we're looking at the master vnode, not a shadow */ 11882 11883 if (IS_SHADOW(vp, rp)) 11884 vp = RTOV4(rp); 11885 11886 /* 11887 * If there are no pages associated with this vnode, then 11888 * just return. 11889 */ 11890 if ((pp = vp->v_pages) == NULL) 11891 return; 11892 /* 11893 * Calculate the ending offset. 11894 */ 11895 end = soff + len; 11896 for (off = soff; off < end; off += PAGESIZE) { 11897 /* 11898 * Lookup each page by vp, offset. 11899 */ 11900 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 11901 continue; 11902 /* 11903 * If this page does not need to be committed or is 11904 * modified, then just skip it. 11905 */ 11906 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11907 page_unlock(pp); 11908 continue; 11909 } 11910 11911 ASSERT(PP_ISFREE(pp) == 0); 11912 /* 11913 * The page needs to be committed and we locked it. 11914 * Update the base and length parameters and add it 11915 * to r_pages. 11916 */ 11917 if (rp->r_commit.c_pages == NULL) { 11918 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11919 rp->r_commit.c_commlen = PAGESIZE; 11920 } else { 11921 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11922 rp->r_commit.c_commbase + PAGESIZE; 11923 } 11924 page_add(&rp->r_commit.c_pages, pp); 11925 } 11926 } 11927 11928 /* 11929 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 11930 * Flushes and commits data to the server. 11931 */ 11932 static int 11933 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 11934 { 11935 int error; 11936 verifier4 write_verf; 11937 rnode4_t *rp = VTOR4(vp); 11938 11939 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11940 11941 /* 11942 * Flush the data portion of the file and then commit any 11943 * portions which need to be committed. This may need to 11944 * be done twice if the server has changed state since 11945 * data was last written. The data will need to be 11946 * rewritten to the server and then a new commit done. 11947 * 11948 * In fact, this may need to be done several times if the 11949 * server is having problems and crashing while we are 11950 * attempting to do this. 11951 */ 11952 11953 top: 11954 /* 11955 * Do a flush based on the poff and plen arguments. This 11956 * will synchronously write out any modified pages in the 11957 * range specified by (poff, plen). This starts all of the 11958 * i/o operations which will be waited for in the next 11959 * call to nfs4_putpage 11960 */ 11961 11962 mutex_enter(&rp->r_statelock); 11963 write_verf = rp->r_writeverf; 11964 mutex_exit(&rp->r_statelock); 11965 11966 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 11967 if (error == EAGAIN) 11968 error = 0; 11969 11970 /* 11971 * Do a flush based on the poff and plen arguments. This 11972 * will synchronously write out any modified pages in the 11973 * range specified by (poff, plen) and wait until all of 11974 * the asynchronous i/o's in that range are done as well. 11975 */ 11976 if (!error) 11977 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL); 11978 11979 if (error) 11980 return (error); 11981 11982 mutex_enter(&rp->r_statelock); 11983 if (rp->r_writeverf != write_verf) { 11984 mutex_exit(&rp->r_statelock); 11985 goto top; 11986 } 11987 mutex_exit(&rp->r_statelock); 11988 11989 /* 11990 * Now commit any pages which might need to be committed. 11991 * If the error, NFS_VERF_MISMATCH, is returned, then 11992 * start over with the flush operation. 11993 */ 11994 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 11995 11996 if (error == NFS_VERF_MISMATCH) 11997 goto top; 11998 11999 return (error); 12000 } 12001 12002 /* 12003 * nfs4_commit_vp() will wait for other pending commits and 12004 * will either commit the whole file or a range, plen dictates 12005 * if we commit whole file. a value of zero indicates the whole 12006 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12007 */ 12008 static int 12009 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12010 cred_t *cr, int wait_on_writes) 12011 { 12012 rnode4_t *rp; 12013 page_t *plist; 12014 offset3 offset; 12015 count3 len; 12016 12017 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12018 12019 rp = VTOR4(vp); 12020 12021 /* 12022 * before we gather commitable pages make 12023 * sure there are no outstanding async writes 12024 */ 12025 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12026 mutex_enter(&rp->r_statelock); 12027 while (rp->r_count > 0) { 12028 cv_wait(&rp->r_cv, &rp->r_statelock); 12029 } 12030 mutex_exit(&rp->r_statelock); 12031 } 12032 12033 /* 12034 * Set the `commit inprogress' state bit. We must 12035 * first wait until any current one finishes. 12036 */ 12037 mutex_enter(&rp->r_statelock); 12038 while (rp->r_flags & R4COMMIT) { 12039 rp->r_flags |= R4COMMITWAIT; 12040 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12041 rp->r_flags &= ~R4COMMITWAIT; 12042 } 12043 rp->r_flags |= R4COMMIT; 12044 mutex_exit(&rp->r_statelock); 12045 12046 /* 12047 * Gather all of the pages which need to be 12048 * committed. 12049 */ 12050 if (plen == 0) 12051 nfs4_get_commit(vp); 12052 else 12053 nfs4_get_commit_range(vp, poff, plen); 12054 12055 /* 12056 * Clear the `commit inprogress' bit and disconnect the 12057 * page list which was gathered by nfs4_get_commit. 12058 */ 12059 plist = rp->r_commit.c_pages; 12060 rp->r_commit.c_pages = NULL; 12061 offset = rp->r_commit.c_commbase; 12062 len = rp->r_commit.c_commlen; 12063 mutex_enter(&rp->r_statelock); 12064 rp->r_flags &= ~R4COMMIT; 12065 cv_broadcast(&rp->r_commit.c_cv); 12066 mutex_exit(&rp->r_statelock); 12067 12068 /* 12069 * If any pages need to be committed, commit them and 12070 * then unlock them so that they can be freed some 12071 * time later. 12072 */ 12073 if (plist == NULL) 12074 return (0); 12075 12076 /* 12077 * No error occurred during the flush portion 12078 * of this operation, so now attempt to commit 12079 * the data to stable storage on the server. 12080 * 12081 * This will unlock all of the pages on the list. 12082 */ 12083 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12084 } 12085 12086 static int 12087 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12088 cred_t *cr) 12089 { 12090 int error; 12091 page_t *pp; 12092 12093 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12094 12095 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12096 12097 /* 12098 * If we got an error, then just unlock all of the pages 12099 * on the list. 12100 */ 12101 if (error) { 12102 while (plist != NULL) { 12103 pp = plist; 12104 page_sub(&plist, pp); 12105 page_unlock(pp); 12106 } 12107 return (error); 12108 } 12109 /* 12110 * We've tried as hard as we can to commit the data to stable 12111 * storage on the server. We just unlock the pages and clear 12112 * the commit required state. They will get freed later. 12113 */ 12114 while (plist != NULL) { 12115 pp = plist; 12116 page_sub(&plist, pp); 12117 pp->p_fsdata = C_NOCOMMIT; 12118 page_unlock(pp); 12119 } 12120 12121 return (error); 12122 } 12123 12124 static void 12125 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12126 cred_t *cr) 12127 { 12128 12129 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12130 } 12131 12132 /*ARGSUSED*/ 12133 static int 12134 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12135 caller_context_t *ct) 12136 { 12137 int error = 0; 12138 mntinfo4_t *mi; 12139 vattr_t va; 12140 vsecattr_t nfsace4_vsap; 12141 12142 mi = VTOMI4(vp); 12143 if (nfs_zone() != mi->mi_zone) 12144 return (EIO); 12145 if (mi->mi_flags & MI4_ACL) { 12146 /* if we have a delegation, return it */ 12147 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12148 (void) nfs4delegreturn(VTOR4(vp), 12149 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12150 12151 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12152 NFS4_ACL_SET); 12153 if (error) /* EINVAL */ 12154 return (error); 12155 12156 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12157 /* 12158 * These are aclent_t type entries. 12159 */ 12160 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12161 vp->v_type == VDIR, FALSE); 12162 if (error) 12163 return (error); 12164 } else { 12165 /* 12166 * These are ace_t type entries. 12167 */ 12168 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12169 FALSE); 12170 if (error) 12171 return (error); 12172 } 12173 bzero(&va, sizeof (va)); 12174 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12175 vs_ace4_destroy(&nfsace4_vsap); 12176 return (error); 12177 } 12178 return (ENOSYS); 12179 } 12180 12181 /* ARGSUSED */ 12182 int 12183 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12184 caller_context_t *ct) 12185 { 12186 int error; 12187 mntinfo4_t *mi; 12188 nfs4_ga_res_t gar; 12189 rnode4_t *rp = VTOR4(vp); 12190 12191 mi = VTOMI4(vp); 12192 if (nfs_zone() != mi->mi_zone) 12193 return (EIO); 12194 12195 bzero(&gar, sizeof (gar)); 12196 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12197 12198 /* 12199 * vsecattr->vsa_mask holds the original acl request mask. 12200 * This is needed when determining what to return. 12201 * (See: nfs4_create_getsecattr_return()) 12202 */ 12203 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12204 if (error) /* EINVAL */ 12205 return (error); 12206 12207 if (mi->mi_flags & MI4_ACL) { 12208 /* 12209 * Check if the data is cached and the cache is valid. If it 12210 * is we don't go over the wire. 12211 */ 12212 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12213 mutex_enter(&rp->r_statelock); 12214 if (rp->r_secattr != NULL) { 12215 error = nfs4_create_getsecattr_return( 12216 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12217 rp->r_attr.va_gid, 12218 vp->v_type == VDIR); 12219 if (!error) { /* error == 0 - Success! */ 12220 mutex_exit(&rp->r_statelock); 12221 return (error); 12222 } 12223 } 12224 mutex_exit(&rp->r_statelock); 12225 } 12226 12227 /* 12228 * The getattr otw call will always get both the acl, in 12229 * the form of a list of nfsace4's, and the number of acl 12230 * entries; independent of the value of gar.n4g_vsa.vsa_mask. 12231 */ 12232 gar.n4g_va.va_mask = AT_ALL; 12233 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12234 if (error) { 12235 vs_ace4_destroy(&gar.n4g_vsa); 12236 if (error == ENOTSUP || error == EOPNOTSUPP) 12237 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12238 return (error); 12239 } 12240 12241 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12242 /* 12243 * No error was returned, but according to the response 12244 * bitmap, neither was an acl. 12245 */ 12246 vs_ace4_destroy(&gar.n4g_vsa); 12247 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12248 return (error); 12249 } 12250 12251 /* 12252 * Update the cache with the ACL. 12253 */ 12254 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12255 12256 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12257 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12258 vp->v_type == VDIR); 12259 vs_ace4_destroy(&gar.n4g_vsa); 12260 if ((error) && (vsecattr->vsa_mask & 12261 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12262 (error != EACCES)) { 12263 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12264 } 12265 return (error); 12266 } 12267 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12268 return (error); 12269 } 12270 12271 /* 12272 * The function returns: 12273 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12274 * - EINVAL if the passed in "acl_mask" is an invalid request. 12275 * 12276 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12277 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12278 * 12279 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12280 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12281 * - We have a count field set without the corresponding acl field set. (e.g. - 12282 * VSA_ACECNT is set, but VSA_ACE is not) 12283 */ 12284 static int 12285 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12286 { 12287 /* Shortcut the masks that are always valid. */ 12288 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12289 return (0); 12290 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12291 return (0); 12292 12293 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12294 /* 12295 * We can't have any VSA_ACL type stuff in the mask now. 12296 */ 12297 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12298 VSA_DFACLCNT)) 12299 return (EINVAL); 12300 12301 if (op == NFS4_ACL_SET) { 12302 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12303 return (EINVAL); 12304 } 12305 } 12306 12307 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12308 /* 12309 * We can't have any VSA_ACE type stuff in the mask now. 12310 */ 12311 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12312 return (EINVAL); 12313 12314 if (op == NFS4_ACL_SET) { 12315 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12316 return (EINVAL); 12317 12318 if ((acl_mask & VSA_DFACLCNT) && 12319 !(acl_mask & VSA_DFACL)) 12320 return (EINVAL); 12321 } 12322 } 12323 return (0); 12324 } 12325 12326 /* 12327 * The theory behind creating the correct getsecattr return is simply this: 12328 * "Don't return anything that the caller is not expecting to have to free." 12329 */ 12330 static int 12331 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12332 uid_t uid, gid_t gid, int isdir) 12333 { 12334 int error = 0; 12335 /* Save the mask since the translators modify it. */ 12336 uint_t orig_mask = vsap->vsa_mask; 12337 12338 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12339 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, 12340 FALSE, ((orig_mask & VSA_ACE) ? FALSE : TRUE)); 12341 12342 if (error) 12343 return (error); 12344 12345 /* 12346 * If the caller only asked for the ace count (VSA_ACECNT) 12347 * don't give them the full acl (VSA_ACE), free it. 12348 */ 12349 if (!orig_mask & VSA_ACE) { 12350 if (vsap->vsa_aclentp != NULL) { 12351 kmem_free(vsap->vsa_aclentp, 12352 vsap->vsa_aclcnt * sizeof (ace_t)); 12353 vsap->vsa_aclentp = NULL; 12354 } 12355 } 12356 vsap->vsa_mask = orig_mask; 12357 12358 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12359 VSA_DFACLCNT)) { 12360 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12361 isdir, FALSE, 12362 ((orig_mask & (VSA_ACL | VSA_DFACL)) ? FALSE : TRUE)); 12363 12364 if (error) 12365 return (error); 12366 12367 /* 12368 * If the caller only asked for the acl count (VSA_ACLCNT) 12369 * and/or the default acl count (VSA_DFACLCNT) don't give them 12370 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12371 */ 12372 if (!orig_mask & VSA_ACL) { 12373 if (vsap->vsa_aclentp != NULL) { 12374 kmem_free(vsap->vsa_aclentp, 12375 vsap->vsa_aclcnt * sizeof (aclent_t)); 12376 vsap->vsa_aclentp = NULL; 12377 } 12378 } 12379 12380 if (!orig_mask & VSA_DFACL) { 12381 if (vsap->vsa_dfaclentp != NULL) { 12382 kmem_free(vsap->vsa_dfaclentp, 12383 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12384 vsap->vsa_dfaclentp = NULL; 12385 } 12386 } 12387 vsap->vsa_mask = orig_mask; 12388 } 12389 return (0); 12390 } 12391 12392 /* ARGSUSED */ 12393 int 12394 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 12395 caller_context_t *ct) 12396 { 12397 int error; 12398 12399 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12400 return (EIO); 12401 /* 12402 * check for valid cmd parameter 12403 */ 12404 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12405 return (EINVAL); 12406 12407 /* 12408 * Check access permissions 12409 */ 12410 if ((cmd & F_SHARE) && 12411 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12412 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12413 return (EBADF); 12414 12415 /* 12416 * If the filesystem is mounted using local locking, pass the 12417 * request off to the local share code. 12418 */ 12419 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12420 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 12421 12422 switch (cmd) { 12423 case F_SHARE: 12424 case F_UNSHARE: 12425 /* 12426 * This will be properly implemented later, 12427 * see RFE: 4823948 . 12428 */ 12429 error = EAGAIN; 12430 break; 12431 12432 case F_HASREMOTELOCKS: 12433 /* 12434 * NFS client can't store remote locks itself 12435 */ 12436 shr->s_access = 0; 12437 error = 0; 12438 break; 12439 12440 default: 12441 error = EINVAL; 12442 break; 12443 } 12444 12445 return (error); 12446 } 12447 12448 /* 12449 * Common code called by directory ops to update the attrcache 12450 */ 12451 static int 12452 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12453 hrtime_t t, vnode_t *vp, cred_t *cr) 12454 { 12455 int error = 0; 12456 12457 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12458 12459 if (status != NFS4_OK) { 12460 /* getattr not done or failed */ 12461 PURGE_ATTRCACHE4(vp); 12462 return (error); 12463 } 12464 12465 if (garp) { 12466 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12467 } else { 12468 PURGE_ATTRCACHE4(vp); 12469 } 12470 return (error); 12471 } 12472 12473 /* 12474 * Update directory caches for directory modification ops (link, rename, etc.) 12475 * When dinfo is NULL, manage dircaches in the old way. 12476 */ 12477 static void 12478 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12479 dirattr_info_t *dinfo) 12480 { 12481 rnode4_t *drp = VTOR4(dvp); 12482 12483 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12484 12485 /* Purge rddir cache for dir since it changed */ 12486 if (drp->r_dir != NULL) 12487 nfs4_purge_rddir_cache(dvp); 12488 12489 /* 12490 * If caller provided dinfo, then use it to manage dir caches. 12491 */ 12492 if (dinfo != NULL) { 12493 if (vp != NULL) { 12494 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12495 if (!VTOR4(vp)->created_v4) { 12496 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12497 dnlc_update(dvp, nm, vp); 12498 } else { 12499 /* 12500 * XXX don't update if the created_v4 flag is 12501 * set 12502 */ 12503 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12504 NFS4_DEBUG(nfs4_client_state_debug, 12505 (CE_NOTE, "nfs4_update_dircaches: " 12506 "don't update dnlc: created_v4 flag")); 12507 } 12508 } 12509 12510 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12511 dinfo->di_cred, FALSE, cinfo); 12512 12513 return; 12514 } 12515 12516 /* 12517 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12518 * Since caller modified dir but didn't receive post-dirmod-op dir 12519 * attrs, the dir's attrs must be purged. 12520 * 12521 * XXX this check and dnlc update/purge should really be atomic, 12522 * XXX but can't use rnode statelock because it'll deadlock in 12523 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12524 * XXX does occur. 12525 * 12526 * XXX We also may want to check that atomic is true in the 12527 * XXX change_info struct. If it is not, the change_info may 12528 * XXX reflect changes by more than one clients which means that 12529 * XXX our cache may not be valid. 12530 */ 12531 PURGE_ATTRCACHE4(dvp); 12532 if (drp->r_change == cinfo->before) { 12533 /* no changes took place in the directory prior to our link */ 12534 if (vp != NULL) { 12535 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12536 if (!VTOR4(vp)->created_v4) { 12537 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12538 dnlc_update(dvp, nm, vp); 12539 } else { 12540 /* 12541 * XXX dont' update if the created_v4 flag 12542 * is set 12543 */ 12544 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12545 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12546 "nfs4_update_dircaches: don't" 12547 " update dnlc: created_v4 flag")); 12548 } 12549 } 12550 } else { 12551 /* Another client modified directory - purge its dnlc cache */ 12552 dnlc_purge_vp(dvp); 12553 } 12554 } 12555 12556 /* 12557 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12558 * file. 12559 * 12560 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12561 * file (ie: client recovery) and otherwise set to FALSE. 12562 * 12563 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12564 * initiated) calling functions. 12565 * 12566 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12567 * of resending a 'lost' open request. 12568 * 12569 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12570 * server that hands out BAD_SEQID on open confirm. 12571 * 12572 * Errors are returned via the nfs4_error_t parameter. 12573 */ 12574 void 12575 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12576 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12577 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12578 { 12579 COMPOUND4args_clnt args; 12580 COMPOUND4res_clnt res; 12581 nfs_argop4 argop[2]; 12582 nfs_resop4 *resop; 12583 int doqueue = 1; 12584 mntinfo4_t *mi; 12585 OPEN_CONFIRM4args *open_confirm_args; 12586 int needrecov; 12587 12588 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12589 #if DEBUG 12590 mutex_enter(&oop->oo_lock); 12591 ASSERT(oop->oo_seqid_inuse); 12592 mutex_exit(&oop->oo_lock); 12593 #endif 12594 12595 recov_retry_confirm: 12596 nfs4_error_zinit(ep); 12597 *retry_open = FALSE; 12598 12599 if (resend) 12600 args.ctag = TAG_OPEN_CONFIRM_LOST; 12601 else 12602 args.ctag = TAG_OPEN_CONFIRM; 12603 12604 args.array_len = 2; 12605 args.array = argop; 12606 12607 /* putfh target fh */ 12608 argop[0].argop = OP_CPUTFH; 12609 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12610 12611 argop[1].argop = OP_OPEN_CONFIRM; 12612 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12613 12614 (*seqid) += 1; 12615 open_confirm_args->seqid = *seqid; 12616 open_confirm_args->open_stateid = *stateid; 12617 12618 mi = VTOMI4(vp); 12619 12620 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12621 12622 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12623 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12624 } 12625 12626 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12627 if (!needrecov && ep->error) 12628 return; 12629 12630 if (needrecov) { 12631 bool_t abort = FALSE; 12632 12633 if (reopening_file == FALSE) { 12634 nfs4_bseqid_entry_t *bsep = NULL; 12635 12636 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12637 bsep = nfs4_create_bseqid_entry(oop, NULL, 12638 vp, 0, args.ctag, 12639 open_confirm_args->seqid); 12640 12641 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, 12642 NULL, NULL, NULL, OP_OPEN_CONFIRM, bsep); 12643 if (bsep) { 12644 kmem_free(bsep, sizeof (*bsep)); 12645 if (num_bseqid_retryp && 12646 --(*num_bseqid_retryp) == 0) 12647 abort = TRUE; 12648 } 12649 } 12650 if ((ep->error == ETIMEDOUT || 12651 res.status == NFS4ERR_RESOURCE) && 12652 abort == FALSE && resend == FALSE) { 12653 if (!ep->error) 12654 (void) xdr_free(xdr_COMPOUND4res_clnt, 12655 (caddr_t)&res); 12656 12657 delay(SEC_TO_TICK(confirm_retry_sec)); 12658 goto recov_retry_confirm; 12659 } 12660 /* State may have changed so retry the entire OPEN op */ 12661 if (abort == FALSE) 12662 *retry_open = TRUE; 12663 else 12664 *retry_open = FALSE; 12665 if (!ep->error) 12666 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12667 return; 12668 } 12669 12670 if (res.status) { 12671 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12672 return; 12673 } 12674 12675 resop = &res.array[1]; /* open confirm res */ 12676 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12677 stateid, sizeof (*stateid)); 12678 12679 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12680 } 12681 12682 /* 12683 * Return the credentials associated with a client state object. The 12684 * caller is responsible for freeing the credentials. 12685 */ 12686 12687 static cred_t * 12688 state_to_cred(nfs4_open_stream_t *osp) 12689 { 12690 cred_t *cr; 12691 12692 /* 12693 * It's ok to not lock the open stream and open owner to get 12694 * the oo_cred since this is only written once (upon creation) 12695 * and will not change. 12696 */ 12697 cr = osp->os_open_owner->oo_cred; 12698 crhold(cr); 12699 12700 return (cr); 12701 } 12702 12703 /* 12704 * nfs4_find_sysid 12705 * 12706 * Find the sysid for the knetconfig associated with the given mi. 12707 */ 12708 static struct lm_sysid * 12709 nfs4_find_sysid(mntinfo4_t *mi) 12710 { 12711 ASSERT(nfs_zone() == mi->mi_zone); 12712 12713 /* 12714 * Switch from RDMA knconf to original mount knconf 12715 */ 12716 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12717 mi->mi_curr_serv->sv_hostname, NULL)); 12718 } 12719 12720 #ifdef DEBUG 12721 /* 12722 * Return a string version of the call type for easy reading. 12723 */ 12724 static char * 12725 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12726 { 12727 switch (ctype) { 12728 case NFS4_LCK_CTYPE_NORM: 12729 return ("NORMAL"); 12730 case NFS4_LCK_CTYPE_RECLAIM: 12731 return ("RECLAIM"); 12732 case NFS4_LCK_CTYPE_RESEND: 12733 return ("RESEND"); 12734 case NFS4_LCK_CTYPE_REINSTATE: 12735 return ("REINSTATE"); 12736 default: 12737 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12738 "type %d", ctype); 12739 return (""); 12740 } 12741 } 12742 #endif 12743 12744 /* 12745 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12746 * Unlock requests don't have an over-the-wire locktype, so we just return 12747 * something non-threatening. 12748 */ 12749 12750 static nfs_lock_type4 12751 flk_to_locktype(int cmd, int l_type) 12752 { 12753 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12754 12755 switch (l_type) { 12756 case F_UNLCK: 12757 return (READ_LT); 12758 case F_RDLCK: 12759 if (cmd == F_SETLK) 12760 return (READ_LT); 12761 else 12762 return (READW_LT); 12763 case F_WRLCK: 12764 if (cmd == F_SETLK) 12765 return (WRITE_LT); 12766 else 12767 return (WRITEW_LT); 12768 } 12769 panic("flk_to_locktype"); 12770 /*NOTREACHED*/ 12771 } 12772 12773 /* 12774 * Do some preliminary checks for nfs4frlock. 12775 */ 12776 static int 12777 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12778 u_offset_t offset) 12779 { 12780 int error = 0; 12781 12782 /* 12783 * If we are setting a lock, check that the file is opened 12784 * with the correct mode. 12785 */ 12786 if (cmd == F_SETLK || cmd == F_SETLKW) { 12787 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12788 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12789 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12790 "nfs4frlock_validate_args: file was opened with " 12791 "incorrect mode")); 12792 return (EBADF); 12793 } 12794 } 12795 12796 /* Convert the offset. It may need to be restored before returning. */ 12797 if (error = convoff(vp, flk, 0, offset)) { 12798 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12799 "nfs4frlock_validate_args: convoff => error= %d\n", 12800 error)); 12801 return (error); 12802 } 12803 12804 return (error); 12805 } 12806 12807 /* 12808 * Set the flock64's lm_sysid for nfs4frlock. 12809 */ 12810 static int 12811 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12812 { 12813 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12814 12815 /* Find the lm_sysid */ 12816 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12817 12818 if (*lspp == NULL) { 12819 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12820 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12821 return (ENOLCK); 12822 } 12823 12824 flk->l_sysid = lm_sysidt(*lspp); 12825 12826 return (0); 12827 } 12828 12829 /* 12830 * Do the remaining preliminary setup for nfs4frlock. 12831 */ 12832 static void 12833 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12834 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12835 cred_t **cred_otw) 12836 { 12837 /* 12838 * set tick_delay to the base delay time. 12839 * (NFS4_BASE_WAIT_TIME is in secs) 12840 */ 12841 12842 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12843 12844 /* 12845 * If lock is relative to EOF, we need the newest length of the 12846 * file. Therefore invalidate the ATTR_CACHE. 12847 */ 12848 12849 *whencep = flk->l_whence; 12850 12851 if (*whencep == 2) /* SEEK_END */ 12852 PURGE_ATTRCACHE4(vp); 12853 12854 recov_statep->rs_flags = 0; 12855 recov_statep->rs_num_retry_despite_err = 0; 12856 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 12857 } 12858 12859 /* 12860 * Initialize and allocate the data structures necessary for 12861 * the nfs4frlock call. 12862 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 12863 */ 12864 static void 12865 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 12866 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 12867 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 12868 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 12869 { 12870 int argoplist_size; 12871 int num_ops = 2; 12872 12873 *retry = FALSE; 12874 *did_start_fop = FALSE; 12875 *skip_get_err = FALSE; 12876 lost_rqstp->lr_op = 0; 12877 argoplist_size = num_ops * sizeof (nfs_argop4); 12878 /* fill array with zero */ 12879 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 12880 12881 *argspp = argsp; 12882 *respp = NULL; 12883 12884 argsp->array_len = num_ops; 12885 argsp->array = *argopp; 12886 12887 /* initialize in case of error; will get real value down below */ 12888 argsp->ctag = TAG_NONE; 12889 12890 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 12891 *op_hintp = OH_LOCKU; 12892 else 12893 *op_hintp = OH_OTHER; 12894 } 12895 12896 /* 12897 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 12898 * the proper nfs4_server_t for this instance of nfs4frlock. 12899 * Returns 0 (success) or an errno value. 12900 */ 12901 static int 12902 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 12903 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 12904 bool_t *did_start_fop, bool_t *startrecovp) 12905 { 12906 int error = 0; 12907 rnode4_t *rp; 12908 12909 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12910 12911 if (ctype == NFS4_LCK_CTYPE_NORM) { 12912 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 12913 recov_statep, startrecovp); 12914 if (error) 12915 return (error); 12916 *did_start_fop = TRUE; 12917 } else { 12918 *did_start_fop = FALSE; 12919 *startrecovp = FALSE; 12920 } 12921 12922 if (!error) { 12923 rp = VTOR4(vp); 12924 12925 /* If the file failed recovery, just quit. */ 12926 mutex_enter(&rp->r_statelock); 12927 if (rp->r_flags & R4RECOVERR) { 12928 error = EIO; 12929 } 12930 mutex_exit(&rp->r_statelock); 12931 } 12932 12933 return (error); 12934 } 12935 12936 /* 12937 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 12938 * resend nfs4frlock call is initiated by the recovery framework. 12939 * Acquires the lop and oop seqid synchronization. 12940 */ 12941 static void 12942 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 12943 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 12944 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 12945 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 12946 { 12947 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 12948 int error; 12949 12950 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 12951 (CE_NOTE, 12952 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 12953 ASSERT(resend_rqstp != NULL); 12954 ASSERT(resend_rqstp->lr_op == OP_LOCK || 12955 resend_rqstp->lr_op == OP_LOCKU); 12956 12957 *oopp = resend_rqstp->lr_oop; 12958 if (resend_rqstp->lr_oop) { 12959 open_owner_hold(resend_rqstp->lr_oop); 12960 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 12961 ASSERT(error == 0); /* recov thread always succeeds */ 12962 } 12963 12964 /* Must resend this lost lock/locku request. */ 12965 ASSERT(resend_rqstp->lr_lop != NULL); 12966 *lopp = resend_rqstp->lr_lop; 12967 lock_owner_hold(resend_rqstp->lr_lop); 12968 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 12969 ASSERT(error == 0); /* recov thread always succeeds */ 12970 12971 *ospp = resend_rqstp->lr_osp; 12972 if (*ospp) 12973 open_stream_hold(resend_rqstp->lr_osp); 12974 12975 if (resend_rqstp->lr_op == OP_LOCK) { 12976 LOCK4args *lock_args; 12977 12978 argop->argop = OP_LOCK; 12979 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 12980 lock_args->locktype = resend_rqstp->lr_locktype; 12981 lock_args->reclaim = 12982 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 12983 lock_args->offset = resend_rqstp->lr_flk->l_start; 12984 lock_args->length = resend_rqstp->lr_flk->l_len; 12985 if (lock_args->length == 0) 12986 lock_args->length = ~lock_args->length; 12987 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 12988 mi2clientid(mi), &lock_args->locker); 12989 12990 switch (resend_rqstp->lr_ctype) { 12991 case NFS4_LCK_CTYPE_RESEND: 12992 argsp->ctag = TAG_LOCK_RESEND; 12993 break; 12994 case NFS4_LCK_CTYPE_REINSTATE: 12995 argsp->ctag = TAG_LOCK_REINSTATE; 12996 break; 12997 case NFS4_LCK_CTYPE_RECLAIM: 12998 argsp->ctag = TAG_LOCK_RECLAIM; 12999 break; 13000 default: 13001 argsp->ctag = TAG_LOCK_UNKNOWN; 13002 break; 13003 } 13004 } else { 13005 LOCKU4args *locku_args; 13006 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 13007 13008 argop->argop = OP_LOCKU; 13009 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 13010 locku_args->locktype = READ_LT; 13011 locku_args->seqid = lop->lock_seqid + 1; 13012 mutex_enter(&lop->lo_lock); 13013 locku_args->lock_stateid = lop->lock_stateid; 13014 mutex_exit(&lop->lo_lock); 13015 locku_args->offset = resend_rqstp->lr_flk->l_start; 13016 locku_args->length = resend_rqstp->lr_flk->l_len; 13017 if (locku_args->length == 0) 13018 locku_args->length = ~locku_args->length; 13019 13020 switch (resend_rqstp->lr_ctype) { 13021 case NFS4_LCK_CTYPE_RESEND: 13022 argsp->ctag = TAG_LOCKU_RESEND; 13023 break; 13024 case NFS4_LCK_CTYPE_REINSTATE: 13025 argsp->ctag = TAG_LOCKU_REINSTATE; 13026 break; 13027 default: 13028 argsp->ctag = TAG_LOCK_UNKNOWN; 13029 break; 13030 } 13031 } 13032 } 13033 13034 /* 13035 * Setup the LOCKT4 arguments. 13036 */ 13037 static void 13038 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13039 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 13040 rnode4_t *rp) 13041 { 13042 LOCKT4args *lockt_args; 13043 13044 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13045 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13046 argop->argop = OP_LOCKT; 13047 argsp->ctag = TAG_LOCKT; 13048 lockt_args = &argop->nfs_argop4_u.oplockt; 13049 13050 /* 13051 * The locktype will be READ_LT unless it's 13052 * a write lock. We do this because the Solaris 13053 * system call allows the combination of 13054 * F_UNLCK and F_GETLK* and so in that case the 13055 * unlock is mapped to a read. 13056 */ 13057 if (flk->l_type == F_WRLCK) 13058 lockt_args->locktype = WRITE_LT; 13059 else 13060 lockt_args->locktype = READ_LT; 13061 13062 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13063 /* set the lock owner4 args */ 13064 nfs4_setlockowner_args(&lockt_args->owner, rp, 13065 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13066 flk->l_pid); 13067 lockt_args->offset = flk->l_start; 13068 lockt_args->length = flk->l_len; 13069 if (flk->l_len == 0) 13070 lockt_args->length = ~lockt_args->length; 13071 13072 *lockt_argsp = lockt_args; 13073 } 13074 13075 /* 13076 * If the client is holding a delegation, and the open stream to be used 13077 * with this lock request is a delegation open stream, then re-open the stream. 13078 * Sets the nfs4_error_t to all zeros unless the open stream has already 13079 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13080 * means the caller should retry (like a recovery retry). 13081 */ 13082 static void 13083 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13084 { 13085 open_delegation_type4 dt; 13086 bool_t reopen_needed, force; 13087 nfs4_open_stream_t *osp; 13088 open_claim_type4 oclaim; 13089 rnode4_t *rp = VTOR4(vp); 13090 mntinfo4_t *mi = VTOMI4(vp); 13091 13092 ASSERT(nfs_zone() == mi->mi_zone); 13093 13094 nfs4_error_zinit(ep); 13095 13096 mutex_enter(&rp->r_statev4_lock); 13097 dt = rp->r_deleg_type; 13098 mutex_exit(&rp->r_statev4_lock); 13099 13100 if (dt != OPEN_DELEGATE_NONE) { 13101 nfs4_open_owner_t *oop; 13102 13103 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13104 if (!oop) { 13105 ep->stat = NFS4ERR_IO; 13106 return; 13107 } 13108 /* returns with 'os_sync_lock' held */ 13109 osp = find_open_stream(oop, rp); 13110 if (!osp) { 13111 open_owner_rele(oop); 13112 ep->stat = NFS4ERR_IO; 13113 return; 13114 } 13115 13116 if (osp->os_failed_reopen) { 13117 NFS4_DEBUG((nfs4_open_stream_debug || 13118 nfs4_client_lock_debug), (CE_NOTE, 13119 "nfs4frlock_check_deleg: os_failed_reopen set " 13120 "for osp %p, cr %p, rp %s", (void *)osp, 13121 (void *)cr, rnode4info(rp))); 13122 mutex_exit(&osp->os_sync_lock); 13123 open_stream_rele(osp, rp); 13124 open_owner_rele(oop); 13125 ep->stat = NFS4ERR_IO; 13126 return; 13127 } 13128 13129 /* 13130 * Determine whether a reopen is needed. If this 13131 * is a delegation open stream, then send the open 13132 * to the server to give visibility to the open owner. 13133 * Even if it isn't a delegation open stream, we need 13134 * to check if the previous open CLAIM_DELEGATE_CUR 13135 * was sufficient. 13136 */ 13137 13138 reopen_needed = osp->os_delegation || 13139 ((lt == F_RDLCK && 13140 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13141 (lt == F_WRLCK && 13142 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13143 13144 mutex_exit(&osp->os_sync_lock); 13145 open_owner_rele(oop); 13146 13147 if (reopen_needed) { 13148 /* 13149 * Always use CLAIM_PREVIOUS after server reboot. 13150 * The server will reject CLAIM_DELEGATE_CUR if 13151 * it is used during the grace period. 13152 */ 13153 mutex_enter(&mi->mi_lock); 13154 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13155 oclaim = CLAIM_PREVIOUS; 13156 force = TRUE; 13157 } else { 13158 oclaim = CLAIM_DELEGATE_CUR; 13159 force = FALSE; 13160 } 13161 mutex_exit(&mi->mi_lock); 13162 13163 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13164 if (ep->error == EAGAIN) { 13165 nfs4_error_zinit(ep); 13166 ep->stat = NFS4ERR_DELAY; 13167 } 13168 } 13169 open_stream_rele(osp, rp); 13170 osp = NULL; 13171 } 13172 } 13173 13174 /* 13175 * Setup the LOCKU4 arguments. 13176 * Returns errors via the nfs4_error_t. 13177 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13178 * over-the-wire. The caller must release the 13179 * reference on *lopp. 13180 * NFS4ERR_DELAY caller should retry (like recovery retry) 13181 * (other) unrecoverable error. 13182 */ 13183 static void 13184 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13185 LOCKU4args **locku_argsp, flock64_t *flk, 13186 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13187 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13188 bool_t *skip_get_err, bool_t *go_otwp) 13189 { 13190 nfs4_lock_owner_t *lop = NULL; 13191 LOCKU4args *locku_args; 13192 pid_t pid; 13193 bool_t is_spec = FALSE; 13194 rnode4_t *rp = VTOR4(vp); 13195 13196 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13197 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13198 13199 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13200 if (ep->error || ep->stat) 13201 return; 13202 13203 argop->argop = OP_LOCKU; 13204 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13205 argsp->ctag = TAG_LOCKU_REINSTATE; 13206 else 13207 argsp->ctag = TAG_LOCKU; 13208 locku_args = &argop->nfs_argop4_u.oplocku; 13209 *locku_argsp = locku_args; 13210 13211 /* 13212 * XXX what should locku_args->locktype be? 13213 * setting to ALWAYS be READ_LT so at least 13214 * it is a valid locktype. 13215 */ 13216 13217 locku_args->locktype = READ_LT; 13218 13219 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13220 flk->l_pid; 13221 13222 /* 13223 * Get the lock owner stateid. If no lock owner 13224 * exists, return success. 13225 */ 13226 lop = find_lock_owner(rp, pid, LOWN_ANY); 13227 *lopp = lop; 13228 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13229 is_spec = TRUE; 13230 if (!lop || is_spec) { 13231 /* 13232 * No lock owner so no locks to unlock. 13233 * Return success. If there was a failed 13234 * reclaim earlier, the lock might still be 13235 * registered with the local locking code, 13236 * so notify it of the unlock. 13237 * 13238 * If the lockowner is using a special stateid, 13239 * then the original lock request (that created 13240 * this lockowner) was never successful, so we 13241 * have no lock to undo OTW. 13242 */ 13243 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13244 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13245 "(%ld) so return success", (long)pid)); 13246 13247 if (ctype == NFS4_LCK_CTYPE_NORM) 13248 flk->l_pid = curproc->p_pid; 13249 nfs4_register_lock_locally(vp, flk, flag, offset); 13250 /* 13251 * Release our hold and NULL out so final_cleanup 13252 * doesn't try to end a lock seqid sync we 13253 * never started. 13254 */ 13255 if (is_spec) { 13256 lock_owner_rele(lop); 13257 *lopp = NULL; 13258 } 13259 *skip_get_err = TRUE; 13260 *go_otwp = FALSE; 13261 return; 13262 } 13263 13264 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13265 if (ep->error == EAGAIN) { 13266 lock_owner_rele(lop); 13267 *lopp = NULL; 13268 return; 13269 } 13270 13271 mutex_enter(&lop->lo_lock); 13272 locku_args->lock_stateid = lop->lock_stateid; 13273 mutex_exit(&lop->lo_lock); 13274 locku_args->seqid = lop->lock_seqid + 1; 13275 13276 /* leave the ref count on lop, rele after RPC call */ 13277 13278 locku_args->offset = flk->l_start; 13279 locku_args->length = flk->l_len; 13280 if (flk->l_len == 0) 13281 locku_args->length = ~locku_args->length; 13282 13283 *go_otwp = TRUE; 13284 } 13285 13286 /* 13287 * Setup the LOCK4 arguments. 13288 * 13289 * Returns errors via the nfs4_error_t. 13290 * NFS4_OK no problems 13291 * NFS4ERR_DELAY caller should retry (like recovery retry) 13292 * (other) unrecoverable error 13293 */ 13294 static void 13295 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13296 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13297 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13298 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13299 { 13300 LOCK4args *lock_args; 13301 nfs4_open_owner_t *oop = NULL; 13302 nfs4_open_stream_t *osp = NULL; 13303 nfs4_lock_owner_t *lop = NULL; 13304 pid_t pid; 13305 rnode4_t *rp = VTOR4(vp); 13306 13307 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13308 13309 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13310 if (ep->error || ep->stat != NFS4_OK) 13311 return; 13312 13313 argop->argop = OP_LOCK; 13314 if (ctype == NFS4_LCK_CTYPE_NORM) 13315 argsp->ctag = TAG_LOCK; 13316 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13317 argsp->ctag = TAG_RELOCK; 13318 else 13319 argsp->ctag = TAG_LOCK_REINSTATE; 13320 lock_args = &argop->nfs_argop4_u.oplock; 13321 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13322 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13323 /* 13324 * Get the lock owner. If no lock owner exists, 13325 * create a 'temporary' one and grab the open seqid 13326 * synchronization (which puts a hold on the open 13327 * owner and open stream). 13328 * This also grabs the lock seqid synchronization. 13329 */ 13330 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13331 ep->stat = 13332 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13333 13334 if (ep->stat != NFS4_OK) 13335 goto out; 13336 13337 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13338 &lock_args->locker); 13339 13340 lock_args->offset = flk->l_start; 13341 lock_args->length = flk->l_len; 13342 if (flk->l_len == 0) 13343 lock_args->length = ~lock_args->length; 13344 *lock_argsp = lock_args; 13345 out: 13346 *oopp = oop; 13347 *ospp = osp; 13348 *lopp = lop; 13349 } 13350 13351 /* 13352 * After we get the reply from the server, record the proper information 13353 * for possible resend lock requests. 13354 * 13355 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13356 */ 13357 static void 13358 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13359 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13360 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13361 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13362 { 13363 bool_t unlock = (flk->l_type == F_UNLCK); 13364 13365 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13366 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13367 ctype == NFS4_LCK_CTYPE_REINSTATE); 13368 13369 if (error != 0 && !unlock) { 13370 NFS4_DEBUG((nfs4_lost_rqst_debug || 13371 nfs4_client_lock_debug), (CE_NOTE, 13372 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13373 " for lop %p", (void *)lop)); 13374 ASSERT(lop != NULL); 13375 mutex_enter(&lop->lo_lock); 13376 lop->lo_pending_rqsts = 1; 13377 mutex_exit(&lop->lo_lock); 13378 } 13379 13380 lost_rqstp->lr_putfirst = FALSE; 13381 lost_rqstp->lr_op = 0; 13382 13383 /* 13384 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13385 * recovery purposes so that the lock request that was sent 13386 * can be saved and re-issued later. Ditto for EIO from a forced 13387 * unmount. This is done to have the client's local locking state 13388 * match the v4 server's state; that is, the request was 13389 * potentially received and accepted by the server but the client 13390 * thinks it was not. 13391 */ 13392 if (error == ETIMEDOUT || error == EINTR || 13393 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13394 NFS4_DEBUG((nfs4_lost_rqst_debug || 13395 nfs4_client_lock_debug), (CE_NOTE, 13396 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13397 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13398 (void *)lop, (void *)oop, (void *)osp)); 13399 if (unlock) 13400 lost_rqstp->lr_op = OP_LOCKU; 13401 else { 13402 lost_rqstp->lr_op = OP_LOCK; 13403 lost_rqstp->lr_locktype = locktype; 13404 } 13405 /* 13406 * Objects are held and rele'd via the recovery code. 13407 * See nfs4_save_lost_rqst. 13408 */ 13409 lost_rqstp->lr_vp = vp; 13410 lost_rqstp->lr_dvp = NULL; 13411 lost_rqstp->lr_oop = oop; 13412 lost_rqstp->lr_osp = osp; 13413 lost_rqstp->lr_lop = lop; 13414 lost_rqstp->lr_cr = cr; 13415 switch (ctype) { 13416 case NFS4_LCK_CTYPE_NORM: 13417 flk->l_pid = ttoproc(curthread)->p_pid; 13418 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13419 break; 13420 case NFS4_LCK_CTYPE_REINSTATE: 13421 lost_rqstp->lr_putfirst = TRUE; 13422 lost_rqstp->lr_ctype = ctype; 13423 break; 13424 default: 13425 break; 13426 } 13427 lost_rqstp->lr_flk = flk; 13428 } 13429 } 13430 13431 /* 13432 * Update lop's seqid. Also update the seqid stored in a resend request, 13433 * if any. (Some recovery errors increment the seqid, and we may have to 13434 * send the resend request again.) 13435 */ 13436 13437 static void 13438 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13439 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13440 { 13441 if (lock_args) { 13442 if (lock_args->locker.new_lock_owner == TRUE) 13443 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13444 else { 13445 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13446 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13447 } 13448 } else if (locku_args) { 13449 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13450 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13451 } 13452 } 13453 13454 /* 13455 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13456 * COMPOUND4 args/res for calls that need to retry. 13457 * Switches the *cred_otwp to base_cr. 13458 */ 13459 static void 13460 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13461 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13462 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13463 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13464 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13465 { 13466 nfs4_open_owner_t *oop = *oopp; 13467 nfs4_open_stream_t *osp = *ospp; 13468 nfs4_lock_owner_t *lop = *lopp; 13469 nfs_argop4 *argop = (*argspp)->array; 13470 13471 if (*did_start_fop) { 13472 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13473 needrecov); 13474 *did_start_fop = FALSE; 13475 } 13476 ASSERT((*argspp)->array_len == 2); 13477 if (argop[1].argop == OP_LOCK) 13478 nfs4args_lock_free(&argop[1]); 13479 else if (argop[1].argop == OP_LOCKT) 13480 nfs4args_lockt_free(&argop[1]); 13481 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13482 if (!error) 13483 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13484 *argspp = NULL; 13485 *respp = NULL; 13486 13487 if (lop) { 13488 nfs4_end_lock_seqid_sync(lop); 13489 lock_owner_rele(lop); 13490 *lopp = NULL; 13491 } 13492 13493 /* need to free up the reference on osp for lock args */ 13494 if (osp != NULL) { 13495 open_stream_rele(osp, VTOR4(vp)); 13496 *ospp = NULL; 13497 } 13498 13499 /* need to free up the reference on oop for lock args */ 13500 if (oop != NULL) { 13501 nfs4_end_open_seqid_sync(oop); 13502 open_owner_rele(oop); 13503 *oopp = NULL; 13504 } 13505 13506 crfree(*cred_otwp); 13507 *cred_otwp = base_cr; 13508 crhold(*cred_otwp); 13509 } 13510 13511 /* 13512 * Function to process the client's recovery for nfs4frlock. 13513 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13514 * 13515 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13516 * COMPOUND4 args/res for calls that need to retry. 13517 * 13518 * Note: the rp's r_lkserlock is *not* dropped during this path. 13519 */ 13520 static bool_t 13521 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13522 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13523 LOCK4args *lock_args, LOCKU4args *locku_args, 13524 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13525 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13526 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13527 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13528 { 13529 nfs4_open_owner_t *oop = *oopp; 13530 nfs4_open_stream_t *osp = *ospp; 13531 nfs4_lock_owner_t *lop = *lopp; 13532 13533 bool_t abort, retry; 13534 13535 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13536 ASSERT((*argspp) != NULL); 13537 ASSERT((*respp) != NULL); 13538 if (lock_args || locku_args) 13539 ASSERT(lop != NULL); 13540 13541 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13542 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13543 13544 retry = TRUE; 13545 abort = FALSE; 13546 if (needrecov) { 13547 nfs4_bseqid_entry_t *bsep = NULL; 13548 nfs_opnum4 op; 13549 13550 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13551 13552 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13553 seqid4 seqid; 13554 13555 if (lock_args) { 13556 if (lock_args->locker.new_lock_owner == TRUE) 13557 seqid = lock_args->locker.locker4_u. 13558 open_owner.open_seqid; 13559 else 13560 seqid = lock_args->locker.locker4_u. 13561 lock_owner.lock_seqid; 13562 } else if (locku_args) { 13563 seqid = locku_args->seqid; 13564 } else { 13565 seqid = 0; 13566 } 13567 13568 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13569 flk->l_pid, (*argspp)->ctag, seqid); 13570 } 13571 13572 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13573 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13574 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13575 NULL, op, bsep); 13576 13577 if (bsep) 13578 kmem_free(bsep, sizeof (*bsep)); 13579 } 13580 13581 /* 13582 * Return that we do not want to retry the request for 3 cases: 13583 * 1. If we received EINTR or are bailing out because of a forced 13584 * unmount, we came into this code path just for the sake of 13585 * initiating recovery, we now need to return the error. 13586 * 2. If we have aborted recovery. 13587 * 3. We received NFS4ERR_BAD_SEQID. 13588 */ 13589 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13590 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13591 retry = FALSE; 13592 13593 if (*did_start_fop == TRUE) { 13594 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13595 needrecov); 13596 *did_start_fop = FALSE; 13597 } 13598 13599 if (retry == TRUE) { 13600 nfs_argop4 *argop; 13601 13602 argop = (*argspp)->array; 13603 ASSERT((*argspp)->array_len == 2); 13604 13605 if (argop[1].argop == OP_LOCK) 13606 nfs4args_lock_free(&argop[1]); 13607 else if (argop[1].argop == OP_LOCKT) 13608 nfs4args_lockt_free(&argop[1]); 13609 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13610 if (!ep->error) 13611 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13612 *respp = NULL; 13613 *argspp = NULL; 13614 } 13615 13616 if (lop != NULL) { 13617 nfs4_end_lock_seqid_sync(lop); 13618 lock_owner_rele(lop); 13619 } 13620 13621 *lopp = NULL; 13622 13623 /* need to free up the reference on osp for lock args */ 13624 if (osp != NULL) { 13625 open_stream_rele(osp, rp); 13626 *ospp = NULL; 13627 } 13628 13629 /* need to free up the reference on oop for lock args */ 13630 if (oop != NULL) { 13631 nfs4_end_open_seqid_sync(oop); 13632 open_owner_rele(oop); 13633 *oopp = NULL; 13634 } 13635 13636 return (retry); 13637 } 13638 13639 /* 13640 * Handles the successful reply from the server for nfs4frlock. 13641 */ 13642 static void 13643 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13644 vnode_t *vp, int flag, u_offset_t offset, 13645 nfs4_lost_rqst_t *resend_rqstp) 13646 { 13647 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13648 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13649 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13650 if (ctype == NFS4_LCK_CTYPE_NORM) { 13651 flk->l_pid = ttoproc(curthread)->p_pid; 13652 /* 13653 * We do not register lost locks locally in 13654 * the 'resend' case since the user/application 13655 * doesn't think we have the lock. 13656 */ 13657 ASSERT(!resend_rqstp); 13658 nfs4_register_lock_locally(vp, flk, flag, offset); 13659 } 13660 } 13661 } 13662 13663 /* 13664 * Handle the DENIED reply from the server for nfs4frlock. 13665 * Returns TRUE if we should retry the request; FALSE otherwise. 13666 * 13667 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13668 * COMPOUND4 args/res for calls that need to retry. Can also 13669 * drop and regrab the r_lkserlock. 13670 */ 13671 static bool_t 13672 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13673 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13674 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13675 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13676 nfs4_recov_state_t *recov_statep, int needrecov, 13677 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13678 clock_t *tick_delayp, short *whencep, int *errorp, 13679 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13680 bool_t *skip_get_err) 13681 { 13682 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13683 13684 if (lock_args) { 13685 nfs4_open_owner_t *oop = *oopp; 13686 nfs4_open_stream_t *osp = *ospp; 13687 nfs4_lock_owner_t *lop = *lopp; 13688 int intr; 13689 13690 /* 13691 * Blocking lock needs to sleep and retry from the request. 13692 * 13693 * Do not block and wait for 'resend' or 'reinstate' 13694 * lock requests, just return the error. 13695 * 13696 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13697 */ 13698 if (cmd == F_SETLKW) { 13699 rnode4_t *rp = VTOR4(vp); 13700 nfs_argop4 *argop = (*argspp)->array; 13701 13702 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13703 13704 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13705 recov_statep, needrecov); 13706 *did_start_fop = FALSE; 13707 ASSERT((*argspp)->array_len == 2); 13708 if (argop[1].argop == OP_LOCK) 13709 nfs4args_lock_free(&argop[1]); 13710 else if (argop[1].argop == OP_LOCKT) 13711 nfs4args_lockt_free(&argop[1]); 13712 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13713 if (*respp) 13714 (void) xdr_free(xdr_COMPOUND4res_clnt, 13715 (caddr_t)*respp); 13716 *argspp = NULL; 13717 *respp = NULL; 13718 nfs4_end_lock_seqid_sync(lop); 13719 lock_owner_rele(lop); 13720 *lopp = NULL; 13721 if (osp != NULL) { 13722 open_stream_rele(osp, rp); 13723 *ospp = NULL; 13724 } 13725 if (oop != NULL) { 13726 nfs4_end_open_seqid_sync(oop); 13727 open_owner_rele(oop); 13728 *oopp = NULL; 13729 } 13730 13731 nfs_rw_exit(&rp->r_lkserlock); 13732 13733 intr = nfs4_block_and_wait(tick_delayp, rp); 13734 13735 if (intr) { 13736 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13737 RW_WRITER, FALSE); 13738 *errorp = EINTR; 13739 return (FALSE); 13740 } 13741 13742 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13743 RW_WRITER, FALSE); 13744 13745 /* 13746 * Make sure we are still safe to lock with 13747 * regards to mmapping. 13748 */ 13749 if (!nfs4_safelock(vp, flk, cr)) { 13750 *errorp = EAGAIN; 13751 return (FALSE); 13752 } 13753 13754 return (TRUE); 13755 } 13756 if (ctype == NFS4_LCK_CTYPE_NORM) 13757 *errorp = EAGAIN; 13758 *skip_get_err = TRUE; 13759 flk->l_whence = 0; 13760 *whencep = 0; 13761 return (FALSE); 13762 } else if (lockt_args) { 13763 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13764 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13765 13766 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13767 flk, lockt_args); 13768 13769 /* according to NLM code */ 13770 *errorp = 0; 13771 *whencep = 0; 13772 *skip_get_err = TRUE; 13773 return (FALSE); 13774 } 13775 return (FALSE); 13776 } 13777 13778 /* 13779 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13780 */ 13781 static void 13782 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13783 { 13784 switch (resp->status) { 13785 case NFS4ERR_ACCESS: 13786 case NFS4ERR_ADMIN_REVOKED: 13787 case NFS4ERR_BADHANDLE: 13788 case NFS4ERR_BAD_RANGE: 13789 case NFS4ERR_BAD_SEQID: 13790 case NFS4ERR_BAD_STATEID: 13791 case NFS4ERR_BADXDR: 13792 case NFS4ERR_DEADLOCK: 13793 case NFS4ERR_DELAY: 13794 case NFS4ERR_EXPIRED: 13795 case NFS4ERR_FHEXPIRED: 13796 case NFS4ERR_GRACE: 13797 case NFS4ERR_INVAL: 13798 case NFS4ERR_ISDIR: 13799 case NFS4ERR_LEASE_MOVED: 13800 case NFS4ERR_LOCK_NOTSUPP: 13801 case NFS4ERR_LOCK_RANGE: 13802 case NFS4ERR_MOVED: 13803 case NFS4ERR_NOFILEHANDLE: 13804 case NFS4ERR_NO_GRACE: 13805 case NFS4ERR_OLD_STATEID: 13806 case NFS4ERR_OPENMODE: 13807 case NFS4ERR_RECLAIM_BAD: 13808 case NFS4ERR_RECLAIM_CONFLICT: 13809 case NFS4ERR_RESOURCE: 13810 case NFS4ERR_SERVERFAULT: 13811 case NFS4ERR_STALE: 13812 case NFS4ERR_STALE_CLIENTID: 13813 case NFS4ERR_STALE_STATEID: 13814 return; 13815 default: 13816 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13817 "nfs4frlock_results_default: got unrecognizable " 13818 "res.status %d", resp->status)); 13819 *errorp = NFS4ERR_INVAL; 13820 } 13821 } 13822 13823 /* 13824 * The lock request was successful, so update the client's state. 13825 */ 13826 static void 13827 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13828 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13829 vnode_t *vp, flock64_t *flk, cred_t *cr, 13830 nfs4_lost_rqst_t *resend_rqstp) 13831 { 13832 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13833 13834 if (lock_args) { 13835 LOCK4res *lock_res; 13836 13837 lock_res = &resop->nfs_resop4_u.oplock; 13838 /* update the stateid with server's response */ 13839 13840 if (lock_args->locker.new_lock_owner == TRUE) { 13841 mutex_enter(&lop->lo_lock); 13842 lop->lo_just_created = NFS4_PERM_CREATED; 13843 mutex_exit(&lop->lo_lock); 13844 } 13845 13846 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13847 13848 /* 13849 * If the lock was the result of a resending a lost 13850 * request, we've synched up the stateid and seqid 13851 * with the server, but now the server might be out of sync 13852 * with what the application thinks it has for locks. 13853 * Clean that up here. It's unclear whether we should do 13854 * this even if the filesystem has been forcibly unmounted. 13855 * For most servers, it's probably wasted effort, but 13856 * RFC3530 lets servers require that unlocks exactly match 13857 * the locks that are held. 13858 */ 13859 if (resend_rqstp != NULL && 13860 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13861 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 13862 } else { 13863 flk->l_whence = 0; 13864 } 13865 } else if (locku_args) { 13866 LOCKU4res *locku_res; 13867 13868 locku_res = &resop->nfs_resop4_u.oplocku; 13869 13870 /* Update the stateid with the server's response */ 13871 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 13872 } else if (lockt_args) { 13873 /* Switch the lock type to express success, see fcntl */ 13874 flk->l_type = F_UNLCK; 13875 flk->l_whence = 0; 13876 } 13877 } 13878 13879 /* 13880 * Do final cleanup before exiting nfs4frlock. 13881 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13882 * COMPOUND4 args/res for calls that haven't already. 13883 */ 13884 static void 13885 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 13886 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 13887 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 13888 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13889 short whence, u_offset_t offset, struct lm_sysid *ls, 13890 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 13891 bool_t did_start_fop, bool_t skip_get_err, 13892 cred_t *cred_otw, cred_t *cred) 13893 { 13894 mntinfo4_t *mi = VTOMI4(vp); 13895 rnode4_t *rp = VTOR4(vp); 13896 int error = *errorp; 13897 nfs_argop4 *argop; 13898 13899 ASSERT(nfs_zone() == mi->mi_zone); 13900 /* 13901 * The client recovery code wants the raw status information, 13902 * so don't map the NFS status code to an errno value for 13903 * non-normal call types. 13904 */ 13905 if (ctype == NFS4_LCK_CTYPE_NORM) { 13906 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 13907 *errorp = geterrno4(resp->status); 13908 if (did_start_fop == TRUE) 13909 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 13910 needrecov); 13911 13912 /* 13913 * We've established a new lock on the server, so invalidate 13914 * the pages associated with the vnode to get the most up to 13915 * date pages from the server after acquiring the lock. We 13916 * want to be sure that the read operation gets the newest data. 13917 * N.B. 13918 * We used to do this in nfs4frlock_results_ok but that doesn't 13919 * work since VOP_PUTPAGE can call nfs4_commit which calls 13920 * nfs4_start_fop. We flush the pages below after calling 13921 * nfs4_end_fop above 13922 */ 13923 if (!error && resp && resp->status == NFS4_OK) { 13924 int error; 13925 13926 error = VOP_PUTPAGE(vp, (u_offset_t)0, 13927 0, B_INVAL, cred, NULL); 13928 13929 if (error && (error == ENOSPC || error == EDQUOT)) { 13930 rnode4_t *rp = VTOR4(vp); 13931 13932 mutex_enter(&rp->r_statelock); 13933 if (!rp->r_error) 13934 rp->r_error = error; 13935 mutex_exit(&rp->r_statelock); 13936 } 13937 } 13938 } 13939 if (argsp) { 13940 ASSERT(argsp->array_len == 2); 13941 argop = argsp->array; 13942 if (argop[1].argop == OP_LOCK) 13943 nfs4args_lock_free(&argop[1]); 13944 else if (argop[1].argop == OP_LOCKT) 13945 nfs4args_lockt_free(&argop[1]); 13946 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13947 if (resp) 13948 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 13949 } 13950 13951 /* free the reference on the lock owner */ 13952 if (lop != NULL) { 13953 nfs4_end_lock_seqid_sync(lop); 13954 lock_owner_rele(lop); 13955 } 13956 13957 /* need to free up the reference on osp for lock args */ 13958 if (osp != NULL) 13959 open_stream_rele(osp, rp); 13960 13961 /* need to free up the reference on oop for lock args */ 13962 if (oop != NULL) { 13963 nfs4_end_open_seqid_sync(oop); 13964 open_owner_rele(oop); 13965 } 13966 13967 (void) convoff(vp, flk, whence, offset); 13968 13969 lm_rel_sysid(ls); 13970 13971 /* 13972 * Record debug information in the event we get EINVAL. 13973 */ 13974 mutex_enter(&mi->mi_lock); 13975 if (*errorp == EINVAL && (lock_args || locku_args) && 13976 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 13977 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 13978 zcmn_err(getzoneid(), CE_NOTE, 13979 "%s operation failed with " 13980 "EINVAL probably since the server, %s," 13981 " doesn't support POSIX style locking", 13982 lock_args ? "LOCK" : "LOCKU", 13983 mi->mi_curr_serv->sv_hostname); 13984 mi->mi_flags |= MI4_LOCK_DEBUG; 13985 } 13986 } 13987 mutex_exit(&mi->mi_lock); 13988 13989 if (cred_otw) 13990 crfree(cred_otw); 13991 } 13992 13993 /* 13994 * This calls the server and the local locking code. 13995 * 13996 * Client locks are registerred locally by oring the sysid with 13997 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 13998 * We need to distinguish between the two to avoid collision in case one 13999 * machine is used as both client and server. 14000 * 14001 * Blocking lock requests will continually retry to acquire the lock 14002 * forever. 14003 * 14004 * The ctype is defined as follows: 14005 * NFS4_LCK_CTYPE_NORM: normal lock request. 14006 * 14007 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 14008 * recovery, get the pid from flk instead of curproc, and don't reregister 14009 * the lock locally. 14010 * 14011 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 14012 * that we will use the information passed in via resend_rqstp to setup the 14013 * lock/locku request. This resend is the exact same request as the 'lost 14014 * lock', and is initiated by the recovery framework. A successful resend 14015 * request can initiate one or more reinstate requests. 14016 * 14017 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14018 * does not trigger additional reinstate requests. This lock call type is 14019 * set for setting the v4 server's locking state back to match what the 14020 * client's local locking state is in the event of a received 'lost lock'. 14021 * 14022 * Errors are returned via the nfs4_error_t parameter. 14023 */ 14024 void 14025 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14026 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 14027 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 14028 { 14029 COMPOUND4args_clnt args, *argsp = NULL; 14030 COMPOUND4res_clnt res, *resp = NULL; 14031 nfs_argop4 *argop; 14032 nfs_resop4 *resop; 14033 rnode4_t *rp; 14034 int doqueue = 1; 14035 clock_t tick_delay; /* delay in clock ticks */ 14036 struct lm_sysid *ls; 14037 LOCK4args *lock_args = NULL; 14038 LOCKU4args *locku_args = NULL; 14039 LOCKT4args *lockt_args = NULL; 14040 nfs4_open_owner_t *oop = NULL; 14041 nfs4_open_stream_t *osp = NULL; 14042 nfs4_lock_owner_t *lop = NULL; 14043 bool_t needrecov = FALSE; 14044 nfs4_recov_state_t recov_state; 14045 short whence; 14046 nfs4_op_hint_t op_hint; 14047 nfs4_lost_rqst_t lost_rqst; 14048 bool_t retry = FALSE; 14049 bool_t did_start_fop = FALSE; 14050 bool_t skip_get_err = FALSE; 14051 cred_t *cred_otw = NULL; 14052 bool_t recovonly; /* just queue request */ 14053 int frc_no_reclaim = 0; 14054 #ifdef DEBUG 14055 char *name; 14056 #endif 14057 14058 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14059 14060 #ifdef DEBUG 14061 name = fn_name(VTOSV(vp)->sv_name); 14062 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14063 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 14064 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14065 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 14066 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 14067 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 14068 resend_rqstp ? "TRUE" : "FALSE")); 14069 kmem_free(name, MAXNAMELEN); 14070 #endif 14071 14072 nfs4_error_zinit(ep); 14073 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 14074 if (ep->error) 14075 return; 14076 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 14077 if (ep->error) 14078 return; 14079 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 14080 vp, cr, &cred_otw); 14081 14082 recov_retry: 14083 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14084 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14085 rp = VTOR4(vp); 14086 14087 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14088 &did_start_fop, &recovonly); 14089 14090 if (ep->error) 14091 goto out; 14092 14093 if (recovonly) { 14094 /* 14095 * Leave the request for the recovery system to deal with. 14096 */ 14097 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14098 ASSERT(cmd != F_GETLK); 14099 ASSERT(flk->l_type == F_UNLCK); 14100 14101 nfs4_error_init(ep, EINTR); 14102 needrecov = TRUE; 14103 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14104 if (lop != NULL) { 14105 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14106 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14107 (void) nfs4_start_recovery(ep, 14108 VTOMI4(vp), vp, NULL, NULL, 14109 (lost_rqst.lr_op == OP_LOCK || 14110 lost_rqst.lr_op == OP_LOCKU) ? 14111 &lost_rqst : NULL, OP_LOCKU, NULL); 14112 lock_owner_rele(lop); 14113 lop = NULL; 14114 } 14115 flk->l_pid = curproc->p_pid; 14116 nfs4_register_lock_locally(vp, flk, flag, offset); 14117 goto out; 14118 } 14119 14120 /* putfh directory fh */ 14121 argop[0].argop = OP_CPUTFH; 14122 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14123 14124 /* 14125 * Set up the over-the-wire arguments and get references to the 14126 * open owner, etc. 14127 */ 14128 14129 if (ctype == NFS4_LCK_CTYPE_RESEND || 14130 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14131 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14132 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14133 } else { 14134 bool_t go_otw = TRUE; 14135 14136 ASSERT(resend_rqstp == NULL); 14137 14138 switch (cmd) { 14139 case F_GETLK: 14140 case F_O_GETLK: 14141 nfs4frlock_setup_lockt_args(ctype, &argop[1], 14142 &lockt_args, argsp, flk, rp); 14143 break; 14144 case F_SETLKW: 14145 case F_SETLK: 14146 if (flk->l_type == F_UNLCK) 14147 nfs4frlock_setup_locku_args(ctype, 14148 &argop[1], &locku_args, flk, 14149 &lop, ep, argsp, 14150 vp, flag, offset, cr, 14151 &skip_get_err, &go_otw); 14152 else 14153 nfs4frlock_setup_lock_args(ctype, 14154 &lock_args, &oop, &osp, &lop, &argop[1], 14155 argsp, flk, cmd, vp, cr, ep); 14156 14157 if (ep->error) 14158 goto out; 14159 14160 switch (ep->stat) { 14161 case NFS4_OK: 14162 break; 14163 case NFS4ERR_DELAY: 14164 /* recov thread never gets this error */ 14165 ASSERT(resend_rqstp == NULL); 14166 ASSERT(did_start_fop); 14167 14168 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14169 &recov_state, TRUE); 14170 did_start_fop = FALSE; 14171 if (argop[1].argop == OP_LOCK) 14172 nfs4args_lock_free(&argop[1]); 14173 else if (argop[1].argop == OP_LOCKT) 14174 nfs4args_lockt_free(&argop[1]); 14175 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14176 argsp = NULL; 14177 goto recov_retry; 14178 default: 14179 ep->error = EIO; 14180 goto out; 14181 } 14182 break; 14183 default: 14184 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14185 "nfs4_frlock: invalid cmd %d", cmd)); 14186 ep->error = EINVAL; 14187 goto out; 14188 } 14189 14190 if (!go_otw) 14191 goto out; 14192 } 14193 14194 /* XXX should we use the local reclock as a cache ? */ 14195 /* 14196 * Unregister the lock with the local locking code before 14197 * contacting the server. This avoids a potential race where 14198 * another process gets notified that it has been granted a lock 14199 * before we can unregister ourselves locally. 14200 */ 14201 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14202 if (ctype == NFS4_LCK_CTYPE_NORM) 14203 flk->l_pid = ttoproc(curthread)->p_pid; 14204 nfs4_register_lock_locally(vp, flk, flag, offset); 14205 } 14206 14207 /* 14208 * Send the server the lock request. Continually loop with a delay 14209 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14210 */ 14211 resp = &res; 14212 14213 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14214 (CE_NOTE, 14215 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14216 rnode4info(rp))); 14217 14218 if (lock_args && frc_no_reclaim) { 14219 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14220 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14221 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14222 lock_args->reclaim = FALSE; 14223 if (did_reclaimp) 14224 *did_reclaimp = 0; 14225 } 14226 14227 /* 14228 * Do the OTW call. 14229 */ 14230 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14231 14232 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14233 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14234 14235 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14236 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14237 "nfs4frlock: needrecov %d", needrecov)); 14238 14239 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14240 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14241 args.ctag); 14242 14243 /* 14244 * Check if one of these mutually exclusive error cases has 14245 * happened: 14246 * need to swap credentials due to access error 14247 * recovery is needed 14248 * different error (only known case is missing Kerberos ticket) 14249 */ 14250 14251 if ((ep->error == EACCES || 14252 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14253 cred_otw != cr) { 14254 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14255 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14256 cr, &cred_otw); 14257 goto recov_retry; 14258 } 14259 14260 if (needrecov) { 14261 /* 14262 * LOCKT requests don't need to recover from lost 14263 * requests since they don't create/modify state. 14264 */ 14265 if ((ep->error == EINTR || 14266 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14267 lockt_args) 14268 goto out; 14269 /* 14270 * Do not attempt recovery for requests initiated by 14271 * the recovery framework. Let the framework redrive them. 14272 */ 14273 if (ctype != NFS4_LCK_CTYPE_NORM) 14274 goto out; 14275 else { 14276 ASSERT(resend_rqstp == NULL); 14277 } 14278 14279 nfs4frlock_save_lost_rqst(ctype, ep->error, 14280 flk_to_locktype(cmd, flk->l_type), 14281 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14282 14283 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14284 &resp, lock_args, locku_args, &oop, &osp, &lop, 14285 rp, vp, &recov_state, op_hint, &did_start_fop, 14286 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14287 14288 if (retry) { 14289 ASSERT(oop == NULL); 14290 ASSERT(osp == NULL); 14291 ASSERT(lop == NULL); 14292 goto recov_retry; 14293 } 14294 goto out; 14295 } 14296 14297 /* 14298 * Bail out if have reached this point with ep->error set. Can 14299 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14300 * This happens if Kerberos ticket has expired or has been 14301 * destroyed. 14302 */ 14303 if (ep->error != 0) 14304 goto out; 14305 14306 /* 14307 * Process the reply. 14308 */ 14309 switch (resp->status) { 14310 case NFS4_OK: 14311 resop = &resp->array[1]; 14312 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14313 resend_rqstp); 14314 /* 14315 * Have a successful lock operation, now update state. 14316 */ 14317 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14318 resop, lop, vp, flk, cr, resend_rqstp); 14319 break; 14320 14321 case NFS4ERR_DENIED: 14322 resop = &resp->array[1]; 14323 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14324 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14325 &recov_state, needrecov, &argsp, &resp, 14326 &tick_delay, &whence, &ep->error, resop, cr, 14327 &did_start_fop, &skip_get_err); 14328 14329 if (retry) { 14330 ASSERT(oop == NULL); 14331 ASSERT(osp == NULL); 14332 ASSERT(lop == NULL); 14333 goto recov_retry; 14334 } 14335 break; 14336 /* 14337 * If the server won't let us reclaim, fall-back to trying to lock 14338 * the file from scratch. Code elsewhere will check the changeinfo 14339 * to ensure the file hasn't been changed. 14340 */ 14341 case NFS4ERR_NO_GRACE: 14342 if (lock_args && lock_args->reclaim == TRUE) { 14343 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14344 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14345 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14346 frc_no_reclaim = 1; 14347 /* clean up before retrying */ 14348 needrecov = 0; 14349 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14350 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14351 &recov_state, op_hint, &did_start_fop, NULL, flk); 14352 goto recov_retry; 14353 } 14354 /* FALLTHROUGH */ 14355 14356 default: 14357 nfs4frlock_results_default(resp, &ep->error); 14358 break; 14359 } 14360 out: 14361 /* 14362 * Process and cleanup from error. Make interrupted unlock 14363 * requests look successful, since they will be handled by the 14364 * client recovery code. 14365 */ 14366 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14367 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14368 lock_args, locku_args, did_start_fop, 14369 skip_get_err, cred_otw, cr); 14370 14371 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14372 (cmd == F_SETLK || cmd == F_SETLKW)) 14373 ep->error = 0; 14374 } 14375 14376 /* 14377 * nfs4_safelock: 14378 * 14379 * Return non-zero if the given lock request can be handled without 14380 * violating the constraints on concurrent mapping and locking. 14381 */ 14382 14383 static int 14384 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14385 { 14386 rnode4_t *rp = VTOR4(vp); 14387 struct vattr va; 14388 int error; 14389 14390 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14391 ASSERT(rp->r_mapcnt >= 0); 14392 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14393 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14394 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14395 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14396 14397 if (rp->r_mapcnt == 0) 14398 return (1); /* always safe if not mapped */ 14399 14400 /* 14401 * If the file is already mapped and there are locks, then they 14402 * should be all safe locks. So adding or removing a lock is safe 14403 * as long as the new request is safe (i.e., whole-file, meaning 14404 * length and starting offset are both zero). 14405 */ 14406 14407 if (bfp->l_start != 0 || bfp->l_len != 0) { 14408 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14409 "cannot lock a memory mapped file unless locking the " 14410 "entire file: start %"PRIx64", len %"PRIx64, 14411 bfp->l_start, bfp->l_len)); 14412 return (0); 14413 } 14414 14415 /* mandatory locking and mapping don't mix */ 14416 va.va_mask = AT_MODE; 14417 error = VOP_GETATTR(vp, &va, 0, cr, NULL); 14418 if (error != 0) { 14419 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14420 "getattr error %d", error)); 14421 return (0); /* treat errors conservatively */ 14422 } 14423 if (MANDLOCK(vp, va.va_mode)) { 14424 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14425 "cannot mandatory lock and mmap a file")); 14426 return (0); 14427 } 14428 14429 return (1); 14430 } 14431 14432 14433 /* 14434 * Register the lock locally within Solaris. 14435 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14436 * recording locks locally. 14437 * 14438 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14439 * are registered locally. 14440 */ 14441 void 14442 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14443 u_offset_t offset) 14444 { 14445 int oldsysid; 14446 int error; 14447 #ifdef DEBUG 14448 char *name; 14449 #endif 14450 14451 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14452 14453 #ifdef DEBUG 14454 name = fn_name(VTOSV(vp)->sv_name); 14455 NFS4_DEBUG(nfs4_client_lock_debug, 14456 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14457 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14458 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14459 flk->l_sysid)); 14460 kmem_free(name, MAXNAMELEN); 14461 #endif 14462 14463 /* register the lock with local locking */ 14464 oldsysid = flk->l_sysid; 14465 flk->l_sysid |= LM_SYSID_CLIENT; 14466 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14467 #ifdef DEBUG 14468 if (error != 0) { 14469 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14470 "nfs4_register_lock_locally: could not register with" 14471 " local locking")); 14472 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14473 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14474 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14475 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14476 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14477 flk->l_type, flk->l_start, flk->l_len)); 14478 (void) reclock(vp, flk, 0, flag, offset, NULL); 14479 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14480 "blocked by pid %d sysid 0x%x type %d " 14481 "off 0x%" PRIx64 " len 0x%" PRIx64, 14482 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14483 flk->l_len)); 14484 } 14485 #endif 14486 flk->l_sysid = oldsysid; 14487 } 14488 14489 /* 14490 * nfs4_lockrelease: 14491 * 14492 * Release any locks on the given vnode that are held by the current 14493 * process. Also removes the lock owner (if one exists) from the rnode's 14494 * list. 14495 */ 14496 static int 14497 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14498 { 14499 flock64_t ld; 14500 int ret, error; 14501 rnode4_t *rp; 14502 nfs4_lock_owner_t *lop; 14503 nfs4_recov_state_t recov_state; 14504 mntinfo4_t *mi; 14505 bool_t possible_orphan = FALSE; 14506 bool_t recovonly; 14507 14508 ASSERT((uintptr_t)vp > KERNELBASE); 14509 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14510 14511 rp = VTOR4(vp); 14512 mi = VTOMI4(vp); 14513 14514 /* 14515 * If we have not locked anything then we can 14516 * just return since we have no work to do. 14517 */ 14518 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14519 return (0); 14520 } 14521 14522 /* 14523 * We need to comprehend that another thread may 14524 * kick off recovery and the lock_owner we have stashed 14525 * in lop might be invalid so we should NOT cache it 14526 * locally! 14527 */ 14528 recov_state.rs_flags = 0; 14529 recov_state.rs_num_retry_despite_err = 0; 14530 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14531 &recovonly); 14532 if (error) { 14533 mutex_enter(&rp->r_statelock); 14534 rp->r_flags |= R4LODANGLERS; 14535 mutex_exit(&rp->r_statelock); 14536 return (error); 14537 } 14538 14539 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14540 14541 /* 14542 * Check if the lock owner might have a lock (request was sent but 14543 * no response was received). Also check if there are any remote 14544 * locks on the file. (In theory we shouldn't have to make this 14545 * second check if there's no lock owner, but for now we'll be 14546 * conservative and do it anyway.) If either condition is true, 14547 * send an unlock for the entire file to the server. 14548 * 14549 * Note that no explicit synchronization is needed here. At worst, 14550 * flk_has_remote_locks() will return a false positive, in which case 14551 * the unlock call wastes time but doesn't harm correctness. 14552 */ 14553 14554 if (lop) { 14555 mutex_enter(&lop->lo_lock); 14556 possible_orphan = lop->lo_pending_rqsts; 14557 mutex_exit(&lop->lo_lock); 14558 lock_owner_rele(lop); 14559 } 14560 14561 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14562 14563 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14564 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14565 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14566 (void *)lop)); 14567 14568 if (possible_orphan || flk_has_remote_locks(vp)) { 14569 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14570 ld.l_whence = 0; /* unlock from start of file */ 14571 ld.l_start = 0; 14572 ld.l_len = 0; /* do entire file */ 14573 14574 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, 14575 cr, NULL); 14576 14577 if (ret != 0) { 14578 /* 14579 * If VOP_FRLOCK fails, make sure we unregister 14580 * local locks before we continue. 14581 */ 14582 ld.l_pid = ttoproc(curthread)->p_pid; 14583 nfs4_register_lock_locally(vp, &ld, flag, offset); 14584 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14585 "nfs4_lockrelease: lock release error on vp" 14586 " %p: error %d.\n", (void *)vp, ret)); 14587 } 14588 } 14589 14590 recov_state.rs_flags = 0; 14591 recov_state.rs_num_retry_despite_err = 0; 14592 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14593 &recovonly); 14594 if (error) { 14595 mutex_enter(&rp->r_statelock); 14596 rp->r_flags |= R4LODANGLERS; 14597 mutex_exit(&rp->r_statelock); 14598 return (error); 14599 } 14600 14601 /* 14602 * So, here we're going to need to retrieve the lock-owner 14603 * again (in case recovery has done a switch-a-roo) and 14604 * remove it because we can. 14605 */ 14606 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14607 14608 if (lop) { 14609 nfs4_rnode_remove_lock_owner(rp, lop); 14610 lock_owner_rele(lop); 14611 } 14612 14613 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14614 return (0); 14615 } 14616 14617 /* 14618 * Wait for 'tick_delay' clock ticks. 14619 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14620 * NOTE: lock_lease_time is in seconds. 14621 * 14622 * XXX For future improvements, should implement a waiting queue scheme. 14623 */ 14624 static int 14625 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14626 { 14627 long milliseconds_delay; 14628 time_t lock_lease_time; 14629 14630 /* wait tick_delay clock ticks or siginteruptus */ 14631 if (delay_sig(*tick_delay)) { 14632 return (EINTR); 14633 } 14634 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14635 "reissue the lock request: blocked for %ld clock ticks: %ld " 14636 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14637 14638 /* get the lease time */ 14639 lock_lease_time = r2lease_time(rp); 14640 14641 /* drv_hztousec converts ticks to microseconds */ 14642 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14643 if (milliseconds_delay < lock_lease_time * 1000) { 14644 *tick_delay = 2 * *tick_delay; 14645 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14646 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14647 } 14648 return (0); 14649 } 14650 14651 14652 void 14653 nfs4_vnops_init(void) 14654 { 14655 } 14656 14657 void 14658 nfs4_vnops_fini(void) 14659 { 14660 } 14661 14662 /* 14663 * Return a reference to the directory (parent) vnode for a given vnode, 14664 * using the saved pathname information and the directory file handle. The 14665 * caller is responsible for disposing of the reference. 14666 * Returns zero or an errno value. 14667 * 14668 * Caller should set need_start_op to FALSE if it is the recovery 14669 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14670 */ 14671 int 14672 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14673 { 14674 svnode_t *svnp; 14675 vnode_t *dvp = NULL; 14676 servinfo4_t *svp; 14677 nfs4_fname_t *mfname; 14678 int error; 14679 14680 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14681 14682 if (vp->v_flag & VROOT) { 14683 nfs4_sharedfh_t *sfh; 14684 nfs_fh4 fh; 14685 mntinfo4_t *mi; 14686 14687 ASSERT(vp->v_type == VREG); 14688 14689 mi = VTOMI4(vp); 14690 svp = mi->mi_curr_serv; 14691 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14692 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14693 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14694 sfh = sfh4_get(&fh, VTOMI4(vp)); 14695 nfs_rw_exit(&svp->sv_lock); 14696 mfname = mi->mi_fname; 14697 fn_hold(mfname); 14698 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14699 sfh4_rele(&sfh); 14700 14701 if (dvp->v_type == VNON) 14702 dvp->v_type = VDIR; 14703 *dvpp = dvp; 14704 return (0); 14705 } 14706 14707 svnp = VTOSV(vp); 14708 14709 if (svnp == NULL) { 14710 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14711 "shadow node is NULL")); 14712 return (EINVAL); 14713 } 14714 14715 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14716 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14717 "shadow node name or dfh val == NULL")); 14718 return (EINVAL); 14719 } 14720 14721 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14722 (int)need_start_op); 14723 if (error != 0) { 14724 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14725 "nfs4_make_dotdot returned %d", error)); 14726 return (error); 14727 } 14728 if (!dvp) { 14729 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14730 "nfs4_make_dotdot returned a NULL dvp")); 14731 return (EIO); 14732 } 14733 if (dvp->v_type == VNON) 14734 dvp->v_type = VDIR; 14735 ASSERT(dvp->v_type == VDIR); 14736 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14737 mutex_enter(&dvp->v_lock); 14738 dvp->v_flag |= V_XATTRDIR; 14739 mutex_exit(&dvp->v_lock); 14740 } 14741 *dvpp = dvp; 14742 return (0); 14743 } 14744 14745 /* 14746 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14747 * length that fnamep can accept, including the trailing null. 14748 * Returns 0 if okay, returns an errno value if there was a problem. 14749 */ 14750 14751 int 14752 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14753 { 14754 char *fn; 14755 int err = 0; 14756 servinfo4_t *svp; 14757 svnode_t *shvp; 14758 14759 /* 14760 * If the file being opened has VROOT set, then this is 14761 * a "file" mount. sv_name will not be interesting, so 14762 * go back to the servinfo4 to get the original mount 14763 * path and strip off all but the final edge. Otherwise 14764 * just return the name from the shadow vnode. 14765 */ 14766 14767 if (vp->v_flag & VROOT) { 14768 14769 svp = VTOMI4(vp)->mi_curr_serv; 14770 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14771 14772 fn = strrchr(svp->sv_path, '/'); 14773 if (fn == NULL) 14774 err = EINVAL; 14775 else 14776 fn++; 14777 } else { 14778 shvp = VTOSV(vp); 14779 fn = fn_name(shvp->sv_name); 14780 } 14781 14782 if (err == 0) 14783 if (strlen(fn) < maxlen) 14784 (void) strcpy(fnamep, fn); 14785 else 14786 err = ENAMETOOLONG; 14787 14788 if (vp->v_flag & VROOT) 14789 nfs_rw_exit(&svp->sv_lock); 14790 else 14791 kmem_free(fn, MAXNAMELEN); 14792 14793 return (err); 14794 } 14795 14796 /* 14797 * Bookkeeping for a close that doesn't need to go over the wire. 14798 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14799 * it is left at 1. 14800 */ 14801 void 14802 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14803 { 14804 rnode4_t *rp; 14805 mntinfo4_t *mi; 14806 14807 mi = VTOMI4(vp); 14808 rp = VTOR4(vp); 14809 14810 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14811 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14812 ASSERT(nfs_zone() == mi->mi_zone); 14813 ASSERT(mutex_owned(&osp->os_sync_lock)); 14814 ASSERT(*have_lockp); 14815 14816 if (!osp->os_valid || 14817 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14818 return; 14819 } 14820 14821 /* 14822 * This removes the reference obtained at OPEN; ie, 14823 * when the open stream structure was created. 14824 * 14825 * We don't have to worry about calling 'open_stream_rele' 14826 * since we our currently holding a reference to this 14827 * open stream which means the count can not go to 0 with 14828 * this decrement. 14829 */ 14830 ASSERT(osp->os_ref_count >= 2); 14831 osp->os_ref_count--; 14832 osp->os_valid = 0; 14833 mutex_exit(&osp->os_sync_lock); 14834 *have_lockp = 0; 14835 14836 nfs4_dec_state_ref_count(mi); 14837 } 14838 14839 /* 14840 * Close all remaining open streams on the rnode. These open streams 14841 * could be here because: 14842 * - The close attempted at either close or delmap failed 14843 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14844 * - Someone did mknod on a regular file but never opened it 14845 */ 14846 int 14847 nfs4close_all(vnode_t *vp, cred_t *cr) 14848 { 14849 nfs4_open_stream_t *osp; 14850 int error; 14851 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14852 rnode4_t *rp; 14853 14854 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14855 14856 error = 0; 14857 rp = VTOR4(vp); 14858 14859 /* 14860 * At this point, all we know is that the last time 14861 * someone called vn_rele, the count was 1. Since then, 14862 * the vnode could have been re-activated. We want to 14863 * loop through the open streams and close each one, but 14864 * we have to be careful since once we release the rnode 14865 * hash bucket lock, someone else is free to come in and 14866 * re-activate the rnode and add new open streams. The 14867 * strategy is take the rnode hash bucket lock, verify that 14868 * the count is still 1, grab the open stream off the 14869 * head of the list and mark it invalid, then release the 14870 * rnode hash bucket lock and proceed with that open stream. 14871 * This is ok because nfs4close_one() will acquire the proper 14872 * open/create to close/destroy synchronization for open 14873 * streams, and will ensure that if someone has reopened 14874 * the open stream after we've dropped the hash bucket lock 14875 * then we'll just simply return without destroying the 14876 * open stream. 14877 * Repeat until the list is empty. 14878 */ 14879 14880 for (;;) { 14881 14882 /* make sure vnode hasn't been reactivated */ 14883 rw_enter(&rp->r_hashq->r_lock, RW_READER); 14884 mutex_enter(&vp->v_lock); 14885 if (vp->v_count > 1) { 14886 mutex_exit(&vp->v_lock); 14887 rw_exit(&rp->r_hashq->r_lock); 14888 break; 14889 } 14890 /* 14891 * Grabbing r_os_lock before releasing v_lock prevents 14892 * a window where the rnode/open stream could get 14893 * reactivated (and os_force_close set to 0) before we 14894 * had a chance to set os_force_close to 1. 14895 */ 14896 mutex_enter(&rp->r_os_lock); 14897 mutex_exit(&vp->v_lock); 14898 14899 osp = list_head(&rp->r_open_streams); 14900 if (!osp) { 14901 /* nothing left to CLOSE OTW, so return */ 14902 mutex_exit(&rp->r_os_lock); 14903 rw_exit(&rp->r_hashq->r_lock); 14904 break; 14905 } 14906 14907 mutex_enter(&rp->r_statev4_lock); 14908 /* the file can't still be mem mapped */ 14909 ASSERT(rp->r_mapcnt == 0); 14910 if (rp->created_v4) 14911 rp->created_v4 = 0; 14912 mutex_exit(&rp->r_statev4_lock); 14913 14914 /* 14915 * Grab a ref on this open stream; nfs4close_one 14916 * will mark it as invalid 14917 */ 14918 mutex_enter(&osp->os_sync_lock); 14919 osp->os_ref_count++; 14920 osp->os_force_close = 1; 14921 mutex_exit(&osp->os_sync_lock); 14922 mutex_exit(&rp->r_os_lock); 14923 rw_exit(&rp->r_hashq->r_lock); 14924 14925 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 14926 14927 /* Update error if it isn't already non-zero */ 14928 if (error == 0) { 14929 if (e.error) 14930 error = e.error; 14931 else if (e.stat) 14932 error = geterrno4(e.stat); 14933 } 14934 14935 #ifdef DEBUG 14936 nfs4close_all_cnt++; 14937 #endif 14938 /* Release the ref on osp acquired above. */ 14939 open_stream_rele(osp, rp); 14940 14941 /* Proceed to the next open stream, if any */ 14942 } 14943 return (error); 14944 } 14945 14946 /* 14947 * nfs4close_one - close one open stream for a file if needed. 14948 * 14949 * "close_type" indicates which close path this is: 14950 * CLOSE_NORM: close initiated via VOP_CLOSE. 14951 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 14952 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 14953 * the close and release of client state for this open stream 14954 * (unless someone else has the open stream open). 14955 * CLOSE_RESEND: indicates the request is a replay of an earlier request 14956 * (e.g., due to abort because of a signal). 14957 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 14958 * 14959 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 14960 * recovery. Instead, the caller is expected to deal with retries. 14961 * 14962 * The caller can either pass in the osp ('provided_osp') or not. 14963 * 14964 * 'access_bits' represents the access we are closing/downgrading. 14965 * 14966 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 14967 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 14968 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 14969 * 14970 * Errors are returned via the nfs4_error_t. 14971 */ 14972 void 14973 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 14974 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 14975 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 14976 uint_t mmap_flags) 14977 { 14978 nfs4_open_owner_t *oop; 14979 nfs4_open_stream_t *osp = NULL; 14980 int retry = 0; 14981 int num_retries = NFS4_NUM_RECOV_RETRIES; 14982 rnode4_t *rp; 14983 mntinfo4_t *mi; 14984 nfs4_recov_state_t recov_state; 14985 cred_t *cred_otw = NULL; 14986 bool_t recovonly = FALSE; 14987 int isrecov; 14988 int force_close; 14989 int close_failed = 0; 14990 int did_dec_count = 0; 14991 int did_start_op = 0; 14992 int did_force_recovlock = 0; 14993 int did_start_seqid_sync = 0; 14994 int have_sync_lock = 0; 14995 14996 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14997 14998 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 14999 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 15000 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 15001 len, maxprot, mmap_flags, access_bits)); 15002 15003 nfs4_error_zinit(ep); 15004 rp = VTOR4(vp); 15005 mi = VTOMI4(vp); 15006 isrecov = (close_type == CLOSE_RESEND || 15007 close_type == CLOSE_AFTER_RESEND); 15008 15009 /* 15010 * First get the open owner. 15011 */ 15012 if (!provided_osp) { 15013 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15014 } else { 15015 oop = provided_osp->os_open_owner; 15016 ASSERT(oop != NULL); 15017 open_owner_hold(oop); 15018 } 15019 15020 if (!oop) { 15021 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15022 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15023 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15024 (void *)provided_osp, close_type)); 15025 ep->error = EIO; 15026 goto out; 15027 } 15028 15029 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15030 recov_retry: 15031 osp = NULL; 15032 close_failed = 0; 15033 force_close = (close_type == CLOSE_FORCE); 15034 retry = 0; 15035 did_start_op = 0; 15036 did_force_recovlock = 0; 15037 did_start_seqid_sync = 0; 15038 have_sync_lock = 0; 15039 recovonly = FALSE; 15040 recov_state.rs_flags = 0; 15041 recov_state.rs_num_retry_despite_err = 0; 15042 15043 /* 15044 * Second synchronize with recovery. 15045 */ 15046 if (!isrecov) { 15047 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15048 &recov_state, &recovonly); 15049 if (!ep->error) { 15050 did_start_op = 1; 15051 } else { 15052 close_failed = 1; 15053 /* 15054 * If we couldn't get start_fop, but have to 15055 * cleanup state, then at least acquire the 15056 * mi_recovlock so we can synchronize with 15057 * recovery. 15058 */ 15059 if (close_type == CLOSE_FORCE) { 15060 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15061 RW_READER, FALSE); 15062 did_force_recovlock = 1; 15063 } else 15064 goto out; 15065 } 15066 } 15067 15068 /* 15069 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15070 * set 'recovonly' to TRUE since most likely this is due to 15071 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15072 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15073 * to retry, causing us to loop until recovery finishes. Plus we 15074 * don't need protection over the open seqid since we're not going 15075 * OTW, hence don't need to use the seqid. 15076 */ 15077 if (recovonly == FALSE) { 15078 /* need to grab the open owner sync before 'os_sync_lock' */ 15079 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15080 if (ep->error == EAGAIN) { 15081 ASSERT(!isrecov); 15082 if (did_start_op) 15083 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15084 &recov_state, TRUE); 15085 if (did_force_recovlock) 15086 nfs_rw_exit(&mi->mi_recovlock); 15087 goto recov_retry; 15088 } 15089 did_start_seqid_sync = 1; 15090 } 15091 15092 /* 15093 * Third get an open stream and acquire 'os_sync_lock' to 15094 * sychronize the opening/creating of an open stream with the 15095 * closing/destroying of an open stream. 15096 */ 15097 if (!provided_osp) { 15098 /* returns with 'os_sync_lock' held */ 15099 osp = find_open_stream(oop, rp); 15100 if (!osp) { 15101 ep->error = EIO; 15102 goto out; 15103 } 15104 } else { 15105 osp = provided_osp; 15106 open_stream_hold(osp); 15107 mutex_enter(&osp->os_sync_lock); 15108 } 15109 have_sync_lock = 1; 15110 15111 ASSERT(oop == osp->os_open_owner); 15112 15113 /* 15114 * Fourth, do any special pre-OTW CLOSE processing 15115 * based on the specific close type. 15116 */ 15117 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15118 !did_dec_count) { 15119 ASSERT(osp->os_open_ref_count > 0); 15120 osp->os_open_ref_count--; 15121 did_dec_count = 1; 15122 if (osp->os_open_ref_count == 0) 15123 osp->os_final_close = 1; 15124 } 15125 15126 if (close_type == CLOSE_FORCE) { 15127 /* see if somebody reopened the open stream. */ 15128 if (!osp->os_force_close) { 15129 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15130 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15131 "was reopened, vp %p", (void *)osp, (void *)vp)); 15132 ep->error = 0; 15133 ep->stat = NFS4_OK; 15134 goto out; 15135 } 15136 15137 if (!osp->os_final_close && !did_dec_count) { 15138 osp->os_open_ref_count--; 15139 did_dec_count = 1; 15140 } 15141 15142 /* 15143 * We can't depend on os_open_ref_count being 0 due to the 15144 * way executables are opened (VN_RELE to match a VOP_OPEN). 15145 */ 15146 #ifdef NOTYET 15147 ASSERT(osp->os_open_ref_count == 0); 15148 #endif 15149 if (osp->os_open_ref_count != 0) { 15150 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15151 "nfs4close_one: should panic here on an " 15152 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15153 "since this is probably the exec problem.")); 15154 15155 osp->os_open_ref_count = 0; 15156 } 15157 15158 /* 15159 * There is the possibility that nfs4close_one() 15160 * for close_type == CLOSE_DELMAP couldn't find the 15161 * open stream, thus couldn't decrement its os_mapcnt; 15162 * therefore we can't use this ASSERT yet. 15163 */ 15164 #ifdef NOTYET 15165 ASSERT(osp->os_mapcnt == 0); 15166 #endif 15167 osp->os_mapcnt = 0; 15168 } 15169 15170 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15171 ASSERT(osp->os_mapcnt >= btopr(len)); 15172 15173 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15174 osp->os_mmap_write -= btopr(len); 15175 if (maxprot & PROT_READ) 15176 osp->os_mmap_read -= btopr(len); 15177 if (maxprot & PROT_EXEC) 15178 osp->os_mmap_read -= btopr(len); 15179 /* mirror the PROT_NONE check in nfs4_addmap() */ 15180 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15181 !(maxprot & PROT_EXEC)) 15182 osp->os_mmap_read -= btopr(len); 15183 osp->os_mapcnt -= btopr(len); 15184 did_dec_count = 1; 15185 } 15186 15187 if (recovonly) { 15188 nfs4_lost_rqst_t lost_rqst; 15189 15190 /* request should not already be in recovery queue */ 15191 ASSERT(lrp == NULL); 15192 nfs4_error_init(ep, EINTR); 15193 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15194 osp, cred_otw, vp); 15195 mutex_exit(&osp->os_sync_lock); 15196 have_sync_lock = 0; 15197 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15198 lost_rqst.lr_op == OP_CLOSE ? 15199 &lost_rqst : NULL, OP_CLOSE, NULL); 15200 close_failed = 1; 15201 force_close = 0; 15202 goto close_cleanup; 15203 } 15204 15205 /* 15206 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15207 * we stopped operating on the open owner's <old oo_name, old seqid> 15208 * space, which means we stopped operating on the open stream 15209 * too. So don't go OTW (as the seqid is likely bad, and the 15210 * stateid could be stale, potentially triggering a false 15211 * setclientid), and just clean up the client's internal state. 15212 */ 15213 if (osp->os_orig_oo_name != oop->oo_name) { 15214 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15215 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15216 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15217 "oo_name %" PRIx64")", 15218 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15219 oop->oo_name)); 15220 close_failed = 1; 15221 } 15222 15223 /* If the file failed recovery, just quit. */ 15224 mutex_enter(&rp->r_statelock); 15225 if (rp->r_flags & R4RECOVERR) { 15226 close_failed = 1; 15227 } 15228 mutex_exit(&rp->r_statelock); 15229 15230 /* 15231 * If the force close path failed to obtain start_fop 15232 * then skip the OTW close and just remove the state. 15233 */ 15234 if (close_failed) 15235 goto close_cleanup; 15236 15237 /* 15238 * Fifth, check to see if there are still mapped pages or other 15239 * opens using this open stream. If there are then we can't 15240 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15241 */ 15242 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15243 nfs4_lost_rqst_t new_lost_rqst; 15244 bool_t needrecov = FALSE; 15245 cred_t *odg_cred_otw = NULL; 15246 seqid4 open_dg_seqid = 0; 15247 15248 if (osp->os_delegation) { 15249 /* 15250 * If this open stream was never OPENed OTW then we 15251 * surely can't DOWNGRADE it (especially since the 15252 * osp->open_stateid is really a delegation stateid 15253 * when os_delegation is 1). 15254 */ 15255 if (access_bits & FREAD) 15256 osp->os_share_acc_read--; 15257 if (access_bits & FWRITE) 15258 osp->os_share_acc_write--; 15259 osp->os_share_deny_none--; 15260 nfs4_error_zinit(ep); 15261 goto out; 15262 } 15263 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15264 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15265 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15266 if (needrecov && !isrecov) { 15267 bool_t abort; 15268 nfs4_bseqid_entry_t *bsep = NULL; 15269 15270 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15271 bsep = nfs4_create_bseqid_entry(oop, NULL, 15272 vp, 0, 15273 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15274 open_dg_seqid); 15275 15276 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15277 oop, osp, odg_cred_otw, vp, access_bits, 0); 15278 mutex_exit(&osp->os_sync_lock); 15279 have_sync_lock = 0; 15280 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15281 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15282 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15283 bsep); 15284 if (odg_cred_otw) 15285 crfree(odg_cred_otw); 15286 if (bsep) 15287 kmem_free(bsep, sizeof (*bsep)); 15288 15289 if (abort == TRUE) 15290 goto out; 15291 15292 if (did_start_seqid_sync) { 15293 nfs4_end_open_seqid_sync(oop); 15294 did_start_seqid_sync = 0; 15295 } 15296 open_stream_rele(osp, rp); 15297 15298 if (did_start_op) 15299 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15300 &recov_state, FALSE); 15301 if (did_force_recovlock) 15302 nfs_rw_exit(&mi->mi_recovlock); 15303 15304 goto recov_retry; 15305 } else { 15306 if (odg_cred_otw) 15307 crfree(odg_cred_otw); 15308 } 15309 goto out; 15310 } 15311 15312 /* 15313 * If this open stream was created as the results of an open 15314 * while holding a delegation, then just release it; no need 15315 * to do an OTW close. Otherwise do a "normal" OTW close. 15316 */ 15317 if (osp->os_delegation) { 15318 nfs4close_notw(vp, osp, &have_sync_lock); 15319 nfs4_error_zinit(ep); 15320 goto out; 15321 } 15322 15323 /* 15324 * If this stream is not valid, we're done. 15325 */ 15326 if (!osp->os_valid) { 15327 nfs4_error_zinit(ep); 15328 goto out; 15329 } 15330 15331 /* 15332 * Last open or mmap ref has vanished, need to do an OTW close. 15333 * First check to see if a close is still necessary. 15334 */ 15335 if (osp->os_failed_reopen) { 15336 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15337 "don't close OTW osp %p since reopen failed.", 15338 (void *)osp)); 15339 /* 15340 * Reopen of the open stream failed, hence the 15341 * stateid of the open stream is invalid/stale, and 15342 * sending this OTW would incorrectly cause another 15343 * round of recovery. In this case, we need to set 15344 * the 'os_valid' bit to 0 so another thread doesn't 15345 * come in and re-open this open stream before 15346 * this "closing" thread cleans up state (decrementing 15347 * the nfs4_server_t's state_ref_count and decrementing 15348 * the os_ref_count). 15349 */ 15350 osp->os_valid = 0; 15351 /* 15352 * This removes the reference obtained at OPEN; ie, 15353 * when the open stream structure was created. 15354 * 15355 * We don't have to worry about calling 'open_stream_rele' 15356 * since we our currently holding a reference to this 15357 * open stream which means the count can not go to 0 with 15358 * this decrement. 15359 */ 15360 ASSERT(osp->os_ref_count >= 2); 15361 osp->os_ref_count--; 15362 nfs4_error_zinit(ep); 15363 close_failed = 0; 15364 goto close_cleanup; 15365 } 15366 15367 ASSERT(osp->os_ref_count > 1); 15368 15369 /* 15370 * Sixth, try the CLOSE OTW. 15371 */ 15372 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15373 close_type, ep, &have_sync_lock); 15374 15375 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15376 /* 15377 * Let the recovery thread be responsible for 15378 * removing the state for CLOSE. 15379 */ 15380 close_failed = 1; 15381 force_close = 0; 15382 retry = 0; 15383 } 15384 15385 /* See if we need to retry with a different cred */ 15386 if ((ep->error == EACCES || 15387 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15388 cred_otw != cr) { 15389 crfree(cred_otw); 15390 cred_otw = cr; 15391 crhold(cred_otw); 15392 retry = 1; 15393 } 15394 15395 if (ep->error || ep->stat) 15396 close_failed = 1; 15397 15398 if (retry && !isrecov && num_retries-- > 0) { 15399 if (have_sync_lock) { 15400 mutex_exit(&osp->os_sync_lock); 15401 have_sync_lock = 0; 15402 } 15403 if (did_start_seqid_sync) { 15404 nfs4_end_open_seqid_sync(oop); 15405 did_start_seqid_sync = 0; 15406 } 15407 open_stream_rele(osp, rp); 15408 15409 if (did_start_op) 15410 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15411 &recov_state, FALSE); 15412 if (did_force_recovlock) 15413 nfs_rw_exit(&mi->mi_recovlock); 15414 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15415 "nfs4close_one: need to retry the close " 15416 "operation")); 15417 goto recov_retry; 15418 } 15419 close_cleanup: 15420 /* 15421 * Seventh and lastly, process our results. 15422 */ 15423 if (close_failed && force_close) { 15424 /* 15425 * It's ok to drop and regrab the 'os_sync_lock' since 15426 * nfs4close_notw() will recheck to make sure the 15427 * "close"/removal of state should happen. 15428 */ 15429 if (!have_sync_lock) { 15430 mutex_enter(&osp->os_sync_lock); 15431 have_sync_lock = 1; 15432 } 15433 /* 15434 * This is last call, remove the ref on the open 15435 * stream created by open and clean everything up. 15436 */ 15437 osp->os_pending_close = 0; 15438 nfs4close_notw(vp, osp, &have_sync_lock); 15439 nfs4_error_zinit(ep); 15440 } 15441 15442 if (!close_failed) { 15443 if (have_sync_lock) { 15444 osp->os_pending_close = 0; 15445 mutex_exit(&osp->os_sync_lock); 15446 have_sync_lock = 0; 15447 } else { 15448 mutex_enter(&osp->os_sync_lock); 15449 osp->os_pending_close = 0; 15450 mutex_exit(&osp->os_sync_lock); 15451 } 15452 if (did_start_op && recov_state.rs_sp != NULL) { 15453 mutex_enter(&recov_state.rs_sp->s_lock); 15454 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15455 mutex_exit(&recov_state.rs_sp->s_lock); 15456 } else { 15457 nfs4_dec_state_ref_count(mi); 15458 } 15459 nfs4_error_zinit(ep); 15460 } 15461 15462 out: 15463 if (have_sync_lock) 15464 mutex_exit(&osp->os_sync_lock); 15465 if (did_start_op) 15466 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15467 recovonly ? TRUE : FALSE); 15468 if (did_force_recovlock) 15469 nfs_rw_exit(&mi->mi_recovlock); 15470 if (cred_otw) 15471 crfree(cred_otw); 15472 if (osp) 15473 open_stream_rele(osp, rp); 15474 if (oop) { 15475 if (did_start_seqid_sync) 15476 nfs4_end_open_seqid_sync(oop); 15477 open_owner_rele(oop); 15478 } 15479 } 15480 15481 /* 15482 * Convert information returned by the server in the LOCK4denied 15483 * structure to the form required by fcntl. 15484 */ 15485 static void 15486 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15487 { 15488 nfs4_lo_name_t *lo; 15489 15490 #ifdef DEBUG 15491 if (denied_to_flk_debug) { 15492 lockt_denied_debug = lockt_denied; 15493 debug_enter("lockt_denied"); 15494 } 15495 #endif 15496 15497 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15498 flk->l_whence = 0; /* aka SEEK_SET */ 15499 flk->l_start = lockt_denied->offset; 15500 flk->l_len = lockt_denied->length; 15501 15502 /* 15503 * If the blocking clientid matches our client id, then we can 15504 * interpret the lockowner (since we built it). If not, then 15505 * fabricate a sysid and pid. Note that the l_sysid field 15506 * in *flk already has the local sysid. 15507 */ 15508 15509 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15510 15511 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15512 lo = (nfs4_lo_name_t *) 15513 lockt_denied->owner.owner_val; 15514 15515 flk->l_pid = lo->ln_pid; 15516 } else { 15517 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15518 "denied_to_flk: bad lock owner length\n")); 15519 15520 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15521 } 15522 } else { 15523 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15524 "denied_to_flk: foreign clientid\n")); 15525 15526 /* 15527 * Construct a new sysid which should be different from 15528 * sysids of other systems. 15529 */ 15530 15531 flk->l_sysid++; 15532 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15533 } 15534 } 15535 15536 static pid_t 15537 lo_to_pid(lock_owner4 *lop) 15538 { 15539 pid_t pid = 0; 15540 uchar_t *cp; 15541 int i; 15542 15543 cp = (uchar_t *)&lop->clientid; 15544 15545 for (i = 0; i < sizeof (lop->clientid); i++) 15546 pid += (pid_t)*cp++; 15547 15548 cp = (uchar_t *)lop->owner_val; 15549 15550 for (i = 0; i < lop->owner_len; i++) 15551 pid += (pid_t)*cp++; 15552 15553 return (pid); 15554 } 15555 15556 /* 15557 * Given a lock pointer, returns the length of that lock. 15558 * "end" is the last locked offset the "l_len" covers from 15559 * the start of the lock. 15560 */ 15561 static off64_t 15562 lock_to_end(flock64_t *lock) 15563 { 15564 off64_t lock_end; 15565 15566 if (lock->l_len == 0) 15567 lock_end = (off64_t)MAXEND; 15568 else 15569 lock_end = lock->l_start + lock->l_len - 1; 15570 15571 return (lock_end); 15572 } 15573 15574 /* 15575 * Given the end of a lock, it will return you the length "l_len" for that lock. 15576 */ 15577 static off64_t 15578 end_to_len(off64_t start, off64_t end) 15579 { 15580 off64_t lock_len; 15581 15582 ASSERT(end >= start); 15583 if (end == MAXEND) 15584 lock_len = 0; 15585 else 15586 lock_len = end - start + 1; 15587 15588 return (lock_len); 15589 } 15590 15591 /* 15592 * On given end for a lock it determines if it is the last locked offset 15593 * or not, if so keeps it as is, else adds one to return the length for 15594 * valid start. 15595 */ 15596 static off64_t 15597 start_check(off64_t x) 15598 { 15599 if (x == MAXEND) 15600 return (x); 15601 else 15602 return (x + 1); 15603 } 15604 15605 /* 15606 * See if these two locks overlap, and if so return 1; 15607 * otherwise, return 0. 15608 */ 15609 static int 15610 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15611 { 15612 off64_t llfp_end, curfp_end; 15613 15614 llfp_end = lock_to_end(llfp); 15615 curfp_end = lock_to_end(curfp); 15616 15617 if (((llfp_end >= curfp->l_start) && 15618 (llfp->l_start <= curfp->l_start)) || 15619 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15620 return (1); 15621 return (0); 15622 } 15623 15624 /* 15625 * Determine what the intersecting lock region is, and add that to the 15626 * 'nl_llpp' locklist in increasing order (by l_start). 15627 */ 15628 static void 15629 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15630 locklist_t **nl_llpp, vnode_t *vp) 15631 { 15632 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15633 off64_t lost_flp_end, local_flp_end, len, start; 15634 15635 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15636 15637 if (!locks_intersect(lost_flp, local_flp)) 15638 return; 15639 15640 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15641 "locks intersect")); 15642 15643 lost_flp_end = lock_to_end(lost_flp); 15644 local_flp_end = lock_to_end(local_flp); 15645 15646 /* Find the starting point of the intersecting region */ 15647 if (local_flp->l_start > lost_flp->l_start) 15648 start = local_flp->l_start; 15649 else 15650 start = lost_flp->l_start; 15651 15652 /* Find the lenght of the intersecting region */ 15653 if (lost_flp_end < local_flp_end) 15654 len = end_to_len(start, lost_flp_end); 15655 else 15656 len = end_to_len(start, local_flp_end); 15657 15658 /* 15659 * Prepare the flock structure for the intersection found and insert 15660 * it into the new list in increasing l_start order. This list contains 15661 * intersections of locks registered by the client with the local host 15662 * and the lost lock. 15663 * The lock type of this lock is the same as that of the local_flp. 15664 */ 15665 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15666 intersect_llp->ll_flock.l_start = start; 15667 intersect_llp->ll_flock.l_len = len; 15668 intersect_llp->ll_flock.l_type = local_flp->l_type; 15669 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15670 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15671 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15672 intersect_llp->ll_vp = vp; 15673 15674 tmp_fllp = *nl_llpp; 15675 cur_fllp = NULL; 15676 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15677 intersect_llp->ll_flock.l_start) { 15678 cur_fllp = tmp_fllp; 15679 tmp_fllp = tmp_fllp->ll_next; 15680 } 15681 if (cur_fllp == NULL) { 15682 /* first on the list */ 15683 intersect_llp->ll_next = *nl_llpp; 15684 *nl_llpp = intersect_llp; 15685 } else { 15686 intersect_llp->ll_next = cur_fllp->ll_next; 15687 cur_fllp->ll_next = intersect_llp; 15688 } 15689 15690 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15691 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15692 intersect_llp->ll_flock.l_start, 15693 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15694 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15695 } 15696 15697 /* 15698 * Our local locking current state is potentially different than 15699 * what the NFSv4 server thinks we have due to a lost lock that was 15700 * resent and then received. We need to reset our "NFSv4" locking 15701 * state to match the current local locking state for this pid since 15702 * that is what the user/application sees as what the world is. 15703 * 15704 * We cannot afford to drop the open/lock seqid sync since then we can 15705 * get confused about what the current local locking state "is" versus 15706 * "was". 15707 * 15708 * If we are unable to fix up the locks, we send SIGLOST to the affected 15709 * process. This is not done if the filesystem has been forcibly 15710 * unmounted, in case the process has already exited and a new process 15711 * exists with the same pid. 15712 */ 15713 static void 15714 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15715 nfs4_lock_owner_t *lop) 15716 { 15717 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15718 mntinfo4_t *mi = VTOMI4(vp); 15719 const int cmd = F_SETLK; 15720 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15721 flock64_t ul_fl; 15722 15723 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15724 "nfs4_reinstitute_local_lock_state")); 15725 15726 /* 15727 * Find active locks for this vp from the local locking code. 15728 * Scan through this list and find out the locks that intersect with 15729 * the lost lock. Once we find the lock that intersects, add the 15730 * intersection area as a new lock to a new list "ri_llp". The lock 15731 * type of the intersection region lock added to ri_llp is the same 15732 * as that found in the active lock list, "list". The intersecting 15733 * region locks are added to ri_llp in increasing l_start order. 15734 */ 15735 ASSERT(nfs_zone() == mi->mi_zone); 15736 15737 locks = flk_active_locks_for_vp(vp); 15738 ri_llp = NULL; 15739 15740 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15741 ASSERT(llp->ll_vp == vp); 15742 /* 15743 * Pick locks that belong to this pid/lockowner 15744 */ 15745 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15746 continue; 15747 15748 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15749 } 15750 15751 /* 15752 * Now we have the list of intersections with the lost lock. These are 15753 * the locks that were/are active before the server replied to the 15754 * last/lost lock. Issue these locks to the server here. Playing these 15755 * locks to the server will re-establish aur current local locking state 15756 * with the v4 server. 15757 * If we get an error, send SIGLOST to the application for that lock. 15758 */ 15759 15760 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15761 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15762 "nfs4_reinstitute_local_lock_state: need to issue " 15763 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15764 llp->ll_flock.l_start, 15765 llp->ll_flock.l_start + llp->ll_flock.l_len, 15766 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15767 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15768 /* 15769 * No need to relock what we already have 15770 */ 15771 if (llp->ll_flock.l_type == lost_flp->l_type) 15772 continue; 15773 15774 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15775 } 15776 15777 /* 15778 * Now keeping the start of the lost lock as our reference parse the 15779 * newly created ri_llp locklist to find the ranges that we have locked 15780 * with the v4 server but not in the current local locking. We need 15781 * to unlock these ranges. 15782 * These ranges can also be reffered to as those ranges, where the lost 15783 * lock does not overlap with the locks in the ri_llp but are locked 15784 * since the server replied to the lost lock. 15785 */ 15786 cur_start = lost_flp->l_start; 15787 lost_flp_end = lock_to_end(lost_flp); 15788 15789 ul_fl.l_type = F_UNLCK; 15790 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15791 ul_fl.l_sysid = lost_flp->l_sysid; 15792 ul_fl.l_pid = lost_flp->l_pid; 15793 15794 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15795 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15796 15797 if (llp->ll_flock.l_start <= cur_start) { 15798 cur_start = start_check(llp_ll_flock_end); 15799 continue; 15800 } 15801 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15802 "nfs4_reinstitute_local_lock_state: " 15803 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15804 cur_start, llp->ll_flock.l_start)); 15805 15806 ul_fl.l_start = cur_start; 15807 ul_fl.l_len = end_to_len(cur_start, 15808 (llp->ll_flock.l_start - 1)); 15809 15810 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15811 cur_start = start_check(llp_ll_flock_end); 15812 } 15813 15814 /* 15815 * In the case where the lost lock ends after all intersecting locks, 15816 * unlock the last part of the lost lock range. 15817 */ 15818 if (cur_start != start_check(lost_flp_end)) { 15819 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15820 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15821 "lost lock region [%"PRIx64" - %"PRIx64"]", 15822 cur_start, lost_flp->l_start + lost_flp->l_len)); 15823 15824 ul_fl.l_start = cur_start; 15825 /* 15826 * Is it an to-EOF lock? if so unlock till the end 15827 */ 15828 if (lost_flp->l_len == 0) 15829 ul_fl.l_len = 0; 15830 else 15831 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15832 15833 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15834 } 15835 15836 if (locks != NULL) 15837 flk_free_locklist(locks); 15838 15839 /* Free up our newly created locklist */ 15840 for (llp = ri_llp; llp != NULL; ) { 15841 tmp_llp = llp->ll_next; 15842 kmem_free(llp, sizeof (locklist_t)); 15843 llp = tmp_llp; 15844 } 15845 15846 /* 15847 * Now return back to the original calling nfs4frlock() 15848 * and let us naturally drop our seqid syncs. 15849 */ 15850 } 15851 15852 /* 15853 * Create a lost state record for the given lock reinstantiation request 15854 * and push it onto the lost state queue. 15855 */ 15856 static void 15857 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15858 nfs4_lock_owner_t *lop) 15859 { 15860 nfs4_lost_rqst_t req; 15861 nfs_lock_type4 locktype; 15862 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15863 15864 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15865 15866 locktype = flk_to_locktype(cmd, flk->l_type); 15867 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15868 NULL, NULL, lop, flk, &req, cr, vp); 15869 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 15870 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 15871 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 15872 NULL); 15873 } 15874