1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * LDoms virtual disk client (vdc) device driver 31 * 32 * This driver runs on a guest logical domain and communicates with the virtual 33 * disk server (vds) driver running on the service domain which is exporting 34 * virtualized "disks" to the guest logical domain. 35 * 36 * The driver can be divided into four sections: 37 * 38 * 1) generic device driver housekeeping 39 * _init, _fini, attach, detach, ops structures, etc. 40 * 41 * 2) communication channel setup 42 * Setup the communications link over the LDC channel that vdc uses to 43 * talk to the vDisk server. Initialise the descriptor ring which 44 * allows the LDC clients to transfer data via memory mappings. 45 * 46 * 3) Support exported to upper layers (filesystems, etc) 47 * The upper layers call into vdc via strategy(9E) and DKIO(7I) 48 * ioctl calls. vdc will copy the data to be written to the descriptor 49 * ring or maps the buffer to store the data read by the vDisk 50 * server into the descriptor ring. It then sends a message to the 51 * vDisk server requesting it to complete the operation. 52 * 53 * 4) Handling responses from vDisk server. 54 * The vDisk server will ACK some or all of the messages vdc sends to it 55 * (this is configured during the handshake). Upon receipt of an ACK 56 * vdc will check the descriptor ring and signal to the upper layer 57 * code waiting on the IO. 58 */ 59 60 #include <sys/atomic.h> 61 #include <sys/conf.h> 62 #include <sys/disp.h> 63 #include <sys/ddi.h> 64 #include <sys/dkio.h> 65 #include <sys/efi_partition.h> 66 #include <sys/fcntl.h> 67 #include <sys/file.h> 68 #include <sys/mach_descrip.h> 69 #include <sys/modctl.h> 70 #include <sys/mdeg.h> 71 #include <sys/note.h> 72 #include <sys/open.h> 73 #include <sys/sdt.h> 74 #include <sys/stat.h> 75 #include <sys/sunddi.h> 76 #include <sys/types.h> 77 #include <sys/promif.h> 78 #include <sys/vtoc.h> 79 #include <sys/archsystm.h> 80 #include <sys/sysmacros.h> 81 82 #include <sys/cdio.h> 83 #include <sys/dktp/fdisk.h> 84 #include <sys/scsi/generic/sense.h> 85 #include <sys/scsi/impl/uscsi.h> /* Needed for defn of USCSICMD ioctl */ 86 87 #include <sys/ldoms.h> 88 #include <sys/ldc.h> 89 #include <sys/vio_common.h> 90 #include <sys/vio_mailbox.h> 91 #include <sys/vdsk_common.h> 92 #include <sys/vdsk_mailbox.h> 93 #include <sys/vdc.h> 94 95 /* 96 * function prototypes 97 */ 98 99 /* standard driver functions */ 100 static int vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred); 101 static int vdc_close(dev_t dev, int flag, int otyp, cred_t *cred); 102 static int vdc_strategy(struct buf *buf); 103 static int vdc_print(dev_t dev, char *str); 104 static int vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk); 105 static int vdc_read(dev_t dev, struct uio *uio, cred_t *cred); 106 static int vdc_write(dev_t dev, struct uio *uio, cred_t *cred); 107 static int vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, 108 cred_t *credp, int *rvalp); 109 static int vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred); 110 static int vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred); 111 112 static int vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, 113 void *arg, void **resultp); 114 static int vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); 115 static int vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); 116 117 /* setup */ 118 static void vdc_min(struct buf *bufp); 119 static int vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen); 120 static int vdc_do_ldc_init(vdc_t *vdc); 121 static int vdc_start_ldc_connection(vdc_t *vdc); 122 static int vdc_create_device_nodes(vdc_t *vdc); 123 static int vdc_create_device_nodes_efi(vdc_t *vdc); 124 static int vdc_create_device_nodes_vtoc(vdc_t *vdc); 125 static int vdc_create_device_nodes_props(vdc_t *vdc); 126 static int vdc_get_ldc_id(dev_info_t *dip, uint64_t *ldc_id); 127 static int vdc_do_ldc_up(vdc_t *vdc); 128 static void vdc_terminate_ldc(vdc_t *vdc); 129 static int vdc_init_descriptor_ring(vdc_t *vdc); 130 static void vdc_destroy_descriptor_ring(vdc_t *vdc); 131 static int vdc_setup_devid(vdc_t *vdc); 132 static void vdc_store_efi(vdc_t *vdc, struct dk_gpt *efi); 133 134 /* handshake with vds */ 135 static int vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver); 136 static int vdc_ver_negotiation(vdc_t *vdcp); 137 static int vdc_init_attr_negotiation(vdc_t *vdc); 138 static int vdc_attr_negotiation(vdc_t *vdcp); 139 static int vdc_init_dring_negotiate(vdc_t *vdc); 140 static int vdc_dring_negotiation(vdc_t *vdcp); 141 static int vdc_send_rdx(vdc_t *vdcp); 142 static int vdc_rdx_exchange(vdc_t *vdcp); 143 static boolean_t vdc_is_supported_version(vio_ver_msg_t *ver_msg); 144 145 /* processing incoming messages from vDisk server */ 146 static void vdc_process_msg_thread(vdc_t *vdc); 147 static int vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp); 148 149 static uint_t vdc_handle_cb(uint64_t event, caddr_t arg); 150 static int vdc_process_data_msg(vdc_t *vdc, vio_msg_t *msg); 151 static int vdc_process_err_msg(vdc_t *vdc, vio_msg_t msg); 152 static int vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg); 153 static int vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg); 154 static int vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *msg); 155 static int vdc_send_request(vdc_t *vdcp, int operation, 156 caddr_t addr, size_t nbytes, int slice, diskaddr_t offset, 157 int cb_type, void *cb_arg, vio_desc_direction_t dir); 158 static int vdc_map_to_shared_dring(vdc_t *vdcp, int idx); 159 static int vdc_populate_descriptor(vdc_t *vdcp, int operation, 160 caddr_t addr, size_t nbytes, int slice, diskaddr_t offset, 161 int cb_type, void *cb_arg, vio_desc_direction_t dir); 162 static int vdc_do_sync_op(vdc_t *vdcp, int operation, 163 caddr_t addr, size_t nbytes, int slice, diskaddr_t offset, 164 int cb_type, void *cb_arg, vio_desc_direction_t dir); 165 166 static int vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp); 167 static int vdc_drain_response(vdc_t *vdcp); 168 static int vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx); 169 static int vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep); 170 static int vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg); 171 172 /* dkio */ 173 static int vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode); 174 static int vdc_create_fake_geometry(vdc_t *vdc); 175 static int vdc_setup_disk_layout(vdc_t *vdc); 176 static int vdc_null_copy_func(vdc_t *vdc, void *from, void *to, 177 int mode, int dir); 178 static int vdc_get_wce_convert(vdc_t *vdc, void *from, void *to, 179 int mode, int dir); 180 static int vdc_set_wce_convert(vdc_t *vdc, void *from, void *to, 181 int mode, int dir); 182 static int vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to, 183 int mode, int dir); 184 static int vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to, 185 int mode, int dir); 186 static int vdc_get_geom_convert(vdc_t *vdc, void *from, void *to, 187 int mode, int dir); 188 static int vdc_set_geom_convert(vdc_t *vdc, void *from, void *to, 189 int mode, int dir); 190 static int vdc_uscsicmd_convert(vdc_t *vdc, void *from, void *to, 191 int mode, int dir); 192 static int vdc_get_efi_convert(vdc_t *vdc, void *from, void *to, 193 int mode, int dir); 194 static int vdc_set_efi_convert(vdc_t *vdc, void *from, void *to, 195 int mode, int dir); 196 197 /* 198 * Module variables 199 */ 200 201 /* 202 * Tunable variables to control how long vdc waits before timing out on 203 * various operations 204 */ 205 static int vdc_retries = 10; 206 static int vdc_hshake_retries = 3; 207 208 /* calculated from 'vdc_usec_timeout' during attach */ 209 static uint64_t vdc_hz_timeout; /* units: Hz */ 210 static uint64_t vdc_usec_timeout = 30 * MICROSEC; /* 30s units: ns */ 211 212 static uint64_t vdc_hz_min_ldc_delay; 213 static uint64_t vdc_min_timeout_ldc = 1 * MILLISEC; 214 static uint64_t vdc_hz_max_ldc_delay; 215 static uint64_t vdc_max_timeout_ldc = 100 * MILLISEC; 216 217 static uint64_t vdc_ldc_read_init_delay = 1 * MILLISEC; 218 static uint64_t vdc_ldc_read_max_delay = 100 * MILLISEC; 219 220 /* values for dumping - need to run in a tighter loop */ 221 static uint64_t vdc_usec_timeout_dump = 100 * MILLISEC; /* 0.1s units: ns */ 222 static int vdc_dump_retries = 100; 223 224 /* Count of the number of vdc instances attached */ 225 static volatile uint32_t vdc_instance_count = 0; 226 227 /* Soft state pointer */ 228 static void *vdc_state; 229 230 /* 231 * Controlling the verbosity of the error/debug messages 232 * 233 * vdc_msglevel - controls level of messages 234 * vdc_matchinst - 64-bit variable where each bit corresponds 235 * to the vdc instance the vdc_msglevel applies. 236 */ 237 int vdc_msglevel = 0x0; 238 uint64_t vdc_matchinst = 0ull; 239 240 /* 241 * Supported vDisk protocol version pairs. 242 * 243 * The first array entry is the latest and preferred version. 244 */ 245 static const vio_ver_t vdc_version[] = {{1, 0}}; 246 247 static struct cb_ops vdc_cb_ops = { 248 vdc_open, /* cb_open */ 249 vdc_close, /* cb_close */ 250 vdc_strategy, /* cb_strategy */ 251 vdc_print, /* cb_print */ 252 vdc_dump, /* cb_dump */ 253 vdc_read, /* cb_read */ 254 vdc_write, /* cb_write */ 255 vdc_ioctl, /* cb_ioctl */ 256 nodev, /* cb_devmap */ 257 nodev, /* cb_mmap */ 258 nodev, /* cb_segmap */ 259 nochpoll, /* cb_chpoll */ 260 ddi_prop_op, /* cb_prop_op */ 261 NULL, /* cb_str */ 262 D_MP | D_64BIT, /* cb_flag */ 263 CB_REV, /* cb_rev */ 264 vdc_aread, /* cb_aread */ 265 vdc_awrite /* cb_awrite */ 266 }; 267 268 static struct dev_ops vdc_ops = { 269 DEVO_REV, /* devo_rev */ 270 0, /* devo_refcnt */ 271 vdc_getinfo, /* devo_getinfo */ 272 nulldev, /* devo_identify */ 273 nulldev, /* devo_probe */ 274 vdc_attach, /* devo_attach */ 275 vdc_detach, /* devo_detach */ 276 nodev, /* devo_reset */ 277 &vdc_cb_ops, /* devo_cb_ops */ 278 NULL, /* devo_bus_ops */ 279 nulldev /* devo_power */ 280 }; 281 282 static struct modldrv modldrv = { 283 &mod_driverops, 284 "virtual disk client %I%", 285 &vdc_ops, 286 }; 287 288 static struct modlinkage modlinkage = { 289 MODREV_1, 290 &modldrv, 291 NULL 292 }; 293 294 /* -------------------------------------------------------------------------- */ 295 296 /* 297 * Device Driver housekeeping and setup 298 */ 299 300 int 301 _init(void) 302 { 303 int status; 304 305 if ((status = ddi_soft_state_init(&vdc_state, sizeof (vdc_t), 1)) != 0) 306 return (status); 307 if ((status = mod_install(&modlinkage)) != 0) 308 ddi_soft_state_fini(&vdc_state); 309 vdc_efi_init(vd_process_ioctl); 310 return (status); 311 } 312 313 int 314 _info(struct modinfo *modinfop) 315 { 316 return (mod_info(&modlinkage, modinfop)); 317 } 318 319 int 320 _fini(void) 321 { 322 int status; 323 324 if ((status = mod_remove(&modlinkage)) != 0) 325 return (status); 326 vdc_efi_fini(); 327 ddi_soft_state_fini(&vdc_state); 328 return (0); 329 } 330 331 static int 332 vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resultp) 333 { 334 _NOTE(ARGUNUSED(dip)) 335 336 int instance = VDCUNIT((dev_t)arg); 337 vdc_t *vdc = NULL; 338 339 switch (cmd) { 340 case DDI_INFO_DEVT2DEVINFO: 341 if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) { 342 *resultp = NULL; 343 return (DDI_FAILURE); 344 } 345 *resultp = vdc->dip; 346 return (DDI_SUCCESS); 347 case DDI_INFO_DEVT2INSTANCE: 348 *resultp = (void *)(uintptr_t)instance; 349 return (DDI_SUCCESS); 350 default: 351 *resultp = NULL; 352 return (DDI_FAILURE); 353 } 354 } 355 356 static int 357 vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 358 { 359 int instance; 360 int rv; 361 vdc_t *vdc = NULL; 362 363 switch (cmd) { 364 case DDI_DETACH: 365 /* the real work happens below */ 366 break; 367 case DDI_SUSPEND: 368 /* nothing to do for this non-device */ 369 return (DDI_SUCCESS); 370 default: 371 return (DDI_FAILURE); 372 } 373 374 ASSERT(cmd == DDI_DETACH); 375 instance = ddi_get_instance(dip); 376 DMSGX(1, "[%d] Entered\n", instance); 377 378 if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) { 379 cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance); 380 return (DDI_FAILURE); 381 } 382 383 if (vdc->open_count) { 384 DMSG(vdc, 0, "[%d] Cannot detach: device is open", instance); 385 return (DDI_FAILURE); 386 } 387 388 DMSG(vdc, 0, "[%d] proceeding...\n", instance); 389 390 /* mark instance as detaching */ 391 vdc->lifecycle = VDC_LC_DETACHING; 392 393 /* 394 * try and disable callbacks to prevent another handshake 395 */ 396 rv = ldc_set_cb_mode(vdc->ldc_handle, LDC_CB_DISABLE); 397 DMSG(vdc, 0, "callback disabled (rv=%d)\n", rv); 398 399 if (vdc->initialized & VDC_THREAD) { 400 mutex_enter(&vdc->read_lock); 401 if ((vdc->read_state == VDC_READ_WAITING) || 402 (vdc->read_state == VDC_READ_RESET)) { 403 vdc->read_state = VDC_READ_RESET; 404 cv_signal(&vdc->read_cv); 405 } 406 407 mutex_exit(&vdc->read_lock); 408 409 /* wake up any thread waiting for connection to come online */ 410 mutex_enter(&vdc->lock); 411 if (vdc->state == VDC_STATE_INIT_WAITING) { 412 DMSG(vdc, 0, 413 "[%d] write reset - move to resetting state...\n", 414 instance); 415 vdc->state = VDC_STATE_RESETTING; 416 cv_signal(&vdc->initwait_cv); 417 } 418 mutex_exit(&vdc->lock); 419 420 /* now wait until state transitions to VDC_STATE_DETACH */ 421 thread_join(vdc->msg_proc_thr->t_did); 422 ASSERT(vdc->state == VDC_STATE_DETACH); 423 DMSG(vdc, 0, "[%d] Reset thread exit and join ..\n", 424 vdc->instance); 425 } 426 427 mutex_enter(&vdc->lock); 428 429 if (vdc->initialized & VDC_DRING) 430 vdc_destroy_descriptor_ring(vdc); 431 432 if (vdc->initialized & VDC_LDC) 433 vdc_terminate_ldc(vdc); 434 435 mutex_exit(&vdc->lock); 436 437 if (vdc->initialized & VDC_MINOR) { 438 ddi_prop_remove_all(dip); 439 ddi_remove_minor_node(dip, NULL); 440 } 441 442 if (vdc->initialized & VDC_LOCKS) { 443 mutex_destroy(&vdc->lock); 444 mutex_destroy(&vdc->read_lock); 445 cv_destroy(&vdc->initwait_cv); 446 cv_destroy(&vdc->dring_free_cv); 447 cv_destroy(&vdc->membind_cv); 448 cv_destroy(&vdc->sync_pending_cv); 449 cv_destroy(&vdc->sync_blocked_cv); 450 cv_destroy(&vdc->read_cv); 451 cv_destroy(&vdc->running_cv); 452 } 453 454 if (vdc->minfo) 455 kmem_free(vdc->minfo, sizeof (struct dk_minfo)); 456 457 if (vdc->cinfo) 458 kmem_free(vdc->cinfo, sizeof (struct dk_cinfo)); 459 460 if (vdc->vtoc) 461 kmem_free(vdc->vtoc, sizeof (struct vtoc)); 462 463 if (vdc->label) 464 kmem_free(vdc->label, DK_LABEL_SIZE); 465 466 if (vdc->devid) { 467 ddi_devid_unregister(dip); 468 ddi_devid_free(vdc->devid); 469 } 470 471 if (vdc->initialized & VDC_SOFT_STATE) 472 ddi_soft_state_free(vdc_state, instance); 473 474 DMSG(vdc, 0, "[%d] End %p\n", instance, (void *)vdc); 475 476 return (DDI_SUCCESS); 477 } 478 479 480 static int 481 vdc_do_attach(dev_info_t *dip) 482 { 483 int instance; 484 vdc_t *vdc = NULL; 485 int status; 486 487 ASSERT(dip != NULL); 488 489 instance = ddi_get_instance(dip); 490 if (ddi_soft_state_zalloc(vdc_state, instance) != DDI_SUCCESS) { 491 cmn_err(CE_NOTE, "[%d] Couldn't alloc state structure", 492 instance); 493 return (DDI_FAILURE); 494 } 495 496 if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) { 497 cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance); 498 return (DDI_FAILURE); 499 } 500 501 /* 502 * We assign the value to initialized in this case to zero out the 503 * variable and then set bits in it to indicate what has been done 504 */ 505 vdc->initialized = VDC_SOFT_STATE; 506 507 vdc_hz_timeout = drv_usectohz(vdc_usec_timeout); 508 509 vdc_hz_min_ldc_delay = drv_usectohz(vdc_min_timeout_ldc); 510 vdc_hz_max_ldc_delay = drv_usectohz(vdc_max_timeout_ldc); 511 512 vdc->dip = dip; 513 vdc->instance = instance; 514 vdc->open_count = 0; 515 vdc->vdisk_type = VD_DISK_TYPE_UNK; 516 vdc->vdisk_label = VD_DISK_LABEL_UNK; 517 vdc->state = VDC_STATE_INIT; 518 vdc->lifecycle = VDC_LC_ATTACHING; 519 vdc->ldc_state = 0; 520 vdc->session_id = 0; 521 vdc->block_size = DEV_BSIZE; 522 vdc->max_xfer_sz = maxphys / DEV_BSIZE; 523 524 vdc->vtoc = NULL; 525 vdc->cinfo = NULL; 526 vdc->minfo = NULL; 527 528 mutex_init(&vdc->lock, NULL, MUTEX_DRIVER, NULL); 529 cv_init(&vdc->initwait_cv, NULL, CV_DRIVER, NULL); 530 cv_init(&vdc->dring_free_cv, NULL, CV_DRIVER, NULL); 531 cv_init(&vdc->membind_cv, NULL, CV_DRIVER, NULL); 532 cv_init(&vdc->running_cv, NULL, CV_DRIVER, NULL); 533 534 vdc->threads_pending = 0; 535 vdc->sync_op_pending = B_FALSE; 536 vdc->sync_op_blocked = B_FALSE; 537 cv_init(&vdc->sync_pending_cv, NULL, CV_DRIVER, NULL); 538 cv_init(&vdc->sync_blocked_cv, NULL, CV_DRIVER, NULL); 539 540 /* init blocking msg read functionality */ 541 mutex_init(&vdc->read_lock, NULL, MUTEX_DRIVER, NULL); 542 cv_init(&vdc->read_cv, NULL, CV_DRIVER, NULL); 543 vdc->read_state = VDC_READ_IDLE; 544 545 vdc->initialized |= VDC_LOCKS; 546 547 /* initialise LDC channel which will be used to communicate with vds */ 548 if ((status = vdc_do_ldc_init(vdc)) != 0) { 549 cmn_err(CE_NOTE, "[%d] Couldn't initialize LDC", instance); 550 goto return_status; 551 } 552 553 /* initialize the thread responsible for managing state with server */ 554 vdc->msg_proc_thr = thread_create(NULL, 0, vdc_process_msg_thread, 555 vdc, 0, &p0, TS_RUN, minclsyspri); 556 if (vdc->msg_proc_thr == NULL) { 557 cmn_err(CE_NOTE, "[%d] Failed to create msg processing thread", 558 instance); 559 return (DDI_FAILURE); 560 } 561 562 vdc->initialized |= VDC_THREAD; 563 564 atomic_inc_32(&vdc_instance_count); 565 566 /* 567 * Once the handshake is complete, we can use the DRing to send 568 * requests to the vDisk server to calculate the geometry and 569 * VTOC of the "disk" 570 */ 571 status = vdc_setup_disk_layout(vdc); 572 if (status != 0) { 573 DMSG(vdc, 0, "[%d] Failed to discover disk layout (err%d)", 574 vdc->instance, status); 575 goto return_status; 576 } 577 578 /* 579 * Now that we have the device info we can create the 580 * device nodes and properties 581 */ 582 status = vdc_create_device_nodes(vdc); 583 if (status) { 584 DMSG(vdc, 0, "[%d] Failed to create device nodes", 585 instance); 586 goto return_status; 587 } 588 status = vdc_create_device_nodes_props(vdc); 589 if (status) { 590 DMSG(vdc, 0, "[%d] Failed to create device nodes" 591 " properties (%d)", instance, status); 592 goto return_status; 593 } 594 595 /* 596 * Setup devid 597 */ 598 if (vdc_setup_devid(vdc)) { 599 DMSG(vdc, 0, "[%d] No device id available\n", instance); 600 } 601 602 ddi_report_dev(dip); 603 vdc->lifecycle = VDC_LC_ONLINE; 604 DMSG(vdc, 0, "[%d] Attach tasks successful\n", instance); 605 606 return_status: 607 DMSG(vdc, 0, "[%d] Attach completed\n", instance); 608 return (status); 609 } 610 611 static int 612 vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 613 { 614 int status; 615 616 switch (cmd) { 617 case DDI_ATTACH: 618 if ((status = vdc_do_attach(dip)) != 0) 619 (void) vdc_detach(dip, DDI_DETACH); 620 return (status); 621 case DDI_RESUME: 622 /* nothing to do for this non-device */ 623 return (DDI_SUCCESS); 624 default: 625 return (DDI_FAILURE); 626 } 627 } 628 629 static int 630 vdc_do_ldc_init(vdc_t *vdc) 631 { 632 int status = 0; 633 ldc_status_t ldc_state; 634 ldc_attr_t ldc_attr; 635 uint64_t ldc_id = 0; 636 dev_info_t *dip = NULL; 637 638 ASSERT(vdc != NULL); 639 640 dip = vdc->dip; 641 vdc->initialized |= VDC_LDC; 642 643 if ((status = vdc_get_ldc_id(dip, &ldc_id)) != 0) { 644 DMSG(vdc, 0, "[%d] Failed to get LDC channel ID property", 645 vdc->instance); 646 return (EIO); 647 } 648 vdc->ldc_id = ldc_id; 649 650 ldc_attr.devclass = LDC_DEV_BLK; 651 ldc_attr.instance = vdc->instance; 652 ldc_attr.mode = LDC_MODE_UNRELIABLE; /* unreliable transport */ 653 ldc_attr.mtu = VD_LDC_MTU; 654 655 if ((vdc->initialized & VDC_LDC_INIT) == 0) { 656 status = ldc_init(ldc_id, &ldc_attr, &vdc->ldc_handle); 657 if (status != 0) { 658 DMSG(vdc, 0, "[%d] ldc_init(chan %ld) returned %d", 659 vdc->instance, ldc_id, status); 660 return (status); 661 } 662 vdc->initialized |= VDC_LDC_INIT; 663 } 664 status = ldc_status(vdc->ldc_handle, &ldc_state); 665 if (status != 0) { 666 DMSG(vdc, 0, "[%d] Cannot discover LDC status [err=%d]", 667 vdc->instance, status); 668 return (status); 669 } 670 vdc->ldc_state = ldc_state; 671 672 if ((vdc->initialized & VDC_LDC_CB) == 0) { 673 status = ldc_reg_callback(vdc->ldc_handle, vdc_handle_cb, 674 (caddr_t)vdc); 675 if (status != 0) { 676 DMSG(vdc, 0, "[%d] LDC callback reg. failed (%d)", 677 vdc->instance, status); 678 return (status); 679 } 680 vdc->initialized |= VDC_LDC_CB; 681 } 682 683 vdc->initialized |= VDC_LDC; 684 685 /* 686 * At this stage we have initialised LDC, we will now try and open 687 * the connection. 688 */ 689 if (vdc->ldc_state == LDC_INIT) { 690 status = ldc_open(vdc->ldc_handle); 691 if (status != 0) { 692 DMSG(vdc, 0, "[%d] ldc_open(chan %ld) returned %d", 693 vdc->instance, vdc->ldc_id, status); 694 return (status); 695 } 696 vdc->initialized |= VDC_LDC_OPEN; 697 } 698 699 return (status); 700 } 701 702 static int 703 vdc_start_ldc_connection(vdc_t *vdc) 704 { 705 int status = 0; 706 707 ASSERT(vdc != NULL); 708 709 ASSERT(MUTEX_HELD(&vdc->lock)); 710 711 status = vdc_do_ldc_up(vdc); 712 713 DMSG(vdc, 0, "[%d] Finished bringing up LDC\n", vdc->instance); 714 715 return (status); 716 } 717 718 static int 719 vdc_stop_ldc_connection(vdc_t *vdcp) 720 { 721 int status; 722 723 DMSG(vdcp, 0, ": Resetting connection to vDisk server : state %d\n", 724 vdcp->state); 725 726 status = ldc_down(vdcp->ldc_handle); 727 DMSG(vdcp, 0, "ldc_down() = %d\n", status); 728 729 vdcp->initialized &= ~VDC_HANDSHAKE; 730 DMSG(vdcp, 0, "initialized=%x\n", vdcp->initialized); 731 732 return (status); 733 } 734 735 static int 736 vdc_create_device_nodes_efi(vdc_t *vdc) 737 { 738 ddi_remove_minor_node(vdc->dip, "h"); 739 ddi_remove_minor_node(vdc->dip, "h,raw"); 740 741 if (ddi_create_minor_node(vdc->dip, "wd", S_IFBLK, 742 VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE), 743 DDI_NT_BLOCK, 0) != DDI_SUCCESS) { 744 cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd'", 745 vdc->instance); 746 return (EIO); 747 } 748 749 /* if any device node is created we set this flag */ 750 vdc->initialized |= VDC_MINOR; 751 752 if (ddi_create_minor_node(vdc->dip, "wd,raw", S_IFCHR, 753 VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE), 754 DDI_NT_BLOCK, 0) != DDI_SUCCESS) { 755 cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd,raw'", 756 vdc->instance); 757 return (EIO); 758 } 759 760 return (0); 761 } 762 763 static int 764 vdc_create_device_nodes_vtoc(vdc_t *vdc) 765 { 766 ddi_remove_minor_node(vdc->dip, "wd"); 767 ddi_remove_minor_node(vdc->dip, "wd,raw"); 768 769 if (ddi_create_minor_node(vdc->dip, "h", S_IFBLK, 770 VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE), 771 DDI_NT_BLOCK, 0) != DDI_SUCCESS) { 772 cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h'", 773 vdc->instance); 774 return (EIO); 775 } 776 777 /* if any device node is created we set this flag */ 778 vdc->initialized |= VDC_MINOR; 779 780 if (ddi_create_minor_node(vdc->dip, "h,raw", S_IFCHR, 781 VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE), 782 DDI_NT_BLOCK, 0) != DDI_SUCCESS) { 783 cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h,raw'", 784 vdc->instance); 785 return (EIO); 786 } 787 788 return (0); 789 } 790 791 /* 792 * Function: 793 * vdc_create_device_nodes 794 * 795 * Description: 796 * This function creates the block and character device nodes under 797 * /devices along with the node properties. It is called as part of 798 * the attach(9E) of the instance during the handshake with vds after 799 * vds has sent the attributes to vdc. 800 * 801 * If the device is of type VD_DISK_TYPE_SLICE then the minor node 802 * of 2 is used in keeping with the Solaris convention that slice 2 803 * refers to a whole disk. Slices start at 'a' 804 * 805 * Parameters: 806 * vdc - soft state pointer 807 * 808 * Return Values 809 * 0 - Success 810 * EIO - Failed to create node 811 * EINVAL - Unknown type of disk exported 812 */ 813 static int 814 vdc_create_device_nodes(vdc_t *vdc) 815 { 816 char name[sizeof ("s,raw")]; 817 dev_info_t *dip = NULL; 818 int instance, status; 819 int num_slices = 1; 820 int i; 821 822 ASSERT(vdc != NULL); 823 824 instance = vdc->instance; 825 dip = vdc->dip; 826 827 switch (vdc->vdisk_type) { 828 case VD_DISK_TYPE_DISK: 829 num_slices = V_NUMPAR; 830 break; 831 case VD_DISK_TYPE_SLICE: 832 num_slices = 1; 833 break; 834 case VD_DISK_TYPE_UNK: 835 default: 836 return (EINVAL); 837 } 838 839 /* 840 * Minor nodes are different for EFI disks: EFI disks do not have 841 * a minor node 'g' for the minor number corresponding to slice 842 * VD_EFI_WD_SLICE (slice 7) instead they have a minor node 'wd' 843 * representing the whole disk. 844 */ 845 for (i = 0; i < num_slices; i++) { 846 847 if (i == VD_EFI_WD_SLICE) { 848 if (vdc->vdisk_label == VD_DISK_LABEL_EFI) 849 status = vdc_create_device_nodes_efi(vdc); 850 else 851 status = vdc_create_device_nodes_vtoc(vdc); 852 if (status != 0) 853 return (status); 854 continue; 855 } 856 857 (void) snprintf(name, sizeof (name), "%c", 'a' + i); 858 if (ddi_create_minor_node(dip, name, S_IFBLK, 859 VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) { 860 cmn_err(CE_NOTE, "[%d] Couldn't add block node '%s'", 861 instance, name); 862 return (EIO); 863 } 864 865 /* if any device node is created we set this flag */ 866 vdc->initialized |= VDC_MINOR; 867 868 (void) snprintf(name, sizeof (name), "%c%s", 869 'a' + i, ",raw"); 870 if (ddi_create_minor_node(dip, name, S_IFCHR, 871 VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) { 872 cmn_err(CE_NOTE, "[%d] Couldn't add raw node '%s'", 873 instance, name); 874 return (EIO); 875 } 876 } 877 878 return (0); 879 } 880 881 /* 882 * Function: 883 * vdc_create_device_nodes_props 884 * 885 * Description: 886 * This function creates the block and character device nodes under 887 * /devices along with the node properties. It is called as part of 888 * the attach(9E) of the instance during the handshake with vds after 889 * vds has sent the attributes to vdc. 890 * 891 * Parameters: 892 * vdc - soft state pointer 893 * 894 * Return Values 895 * 0 - Success 896 * EIO - Failed to create device node property 897 * EINVAL - Unknown type of disk exported 898 */ 899 static int 900 vdc_create_device_nodes_props(vdc_t *vdc) 901 { 902 dev_info_t *dip = NULL; 903 int instance; 904 int num_slices = 1; 905 int64_t size = 0; 906 dev_t dev; 907 int rv; 908 int i; 909 910 ASSERT(vdc != NULL); 911 912 instance = vdc->instance; 913 dip = vdc->dip; 914 915 if ((vdc->vtoc == NULL) || (vdc->vtoc->v_sanity != VTOC_SANE)) { 916 DMSG(vdc, 0, "![%d] Could not create device node property." 917 " No VTOC available", instance); 918 return (ENXIO); 919 } 920 921 switch (vdc->vdisk_type) { 922 case VD_DISK_TYPE_DISK: 923 num_slices = V_NUMPAR; 924 break; 925 case VD_DISK_TYPE_SLICE: 926 num_slices = 1; 927 break; 928 case VD_DISK_TYPE_UNK: 929 default: 930 return (EINVAL); 931 } 932 933 for (i = 0; i < num_slices; i++) { 934 dev = makedevice(ddi_driver_major(dip), 935 VD_MAKE_DEV(instance, i)); 936 937 size = vdc->vtoc->v_part[i].p_size * vdc->vtoc->v_sectorsz; 938 DMSG(vdc, 0, "[%d] sz %ld (%ld Mb) p_size %lx\n", 939 instance, size, size / (1024 * 1024), 940 vdc->vtoc->v_part[i].p_size); 941 942 rv = ddi_prop_update_int64(dev, dip, VDC_SIZE_PROP_NAME, size); 943 if (rv != DDI_PROP_SUCCESS) { 944 cmn_err(CE_NOTE, "[%d] Couldn't add '%s' prop of [%ld]", 945 instance, VDC_SIZE_PROP_NAME, size); 946 return (EIO); 947 } 948 949 rv = ddi_prop_update_int64(dev, dip, VDC_NBLOCKS_PROP_NAME, 950 lbtodb(size)); 951 if (rv != DDI_PROP_SUCCESS) { 952 cmn_err(CE_NOTE, "[%d] Couldn't add '%s' prop [%llu]", 953 instance, VDC_NBLOCKS_PROP_NAME, lbtodb(size)); 954 return (EIO); 955 } 956 } 957 958 return (0); 959 } 960 961 static int 962 vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred) 963 { 964 _NOTE(ARGUNUSED(cred)) 965 966 int instance; 967 vdc_t *vdc; 968 969 ASSERT(dev != NULL); 970 instance = VDCUNIT(*dev); 971 972 if ((otyp != OTYP_CHR) && (otyp != OTYP_BLK)) 973 return (EINVAL); 974 975 if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) { 976 cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance); 977 return (ENXIO); 978 } 979 980 DMSG(vdc, 0, "minor = %d flag = %x, otyp = %x\n", 981 getminor(*dev), flag, otyp); 982 983 mutex_enter(&vdc->lock); 984 vdc->open_count++; 985 mutex_exit(&vdc->lock); 986 987 return (0); 988 } 989 990 static int 991 vdc_close(dev_t dev, int flag, int otyp, cred_t *cred) 992 { 993 _NOTE(ARGUNUSED(cred)) 994 995 int instance; 996 vdc_t *vdc; 997 998 instance = VDCUNIT(dev); 999 1000 if ((otyp != OTYP_CHR) && (otyp != OTYP_BLK)) 1001 return (EINVAL); 1002 1003 if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) { 1004 cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance); 1005 return (ENXIO); 1006 } 1007 1008 DMSG(vdc, 0, "[%d] flag = %x, otyp = %x\n", instance, flag, otyp); 1009 if (vdc->dkio_flush_pending) { 1010 DMSG(vdc, 0, 1011 "[%d] Cannot detach: %d outstanding DKIO flushes\n", 1012 instance, vdc->dkio_flush_pending); 1013 return (EBUSY); 1014 } 1015 1016 /* 1017 * Should not need the mutex here, since the framework should protect 1018 * against more opens on this device, but just in case. 1019 */ 1020 mutex_enter(&vdc->lock); 1021 vdc->open_count--; 1022 mutex_exit(&vdc->lock); 1023 1024 return (0); 1025 } 1026 1027 static int 1028 vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp) 1029 { 1030 _NOTE(ARGUNUSED(credp)) 1031 _NOTE(ARGUNUSED(rvalp)) 1032 1033 return (vd_process_ioctl(dev, cmd, (caddr_t)arg, mode)); 1034 } 1035 1036 static int 1037 vdc_print(dev_t dev, char *str) 1038 { 1039 cmn_err(CE_NOTE, "vdc%d: %s", VDCUNIT(dev), str); 1040 return (0); 1041 } 1042 1043 static int 1044 vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 1045 { 1046 int rv; 1047 size_t nbytes = nblk * DEV_BSIZE; 1048 int instance = VDCUNIT(dev); 1049 vdc_t *vdc = NULL; 1050 1051 if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) { 1052 cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance); 1053 return (ENXIO); 1054 } 1055 1056 DMSG(vdc, 2, "[%d] dump %ld bytes at block 0x%lx : addr=0x%p\n", 1057 instance, nbytes, blkno, (void *)addr); 1058 rv = vdc_send_request(vdc, VD_OP_BWRITE, addr, nbytes, 1059 VDCPART(dev), blkno, CB_STRATEGY, 0, VIO_write_dir); 1060 if (rv) { 1061 DMSG(vdc, 0, "Failed to do a disk dump (err=%d)\n", rv); 1062 return (rv); 1063 } 1064 1065 if (ddi_in_panic()) 1066 (void) vdc_drain_response(vdc); 1067 1068 DMSG(vdc, 0, "[%d] End\n", instance); 1069 1070 return (0); 1071 } 1072 1073 /* -------------------------------------------------------------------------- */ 1074 1075 /* 1076 * Disk access routines 1077 * 1078 */ 1079 1080 /* 1081 * vdc_strategy() 1082 * 1083 * Return Value: 1084 * 0: As per strategy(9E), the strategy() function must return 0 1085 * [ bioerror(9f) sets b_flags to the proper error code ] 1086 */ 1087 static int 1088 vdc_strategy(struct buf *buf) 1089 { 1090 int rv = -1; 1091 vdc_t *vdc = NULL; 1092 int instance = VDCUNIT(buf->b_edev); 1093 int op = (buf->b_flags & B_READ) ? VD_OP_BREAD : VD_OP_BWRITE; 1094 1095 if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) { 1096 cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance); 1097 bioerror(buf, ENXIO); 1098 biodone(buf); 1099 return (0); 1100 } 1101 1102 DMSG(vdc, 2, "[%d] %s %ld bytes at block %llx : b_addr=0x%p\n", 1103 instance, (buf->b_flags & B_READ) ? "Read" : "Write", 1104 buf->b_bcount, buf->b_lblkno, (void *)buf->b_un.b_addr); 1105 DTRACE_IO2(vstart, buf_t *, buf, vdc_t *, vdc); 1106 1107 bp_mapin(buf); 1108 1109 rv = vdc_send_request(vdc, op, (caddr_t)buf->b_un.b_addr, 1110 buf->b_bcount, VDCPART(buf->b_edev), buf->b_lblkno, 1111 CB_STRATEGY, buf, (op == VD_OP_BREAD) ? VIO_read_dir : 1112 VIO_write_dir); 1113 1114 ASSERT(rv == 0 || rv == EINVAL); 1115 1116 /* 1117 * If the request was successfully sent, the strategy call returns and 1118 * the ACK handler calls the bioxxx functions when the vDisk server is 1119 * done. 1120 */ 1121 if (rv) { 1122 DMSG(vdc, 0, "Failed to read/write (err=%d)\n", rv); 1123 bioerror(buf, rv); 1124 biodone(buf); 1125 } 1126 1127 return (0); 1128 } 1129 1130 /* 1131 * Function: 1132 * vdc_min 1133 * 1134 * Description: 1135 * Routine to limit the size of a data transfer. Used in 1136 * conjunction with physio(9F). 1137 * 1138 * Arguments: 1139 * bp - pointer to the indicated buf(9S) struct. 1140 * 1141 */ 1142 static void 1143 vdc_min(struct buf *bufp) 1144 { 1145 vdc_t *vdc = NULL; 1146 int instance = VDCUNIT(bufp->b_edev); 1147 1148 vdc = ddi_get_soft_state(vdc_state, instance); 1149 VERIFY(vdc != NULL); 1150 1151 if (bufp->b_bcount > (vdc->max_xfer_sz * vdc->block_size)) { 1152 bufp->b_bcount = vdc->max_xfer_sz * vdc->block_size; 1153 } 1154 } 1155 1156 static int 1157 vdc_read(dev_t dev, struct uio *uio, cred_t *cred) 1158 { 1159 _NOTE(ARGUNUSED(cred)) 1160 1161 DMSGX(1, "[%d] Entered", VDCUNIT(dev)); 1162 return (physio(vdc_strategy, NULL, dev, B_READ, vdc_min, uio)); 1163 } 1164 1165 static int 1166 vdc_write(dev_t dev, struct uio *uio, cred_t *cred) 1167 { 1168 _NOTE(ARGUNUSED(cred)) 1169 1170 DMSGX(1, "[%d] Entered", VDCUNIT(dev)); 1171 return (physio(vdc_strategy, NULL, dev, B_WRITE, vdc_min, uio)); 1172 } 1173 1174 static int 1175 vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred) 1176 { 1177 _NOTE(ARGUNUSED(cred)) 1178 1179 DMSGX(1, "[%d] Entered", VDCUNIT(dev)); 1180 return (aphysio(vdc_strategy, anocancel, dev, B_READ, vdc_min, aio)); 1181 } 1182 1183 static int 1184 vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred) 1185 { 1186 _NOTE(ARGUNUSED(cred)) 1187 1188 DMSGX(1, "[%d] Entered", VDCUNIT(dev)); 1189 return (aphysio(vdc_strategy, anocancel, dev, B_WRITE, vdc_min, aio)); 1190 } 1191 1192 1193 /* -------------------------------------------------------------------------- */ 1194 1195 /* 1196 * Handshake support 1197 */ 1198 1199 1200 /* 1201 * Function: 1202 * vdc_init_ver_negotiation() 1203 * 1204 * Description: 1205 * 1206 * Arguments: 1207 * vdc - soft state pointer for this instance of the device driver. 1208 * 1209 * Return Code: 1210 * 0 - Success 1211 */ 1212 static int 1213 vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver) 1214 { 1215 vio_ver_msg_t pkt; 1216 size_t msglen = sizeof (pkt); 1217 int status = -1; 1218 1219 ASSERT(vdc != NULL); 1220 ASSERT(mutex_owned(&vdc->lock)); 1221 1222 DMSG(vdc, 0, "[%d] Entered.\n", vdc->instance); 1223 1224 /* 1225 * set the Session ID to a unique value 1226 * (the lower 32 bits of the clock tick) 1227 */ 1228 vdc->session_id = ((uint32_t)gettick() & 0xffffffff); 1229 DMSG(vdc, 0, "[%d] Set SID to 0x%lx\n", vdc->instance, vdc->session_id); 1230 1231 pkt.tag.vio_msgtype = VIO_TYPE_CTRL; 1232 pkt.tag.vio_subtype = VIO_SUBTYPE_INFO; 1233 pkt.tag.vio_subtype_env = VIO_VER_INFO; 1234 pkt.tag.vio_sid = vdc->session_id; 1235 pkt.dev_class = VDEV_DISK; 1236 pkt.ver_major = ver.major; 1237 pkt.ver_minor = ver.minor; 1238 1239 status = vdc_send(vdc, (caddr_t)&pkt, &msglen); 1240 DMSG(vdc, 0, "[%d] Ver info sent (status = %d)\n", 1241 vdc->instance, status); 1242 if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) { 1243 DMSG(vdc, 0, "[%d] Failed to send Ver negotiation info: " 1244 "id(%lx) rv(%d) size(%ld)", 1245 vdc->instance, vdc->ldc_handle, 1246 status, msglen); 1247 if (msglen != sizeof (vio_ver_msg_t)) 1248 status = ENOMSG; 1249 } 1250 1251 return (status); 1252 } 1253 1254 /* 1255 * Function: 1256 * vdc_ver_negotiation() 1257 * 1258 * Description: 1259 * 1260 * Arguments: 1261 * vdcp - soft state pointer for this instance of the device driver. 1262 * 1263 * Return Code: 1264 * 0 - Success 1265 */ 1266 static int 1267 vdc_ver_negotiation(vdc_t *vdcp) 1268 { 1269 vio_msg_t vio_msg; 1270 int status; 1271 1272 if (status = vdc_init_ver_negotiation(vdcp, vdc_version[0])) 1273 return (status); 1274 1275 /* release lock and wait for response */ 1276 mutex_exit(&vdcp->lock); 1277 status = vdc_wait_for_response(vdcp, &vio_msg); 1278 mutex_enter(&vdcp->lock); 1279 if (status) { 1280 DMSG(vdcp, 0, 1281 "[%d] Failed waiting for Ver negotiation response, rv(%d)", 1282 vdcp->instance, status); 1283 return (status); 1284 } 1285 1286 /* check type and sub_type ... */ 1287 if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL || 1288 vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) { 1289 DMSG(vdcp, 0, "[%d] Invalid ver negotiation response\n", 1290 vdcp->instance); 1291 return (EPROTO); 1292 } 1293 1294 return (vdc_handle_ver_msg(vdcp, (vio_ver_msg_t *)&vio_msg)); 1295 } 1296 1297 /* 1298 * Function: 1299 * vdc_init_attr_negotiation() 1300 * 1301 * Description: 1302 * 1303 * Arguments: 1304 * vdc - soft state pointer for this instance of the device driver. 1305 * 1306 * Return Code: 1307 * 0 - Success 1308 */ 1309 static int 1310 vdc_init_attr_negotiation(vdc_t *vdc) 1311 { 1312 vd_attr_msg_t pkt; 1313 size_t msglen = sizeof (pkt); 1314 int status; 1315 1316 ASSERT(vdc != NULL); 1317 ASSERT(mutex_owned(&vdc->lock)); 1318 1319 DMSG(vdc, 0, "[%d] entered\n", vdc->instance); 1320 1321 /* fill in tag */ 1322 pkt.tag.vio_msgtype = VIO_TYPE_CTRL; 1323 pkt.tag.vio_subtype = VIO_SUBTYPE_INFO; 1324 pkt.tag.vio_subtype_env = VIO_ATTR_INFO; 1325 pkt.tag.vio_sid = vdc->session_id; 1326 /* fill in payload */ 1327 pkt.max_xfer_sz = vdc->max_xfer_sz; 1328 pkt.vdisk_block_size = vdc->block_size; 1329 pkt.xfer_mode = VIO_DRING_MODE; 1330 pkt.operations = 0; /* server will set bits of valid operations */ 1331 pkt.vdisk_type = 0; /* server will set to valid device type */ 1332 pkt.vdisk_size = 0; /* server will set to valid size */ 1333 1334 status = vdc_send(vdc, (caddr_t)&pkt, &msglen); 1335 DMSG(vdc, 0, "Attr info sent (status = %d)\n", status); 1336 1337 if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) { 1338 DMSG(vdc, 0, "[%d] Failed to send Attr negotiation info: " 1339 "id(%lx) rv(%d) size(%ld)", 1340 vdc->instance, vdc->ldc_handle, 1341 status, msglen); 1342 if (msglen != sizeof (vio_ver_msg_t)) 1343 status = ENOMSG; 1344 } 1345 1346 return (status); 1347 } 1348 1349 /* 1350 * Function: 1351 * vdc_attr_negotiation() 1352 * 1353 * Description: 1354 * 1355 * Arguments: 1356 * vdc - soft state pointer for this instance of the device driver. 1357 * 1358 * Return Code: 1359 * 0 - Success 1360 */ 1361 static int 1362 vdc_attr_negotiation(vdc_t *vdcp) 1363 { 1364 int status; 1365 vio_msg_t vio_msg; 1366 1367 if (status = vdc_init_attr_negotiation(vdcp)) 1368 return (status); 1369 1370 /* release lock and wait for response */ 1371 mutex_exit(&vdcp->lock); 1372 status = vdc_wait_for_response(vdcp, &vio_msg); 1373 mutex_enter(&vdcp->lock); 1374 if (status) { 1375 DMSG(vdcp, 0, 1376 "[%d] Failed waiting for Attr negotiation response, rv(%d)", 1377 vdcp->instance, status); 1378 return (status); 1379 } 1380 1381 /* check type and sub_type ... */ 1382 if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL || 1383 vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) { 1384 DMSG(vdcp, 0, "[%d] Invalid attr negotiation response\n", 1385 vdcp->instance); 1386 return (EPROTO); 1387 } 1388 1389 return (vdc_handle_attr_msg(vdcp, (vd_attr_msg_t *)&vio_msg)); 1390 } 1391 1392 1393 /* 1394 * Function: 1395 * vdc_init_dring_negotiate() 1396 * 1397 * Description: 1398 * 1399 * Arguments: 1400 * vdc - soft state pointer for this instance of the device driver. 1401 * 1402 * Return Code: 1403 * 0 - Success 1404 */ 1405 static int 1406 vdc_init_dring_negotiate(vdc_t *vdc) 1407 { 1408 vio_dring_reg_msg_t pkt; 1409 size_t msglen = sizeof (pkt); 1410 int status = -1; 1411 int retry; 1412 int nretries = 10; 1413 1414 ASSERT(vdc != NULL); 1415 ASSERT(mutex_owned(&vdc->lock)); 1416 1417 for (retry = 0; retry < nretries; retry++) { 1418 status = vdc_init_descriptor_ring(vdc); 1419 if (status != EAGAIN) 1420 break; 1421 drv_usecwait(vdc_min_timeout_ldc); 1422 } 1423 1424 if (status != 0) { 1425 DMSG(vdc, 0, "[%d] Failed to init DRing (status = %d)\n", 1426 vdc->instance, status); 1427 return (status); 1428 } 1429 1430 DMSG(vdc, 0, "[%d] Init of descriptor ring completed (status = %d)\n", 1431 vdc->instance, status); 1432 1433 /* fill in tag */ 1434 pkt.tag.vio_msgtype = VIO_TYPE_CTRL; 1435 pkt.tag.vio_subtype = VIO_SUBTYPE_INFO; 1436 pkt.tag.vio_subtype_env = VIO_DRING_REG; 1437 pkt.tag.vio_sid = vdc->session_id; 1438 /* fill in payload */ 1439 pkt.dring_ident = 0; 1440 pkt.num_descriptors = vdc->dring_len; 1441 pkt.descriptor_size = vdc->dring_entry_size; 1442 pkt.options = (VIO_TX_DRING | VIO_RX_DRING); 1443 pkt.ncookies = vdc->dring_cookie_count; 1444 pkt.cookie[0] = vdc->dring_cookie[0]; /* for now just one cookie */ 1445 1446 status = vdc_send(vdc, (caddr_t)&pkt, &msglen); 1447 if (status != 0) { 1448 DMSG(vdc, 0, "[%d] Failed to register DRing (err = %d)", 1449 vdc->instance, status); 1450 } 1451 1452 return (status); 1453 } 1454 1455 1456 /* 1457 * Function: 1458 * vdc_dring_negotiation() 1459 * 1460 * Description: 1461 * 1462 * Arguments: 1463 * vdc - soft state pointer for this instance of the device driver. 1464 * 1465 * Return Code: 1466 * 0 - Success 1467 */ 1468 static int 1469 vdc_dring_negotiation(vdc_t *vdcp) 1470 { 1471 int status; 1472 vio_msg_t vio_msg; 1473 1474 if (status = vdc_init_dring_negotiate(vdcp)) 1475 return (status); 1476 1477 /* release lock and wait for response */ 1478 mutex_exit(&vdcp->lock); 1479 status = vdc_wait_for_response(vdcp, &vio_msg); 1480 mutex_enter(&vdcp->lock); 1481 if (status) { 1482 DMSG(vdcp, 0, 1483 "[%d] Failed waiting for Dring negotiation response," 1484 " rv(%d)", vdcp->instance, status); 1485 return (status); 1486 } 1487 1488 /* check type and sub_type ... */ 1489 if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL || 1490 vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) { 1491 DMSG(vdcp, 0, "[%d] Invalid Dring negotiation response\n", 1492 vdcp->instance); 1493 return (EPROTO); 1494 } 1495 1496 return (vdc_handle_dring_reg_msg(vdcp, 1497 (vio_dring_reg_msg_t *)&vio_msg)); 1498 } 1499 1500 1501 /* 1502 * Function: 1503 * vdc_send_rdx() 1504 * 1505 * Description: 1506 * 1507 * Arguments: 1508 * vdc - soft state pointer for this instance of the device driver. 1509 * 1510 * Return Code: 1511 * 0 - Success 1512 */ 1513 static int 1514 vdc_send_rdx(vdc_t *vdcp) 1515 { 1516 vio_msg_t msg; 1517 size_t msglen = sizeof (vio_msg_t); 1518 int status; 1519 1520 /* 1521 * Send an RDX message to vds to indicate we are ready 1522 * to send data 1523 */ 1524 msg.tag.vio_msgtype = VIO_TYPE_CTRL; 1525 msg.tag.vio_subtype = VIO_SUBTYPE_INFO; 1526 msg.tag.vio_subtype_env = VIO_RDX; 1527 msg.tag.vio_sid = vdcp->session_id; 1528 status = vdc_send(vdcp, (caddr_t)&msg, &msglen); 1529 if (status != 0) { 1530 DMSG(vdcp, 0, "[%d] Failed to send RDX message (%d)", 1531 vdcp->instance, status); 1532 } 1533 1534 return (status); 1535 } 1536 1537 /* 1538 * Function: 1539 * vdc_handle_rdx() 1540 * 1541 * Description: 1542 * 1543 * Arguments: 1544 * vdc - soft state pointer for this instance of the device driver. 1545 * msgp - received msg 1546 * 1547 * Return Code: 1548 * 0 - Success 1549 */ 1550 static int 1551 vdc_handle_rdx(vdc_t *vdcp, vio_rdx_msg_t *msgp) 1552 { 1553 _NOTE(ARGUNUSED(vdcp)) 1554 _NOTE(ARGUNUSED(msgp)) 1555 1556 ASSERT(msgp->tag.vio_msgtype == VIO_TYPE_CTRL); 1557 ASSERT(msgp->tag.vio_subtype == VIO_SUBTYPE_ACK); 1558 ASSERT(msgp->tag.vio_subtype_env == VIO_RDX); 1559 1560 DMSG(vdcp, 1, "[%d] Got an RDX msg", vdcp->instance); 1561 1562 return (0); 1563 } 1564 1565 /* 1566 * Function: 1567 * vdc_rdx_exchange() 1568 * 1569 * Description: 1570 * 1571 * Arguments: 1572 * vdc - soft state pointer for this instance of the device driver. 1573 * 1574 * Return Code: 1575 * 0 - Success 1576 */ 1577 static int 1578 vdc_rdx_exchange(vdc_t *vdcp) 1579 { 1580 int status; 1581 vio_msg_t vio_msg; 1582 1583 if (status = vdc_send_rdx(vdcp)) 1584 return (status); 1585 1586 /* release lock and wait for response */ 1587 mutex_exit(&vdcp->lock); 1588 status = vdc_wait_for_response(vdcp, &vio_msg); 1589 mutex_enter(&vdcp->lock); 1590 if (status) { 1591 DMSG(vdcp, 0, 1592 "[%d] Failed waiting for RDX response," 1593 " rv(%d)", vdcp->instance, status); 1594 return (status); 1595 } 1596 1597 /* check type and sub_type ... */ 1598 if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL || 1599 vio_msg.tag.vio_subtype != VIO_SUBTYPE_ACK) { 1600 DMSG(vdcp, 0, "[%d] Invalid RDX response\n", 1601 vdcp->instance); 1602 return (EPROTO); 1603 } 1604 1605 return (vdc_handle_rdx(vdcp, (vio_rdx_msg_t *)&vio_msg)); 1606 } 1607 1608 1609 /* -------------------------------------------------------------------------- */ 1610 1611 /* 1612 * LDC helper routines 1613 */ 1614 1615 static int 1616 vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp) 1617 { 1618 int status; 1619 boolean_t q_has_pkts = B_FALSE; 1620 int delay_time; 1621 size_t len; 1622 1623 mutex_enter(&vdc->read_lock); 1624 1625 if (vdc->read_state == VDC_READ_IDLE) 1626 vdc->read_state = VDC_READ_WAITING; 1627 1628 while (vdc->read_state != VDC_READ_PENDING) { 1629 1630 /* detect if the connection has been reset */ 1631 if (vdc->read_state == VDC_READ_RESET) { 1632 status = ECONNRESET; 1633 goto done; 1634 } 1635 1636 cv_wait(&vdc->read_cv, &vdc->read_lock); 1637 } 1638 1639 /* 1640 * Until we get a blocking ldc read we have to retry 1641 * until the entire LDC message has arrived before 1642 * ldc_read() will succeed. Note we also bail out if 1643 * the chanel is reset or goes away. 1644 */ 1645 delay_time = vdc_ldc_read_init_delay; 1646 loop: 1647 len = *nbytesp; 1648 status = ldc_read(vdc->ldc_handle, (caddr_t)msgp, &len); 1649 switch (status) { 1650 case EAGAIN: 1651 delay_time *= 2; 1652 if (delay_time >= vdc_ldc_read_max_delay) 1653 delay_time = vdc_ldc_read_max_delay; 1654 delay(delay_time); 1655 goto loop; 1656 1657 case 0: 1658 if (len == 0) { 1659 DMSG(vdc, 0, "[%d] ldc_read returned 0 bytes with " 1660 "no error!\n", vdc->instance); 1661 goto loop; 1662 } 1663 1664 *nbytesp = len; 1665 1666 /* 1667 * If there are pending messages, leave the 1668 * read state as pending. Otherwise, set the state 1669 * back to idle. 1670 */ 1671 status = ldc_chkq(vdc->ldc_handle, &q_has_pkts); 1672 if (status == 0 && !q_has_pkts) 1673 vdc->read_state = VDC_READ_IDLE; 1674 1675 break; 1676 default: 1677 DMSG(vdc, 0, "ldc_read returned %d\n", status); 1678 break; 1679 } 1680 1681 done: 1682 mutex_exit(&vdc->read_lock); 1683 1684 return (status); 1685 } 1686 1687 1688 1689 #ifdef DEBUG 1690 void 1691 vdc_decode_tag(vdc_t *vdcp, vio_msg_t *msg) 1692 { 1693 char *ms, *ss, *ses; 1694 switch (msg->tag.vio_msgtype) { 1695 #define Q(_s) case _s : ms = #_s; break; 1696 Q(VIO_TYPE_CTRL) 1697 Q(VIO_TYPE_DATA) 1698 Q(VIO_TYPE_ERR) 1699 #undef Q 1700 default: ms = "unknown"; break; 1701 } 1702 1703 switch (msg->tag.vio_subtype) { 1704 #define Q(_s) case _s : ss = #_s; break; 1705 Q(VIO_SUBTYPE_INFO) 1706 Q(VIO_SUBTYPE_ACK) 1707 Q(VIO_SUBTYPE_NACK) 1708 #undef Q 1709 default: ss = "unknown"; break; 1710 } 1711 1712 switch (msg->tag.vio_subtype_env) { 1713 #define Q(_s) case _s : ses = #_s; break; 1714 Q(VIO_VER_INFO) 1715 Q(VIO_ATTR_INFO) 1716 Q(VIO_DRING_REG) 1717 Q(VIO_DRING_UNREG) 1718 Q(VIO_RDX) 1719 Q(VIO_PKT_DATA) 1720 Q(VIO_DESC_DATA) 1721 Q(VIO_DRING_DATA) 1722 #undef Q 1723 default: ses = "unknown"; break; 1724 } 1725 1726 DMSG(vdcp, 3, "(%x/%x/%x) message : (%s/%s/%s)\n", 1727 msg->tag.vio_msgtype, msg->tag.vio_subtype, 1728 msg->tag.vio_subtype_env, ms, ss, ses); 1729 } 1730 #endif 1731 1732 /* 1733 * Function: 1734 * vdc_send() 1735 * 1736 * Description: 1737 * The function encapsulates the call to write a message using LDC. 1738 * If LDC indicates that the call failed due to the queue being full, 1739 * we retry the ldc_write() [ up to 'vdc_retries' time ], otherwise 1740 * we return the error returned by LDC. 1741 * 1742 * Arguments: 1743 * ldc_handle - LDC handle for the channel this instance of vdc uses 1744 * pkt - address of LDC message to be sent 1745 * msglen - the size of the message being sent. When the function 1746 * returns, this contains the number of bytes written. 1747 * 1748 * Return Code: 1749 * 0 - Success. 1750 * EINVAL - pkt or msglen were NULL 1751 * ECONNRESET - The connection was not up. 1752 * EWOULDBLOCK - LDC queue is full 1753 * xxx - other error codes returned by ldc_write 1754 */ 1755 static int 1756 vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen) 1757 { 1758 size_t size = 0; 1759 int status = 0; 1760 clock_t delay_ticks; 1761 1762 ASSERT(vdc != NULL); 1763 ASSERT(mutex_owned(&vdc->lock)); 1764 ASSERT(msglen != NULL); 1765 ASSERT(*msglen != 0); 1766 1767 #ifdef DEBUG 1768 vdc_decode_tag(vdc, (vio_msg_t *)pkt); 1769 #endif 1770 /* 1771 * Wait indefinitely to send if channel 1772 * is busy, but bail out if we succeed or 1773 * if the channel closes or is reset. 1774 */ 1775 delay_ticks = vdc_hz_min_ldc_delay; 1776 do { 1777 size = *msglen; 1778 status = ldc_write(vdc->ldc_handle, pkt, &size); 1779 if (status == EWOULDBLOCK) { 1780 delay(delay_ticks); 1781 /* geometric backoff */ 1782 delay_ticks *= 2; 1783 if (delay_ticks > vdc_hz_max_ldc_delay) 1784 delay_ticks = vdc_hz_max_ldc_delay; 1785 } 1786 } while (status == EWOULDBLOCK); 1787 1788 /* if LDC had serious issues --- reset vdc state */ 1789 if (status == EIO || status == ECONNRESET) { 1790 /* LDC had serious issues --- reset vdc state */ 1791 mutex_enter(&vdc->read_lock); 1792 if ((vdc->read_state == VDC_READ_WAITING) || 1793 (vdc->read_state == VDC_READ_RESET)) 1794 cv_signal(&vdc->read_cv); 1795 vdc->read_state = VDC_READ_RESET; 1796 mutex_exit(&vdc->read_lock); 1797 1798 /* wake up any waiters in the reset thread */ 1799 if (vdc->state == VDC_STATE_INIT_WAITING) { 1800 DMSG(vdc, 0, "[%d] write reset - " 1801 "vdc is resetting ..\n", vdc->instance); 1802 vdc->state = VDC_STATE_RESETTING; 1803 cv_signal(&vdc->initwait_cv); 1804 } 1805 1806 return (ECONNRESET); 1807 } 1808 1809 /* return the last size written */ 1810 *msglen = size; 1811 1812 return (status); 1813 } 1814 1815 /* 1816 * Function: 1817 * vdc_get_ldc_id() 1818 * 1819 * Description: 1820 * This function gets the 'ldc-id' for this particular instance of vdc. 1821 * The id returned is the guest domain channel endpoint LDC uses for 1822 * communication with vds. 1823 * 1824 * Arguments: 1825 * dip - dev info pointer for this instance of the device driver. 1826 * ldc_id - pointer to variable used to return the 'ldc-id' found. 1827 * 1828 * Return Code: 1829 * 0 - Success. 1830 * ENOENT - Expected node or property did not exist. 1831 * ENXIO - Unexpected error communicating with MD framework 1832 */ 1833 static int 1834 vdc_get_ldc_id(dev_info_t *dip, uint64_t *ldc_id) 1835 { 1836 int status = ENOENT; 1837 char *node_name = NULL; 1838 md_t *mdp = NULL; 1839 int num_nodes; 1840 int num_vdevs; 1841 int num_chans; 1842 mde_cookie_t rootnode; 1843 mde_cookie_t *listp = NULL; 1844 mde_cookie_t *chanp = NULL; 1845 boolean_t found_inst = B_FALSE; 1846 int listsz; 1847 int idx; 1848 uint64_t md_inst; 1849 int obp_inst; 1850 int instance = ddi_get_instance(dip); 1851 1852 ASSERT(ldc_id != NULL); 1853 *ldc_id = 0; 1854 1855 /* 1856 * Get the OBP instance number for comparison with the MD instance 1857 * 1858 * The "cfg-handle" property of a vdc node in an MD contains the MD's 1859 * notion of "instance", or unique identifier, for that node; OBP 1860 * stores the value of the "cfg-handle" MD property as the value of 1861 * the "reg" property on the node in the device tree it builds from 1862 * the MD and passes to Solaris. Thus, we look up the devinfo node's 1863 * "reg" property value to uniquely identify this device instance. 1864 * If the "reg" property cannot be found, the device tree state is 1865 * presumably so broken that there is no point in continuing. 1866 */ 1867 if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, OBP_REG)) { 1868 cmn_err(CE_WARN, "'%s' property does not exist", OBP_REG); 1869 return (ENOENT); 1870 } 1871 obp_inst = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 1872 OBP_REG, -1); 1873 DMSGX(1, "[%d] OBP inst=%d\n", instance, obp_inst); 1874 1875 /* 1876 * We now walk the MD nodes and if an instance of a vdc node matches 1877 * the instance got from OBP we get the ldc-id property. 1878 */ 1879 if ((mdp = md_get_handle()) == NULL) { 1880 cmn_err(CE_WARN, "unable to init machine description"); 1881 return (ENXIO); 1882 } 1883 1884 num_nodes = md_node_count(mdp); 1885 ASSERT(num_nodes > 0); 1886 1887 listsz = num_nodes * sizeof (mde_cookie_t); 1888 1889 /* allocate memory for nodes */ 1890 listp = kmem_zalloc(listsz, KM_SLEEP); 1891 chanp = kmem_zalloc(listsz, KM_SLEEP); 1892 1893 rootnode = md_root_node(mdp); 1894 ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE); 1895 1896 /* 1897 * Search for all the virtual devices, we will then check to see which 1898 * ones are disk nodes. 1899 */ 1900 num_vdevs = md_scan_dag(mdp, rootnode, 1901 md_find_name(mdp, VDC_MD_VDEV_NAME), 1902 md_find_name(mdp, "fwd"), listp); 1903 1904 if (num_vdevs <= 0) { 1905 cmn_err(CE_NOTE, "No '%s' node found", VDC_MD_VDEV_NAME); 1906 status = ENOENT; 1907 goto done; 1908 } 1909 1910 DMSGX(1, "[%d] num_vdevs=%d\n", instance, num_vdevs); 1911 for (idx = 0; idx < num_vdevs; idx++) { 1912 status = md_get_prop_str(mdp, listp[idx], "name", &node_name); 1913 if ((status != 0) || (node_name == NULL)) { 1914 cmn_err(CE_NOTE, "Unable to get name of node type '%s'" 1915 ": err %d", VDC_MD_VDEV_NAME, status); 1916 continue; 1917 } 1918 1919 DMSGX(1, "[%d] Found node '%s'\n", instance, node_name); 1920 if (strcmp(VDC_MD_DISK_NAME, node_name) == 0) { 1921 status = md_get_prop_val(mdp, listp[idx], 1922 VDC_MD_CFG_HDL, &md_inst); 1923 DMSGX(1, "[%d] vdc inst in MD=%lx\n", 1924 instance, md_inst); 1925 if ((status == 0) && (md_inst == obp_inst)) { 1926 found_inst = B_TRUE; 1927 break; 1928 } 1929 } 1930 } 1931 1932 if (!found_inst) { 1933 DMSGX(0, "Unable to find correct '%s' node", VDC_MD_DISK_NAME); 1934 status = ENOENT; 1935 goto done; 1936 } 1937 DMSGX(0, "[%d] MD inst=%lx\n", instance, md_inst); 1938 1939 /* get the channels for this node */ 1940 num_chans = md_scan_dag(mdp, listp[idx], 1941 md_find_name(mdp, VDC_MD_CHAN_NAME), 1942 md_find_name(mdp, "fwd"), chanp); 1943 1944 /* expecting at least one channel */ 1945 if (num_chans <= 0) { 1946 cmn_err(CE_NOTE, "No '%s' node for '%s' port", 1947 VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME); 1948 status = ENOENT; 1949 goto done; 1950 1951 } else if (num_chans != 1) { 1952 DMSGX(0, "[%d] Expected 1 '%s' node for '%s' port, found %d\n", 1953 instance, VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME, 1954 num_chans); 1955 } 1956 1957 /* 1958 * We use the first channel found (index 0), irrespective of how 1959 * many are there in total. 1960 */ 1961 if (md_get_prop_val(mdp, chanp[0], VDC_ID_PROP, ldc_id) != 0) { 1962 cmn_err(CE_NOTE, "Channel '%s' property not found", 1963 VDC_ID_PROP); 1964 status = ENOENT; 1965 } 1966 1967 DMSGX(0, "[%d] LDC id is 0x%lx\n", instance, *ldc_id); 1968 1969 done: 1970 if (chanp) 1971 kmem_free(chanp, listsz); 1972 if (listp) 1973 kmem_free(listp, listsz); 1974 1975 (void) md_fini_handle(mdp); 1976 1977 return (status); 1978 } 1979 1980 static int 1981 vdc_do_ldc_up(vdc_t *vdc) 1982 { 1983 int status; 1984 ldc_status_t ldc_state; 1985 1986 DMSG(vdc, 0, "[%d] Bringing up channel %lx\n", 1987 vdc->instance, vdc->ldc_id); 1988 1989 if (vdc->lifecycle == VDC_LC_DETACHING) 1990 return (EINVAL); 1991 1992 if ((status = ldc_up(vdc->ldc_handle)) != 0) { 1993 switch (status) { 1994 case ECONNREFUSED: /* listener not ready at other end */ 1995 DMSG(vdc, 0, "[%d] ldc_up(%lx,...) return %d\n", 1996 vdc->instance, vdc->ldc_id, status); 1997 status = 0; 1998 break; 1999 default: 2000 DMSG(vdc, 0, "[%d] Failed to bring up LDC: " 2001 "channel=%ld, err=%d", vdc->instance, vdc->ldc_id, 2002 status); 2003 break; 2004 } 2005 } 2006 2007 if (ldc_status(vdc->ldc_handle, &ldc_state) == 0) { 2008 vdc->ldc_state = ldc_state; 2009 if (ldc_state == LDC_UP) { 2010 DMSG(vdc, 0, "[%d] LDC channel already up\n", 2011 vdc->instance); 2012 vdc->seq_num = 1; 2013 vdc->seq_num_reply = 0; 2014 } 2015 } 2016 2017 return (status); 2018 } 2019 2020 /* 2021 * Function: 2022 * vdc_terminate_ldc() 2023 * 2024 * Description: 2025 * 2026 * Arguments: 2027 * vdc - soft state pointer for this instance of the device driver. 2028 * 2029 * Return Code: 2030 * None 2031 */ 2032 static void 2033 vdc_terminate_ldc(vdc_t *vdc) 2034 { 2035 int instance = ddi_get_instance(vdc->dip); 2036 2037 ASSERT(vdc != NULL); 2038 ASSERT(mutex_owned(&vdc->lock)); 2039 2040 DMSG(vdc, 0, "[%d] initialized=%x\n", instance, vdc->initialized); 2041 2042 if (vdc->initialized & VDC_LDC_OPEN) { 2043 DMSG(vdc, 0, "[%d] ldc_close()\n", instance); 2044 (void) ldc_close(vdc->ldc_handle); 2045 } 2046 if (vdc->initialized & VDC_LDC_CB) { 2047 DMSG(vdc, 0, "[%d] ldc_unreg_callback()\n", instance); 2048 (void) ldc_unreg_callback(vdc->ldc_handle); 2049 } 2050 if (vdc->initialized & VDC_LDC) { 2051 DMSG(vdc, 0, "[%d] ldc_fini()\n", instance); 2052 (void) ldc_fini(vdc->ldc_handle); 2053 vdc->ldc_handle = NULL; 2054 } 2055 2056 vdc->initialized &= ~(VDC_LDC | VDC_LDC_CB | VDC_LDC_OPEN); 2057 } 2058 2059 /* -------------------------------------------------------------------------- */ 2060 2061 /* 2062 * Descriptor Ring helper routines 2063 */ 2064 2065 /* 2066 * Function: 2067 * vdc_init_descriptor_ring() 2068 * 2069 * Description: 2070 * 2071 * Arguments: 2072 * vdc - soft state pointer for this instance of the device driver. 2073 * 2074 * Return Code: 2075 * 0 - Success 2076 */ 2077 static int 2078 vdc_init_descriptor_ring(vdc_t *vdc) 2079 { 2080 vd_dring_entry_t *dep = NULL; /* DRing Entry pointer */ 2081 int status = 0; 2082 int i; 2083 2084 DMSG(vdc, 0, "[%d] initialized=%x\n", vdc->instance, vdc->initialized); 2085 2086 ASSERT(vdc != NULL); 2087 ASSERT(mutex_owned(&vdc->lock)); 2088 ASSERT(vdc->ldc_handle != NULL); 2089 2090 /* ensure we have enough room to store max sized block */ 2091 ASSERT(maxphys <= VD_MAX_BLOCK_SIZE); 2092 2093 if ((vdc->initialized & VDC_DRING_INIT) == 0) { 2094 DMSG(vdc, 0, "[%d] ldc_mem_dring_create\n", vdc->instance); 2095 /* 2096 * Calculate the maximum block size we can transmit using one 2097 * Descriptor Ring entry from the attributes returned by the 2098 * vDisk server. This is subject to a minimum of 'maxphys' 2099 * as we do not have the capability to split requests over 2100 * multiple DRing entries. 2101 */ 2102 if ((vdc->max_xfer_sz * vdc->block_size) < maxphys) { 2103 DMSG(vdc, 0, "[%d] using minimum DRing size\n", 2104 vdc->instance); 2105 vdc->dring_max_cookies = maxphys / PAGESIZE; 2106 } else { 2107 vdc->dring_max_cookies = 2108 (vdc->max_xfer_sz * vdc->block_size) / PAGESIZE; 2109 } 2110 vdc->dring_entry_size = (sizeof (vd_dring_entry_t) + 2111 (sizeof (ldc_mem_cookie_t) * 2112 (vdc->dring_max_cookies - 1))); 2113 vdc->dring_len = VD_DRING_LEN; 2114 2115 status = ldc_mem_dring_create(vdc->dring_len, 2116 vdc->dring_entry_size, &vdc->ldc_dring_hdl); 2117 if ((vdc->ldc_dring_hdl == NULL) || (status != 0)) { 2118 DMSG(vdc, 0, "[%d] Descriptor ring creation failed", 2119 vdc->instance); 2120 return (status); 2121 } 2122 vdc->initialized |= VDC_DRING_INIT; 2123 } 2124 2125 if ((vdc->initialized & VDC_DRING_BOUND) == 0) { 2126 DMSG(vdc, 0, "[%d] ldc_mem_dring_bind\n", vdc->instance); 2127 vdc->dring_cookie = 2128 kmem_zalloc(sizeof (ldc_mem_cookie_t), KM_SLEEP); 2129 2130 status = ldc_mem_dring_bind(vdc->ldc_handle, vdc->ldc_dring_hdl, 2131 LDC_SHADOW_MAP|LDC_DIRECT_MAP, LDC_MEM_RW, 2132 &vdc->dring_cookie[0], 2133 &vdc->dring_cookie_count); 2134 if (status != 0) { 2135 DMSG(vdc, 0, "[%d] Failed to bind descriptor ring " 2136 "(%lx) to channel (%lx) status=%d\n", 2137 vdc->instance, vdc->ldc_dring_hdl, 2138 vdc->ldc_handle, status); 2139 return (status); 2140 } 2141 ASSERT(vdc->dring_cookie_count == 1); 2142 vdc->initialized |= VDC_DRING_BOUND; 2143 } 2144 2145 status = ldc_mem_dring_info(vdc->ldc_dring_hdl, &vdc->dring_mem_info); 2146 if (status != 0) { 2147 DMSG(vdc, 0, 2148 "[%d] Failed to get info for descriptor ring (%lx)\n", 2149 vdc->instance, vdc->ldc_dring_hdl); 2150 return (status); 2151 } 2152 2153 if ((vdc->initialized & VDC_DRING_LOCAL) == 0) { 2154 DMSG(vdc, 0, "[%d] local dring\n", vdc->instance); 2155 2156 /* Allocate the local copy of this dring */ 2157 vdc->local_dring = 2158 kmem_zalloc(vdc->dring_len * sizeof (vdc_local_desc_t), 2159 KM_SLEEP); 2160 vdc->initialized |= VDC_DRING_LOCAL; 2161 } 2162 2163 /* 2164 * Mark all DRing entries as free and initialize the private 2165 * descriptor's memory handles. If any entry is initialized, 2166 * we need to free it later so we set the bit in 'initialized' 2167 * at the start. 2168 */ 2169 vdc->initialized |= VDC_DRING_ENTRY; 2170 for (i = 0; i < vdc->dring_len; i++) { 2171 dep = VDC_GET_DRING_ENTRY_PTR(vdc, i); 2172 dep->hdr.dstate = VIO_DESC_FREE; 2173 2174 status = ldc_mem_alloc_handle(vdc->ldc_handle, 2175 &vdc->local_dring[i].desc_mhdl); 2176 if (status != 0) { 2177 DMSG(vdc, 0, "![%d] Failed to alloc mem handle for" 2178 " descriptor %d", vdc->instance, i); 2179 return (status); 2180 } 2181 vdc->local_dring[i].is_free = B_TRUE; 2182 vdc->local_dring[i].dep = dep; 2183 } 2184 2185 /* Initialize the starting index */ 2186 vdc->dring_curr_idx = 0; 2187 2188 return (status); 2189 } 2190 2191 /* 2192 * Function: 2193 * vdc_destroy_descriptor_ring() 2194 * 2195 * Description: 2196 * 2197 * Arguments: 2198 * vdc - soft state pointer for this instance of the device driver. 2199 * 2200 * Return Code: 2201 * None 2202 */ 2203 static void 2204 vdc_destroy_descriptor_ring(vdc_t *vdc) 2205 { 2206 vdc_local_desc_t *ldep = NULL; /* Local Dring Entry Pointer */ 2207 ldc_mem_handle_t mhdl = NULL; 2208 ldc_mem_info_t minfo; 2209 int status = -1; 2210 int i; /* loop */ 2211 2212 ASSERT(vdc != NULL); 2213 ASSERT(mutex_owned(&vdc->lock)); 2214 2215 DMSG(vdc, 0, "[%d] Entered\n", vdc->instance); 2216 2217 if (vdc->initialized & VDC_DRING_ENTRY) { 2218 DMSG(vdc, 0, 2219 "[%d] Removing Local DRing entries\n", vdc->instance); 2220 for (i = 0; i < vdc->dring_len; i++) { 2221 ldep = &vdc->local_dring[i]; 2222 mhdl = ldep->desc_mhdl; 2223 2224 if (mhdl == NULL) 2225 continue; 2226 2227 if ((status = ldc_mem_info(mhdl, &minfo)) != 0) { 2228 DMSG(vdc, 0, 2229 "ldc_mem_info returned an error: %d\n", 2230 status); 2231 2232 /* 2233 * This must mean that the mem handle 2234 * is not valid. Clear it out so that 2235 * no one tries to use it. 2236 */ 2237 ldep->desc_mhdl = NULL; 2238 continue; 2239 } 2240 2241 if (minfo.status == LDC_BOUND) { 2242 (void) ldc_mem_unbind_handle(mhdl); 2243 } 2244 2245 (void) ldc_mem_free_handle(mhdl); 2246 2247 ldep->desc_mhdl = NULL; 2248 } 2249 vdc->initialized &= ~VDC_DRING_ENTRY; 2250 } 2251 2252 if (vdc->initialized & VDC_DRING_LOCAL) { 2253 DMSG(vdc, 0, "[%d] Freeing Local DRing\n", vdc->instance); 2254 kmem_free(vdc->local_dring, 2255 vdc->dring_len * sizeof (vdc_local_desc_t)); 2256 vdc->initialized &= ~VDC_DRING_LOCAL; 2257 } 2258 2259 if (vdc->initialized & VDC_DRING_BOUND) { 2260 DMSG(vdc, 0, "[%d] Unbinding DRing\n", vdc->instance); 2261 status = ldc_mem_dring_unbind(vdc->ldc_dring_hdl); 2262 if (status == 0) { 2263 vdc->initialized &= ~VDC_DRING_BOUND; 2264 } else { 2265 DMSG(vdc, 0, "[%d] Error %d unbinding DRing %lx", 2266 vdc->instance, status, vdc->ldc_dring_hdl); 2267 } 2268 kmem_free(vdc->dring_cookie, sizeof (ldc_mem_cookie_t)); 2269 } 2270 2271 if (vdc->initialized & VDC_DRING_INIT) { 2272 DMSG(vdc, 0, "[%d] Destroying DRing\n", vdc->instance); 2273 status = ldc_mem_dring_destroy(vdc->ldc_dring_hdl); 2274 if (status == 0) { 2275 vdc->ldc_dring_hdl = NULL; 2276 bzero(&vdc->dring_mem_info, sizeof (ldc_mem_info_t)); 2277 vdc->initialized &= ~VDC_DRING_INIT; 2278 } else { 2279 DMSG(vdc, 0, "[%d] Error %d destroying DRing (%lx)", 2280 vdc->instance, status, vdc->ldc_dring_hdl); 2281 } 2282 } 2283 } 2284 2285 /* 2286 * Function: 2287 * vdc_map_to_shared_ring() 2288 * 2289 * Description: 2290 * Copy contents of the local descriptor to the shared 2291 * memory descriptor. 2292 * 2293 * Arguments: 2294 * vdcp - soft state pointer for this instance of the device driver. 2295 * idx - descriptor ring index 2296 * 2297 * Return Code: 2298 * None 2299 */ 2300 static int 2301 vdc_map_to_shared_dring(vdc_t *vdcp, int idx) 2302 { 2303 vdc_local_desc_t *ldep; 2304 vd_dring_entry_t *dep; 2305 int rv; 2306 2307 ldep = &(vdcp->local_dring[idx]); 2308 2309 /* for now leave in the old pop_mem_hdl stuff */ 2310 if (ldep->nbytes > 0) { 2311 rv = vdc_populate_mem_hdl(vdcp, ldep); 2312 if (rv) { 2313 DMSG(vdcp, 0, "[%d] Cannot populate mem handle\n", 2314 vdcp->instance); 2315 return (rv); 2316 } 2317 } 2318 2319 /* 2320 * fill in the data details into the DRing 2321 */ 2322 dep = ldep->dep; 2323 ASSERT(dep != NULL); 2324 2325 dep->payload.req_id = VDC_GET_NEXT_REQ_ID(vdcp); 2326 dep->payload.operation = ldep->operation; 2327 dep->payload.addr = ldep->offset; 2328 dep->payload.nbytes = ldep->nbytes; 2329 dep->payload.status = (uint32_t)-1; /* vds will set valid value */ 2330 dep->payload.slice = ldep->slice; 2331 dep->hdr.dstate = VIO_DESC_READY; 2332 dep->hdr.ack = 1; /* request an ACK for every message */ 2333 2334 return (0); 2335 } 2336 2337 /* 2338 * Function: 2339 * vdc_send_request 2340 * 2341 * Description: 2342 * This routine writes the data to be transmitted to vds into the 2343 * descriptor, notifies vds that the ring has been updated and 2344 * then waits for the request to be processed. 2345 * 2346 * Arguments: 2347 * vdcp - the soft state pointer 2348 * operation - operation we want vds to perform (VD_OP_XXX) 2349 * addr - address of data buf to be read/written. 2350 * nbytes - number of bytes to read/write 2351 * slice - the disk slice this request is for 2352 * offset - relative disk offset 2353 * cb_type - type of call - STRATEGY or SYNC 2354 * cb_arg - parameter to be sent to server (depends on VD_OP_XXX type) 2355 * . mode for ioctl(9e) 2356 * . LP64 diskaddr_t (block I/O) 2357 * dir - direction of operation (READ/WRITE/BOTH) 2358 * 2359 * Return Codes: 2360 * 0 2361 * EAGAIN 2362 * EFAULT 2363 * ENXIO 2364 * EIO 2365 */ 2366 static int 2367 vdc_send_request(vdc_t *vdcp, int operation, caddr_t addr, 2368 size_t nbytes, int slice, diskaddr_t offset, int cb_type, 2369 void *cb_arg, vio_desc_direction_t dir) 2370 { 2371 ASSERT(vdcp != NULL); 2372 ASSERT(slice < V_NUMPAR); 2373 2374 mutex_enter(&vdcp->lock); 2375 2376 do { 2377 while (vdcp->state != VDC_STATE_RUNNING) { 2378 cv_wait(&vdcp->running_cv, &vdcp->lock); 2379 2380 /* return error if detaching */ 2381 if (vdcp->state == VDC_STATE_DETACH) { 2382 mutex_exit(&vdcp->lock); 2383 return (ENXIO); 2384 } 2385 } 2386 2387 } while (vdc_populate_descriptor(vdcp, operation, addr, 2388 nbytes, slice, offset, cb_type, cb_arg, dir)); 2389 2390 mutex_exit(&vdcp->lock); 2391 return (0); 2392 } 2393 2394 2395 /* 2396 * Function: 2397 * vdc_populate_descriptor 2398 * 2399 * Description: 2400 * This routine writes the data to be transmitted to vds into the 2401 * descriptor, notifies vds that the ring has been updated and 2402 * then waits for the request to be processed. 2403 * 2404 * Arguments: 2405 * vdcp - the soft state pointer 2406 * operation - operation we want vds to perform (VD_OP_XXX) 2407 * addr - address of data buf to be read/written. 2408 * nbytes - number of bytes to read/write 2409 * slice - the disk slice this request is for 2410 * offset - relative disk offset 2411 * cb_type - type of call - STRATEGY or SYNC 2412 * cb_arg - parameter to be sent to server (depends on VD_OP_XXX type) 2413 * . mode for ioctl(9e) 2414 * . LP64 diskaddr_t (block I/O) 2415 * dir - direction of operation (READ/WRITE/BOTH) 2416 * 2417 * Return Codes: 2418 * 0 2419 * EAGAIN 2420 * EFAULT 2421 * ENXIO 2422 * EIO 2423 */ 2424 static int 2425 vdc_populate_descriptor(vdc_t *vdcp, int operation, caddr_t addr, 2426 size_t nbytes, int slice, diskaddr_t offset, int cb_type, 2427 void *cb_arg, vio_desc_direction_t dir) 2428 { 2429 vdc_local_desc_t *local_dep = NULL; /* Local Dring Pointer */ 2430 int idx; /* Index of DRing entry used */ 2431 int next_idx; 2432 vio_dring_msg_t dmsg; 2433 size_t msglen; 2434 int rv; 2435 2436 ASSERT(MUTEX_HELD(&vdcp->lock)); 2437 vdcp->threads_pending++; 2438 loop: 2439 DMSG(vdcp, 2, ": dring_curr_idx = %d\n", vdcp->dring_curr_idx); 2440 2441 /* Get next available D-Ring entry */ 2442 idx = vdcp->dring_curr_idx; 2443 local_dep = &(vdcp->local_dring[idx]); 2444 2445 if (!local_dep->is_free) { 2446 DMSG(vdcp, 2, "[%d]: dring full - waiting for space\n", 2447 vdcp->instance); 2448 cv_wait(&vdcp->dring_free_cv, &vdcp->lock); 2449 if (vdcp->state == VDC_STATE_RUNNING || 2450 vdcp->state == VDC_STATE_HANDLE_PENDING) { 2451 goto loop; 2452 } 2453 vdcp->threads_pending--; 2454 return (ECONNRESET); 2455 } 2456 2457 next_idx = idx + 1; 2458 if (next_idx >= vdcp->dring_len) 2459 next_idx = 0; 2460 vdcp->dring_curr_idx = next_idx; 2461 2462 ASSERT(local_dep->is_free); 2463 2464 local_dep->operation = operation; 2465 local_dep->addr = addr; 2466 local_dep->nbytes = nbytes; 2467 local_dep->slice = slice; 2468 local_dep->offset = offset; 2469 local_dep->cb_type = cb_type; 2470 local_dep->cb_arg = cb_arg; 2471 local_dep->dir = dir; 2472 2473 local_dep->is_free = B_FALSE; 2474 2475 rv = vdc_map_to_shared_dring(vdcp, idx); 2476 if (rv) { 2477 DMSG(vdcp, 0, "[%d]: cannot bind memory - waiting ..\n", 2478 vdcp->instance); 2479 /* free the descriptor */ 2480 local_dep->is_free = B_TRUE; 2481 vdcp->dring_curr_idx = idx; 2482 cv_wait(&vdcp->membind_cv, &vdcp->lock); 2483 if (vdcp->state == VDC_STATE_RUNNING || 2484 vdcp->state == VDC_STATE_HANDLE_PENDING) { 2485 goto loop; 2486 } 2487 vdcp->threads_pending--; 2488 return (ECONNRESET); 2489 } 2490 2491 /* 2492 * Send a msg with the DRing details to vds 2493 */ 2494 VIO_INIT_DRING_DATA_TAG(dmsg); 2495 VDC_INIT_DRING_DATA_MSG_IDS(dmsg, vdcp); 2496 dmsg.dring_ident = vdcp->dring_ident; 2497 dmsg.start_idx = idx; 2498 dmsg.end_idx = idx; 2499 vdcp->seq_num++; 2500 2501 DTRACE_IO2(send, vio_dring_msg_t *, &dmsg, vdc_t *, vdcp); 2502 2503 DMSG(vdcp, 2, "ident=0x%lx, st=%u, end=%u, seq=%ld\n", 2504 vdcp->dring_ident, dmsg.start_idx, dmsg.end_idx, dmsg.seq_num); 2505 2506 /* 2507 * note we're still holding the lock here to 2508 * make sure the message goes out in order !!!... 2509 */ 2510 msglen = sizeof (dmsg); 2511 rv = vdc_send(vdcp, (caddr_t)&dmsg, &msglen); 2512 switch (rv) { 2513 case ECONNRESET: 2514 /* 2515 * vdc_send initiates the reset on failure. 2516 * Since the transaction has already been put 2517 * on the local dring, it will automatically get 2518 * retried when the channel is reset. Given that, 2519 * it is ok to just return success even though the 2520 * send failed. 2521 */ 2522 rv = 0; 2523 break; 2524 2525 case 0: /* EOK */ 2526 DMSG(vdcp, 1, "sent via LDC: rv=%d\n", rv); 2527 break; 2528 2529 default: 2530 goto cleanup_and_exit; 2531 } 2532 2533 vdcp->threads_pending--; 2534 return (rv); 2535 2536 cleanup_and_exit: 2537 DMSG(vdcp, 0, "unexpected error, rv=%d\n", rv); 2538 return (ENXIO); 2539 } 2540 2541 /* 2542 * Function: 2543 * vdc_do_sync_op 2544 * 2545 * Description: 2546 * Wrapper around vdc_populate_descriptor that blocks until the 2547 * response to the message is available. 2548 * 2549 * Arguments: 2550 * vdcp - the soft state pointer 2551 * operation - operation we want vds to perform (VD_OP_XXX) 2552 * addr - address of data buf to be read/written. 2553 * nbytes - number of bytes to read/write 2554 * slice - the disk slice this request is for 2555 * offset - relative disk offset 2556 * cb_type - type of call - STRATEGY or SYNC 2557 * cb_arg - parameter to be sent to server (depends on VD_OP_XXX type) 2558 * . mode for ioctl(9e) 2559 * . LP64 diskaddr_t (block I/O) 2560 * dir - direction of operation (READ/WRITE/BOTH) 2561 * 2562 * Return Codes: 2563 * 0 2564 * EAGAIN 2565 * EFAULT 2566 * ENXIO 2567 * EIO 2568 */ 2569 static int 2570 vdc_do_sync_op(vdc_t *vdcp, int operation, caddr_t addr, size_t nbytes, 2571 int slice, diskaddr_t offset, int cb_type, void *cb_arg, 2572 vio_desc_direction_t dir) 2573 { 2574 int status; 2575 2576 ASSERT(cb_type == CB_SYNC); 2577 2578 /* 2579 * Grab the lock, if blocked wait until the server 2580 * response causes us to wake up again. 2581 */ 2582 mutex_enter(&vdcp->lock); 2583 vdcp->sync_op_cnt++; 2584 while (vdcp->sync_op_blocked && vdcp->state != VDC_STATE_DETACH) 2585 cv_wait(&vdcp->sync_blocked_cv, &vdcp->lock); 2586 2587 if (vdcp->state == VDC_STATE_DETACH) { 2588 cv_broadcast(&vdcp->sync_blocked_cv); 2589 vdcp->sync_op_cnt--; 2590 mutex_exit(&vdcp->lock); 2591 return (ENXIO); 2592 } 2593 2594 /* now block anyone other thread entering after us */ 2595 vdcp->sync_op_blocked = B_TRUE; 2596 vdcp->sync_op_pending = B_TRUE; 2597 mutex_exit(&vdcp->lock); 2598 2599 /* 2600 * No need to check return value - will return error only 2601 * in the DETACH case and we can fall through 2602 */ 2603 (void) vdc_send_request(vdcp, operation, addr, 2604 nbytes, slice, offset, cb_type, cb_arg, dir); 2605 2606 /* 2607 * block until our transaction completes. 2608 * Also anyone else waiting also gets to go next. 2609 */ 2610 mutex_enter(&vdcp->lock); 2611 while (vdcp->sync_op_pending && vdcp->state != VDC_STATE_DETACH) 2612 cv_wait(&vdcp->sync_pending_cv, &vdcp->lock); 2613 2614 DMSG(vdcp, 2, ": operation returned %d\n", vdcp->sync_op_status); 2615 if (vdcp->state == VDC_STATE_DETACH) { 2616 vdcp->sync_op_pending = B_FALSE; 2617 status = ENXIO; 2618 } else { 2619 status = vdcp->sync_op_status; 2620 } 2621 2622 vdcp->sync_op_status = 0; 2623 vdcp->sync_op_blocked = B_FALSE; 2624 vdcp->sync_op_cnt--; 2625 2626 /* signal the next waiting thread */ 2627 cv_signal(&vdcp->sync_blocked_cv); 2628 mutex_exit(&vdcp->lock); 2629 2630 return (status); 2631 } 2632 2633 2634 /* 2635 * Function: 2636 * vdc_drain_response() 2637 * 2638 * Description: 2639 * When a guest is panicking, the completion of requests needs to be 2640 * handled differently because interrupts are disabled and vdc 2641 * will not get messages. We have to poll for the messages instead. 2642 * 2643 * Arguments: 2644 * vdc - soft state pointer for this instance of the device driver. 2645 * 2646 * Return Code: 2647 * 0 - Success 2648 */ 2649 static int 2650 vdc_drain_response(vdc_t *vdc) 2651 { 2652 int rv, idx, retries; 2653 size_t msglen; 2654 vdc_local_desc_t *ldep = NULL; /* Local Dring Entry Pointer */ 2655 vio_dring_msg_t dmsg; 2656 2657 mutex_enter(&vdc->lock); 2658 2659 retries = 0; 2660 for (;;) { 2661 msglen = sizeof (dmsg); 2662 rv = ldc_read(vdc->ldc_handle, (caddr_t)&dmsg, &msglen); 2663 if (rv) { 2664 rv = EINVAL; 2665 break; 2666 } 2667 2668 /* 2669 * if there are no packets wait and check again 2670 */ 2671 if ((rv == 0) && (msglen == 0)) { 2672 if (retries++ > vdc_dump_retries) { 2673 rv = EAGAIN; 2674 break; 2675 } 2676 2677 drv_usecwait(vdc_usec_timeout_dump); 2678 continue; 2679 } 2680 2681 /* 2682 * Ignore all messages that are not ACKs/NACKs to 2683 * DRing requests. 2684 */ 2685 if ((dmsg.tag.vio_msgtype != VIO_TYPE_DATA) || 2686 (dmsg.tag.vio_subtype_env != VIO_DRING_DATA)) { 2687 DMSG(vdc, 0, "discard pkt: type=%d sub=%d env=%d\n", 2688 dmsg.tag.vio_msgtype, 2689 dmsg.tag.vio_subtype, 2690 dmsg.tag.vio_subtype_env); 2691 continue; 2692 } 2693 2694 /* 2695 * set the appropriate return value for the current request. 2696 */ 2697 switch (dmsg.tag.vio_subtype) { 2698 case VIO_SUBTYPE_ACK: 2699 rv = 0; 2700 break; 2701 case VIO_SUBTYPE_NACK: 2702 rv = EAGAIN; 2703 break; 2704 default: 2705 continue; 2706 } 2707 2708 idx = dmsg.start_idx; 2709 if (idx >= vdc->dring_len) { 2710 DMSG(vdc, 0, "[%d] Bogus ack data : start %d\n", 2711 vdc->instance, idx); 2712 continue; 2713 } 2714 ldep = &vdc->local_dring[idx]; 2715 if (ldep->dep->hdr.dstate != VIO_DESC_DONE) { 2716 DMSG(vdc, 0, "[%d] Entry @ %d - state !DONE %d\n", 2717 vdc->instance, idx, ldep->dep->hdr.dstate); 2718 continue; 2719 } 2720 2721 DMSG(vdc, 1, "[%d] Depopulating idx=%d state=%d\n", 2722 vdc->instance, idx, ldep->dep->hdr.dstate); 2723 rv = vdc_depopulate_descriptor(vdc, idx); 2724 if (rv) { 2725 DMSG(vdc, 0, 2726 "[%d] Entry @ %d - depopulate failed ..\n", 2727 vdc->instance, idx); 2728 } 2729 2730 /* if this is the last descriptor - break out of loop */ 2731 if ((idx + 1) % vdc->dring_len == vdc->dring_curr_idx) 2732 break; 2733 } 2734 2735 mutex_exit(&vdc->lock); 2736 DMSG(vdc, 0, "End idx=%d\n", idx); 2737 2738 return (rv); 2739 } 2740 2741 2742 /* 2743 * Function: 2744 * vdc_depopulate_descriptor() 2745 * 2746 * Description: 2747 * 2748 * Arguments: 2749 * vdc - soft state pointer for this instance of the device driver. 2750 * idx - Index of the Descriptor Ring entry being modified 2751 * 2752 * Return Code: 2753 * 0 - Success 2754 */ 2755 static int 2756 vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx) 2757 { 2758 vd_dring_entry_t *dep = NULL; /* Dring Entry Pointer */ 2759 vdc_local_desc_t *ldep = NULL; /* Local Dring Entry Pointer */ 2760 int status = ENXIO; 2761 int operation; 2762 int rv = 0; 2763 2764 ASSERT(vdc != NULL); 2765 ASSERT(idx < vdc->dring_len); 2766 ldep = &vdc->local_dring[idx]; 2767 ASSERT(ldep != NULL); 2768 ASSERT(MUTEX_HELD(&vdc->lock)); 2769 2770 DMSG(vdc, 2, ": idx = %d\n", idx); 2771 dep = ldep->dep; 2772 ASSERT(dep != NULL); 2773 ASSERT((dep->hdr.dstate == VIO_DESC_DONE) || 2774 (dep->payload.status == ECANCELED)); 2775 2776 VDC_MARK_DRING_ENTRY_FREE(vdc, idx); 2777 2778 ldep->is_free = B_TRUE; 2779 DMSG(vdc, 2, ": is_free = %d\n", ldep->is_free); 2780 status = dep->payload.status; 2781 operation = dep->payload.operation; 2782 2783 /* the DKIO FLUSH operation never bind handles so we can return now */ 2784 if (operation == VD_OP_FLUSH) 2785 return (status); 2786 2787 /* 2788 * If the upper layer passed in a misaligned address we copied the 2789 * data into an aligned buffer before sending it to LDC - we now 2790 * copy it back to the original buffer. 2791 */ 2792 if (ldep->align_addr) { 2793 ASSERT(ldep->addr != NULL); 2794 2795 if (dep->payload.nbytes > 0) 2796 bcopy(ldep->align_addr, ldep->addr, 2797 dep->payload.nbytes); 2798 kmem_free(ldep->align_addr, 2799 sizeof (caddr_t) * P2ROUNDUP(ldep->nbytes, 8)); 2800 ldep->align_addr = NULL; 2801 } 2802 2803 rv = ldc_mem_unbind_handle(ldep->desc_mhdl); 2804 if (rv != 0) { 2805 DMSG(vdc, 0, "?[%d] unbind mhdl 0x%lx @ idx %d failed (%d)", 2806 vdc->instance, ldep->desc_mhdl, idx, rv); 2807 /* 2808 * The error returned by the vDisk server is more informative 2809 * and thus has a higher priority but if it isn't set we ensure 2810 * that this function returns an error. 2811 */ 2812 if (status == 0) 2813 status = EINVAL; 2814 } 2815 2816 cv_signal(&vdc->membind_cv); 2817 cv_signal(&vdc->dring_free_cv); 2818 2819 return (status); 2820 } 2821 2822 /* 2823 * Function: 2824 * vdc_populate_mem_hdl() 2825 * 2826 * Description: 2827 * 2828 * Arguments: 2829 * vdc - soft state pointer for this instance of the device driver. 2830 * idx - Index of the Descriptor Ring entry being modified 2831 * addr - virtual address being mapped in 2832 * nybtes - number of bytes in 'addr' 2833 * operation - the vDisk operation being performed (VD_OP_xxx) 2834 * 2835 * Return Code: 2836 * 0 - Success 2837 */ 2838 static int 2839 vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep) 2840 { 2841 vd_dring_entry_t *dep = NULL; 2842 ldc_mem_handle_t mhdl; 2843 caddr_t vaddr; 2844 size_t nbytes; 2845 uint8_t perm = LDC_MEM_RW; 2846 uint8_t maptype; 2847 int rv = 0; 2848 int i; 2849 2850 ASSERT(vdcp != NULL); 2851 2852 dep = ldep->dep; 2853 mhdl = ldep->desc_mhdl; 2854 2855 switch (ldep->dir) { 2856 case VIO_read_dir: 2857 perm = LDC_MEM_W; 2858 break; 2859 2860 case VIO_write_dir: 2861 perm = LDC_MEM_R; 2862 break; 2863 2864 case VIO_both_dir: 2865 perm = LDC_MEM_RW; 2866 break; 2867 2868 default: 2869 ASSERT(0); /* catch bad programming in vdc */ 2870 } 2871 2872 /* 2873 * LDC expects any addresses passed in to be 8-byte aligned. We need 2874 * to copy the contents of any misaligned buffers to a newly allocated 2875 * buffer and bind it instead (and copy the the contents back to the 2876 * original buffer passed in when depopulating the descriptor) 2877 */ 2878 vaddr = ldep->addr; 2879 nbytes = ldep->nbytes; 2880 if (((uint64_t)vaddr & 0x7) != 0) { 2881 ASSERT(ldep->align_addr == NULL); 2882 ldep->align_addr = 2883 kmem_alloc(sizeof (caddr_t) * 2884 P2ROUNDUP(nbytes, 8), KM_SLEEP); 2885 DMSG(vdcp, 0, "[%d] Misaligned address %p reallocating " 2886 "(buf=%p nb=%ld op=%d)\n", 2887 vdcp->instance, (void *)vaddr, (void *)ldep->align_addr, 2888 nbytes, ldep->operation); 2889 if (perm != LDC_MEM_W) 2890 bcopy(vaddr, ldep->align_addr, nbytes); 2891 vaddr = ldep->align_addr; 2892 } 2893 2894 maptype = LDC_IO_MAP|LDC_SHADOW_MAP|LDC_DIRECT_MAP; 2895 rv = ldc_mem_bind_handle(mhdl, vaddr, P2ROUNDUP(nbytes, 8), 2896 maptype, perm, &dep->payload.cookie[0], 2897 &dep->payload.ncookies); 2898 DMSG(vdcp, 2, "[%d] bound mem handle; ncookies=%d\n", 2899 vdcp->instance, dep->payload.ncookies); 2900 if (rv != 0) { 2901 DMSG(vdcp, 0, "[%d] Failed to bind LDC memory handle " 2902 "(mhdl=%p, buf=%p, err=%d)\n", 2903 vdcp->instance, (void *)mhdl, (void *)vaddr, rv); 2904 if (ldep->align_addr) { 2905 kmem_free(ldep->align_addr, 2906 sizeof (caddr_t) * P2ROUNDUP(nbytes, 8)); 2907 ldep->align_addr = NULL; 2908 } 2909 return (EAGAIN); 2910 } 2911 2912 /* 2913 * Get the other cookies (if any). 2914 */ 2915 for (i = 1; i < dep->payload.ncookies; i++) { 2916 rv = ldc_mem_nextcookie(mhdl, &dep->payload.cookie[i]); 2917 if (rv != 0) { 2918 (void) ldc_mem_unbind_handle(mhdl); 2919 DMSG(vdcp, 0, "?[%d] Failed to get next cookie " 2920 "(mhdl=%lx cnum=%d), err=%d", 2921 vdcp->instance, mhdl, i, rv); 2922 if (ldep->align_addr) { 2923 kmem_free(ldep->align_addr, 2924 sizeof (caddr_t) * ldep->nbytes); 2925 ldep->align_addr = NULL; 2926 } 2927 return (EAGAIN); 2928 } 2929 } 2930 2931 return (rv); 2932 } 2933 2934 /* 2935 * Interrupt handlers for messages from LDC 2936 */ 2937 2938 /* 2939 * Function: 2940 * vdc_handle_cb() 2941 * 2942 * Description: 2943 * 2944 * Arguments: 2945 * event - Type of event (LDC_EVT_xxx) that triggered the callback 2946 * arg - soft state pointer for this instance of the device driver. 2947 * 2948 * Return Code: 2949 * 0 - Success 2950 */ 2951 static uint_t 2952 vdc_handle_cb(uint64_t event, caddr_t arg) 2953 { 2954 ldc_status_t ldc_state; 2955 int rv = 0; 2956 2957 vdc_t *vdc = (vdc_t *)(void *)arg; 2958 2959 ASSERT(vdc != NULL); 2960 2961 DMSG(vdc, 1, "evt=%lx seqID=%ld\n", event, vdc->seq_num); 2962 2963 /* 2964 * Depending on the type of event that triggered this callback, 2965 * we modify the handshake state or read the data. 2966 * 2967 * NOTE: not done as a switch() as event could be triggered by 2968 * a state change and a read request. Also the ordering of the 2969 * check for the event types is deliberate. 2970 */ 2971 if (event & LDC_EVT_UP) { 2972 DMSG(vdc, 0, "[%d] Received LDC_EVT_UP\n", vdc->instance); 2973 2974 mutex_enter(&vdc->lock); 2975 2976 /* get LDC state */ 2977 rv = ldc_status(vdc->ldc_handle, &ldc_state); 2978 if (rv != 0) { 2979 DMSG(vdc, 0, "[%d] Couldn't get LDC status %d", 2980 vdc->instance, rv); 2981 return (LDC_SUCCESS); 2982 } 2983 if (vdc->ldc_state != LDC_UP && ldc_state == LDC_UP) { 2984 /* 2985 * Reset the transaction sequence numbers when 2986 * LDC comes up. We then kick off the handshake 2987 * negotiation with the vDisk server. 2988 */ 2989 vdc->seq_num = 1; 2990 vdc->seq_num_reply = 0; 2991 vdc->ldc_state = ldc_state; 2992 cv_signal(&vdc->initwait_cv); 2993 } 2994 2995 mutex_exit(&vdc->lock); 2996 } 2997 2998 if (event & LDC_EVT_READ) { 2999 DMSG(vdc, 0, "[%d] Received LDC_EVT_READ\n", vdc->instance); 3000 mutex_enter(&vdc->read_lock); 3001 cv_signal(&vdc->read_cv); 3002 vdc->read_state = VDC_READ_PENDING; 3003 mutex_exit(&vdc->read_lock); 3004 3005 /* that's all we have to do - no need to handle DOWN/RESET */ 3006 return (LDC_SUCCESS); 3007 } 3008 3009 if (event & (LDC_EVT_RESET|LDC_EVT_DOWN)) { 3010 3011 DMSG(vdc, 0, "[%d] Received LDC RESET event\n", vdc->instance); 3012 3013 mutex_enter(&vdc->lock); 3014 /* 3015 * Need to wake up any readers so they will 3016 * detect that a reset has occurred. 3017 */ 3018 mutex_enter(&vdc->read_lock); 3019 if ((vdc->read_state == VDC_READ_WAITING) || 3020 (vdc->read_state == VDC_READ_RESET)) 3021 cv_signal(&vdc->read_cv); 3022 vdc->read_state = VDC_READ_RESET; 3023 mutex_exit(&vdc->read_lock); 3024 3025 /* wake up any threads waiting for connection to come up */ 3026 if (vdc->state == VDC_STATE_INIT_WAITING) { 3027 vdc->state = VDC_STATE_RESETTING; 3028 cv_signal(&vdc->initwait_cv); 3029 } 3030 3031 mutex_exit(&vdc->lock); 3032 } 3033 3034 if (event & ~(LDC_EVT_UP | LDC_EVT_RESET | LDC_EVT_DOWN | LDC_EVT_READ)) 3035 DMSG(vdc, 0, "![%d] Unexpected LDC event (%lx) received", 3036 vdc->instance, event); 3037 3038 return (LDC_SUCCESS); 3039 } 3040 3041 /* 3042 * Function: 3043 * vdc_wait_for_response() 3044 * 3045 * Description: 3046 * Block waiting for a response from the server. If there is 3047 * no data the thread block on the read_cv that is signalled 3048 * by the callback when an EVT_READ occurs. 3049 * 3050 * Arguments: 3051 * vdcp - soft state pointer for this instance of the device driver. 3052 * 3053 * Return Code: 3054 * 0 - Success 3055 */ 3056 static int 3057 vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp) 3058 { 3059 size_t nbytes = sizeof (*msgp); 3060 int status; 3061 3062 ASSERT(vdcp != NULL); 3063 3064 DMSG(vdcp, 1, "[%d] Entered\n", vdcp->instance); 3065 3066 status = vdc_recv(vdcp, msgp, &nbytes); 3067 DMSG(vdcp, 3, "vdc_read() done.. status=0x%x size=0x%x\n", 3068 status, (int)nbytes); 3069 if (status) { 3070 DMSG(vdcp, 0, "?[%d] Error %d reading LDC msg\n", 3071 vdcp->instance, status); 3072 return (status); 3073 } 3074 3075 if (nbytes < sizeof (vio_msg_tag_t)) { 3076 DMSG(vdcp, 0, "?[%d] Expect %lu bytes; recv'd %lu\n", 3077 vdcp->instance, sizeof (vio_msg_tag_t), nbytes); 3078 return (ENOMSG); 3079 } 3080 3081 DMSG(vdcp, 2, "[%d] (%x/%x/%x)\n", vdcp->instance, 3082 msgp->tag.vio_msgtype, 3083 msgp->tag.vio_subtype, 3084 msgp->tag.vio_subtype_env); 3085 3086 /* 3087 * Verify the Session ID of the message 3088 * 3089 * Every message after the Version has been negotiated should 3090 * have the correct session ID set. 3091 */ 3092 if ((msgp->tag.vio_sid != vdcp->session_id) && 3093 (msgp->tag.vio_subtype_env != VIO_VER_INFO)) { 3094 DMSG(vdcp, 0, "[%d] Invalid SID: received 0x%x, " 3095 "expected 0x%lx [seq num %lx @ %d]", 3096 vdcp->instance, msgp->tag.vio_sid, 3097 vdcp->session_id, 3098 ((vio_dring_msg_t *)msgp)->seq_num, 3099 ((vio_dring_msg_t *)msgp)->start_idx); 3100 return (ENOMSG); 3101 } 3102 return (0); 3103 } 3104 3105 3106 /* 3107 * Function: 3108 * vdc_resubmit_backup_dring() 3109 * 3110 * Description: 3111 * Resubmit each descriptor in the backed up dring to 3112 * vDisk server. The Dring was backed up during connection 3113 * reset. 3114 * 3115 * Arguments: 3116 * vdcp - soft state pointer for this instance of the device driver. 3117 * 3118 * Return Code: 3119 * 0 - Success 3120 */ 3121 static int 3122 vdc_resubmit_backup_dring(vdc_t *vdcp) 3123 { 3124 int count; 3125 int b_idx; 3126 int rv; 3127 int dring_size; 3128 int status; 3129 vio_msg_t vio_msg; 3130 vdc_local_desc_t *curr_ldep; 3131 3132 ASSERT(MUTEX_NOT_HELD(&vdcp->lock)); 3133 ASSERT(vdcp->state == VDC_STATE_HANDLE_PENDING); 3134 3135 DMSG(vdcp, 1, "restoring pending dring entries (len=%d, tail=%d)\n", 3136 vdcp->local_dring_backup_len, vdcp->local_dring_backup_tail); 3137 3138 /* 3139 * Walk the backup copy of the local descriptor ring and 3140 * resubmit all the outstanding transactions. 3141 */ 3142 b_idx = vdcp->local_dring_backup_tail; 3143 for (count = 0; count < vdcp->local_dring_backup_len; count++) { 3144 3145 curr_ldep = &(vdcp->local_dring_backup[b_idx]); 3146 3147 /* only resubmit oustanding transactions */ 3148 if (!curr_ldep->is_free) { 3149 3150 DMSG(vdcp, 1, "resubmitting entry idx=%x\n", b_idx); 3151 mutex_enter(&vdcp->lock); 3152 rv = vdc_populate_descriptor(vdcp, curr_ldep->operation, 3153 curr_ldep->addr, curr_ldep->nbytes, 3154 curr_ldep->slice, curr_ldep->offset, 3155 curr_ldep->cb_type, curr_ldep->cb_arg, 3156 curr_ldep->dir); 3157 mutex_exit(&vdcp->lock); 3158 if (rv) { 3159 DMSG(vdcp, 1, "[%d] cannot resubmit entry %d\n", 3160 vdcp->instance, b_idx); 3161 return (rv); 3162 } 3163 3164 /* Wait for the response message. */ 3165 DMSG(vdcp, 1, "waiting for response to idx=%x\n", 3166 b_idx); 3167 status = vdc_wait_for_response(vdcp, &vio_msg); 3168 if (status) { 3169 DMSG(vdcp, 1, "[%d] wait_for_response " 3170 "returned err=%d\n", vdcp->instance, 3171 status); 3172 return (status); 3173 } 3174 3175 DMSG(vdcp, 1, "processing msg for idx=%x\n", b_idx); 3176 status = vdc_process_data_msg(vdcp, &vio_msg); 3177 if (status) { 3178 DMSG(vdcp, 1, "[%d] process_data_msg " 3179 "returned err=%d\n", vdcp->instance, 3180 status); 3181 return (status); 3182 } 3183 } 3184 3185 /* get the next element to submit */ 3186 if (++b_idx >= vdcp->local_dring_backup_len) 3187 b_idx = 0; 3188 } 3189 3190 /* all done - now clear up pending dring copy */ 3191 dring_size = vdcp->local_dring_backup_len * 3192 sizeof (vdcp->local_dring_backup[0]); 3193 3194 (void) kmem_free(vdcp->local_dring_backup, dring_size); 3195 3196 vdcp->local_dring_backup = NULL; 3197 3198 return (0); 3199 } 3200 3201 /* 3202 * Function: 3203 * vdc_backup_local_dring() 3204 * 3205 * Description: 3206 * Backup the current dring in the event of a reset. The Dring 3207 * transactions will be resubmitted to the server when the 3208 * connection is restored. 3209 * 3210 * Arguments: 3211 * vdcp - soft state pointer for this instance of the device driver. 3212 * 3213 * Return Code: 3214 * NONE 3215 */ 3216 static void 3217 vdc_backup_local_dring(vdc_t *vdcp) 3218 { 3219 int dring_size; 3220 3221 ASSERT(vdcp->state == VDC_STATE_RESETTING); 3222 3223 /* 3224 * If the backup dring is stil around, it means 3225 * that the last restore did not complete. However, 3226 * since we never got back into the running state, 3227 * the backup copy we have is still valid. 3228 */ 3229 if (vdcp->local_dring_backup != NULL) { 3230 DMSG(vdcp, 1, "reusing local descriptor ring backup " 3231 "(len=%d, tail=%d)\n", vdcp->local_dring_backup_len, 3232 vdcp->local_dring_backup_tail); 3233 return; 3234 } 3235 3236 DMSG(vdcp, 1, "backing up the local descriptor ring (len=%d, " 3237 "tail=%d)\n", vdcp->dring_len, vdcp->dring_curr_idx); 3238 3239 dring_size = vdcp->dring_len * sizeof (vdcp->local_dring[0]); 3240 3241 vdcp->local_dring_backup = kmem_alloc(dring_size, KM_SLEEP); 3242 bcopy(vdcp->local_dring, vdcp->local_dring_backup, dring_size); 3243 3244 vdcp->local_dring_backup_tail = vdcp->dring_curr_idx; 3245 vdcp->local_dring_backup_len = vdcp->dring_len; 3246 } 3247 3248 /* -------------------------------------------------------------------------- */ 3249 3250 /* 3251 * The following functions process the incoming messages from vds 3252 */ 3253 3254 /* 3255 * Function: 3256 * vdc_process_msg_thread() 3257 * 3258 * Description: 3259 * 3260 * Main VDC message processing thread. Each vDisk instance 3261 * consists of a copy of this thread. This thread triggers 3262 * all the handshakes and data exchange with the server. It 3263 * also handles all channel resets 3264 * 3265 * Arguments: 3266 * vdc - soft state pointer for this instance of the device driver. 3267 * 3268 * Return Code: 3269 * None 3270 */ 3271 static void 3272 vdc_process_msg_thread(vdc_t *vdcp) 3273 { 3274 int status; 3275 3276 mutex_enter(&vdcp->lock); 3277 3278 for (;;) { 3279 3280 #define Q(_s) (vdcp->state == _s) ? #_s : 3281 DMSG(vdcp, 3, "state = %d (%s)\n", vdcp->state, 3282 Q(VDC_STATE_INIT) 3283 Q(VDC_STATE_INIT_WAITING) 3284 Q(VDC_STATE_NEGOTIATE) 3285 Q(VDC_STATE_HANDLE_PENDING) 3286 Q(VDC_STATE_RUNNING) 3287 Q(VDC_STATE_RESETTING) 3288 Q(VDC_STATE_DETACH) 3289 "UNKNOWN"); 3290 3291 switch (vdcp->state) { 3292 case VDC_STATE_INIT: 3293 3294 /* Check if have re-initializing repeatedly */ 3295 if (vdcp->hshake_cnt++ > vdc_hshake_retries) { 3296 cmn_err(CE_NOTE, "[%d] disk access failed.\n", 3297 vdcp->instance); 3298 vdcp->state = VDC_STATE_DETACH; 3299 break; 3300 } 3301 3302 /* Bring up connection with vds via LDC */ 3303 status = vdc_start_ldc_connection(vdcp); 3304 switch (status) { 3305 case EINVAL: 3306 DMSG(vdcp, 0, "[%d] Could not start LDC", 3307 vdcp->instance); 3308 vdcp->state = VDC_STATE_DETACH; 3309 break; 3310 case 0: 3311 vdcp->state = VDC_STATE_INIT_WAITING; 3312 break; 3313 default: 3314 vdcp->state = VDC_STATE_INIT_WAITING; 3315 break; 3316 } 3317 break; 3318 3319 case VDC_STATE_INIT_WAITING: 3320 3321 /* 3322 * Let the callback event move us on 3323 * when channel is open to server 3324 */ 3325 while (vdcp->ldc_state != LDC_UP) { 3326 cv_wait(&vdcp->initwait_cv, &vdcp->lock); 3327 if (vdcp->state != VDC_STATE_INIT_WAITING) { 3328 DMSG(vdcp, 0, 3329 "state moved to %d out from under us...\n", 3330 vdcp->state); 3331 3332 break; 3333 } 3334 } 3335 if (vdcp->state == VDC_STATE_INIT_WAITING && 3336 vdcp->ldc_state == LDC_UP) { 3337 vdcp->state = VDC_STATE_NEGOTIATE; 3338 } 3339 break; 3340 3341 case VDC_STATE_NEGOTIATE: 3342 switch (status = vdc_ver_negotiation(vdcp)) { 3343 case 0: 3344 break; 3345 default: 3346 DMSG(vdcp, 0, "ver negotiate failed (%d)..\n", 3347 status); 3348 goto reset; 3349 } 3350 3351 switch (status = vdc_attr_negotiation(vdcp)) { 3352 case 0: 3353 break; 3354 default: 3355 DMSG(vdcp, 0, "attr negotiate failed (%d)..\n", 3356 status); 3357 goto reset; 3358 } 3359 3360 switch (status = vdc_dring_negotiation(vdcp)) { 3361 case 0: 3362 break; 3363 default: 3364 DMSG(vdcp, 0, "dring negotiate failed (%d)..\n", 3365 status); 3366 goto reset; 3367 } 3368 3369 switch (status = vdc_rdx_exchange(vdcp)) { 3370 case 0: 3371 vdcp->state = VDC_STATE_HANDLE_PENDING; 3372 goto done; 3373 default: 3374 DMSG(vdcp, 0, "RDX xchg failed ..(%d)\n", 3375 status); 3376 goto reset; 3377 } 3378 reset: 3379 DMSG(vdcp, 0, "negotiation failed: resetting (%d)\n", 3380 status); 3381 vdcp->state = VDC_STATE_RESETTING; 3382 done: 3383 DMSG(vdcp, 0, "negotiation complete (state=0x%x)...\n", 3384 vdcp->state); 3385 break; 3386 3387 case VDC_STATE_HANDLE_PENDING: 3388 3389 mutex_exit(&vdcp->lock); 3390 status = vdc_resubmit_backup_dring(vdcp); 3391 mutex_enter(&vdcp->lock); 3392 3393 if (status) 3394 vdcp->state = VDC_STATE_RESETTING; 3395 else 3396 vdcp->state = VDC_STATE_RUNNING; 3397 3398 break; 3399 3400 /* enter running state */ 3401 case VDC_STATE_RUNNING: 3402 /* 3403 * Signal anyone waiting for the connection 3404 * to come on line. 3405 */ 3406 vdcp->hshake_cnt = 0; 3407 cv_broadcast(&vdcp->running_cv); 3408 mutex_exit(&vdcp->lock); 3409 3410 for (;;) { 3411 vio_msg_t msg; 3412 status = vdc_wait_for_response(vdcp, &msg); 3413 if (status) break; 3414 3415 DMSG(vdcp, 1, "[%d] new pkt(s) available\n", 3416 vdcp->instance); 3417 status = vdc_process_data_msg(vdcp, &msg); 3418 if (status) { 3419 DMSG(vdcp, 1, "[%d] process_data_msg " 3420 "returned err=%d\n", vdcp->instance, 3421 status); 3422 break; 3423 } 3424 3425 } 3426 3427 mutex_enter(&vdcp->lock); 3428 3429 vdcp->state = VDC_STATE_RESETTING; 3430 break; 3431 3432 case VDC_STATE_RESETTING: 3433 DMSG(vdcp, 0, "Initiating channel reset " 3434 "(pending = %d)\n", (int)vdcp->threads_pending); 3435 3436 if (vdcp->self_reset) { 3437 DMSG(vdcp, 0, 3438 "[%d] calling stop_ldc_connection.\n", 3439 vdcp->instance); 3440 status = vdc_stop_ldc_connection(vdcp); 3441 vdcp->self_reset = B_FALSE; 3442 } 3443 3444 /* 3445 * Wait for all threads currently waiting 3446 * for a free dring entry to use. 3447 */ 3448 while (vdcp->threads_pending) { 3449 cv_broadcast(&vdcp->membind_cv); 3450 cv_broadcast(&vdcp->dring_free_cv); 3451 mutex_exit(&vdcp->lock); 3452 /* let them wake up */ 3453 drv_usecwait(vdc_min_timeout_ldc); 3454 mutex_enter(&vdcp->lock); 3455 } 3456 3457 ASSERT(vdcp->threads_pending == 0); 3458 3459 /* Sanity check that no thread is receiving */ 3460 ASSERT(vdcp->read_state != VDC_READ_WAITING); 3461 3462 vdcp->read_state = VDC_READ_IDLE; 3463 3464 vdc_backup_local_dring(vdcp); 3465 3466 /* cleanup the old d-ring */ 3467 vdc_destroy_descriptor_ring(vdcp); 3468 3469 /* go and start again */ 3470 vdcp->state = VDC_STATE_INIT; 3471 3472 break; 3473 3474 case VDC_STATE_DETACH: 3475 DMSG(vdcp, 0, "[%d] Reset thread exit cleanup ..\n", 3476 vdcp->instance); 3477 3478 /* 3479 * Signal anyone waiting for connection 3480 * to come online 3481 */ 3482 cv_broadcast(&vdcp->running_cv); 3483 3484 while (vdcp->sync_op_pending) { 3485 cv_signal(&vdcp->sync_pending_cv); 3486 cv_signal(&vdcp->sync_blocked_cv); 3487 mutex_exit(&vdcp->lock); 3488 drv_usecwait(vdc_min_timeout_ldc); 3489 mutex_enter(&vdcp->lock); 3490 } 3491 3492 mutex_exit(&vdcp->lock); 3493 3494 DMSG(vdcp, 0, "[%d] Msg processing thread exiting ..\n", 3495 vdcp->instance); 3496 thread_exit(); 3497 break; 3498 } 3499 } 3500 } 3501 3502 3503 /* 3504 * Function: 3505 * vdc_process_data_msg() 3506 * 3507 * Description: 3508 * This function is called by the message processing thread each time 3509 * a message with a msgtype of VIO_TYPE_DATA is received. It will either 3510 * be an ACK or NACK from vds[1] which vdc handles as follows. 3511 * ACK - wake up the waiting thread 3512 * NACK - resend any messages necessary 3513 * 3514 * [1] Although the message format allows it, vds should not send a 3515 * VIO_SUBTYPE_INFO message to vdc asking it to read data; if for 3516 * some bizarre reason it does, vdc will reset the connection. 3517 * 3518 * Arguments: 3519 * vdc - soft state pointer for this instance of the device driver. 3520 * msg - the LDC message sent by vds 3521 * 3522 * Return Code: 3523 * 0 - Success. 3524 * > 0 - error value returned by LDC 3525 */ 3526 static int 3527 vdc_process_data_msg(vdc_t *vdcp, vio_msg_t *msg) 3528 { 3529 int status = 0; 3530 vio_dring_msg_t *dring_msg; 3531 vdc_local_desc_t *ldep = NULL; 3532 int start, end; 3533 int idx; 3534 3535 dring_msg = (vio_dring_msg_t *)msg; 3536 3537 ASSERT(msg->tag.vio_msgtype == VIO_TYPE_DATA); 3538 ASSERT(vdcp != NULL); 3539 3540 mutex_enter(&vdcp->lock); 3541 3542 /* 3543 * Check to see if the message has bogus data 3544 */ 3545 idx = start = dring_msg->start_idx; 3546 end = dring_msg->end_idx; 3547 if ((start >= vdcp->dring_len) || 3548 (end >= vdcp->dring_len) || (end < -1)) { 3549 DMSG(vdcp, 0, "[%d] Bogus ACK data : start %d, end %d\n", 3550 vdcp->instance, start, end); 3551 mutex_exit(&vdcp->lock); 3552 return (EINVAL); 3553 } 3554 3555 /* 3556 * Verify that the sequence number is what vdc expects. 3557 */ 3558 switch (vdc_verify_seq_num(vdcp, dring_msg)) { 3559 case VDC_SEQ_NUM_TODO: 3560 break; /* keep processing this message */ 3561 case VDC_SEQ_NUM_SKIP: 3562 mutex_exit(&vdcp->lock); 3563 return (0); 3564 case VDC_SEQ_NUM_INVALID: 3565 mutex_exit(&vdcp->lock); 3566 DMSG(vdcp, 0, "[%d] invalid seqno\n", vdcp->instance); 3567 return (ENXIO); 3568 } 3569 3570 if (msg->tag.vio_subtype == VIO_SUBTYPE_NACK) { 3571 DMSG(vdcp, 0, "[%d] DATA NACK\n", vdcp->instance); 3572 VDC_DUMP_DRING_MSG(dring_msg); 3573 mutex_exit(&vdcp->lock); 3574 return (EIO); 3575 3576 } else if (msg->tag.vio_subtype == VIO_SUBTYPE_INFO) { 3577 mutex_exit(&vdcp->lock); 3578 return (EPROTO); 3579 } 3580 3581 DTRACE_IO2(recv, vio_dring_msg_t, dring_msg, vdc_t *, vdcp); 3582 DMSG(vdcp, 1, ": start %d end %d\n", start, end); 3583 ASSERT(start == end); 3584 3585 ldep = &vdcp->local_dring[idx]; 3586 3587 DMSG(vdcp, 1, ": state 0x%x - cb_type 0x%x\n", 3588 ldep->dep->hdr.dstate, ldep->cb_type); 3589 3590 if (ldep->dep->hdr.dstate == VIO_DESC_DONE) { 3591 struct buf *bufp; 3592 3593 switch (ldep->cb_type) { 3594 case CB_SYNC: 3595 ASSERT(vdcp->sync_op_pending); 3596 3597 status = vdc_depopulate_descriptor(vdcp, idx); 3598 vdcp->sync_op_status = status; 3599 vdcp->sync_op_pending = B_FALSE; 3600 cv_signal(&vdcp->sync_pending_cv); 3601 break; 3602 3603 case CB_STRATEGY: 3604 bufp = ldep->cb_arg; 3605 ASSERT(bufp != NULL); 3606 bufp->b_resid = 3607 bufp->b_bcount - ldep->dep->payload.nbytes; 3608 status = ldep->dep->payload.status; /* Future:ntoh */ 3609 if (status != 0) { 3610 DMSG(vdcp, 1, "strategy status=%d\n", status); 3611 bioerror(bufp, status); 3612 } 3613 status = vdc_depopulate_descriptor(vdcp, idx); 3614 biodone(bufp); 3615 3616 DMSG(vdcp, 1, 3617 "strategy complete req=%ld bytes resp=%ld bytes\n", 3618 bufp->b_bcount, ldep->dep->payload.nbytes); 3619 break; 3620 3621 default: 3622 ASSERT(0); 3623 } 3624 } 3625 3626 /* let the arrival signal propogate */ 3627 mutex_exit(&vdcp->lock); 3628 3629 /* probe gives the count of how many entries were processed */ 3630 DTRACE_IO2(processed, int, 1, vdc_t *, vdcp); 3631 3632 return (0); 3633 } 3634 3635 /* 3636 * Function: 3637 * vdc_process_err_msg() 3638 * 3639 * NOTE: No error messages are used as part of the vDisk protocol 3640 */ 3641 static int 3642 vdc_process_err_msg(vdc_t *vdc, vio_msg_t msg) 3643 { 3644 _NOTE(ARGUNUSED(vdc)) 3645 _NOTE(ARGUNUSED(msg)) 3646 3647 ASSERT(msg.tag.vio_msgtype == VIO_TYPE_ERR); 3648 DMSG(vdc, 1, "[%d] Got an ERR msg", vdc->instance); 3649 3650 return (ENOTSUP); 3651 } 3652 3653 /* 3654 * Function: 3655 * vdc_handle_ver_msg() 3656 * 3657 * Description: 3658 * 3659 * Arguments: 3660 * vdc - soft state pointer for this instance of the device driver. 3661 * ver_msg - LDC message sent by vDisk server 3662 * 3663 * Return Code: 3664 * 0 - Success 3665 */ 3666 static int 3667 vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg) 3668 { 3669 int status = 0; 3670 3671 ASSERT(vdc != NULL); 3672 ASSERT(mutex_owned(&vdc->lock)); 3673 3674 if (ver_msg->tag.vio_subtype_env != VIO_VER_INFO) { 3675 return (EPROTO); 3676 } 3677 3678 if (ver_msg->dev_class != VDEV_DISK_SERVER) { 3679 return (EINVAL); 3680 } 3681 3682 switch (ver_msg->tag.vio_subtype) { 3683 case VIO_SUBTYPE_ACK: 3684 /* 3685 * We check to see if the version returned is indeed supported 3686 * (The server may have also adjusted the minor number downwards 3687 * and if so 'ver_msg' will contain the actual version agreed) 3688 */ 3689 if (vdc_is_supported_version(ver_msg)) { 3690 vdc->ver.major = ver_msg->ver_major; 3691 vdc->ver.minor = ver_msg->ver_minor; 3692 ASSERT(vdc->ver.major > 0); 3693 } else { 3694 status = EPROTO; 3695 } 3696 break; 3697 3698 case VIO_SUBTYPE_NACK: 3699 /* 3700 * call vdc_is_supported_version() which will return the next 3701 * supported version (if any) in 'ver_msg' 3702 */ 3703 (void) vdc_is_supported_version(ver_msg); 3704 if (ver_msg->ver_major > 0) { 3705 size_t len = sizeof (*ver_msg); 3706 3707 ASSERT(vdc->ver.major > 0); 3708 3709 /* reset the necessary fields and resend */ 3710 ver_msg->tag.vio_subtype = VIO_SUBTYPE_INFO; 3711 ver_msg->dev_class = VDEV_DISK; 3712 3713 status = vdc_send(vdc, (caddr_t)ver_msg, &len); 3714 DMSG(vdc, 0, "[%d] Resend VER info (LDC status = %d)\n", 3715 vdc->instance, status); 3716 if (len != sizeof (*ver_msg)) 3717 status = EBADMSG; 3718 } else { 3719 DMSG(vdc, 0, "[%d] No common version with " 3720 "vDisk server", vdc->instance); 3721 status = ENOTSUP; 3722 } 3723 3724 break; 3725 case VIO_SUBTYPE_INFO: 3726 /* 3727 * Handle the case where vds starts handshake 3728 * (for now only vdc is the instigatior) 3729 */ 3730 status = ENOTSUP; 3731 break; 3732 3733 default: 3734 status = EINVAL; 3735 break; 3736 } 3737 3738 return (status); 3739 } 3740 3741 /* 3742 * Function: 3743 * vdc_handle_attr_msg() 3744 * 3745 * Description: 3746 * 3747 * Arguments: 3748 * vdc - soft state pointer for this instance of the device driver. 3749 * attr_msg - LDC message sent by vDisk server 3750 * 3751 * Return Code: 3752 * 0 - Success 3753 */ 3754 static int 3755 vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg) 3756 { 3757 int status = 0; 3758 3759 ASSERT(vdc != NULL); 3760 ASSERT(mutex_owned(&vdc->lock)); 3761 3762 if (attr_msg->tag.vio_subtype_env != VIO_ATTR_INFO) { 3763 return (EPROTO); 3764 } 3765 3766 switch (attr_msg->tag.vio_subtype) { 3767 case VIO_SUBTYPE_ACK: 3768 /* 3769 * We now verify the attributes sent by vds. 3770 */ 3771 vdc->vdisk_size = attr_msg->vdisk_size; 3772 vdc->vdisk_type = attr_msg->vdisk_type; 3773 3774 DMSG(vdc, 0, "[%d] max_xfer_sz: sent %lx acked %lx\n", 3775 vdc->instance, vdc->max_xfer_sz, attr_msg->max_xfer_sz); 3776 DMSG(vdc, 0, "[%d] vdisk_block_size: sent %lx acked %x\n", 3777 vdc->instance, vdc->block_size, 3778 attr_msg->vdisk_block_size); 3779 3780 /* 3781 * We don't know at compile time what the vDisk server will 3782 * think are good values but we apply an large (arbitrary) 3783 * upper bound to prevent memory exhaustion in vdc if it was 3784 * allocating a DRing based of huge values sent by the server. 3785 * We probably will never exceed this except if the message 3786 * was garbage. 3787 */ 3788 if ((attr_msg->max_xfer_sz * attr_msg->vdisk_block_size) <= 3789 (PAGESIZE * DEV_BSIZE)) { 3790 vdc->max_xfer_sz = attr_msg->max_xfer_sz; 3791 vdc->block_size = attr_msg->vdisk_block_size; 3792 } else { 3793 DMSG(vdc, 0, "[%d] vds block transfer size too big;" 3794 " using max supported by vdc", vdc->instance); 3795 } 3796 3797 if ((attr_msg->xfer_mode != VIO_DRING_MODE) || 3798 (attr_msg->vdisk_size > INT64_MAX) || 3799 (attr_msg->vdisk_type > VD_DISK_TYPE_DISK)) { 3800 DMSG(vdc, 0, "[%d] Invalid attributes from vds", 3801 vdc->instance); 3802 status = EINVAL; 3803 break; 3804 } 3805 3806 break; 3807 3808 case VIO_SUBTYPE_NACK: 3809 /* 3810 * vds could not handle the attributes we sent so we 3811 * stop negotiating. 3812 */ 3813 status = EPROTO; 3814 break; 3815 3816 case VIO_SUBTYPE_INFO: 3817 /* 3818 * Handle the case where vds starts the handshake 3819 * (for now; vdc is the only supported instigatior) 3820 */ 3821 status = ENOTSUP; 3822 break; 3823 3824 default: 3825 status = ENOTSUP; 3826 break; 3827 } 3828 3829 return (status); 3830 } 3831 3832 /* 3833 * Function: 3834 * vdc_handle_dring_reg_msg() 3835 * 3836 * Description: 3837 * 3838 * Arguments: 3839 * vdc - soft state pointer for this instance of the driver. 3840 * dring_msg - LDC message sent by vDisk server 3841 * 3842 * Return Code: 3843 * 0 - Success 3844 */ 3845 static int 3846 vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *dring_msg) 3847 { 3848 int status = 0; 3849 3850 ASSERT(vdc != NULL); 3851 ASSERT(mutex_owned(&vdc->lock)); 3852 3853 if (dring_msg->tag.vio_subtype_env != VIO_DRING_REG) { 3854 return (EPROTO); 3855 } 3856 3857 switch (dring_msg->tag.vio_subtype) { 3858 case VIO_SUBTYPE_ACK: 3859 /* save the received dring_ident */ 3860 vdc->dring_ident = dring_msg->dring_ident; 3861 DMSG(vdc, 0, "[%d] Received dring ident=0x%lx\n", 3862 vdc->instance, vdc->dring_ident); 3863 break; 3864 3865 case VIO_SUBTYPE_NACK: 3866 /* 3867 * vds could not handle the DRing info we sent so we 3868 * stop negotiating. 3869 */ 3870 DMSG(vdc, 0, "[%d] server could not register DRing\n", 3871 vdc->instance); 3872 status = EPROTO; 3873 break; 3874 3875 case VIO_SUBTYPE_INFO: 3876 /* 3877 * Handle the case where vds starts handshake 3878 * (for now only vdc is the instigatior) 3879 */ 3880 status = ENOTSUP; 3881 break; 3882 default: 3883 status = ENOTSUP; 3884 } 3885 3886 return (status); 3887 } 3888 3889 /* 3890 * Function: 3891 * vdc_verify_seq_num() 3892 * 3893 * Description: 3894 * This functions verifies that the sequence number sent back by the vDisk 3895 * server with the latest message is what is expected (i.e. it is greater 3896 * than the last seq num sent by the vDisk server and less than or equal 3897 * to the last seq num generated by vdc). 3898 * 3899 * It then checks the request ID to see if any requests need processing 3900 * in the DRing. 3901 * 3902 * Arguments: 3903 * vdc - soft state pointer for this instance of the driver. 3904 * dring_msg - pointer to the LDC message sent by vds 3905 * 3906 * Return Code: 3907 * VDC_SEQ_NUM_TODO - Message needs to be processed 3908 * VDC_SEQ_NUM_SKIP - Message has already been processed 3909 * VDC_SEQ_NUM_INVALID - The seq numbers are so out of sync, 3910 * vdc cannot deal with them 3911 */ 3912 static int 3913 vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg) 3914 { 3915 ASSERT(vdc != NULL); 3916 ASSERT(dring_msg != NULL); 3917 ASSERT(mutex_owned(&vdc->lock)); 3918 3919 /* 3920 * Check to see if the messages were responded to in the correct 3921 * order by vds. 3922 */ 3923 if ((dring_msg->seq_num <= vdc->seq_num_reply) || 3924 (dring_msg->seq_num > vdc->seq_num)) { 3925 DMSG(vdc, 0, "?[%d] Bogus sequence_number %lu: " 3926 "%lu > expected <= %lu (last proc req %lu sent %lu)\n", 3927 vdc->instance, dring_msg->seq_num, 3928 vdc->seq_num_reply, vdc->seq_num, 3929 vdc->req_id_proc, vdc->req_id); 3930 return (VDC_SEQ_NUM_INVALID); 3931 } 3932 vdc->seq_num_reply = dring_msg->seq_num; 3933 3934 if (vdc->req_id_proc < vdc->req_id) 3935 return (VDC_SEQ_NUM_TODO); 3936 else 3937 return (VDC_SEQ_NUM_SKIP); 3938 } 3939 3940 3941 /* 3942 * Function: 3943 * vdc_is_supported_version() 3944 * 3945 * Description: 3946 * This routine checks if the major/minor version numbers specified in 3947 * 'ver_msg' are supported. If not it finds the next version that is 3948 * in the supported version list 'vdc_version[]' and sets the fields in 3949 * 'ver_msg' to those values 3950 * 3951 * Arguments: 3952 * ver_msg - LDC message sent by vDisk server 3953 * 3954 * Return Code: 3955 * B_TRUE - Success 3956 * B_FALSE - Version not supported 3957 */ 3958 static boolean_t 3959 vdc_is_supported_version(vio_ver_msg_t *ver_msg) 3960 { 3961 int vdc_num_versions = sizeof (vdc_version) / sizeof (vdc_version[0]); 3962 3963 for (int i = 0; i < vdc_num_versions; i++) { 3964 ASSERT(vdc_version[i].major > 0); 3965 ASSERT((i == 0) || 3966 (vdc_version[i].major < vdc_version[i-1].major)); 3967 3968 /* 3969 * If the major versions match, adjust the minor version, if 3970 * necessary, down to the highest value supported by this 3971 * client. The server should support all minor versions lower 3972 * than the value it sent 3973 */ 3974 if (ver_msg->ver_major == vdc_version[i].major) { 3975 if (ver_msg->ver_minor > vdc_version[i].minor) { 3976 DMSGX(0, 3977 "Adjusting minor version from %u to %u", 3978 ver_msg->ver_minor, vdc_version[i].minor); 3979 ver_msg->ver_minor = vdc_version[i].minor; 3980 } 3981 return (B_TRUE); 3982 } 3983 3984 /* 3985 * If the message contains a higher major version number, set 3986 * the message's major/minor versions to the current values 3987 * and return false, so this message will get resent with 3988 * these values, and the server will potentially try again 3989 * with the same or a lower version 3990 */ 3991 if (ver_msg->ver_major > vdc_version[i].major) { 3992 ver_msg->ver_major = vdc_version[i].major; 3993 ver_msg->ver_minor = vdc_version[i].minor; 3994 DMSGX(0, "Suggesting major/minor (0x%x/0x%x)\n", 3995 ver_msg->ver_major, ver_msg->ver_minor); 3996 3997 return (B_FALSE); 3998 } 3999 4000 /* 4001 * Otherwise, the message's major version is less than the 4002 * current major version, so continue the loop to the next 4003 * (lower) supported version 4004 */ 4005 } 4006 4007 /* 4008 * No common version was found; "ground" the version pair in the 4009 * message to terminate negotiation 4010 */ 4011 ver_msg->ver_major = 0; 4012 ver_msg->ver_minor = 0; 4013 4014 return (B_FALSE); 4015 } 4016 /* -------------------------------------------------------------------------- */ 4017 4018 /* 4019 * DKIO(7) support 4020 */ 4021 4022 typedef struct vdc_dk_arg { 4023 struct dk_callback dkc; 4024 int mode; 4025 dev_t dev; 4026 vdc_t *vdc; 4027 } vdc_dk_arg_t; 4028 4029 /* 4030 * Function: 4031 * vdc_dkio_flush_cb() 4032 * 4033 * Description: 4034 * This routine is a callback for DKIOCFLUSHWRITECACHE which can be called 4035 * by kernel code. 4036 * 4037 * Arguments: 4038 * arg - a pointer to a vdc_dk_arg_t structure. 4039 */ 4040 void 4041 vdc_dkio_flush_cb(void *arg) 4042 { 4043 struct vdc_dk_arg *dk_arg = (struct vdc_dk_arg *)arg; 4044 struct dk_callback *dkc = NULL; 4045 vdc_t *vdc = NULL; 4046 int rv; 4047 4048 if (dk_arg == NULL) { 4049 cmn_err(CE_NOTE, "?[Unk] DKIOCFLUSHWRITECACHE arg is NULL\n"); 4050 return; 4051 } 4052 dkc = &dk_arg->dkc; 4053 vdc = dk_arg->vdc; 4054 ASSERT(vdc != NULL); 4055 4056 rv = vdc_do_sync_op(vdc, VD_OP_FLUSH, NULL, 0, 4057 VDCPART(dk_arg->dev), 0, CB_SYNC, 0, VIO_both_dir); 4058 if (rv != 0) { 4059 DMSG(vdc, 0, "[%d] DKIOCFLUSHWRITECACHE failed %d : model %x\n", 4060 vdc->instance, rv, 4061 ddi_model_convert_from(dk_arg->mode & FMODELS)); 4062 } 4063 4064 /* 4065 * Trigger the call back to notify the caller the the ioctl call has 4066 * been completed. 4067 */ 4068 if ((dk_arg->mode & FKIOCTL) && 4069 (dkc != NULL) && 4070 (dkc->dkc_callback != NULL)) { 4071 ASSERT(dkc->dkc_cookie != NULL); 4072 (*dkc->dkc_callback)(dkc->dkc_cookie, rv); 4073 } 4074 4075 /* Indicate that one less DKIO write flush is outstanding */ 4076 mutex_enter(&vdc->lock); 4077 vdc->dkio_flush_pending--; 4078 ASSERT(vdc->dkio_flush_pending >= 0); 4079 mutex_exit(&vdc->lock); 4080 4081 /* free the mem that was allocated when the callback was dispatched */ 4082 kmem_free(arg, sizeof (vdc_dk_arg_t)); 4083 } 4084 4085 /* 4086 * This structure is used in the DKIO(7I) array below. 4087 */ 4088 typedef struct vdc_dk_ioctl { 4089 uint8_t op; /* VD_OP_XXX value */ 4090 int cmd; /* Solaris ioctl operation number */ 4091 size_t nbytes; /* size of structure to be copied */ 4092 4093 /* function to convert between vDisk and Solaris structure formats */ 4094 int (*convert)(vdc_t *vdc, void *vd_buf, void *ioctl_arg, 4095 int mode, int dir); 4096 } vdc_dk_ioctl_t; 4097 4098 /* 4099 * Subset of DKIO(7I) operations currently supported 4100 */ 4101 static vdc_dk_ioctl_t dk_ioctl[] = { 4102 {VD_OP_FLUSH, DKIOCFLUSHWRITECACHE, sizeof (int), 4103 vdc_null_copy_func}, 4104 {VD_OP_GET_WCE, DKIOCGETWCE, sizeof (int), 4105 vdc_get_wce_convert}, 4106 {VD_OP_SET_WCE, DKIOCSETWCE, sizeof (int), 4107 vdc_set_wce_convert}, 4108 {VD_OP_GET_VTOC, DKIOCGVTOC, sizeof (vd_vtoc_t), 4109 vdc_get_vtoc_convert}, 4110 {VD_OP_SET_VTOC, DKIOCSVTOC, sizeof (vd_vtoc_t), 4111 vdc_set_vtoc_convert}, 4112 {VD_OP_GET_DISKGEOM, DKIOCGGEOM, sizeof (vd_geom_t), 4113 vdc_get_geom_convert}, 4114 {VD_OP_GET_DISKGEOM, DKIOCG_PHYGEOM, sizeof (vd_geom_t), 4115 vdc_get_geom_convert}, 4116 {VD_OP_GET_DISKGEOM, DKIOCG_VIRTGEOM, sizeof (vd_geom_t), 4117 vdc_get_geom_convert}, 4118 {VD_OP_SET_DISKGEOM, DKIOCSGEOM, sizeof (vd_geom_t), 4119 vdc_set_geom_convert}, 4120 {VD_OP_GET_EFI, DKIOCGETEFI, 0, 4121 vdc_get_efi_convert}, 4122 {VD_OP_SET_EFI, DKIOCSETEFI, 0, 4123 vdc_set_efi_convert}, 4124 4125 /* 4126 * These particular ioctls are not sent to the server - vdc fakes up 4127 * the necessary info. 4128 */ 4129 {0, DKIOCINFO, sizeof (struct dk_cinfo), vdc_null_copy_func}, 4130 {0, DKIOCGMEDIAINFO, sizeof (struct dk_minfo), vdc_null_copy_func}, 4131 {0, USCSICMD, sizeof (struct uscsi_cmd), vdc_null_copy_func}, 4132 {0, DKIOCREMOVABLE, 0, vdc_null_copy_func}, 4133 {0, CDROMREADOFFSET, 0, vdc_null_copy_func} 4134 }; 4135 4136 /* 4137 * Function: 4138 * vd_process_ioctl() 4139 * 4140 * Description: 4141 * This routine processes disk specific ioctl calls 4142 * 4143 * Arguments: 4144 * dev - the device number 4145 * cmd - the operation [dkio(7I)] to be processed 4146 * arg - pointer to user provided structure 4147 * (contains data to be set or reference parameter for get) 4148 * mode - bit flag, indicating open settings, 32/64 bit type, etc 4149 * 4150 * Return Code: 4151 * 0 4152 * EFAULT 4153 * ENXIO 4154 * EIO 4155 * ENOTSUP 4156 */ 4157 static int 4158 vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode) 4159 { 4160 int instance = VDCUNIT(dev); 4161 vdc_t *vdc = NULL; 4162 int rv = -1; 4163 int idx = 0; /* index into dk_ioctl[] */ 4164 size_t len = 0; /* #bytes to send to vds */ 4165 size_t alloc_len = 0; /* #bytes to allocate mem for */ 4166 caddr_t mem_p = NULL; 4167 size_t nioctls = (sizeof (dk_ioctl)) / (sizeof (dk_ioctl[0])); 4168 struct vtoc vtoc_saved; 4169 vdc_dk_ioctl_t *iop; 4170 4171 vdc = ddi_get_soft_state(vdc_state, instance); 4172 if (vdc == NULL) { 4173 cmn_err(CE_NOTE, "![%d] Could not get soft state structure", 4174 instance); 4175 return (ENXIO); 4176 } 4177 4178 DMSG(vdc, 0, "[%d] Processing ioctl(%x) for dev %lx : model %x\n", 4179 instance, cmd, dev, ddi_model_convert_from(mode & FMODELS)); 4180 4181 /* 4182 * Validate the ioctl operation to be performed. 4183 * 4184 * If we have looped through the array without finding a match then we 4185 * don't support this ioctl. 4186 */ 4187 for (idx = 0; idx < nioctls; idx++) { 4188 if (cmd == dk_ioctl[idx].cmd) 4189 break; 4190 } 4191 4192 if (idx >= nioctls) { 4193 DMSG(vdc, 0, "[%d] Unsupported ioctl (0x%x)\n", 4194 vdc->instance, cmd); 4195 return (ENOTSUP); 4196 } 4197 4198 iop = &(dk_ioctl[idx]); 4199 4200 if (cmd == DKIOCGETEFI || cmd == DKIOCSETEFI) { 4201 /* size is not fixed for EFI ioctls, it depends on ioctl arg */ 4202 dk_efi_t dk_efi; 4203 4204 rv = ddi_copyin(arg, &dk_efi, sizeof (dk_efi_t), mode); 4205 if (rv != 0) 4206 return (EFAULT); 4207 4208 len = sizeof (vd_efi_t) - 1 + dk_efi.dki_length; 4209 } else { 4210 len = iop->nbytes; 4211 } 4212 4213 /* 4214 * Deal with the ioctls which the server does not provide. vdc can 4215 * fake these up and return immediately 4216 */ 4217 switch (cmd) { 4218 case CDROMREADOFFSET: 4219 case DKIOCREMOVABLE: 4220 case USCSICMD: 4221 return (ENOTTY); 4222 4223 case DKIOCINFO: 4224 { 4225 struct dk_cinfo cinfo; 4226 if (vdc->cinfo == NULL) 4227 return (ENXIO); 4228 4229 bcopy(vdc->cinfo, &cinfo, sizeof (struct dk_cinfo)); 4230 cinfo.dki_partition = VDCPART(dev); 4231 4232 rv = ddi_copyout(&cinfo, (void *)arg, 4233 sizeof (struct dk_cinfo), mode); 4234 if (rv != 0) 4235 return (EFAULT); 4236 4237 return (0); 4238 } 4239 4240 case DKIOCGMEDIAINFO: 4241 { 4242 if (vdc->minfo == NULL) 4243 return (ENXIO); 4244 4245 rv = ddi_copyout(vdc->minfo, (void *)arg, 4246 sizeof (struct dk_minfo), mode); 4247 if (rv != 0) 4248 return (EFAULT); 4249 4250 return (0); 4251 } 4252 4253 case DKIOCFLUSHWRITECACHE: 4254 { 4255 struct dk_callback *dkc = (struct dk_callback *)arg; 4256 vdc_dk_arg_t *dkarg = NULL; 4257 4258 DMSG(vdc, 1, "[%d] Flush W$: mode %x\n", 4259 instance, mode); 4260 4261 /* 4262 * If the backing device is not a 'real' disk then the 4263 * W$ operation request to the vDisk server will fail 4264 * so we might as well save the cycles and return now. 4265 */ 4266 if (vdc->vdisk_type != VD_DISK_TYPE_DISK) 4267 return (ENOTTY); 4268 4269 /* 4270 * If arg is NULL, then there is no callback function 4271 * registered and the call operates synchronously; we 4272 * break and continue with the rest of the function and 4273 * wait for vds to return (i.e. after the request to 4274 * vds returns successfully, all writes completed prior 4275 * to the ioctl will have been flushed from the disk 4276 * write cache to persistent media. 4277 * 4278 * If a callback function is registered, we dispatch 4279 * the request on a task queue and return immediately. 4280 * The callback will deal with informing the calling 4281 * thread that the flush request is completed. 4282 */ 4283 if (dkc == NULL) 4284 break; 4285 4286 dkarg = kmem_zalloc(sizeof (vdc_dk_arg_t), KM_SLEEP); 4287 4288 dkarg->mode = mode; 4289 dkarg->dev = dev; 4290 bcopy(dkc, &dkarg->dkc, sizeof (*dkc)); 4291 4292 mutex_enter(&vdc->lock); 4293 vdc->dkio_flush_pending++; 4294 dkarg->vdc = vdc; 4295 mutex_exit(&vdc->lock); 4296 4297 /* put the request on a task queue */ 4298 rv = taskq_dispatch(system_taskq, vdc_dkio_flush_cb, 4299 (void *)dkarg, DDI_SLEEP); 4300 if (rv == NULL) { 4301 /* clean up if dispatch fails */ 4302 mutex_enter(&vdc->lock); 4303 vdc->dkio_flush_pending--; 4304 kmem_free(dkarg, sizeof (vdc_dk_arg_t)); 4305 } 4306 4307 return (rv == NULL ? ENOMEM : 0); 4308 } 4309 } 4310 4311 /* catch programming error in vdc - should be a VD_OP_XXX ioctl */ 4312 ASSERT(iop->op != 0); 4313 4314 /* LDC requires that the memory being mapped is 8-byte aligned */ 4315 alloc_len = P2ROUNDUP(len, sizeof (uint64_t)); 4316 DMSG(vdc, 1, "[%d] struct size %ld alloc %ld\n", 4317 instance, len, alloc_len); 4318 4319 ASSERT(alloc_len != 0); /* sanity check */ 4320 mem_p = kmem_zalloc(alloc_len, KM_SLEEP); 4321 4322 if (cmd == DKIOCSVTOC) { 4323 /* 4324 * Save a copy of the current VTOC so that we can roll back 4325 * if the setting of the new VTOC fails. 4326 */ 4327 bcopy(vdc->vtoc, &vtoc_saved, sizeof (struct vtoc)); 4328 } 4329 4330 /* 4331 * Call the conversion function for this ioctl whhich if necessary 4332 * converts from the Solaris format to the format ARC'ed 4333 * as part of the vDisk protocol (FWARC 2006/195) 4334 */ 4335 ASSERT(iop->convert != NULL); 4336 rv = (iop->convert)(vdc, arg, mem_p, mode, VD_COPYIN); 4337 if (rv != 0) { 4338 DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n", 4339 instance, rv, cmd); 4340 if (mem_p != NULL) 4341 kmem_free(mem_p, alloc_len); 4342 return (rv); 4343 } 4344 4345 /* 4346 * send request to vds to service the ioctl. 4347 */ 4348 rv = vdc_do_sync_op(vdc, iop->op, mem_p, alloc_len, 4349 VDCPART(dev), 0, CB_SYNC, (void *)(uint64_t)mode, 4350 VIO_both_dir); 4351 4352 if (rv != 0) { 4353 /* 4354 * This is not necessarily an error. The ioctl could 4355 * be returning a value such as ENOTTY to indicate 4356 * that the ioctl is not applicable. 4357 */ 4358 DMSG(vdc, 0, "[%d] vds returned %d for ioctl 0x%x\n", 4359 instance, rv, cmd); 4360 if (mem_p != NULL) 4361 kmem_free(mem_p, alloc_len); 4362 4363 if (cmd == DKIOCSVTOC) { 4364 /* update of the VTOC has failed, roll back */ 4365 bcopy(&vtoc_saved, vdc->vtoc, sizeof (struct vtoc)); 4366 } 4367 4368 return (rv); 4369 } 4370 4371 if (cmd == DKIOCSVTOC) { 4372 /* 4373 * The VTOC has been changed. We need to update the device 4374 * nodes to handle the case where an EFI label has been 4375 * changed to a VTOC label. We also try and update the device 4376 * node properties. Failing to set the properties should 4377 * not cause an error to be return the caller though. 4378 */ 4379 vdc->vdisk_label = VD_DISK_LABEL_VTOC; 4380 (void) vdc_create_device_nodes_vtoc(vdc); 4381 4382 if (vdc_create_device_nodes_props(vdc)) { 4383 DMSG(vdc, 0, "![%d] Failed to update device nodes" 4384 " properties", vdc->instance); 4385 } 4386 4387 } else if (cmd == DKIOCSETEFI) { 4388 /* 4389 * The EFI has been changed. We need to update the device 4390 * nodes to handle the case where a VTOC label has been 4391 * changed to an EFI label. We also try and update the device 4392 * node properties. Failing to set the properties should 4393 * not cause an error to be return the caller though. 4394 */ 4395 struct dk_gpt *efi; 4396 size_t efi_len; 4397 4398 vdc->vdisk_label = VD_DISK_LABEL_EFI; 4399 (void) vdc_create_device_nodes_efi(vdc); 4400 4401 rv = vdc_efi_alloc_and_read(dev, &efi, &efi_len); 4402 4403 if (rv == 0) { 4404 vdc_store_efi(vdc, efi); 4405 rv = vdc_create_device_nodes_props(vdc); 4406 vd_efi_free(efi, efi_len); 4407 } 4408 4409 if (rv) { 4410 DMSG(vdc, 0, "![%d] Failed to update device nodes" 4411 " properties", vdc->instance); 4412 } 4413 } 4414 4415 /* 4416 * Call the conversion function (if it exists) for this ioctl 4417 * which converts from the format ARC'ed as part of the vDisk 4418 * protocol (FWARC 2006/195) back to a format understood by 4419 * the rest of Solaris. 4420 */ 4421 rv = (iop->convert)(vdc, mem_p, arg, mode, VD_COPYOUT); 4422 if (rv != 0) { 4423 DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n", 4424 instance, rv, cmd); 4425 if (mem_p != NULL) 4426 kmem_free(mem_p, alloc_len); 4427 return (rv); 4428 } 4429 4430 if (mem_p != NULL) 4431 kmem_free(mem_p, alloc_len); 4432 4433 return (rv); 4434 } 4435 4436 /* 4437 * Function: 4438 * 4439 * Description: 4440 * This is an empty conversion function used by ioctl calls which 4441 * do not need to convert the data being passed in/out to userland 4442 */ 4443 static int 4444 vdc_null_copy_func(vdc_t *vdc, void *from, void *to, int mode, int dir) 4445 { 4446 _NOTE(ARGUNUSED(vdc)) 4447 _NOTE(ARGUNUSED(from)) 4448 _NOTE(ARGUNUSED(to)) 4449 _NOTE(ARGUNUSED(mode)) 4450 _NOTE(ARGUNUSED(dir)) 4451 4452 return (0); 4453 } 4454 4455 static int 4456 vdc_get_wce_convert(vdc_t *vdc, void *from, void *to, 4457 int mode, int dir) 4458 { 4459 _NOTE(ARGUNUSED(vdc)) 4460 4461 if (dir == VD_COPYIN) 4462 return (0); /* nothing to do */ 4463 4464 if (ddi_copyout(from, to, sizeof (int), mode) != 0) 4465 return (EFAULT); 4466 4467 return (0); 4468 } 4469 4470 static int 4471 vdc_set_wce_convert(vdc_t *vdc, void *from, void *to, 4472 int mode, int dir) 4473 { 4474 _NOTE(ARGUNUSED(vdc)) 4475 4476 if (dir == VD_COPYOUT) 4477 return (0); /* nothing to do */ 4478 4479 if (ddi_copyin(from, to, sizeof (int), mode) != 0) 4480 return (EFAULT); 4481 4482 return (0); 4483 } 4484 4485 /* 4486 * Function: 4487 * vdc_get_vtoc_convert() 4488 * 4489 * Description: 4490 * This routine performs the necessary convertions from the DKIOCGVTOC 4491 * Solaris structure to the format defined in FWARC 2006/195. 4492 * 4493 * In the struct vtoc definition, the timestamp field is marked as not 4494 * supported so it is not part of vDisk protocol (FWARC 2006/195). 4495 * However SVM uses that field to check it can write into the VTOC, 4496 * so we fake up the info of that field. 4497 * 4498 * Arguments: 4499 * vdc - the vDisk client 4500 * from - the buffer containing the data to be copied from 4501 * to - the buffer to be copied to 4502 * mode - flags passed to ioctl() call 4503 * dir - the "direction" of the copy - VD_COPYIN or VD_COPYOUT 4504 * 4505 * Return Code: 4506 * 0 - Success 4507 * ENXIO - incorrect buffer passed in. 4508 * EFAULT - ddi_copyout routine encountered an error. 4509 */ 4510 static int 4511 vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir) 4512 { 4513 int i; 4514 void *tmp_mem = NULL; 4515 void *tmp_memp; 4516 struct vtoc vt; 4517 struct vtoc32 vt32; 4518 int copy_len = 0; 4519 int rv = 0; 4520 4521 if (dir != VD_COPYOUT) 4522 return (0); /* nothing to do */ 4523 4524 if ((from == NULL) || (to == NULL)) 4525 return (ENXIO); 4526 4527 if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) 4528 copy_len = sizeof (struct vtoc32); 4529 else 4530 copy_len = sizeof (struct vtoc); 4531 4532 tmp_mem = kmem_alloc(copy_len, KM_SLEEP); 4533 4534 VD_VTOC2VTOC((vd_vtoc_t *)from, &vt); 4535 4536 /* fake the VTOC timestamp field */ 4537 for (i = 0; i < V_NUMPAR; i++) { 4538 vt.timestamp[i] = vdc->vtoc->timestamp[i]; 4539 } 4540 4541 if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) { 4542 vtoctovtoc32(vt, vt32); 4543 tmp_memp = &vt32; 4544 } else { 4545 tmp_memp = &vt; 4546 } 4547 rv = ddi_copyout(tmp_memp, to, copy_len, mode); 4548 if (rv != 0) 4549 rv = EFAULT; 4550 4551 kmem_free(tmp_mem, copy_len); 4552 return (rv); 4553 } 4554 4555 /* 4556 * Function: 4557 * vdc_set_vtoc_convert() 4558 * 4559 * Description: 4560 * This routine performs the necessary convertions from the DKIOCSVTOC 4561 * Solaris structure to the format defined in FWARC 2006/195. 4562 * 4563 * Arguments: 4564 * vdc - the vDisk client 4565 * from - Buffer with data 4566 * to - Buffer where data is to be copied to 4567 * mode - flags passed to ioctl 4568 * dir - direction of copy (in or out) 4569 * 4570 * Return Code: 4571 * 0 - Success 4572 * ENXIO - Invalid buffer passed in 4573 * EFAULT - ddi_copyin of data failed 4574 */ 4575 static int 4576 vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir) 4577 { 4578 void *tmp_mem = NULL; 4579 struct vtoc vt; 4580 struct vtoc *vtp = &vt; 4581 vd_vtoc_t vtvd; 4582 int copy_len = 0; 4583 int rv = 0; 4584 4585 if (dir != VD_COPYIN) 4586 return (0); /* nothing to do */ 4587 4588 if ((from == NULL) || (to == NULL)) 4589 return (ENXIO); 4590 4591 if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) 4592 copy_len = sizeof (struct vtoc32); 4593 else 4594 copy_len = sizeof (struct vtoc); 4595 4596 tmp_mem = kmem_alloc(copy_len, KM_SLEEP); 4597 4598 rv = ddi_copyin(from, tmp_mem, copy_len, mode); 4599 if (rv != 0) { 4600 kmem_free(tmp_mem, copy_len); 4601 return (EFAULT); 4602 } 4603 4604 if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) { 4605 vtoc32tovtoc((*(struct vtoc32 *)tmp_mem), vt); 4606 } else { 4607 vtp = tmp_mem; 4608 } 4609 4610 /* 4611 * The VTOC is being changed, then vdc needs to update the copy 4612 * it saved in the soft state structure. 4613 */ 4614 bcopy(vtp, vdc->vtoc, sizeof (struct vtoc)); 4615 4616 VTOC2VD_VTOC(vtp, &vtvd); 4617 bcopy(&vtvd, to, sizeof (vd_vtoc_t)); 4618 kmem_free(tmp_mem, copy_len); 4619 4620 return (0); 4621 } 4622 4623 /* 4624 * Function: 4625 * vdc_get_geom_convert() 4626 * 4627 * Description: 4628 * This routine performs the necessary convertions from the DKIOCGGEOM, 4629 * DKIOCG_PHYSGEOM and DKIOG_VIRTGEOM Solaris structures to the format 4630 * defined in FWARC 2006/195 4631 * 4632 * Arguments: 4633 * vdc - the vDisk client 4634 * from - Buffer with data 4635 * to - Buffer where data is to be copied to 4636 * mode - flags passed to ioctl 4637 * dir - direction of copy (in or out) 4638 * 4639 * Return Code: 4640 * 0 - Success 4641 * ENXIO - Invalid buffer passed in 4642 * EFAULT - ddi_copyout of data failed 4643 */ 4644 static int 4645 vdc_get_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir) 4646 { 4647 _NOTE(ARGUNUSED(vdc)) 4648 4649 struct dk_geom geom; 4650 int copy_len = sizeof (struct dk_geom); 4651 int rv = 0; 4652 4653 if (dir != VD_COPYOUT) 4654 return (0); /* nothing to do */ 4655 4656 if ((from == NULL) || (to == NULL)) 4657 return (ENXIO); 4658 4659 VD_GEOM2DK_GEOM((vd_geom_t *)from, &geom); 4660 rv = ddi_copyout(&geom, to, copy_len, mode); 4661 if (rv != 0) 4662 rv = EFAULT; 4663 4664 return (rv); 4665 } 4666 4667 /* 4668 * Function: 4669 * vdc_set_geom_convert() 4670 * 4671 * Description: 4672 * This routine performs the necessary convertions from the DKIOCSGEOM 4673 * Solaris structure to the format defined in FWARC 2006/195. 4674 * 4675 * Arguments: 4676 * vdc - the vDisk client 4677 * from - Buffer with data 4678 * to - Buffer where data is to be copied to 4679 * mode - flags passed to ioctl 4680 * dir - direction of copy (in or out) 4681 * 4682 * Return Code: 4683 * 0 - Success 4684 * ENXIO - Invalid buffer passed in 4685 * EFAULT - ddi_copyin of data failed 4686 */ 4687 static int 4688 vdc_set_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir) 4689 { 4690 _NOTE(ARGUNUSED(vdc)) 4691 4692 vd_geom_t vdgeom; 4693 void *tmp_mem = NULL; 4694 int copy_len = sizeof (struct dk_geom); 4695 int rv = 0; 4696 4697 if (dir != VD_COPYIN) 4698 return (0); /* nothing to do */ 4699 4700 if ((from == NULL) || (to == NULL)) 4701 return (ENXIO); 4702 4703 tmp_mem = kmem_alloc(copy_len, KM_SLEEP); 4704 4705 rv = ddi_copyin(from, tmp_mem, copy_len, mode); 4706 if (rv != 0) { 4707 kmem_free(tmp_mem, copy_len); 4708 return (EFAULT); 4709 } 4710 DK_GEOM2VD_GEOM((struct dk_geom *)tmp_mem, &vdgeom); 4711 bcopy(&vdgeom, to, sizeof (vdgeom)); 4712 kmem_free(tmp_mem, copy_len); 4713 4714 return (0); 4715 } 4716 4717 static int 4718 vdc_get_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir) 4719 { 4720 _NOTE(ARGUNUSED(vdc)) 4721 4722 vd_efi_t *vd_efi; 4723 dk_efi_t dk_efi; 4724 int rv = 0; 4725 void *uaddr; 4726 4727 if ((from == NULL) || (to == NULL)) 4728 return (ENXIO); 4729 4730 if (dir == VD_COPYIN) { 4731 4732 vd_efi = (vd_efi_t *)to; 4733 4734 rv = ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode); 4735 if (rv != 0) 4736 return (EFAULT); 4737 4738 vd_efi->lba = dk_efi.dki_lba; 4739 vd_efi->length = dk_efi.dki_length; 4740 bzero(vd_efi->data, vd_efi->length); 4741 4742 } else { 4743 4744 rv = ddi_copyin(to, &dk_efi, sizeof (dk_efi_t), mode); 4745 if (rv != 0) 4746 return (EFAULT); 4747 4748 uaddr = dk_efi.dki_data; 4749 4750 dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP); 4751 4752 VD_EFI2DK_EFI((vd_efi_t *)from, &dk_efi); 4753 4754 rv = ddi_copyout(dk_efi.dki_data, uaddr, dk_efi.dki_length, 4755 mode); 4756 if (rv != 0) 4757 return (EFAULT); 4758 4759 kmem_free(dk_efi.dki_data, dk_efi.dki_length); 4760 } 4761 4762 return (0); 4763 } 4764 4765 static int 4766 vdc_set_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir) 4767 { 4768 _NOTE(ARGUNUSED(vdc)) 4769 4770 dk_efi_t dk_efi; 4771 void *uaddr; 4772 4773 if (dir == VD_COPYOUT) 4774 return (0); /* nothing to do */ 4775 4776 if ((from == NULL) || (to == NULL)) 4777 return (ENXIO); 4778 4779 if (ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode) != 0) 4780 return (EFAULT); 4781 4782 uaddr = dk_efi.dki_data; 4783 4784 dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP); 4785 4786 if (ddi_copyin(uaddr, dk_efi.dki_data, dk_efi.dki_length, mode) != 0) 4787 return (EFAULT); 4788 4789 DK_EFI2VD_EFI(&dk_efi, (vd_efi_t *)to); 4790 4791 kmem_free(dk_efi.dki_data, dk_efi.dki_length); 4792 4793 return (0); 4794 } 4795 4796 /* 4797 * Function: 4798 * vdc_create_fake_geometry() 4799 * 4800 * Description: 4801 * This routine fakes up the disk info needed for some DKIO ioctls. 4802 * - DKIOCINFO 4803 * - DKIOCGMEDIAINFO 4804 * 4805 * [ just like lofi(7D) and ramdisk(7D) ] 4806 * 4807 * Arguments: 4808 * vdc - soft state pointer for this instance of the device driver. 4809 * 4810 * Return Code: 4811 * 0 - Success 4812 */ 4813 static int 4814 vdc_create_fake_geometry(vdc_t *vdc) 4815 { 4816 ASSERT(vdc != NULL); 4817 4818 /* 4819 * Check if max_xfer_sz and vdisk_size are valid 4820 */ 4821 if (vdc->vdisk_size == 0 || vdc->max_xfer_sz == 0) 4822 return (EIO); 4823 4824 /* 4825 * DKIOCINFO support 4826 */ 4827 vdc->cinfo = kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP); 4828 4829 (void) strcpy(vdc->cinfo->dki_cname, VDC_DRIVER_NAME); 4830 (void) strcpy(vdc->cinfo->dki_dname, VDC_DRIVER_NAME); 4831 /* max_xfer_sz is #blocks so we don't need to divide by DEV_BSIZE */ 4832 vdc->cinfo->dki_maxtransfer = vdc->max_xfer_sz; 4833 vdc->cinfo->dki_ctype = DKC_SCSI_CCS; 4834 vdc->cinfo->dki_flags = DKI_FMTVOL; 4835 vdc->cinfo->dki_cnum = 0; 4836 vdc->cinfo->dki_addr = 0; 4837 vdc->cinfo->dki_space = 0; 4838 vdc->cinfo->dki_prio = 0; 4839 vdc->cinfo->dki_vec = 0; 4840 vdc->cinfo->dki_unit = vdc->instance; 4841 vdc->cinfo->dki_slave = 0; 4842 /* 4843 * The partition number will be created on the fly depending on the 4844 * actual slice (i.e. minor node) that is used to request the data. 4845 */ 4846 vdc->cinfo->dki_partition = 0; 4847 4848 /* 4849 * DKIOCGMEDIAINFO support 4850 */ 4851 if (vdc->minfo == NULL) 4852 vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP); 4853 vdc->minfo->dki_media_type = DK_FIXED_DISK; 4854 vdc->minfo->dki_capacity = vdc->vdisk_size; 4855 vdc->minfo->dki_lbsize = DEV_BSIZE; 4856 4857 return (0); 4858 } 4859 4860 /* 4861 * Function: 4862 * vdc_setup_disk_layout() 4863 * 4864 * Description: 4865 * This routine discovers all the necessary details about the "disk" 4866 * by requesting the data that is available from the vDisk server and by 4867 * faking up the rest of the data. 4868 * 4869 * Arguments: 4870 * vdc - soft state pointer for this instance of the device driver. 4871 * 4872 * Return Code: 4873 * 0 - Success 4874 */ 4875 static int 4876 vdc_setup_disk_layout(vdc_t *vdc) 4877 { 4878 buf_t *buf; /* BREAD requests need to be in a buf_t structure */ 4879 dev_t dev; 4880 int slice = 0; 4881 int rv, error; 4882 4883 ASSERT(vdc != NULL); 4884 4885 if (vdc->vtoc == NULL) 4886 vdc->vtoc = kmem_zalloc(sizeof (struct vtoc), KM_SLEEP); 4887 4888 dev = makedevice(ddi_driver_major(vdc->dip), 4889 VD_MAKE_DEV(vdc->instance, 0)); 4890 rv = vd_process_ioctl(dev, DKIOCGVTOC, (caddr_t)vdc->vtoc, FKIOCTL); 4891 4892 if (rv && rv != ENOTSUP) { 4893 DMSG(vdc, 0, "[%d] Failed to get VTOC (err=%d)", 4894 vdc->instance, rv); 4895 return (rv); 4896 } 4897 4898 /* 4899 * The process of attempting to read VTOC will initiate 4900 * the handshake and establish a connection. Following 4901 * handshake, go ahead and create geometry. 4902 */ 4903 error = vdc_create_fake_geometry(vdc); 4904 if (error != 0) { 4905 DMSG(vdc, 0, "[%d] Failed to create disk geometry (err%d)", 4906 vdc->instance, error); 4907 return (error); 4908 } 4909 4910 if (rv == ENOTSUP) { 4911 /* 4912 * If the device does not support VTOC then we try 4913 * to read an EFI label. 4914 */ 4915 struct dk_gpt *efi; 4916 size_t efi_len; 4917 4918 rv = vdc_efi_alloc_and_read(dev, &efi, &efi_len); 4919 4920 if (rv) { 4921 DMSG(vdc, 0, "[%d] Failed to get EFI (err=%d)", 4922 vdc->instance, rv); 4923 return (rv); 4924 } 4925 4926 vdc->vdisk_label = VD_DISK_LABEL_EFI; 4927 vdc_store_efi(vdc, efi); 4928 vd_efi_free(efi, efi_len); 4929 4930 return (0); 4931 } 4932 4933 vdc->vdisk_label = VD_DISK_LABEL_VTOC; 4934 4935 /* 4936 * FUTURE: This could be default way for reading the VTOC 4937 * from the disk as supposed to sending the VD_OP_GET_VTOC 4938 * to the server. Currently this is a sanity check. 4939 * 4940 * find the slice that represents the entire "disk" and use that to 4941 * read the disk label. The convention in Solaris is that slice 2 4942 * represents the whole disk so we check that it is, otherwise we 4943 * default to slice 0 4944 */ 4945 if ((vdc->vdisk_type == VD_DISK_TYPE_DISK) && 4946 (vdc->vtoc->v_part[2].p_tag == V_BACKUP)) { 4947 slice = 2; 4948 } else { 4949 slice = 0; 4950 } 4951 4952 /* 4953 * Read disk label from start of disk 4954 */ 4955 vdc->label = kmem_zalloc(DK_LABEL_SIZE, KM_SLEEP); 4956 buf = kmem_alloc(sizeof (buf_t), KM_SLEEP); 4957 bioinit(buf); 4958 buf->b_un.b_addr = (caddr_t)vdc->label; 4959 buf->b_bcount = DK_LABEL_SIZE; 4960 buf->b_flags = B_BUSY | B_READ; 4961 buf->b_dev = dev; 4962 rv = vdc_send_request(vdc, VD_OP_BREAD, (caddr_t)vdc->label, 4963 DK_LABEL_SIZE, slice, 0, CB_STRATEGY, buf, VIO_read_dir); 4964 if (rv) { 4965 DMSG(vdc, 1, "[%d] Failed to read disk block 0\n", 4966 vdc->instance); 4967 kmem_free(buf, sizeof (buf_t)); 4968 return (rv); 4969 } 4970 rv = biowait(buf); 4971 biofini(buf); 4972 kmem_free(buf, sizeof (buf_t)); 4973 4974 return (rv); 4975 } 4976 4977 /* 4978 * Function: 4979 * vdc_setup_devid() 4980 * 4981 * Description: 4982 * This routine discovers the devid of a vDisk. It requests the devid of 4983 * the underlying device from the vDisk server, builds an encapsulated 4984 * devid based on the retrieved devid and registers that new devid to 4985 * the vDisk. 4986 * 4987 * Arguments: 4988 * vdc - soft state pointer for this instance of the device driver. 4989 * 4990 * Return Code: 4991 * 0 - A devid was succesfully registered for the vDisk 4992 */ 4993 static int 4994 vdc_setup_devid(vdc_t *vdc) 4995 { 4996 int rv; 4997 vd_devid_t *vd_devid; 4998 size_t bufsize, bufid_len; 4999 5000 /* 5001 * At first sight, we don't know the size of the devid that the 5002 * server will return but this size will be encoded into the 5003 * reply. So we do a first request using a default size then we 5004 * check if this size was large enough. If not then we do a second 5005 * request with the correct size returned by the server. Note that 5006 * ldc requires size to be 8-byte aligned. 5007 */ 5008 bufsize = P2ROUNDUP(VD_DEVID_SIZE(VD_DEVID_DEFAULT_LEN), 5009 sizeof (uint64_t)); 5010 vd_devid = kmem_zalloc(bufsize, KM_SLEEP); 5011 bufid_len = bufsize - sizeof (vd_efi_t) - 1; 5012 5013 rv = vdc_do_sync_op(vdc, VD_OP_GET_DEVID, (caddr_t)vd_devid, 5014 bufsize, 0, 0, CB_SYNC, 0, VIO_both_dir); 5015 5016 DMSG(vdc, 2, "sync_op returned %d\n", rv); 5017 5018 if (rv) { 5019 kmem_free(vd_devid, bufsize); 5020 return (rv); 5021 } 5022 5023 if (vd_devid->length > bufid_len) { 5024 /* 5025 * The returned devid is larger than the buffer used. Try again 5026 * with a buffer with the right size. 5027 */ 5028 kmem_free(vd_devid, bufsize); 5029 bufsize = P2ROUNDUP(VD_DEVID_SIZE(vd_devid->length), 5030 sizeof (uint64_t)); 5031 vd_devid = kmem_zalloc(bufsize, KM_SLEEP); 5032 bufid_len = bufsize - sizeof (vd_efi_t) - 1; 5033 5034 rv = vdc_do_sync_op(vdc, VD_OP_GET_DEVID, 5035 (caddr_t)vd_devid, bufsize, 0, 0, CB_SYNC, 0, 5036 VIO_both_dir); 5037 5038 if (rv) { 5039 kmem_free(vd_devid, bufsize); 5040 return (rv); 5041 } 5042 } 5043 5044 /* 5045 * The virtual disk should have the same device id as the one associated 5046 * with the physical disk it is mapped on, otherwise sharing a disk 5047 * between a LDom and a non-LDom may not work (for example for a shared 5048 * SVM disk set). 5049 * 5050 * The DDI framework does not allow creating a device id with any 5051 * type so we first create a device id of type DEVID_ENCAP and then 5052 * we restore the orignal type of the physical device. 5053 */ 5054 5055 DMSG(vdc, 2, ": devid length = %d\n", vd_devid->length); 5056 5057 /* build an encapsulated devid based on the returned devid */ 5058 if (ddi_devid_init(vdc->dip, DEVID_ENCAP, vd_devid->length, 5059 vd_devid->id, &vdc->devid) != DDI_SUCCESS) { 5060 DMSG(vdc, 1, "[%d] Fail to created devid\n", vdc->instance); 5061 kmem_free(vd_devid, bufsize); 5062 return (1); 5063 } 5064 5065 DEVID_FORMTYPE((impl_devid_t *)vdc->devid, vd_devid->type); 5066 5067 ASSERT(ddi_devid_valid(vdc->devid) == DDI_SUCCESS); 5068 5069 kmem_free(vd_devid, bufsize); 5070 5071 if (ddi_devid_register(vdc->dip, vdc->devid) != DDI_SUCCESS) { 5072 DMSG(vdc, 1, "[%d] Fail to register devid\n", vdc->instance); 5073 return (1); 5074 } 5075 5076 return (0); 5077 } 5078 5079 static void 5080 vdc_store_efi(vdc_t *vdc, struct dk_gpt *efi) 5081 { 5082 struct vtoc *vtoc = vdc->vtoc; 5083 5084 vd_efi_to_vtoc(efi, vtoc); 5085 if (vdc->vdisk_type == VD_DISK_TYPE_SLICE) { 5086 /* 5087 * vd_efi_to_vtoc() will store information about the EFI Sun 5088 * reserved partition (representing the entire disk) into 5089 * partition 7. However single-slice device will only have 5090 * that single partition and the vdc driver expects to find 5091 * information about that partition in slice 0. So we need 5092 * to copy information from slice 7 to slice 0. 5093 */ 5094 vtoc->v_part[0].p_tag = vtoc->v_part[VD_EFI_WD_SLICE].p_tag; 5095 vtoc->v_part[0].p_flag = vtoc->v_part[VD_EFI_WD_SLICE].p_flag; 5096 vtoc->v_part[0].p_start = vtoc->v_part[VD_EFI_WD_SLICE].p_start; 5097 vtoc->v_part[0].p_size = vtoc->v_part[VD_EFI_WD_SLICE].p_size; 5098 } 5099 } 5100