xref: /titanic_44/usr/src/uts/common/fs/fsflush.c (revision 18c2aff776a775d34a4c9893a4c72e0434d68e36)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
23 /*	  All Rights Reserved  	*/
24 
25 
26 /*
27  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/types.h>
34 #include <sys/t_lock.h>
35 #include <sys/param.h>
36 #include <sys/tuneable.h>
37 #include <sys/inline.h>
38 #include <sys/systm.h>
39 #include <sys/proc.h>
40 #include <sys/user.h>
41 #include <sys/var.h>
42 #include <sys/buf.h>
43 #include <sys/vfs.h>
44 #include <sys/cred.h>
45 #include <sys/kmem.h>
46 #include <sys/vnode.h>
47 #include <sys/swap.h>
48 #include <sys/vm.h>
49 #include <sys/debug.h>
50 #include <sys/cmn_err.h>
51 #include <sys/sysinfo.h>
52 #include <sys/callb.h>
53 #include <sys/reboot.h>
54 #include <sys/time.h>
55 #include <sys/fs/ufs_inode.h>
56 #include <sys/fs/ufs_bio.h>
57 
58 #include <vm/hat.h>
59 #include <vm/page.h>
60 #include <vm/pvn.h>
61 #include <vm/seg_kmem.h>
62 
63 int doiflush = 1;	/* non-zero to turn inode flushing on */
64 int dopageflush = 1;	/* non-zero to turn page flushing on */
65 
66 /*
67  * To improve boot performance, don't run the inode flushing loop until
68  * the specified number of seconds after boot.  To revert to the old
69  * behavior, set fsflush_iflush_delay to 0.  We have not created any new
70  * filesystem danger that did not exist previously, since there is always a
71  * window in between when fsflush does the inode flush loop during which the
72  * system could crash, fail to sync the filesystem, and fsck will be needed
73  * to recover.  We have, however, widened this window.  Finally,
74  * we never delay inode flushing if we're booting into single user mode,
75  * where the administrator may be modifying files or using fsck.  This
76  * modification avoids inode flushes during boot whose only purpose is to
77  * update atimes on files which have been accessed during boot.
78  */
79 int fsflush_iflush_delay = 60;
80 
81 kcondvar_t fsflush_cv;
82 static kmutex_t fsflush_lock;	/* just for the cv_wait */
83 ksema_t fsflush_sema;		/* to serialize with reboot */
84 
85 /*
86  * some statistics for fsflush_do_pages
87  */
88 typedef struct {
89 	ulong_t fsf_scan;	/* number of pages scanned */
90 	ulong_t fsf_examined;	/* number of page_t's actually examined, can */
91 				/* be less than fsf_scan due to large pages */
92 	ulong_t fsf_locked;	/* pages we actually page_lock()ed */
93 	ulong_t fsf_modified;	/* number of modified pages found */
94 	ulong_t fsf_coalesce;	/* number of page coalesces done */
95 	ulong_t fsf_time;	/* nanoseconds of run time */
96 	ulong_t fsf_releases;	/* number of page_release() done */
97 } fsf_stat_t;
98 
99 fsf_stat_t fsf_recent;	/* counts for most recent duty cycle */
100 fsf_stat_t fsf_total;	/* total of counts */
101 ulong_t fsf_cycles;	/* number of runs refelected in fsf_total */
102 
103 /*
104  * data used to determine when we can coalese consecutive free pages
105  * into larger pages.
106  */
107 #define	MAX_PAGESIZES	32
108 static ulong_t		fsf_npgsz;
109 static pgcnt_t		fsf_pgcnt[MAX_PAGESIZES];
110 static pgcnt_t		fsf_mask[MAX_PAGESIZES];
111 
112 
113 /*
114  * Scan page_t's and issue I/O's for modified pages.
115  *
116  * Also coalesces consecutive small sized free pages into the next larger
117  * pagesize. This costs a tiny bit of time in fsflush, but will reduce time
118  * spent scanning on later passes and for anybody allocating large pages.
119  */
120 static void
121 fsflush_do_pages()
122 {
123 	vnode_t		*vp;
124 	ulong_t		pcount;
125 	hrtime_t	timer = gethrtime();
126 	ulong_t		releases = 0;
127 	ulong_t		nexamined = 0;
128 	ulong_t		nlocked = 0;
129 	ulong_t		nmodified = 0;
130 	ulong_t		ncoalesce = 0;
131 	int		mod;
132 	u_offset_t	offset;
133 	uint_t		szc;
134 
135 	page_t		*coal_page = NULL;  /* 1st page in group to coalese */
136 	uint_t		coal_szc = 0;	    /* size code, coal_page->p_szc */
137 	uint_t		coal_cnt = 0;	    /* count of pages seen */
138 
139 	static ulong_t	nscan = 0;
140 	static pgcnt_t	last_total_pages = 0;
141 	static void	*pp_cookie = NULL;
142 	static page_t	*pp;
143 
144 	/*
145 	 * Check to see if total_pages has changed.
146 	 */
147 	if (total_pages != last_total_pages) {
148 		last_total_pages = total_pages;
149 		nscan = (last_total_pages * (tune.t_fsflushr))/v.v_autoup;
150 	}
151 
152 	/*
153 	 * On first time through initialize the cookie used for page_t scans
154 	 */
155 	if (pp_cookie == NULL)
156 		pp = page_next_scan_init(&pp_cookie);
157 
158 	pcount = 0;
159 	while (pcount <= nscan) {
160 
161 		/*
162 		 * move to the next page, skipping over large pages
163 		 * and issuing prefetches.
164 		 */
165 		pp = page_next_scan_large(pp, &pcount, &pp_cookie);
166 		prefetch_page_r((void *)pp);
167 		ASSERT(pp != NULL);
168 
169 		/*
170 		 * Do a bunch of dirty tests (ie. no locking) to determine
171 		 * if we can quickly skip this page. These tests are repeated
172 		 * after acquiring the page lock.
173 		 */
174 		++nexamined;
175 		if (PP_ISSWAP(pp)) {
176 			coal_page = NULL;
177 			continue;
178 		}
179 
180 		/*
181 		 * skip free pages too, but try coalescing them into larger
182 		 * pagesizes
183 		 */
184 		if (PP_ISFREE(pp)) {
185 			/*
186 			 * skip pages with a file system identity or that
187 			 * are already maximum size
188 			 */
189 			szc = pp->p_szc;
190 			if (pp->p_vnode != NULL || szc == fsf_npgsz - 1) {
191 				coal_page = NULL;
192 				continue;
193 			}
194 
195 			/*
196 			 * If not in a coalescing candidate page or the size
197 			 * codes are different, start a new candidate.
198 			 */
199 			if (coal_page == NULL || coal_szc != szc) {
200 
201 				/*
202 				 * page must be properly aligned
203 				 */
204 				if ((page_pptonum(pp) & fsf_mask[szc]) != 0) {
205 					coal_page = NULL;
206 					continue;
207 				}
208 				coal_page = pp;
209 				coal_szc = szc;
210 				coal_cnt = 1;
211 				continue;
212 			}
213 
214 			/*
215 			 * acceptable to add this to existing candidate page
216 			 */
217 			++coal_cnt;
218 			if (coal_cnt < fsf_pgcnt[coal_szc])
219 				continue;
220 
221 			/*
222 			 * We've got enough pages to coalesce, so do it.
223 			 * After promoting, we clear coal_page, so it will
224 			 * take another pass to promote this to an even
225 			 * larger page.
226 			 */
227 			++ncoalesce;
228 			(void) page_promote_size(coal_page, coal_szc);
229 			coal_page = NULL;
230 			continue;
231 		} else {
232 			coal_page = NULL;
233 		}
234 
235 		if (pp->p_vnode == &kvp ||
236 		    PAGE_LOCKED(pp) ||
237 		    pp->p_lckcnt != 0 ||
238 		    pp->p_cowcnt != 0)
239 			continue;
240 
241 
242 		/*
243 		 * Reject pages that can't be "exclusively" locked.
244 		 */
245 		if (!page_trylock(pp, SE_EXCL))
246 			continue;
247 		++nlocked;
248 
249 
250 		/*
251 		 * After locking the page, redo the above checks.
252 		 * Since we locked the page, leave out the PAGE_LOCKED() test.
253 		 */
254 		vp = pp->p_vnode;
255 		if (PP_ISSWAP(pp) ||
256 		    PP_ISFREE(pp) ||
257 		    vp == NULL ||
258 		    vp == &kvp ||
259 		    pp->p_lckcnt != 0 ||
260 		    pp->p_cowcnt != 0 ||
261 		    (vp->v_flag & VISSWAP) != 0) {
262 			page_unlock(pp);
263 			continue;
264 		}
265 
266 		ASSERT(vp->v_type != VCHR);
267 
268 		/*
269 		 * Check the modified bit. Leaving the bit alone in hardware.
270 		 * It will be cleared if we do the putpage.
271 		 */
272 		if (IS_VMODSORT(vp))
273 			mod = hat_ismod(pp);
274 		else
275 			mod = hat_pagesync(pp,
276 			    HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD;
277 
278 		if (mod) {
279 			++nmodified;
280 			offset = pp->p_offset;
281 
282 			/*
283 			 * Hold the vnode before releasing the page lock
284 			 * to prevent it from being freed and re-used by
285 			 * some other thread.
286 			 */
287 			VN_HOLD(vp);
288 
289 			page_unlock(pp);
290 
291 			(void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_ASYNC,
292 			    kcred);
293 
294 			VN_RELE(vp);
295 		} else {
296 
297 			/*
298 			 * Catch any pages which should be on the cache list,
299 			 * but aren't yet.
300 			 */
301 			if (hat_page_is_mapped(pp) == 0) {
302 				++releases;
303 				(void) page_release(pp, 1);
304 			} else {
305 				page_unlock(pp);
306 			}
307 		}
308 	}
309 
310 	/*
311 	 * maintain statistics
312 	 * reset every million wakeups, just to avoid overflow
313 	 */
314 	if (++fsf_cycles == 1000000) {
315 		fsf_cycles = 0;
316 		fsf_total.fsf_scan = 0;
317 		fsf_total.fsf_examined = 0;
318 		fsf_total.fsf_locked = 0;
319 		fsf_total.fsf_modified = 0;
320 		fsf_total.fsf_coalesce = 0;
321 		fsf_total.fsf_time = 0;
322 		fsf_total.fsf_releases = 0;
323 	} else {
324 		fsf_total.fsf_scan += fsf_recent.fsf_scan = nscan;
325 		fsf_total.fsf_examined += fsf_recent.fsf_examined = nexamined;
326 		fsf_total.fsf_locked += fsf_recent.fsf_locked = nlocked;
327 		fsf_total.fsf_modified += fsf_recent.fsf_modified = nmodified;
328 		fsf_total.fsf_coalesce += fsf_recent.fsf_coalesce = ncoalesce;
329 		fsf_total.fsf_time += fsf_recent.fsf_time = gethrtime() - timer;
330 		fsf_total.fsf_releases += fsf_recent.fsf_releases = releases;
331 	}
332 }
333 
334 /*
335  * As part of file system hardening, this daemon is awakened
336  * every second to flush cached data which includes the
337  * buffer cache, the inode cache and mapped pages.
338  */
339 void
340 fsflush()
341 {
342 	struct buf *bp, *dwp;
343 	struct hbuf *hp;
344 	int autoup;
345 	unsigned int ix, icount, count = 0;
346 	callb_cpr_t cprinfo;
347 	uint_t		bcount;
348 	kmutex_t	*hmp;
349 	struct vfssw *vswp;
350 
351 	proc_fsflush = ttoproc(curthread);
352 	proc_fsflush->p_cstime = 0;
353 	proc_fsflush->p_stime =  0;
354 	proc_fsflush->p_cutime =  0;
355 	proc_fsflush->p_utime = 0;
356 	bcopy("fsflush", u.u_psargs, 8);
357 	bcopy("fsflush", u.u_comm, 7);
358 
359 	mutex_init(&fsflush_lock, NULL, MUTEX_DEFAULT, NULL);
360 	sema_init(&fsflush_sema, 0, NULL, SEMA_DEFAULT, NULL);
361 
362 	/*
363 	 * Setup page coalescing.
364 	 */
365 	fsf_npgsz = page_num_pagesizes();
366 	ASSERT(fsf_npgsz < MAX_PAGESIZES);
367 	for (ix = 0; ix < fsf_npgsz - 1; ++ix) {
368 		fsf_pgcnt[ix] =
369 		    page_get_pagesize(ix + 1) / page_get_pagesize(ix);
370 		fsf_mask[ix] = page_get_pagecnt(ix + 1) - 1;
371 	}
372 
373 	autoup = v.v_autoup * hz;
374 	icount = v.v_autoup / tune.t_fsflushr;
375 	CALLB_CPR_INIT(&cprinfo, &fsflush_lock, callb_generic_cpr, "fsflush");
376 loop:
377 	sema_v(&fsflush_sema);
378 	mutex_enter(&fsflush_lock);
379 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
380 	cv_wait(&fsflush_cv, &fsflush_lock);		/* wait for clock */
381 	CALLB_CPR_SAFE_END(&cprinfo, &fsflush_lock);
382 	mutex_exit(&fsflush_lock);
383 	sema_p(&fsflush_sema);
384 
385 	/*
386 	 * Write back all old B_DELWRI buffers on the freelist.
387 	 */
388 	bcount = 0;
389 	for (ix = 0; ix < v.v_hbuf; ix++) {
390 
391 		hp = &hbuf[ix];
392 		dwp = (struct buf *)&dwbuf[ix];
393 
394 		bcount += (hp->b_length);
395 
396 		if (dwp->av_forw == dwp) {
397 			continue;
398 		}
399 
400 		hmp = &hbuf[ix].b_lock;
401 		mutex_enter(hmp);
402 		bp = dwp->av_forw;
403 
404 		/*
405 		 * Go down only on the delayed write lists.
406 		 */
407 		while (bp != dwp) {
408 
409 			ASSERT(bp->b_flags & B_DELWRI);
410 
411 			if ((bp->b_flags & B_DELWRI) &&
412 			    (lbolt - bp->b_start >= autoup) &&
413 			    sema_tryp(&bp->b_sem)) {
414 				bp->b_flags |= B_ASYNC;
415 				hp->b_length--;
416 				notavail(bp);
417 				mutex_exit(hmp);
418 				if (bp->b_vp == NULL) {
419 					BWRITE(bp);
420 				} else {
421 					UFS_BWRITE(VTOI(bp->b_vp)->i_ufsvfs,
422 									bp);
423 				}
424 				mutex_enter(hmp);
425 				bp = dwp->av_forw;
426 			} else {
427 				bp = bp->av_forw;
428 			}
429 		}
430 		mutex_exit(hmp);
431 	}
432 
433 	/*
434 	 *
435 	 * There is no need to wakeup any thread waiting on bio_mem_cv
436 	 * since brelse will wake them up as soon as IO is complete.
437 	 */
438 	bfreelist.b_bcount = bcount;
439 
440 	if (dopageflush)
441 		fsflush_do_pages();
442 
443 	if (!doiflush)
444 		goto loop;
445 
446 	/*
447 	 * If the system was not booted to single user mode, skip the
448 	 * inode flushing until after fsflush_iflush_delay secs have elapsed.
449 	 */
450 	if ((boothowto & RB_SINGLE) == 0 &&
451 	    (lbolt64 / hz) < fsflush_iflush_delay)
452 		goto loop;
453 
454 	/*
455 	 * Flush cached attribute information (e.g. inodes).
456 	 */
457 	if (++count >= icount) {
458 		count = 0;
459 
460 		/*
461 		 * Sync back cached data.
462 		 */
463 		RLOCK_VFSSW();
464 		for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
465 			if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
466 				vfs_refvfssw(vswp);
467 				RUNLOCK_VFSSW();
468 				(void) fsop_sync_by_kind(vswp - vfssw,
469 					SYNC_ATTR, kcred);
470 				vfs_unrefvfssw(vswp);
471 				RLOCK_VFSSW();
472 			}
473 		}
474 		RUNLOCK_VFSSW();
475 	}
476 	goto loop;
477 }
478