1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2012 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2014 Toomas Soome <tsoome@me.com> 26 */ 27 28 #include <stdio.h> 29 #include <stdlib.h> 30 #include <errno.h> 31 #include <strings.h> 32 #include <unistd.h> 33 #include <uuid/uuid.h> 34 #include <libintl.h> 35 #include <sys/types.h> 36 #include <sys/dkio.h> 37 #include <sys/vtoc.h> 38 #include <sys/mhd.h> 39 #include <sys/param.h> 40 #include <sys/dktp/fdisk.h> 41 #include <sys/efi_partition.h> 42 #include <sys/byteorder.h> 43 #include <sys/ddi.h> 44 45 static struct uuid_to_ptag { 46 struct uuid uuid; 47 } conversion_array[] = { 48 { EFI_UNUSED }, 49 { EFI_BOOT }, 50 { EFI_ROOT }, 51 { EFI_SWAP }, 52 { EFI_USR }, 53 { EFI_BACKUP }, 54 { 0 }, /* STAND is never used */ 55 { EFI_VAR }, 56 { EFI_HOME }, 57 { EFI_ALTSCTR }, 58 { 0 }, /* CACHE (cachefs) is never used */ 59 { EFI_RESERVED }, 60 { EFI_SYSTEM }, 61 { EFI_LEGACY_MBR }, 62 { EFI_SYMC_PUB }, 63 { EFI_SYMC_CDS }, 64 { EFI_MSFT_RESV }, 65 { EFI_DELL_BASIC }, 66 { EFI_DELL_RAID }, 67 { EFI_DELL_SWAP }, 68 { EFI_DELL_LVM }, 69 { EFI_DELL_RESV }, 70 { EFI_AAPL_HFS }, 71 { EFI_AAPL_UFS }, 72 { EFI_BIOS_BOOT }, 73 { EFI_FREEBSD_BOOT }, 74 { EFI_FREEBSD_SWAP }, 75 { EFI_FREEBSD_UFS }, 76 { EFI_FREEBSD_VINUM }, 77 { EFI_FREEBSD_ZFS } 78 }; 79 80 /* 81 * Default vtoc information for non-SVr4 partitions 82 */ 83 struct dk_map2 default_vtoc_map[NDKMAP] = { 84 { V_ROOT, 0 }, /* a - 0 */ 85 { V_SWAP, V_UNMNT }, /* b - 1 */ 86 { V_BACKUP, V_UNMNT }, /* c - 2 */ 87 { V_UNASSIGNED, 0 }, /* d - 3 */ 88 { V_UNASSIGNED, 0 }, /* e - 4 */ 89 { V_UNASSIGNED, 0 }, /* f - 5 */ 90 { V_USR, 0 }, /* g - 6 */ 91 { V_UNASSIGNED, 0 }, /* h - 7 */ 92 93 #if defined(_SUNOS_VTOC_16) 94 95 #if defined(i386) || defined(__amd64) 96 { V_BOOT, V_UNMNT }, /* i - 8 */ 97 { V_ALTSCTR, 0 }, /* j - 9 */ 98 99 #else 100 #error No VTOC format defined. 101 #endif /* defined(i386) */ 102 103 { V_UNASSIGNED, 0 }, /* k - 10 */ 104 { V_UNASSIGNED, 0 }, /* l - 11 */ 105 { V_UNASSIGNED, 0 }, /* m - 12 */ 106 { V_UNASSIGNED, 0 }, /* n - 13 */ 107 { V_UNASSIGNED, 0 }, /* o - 14 */ 108 { V_UNASSIGNED, 0 }, /* p - 15 */ 109 #endif /* defined(_SUNOS_VTOC_16) */ 110 }; 111 112 #ifdef DEBUG 113 int efi_debug = 1; 114 #else 115 int efi_debug = 0; 116 #endif 117 118 extern unsigned int efi_crc32(const unsigned char *, unsigned int); 119 static int efi_read(int, struct dk_gpt *); 120 121 static int 122 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize) 123 { 124 struct dk_minfo disk_info; 125 126 if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1) 127 return (errno); 128 *capacity = disk_info.dki_capacity; 129 *lbsize = disk_info.dki_lbsize; 130 return (0); 131 } 132 133 /* 134 * the number of blocks the EFI label takes up (round up to nearest 135 * block) 136 */ 137 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \ 138 ((l) - 1)) / (l))) 139 /* number of partitions -- limited by what we can malloc */ 140 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \ 141 sizeof (struct dk_part)) 142 143 int 144 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc) 145 { 146 diskaddr_t capacity; 147 uint_t lbsize; 148 uint_t nblocks; 149 size_t length; 150 struct dk_gpt *vptr; 151 struct uuid uuid; 152 153 if (read_disk_info(fd, &capacity, &lbsize) != 0) { 154 if (efi_debug) 155 (void) fprintf(stderr, 156 "couldn't read disk information\n"); 157 return (-1); 158 } 159 160 nblocks = NBLOCKS(nparts, lbsize); 161 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) { 162 /* 16K plus one block for the GPT */ 163 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1; 164 } 165 166 if (nparts > MAX_PARTS) { 167 if (efi_debug) { 168 (void) fprintf(stderr, 169 "the maximum number of partitions supported is %lu\n", 170 MAX_PARTS); 171 } 172 return (-1); 173 } 174 175 length = sizeof (struct dk_gpt) + 176 sizeof (struct dk_part) * (nparts - 1); 177 178 if ((*vtoc = calloc(length, 1)) == NULL) 179 return (-1); 180 181 vptr = *vtoc; 182 183 vptr->efi_version = EFI_VERSION_CURRENT; 184 vptr->efi_lbasize = lbsize; 185 vptr->efi_nparts = nparts; 186 /* 187 * add one block here for the PMBR; on disks with a 512 byte 188 * block size and 128 or fewer partitions, efi_first_u_lba 189 * should work out to "34" 190 */ 191 vptr->efi_first_u_lba = nblocks + 1; 192 vptr->efi_last_lba = capacity - 1; 193 vptr->efi_altern_lba = capacity -1; 194 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks; 195 196 (void) uuid_generate((uchar_t *)&uuid); 197 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid); 198 return (0); 199 } 200 201 /* 202 * Read EFI - return partition number upon success. 203 */ 204 int 205 efi_alloc_and_read(int fd, struct dk_gpt **vtoc) 206 { 207 int rval; 208 uint32_t nparts; 209 int length; 210 211 /* figure out the number of entries that would fit into 16K */ 212 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t); 213 length = (int) sizeof (struct dk_gpt) + 214 (int) sizeof (struct dk_part) * (nparts - 1); 215 if ((*vtoc = calloc(length, 1)) == NULL) 216 return (VT_ERROR); 217 218 (*vtoc)->efi_nparts = nparts; 219 rval = efi_read(fd, *vtoc); 220 221 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) { 222 void *tmp; 223 length = (int) sizeof (struct dk_gpt) + 224 (int) sizeof (struct dk_part) * 225 ((*vtoc)->efi_nparts - 1); 226 nparts = (*vtoc)->efi_nparts; 227 if ((tmp = realloc(*vtoc, length)) == NULL) { 228 free (*vtoc); 229 *vtoc = NULL; 230 return (VT_ERROR); 231 } else { 232 *vtoc = tmp; 233 rval = efi_read(fd, *vtoc); 234 } 235 } 236 237 if (rval < 0) { 238 if (efi_debug) { 239 (void) fprintf(stderr, 240 "read of EFI table failed, rval=%d\n", rval); 241 } 242 free (*vtoc); 243 *vtoc = NULL; 244 } 245 246 return (rval); 247 } 248 249 static int 250 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc) 251 { 252 void *data = dk_ioc->dki_data; 253 int error; 254 255 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data; 256 error = ioctl(fd, cmd, (void *)dk_ioc); 257 dk_ioc->dki_data = data; 258 259 return (error); 260 } 261 262 static int 263 check_label(int fd, dk_efi_t *dk_ioc) 264 { 265 efi_gpt_t *efi; 266 uint_t crc; 267 268 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) { 269 switch (errno) { 270 case EIO: 271 return (VT_EIO); 272 default: 273 return (VT_ERROR); 274 } 275 } 276 efi = dk_ioc->dki_data; 277 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) { 278 if (efi_debug) 279 (void) fprintf(stderr, 280 "Bad EFI signature: 0x%llx != 0x%llx\n", 281 (long long)efi->efi_gpt_Signature, 282 (long long)LE_64(EFI_SIGNATURE)); 283 return (VT_EINVAL); 284 } 285 286 /* 287 * check CRC of the header; the size of the header should 288 * never be larger than one block 289 */ 290 crc = efi->efi_gpt_HeaderCRC32; 291 efi->efi_gpt_HeaderCRC32 = 0; 292 293 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) || 294 crc != LE_32(efi_crc32((unsigned char *)efi, 295 LE_32(efi->efi_gpt_HeaderSize)))) { 296 if (efi_debug) 297 (void) fprintf(stderr, 298 "Bad EFI CRC: 0x%x != 0x%x\n", 299 crc, 300 LE_32(efi_crc32((unsigned char *)efi, 301 sizeof (struct efi_gpt)))); 302 return (VT_EINVAL); 303 } 304 305 return (0); 306 } 307 308 static int 309 efi_read(int fd, struct dk_gpt *vtoc) 310 { 311 int i, j; 312 int label_len; 313 int rval = 0; 314 int vdc_flag = 0; 315 struct dk_minfo disk_info; 316 dk_efi_t dk_ioc; 317 efi_gpt_t *efi; 318 efi_gpe_t *efi_parts; 319 struct dk_cinfo dki_info; 320 uint32_t user_length; 321 boolean_t legacy_label = B_FALSE; 322 323 /* 324 * get the partition number for this file descriptor. 325 */ 326 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 327 if (efi_debug) { 328 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 329 } 330 switch (errno) { 331 case EIO: 332 return (VT_EIO); 333 case EINVAL: 334 return (VT_EINVAL); 335 default: 336 return (VT_ERROR); 337 } 338 } 339 340 if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) && 341 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) { 342 /* 343 * The controller and drive name "vdc" (virtual disk client) 344 * indicates a LDoms virtual disk. 345 */ 346 vdc_flag++; 347 } 348 349 /* get the LBA size */ 350 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) { 351 if (efi_debug) { 352 (void) fprintf(stderr, 353 "assuming LBA 512 bytes %d\n", 354 errno); 355 } 356 disk_info.dki_lbsize = DEV_BSIZE; 357 } 358 if (disk_info.dki_lbsize == 0) { 359 if (efi_debug) { 360 (void) fprintf(stderr, 361 "efi_read: assuming LBA 512 bytes\n"); 362 } 363 disk_info.dki_lbsize = DEV_BSIZE; 364 } 365 /* 366 * Read the EFI GPT to figure out how many partitions we need 367 * to deal with. 368 */ 369 dk_ioc.dki_lba = 1; 370 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) { 371 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize; 372 } else { 373 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) + 374 disk_info.dki_lbsize; 375 if (label_len % disk_info.dki_lbsize) { 376 /* pad to physical sector size */ 377 label_len += disk_info.dki_lbsize; 378 label_len &= ~(disk_info.dki_lbsize - 1); 379 } 380 } 381 382 if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL) 383 return (VT_ERROR); 384 385 dk_ioc.dki_length = disk_info.dki_lbsize; 386 user_length = vtoc->efi_nparts; 387 efi = dk_ioc.dki_data; 388 if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) { 389 /* 390 * No valid label here; try the alternate. Note that here 391 * we just read GPT header and save it into dk_ioc.data, 392 * Later, we will read GUID partition entry array if we 393 * can get valid GPT header. 394 */ 395 396 /* 397 * This is a workaround for legacy systems. In the past, the 398 * last sector of SCSI disk was invisible on x86 platform. At 399 * that time, backup label was saved on the next to the last 400 * sector. It is possible for users to move a disk from previous 401 * solaris system to present system. Here, we attempt to search 402 * legacy backup EFI label first. 403 */ 404 dk_ioc.dki_lba = disk_info.dki_capacity - 2; 405 dk_ioc.dki_length = disk_info.dki_lbsize; 406 rval = check_label(fd, &dk_ioc); 407 if (rval == VT_EINVAL) { 408 /* 409 * we didn't find legacy backup EFI label, try to 410 * search backup EFI label in the last block. 411 */ 412 dk_ioc.dki_lba = disk_info.dki_capacity - 1; 413 dk_ioc.dki_length = disk_info.dki_lbsize; 414 rval = check_label(fd, &dk_ioc); 415 if (rval == 0) { 416 legacy_label = B_TRUE; 417 if (efi_debug) 418 (void) fprintf(stderr, 419 "efi_read: primary label corrupt; " 420 "using EFI backup label located on" 421 " the last block\n"); 422 } 423 } else { 424 if ((efi_debug) && (rval == 0)) 425 (void) fprintf(stderr, "efi_read: primary label" 426 " corrupt; using legacy EFI backup label " 427 " located on the next to last block\n"); 428 } 429 430 if (rval == 0) { 431 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 432 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT; 433 vtoc->efi_nparts = 434 LE_32(efi->efi_gpt_NumberOfPartitionEntries); 435 /* 436 * Partition tables are between backup GPT header 437 * table and ParitionEntryLBA (the starting LBA of 438 * the GUID partition entries array). Now that we 439 * already got valid GPT header and saved it in 440 * dk_ioc.dki_data, we try to get GUID partition 441 * entry array here. 442 */ 443 /* LINTED */ 444 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data 445 + disk_info.dki_lbsize); 446 if (legacy_label) 447 dk_ioc.dki_length = disk_info.dki_capacity - 1 - 448 dk_ioc.dki_lba; 449 else 450 dk_ioc.dki_length = disk_info.dki_capacity - 2 - 451 dk_ioc.dki_lba; 452 dk_ioc.dki_length *= disk_info.dki_lbsize; 453 if (dk_ioc.dki_length > 454 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) { 455 rval = VT_EINVAL; 456 } else { 457 /* 458 * read GUID partition entry array 459 */ 460 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 461 } 462 } 463 464 } else if (rval == 0) { 465 466 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 467 /* LINTED */ 468 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data 469 + disk_info.dki_lbsize); 470 dk_ioc.dki_length = label_len - disk_info.dki_lbsize; 471 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 472 473 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) { 474 /* 475 * When the device is a LDoms virtual disk, the DKIOCGETEFI 476 * ioctl can fail with EINVAL if the virtual disk backend 477 * is a ZFS volume serviced by a domain running an old version 478 * of Solaris. This is because the DKIOCGETEFI ioctl was 479 * initially incorrectly implemented for a ZFS volume and it 480 * expected the GPT and GPE to be retrieved with a single ioctl. 481 * So we try to read the GPT and the GPE using that old style 482 * ioctl. 483 */ 484 dk_ioc.dki_lba = 1; 485 dk_ioc.dki_length = label_len; 486 rval = check_label(fd, &dk_ioc); 487 } 488 489 if (rval < 0) { 490 free(efi); 491 return (rval); 492 } 493 494 /* LINTED -- always longlong aligned */ 495 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize); 496 497 /* 498 * Assemble this into a "dk_gpt" struct for easier 499 * digestibility by applications. 500 */ 501 vtoc->efi_version = LE_32(efi->efi_gpt_Revision); 502 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries); 503 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry); 504 vtoc->efi_lbasize = disk_info.dki_lbsize; 505 vtoc->efi_last_lba = disk_info.dki_capacity - 1; 506 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA); 507 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA); 508 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); 509 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID); 510 511 /* 512 * If the array the user passed in is too small, set the length 513 * to what it needs to be and return 514 */ 515 if (user_length < vtoc->efi_nparts) { 516 return (VT_EINVAL); 517 } 518 519 for (i = 0; i < vtoc->efi_nparts; i++) { 520 521 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid, 522 efi_parts[i].efi_gpe_PartitionTypeGUID); 523 524 for (j = 0; 525 j < sizeof (conversion_array) 526 / sizeof (struct uuid_to_ptag); j++) { 527 528 if (bcmp(&vtoc->efi_parts[i].p_guid, 529 &conversion_array[j].uuid, 530 sizeof (struct uuid)) == 0) { 531 vtoc->efi_parts[i].p_tag = j; 532 break; 533 } 534 } 535 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) 536 continue; 537 vtoc->efi_parts[i].p_flag = 538 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs); 539 vtoc->efi_parts[i].p_start = 540 LE_64(efi_parts[i].efi_gpe_StartingLBA); 541 vtoc->efi_parts[i].p_size = 542 LE_64(efi_parts[i].efi_gpe_EndingLBA) - 543 vtoc->efi_parts[i].p_start + 1; 544 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 545 vtoc->efi_parts[i].p_name[j] = 546 (uchar_t)LE_16( 547 efi_parts[i].efi_gpe_PartitionName[j]); 548 } 549 550 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid, 551 efi_parts[i].efi_gpe_UniquePartitionGUID); 552 } 553 free(efi); 554 555 return (dki_info.dki_partition); 556 } 557 558 /* writes a "protective" MBR */ 559 static int 560 write_pmbr(int fd, struct dk_gpt *vtoc) 561 { 562 dk_efi_t dk_ioc; 563 struct mboot mb; 564 uchar_t *cp; 565 diskaddr_t size_in_lba; 566 uchar_t *buf; 567 int len; 568 569 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize; 570 buf = calloc(len, 1); 571 572 /* 573 * Preserve any boot code and disk signature if the first block is 574 * already an MBR. 575 */ 576 dk_ioc.dki_lba = 0; 577 dk_ioc.dki_length = len; 578 /* LINTED -- always longlong aligned */ 579 dk_ioc.dki_data = (efi_gpt_t *)buf; 580 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { 581 (void *) memcpy(&mb, buf, sizeof (mb)); 582 bzero(&mb, sizeof (mb)); 583 mb.signature = LE_16(MBB_MAGIC); 584 } else { 585 (void *) memcpy(&mb, buf, sizeof (mb)); 586 if (mb.signature != LE_16(MBB_MAGIC)) { 587 bzero(&mb, sizeof (mb)); 588 mb.signature = LE_16(MBB_MAGIC); 589 } 590 } 591 592 bzero(&mb.parts, sizeof (mb.parts)); 593 cp = (uchar_t *)&mb.parts[0]; 594 /* bootable or not */ 595 *cp++ = 0; 596 /* beginning CHS; 0xffffff if not representable */ 597 *cp++ = 0xff; 598 *cp++ = 0xff; 599 *cp++ = 0xff; 600 /* OS type */ 601 *cp++ = EFI_PMBR; 602 /* ending CHS; 0xffffff if not representable */ 603 *cp++ = 0xff; 604 *cp++ = 0xff; 605 *cp++ = 0xff; 606 /* starting LBA: 1 (little endian format) by EFI definition */ 607 *cp++ = 0x01; 608 *cp++ = 0x00; 609 *cp++ = 0x00; 610 *cp++ = 0x00; 611 /* ending LBA: last block on the disk (little endian format) */ 612 size_in_lba = vtoc->efi_last_lba; 613 if (size_in_lba < 0xffffffff) { 614 *cp++ = (size_in_lba & 0x000000ff); 615 *cp++ = (size_in_lba & 0x0000ff00) >> 8; 616 *cp++ = (size_in_lba & 0x00ff0000) >> 16; 617 *cp++ = (size_in_lba & 0xff000000) >> 24; 618 } else { 619 *cp++ = 0xff; 620 *cp++ = 0xff; 621 *cp++ = 0xff; 622 *cp++ = 0xff; 623 } 624 625 (void *) memcpy(buf, &mb, sizeof (mb)); 626 /* LINTED -- always longlong aligned */ 627 dk_ioc.dki_data = (efi_gpt_t *)buf; 628 dk_ioc.dki_lba = 0; 629 dk_ioc.dki_length = len; 630 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 631 free(buf); 632 switch (errno) { 633 case EIO: 634 return (VT_EIO); 635 case EINVAL: 636 return (VT_EINVAL); 637 default: 638 return (VT_ERROR); 639 } 640 } 641 free(buf); 642 return (0); 643 } 644 645 /* make sure the user specified something reasonable */ 646 static int 647 check_input(struct dk_gpt *vtoc) 648 { 649 int resv_part = -1; 650 int i, j; 651 diskaddr_t istart, jstart, isize, jsize, endsect; 652 653 /* 654 * Sanity-check the input (make sure no partitions overlap) 655 */ 656 for (i = 0; i < vtoc->efi_nparts; i++) { 657 /* It can't be unassigned and have an actual size */ 658 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 659 (vtoc->efi_parts[i].p_size != 0)) { 660 if (efi_debug) { 661 (void) fprintf(stderr, 662 "partition %d is \"unassigned\" but has a size of %llu", 663 i, 664 vtoc->efi_parts[i].p_size); 665 } 666 return (VT_EINVAL); 667 } 668 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 669 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid)) 670 continue; 671 /* we have encountered an unknown uuid */ 672 vtoc->efi_parts[i].p_tag = 0xff; 673 } 674 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 675 if (resv_part != -1) { 676 if (efi_debug) { 677 (void) fprintf(stderr, 678 "found duplicate reserved partition at %d\n", 679 i); 680 } 681 return (VT_EINVAL); 682 } 683 resv_part = i; 684 } 685 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 686 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 687 if (efi_debug) { 688 (void) fprintf(stderr, 689 "Partition %d starts at %llu. ", 690 i, 691 vtoc->efi_parts[i].p_start); 692 (void) fprintf(stderr, 693 "It must be between %llu and %llu.\n", 694 vtoc->efi_first_u_lba, 695 vtoc->efi_last_u_lba); 696 } 697 return (VT_EINVAL); 698 } 699 if ((vtoc->efi_parts[i].p_start + 700 vtoc->efi_parts[i].p_size < 701 vtoc->efi_first_u_lba) || 702 (vtoc->efi_parts[i].p_start + 703 vtoc->efi_parts[i].p_size > 704 vtoc->efi_last_u_lba + 1)) { 705 if (efi_debug) { 706 (void) fprintf(stderr, 707 "Partition %d ends at %llu. ", 708 i, 709 vtoc->efi_parts[i].p_start + 710 vtoc->efi_parts[i].p_size); 711 (void) fprintf(stderr, 712 "It must be between %llu and %llu.\n", 713 vtoc->efi_first_u_lba, 714 vtoc->efi_last_u_lba); 715 } 716 return (VT_EINVAL); 717 } 718 719 for (j = 0; j < vtoc->efi_nparts; j++) { 720 isize = vtoc->efi_parts[i].p_size; 721 jsize = vtoc->efi_parts[j].p_size; 722 istart = vtoc->efi_parts[i].p_start; 723 jstart = vtoc->efi_parts[j].p_start; 724 if ((i != j) && (isize != 0) && (jsize != 0)) { 725 endsect = jstart + jsize -1; 726 if ((jstart <= istart) && 727 (istart <= endsect)) { 728 if (efi_debug) { 729 (void) fprintf(stderr, 730 "Partition %d overlaps partition %d.", 731 i, j); 732 } 733 return (VT_EINVAL); 734 } 735 } 736 } 737 } 738 /* just a warning for now */ 739 if ((resv_part == -1) && efi_debug) { 740 (void) fprintf(stderr, 741 "no reserved partition found\n"); 742 } 743 return (0); 744 } 745 746 /* 747 * add all the unallocated space to the current label 748 */ 749 int 750 efi_use_whole_disk(int fd) 751 { 752 struct dk_gpt *efi_label; 753 int rval; 754 int i; 755 uint_t phy_last_slice = 0; 756 diskaddr_t pl_start = 0; 757 diskaddr_t pl_size; 758 759 rval = efi_alloc_and_read(fd, &efi_label); 760 if (rval < 0) { 761 return (rval); 762 } 763 764 /* find the last physically non-zero partition */ 765 for (i = 0; i < efi_label->efi_nparts - 2; i ++) { 766 if (pl_start < efi_label->efi_parts[i].p_start) { 767 pl_start = efi_label->efi_parts[i].p_start; 768 phy_last_slice = i; 769 } 770 } 771 pl_size = efi_label->efi_parts[phy_last_slice].p_size; 772 773 /* 774 * If alter_lba is 1, we are using the backup label. 775 * Since we can locate the backup label by disk capacity, 776 * there must be no unallocated space. 777 */ 778 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba 779 >= efi_label->efi_last_lba)) { 780 if (efi_debug) { 781 (void) fprintf(stderr, 782 "efi_use_whole_disk: requested space not found\n"); 783 } 784 efi_free(efi_label); 785 return (VT_ENOSPC); 786 } 787 788 /* 789 * If there is space between the last physically non-zero partition 790 * and the reserved partition, just add the unallocated space to this 791 * area. Otherwise, the unallocated space is added to the last 792 * physically non-zero partition. 793 */ 794 if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba - 795 EFI_MIN_RESV_SIZE) { 796 efi_label->efi_parts[phy_last_slice].p_size += 797 efi_label->efi_last_lba - efi_label->efi_altern_lba; 798 } 799 800 /* 801 * Move the reserved partition. There is currently no data in 802 * here except fabricated devids (which get generated via 803 * efi_write()). So there is no need to copy data. 804 */ 805 efi_label->efi_parts[efi_label->efi_nparts - 1].p_start += 806 efi_label->efi_last_lba - efi_label->efi_altern_lba; 807 efi_label->efi_last_u_lba += efi_label->efi_last_lba 808 - efi_label->efi_altern_lba; 809 810 rval = efi_write(fd, efi_label); 811 if (rval < 0) { 812 if (efi_debug) { 813 (void) fprintf(stderr, 814 "efi_use_whole_disk:fail to write label, rval=%d\n", 815 rval); 816 } 817 efi_free(efi_label); 818 return (rval); 819 } 820 821 efi_free(efi_label); 822 return (0); 823 } 824 825 826 /* 827 * write EFI label and backup label 828 */ 829 int 830 efi_write(int fd, struct dk_gpt *vtoc) 831 { 832 dk_efi_t dk_ioc; 833 efi_gpt_t *efi; 834 efi_gpe_t *efi_parts; 835 int i, j; 836 struct dk_cinfo dki_info; 837 int nblocks; 838 diskaddr_t lba_backup_gpt_hdr; 839 840 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 841 if (efi_debug) 842 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 843 switch (errno) { 844 case EIO: 845 return (VT_EIO); 846 case EINVAL: 847 return (VT_EINVAL); 848 default: 849 return (VT_ERROR); 850 } 851 } 852 853 if (check_input(vtoc)) 854 return (VT_EINVAL); 855 856 dk_ioc.dki_lba = 1; 857 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) { 858 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize; 859 } else { 860 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts, 861 vtoc->efi_lbasize) * 862 vtoc->efi_lbasize; 863 } 864 865 /* 866 * the number of blocks occupied by GUID partition entry array 867 */ 868 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1; 869 870 /* 871 * Backup GPT header is located on the block after GUID 872 * partition entry array. Here, we calculate the address 873 * for backup GPT header. 874 */ 875 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks; 876 if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL) 877 return (VT_ERROR); 878 879 efi = dk_ioc.dki_data; 880 881 /* stuff user's input into EFI struct */ 882 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 883 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */ 884 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt)); 885 efi->efi_gpt_Reserved1 = 0; 886 efi->efi_gpt_MyLBA = LE_64(1ULL); 887 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr); 888 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba); 889 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba); 890 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL); 891 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts); 892 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe)); 893 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid); 894 895 /* LINTED -- always longlong aligned */ 896 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize); 897 898 for (i = 0; i < vtoc->efi_nparts; i++) { 899 for (j = 0; 900 j < sizeof (conversion_array) / 901 sizeof (struct uuid_to_ptag); j++) { 902 903 if (vtoc->efi_parts[i].p_tag == j) { 904 UUID_LE_CONVERT( 905 efi_parts[i].efi_gpe_PartitionTypeGUID, 906 conversion_array[j].uuid); 907 break; 908 } 909 } 910 911 if (j == sizeof (conversion_array) / 912 sizeof (struct uuid_to_ptag)) { 913 /* 914 * If we didn't have a matching uuid match, bail here. 915 * Don't write a label with unknown uuid. 916 */ 917 if (efi_debug) { 918 (void) fprintf(stderr, 919 "Unknown uuid for p_tag %d\n", 920 vtoc->efi_parts[i].p_tag); 921 } 922 return (VT_EINVAL); 923 } 924 925 efi_parts[i].efi_gpe_StartingLBA = 926 LE_64(vtoc->efi_parts[i].p_start); 927 efi_parts[i].efi_gpe_EndingLBA = 928 LE_64(vtoc->efi_parts[i].p_start + 929 vtoc->efi_parts[i].p_size - 1); 930 efi_parts[i].efi_gpe_Attributes.PartitionAttrs = 931 LE_16(vtoc->efi_parts[i].p_flag); 932 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 933 efi_parts[i].efi_gpe_PartitionName[j] = 934 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]); 935 } 936 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) && 937 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) { 938 (void) uuid_generate((uchar_t *) 939 &vtoc->efi_parts[i].p_uguid); 940 } 941 bcopy(&vtoc->efi_parts[i].p_uguid, 942 &efi_parts[i].efi_gpe_UniquePartitionGUID, 943 sizeof (uuid_t)); 944 } 945 efi->efi_gpt_PartitionEntryArrayCRC32 = 946 LE_32(efi_crc32((unsigned char *)efi_parts, 947 vtoc->efi_nparts * (int)sizeof (struct efi_gpe))); 948 efi->efi_gpt_HeaderCRC32 = 949 LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt))); 950 951 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 952 free(dk_ioc.dki_data); 953 switch (errno) { 954 case EIO: 955 return (VT_EIO); 956 case EINVAL: 957 return (VT_EINVAL); 958 default: 959 return (VT_ERROR); 960 } 961 } 962 963 /* write backup partition array */ 964 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1; 965 dk_ioc.dki_length -= vtoc->efi_lbasize; 966 /* LINTED */ 967 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data + 968 vtoc->efi_lbasize); 969 970 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 971 /* 972 * we wrote the primary label okay, so don't fail 973 */ 974 if (efi_debug) { 975 (void) fprintf(stderr, 976 "write of backup partitions to block %llu " 977 "failed, errno %d\n", 978 vtoc->efi_last_u_lba + 1, 979 errno); 980 } 981 } 982 /* 983 * now swap MyLBA and AlternateLBA fields and write backup 984 * partition table header 985 */ 986 dk_ioc.dki_lba = lba_backup_gpt_hdr; 987 dk_ioc.dki_length = vtoc->efi_lbasize; 988 /* LINTED */ 989 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data - 990 vtoc->efi_lbasize); 991 efi->efi_gpt_AlternateLBA = LE_64(1ULL); 992 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr); 993 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1); 994 efi->efi_gpt_HeaderCRC32 = 0; 995 efi->efi_gpt_HeaderCRC32 = 996 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data, 997 sizeof (struct efi_gpt))); 998 999 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 1000 if (efi_debug) { 1001 (void) fprintf(stderr, 1002 "write of backup header to block %llu failed, " 1003 "errno %d\n", 1004 lba_backup_gpt_hdr, 1005 errno); 1006 } 1007 } 1008 /* write the PMBR */ 1009 (void) write_pmbr(fd, vtoc); 1010 free(dk_ioc.dki_data); 1011 return (0); 1012 } 1013 1014 void 1015 efi_free(struct dk_gpt *ptr) 1016 { 1017 free(ptr); 1018 } 1019 1020 /* 1021 * Input: File descriptor 1022 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR. 1023 * Otherwise 0. 1024 */ 1025 int 1026 efi_type(int fd) 1027 { 1028 struct vtoc vtoc; 1029 struct extvtoc extvtoc; 1030 1031 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) { 1032 if (errno == ENOTSUP) 1033 return (1); 1034 else if (errno == ENOTTY) { 1035 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1) 1036 if (errno == ENOTSUP) 1037 return (1); 1038 } 1039 } 1040 return (0); 1041 } 1042 1043 void 1044 efi_err_check(struct dk_gpt *vtoc) 1045 { 1046 int resv_part = -1; 1047 int i, j; 1048 diskaddr_t istart, jstart, isize, jsize, endsect; 1049 int overlap = 0; 1050 1051 /* 1052 * make sure no partitions overlap 1053 */ 1054 for (i = 0; i < vtoc->efi_nparts; i++) { 1055 /* It can't be unassigned and have an actual size */ 1056 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 1057 (vtoc->efi_parts[i].p_size != 0)) { 1058 (void) fprintf(stderr, 1059 "partition %d is \"unassigned\" but has a size " 1060 "of %llu\n", i, vtoc->efi_parts[i].p_size); 1061 } 1062 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 1063 continue; 1064 } 1065 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 1066 if (resv_part != -1) { 1067 (void) fprintf(stderr, 1068 "found duplicate reserved partition at " 1069 "%d\n", i); 1070 } 1071 resv_part = i; 1072 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE) 1073 (void) fprintf(stderr, 1074 "Warning: reserved partition size must " 1075 "be %d sectors\n", EFI_MIN_RESV_SIZE); 1076 } 1077 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 1078 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 1079 (void) fprintf(stderr, 1080 "Partition %d starts at %llu\n", 1081 i, 1082 vtoc->efi_parts[i].p_start); 1083 (void) fprintf(stderr, 1084 "It must be between %llu and %llu.\n", 1085 vtoc->efi_first_u_lba, 1086 vtoc->efi_last_u_lba); 1087 } 1088 if ((vtoc->efi_parts[i].p_start + 1089 vtoc->efi_parts[i].p_size < 1090 vtoc->efi_first_u_lba) || 1091 (vtoc->efi_parts[i].p_start + 1092 vtoc->efi_parts[i].p_size > 1093 vtoc->efi_last_u_lba + 1)) { 1094 (void) fprintf(stderr, 1095 "Partition %d ends at %llu\n", 1096 i, 1097 vtoc->efi_parts[i].p_start + 1098 vtoc->efi_parts[i].p_size); 1099 (void) fprintf(stderr, 1100 "It must be between %llu and %llu.\n", 1101 vtoc->efi_first_u_lba, 1102 vtoc->efi_last_u_lba); 1103 } 1104 1105 for (j = 0; j < vtoc->efi_nparts; j++) { 1106 isize = vtoc->efi_parts[i].p_size; 1107 jsize = vtoc->efi_parts[j].p_size; 1108 istart = vtoc->efi_parts[i].p_start; 1109 jstart = vtoc->efi_parts[j].p_start; 1110 if ((i != j) && (isize != 0) && (jsize != 0)) { 1111 endsect = jstart + jsize -1; 1112 if ((jstart <= istart) && 1113 (istart <= endsect)) { 1114 if (!overlap) { 1115 (void) fprintf(stderr, 1116 "label error: EFI Labels do not " 1117 "support overlapping partitions\n"); 1118 } 1119 (void) fprintf(stderr, 1120 "Partition %d overlaps partition " 1121 "%d.\n", i, j); 1122 overlap = 1; 1123 } 1124 } 1125 } 1126 } 1127 /* make sure there is a reserved partition */ 1128 if (resv_part == -1) { 1129 (void) fprintf(stderr, 1130 "no reserved partition found\n"); 1131 } 1132 } 1133 1134 /* 1135 * We need to get information necessary to construct a *new* efi 1136 * label type 1137 */ 1138 int 1139 efi_auto_sense(int fd, struct dk_gpt **vtoc) 1140 { 1141 1142 int i; 1143 1144 /* 1145 * Now build the default partition table 1146 */ 1147 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) { 1148 if (efi_debug) { 1149 (void) fprintf(stderr, "efi_alloc_and_init failed.\n"); 1150 } 1151 return (-1); 1152 } 1153 1154 for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) { 1155 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag; 1156 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag; 1157 (*vtoc)->efi_parts[i].p_start = 0; 1158 (*vtoc)->efi_parts[i].p_size = 0; 1159 } 1160 /* 1161 * Make constants first 1162 * and variable partitions later 1163 */ 1164 1165 /* root partition - s0 128 MB */ 1166 (*vtoc)->efi_parts[0].p_start = 34; 1167 (*vtoc)->efi_parts[0].p_size = 262144; 1168 1169 /* partition - s1 128 MB */ 1170 (*vtoc)->efi_parts[1].p_start = 262178; 1171 (*vtoc)->efi_parts[1].p_size = 262144; 1172 1173 /* partition -s2 is NOT the Backup disk */ 1174 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED; 1175 1176 /* partition -s6 /usr partition - HOG */ 1177 (*vtoc)->efi_parts[6].p_start = 524322; 1178 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322 1179 - (1024 * 16); 1180 1181 /* efi reserved partition - s9 16K */ 1182 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16); 1183 (*vtoc)->efi_parts[8].p_size = (1024 * 16); 1184 (*vtoc)->efi_parts[8].p_tag = V_RESERVED; 1185 return (0); 1186 } 1187