1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * Zones 28 * 29 * A zone is a named collection of processes, namespace constraints, 30 * and other system resources which comprise a secure and manageable 31 * application containment facility. 32 * 33 * Zones (represented by the reference counted zone_t) are tracked in 34 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 35 * (zoneid_t) are used to track zone association. Zone IDs are 36 * dynamically generated when the zone is created; if a persistent 37 * identifier is needed (core files, accounting logs, audit trail, 38 * etc.), the zone name should be used. 39 * 40 * 41 * Global Zone: 42 * 43 * The global zone (zoneid 0) is automatically associated with all 44 * system resources that have not been bound to a user-created zone. 45 * This means that even systems where zones are not in active use 46 * have a global zone, and all processes, mounts, etc. are 47 * associated with that zone. The global zone is generally 48 * unconstrained in terms of privileges and access, though the usual 49 * credential and privilege based restrictions apply. 50 * 51 * 52 * Zone States: 53 * 54 * The states in which a zone may be in and the transitions are as 55 * follows: 56 * 57 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 58 * initialized zone is added to the list of active zones on the system but 59 * isn't accessible. 60 * 61 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 62 * not yet completed. Not possible to enter the zone, but attributes can 63 * be retrieved. 64 * 65 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 66 * ready. The zone is made visible after the ZSD constructor callbacks are 67 * executed. A zone remains in this state until it transitions into 68 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 69 * 70 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 71 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 72 * state. 73 * 74 * ZONE_IS_RUNNING: The zone is open for business: zsched has 75 * successfully started init. A zone remains in this state until 76 * zone_shutdown() is called. 77 * 78 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 79 * killing all processes running in the zone. The zone remains 80 * in this state until there are no more user processes running in the zone. 81 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 82 * Since zone_shutdown() is restartable, it may be called successfully 83 * multiple times for the same zone_t. Setting of the zone's state to 84 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 85 * the zone's status without worrying about it being a moving target. 86 * 87 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 88 * are no more user processes in the zone. The zone remains in this 89 * state until there are no more kernel threads associated with the 90 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 91 * fail. 92 * 93 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 94 * have exited. zone_shutdown() returns. Henceforth it is not possible to 95 * join the zone or create kernel threads therein. 96 * 97 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 98 * remains in this state until zsched exits. Calls to zone_find_by_*() 99 * return NULL from now on. 100 * 101 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 102 * processes or threads doing work on behalf of the zone. The zone is 103 * removed from the list of active zones. zone_destroy() returns, and 104 * the zone can be recreated. 105 * 106 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 107 * callbacks are executed, and all memory associated with the zone is 108 * freed. 109 * 110 * Threads can wait for the zone to enter a requested state by using 111 * zone_status_wait() or zone_status_timedwait() with the desired 112 * state passed in as an argument. Zone state transitions are 113 * uni-directional; it is not possible to move back to an earlier state. 114 * 115 * 116 * Zone-Specific Data: 117 * 118 * Subsystems needing to maintain zone-specific data can store that 119 * data using the ZSD mechanism. This provides a zone-specific data 120 * store, similar to thread-specific data (see pthread_getspecific(3C) 121 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 122 * to register callbacks to be invoked when a zone is created, shut 123 * down, or destroyed. This can be used to initialize zone-specific 124 * data for new zones and to clean up when zones go away. 125 * 126 * 127 * Data Structures: 128 * 129 * The per-zone structure (zone_t) is reference counted, and freed 130 * when all references are released. zone_hold and zone_rele can be 131 * used to adjust the reference count. In addition, reference counts 132 * associated with the cred_t structure are tracked separately using 133 * zone_cred_hold and zone_cred_rele. 134 * 135 * Pointers to active zone_t's are stored in two hash tables; one 136 * for searching by id, the other for searching by name. Lookups 137 * can be performed on either basis, using zone_find_by_id and 138 * zone_find_by_name. Both return zone_t pointers with the zone 139 * held, so zone_rele should be called when the pointer is no longer 140 * needed. Zones can also be searched by path; zone_find_by_path 141 * returns the zone with which a path name is associated (global 142 * zone if the path is not within some other zone's file system 143 * hierarchy). This currently requires iterating through each zone, 144 * so it is slower than an id or name search via a hash table. 145 * 146 * 147 * Locking: 148 * 149 * zonehash_lock: This is a top-level global lock used to protect the 150 * zone hash tables and lists. Zones cannot be created or destroyed 151 * while this lock is held. 152 * zone_status_lock: This is a global lock protecting zone state. 153 * Zones cannot change state while this lock is held. It also 154 * protects the list of kernel threads associated with a zone. 155 * zone_lock: This is a per-zone lock used to protect several fields of 156 * the zone_t (see <sys/zone.h> for details). In addition, holding 157 * this lock means that the zone cannot go away. 158 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 159 * related to the zone.max-lwps rctl. 160 * zone_mem_lock: This is a per-zone lock used to protect the fields 161 * related to the zone.max-locked-memory and zone.max-swap rctls. 162 * zone_rctl_lock: This is a per-zone lock used to protect other rctls, 163 * currently just max_lofi 164 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 165 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 166 * list (a list of zones in the ZONE_IS_DEAD state). 167 * 168 * Ordering requirements: 169 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 170 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 171 * 172 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 173 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock 175 * 176 * Blocking memory allocations are permitted while holding any of the 177 * zone locks. 178 * 179 * 180 * System Call Interface: 181 * 182 * The zone subsystem can be managed and queried from user level with 183 * the following system calls (all subcodes of the primary "zone" 184 * system call): 185 * - zone_create: creates a zone with selected attributes (name, 186 * root path, privileges, resource controls, ZFS datasets) 187 * - zone_enter: allows the current process to enter a zone 188 * - zone_getattr: reports attributes of a zone 189 * - zone_setattr: set attributes of a zone 190 * - zone_boot: set 'init' running for the zone 191 * - zone_list: lists all zones active in the system 192 * - zone_lookup: looks up zone id based on name 193 * - zone_shutdown: initiates shutdown process (see states above) 194 * - zone_destroy: completes shutdown process (see states above) 195 * 196 */ 197 198 #include <sys/priv_impl.h> 199 #include <sys/cred.h> 200 #include <c2/audit.h> 201 #include <sys/debug.h> 202 #include <sys/file.h> 203 #include <sys/kmem.h> 204 #include <sys/kstat.h> 205 #include <sys/mutex.h> 206 #include <sys/note.h> 207 #include <sys/pathname.h> 208 #include <sys/proc.h> 209 #include <sys/project.h> 210 #include <sys/sysevent.h> 211 #include <sys/task.h> 212 #include <sys/systm.h> 213 #include <sys/types.h> 214 #include <sys/utsname.h> 215 #include <sys/vnode.h> 216 #include <sys/vfs.h> 217 #include <sys/systeminfo.h> 218 #include <sys/policy.h> 219 #include <sys/cred_impl.h> 220 #include <sys/contract_impl.h> 221 #include <sys/contract/process_impl.h> 222 #include <sys/class.h> 223 #include <sys/pool.h> 224 #include <sys/pool_pset.h> 225 #include <sys/pset.h> 226 #include <sys/strlog.h> 227 #include <sys/sysmacros.h> 228 #include <sys/callb.h> 229 #include <sys/vmparam.h> 230 #include <sys/corectl.h> 231 #include <sys/ipc_impl.h> 232 #include <sys/klpd.h> 233 234 #include <sys/door.h> 235 #include <sys/cpuvar.h> 236 #include <sys/sdt.h> 237 238 #include <sys/uadmin.h> 239 #include <sys/session.h> 240 #include <sys/cmn_err.h> 241 #include <sys/modhash.h> 242 #include <sys/sunddi.h> 243 #include <sys/nvpair.h> 244 #include <sys/rctl.h> 245 #include <sys/fss.h> 246 #include <sys/brand.h> 247 #include <sys/zone.h> 248 #include <net/if.h> 249 #include <sys/cpucaps.h> 250 #include <vm/seg.h> 251 #include <sys/mac.h> 252 253 /* 254 * This constant specifies the number of seconds that threads waiting for 255 * subsystems to release a zone's general-purpose references will wait before 256 * they log the zone's reference counts. The constant's value shouldn't 257 * be so small that reference counts are unnecessarily reported for zones 258 * whose references are slowly released. On the other hand, it shouldn't be so 259 * large that users reboot their systems out of frustration over hung zones 260 * before the system logs the zones' reference counts. 261 */ 262 #define ZONE_DESTROY_TIMEOUT_SECS 60 263 264 /* List of data link IDs which are accessible from the zone */ 265 typedef struct zone_dl { 266 datalink_id_t zdl_id; 267 nvlist_t *zdl_net; 268 list_node_t zdl_linkage; 269 } zone_dl_t; 270 271 /* 272 * cv used to signal that all references to the zone have been released. This 273 * needs to be global since there may be multiple waiters, and the first to 274 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 275 */ 276 static kcondvar_t zone_destroy_cv; 277 /* 278 * Lock used to serialize access to zone_cv. This could have been per-zone, 279 * but then we'd need another lock for zone_destroy_cv, and why bother? 280 */ 281 static kmutex_t zone_status_lock; 282 283 /* 284 * ZSD-related global variables. 285 */ 286 static kmutex_t zsd_key_lock; /* protects the following two */ 287 /* 288 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 289 */ 290 static zone_key_t zsd_keyval = 0; 291 /* 292 * Global list of registered keys. We use this when a new zone is created. 293 */ 294 static list_t zsd_registered_keys; 295 296 int zone_hash_size = 256; 297 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 298 static kmutex_t zonehash_lock; 299 static uint_t zonecount; 300 static id_space_t *zoneid_space; 301 302 /* 303 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 304 * kernel proper runs, and which manages all other zones. 305 * 306 * Although not declared as static, the variable "zone0" should not be used 307 * except for by code that needs to reference the global zone early on in boot, 308 * before it is fully initialized. All other consumers should use 309 * 'global_zone'. 310 */ 311 zone_t zone0; 312 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 313 314 /* 315 * List of active zones, protected by zonehash_lock. 316 */ 317 static list_t zone_active; 318 319 /* 320 * List of destroyed zones that still have outstanding cred references. 321 * Used for debugging. Uses a separate lock to avoid lock ordering 322 * problems in zone_free. 323 */ 324 static list_t zone_deathrow; 325 static kmutex_t zone_deathrow_lock; 326 327 /* number of zones is limited by virtual interface limit in IP */ 328 uint_t maxzones = 8192; 329 330 /* Event channel to sent zone state change notifications */ 331 evchan_t *zone_event_chan; 332 333 /* 334 * This table holds the mapping from kernel zone states to 335 * states visible in the state notification API. 336 * The idea is that we only expose "obvious" states and 337 * do not expose states which are just implementation details. 338 */ 339 const char *zone_status_table[] = { 340 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 341 ZONE_EVENT_INITIALIZED, /* initialized */ 342 ZONE_EVENT_READY, /* ready */ 343 ZONE_EVENT_READY, /* booting */ 344 ZONE_EVENT_RUNNING, /* running */ 345 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 346 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 347 ZONE_EVENT_SHUTTING_DOWN, /* down */ 348 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 349 ZONE_EVENT_UNINITIALIZED, /* dead */ 350 }; 351 352 /* 353 * This array contains the names of the subsystems listed in zone_ref_subsys_t 354 * (see sys/zone.h). 355 */ 356 static char *zone_ref_subsys_names[] = { 357 "NFS", /* ZONE_REF_NFS */ 358 "NFSv4", /* ZONE_REF_NFSV4 */ 359 "SMBFS", /* ZONE_REF_SMBFS */ 360 "MNTFS", /* ZONE_REF_MNTFS */ 361 "LOFI", /* ZONE_REF_LOFI */ 362 "VFS", /* ZONE_REF_VFS */ 363 "IPC" /* ZONE_REF_IPC */ 364 }; 365 366 /* 367 * This isn't static so lint doesn't complain. 368 */ 369 rctl_hndl_t rc_zone_cpu_shares; 370 rctl_hndl_t rc_zone_locked_mem; 371 rctl_hndl_t rc_zone_max_swap; 372 rctl_hndl_t rc_zone_max_lofi; 373 rctl_hndl_t rc_zone_cpu_cap; 374 rctl_hndl_t rc_zone_nlwps; 375 rctl_hndl_t rc_zone_nprocs; 376 rctl_hndl_t rc_zone_shmmax; 377 rctl_hndl_t rc_zone_shmmni; 378 rctl_hndl_t rc_zone_semmni; 379 rctl_hndl_t rc_zone_msgmni; 380 /* 381 * Synchronization primitives used to synchronize between mounts and zone 382 * creation/destruction. 383 */ 384 static int mounts_in_progress; 385 static kcondvar_t mount_cv; 386 static kmutex_t mount_lock; 387 388 const char * const zone_default_initname = "/sbin/init"; 389 static char * const zone_prefix = "/zone/"; 390 static int zone_shutdown(zoneid_t zoneid); 391 static int zone_add_datalink(zoneid_t, datalink_id_t); 392 static int zone_remove_datalink(zoneid_t, datalink_id_t); 393 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 394 static int zone_set_network(zoneid_t, zone_net_data_t *); 395 static int zone_get_network(zoneid_t, zone_net_data_t *); 396 397 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 398 399 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 400 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 401 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 402 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 403 zone_key_t); 404 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 405 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 406 kmutex_t *); 407 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 408 kmutex_t *); 409 410 /* 411 * Bump this number when you alter the zone syscall interfaces; this is 412 * because we need to have support for previous API versions in libc 413 * to support patching; libc calls into the kernel to determine this number. 414 * 415 * Version 1 of the API is the version originally shipped with Solaris 10 416 * Version 2 alters the zone_create system call in order to support more 417 * arguments by moving the args into a structure; and to do better 418 * error reporting when zone_create() fails. 419 * Version 3 alters the zone_create system call in order to support the 420 * import of ZFS datasets to zones. 421 * Version 4 alters the zone_create system call in order to support 422 * Trusted Extensions. 423 * Version 5 alters the zone_boot system call, and converts its old 424 * bootargs parameter to be set by the zone_setattr API instead. 425 * Version 6 adds the flag argument to zone_create. 426 */ 427 static const int ZONE_SYSCALL_API_VERSION = 6; 428 429 /* 430 * Certain filesystems (such as NFS and autofs) need to know which zone 431 * the mount is being placed in. Because of this, we need to be able to 432 * ensure that a zone isn't in the process of being created such that 433 * nfs_mount() thinks it is in the global zone, while by the time it 434 * gets added the list of mounted zones, it ends up on zoneA's mount 435 * list. 436 * 437 * The following functions: block_mounts()/resume_mounts() and 438 * mount_in_progress()/mount_completed() are used by zones and the VFS 439 * layer (respectively) to synchronize zone creation and new mounts. 440 * 441 * The semantics are like a reader-reader lock such that there may 442 * either be multiple mounts (or zone creations, if that weren't 443 * serialized by zonehash_lock) in progress at the same time, but not 444 * both. 445 * 446 * We use cv's so the user can ctrl-C out of the operation if it's 447 * taking too long. 448 * 449 * The semantics are such that there is unfair bias towards the 450 * "current" operation. This means that zone creations may starve if 451 * there is a rapid succession of new mounts coming in to the system, or 452 * there is a remote possibility that zones will be created at such a 453 * rate that new mounts will not be able to proceed. 454 */ 455 /* 456 * Prevent new mounts from progressing to the point of calling 457 * VFS_MOUNT(). If there are already mounts in this "region", wait for 458 * them to complete. 459 */ 460 static int 461 block_mounts(void) 462 { 463 int retval = 0; 464 465 /* 466 * Since it may block for a long time, block_mounts() shouldn't be 467 * called with zonehash_lock held. 468 */ 469 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 470 mutex_enter(&mount_lock); 471 while (mounts_in_progress > 0) { 472 if (cv_wait_sig(&mount_cv, &mount_lock) == 0) 473 goto signaled; 474 } 475 /* 476 * A negative value of mounts_in_progress indicates that mounts 477 * have been blocked by (-mounts_in_progress) different callers. 478 */ 479 mounts_in_progress--; 480 retval = 1; 481 signaled: 482 mutex_exit(&mount_lock); 483 return (retval); 484 } 485 486 /* 487 * The VFS layer may progress with new mounts as far as we're concerned. 488 * Allow them to progress if we were the last obstacle. 489 */ 490 static void 491 resume_mounts(void) 492 { 493 mutex_enter(&mount_lock); 494 if (++mounts_in_progress == 0) 495 cv_broadcast(&mount_cv); 496 mutex_exit(&mount_lock); 497 } 498 499 /* 500 * The VFS layer is busy with a mount; zones should wait until all 501 * mounts are completed to progress. 502 */ 503 void 504 mount_in_progress(void) 505 { 506 mutex_enter(&mount_lock); 507 while (mounts_in_progress < 0) 508 cv_wait(&mount_cv, &mount_lock); 509 mounts_in_progress++; 510 mutex_exit(&mount_lock); 511 } 512 513 /* 514 * VFS is done with one mount; wake up any waiting block_mounts() 515 * callers if this is the last mount. 516 */ 517 void 518 mount_completed(void) 519 { 520 mutex_enter(&mount_lock); 521 if (--mounts_in_progress == 0) 522 cv_broadcast(&mount_cv); 523 mutex_exit(&mount_lock); 524 } 525 526 /* 527 * ZSD routines. 528 * 529 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 530 * defined by the pthread_key_create() and related interfaces. 531 * 532 * Kernel subsystems may register one or more data items and/or 533 * callbacks to be executed when a zone is created, shutdown, or 534 * destroyed. 535 * 536 * Unlike the thread counterpart, destructor callbacks will be executed 537 * even if the data pointer is NULL and/or there are no constructor 538 * callbacks, so it is the responsibility of such callbacks to check for 539 * NULL data values if necessary. 540 * 541 * The locking strategy and overall picture is as follows: 542 * 543 * When someone calls zone_key_create(), a template ZSD entry is added to the 544 * global list "zsd_registered_keys", protected by zsd_key_lock. While 545 * holding that lock all the existing zones are marked as 546 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 547 * zone_zsd list (protected by zone_lock). The global list is updated first 548 * (under zone_key_lock) to make sure that newly created zones use the 549 * most recent list of keys. Then under zonehash_lock we walk the zones 550 * and mark them. Similar locking is used in zone_key_delete(). 551 * 552 * The actual create, shutdown, and destroy callbacks are done without 553 * holding any lock. And zsd_flags are used to ensure that the operations 554 * completed so that when zone_key_create (and zone_create) is done, as well as 555 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 556 * are completed. 557 * 558 * When new zones are created constructor callbacks for all registered ZSD 559 * entries will be called. That also uses the above two phases of marking 560 * what needs to be done, and then running the callbacks without holding 561 * any locks. 562 * 563 * The framework does not provide any locking around zone_getspecific() and 564 * zone_setspecific() apart from that needed for internal consistency, so 565 * callers interested in atomic "test-and-set" semantics will need to provide 566 * their own locking. 567 */ 568 569 /* 570 * Helper function to find the zsd_entry associated with the key in the 571 * given list. 572 */ 573 static struct zsd_entry * 574 zsd_find(list_t *l, zone_key_t key) 575 { 576 struct zsd_entry *zsd; 577 578 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 579 if (zsd->zsd_key == key) { 580 return (zsd); 581 } 582 } 583 return (NULL); 584 } 585 586 /* 587 * Helper function to find the zsd_entry associated with the key in the 588 * given list. Move it to the front of the list. 589 */ 590 static struct zsd_entry * 591 zsd_find_mru(list_t *l, zone_key_t key) 592 { 593 struct zsd_entry *zsd; 594 595 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 596 if (zsd->zsd_key == key) { 597 /* 598 * Move to head of list to keep list in MRU order. 599 */ 600 if (zsd != list_head(l)) { 601 list_remove(l, zsd); 602 list_insert_head(l, zsd); 603 } 604 return (zsd); 605 } 606 } 607 return (NULL); 608 } 609 610 void 611 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 612 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 613 { 614 struct zsd_entry *zsdp; 615 struct zsd_entry *t; 616 struct zone *zone; 617 zone_key_t key; 618 619 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 620 zsdp->zsd_data = NULL; 621 zsdp->zsd_create = create; 622 zsdp->zsd_shutdown = shutdown; 623 zsdp->zsd_destroy = destroy; 624 625 /* 626 * Insert in global list of callbacks. Makes future zone creations 627 * see it. 628 */ 629 mutex_enter(&zsd_key_lock); 630 key = zsdp->zsd_key = ++zsd_keyval; 631 ASSERT(zsd_keyval != 0); 632 list_insert_tail(&zsd_registered_keys, zsdp); 633 mutex_exit(&zsd_key_lock); 634 635 /* 636 * Insert for all existing zones and mark them as needing 637 * a create callback. 638 */ 639 mutex_enter(&zonehash_lock); /* stop the world */ 640 for (zone = list_head(&zone_active); zone != NULL; 641 zone = list_next(&zone_active, zone)) { 642 zone_status_t status; 643 644 mutex_enter(&zone->zone_lock); 645 646 /* Skip zones that are on the way down or not yet up */ 647 status = zone_status_get(zone); 648 if (status >= ZONE_IS_DOWN || 649 status == ZONE_IS_UNINITIALIZED) { 650 mutex_exit(&zone->zone_lock); 651 continue; 652 } 653 654 t = zsd_find_mru(&zone->zone_zsd, key); 655 if (t != NULL) { 656 /* 657 * A zsd_configure already inserted it after 658 * we dropped zsd_key_lock above. 659 */ 660 mutex_exit(&zone->zone_lock); 661 continue; 662 } 663 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 664 t->zsd_key = key; 665 t->zsd_create = create; 666 t->zsd_shutdown = shutdown; 667 t->zsd_destroy = destroy; 668 if (create != NULL) { 669 t->zsd_flags = ZSD_CREATE_NEEDED; 670 DTRACE_PROBE2(zsd__create__needed, 671 zone_t *, zone, zone_key_t, key); 672 } 673 list_insert_tail(&zone->zone_zsd, t); 674 mutex_exit(&zone->zone_lock); 675 } 676 mutex_exit(&zonehash_lock); 677 678 if (create != NULL) { 679 /* Now call the create callback for this key */ 680 zsd_apply_all_zones(zsd_apply_create, key); 681 } 682 /* 683 * It is safe for consumers to use the key now, make it 684 * globally visible. Specifically zone_getspecific() will 685 * always successfully return the zone specific data associated 686 * with the key. 687 */ 688 *keyp = key; 689 690 } 691 692 /* 693 * Function called when a module is being unloaded, or otherwise wishes 694 * to unregister its ZSD key and callbacks. 695 * 696 * Remove from the global list and determine the functions that need to 697 * be called under a global lock. Then call the functions without 698 * holding any locks. Finally free up the zone_zsd entries. (The apply 699 * functions need to access the zone_zsd entries to find zsd_data etc.) 700 */ 701 int 702 zone_key_delete(zone_key_t key) 703 { 704 struct zsd_entry *zsdp = NULL; 705 zone_t *zone; 706 707 mutex_enter(&zsd_key_lock); 708 zsdp = zsd_find_mru(&zsd_registered_keys, key); 709 if (zsdp == NULL) { 710 mutex_exit(&zsd_key_lock); 711 return (-1); 712 } 713 list_remove(&zsd_registered_keys, zsdp); 714 mutex_exit(&zsd_key_lock); 715 716 mutex_enter(&zonehash_lock); 717 for (zone = list_head(&zone_active); zone != NULL; 718 zone = list_next(&zone_active, zone)) { 719 struct zsd_entry *del; 720 721 mutex_enter(&zone->zone_lock); 722 del = zsd_find_mru(&zone->zone_zsd, key); 723 if (del == NULL) { 724 /* 725 * Somebody else got here first e.g the zone going 726 * away. 727 */ 728 mutex_exit(&zone->zone_lock); 729 continue; 730 } 731 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 732 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 733 if (del->zsd_shutdown != NULL && 734 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 735 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 736 DTRACE_PROBE2(zsd__shutdown__needed, 737 zone_t *, zone, zone_key_t, key); 738 } 739 if (del->zsd_destroy != NULL && 740 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 741 del->zsd_flags |= ZSD_DESTROY_NEEDED; 742 DTRACE_PROBE2(zsd__destroy__needed, 743 zone_t *, zone, zone_key_t, key); 744 } 745 mutex_exit(&zone->zone_lock); 746 } 747 mutex_exit(&zonehash_lock); 748 kmem_free(zsdp, sizeof (*zsdp)); 749 750 /* Now call the shutdown and destroy callback for this key */ 751 zsd_apply_all_zones(zsd_apply_shutdown, key); 752 zsd_apply_all_zones(zsd_apply_destroy, key); 753 754 /* Now we can free up the zsdp structures in each zone */ 755 mutex_enter(&zonehash_lock); 756 for (zone = list_head(&zone_active); zone != NULL; 757 zone = list_next(&zone_active, zone)) { 758 struct zsd_entry *del; 759 760 mutex_enter(&zone->zone_lock); 761 del = zsd_find(&zone->zone_zsd, key); 762 if (del != NULL) { 763 list_remove(&zone->zone_zsd, del); 764 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 765 kmem_free(del, sizeof (*del)); 766 } 767 mutex_exit(&zone->zone_lock); 768 } 769 mutex_exit(&zonehash_lock); 770 771 return (0); 772 } 773 774 /* 775 * ZSD counterpart of pthread_setspecific(). 776 * 777 * Since all zsd callbacks, including those with no create function, 778 * have an entry in zone_zsd, if the key is registered it is part of 779 * the zone_zsd list. 780 * Return an error if the key wasn't registerd. 781 */ 782 int 783 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 784 { 785 struct zsd_entry *t; 786 787 mutex_enter(&zone->zone_lock); 788 t = zsd_find_mru(&zone->zone_zsd, key); 789 if (t != NULL) { 790 /* 791 * Replace old value with new 792 */ 793 t->zsd_data = (void *)data; 794 mutex_exit(&zone->zone_lock); 795 return (0); 796 } 797 mutex_exit(&zone->zone_lock); 798 return (-1); 799 } 800 801 /* 802 * ZSD counterpart of pthread_getspecific(). 803 */ 804 void * 805 zone_getspecific(zone_key_t key, zone_t *zone) 806 { 807 struct zsd_entry *t; 808 void *data; 809 810 mutex_enter(&zone->zone_lock); 811 t = zsd_find_mru(&zone->zone_zsd, key); 812 data = (t == NULL ? NULL : t->zsd_data); 813 mutex_exit(&zone->zone_lock); 814 return (data); 815 } 816 817 /* 818 * Function used to initialize a zone's list of ZSD callbacks and data 819 * when the zone is being created. The callbacks are initialized from 820 * the template list (zsd_registered_keys). The constructor callback is 821 * executed later (once the zone exists and with locks dropped). 822 */ 823 static void 824 zone_zsd_configure(zone_t *zone) 825 { 826 struct zsd_entry *zsdp; 827 struct zsd_entry *t; 828 829 ASSERT(MUTEX_HELD(&zonehash_lock)); 830 ASSERT(list_head(&zone->zone_zsd) == NULL); 831 mutex_enter(&zone->zone_lock); 832 mutex_enter(&zsd_key_lock); 833 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 834 zsdp = list_next(&zsd_registered_keys, zsdp)) { 835 /* 836 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 837 * should not have added anything to it. 838 */ 839 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 840 841 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 842 t->zsd_key = zsdp->zsd_key; 843 t->zsd_create = zsdp->zsd_create; 844 t->zsd_shutdown = zsdp->zsd_shutdown; 845 t->zsd_destroy = zsdp->zsd_destroy; 846 if (zsdp->zsd_create != NULL) { 847 t->zsd_flags = ZSD_CREATE_NEEDED; 848 DTRACE_PROBE2(zsd__create__needed, 849 zone_t *, zone, zone_key_t, zsdp->zsd_key); 850 } 851 list_insert_tail(&zone->zone_zsd, t); 852 } 853 mutex_exit(&zsd_key_lock); 854 mutex_exit(&zone->zone_lock); 855 } 856 857 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 858 859 /* 860 * Helper function to execute shutdown or destructor callbacks. 861 */ 862 static void 863 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 864 { 865 struct zsd_entry *t; 866 867 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 868 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 869 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 870 871 /* 872 * Run the callback solely based on what is registered for the zone 873 * in zone_zsd. The global list can change independently of this 874 * as keys are registered and unregistered and we don't register new 875 * callbacks for a zone that is in the process of going away. 876 */ 877 mutex_enter(&zone->zone_lock); 878 for (t = list_head(&zone->zone_zsd); t != NULL; 879 t = list_next(&zone->zone_zsd, t)) { 880 zone_key_t key = t->zsd_key; 881 882 /* Skip if no callbacks registered */ 883 884 if (ct == ZSD_SHUTDOWN) { 885 if (t->zsd_shutdown != NULL && 886 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 887 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 888 DTRACE_PROBE2(zsd__shutdown__needed, 889 zone_t *, zone, zone_key_t, key); 890 } 891 } else { 892 if (t->zsd_destroy != NULL && 893 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 894 t->zsd_flags |= ZSD_DESTROY_NEEDED; 895 DTRACE_PROBE2(zsd__destroy__needed, 896 zone_t *, zone, zone_key_t, key); 897 } 898 } 899 } 900 mutex_exit(&zone->zone_lock); 901 902 /* Now call the shutdown and destroy callback for this key */ 903 zsd_apply_all_keys(zsd_apply_shutdown, zone); 904 zsd_apply_all_keys(zsd_apply_destroy, zone); 905 906 } 907 908 /* 909 * Called when the zone is going away; free ZSD-related memory, and 910 * destroy the zone_zsd list. 911 */ 912 static void 913 zone_free_zsd(zone_t *zone) 914 { 915 struct zsd_entry *t, *next; 916 917 /* 918 * Free all the zsd_entry's we had on this zone. 919 */ 920 mutex_enter(&zone->zone_lock); 921 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 922 next = list_next(&zone->zone_zsd, t); 923 list_remove(&zone->zone_zsd, t); 924 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 925 kmem_free(t, sizeof (*t)); 926 } 927 list_destroy(&zone->zone_zsd); 928 mutex_exit(&zone->zone_lock); 929 930 } 931 932 /* 933 * Apply a function to all zones for particular key value. 934 * 935 * The applyfn has to drop zonehash_lock if it does some work, and 936 * then reacquire it before it returns. 937 * When the lock is dropped we don't follow list_next even 938 * if it is possible to do so without any hazards. This is 939 * because we want the design to allow for the list of zones 940 * to change in any arbitrary way during the time the 941 * lock was dropped. 942 * 943 * It is safe to restart the loop at list_head since the applyfn 944 * changes the zsd_flags as it does work, so a subsequent 945 * pass through will have no effect in applyfn, hence the loop will terminate 946 * in at worst O(N^2). 947 */ 948 static void 949 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 950 { 951 zone_t *zone; 952 953 mutex_enter(&zonehash_lock); 954 zone = list_head(&zone_active); 955 while (zone != NULL) { 956 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 957 /* Lock dropped - restart at head */ 958 zone = list_head(&zone_active); 959 } else { 960 zone = list_next(&zone_active, zone); 961 } 962 } 963 mutex_exit(&zonehash_lock); 964 } 965 966 /* 967 * Apply a function to all keys for a particular zone. 968 * 969 * The applyfn has to drop zonehash_lock if it does some work, and 970 * then reacquire it before it returns. 971 * When the lock is dropped we don't follow list_next even 972 * if it is possible to do so without any hazards. This is 973 * because we want the design to allow for the list of zsd callbacks 974 * to change in any arbitrary way during the time the 975 * lock was dropped. 976 * 977 * It is safe to restart the loop at list_head since the applyfn 978 * changes the zsd_flags as it does work, so a subsequent 979 * pass through will have no effect in applyfn, hence the loop will terminate 980 * in at worst O(N^2). 981 */ 982 static void 983 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 984 { 985 struct zsd_entry *t; 986 987 mutex_enter(&zone->zone_lock); 988 t = list_head(&zone->zone_zsd); 989 while (t != NULL) { 990 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 991 /* Lock dropped - restart at head */ 992 t = list_head(&zone->zone_zsd); 993 } else { 994 t = list_next(&zone->zone_zsd, t); 995 } 996 } 997 mutex_exit(&zone->zone_lock); 998 } 999 1000 /* 1001 * Call the create function for the zone and key if CREATE_NEEDED 1002 * is set. 1003 * If some other thread gets here first and sets CREATE_INPROGRESS, then 1004 * we wait for that thread to complete so that we can ensure that 1005 * all the callbacks are done when we've looped over all zones/keys. 1006 * 1007 * When we call the create function, we drop the global held by the 1008 * caller, and return true to tell the caller it needs to re-evalute the 1009 * state. 1010 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1011 * remains held on exit. 1012 */ 1013 static boolean_t 1014 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 1015 zone_t *zone, zone_key_t key) 1016 { 1017 void *result; 1018 struct zsd_entry *t; 1019 boolean_t dropped; 1020 1021 if (lockp != NULL) { 1022 ASSERT(MUTEX_HELD(lockp)); 1023 } 1024 if (zone_lock_held) { 1025 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1026 } else { 1027 mutex_enter(&zone->zone_lock); 1028 } 1029 1030 t = zsd_find(&zone->zone_zsd, key); 1031 if (t == NULL) { 1032 /* 1033 * Somebody else got here first e.g the zone going 1034 * away. 1035 */ 1036 if (!zone_lock_held) 1037 mutex_exit(&zone->zone_lock); 1038 return (B_FALSE); 1039 } 1040 dropped = B_FALSE; 1041 if (zsd_wait_for_inprogress(zone, t, lockp)) 1042 dropped = B_TRUE; 1043 1044 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1045 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1046 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1047 DTRACE_PROBE2(zsd__create__inprogress, 1048 zone_t *, zone, zone_key_t, key); 1049 mutex_exit(&zone->zone_lock); 1050 if (lockp != NULL) 1051 mutex_exit(lockp); 1052 1053 dropped = B_TRUE; 1054 ASSERT(t->zsd_create != NULL); 1055 DTRACE_PROBE2(zsd__create__start, 1056 zone_t *, zone, zone_key_t, key); 1057 1058 result = (*t->zsd_create)(zone->zone_id); 1059 1060 DTRACE_PROBE2(zsd__create__end, 1061 zone_t *, zone, voidn *, result); 1062 1063 ASSERT(result != NULL); 1064 if (lockp != NULL) 1065 mutex_enter(lockp); 1066 mutex_enter(&zone->zone_lock); 1067 t->zsd_data = result; 1068 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1069 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1070 cv_broadcast(&t->zsd_cv); 1071 DTRACE_PROBE2(zsd__create__completed, 1072 zone_t *, zone, zone_key_t, key); 1073 } 1074 if (!zone_lock_held) 1075 mutex_exit(&zone->zone_lock); 1076 return (dropped); 1077 } 1078 1079 /* 1080 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1081 * is set. 1082 * If some other thread gets here first and sets *_INPROGRESS, then 1083 * we wait for that thread to complete so that we can ensure that 1084 * all the callbacks are done when we've looped over all zones/keys. 1085 * 1086 * When we call the shutdown function, we drop the global held by the 1087 * caller, and return true to tell the caller it needs to re-evalute the 1088 * state. 1089 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1090 * remains held on exit. 1091 */ 1092 static boolean_t 1093 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1094 zone_t *zone, zone_key_t key) 1095 { 1096 struct zsd_entry *t; 1097 void *data; 1098 boolean_t dropped; 1099 1100 if (lockp != NULL) { 1101 ASSERT(MUTEX_HELD(lockp)); 1102 } 1103 if (zone_lock_held) { 1104 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1105 } else { 1106 mutex_enter(&zone->zone_lock); 1107 } 1108 1109 t = zsd_find(&zone->zone_zsd, key); 1110 if (t == NULL) { 1111 /* 1112 * Somebody else got here first e.g the zone going 1113 * away. 1114 */ 1115 if (!zone_lock_held) 1116 mutex_exit(&zone->zone_lock); 1117 return (B_FALSE); 1118 } 1119 dropped = B_FALSE; 1120 if (zsd_wait_for_creator(zone, t, lockp)) 1121 dropped = B_TRUE; 1122 1123 if (zsd_wait_for_inprogress(zone, t, lockp)) 1124 dropped = B_TRUE; 1125 1126 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1127 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1128 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1129 DTRACE_PROBE2(zsd__shutdown__inprogress, 1130 zone_t *, zone, zone_key_t, key); 1131 mutex_exit(&zone->zone_lock); 1132 if (lockp != NULL) 1133 mutex_exit(lockp); 1134 dropped = B_TRUE; 1135 1136 ASSERT(t->zsd_shutdown != NULL); 1137 data = t->zsd_data; 1138 1139 DTRACE_PROBE2(zsd__shutdown__start, 1140 zone_t *, zone, zone_key_t, key); 1141 1142 (t->zsd_shutdown)(zone->zone_id, data); 1143 DTRACE_PROBE2(zsd__shutdown__end, 1144 zone_t *, zone, zone_key_t, key); 1145 1146 if (lockp != NULL) 1147 mutex_enter(lockp); 1148 mutex_enter(&zone->zone_lock); 1149 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1150 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1151 cv_broadcast(&t->zsd_cv); 1152 DTRACE_PROBE2(zsd__shutdown__completed, 1153 zone_t *, zone, zone_key_t, key); 1154 } 1155 if (!zone_lock_held) 1156 mutex_exit(&zone->zone_lock); 1157 return (dropped); 1158 } 1159 1160 /* 1161 * Call the destroy function for the zone and key if DESTROY_NEEDED 1162 * is set. 1163 * If some other thread gets here first and sets *_INPROGRESS, then 1164 * we wait for that thread to complete so that we can ensure that 1165 * all the callbacks are done when we've looped over all zones/keys. 1166 * 1167 * When we call the destroy function, we drop the global held by the 1168 * caller, and return true to tell the caller it needs to re-evalute the 1169 * state. 1170 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1171 * remains held on exit. 1172 */ 1173 static boolean_t 1174 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1175 zone_t *zone, zone_key_t key) 1176 { 1177 struct zsd_entry *t; 1178 void *data; 1179 boolean_t dropped; 1180 1181 if (lockp != NULL) { 1182 ASSERT(MUTEX_HELD(lockp)); 1183 } 1184 if (zone_lock_held) { 1185 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1186 } else { 1187 mutex_enter(&zone->zone_lock); 1188 } 1189 1190 t = zsd_find(&zone->zone_zsd, key); 1191 if (t == NULL) { 1192 /* 1193 * Somebody else got here first e.g the zone going 1194 * away. 1195 */ 1196 if (!zone_lock_held) 1197 mutex_exit(&zone->zone_lock); 1198 return (B_FALSE); 1199 } 1200 dropped = B_FALSE; 1201 if (zsd_wait_for_creator(zone, t, lockp)) 1202 dropped = B_TRUE; 1203 1204 if (zsd_wait_for_inprogress(zone, t, lockp)) 1205 dropped = B_TRUE; 1206 1207 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1208 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1209 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1210 DTRACE_PROBE2(zsd__destroy__inprogress, 1211 zone_t *, zone, zone_key_t, key); 1212 mutex_exit(&zone->zone_lock); 1213 if (lockp != NULL) 1214 mutex_exit(lockp); 1215 dropped = B_TRUE; 1216 1217 ASSERT(t->zsd_destroy != NULL); 1218 data = t->zsd_data; 1219 DTRACE_PROBE2(zsd__destroy__start, 1220 zone_t *, zone, zone_key_t, key); 1221 1222 (t->zsd_destroy)(zone->zone_id, data); 1223 DTRACE_PROBE2(zsd__destroy__end, 1224 zone_t *, zone, zone_key_t, key); 1225 1226 if (lockp != NULL) 1227 mutex_enter(lockp); 1228 mutex_enter(&zone->zone_lock); 1229 t->zsd_data = NULL; 1230 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1231 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1232 cv_broadcast(&t->zsd_cv); 1233 DTRACE_PROBE2(zsd__destroy__completed, 1234 zone_t *, zone, zone_key_t, key); 1235 } 1236 if (!zone_lock_held) 1237 mutex_exit(&zone->zone_lock); 1238 return (dropped); 1239 } 1240 1241 /* 1242 * Wait for any CREATE_NEEDED flag to be cleared. 1243 * Returns true if lockp was temporarily dropped while waiting. 1244 */ 1245 static boolean_t 1246 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1247 { 1248 boolean_t dropped = B_FALSE; 1249 1250 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1251 DTRACE_PROBE2(zsd__wait__for__creator, 1252 zone_t *, zone, struct zsd_entry *, t); 1253 if (lockp != NULL) { 1254 dropped = B_TRUE; 1255 mutex_exit(lockp); 1256 } 1257 cv_wait(&t->zsd_cv, &zone->zone_lock); 1258 if (lockp != NULL) { 1259 /* First drop zone_lock to preserve order */ 1260 mutex_exit(&zone->zone_lock); 1261 mutex_enter(lockp); 1262 mutex_enter(&zone->zone_lock); 1263 } 1264 } 1265 return (dropped); 1266 } 1267 1268 /* 1269 * Wait for any INPROGRESS flag to be cleared. 1270 * Returns true if lockp was temporarily dropped while waiting. 1271 */ 1272 static boolean_t 1273 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1274 { 1275 boolean_t dropped = B_FALSE; 1276 1277 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1278 DTRACE_PROBE2(zsd__wait__for__inprogress, 1279 zone_t *, zone, struct zsd_entry *, t); 1280 if (lockp != NULL) { 1281 dropped = B_TRUE; 1282 mutex_exit(lockp); 1283 } 1284 cv_wait(&t->zsd_cv, &zone->zone_lock); 1285 if (lockp != NULL) { 1286 /* First drop zone_lock to preserve order */ 1287 mutex_exit(&zone->zone_lock); 1288 mutex_enter(lockp); 1289 mutex_enter(&zone->zone_lock); 1290 } 1291 } 1292 return (dropped); 1293 } 1294 1295 /* 1296 * Frees memory associated with the zone dataset list. 1297 */ 1298 static void 1299 zone_free_datasets(zone_t *zone) 1300 { 1301 zone_dataset_t *t, *next; 1302 1303 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1304 next = list_next(&zone->zone_datasets, t); 1305 list_remove(&zone->zone_datasets, t); 1306 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1307 kmem_free(t, sizeof (*t)); 1308 } 1309 list_destroy(&zone->zone_datasets); 1310 } 1311 1312 /* 1313 * zone.cpu-shares resource control support. 1314 */ 1315 /*ARGSUSED*/ 1316 static rctl_qty_t 1317 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1318 { 1319 ASSERT(MUTEX_HELD(&p->p_lock)); 1320 return (p->p_zone->zone_shares); 1321 } 1322 1323 /*ARGSUSED*/ 1324 static int 1325 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1326 rctl_qty_t nv) 1327 { 1328 ASSERT(MUTEX_HELD(&p->p_lock)); 1329 ASSERT(e->rcep_t == RCENTITY_ZONE); 1330 if (e->rcep_p.zone == NULL) 1331 return (0); 1332 1333 e->rcep_p.zone->zone_shares = nv; 1334 return (0); 1335 } 1336 1337 static rctl_ops_t zone_cpu_shares_ops = { 1338 rcop_no_action, 1339 zone_cpu_shares_usage, 1340 zone_cpu_shares_set, 1341 rcop_no_test 1342 }; 1343 1344 /* 1345 * zone.cpu-cap resource control support. 1346 */ 1347 /*ARGSUSED*/ 1348 static rctl_qty_t 1349 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1350 { 1351 ASSERT(MUTEX_HELD(&p->p_lock)); 1352 return (cpucaps_zone_get(p->p_zone)); 1353 } 1354 1355 /*ARGSUSED*/ 1356 static int 1357 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1358 rctl_qty_t nv) 1359 { 1360 zone_t *zone = e->rcep_p.zone; 1361 1362 ASSERT(MUTEX_HELD(&p->p_lock)); 1363 ASSERT(e->rcep_t == RCENTITY_ZONE); 1364 1365 if (zone == NULL) 1366 return (0); 1367 1368 /* 1369 * set cap to the new value. 1370 */ 1371 return (cpucaps_zone_set(zone, nv)); 1372 } 1373 1374 static rctl_ops_t zone_cpu_cap_ops = { 1375 rcop_no_action, 1376 zone_cpu_cap_get, 1377 zone_cpu_cap_set, 1378 rcop_no_test 1379 }; 1380 1381 /*ARGSUSED*/ 1382 static rctl_qty_t 1383 zone_lwps_usage(rctl_t *r, proc_t *p) 1384 { 1385 rctl_qty_t nlwps; 1386 zone_t *zone = p->p_zone; 1387 1388 ASSERT(MUTEX_HELD(&p->p_lock)); 1389 1390 mutex_enter(&zone->zone_nlwps_lock); 1391 nlwps = zone->zone_nlwps; 1392 mutex_exit(&zone->zone_nlwps_lock); 1393 1394 return (nlwps); 1395 } 1396 1397 /*ARGSUSED*/ 1398 static int 1399 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1400 rctl_qty_t incr, uint_t flags) 1401 { 1402 rctl_qty_t nlwps; 1403 1404 ASSERT(MUTEX_HELD(&p->p_lock)); 1405 ASSERT(e->rcep_t == RCENTITY_ZONE); 1406 if (e->rcep_p.zone == NULL) 1407 return (0); 1408 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1409 nlwps = e->rcep_p.zone->zone_nlwps; 1410 1411 if (nlwps + incr > rcntl->rcv_value) 1412 return (1); 1413 1414 return (0); 1415 } 1416 1417 /*ARGSUSED*/ 1418 static int 1419 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1420 { 1421 ASSERT(MUTEX_HELD(&p->p_lock)); 1422 ASSERT(e->rcep_t == RCENTITY_ZONE); 1423 if (e->rcep_p.zone == NULL) 1424 return (0); 1425 e->rcep_p.zone->zone_nlwps_ctl = nv; 1426 return (0); 1427 } 1428 1429 static rctl_ops_t zone_lwps_ops = { 1430 rcop_no_action, 1431 zone_lwps_usage, 1432 zone_lwps_set, 1433 zone_lwps_test, 1434 }; 1435 1436 /*ARGSUSED*/ 1437 static rctl_qty_t 1438 zone_procs_usage(rctl_t *r, proc_t *p) 1439 { 1440 rctl_qty_t nprocs; 1441 zone_t *zone = p->p_zone; 1442 1443 ASSERT(MUTEX_HELD(&p->p_lock)); 1444 1445 mutex_enter(&zone->zone_nlwps_lock); 1446 nprocs = zone->zone_nprocs; 1447 mutex_exit(&zone->zone_nlwps_lock); 1448 1449 return (nprocs); 1450 } 1451 1452 /*ARGSUSED*/ 1453 static int 1454 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1455 rctl_qty_t incr, uint_t flags) 1456 { 1457 rctl_qty_t nprocs; 1458 1459 ASSERT(MUTEX_HELD(&p->p_lock)); 1460 ASSERT(e->rcep_t == RCENTITY_ZONE); 1461 if (e->rcep_p.zone == NULL) 1462 return (0); 1463 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1464 nprocs = e->rcep_p.zone->zone_nprocs; 1465 1466 if (nprocs + incr > rcntl->rcv_value) 1467 return (1); 1468 1469 return (0); 1470 } 1471 1472 /*ARGSUSED*/ 1473 static int 1474 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1475 { 1476 ASSERT(MUTEX_HELD(&p->p_lock)); 1477 ASSERT(e->rcep_t == RCENTITY_ZONE); 1478 if (e->rcep_p.zone == NULL) 1479 return (0); 1480 e->rcep_p.zone->zone_nprocs_ctl = nv; 1481 return (0); 1482 } 1483 1484 static rctl_ops_t zone_procs_ops = { 1485 rcop_no_action, 1486 zone_procs_usage, 1487 zone_procs_set, 1488 zone_procs_test, 1489 }; 1490 1491 /*ARGSUSED*/ 1492 static int 1493 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1494 rctl_qty_t incr, uint_t flags) 1495 { 1496 rctl_qty_t v; 1497 ASSERT(MUTEX_HELD(&p->p_lock)); 1498 ASSERT(e->rcep_t == RCENTITY_ZONE); 1499 v = e->rcep_p.zone->zone_shmmax + incr; 1500 if (v > rval->rcv_value) 1501 return (1); 1502 return (0); 1503 } 1504 1505 static rctl_ops_t zone_shmmax_ops = { 1506 rcop_no_action, 1507 rcop_no_usage, 1508 rcop_no_set, 1509 zone_shmmax_test 1510 }; 1511 1512 /*ARGSUSED*/ 1513 static int 1514 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1515 rctl_qty_t incr, uint_t flags) 1516 { 1517 rctl_qty_t v; 1518 ASSERT(MUTEX_HELD(&p->p_lock)); 1519 ASSERT(e->rcep_t == RCENTITY_ZONE); 1520 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1521 if (v > rval->rcv_value) 1522 return (1); 1523 return (0); 1524 } 1525 1526 static rctl_ops_t zone_shmmni_ops = { 1527 rcop_no_action, 1528 rcop_no_usage, 1529 rcop_no_set, 1530 zone_shmmni_test 1531 }; 1532 1533 /*ARGSUSED*/ 1534 static int 1535 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1536 rctl_qty_t incr, uint_t flags) 1537 { 1538 rctl_qty_t v; 1539 ASSERT(MUTEX_HELD(&p->p_lock)); 1540 ASSERT(e->rcep_t == RCENTITY_ZONE); 1541 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1542 if (v > rval->rcv_value) 1543 return (1); 1544 return (0); 1545 } 1546 1547 static rctl_ops_t zone_semmni_ops = { 1548 rcop_no_action, 1549 rcop_no_usage, 1550 rcop_no_set, 1551 zone_semmni_test 1552 }; 1553 1554 /*ARGSUSED*/ 1555 static int 1556 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1557 rctl_qty_t incr, uint_t flags) 1558 { 1559 rctl_qty_t v; 1560 ASSERT(MUTEX_HELD(&p->p_lock)); 1561 ASSERT(e->rcep_t == RCENTITY_ZONE); 1562 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1563 if (v > rval->rcv_value) 1564 return (1); 1565 return (0); 1566 } 1567 1568 static rctl_ops_t zone_msgmni_ops = { 1569 rcop_no_action, 1570 rcop_no_usage, 1571 rcop_no_set, 1572 zone_msgmni_test 1573 }; 1574 1575 /*ARGSUSED*/ 1576 static rctl_qty_t 1577 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1578 { 1579 rctl_qty_t q; 1580 ASSERT(MUTEX_HELD(&p->p_lock)); 1581 mutex_enter(&p->p_zone->zone_mem_lock); 1582 q = p->p_zone->zone_locked_mem; 1583 mutex_exit(&p->p_zone->zone_mem_lock); 1584 return (q); 1585 } 1586 1587 /*ARGSUSED*/ 1588 static int 1589 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1590 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1591 { 1592 rctl_qty_t q; 1593 zone_t *z; 1594 1595 z = e->rcep_p.zone; 1596 ASSERT(MUTEX_HELD(&p->p_lock)); 1597 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1598 q = z->zone_locked_mem; 1599 if (q + incr > rcntl->rcv_value) 1600 return (1); 1601 return (0); 1602 } 1603 1604 /*ARGSUSED*/ 1605 static int 1606 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1607 rctl_qty_t nv) 1608 { 1609 ASSERT(MUTEX_HELD(&p->p_lock)); 1610 ASSERT(e->rcep_t == RCENTITY_ZONE); 1611 if (e->rcep_p.zone == NULL) 1612 return (0); 1613 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1614 return (0); 1615 } 1616 1617 static rctl_ops_t zone_locked_mem_ops = { 1618 rcop_no_action, 1619 zone_locked_mem_usage, 1620 zone_locked_mem_set, 1621 zone_locked_mem_test 1622 }; 1623 1624 /*ARGSUSED*/ 1625 static rctl_qty_t 1626 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1627 { 1628 rctl_qty_t q; 1629 zone_t *z = p->p_zone; 1630 1631 ASSERT(MUTEX_HELD(&p->p_lock)); 1632 mutex_enter(&z->zone_mem_lock); 1633 q = z->zone_max_swap; 1634 mutex_exit(&z->zone_mem_lock); 1635 return (q); 1636 } 1637 1638 /*ARGSUSED*/ 1639 static int 1640 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1641 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1642 { 1643 rctl_qty_t q; 1644 zone_t *z; 1645 1646 z = e->rcep_p.zone; 1647 ASSERT(MUTEX_HELD(&p->p_lock)); 1648 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1649 q = z->zone_max_swap; 1650 if (q + incr > rcntl->rcv_value) 1651 return (1); 1652 return (0); 1653 } 1654 1655 /*ARGSUSED*/ 1656 static int 1657 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1658 rctl_qty_t nv) 1659 { 1660 ASSERT(MUTEX_HELD(&p->p_lock)); 1661 ASSERT(e->rcep_t == RCENTITY_ZONE); 1662 if (e->rcep_p.zone == NULL) 1663 return (0); 1664 e->rcep_p.zone->zone_max_swap_ctl = nv; 1665 return (0); 1666 } 1667 1668 static rctl_ops_t zone_max_swap_ops = { 1669 rcop_no_action, 1670 zone_max_swap_usage, 1671 zone_max_swap_set, 1672 zone_max_swap_test 1673 }; 1674 1675 /*ARGSUSED*/ 1676 static rctl_qty_t 1677 zone_max_lofi_usage(rctl_t *rctl, struct proc *p) 1678 { 1679 rctl_qty_t q; 1680 zone_t *z = p->p_zone; 1681 1682 ASSERT(MUTEX_HELD(&p->p_lock)); 1683 mutex_enter(&z->zone_rctl_lock); 1684 q = z->zone_max_lofi; 1685 mutex_exit(&z->zone_rctl_lock); 1686 return (q); 1687 } 1688 1689 /*ARGSUSED*/ 1690 static int 1691 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1692 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1693 { 1694 rctl_qty_t q; 1695 zone_t *z; 1696 1697 z = e->rcep_p.zone; 1698 ASSERT(MUTEX_HELD(&p->p_lock)); 1699 ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); 1700 q = z->zone_max_lofi; 1701 if (q + incr > rcntl->rcv_value) 1702 return (1); 1703 return (0); 1704 } 1705 1706 /*ARGSUSED*/ 1707 static int 1708 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1709 rctl_qty_t nv) 1710 { 1711 ASSERT(MUTEX_HELD(&p->p_lock)); 1712 ASSERT(e->rcep_t == RCENTITY_ZONE); 1713 if (e->rcep_p.zone == NULL) 1714 return (0); 1715 e->rcep_p.zone->zone_max_lofi_ctl = nv; 1716 return (0); 1717 } 1718 1719 static rctl_ops_t zone_max_lofi_ops = { 1720 rcop_no_action, 1721 zone_max_lofi_usage, 1722 zone_max_lofi_set, 1723 zone_max_lofi_test 1724 }; 1725 1726 /* 1727 * Helper function to brand the zone with a unique ID. 1728 */ 1729 static void 1730 zone_uniqid(zone_t *zone) 1731 { 1732 static uint64_t uniqid = 0; 1733 1734 ASSERT(MUTEX_HELD(&zonehash_lock)); 1735 zone->zone_uniqid = uniqid++; 1736 } 1737 1738 /* 1739 * Returns a held pointer to the "kcred" for the specified zone. 1740 */ 1741 struct cred * 1742 zone_get_kcred(zoneid_t zoneid) 1743 { 1744 zone_t *zone; 1745 cred_t *cr; 1746 1747 if ((zone = zone_find_by_id(zoneid)) == NULL) 1748 return (NULL); 1749 cr = zone->zone_kcred; 1750 crhold(cr); 1751 zone_rele(zone); 1752 return (cr); 1753 } 1754 1755 static int 1756 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1757 { 1758 zone_t *zone = ksp->ks_private; 1759 zone_kstat_t *zk = ksp->ks_data; 1760 1761 if (rw == KSTAT_WRITE) 1762 return (EACCES); 1763 1764 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1765 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1766 return (0); 1767 } 1768 1769 static int 1770 zone_nprocs_kstat_update(kstat_t *ksp, int rw) 1771 { 1772 zone_t *zone = ksp->ks_private; 1773 zone_kstat_t *zk = ksp->ks_data; 1774 1775 if (rw == KSTAT_WRITE) 1776 return (EACCES); 1777 1778 zk->zk_usage.value.ui64 = zone->zone_nprocs; 1779 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl; 1780 return (0); 1781 } 1782 1783 static int 1784 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1785 { 1786 zone_t *zone = ksp->ks_private; 1787 zone_kstat_t *zk = ksp->ks_data; 1788 1789 if (rw == KSTAT_WRITE) 1790 return (EACCES); 1791 1792 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1793 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1794 return (0); 1795 } 1796 1797 static kstat_t * 1798 zone_kstat_create_common(zone_t *zone, char *name, 1799 int (*updatefunc) (kstat_t *, int)) 1800 { 1801 kstat_t *ksp; 1802 zone_kstat_t *zk; 1803 1804 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED, 1805 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1806 KSTAT_FLAG_VIRTUAL); 1807 1808 if (ksp == NULL) 1809 return (NULL); 1810 1811 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1812 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1813 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1814 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1815 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1816 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1817 ksp->ks_update = updatefunc; 1818 ksp->ks_private = zone; 1819 kstat_install(ksp); 1820 return (ksp); 1821 } 1822 1823 static void 1824 zone_kstat_create(zone_t *zone) 1825 { 1826 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone, 1827 "lockedmem", zone_lockedmem_kstat_update); 1828 zone->zone_swapresv_kstat = zone_kstat_create_common(zone, 1829 "swapresv", zone_swapresv_kstat_update); 1830 zone->zone_nprocs_kstat = zone_kstat_create_common(zone, 1831 "nprocs", zone_nprocs_kstat_update); 1832 } 1833 1834 static void 1835 zone_kstat_delete_common(kstat_t **pkstat) 1836 { 1837 void *data; 1838 1839 if (*pkstat != NULL) { 1840 data = (*pkstat)->ks_data; 1841 kstat_delete(*pkstat); 1842 kmem_free(data, sizeof (zone_kstat_t)); 1843 *pkstat = NULL; 1844 } 1845 } 1846 1847 static void 1848 zone_kstat_delete(zone_t *zone) 1849 { 1850 zone_kstat_delete_common(&zone->zone_lockedmem_kstat); 1851 zone_kstat_delete_common(&zone->zone_swapresv_kstat); 1852 zone_kstat_delete_common(&zone->zone_nprocs_kstat); 1853 } 1854 1855 /* 1856 * Called very early on in boot to initialize the ZSD list so that 1857 * zone_key_create() can be called before zone_init(). It also initializes 1858 * portions of zone0 which may be used before zone_init() is called. The 1859 * variable "global_zone" will be set when zone0 is fully initialized by 1860 * zone_init(). 1861 */ 1862 void 1863 zone_zsd_init(void) 1864 { 1865 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 1866 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 1867 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 1868 offsetof(struct zsd_entry, zsd_linkage)); 1869 list_create(&zone_active, sizeof (zone_t), 1870 offsetof(zone_t, zone_linkage)); 1871 list_create(&zone_deathrow, sizeof (zone_t), 1872 offsetof(zone_t, zone_linkage)); 1873 1874 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 1875 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 1876 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 1877 zone0.zone_shares = 1; 1878 zone0.zone_nlwps = 0; 1879 zone0.zone_nlwps_ctl = INT_MAX; 1880 zone0.zone_nprocs = 0; 1881 zone0.zone_nprocs_ctl = INT_MAX; 1882 zone0.zone_locked_mem = 0; 1883 zone0.zone_locked_mem_ctl = UINT64_MAX; 1884 ASSERT(zone0.zone_max_swap == 0); 1885 zone0.zone_max_swap_ctl = UINT64_MAX; 1886 zone0.zone_max_lofi = 0; 1887 zone0.zone_max_lofi_ctl = UINT64_MAX; 1888 zone0.zone_shmmax = 0; 1889 zone0.zone_ipc.ipcq_shmmni = 0; 1890 zone0.zone_ipc.ipcq_semmni = 0; 1891 zone0.zone_ipc.ipcq_msgmni = 0; 1892 zone0.zone_name = GLOBAL_ZONENAME; 1893 zone0.zone_nodename = utsname.nodename; 1894 zone0.zone_domain = srpc_domain; 1895 zone0.zone_hostid = HW_INVALID_HOSTID; 1896 zone0.zone_fs_allowed = NULL; 1897 zone0.zone_ref = 1; 1898 zone0.zone_id = GLOBAL_ZONEID; 1899 zone0.zone_status = ZONE_IS_RUNNING; 1900 zone0.zone_rootpath = "/"; 1901 zone0.zone_rootpathlen = 2; 1902 zone0.zone_psetid = ZONE_PS_INVAL; 1903 zone0.zone_ncpus = 0; 1904 zone0.zone_ncpus_online = 0; 1905 zone0.zone_proc_initpid = 1; 1906 zone0.zone_initname = initname; 1907 zone0.zone_lockedmem_kstat = NULL; 1908 zone0.zone_swapresv_kstat = NULL; 1909 zone0.zone_nprocs_kstat = NULL; 1910 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t), 1911 offsetof(zone_ref_t, zref_linkage)); 1912 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 1913 offsetof(struct zsd_entry, zsd_linkage)); 1914 list_insert_head(&zone_active, &zone0); 1915 1916 /* 1917 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 1918 * to anything meaningful. It is assigned to be 'rootdir' in 1919 * vfs_mountroot(). 1920 */ 1921 zone0.zone_rootvp = NULL; 1922 zone0.zone_vfslist = NULL; 1923 zone0.zone_bootargs = initargs; 1924 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 1925 /* 1926 * The global zone has all privileges 1927 */ 1928 priv_fillset(zone0.zone_privset); 1929 /* 1930 * Add p0 to the global zone 1931 */ 1932 zone0.zone_zsched = &p0; 1933 p0.p_zone = &zone0; 1934 } 1935 1936 /* 1937 * Compute a hash value based on the contents of the label and the DOI. The 1938 * hash algorithm is somewhat arbitrary, but is based on the observation that 1939 * humans will likely pick labels that differ by amounts that work out to be 1940 * multiples of the number of hash chains, and thus stirring in some primes 1941 * should help. 1942 */ 1943 static uint_t 1944 hash_bylabel(void *hdata, mod_hash_key_t key) 1945 { 1946 const ts_label_t *lab = (ts_label_t *)key; 1947 const uint32_t *up, *ue; 1948 uint_t hash; 1949 int i; 1950 1951 _NOTE(ARGUNUSED(hdata)); 1952 1953 hash = lab->tsl_doi + (lab->tsl_doi << 1); 1954 /* we depend on alignment of label, but not representation */ 1955 up = (const uint32_t *)&lab->tsl_label; 1956 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 1957 i = 1; 1958 while (up < ue) { 1959 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 1960 hash += *up + (*up << ((i % 16) + 1)); 1961 up++; 1962 i++; 1963 } 1964 return (hash); 1965 } 1966 1967 /* 1968 * All that mod_hash cares about here is zero (equal) versus non-zero (not 1969 * equal). This may need to be changed if less than / greater than is ever 1970 * needed. 1971 */ 1972 static int 1973 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1974 { 1975 ts_label_t *lab1 = (ts_label_t *)key1; 1976 ts_label_t *lab2 = (ts_label_t *)key2; 1977 1978 return (label_equal(lab1, lab2) ? 0 : 1); 1979 } 1980 1981 /* 1982 * Called by main() to initialize the zones framework. 1983 */ 1984 void 1985 zone_init(void) 1986 { 1987 rctl_dict_entry_t *rde; 1988 rctl_val_t *dval; 1989 rctl_set_t *set; 1990 rctl_alloc_gp_t *gp; 1991 rctl_entity_p_t e; 1992 int res; 1993 1994 ASSERT(curproc == &p0); 1995 1996 /* 1997 * Create ID space for zone IDs. ID 0 is reserved for the 1998 * global zone. 1999 */ 2000 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 2001 2002 /* 2003 * Initialize generic zone resource controls, if any. 2004 */ 2005 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 2006 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 2007 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 2008 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 2009 2010 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 2011 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 2012 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 2013 RCTL_GLOBAL_INFINITE, 2014 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 2015 2016 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 2017 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2018 INT_MAX, INT_MAX, &zone_lwps_ops); 2019 2020 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE, 2021 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2022 INT_MAX, INT_MAX, &zone_procs_ops); 2023 2024 /* 2025 * System V IPC resource controls 2026 */ 2027 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 2028 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2029 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 2030 2031 rc_zone_semmni = rctl_register("zone.max-sem-ids", 2032 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2033 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 2034 2035 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 2036 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2037 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 2038 2039 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 2040 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2041 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 2042 2043 /* 2044 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 2045 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 2046 */ 2047 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2048 bzero(dval, sizeof (rctl_val_t)); 2049 dval->rcv_value = 1; 2050 dval->rcv_privilege = RCPRIV_PRIVILEGED; 2051 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 2052 dval->rcv_action_recip_pid = -1; 2053 2054 rde = rctl_dict_lookup("zone.cpu-shares"); 2055 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 2056 2057 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 2058 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2059 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2060 &zone_locked_mem_ops); 2061 2062 rc_zone_max_swap = rctl_register("zone.max-swap", 2063 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2064 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2065 &zone_max_swap_ops); 2066 2067 rc_zone_max_lofi = rctl_register("zone.max-lofi", 2068 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | 2069 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2070 &zone_max_lofi_ops); 2071 2072 /* 2073 * Initialize the ``global zone''. 2074 */ 2075 set = rctl_set_create(); 2076 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2077 mutex_enter(&p0.p_lock); 2078 e.rcep_p.zone = &zone0; 2079 e.rcep_t = RCENTITY_ZONE; 2080 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 2081 gp); 2082 2083 zone0.zone_nlwps = p0.p_lwpcnt; 2084 zone0.zone_nprocs = 1; 2085 zone0.zone_ntasks = 1; 2086 mutex_exit(&p0.p_lock); 2087 zone0.zone_restart_init = B_TRUE; 2088 zone0.zone_brand = &native_brand; 2089 rctl_prealloc_destroy(gp); 2090 /* 2091 * pool_default hasn't been initialized yet, so we let pool_init() 2092 * take care of making sure the global zone is in the default pool. 2093 */ 2094 2095 /* 2096 * Initialize global zone kstats 2097 */ 2098 zone_kstat_create(&zone0); 2099 2100 /* 2101 * Initialize zone label. 2102 * mlp are initialized when tnzonecfg is loaded. 2103 */ 2104 zone0.zone_slabel = l_admin_low; 2105 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2106 label_hold(l_admin_low); 2107 2108 /* 2109 * Initialise the lock for the database structure used by mntfs. 2110 */ 2111 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 2112 2113 mutex_enter(&zonehash_lock); 2114 zone_uniqid(&zone0); 2115 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 2116 2117 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 2118 mod_hash_null_valdtor); 2119 zonehashbyname = mod_hash_create_strhash("zone_by_name", 2120 zone_hash_size, mod_hash_null_valdtor); 2121 /* 2122 * maintain zonehashbylabel only for labeled systems 2123 */ 2124 if (is_system_labeled()) 2125 zonehashbylabel = mod_hash_create_extended("zone_by_label", 2126 zone_hash_size, mod_hash_null_keydtor, 2127 mod_hash_null_valdtor, hash_bylabel, NULL, 2128 hash_labelkey_cmp, KM_SLEEP); 2129 zonecount = 1; 2130 2131 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 2132 (mod_hash_val_t)&zone0); 2133 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 2134 (mod_hash_val_t)&zone0); 2135 if (is_system_labeled()) { 2136 zone0.zone_flags |= ZF_HASHED_LABEL; 2137 (void) mod_hash_insert(zonehashbylabel, 2138 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 2139 } 2140 mutex_exit(&zonehash_lock); 2141 2142 /* 2143 * We avoid setting zone_kcred until now, since kcred is initialized 2144 * sometime after zone_zsd_init() and before zone_init(). 2145 */ 2146 zone0.zone_kcred = kcred; 2147 /* 2148 * The global zone is fully initialized (except for zone_rootvp which 2149 * will be set when the root filesystem is mounted). 2150 */ 2151 global_zone = &zone0; 2152 2153 /* 2154 * Setup an event channel to send zone status change notifications on 2155 */ 2156 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 2157 EVCH_CREAT); 2158 2159 if (res) 2160 panic("Sysevent_evc_bind failed during zone setup.\n"); 2161 2162 } 2163 2164 static void 2165 zone_free(zone_t *zone) 2166 { 2167 ASSERT(zone != global_zone); 2168 ASSERT(zone->zone_ntasks == 0); 2169 ASSERT(zone->zone_nlwps == 0); 2170 ASSERT(zone->zone_nprocs == 0); 2171 ASSERT(zone->zone_cred_ref == 0); 2172 ASSERT(zone->zone_kcred == NULL); 2173 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2174 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2175 ASSERT(list_is_empty(&zone->zone_ref_list)); 2176 2177 /* 2178 * Remove any zone caps. 2179 */ 2180 cpucaps_zone_remove(zone); 2181 2182 ASSERT(zone->zone_cpucap == NULL); 2183 2184 /* remove from deathrow list */ 2185 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2186 ASSERT(zone->zone_ref == 0); 2187 mutex_enter(&zone_deathrow_lock); 2188 list_remove(&zone_deathrow, zone); 2189 mutex_exit(&zone_deathrow_lock); 2190 } 2191 2192 list_destroy(&zone->zone_ref_list); 2193 zone_free_zsd(zone); 2194 zone_free_datasets(zone); 2195 list_destroy(&zone->zone_dl_list); 2196 2197 if (zone->zone_rootvp != NULL) 2198 VN_RELE(zone->zone_rootvp); 2199 if (zone->zone_rootpath) 2200 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2201 if (zone->zone_name != NULL) 2202 kmem_free(zone->zone_name, ZONENAME_MAX); 2203 if (zone->zone_slabel != NULL) 2204 label_rele(zone->zone_slabel); 2205 if (zone->zone_nodename != NULL) 2206 kmem_free(zone->zone_nodename, _SYS_NMLN); 2207 if (zone->zone_domain != NULL) 2208 kmem_free(zone->zone_domain, _SYS_NMLN); 2209 if (zone->zone_privset != NULL) 2210 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2211 if (zone->zone_rctls != NULL) 2212 rctl_set_free(zone->zone_rctls); 2213 if (zone->zone_bootargs != NULL) 2214 strfree(zone->zone_bootargs); 2215 if (zone->zone_initname != NULL) 2216 strfree(zone->zone_initname); 2217 if (zone->zone_fs_allowed != NULL) 2218 strfree(zone->zone_fs_allowed); 2219 if (zone->zone_pfexecd != NULL) 2220 klpd_freelist(&zone->zone_pfexecd); 2221 id_free(zoneid_space, zone->zone_id); 2222 mutex_destroy(&zone->zone_lock); 2223 cv_destroy(&zone->zone_cv); 2224 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2225 rw_destroy(&zone->zone_mntfs_db_lock); 2226 kmem_free(zone, sizeof (zone_t)); 2227 } 2228 2229 /* 2230 * See block comment at the top of this file for information about zone 2231 * status values. 2232 */ 2233 /* 2234 * Convenience function for setting zone status. 2235 */ 2236 static void 2237 zone_status_set(zone_t *zone, zone_status_t status) 2238 { 2239 2240 nvlist_t *nvl = NULL; 2241 ASSERT(MUTEX_HELD(&zone_status_lock)); 2242 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2243 status >= zone_status_get(zone)); 2244 2245 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2246 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2247 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2248 zone_status_table[status]) || 2249 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2250 zone_status_table[zone->zone_status]) || 2251 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2252 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2253 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2254 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2255 #ifdef DEBUG 2256 (void) printf( 2257 "Failed to allocate and send zone state change event.\n"); 2258 #endif 2259 } 2260 nvlist_free(nvl); 2261 2262 zone->zone_status = status; 2263 2264 cv_broadcast(&zone->zone_cv); 2265 } 2266 2267 /* 2268 * Public function to retrieve the zone status. The zone status may 2269 * change after it is retrieved. 2270 */ 2271 zone_status_t 2272 zone_status_get(zone_t *zone) 2273 { 2274 return (zone->zone_status); 2275 } 2276 2277 static int 2278 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2279 { 2280 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2281 int err = 0; 2282 2283 ASSERT(zone != global_zone); 2284 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) 2285 goto done; /* EFAULT or ENAMETOOLONG */ 2286 2287 if (zone->zone_bootargs != NULL) 2288 strfree(zone->zone_bootargs); 2289 2290 zone->zone_bootargs = strdup(buf); 2291 2292 done: 2293 kmem_free(buf, BOOTARGS_MAX); 2294 return (err); 2295 } 2296 2297 static int 2298 zone_set_brand(zone_t *zone, const char *brand) 2299 { 2300 struct brand_attr *attrp; 2301 brand_t *bp; 2302 2303 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2304 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2305 kmem_free(attrp, sizeof (struct brand_attr)); 2306 return (EFAULT); 2307 } 2308 2309 bp = brand_register_zone(attrp); 2310 kmem_free(attrp, sizeof (struct brand_attr)); 2311 if (bp == NULL) 2312 return (EINVAL); 2313 2314 /* 2315 * This is the only place where a zone can change it's brand. 2316 * We already need to hold zone_status_lock to check the zone 2317 * status, so we'll just use that lock to serialize zone 2318 * branding requests as well. 2319 */ 2320 mutex_enter(&zone_status_lock); 2321 2322 /* Re-Branding is not allowed and the zone can't be booted yet */ 2323 if ((ZONE_IS_BRANDED(zone)) || 2324 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2325 mutex_exit(&zone_status_lock); 2326 brand_unregister_zone(bp); 2327 return (EINVAL); 2328 } 2329 2330 /* set up the brand specific data */ 2331 zone->zone_brand = bp; 2332 ZBROP(zone)->b_init_brand_data(zone); 2333 2334 mutex_exit(&zone_status_lock); 2335 return (0); 2336 } 2337 2338 static int 2339 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) 2340 { 2341 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); 2342 int err = 0; 2343 2344 ASSERT(zone != global_zone); 2345 if ((err = copyinstr(zone_fs_allowed, buf, 2346 ZONE_FS_ALLOWED_MAX, NULL)) != 0) 2347 goto done; 2348 2349 if (zone->zone_fs_allowed != NULL) 2350 strfree(zone->zone_fs_allowed); 2351 2352 zone->zone_fs_allowed = strdup(buf); 2353 2354 done: 2355 kmem_free(buf, ZONE_FS_ALLOWED_MAX); 2356 return (err); 2357 } 2358 2359 static int 2360 zone_set_initname(zone_t *zone, const char *zone_initname) 2361 { 2362 char initname[INITNAME_SZ]; 2363 size_t len; 2364 int err = 0; 2365 2366 ASSERT(zone != global_zone); 2367 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2368 return (err); /* EFAULT or ENAMETOOLONG */ 2369 2370 if (zone->zone_initname != NULL) 2371 strfree(zone->zone_initname); 2372 2373 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2374 (void) strcpy(zone->zone_initname, initname); 2375 return (0); 2376 } 2377 2378 static int 2379 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2380 { 2381 uint64_t mcap; 2382 int err = 0; 2383 2384 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2385 zone->zone_phys_mcap = mcap; 2386 2387 return (err); 2388 } 2389 2390 static int 2391 zone_set_sched_class(zone_t *zone, const char *new_class) 2392 { 2393 char sched_class[PC_CLNMSZ]; 2394 id_t classid; 2395 int err; 2396 2397 ASSERT(zone != global_zone); 2398 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2399 return (err); /* EFAULT or ENAMETOOLONG */ 2400 2401 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2402 return (set_errno(EINVAL)); 2403 zone->zone_defaultcid = classid; 2404 ASSERT(zone->zone_defaultcid > 0 && 2405 zone->zone_defaultcid < loaded_classes); 2406 2407 return (0); 2408 } 2409 2410 /* 2411 * Block indefinitely waiting for (zone_status >= status) 2412 */ 2413 void 2414 zone_status_wait(zone_t *zone, zone_status_t status) 2415 { 2416 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2417 2418 mutex_enter(&zone_status_lock); 2419 while (zone->zone_status < status) { 2420 cv_wait(&zone->zone_cv, &zone_status_lock); 2421 } 2422 mutex_exit(&zone_status_lock); 2423 } 2424 2425 /* 2426 * Private CPR-safe version of zone_status_wait(). 2427 */ 2428 static void 2429 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2430 { 2431 callb_cpr_t cprinfo; 2432 2433 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2434 2435 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2436 str); 2437 mutex_enter(&zone_status_lock); 2438 while (zone->zone_status < status) { 2439 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2440 cv_wait(&zone->zone_cv, &zone_status_lock); 2441 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2442 } 2443 /* 2444 * zone_status_lock is implicitly released by the following. 2445 */ 2446 CALLB_CPR_EXIT(&cprinfo); 2447 } 2448 2449 /* 2450 * Block until zone enters requested state or signal is received. Return (0) 2451 * if signaled, non-zero otherwise. 2452 */ 2453 int 2454 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2455 { 2456 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2457 2458 mutex_enter(&zone_status_lock); 2459 while (zone->zone_status < status) { 2460 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2461 mutex_exit(&zone_status_lock); 2462 return (0); 2463 } 2464 } 2465 mutex_exit(&zone_status_lock); 2466 return (1); 2467 } 2468 2469 /* 2470 * Block until the zone enters the requested state or the timeout expires, 2471 * whichever happens first. Return (-1) if operation timed out, time remaining 2472 * otherwise. 2473 */ 2474 clock_t 2475 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2476 { 2477 clock_t timeleft = 0; 2478 2479 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2480 2481 mutex_enter(&zone_status_lock); 2482 while (zone->zone_status < status && timeleft != -1) { 2483 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2484 } 2485 mutex_exit(&zone_status_lock); 2486 return (timeleft); 2487 } 2488 2489 /* 2490 * Block until the zone enters the requested state, the current process is 2491 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2492 * operation timed out, 0 if signaled, time remaining otherwise. 2493 */ 2494 clock_t 2495 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2496 { 2497 clock_t timeleft = tim - ddi_get_lbolt(); 2498 2499 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2500 2501 mutex_enter(&zone_status_lock); 2502 while (zone->zone_status < status) { 2503 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2504 tim); 2505 if (timeleft <= 0) 2506 break; 2507 } 2508 mutex_exit(&zone_status_lock); 2509 return (timeleft); 2510 } 2511 2512 /* 2513 * Zones have two reference counts: one for references from credential 2514 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2515 * This is so we can allow a zone to be rebooted while there are still 2516 * outstanding cred references, since certain drivers cache dblks (which 2517 * implicitly results in cached creds). We wait for zone_ref to drop to 2518 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2519 * later freed when the zone_cred_ref drops to 0, though nothing other 2520 * than the zone id and privilege set should be accessed once the zone 2521 * is "dead". 2522 * 2523 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2524 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2525 * to 0. This can be useful to flush out other sources of cached creds 2526 * that may be less innocuous than the driver case. 2527 * 2528 * Zones also provide a tracked reference counting mechanism in which zone 2529 * references are represented by "crumbs" (zone_ref structures). Crumbs help 2530 * debuggers determine the sources of leaked zone references. See 2531 * zone_hold_ref() and zone_rele_ref() below for more information. 2532 */ 2533 2534 int zone_wait_for_cred = 0; 2535 2536 static void 2537 zone_hold_locked(zone_t *z) 2538 { 2539 ASSERT(MUTEX_HELD(&z->zone_lock)); 2540 z->zone_ref++; 2541 ASSERT(z->zone_ref != 0); 2542 } 2543 2544 /* 2545 * Increment the specified zone's reference count. The zone's zone_t structure 2546 * will not be freed as long as the zone's reference count is nonzero. 2547 * Decrement the zone's reference count via zone_rele(). 2548 * 2549 * NOTE: This function should only be used to hold zones for short periods of 2550 * time. Use zone_hold_ref() if the zone must be held for a long time. 2551 */ 2552 void 2553 zone_hold(zone_t *z) 2554 { 2555 mutex_enter(&z->zone_lock); 2556 zone_hold_locked(z); 2557 mutex_exit(&z->zone_lock); 2558 } 2559 2560 /* 2561 * If the non-cred ref count drops to 1 and either the cred ref count 2562 * is 0 or we aren't waiting for cred references, the zone is ready to 2563 * be destroyed. 2564 */ 2565 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2566 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2567 2568 /* 2569 * Common zone reference release function invoked by zone_rele() and 2570 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified 2571 * zone's subsystem-specific reference counters are not affected by the 2572 * release. If ref is not NULL, then the zone_ref_t to which it refers is 2573 * removed from the specified zone's reference list. ref must be non-NULL iff 2574 * subsys is not ZONE_REF_NUM_SUBSYS. 2575 */ 2576 static void 2577 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2578 { 2579 boolean_t wakeup; 2580 2581 mutex_enter(&z->zone_lock); 2582 ASSERT(z->zone_ref != 0); 2583 z->zone_ref--; 2584 if (subsys != ZONE_REF_NUM_SUBSYS) { 2585 ASSERT(z->zone_subsys_ref[subsys] != 0); 2586 z->zone_subsys_ref[subsys]--; 2587 list_remove(&z->zone_ref_list, ref); 2588 } 2589 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2590 /* no more refs, free the structure */ 2591 mutex_exit(&z->zone_lock); 2592 zone_free(z); 2593 return; 2594 } 2595 /* signal zone_destroy so the zone can finish halting */ 2596 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2597 mutex_exit(&z->zone_lock); 2598 2599 if (wakeup) { 2600 /* 2601 * Grabbing zonehash_lock here effectively synchronizes with 2602 * zone_destroy() to avoid missed signals. 2603 */ 2604 mutex_enter(&zonehash_lock); 2605 cv_broadcast(&zone_destroy_cv); 2606 mutex_exit(&zonehash_lock); 2607 } 2608 } 2609 2610 /* 2611 * Decrement the specified zone's reference count. The specified zone will 2612 * cease to exist after this function returns if the reference count drops to 2613 * zero. This function should be paired with zone_hold(). 2614 */ 2615 void 2616 zone_rele(zone_t *z) 2617 { 2618 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS); 2619 } 2620 2621 /* 2622 * Initialize a zone reference structure. This function must be invoked for 2623 * a reference structure before the structure is passed to zone_hold_ref(). 2624 */ 2625 void 2626 zone_init_ref(zone_ref_t *ref) 2627 { 2628 ref->zref_zone = NULL; 2629 list_link_init(&ref->zref_linkage); 2630 } 2631 2632 /* 2633 * Acquire a reference to zone z. The caller must specify the 2634 * zone_ref_subsys_t constant associated with its subsystem. The specified 2635 * zone_ref_t structure will represent a reference to the specified zone. Use 2636 * zone_rele_ref() to release the reference. 2637 * 2638 * The referenced zone_t structure will not be freed as long as the zone_t's 2639 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding 2640 * references. 2641 * 2642 * NOTE: The zone_ref_t structure must be initialized before it is used. 2643 * See zone_init_ref() above. 2644 */ 2645 void 2646 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2647 { 2648 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS); 2649 2650 /* 2651 * Prevent consumers from reusing a reference structure before 2652 * releasing it. 2653 */ 2654 VERIFY(ref->zref_zone == NULL); 2655 2656 ref->zref_zone = z; 2657 mutex_enter(&z->zone_lock); 2658 zone_hold_locked(z); 2659 z->zone_subsys_ref[subsys]++; 2660 ASSERT(z->zone_subsys_ref[subsys] != 0); 2661 list_insert_head(&z->zone_ref_list, ref); 2662 mutex_exit(&z->zone_lock); 2663 } 2664 2665 /* 2666 * Release the zone reference represented by the specified zone_ref_t. 2667 * The reference is invalid after it's released; however, the zone_ref_t 2668 * structure can be reused without having to invoke zone_init_ref(). 2669 * subsys should be the same value that was passed to zone_hold_ref() 2670 * when the reference was acquired. 2671 */ 2672 void 2673 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys) 2674 { 2675 zone_rele_common(ref->zref_zone, ref, subsys); 2676 2677 /* 2678 * Set the zone_ref_t's zref_zone field to NULL to generate panics 2679 * when consumers dereference the reference. This helps us catch 2680 * consumers who use released references. Furthermore, this lets 2681 * consumers reuse the zone_ref_t structure without having to 2682 * invoke zone_init_ref(). 2683 */ 2684 ref->zref_zone = NULL; 2685 } 2686 2687 void 2688 zone_cred_hold(zone_t *z) 2689 { 2690 mutex_enter(&z->zone_lock); 2691 z->zone_cred_ref++; 2692 ASSERT(z->zone_cred_ref != 0); 2693 mutex_exit(&z->zone_lock); 2694 } 2695 2696 void 2697 zone_cred_rele(zone_t *z) 2698 { 2699 boolean_t wakeup; 2700 2701 mutex_enter(&z->zone_lock); 2702 ASSERT(z->zone_cred_ref != 0); 2703 z->zone_cred_ref--; 2704 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2705 /* no more refs, free the structure */ 2706 mutex_exit(&z->zone_lock); 2707 zone_free(z); 2708 return; 2709 } 2710 /* 2711 * If zone_destroy is waiting for the cred references to drain 2712 * out, and they have, signal it. 2713 */ 2714 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2715 zone_status_get(z) >= ZONE_IS_DEAD); 2716 mutex_exit(&z->zone_lock); 2717 2718 if (wakeup) { 2719 /* 2720 * Grabbing zonehash_lock here effectively synchronizes with 2721 * zone_destroy() to avoid missed signals. 2722 */ 2723 mutex_enter(&zonehash_lock); 2724 cv_broadcast(&zone_destroy_cv); 2725 mutex_exit(&zonehash_lock); 2726 } 2727 } 2728 2729 void 2730 zone_task_hold(zone_t *z) 2731 { 2732 mutex_enter(&z->zone_lock); 2733 z->zone_ntasks++; 2734 ASSERT(z->zone_ntasks != 0); 2735 mutex_exit(&z->zone_lock); 2736 } 2737 2738 void 2739 zone_task_rele(zone_t *zone) 2740 { 2741 uint_t refcnt; 2742 2743 mutex_enter(&zone->zone_lock); 2744 ASSERT(zone->zone_ntasks != 0); 2745 refcnt = --zone->zone_ntasks; 2746 if (refcnt > 1) { /* Common case */ 2747 mutex_exit(&zone->zone_lock); 2748 return; 2749 } 2750 zone_hold_locked(zone); /* so we can use the zone_t later */ 2751 mutex_exit(&zone->zone_lock); 2752 if (refcnt == 1) { 2753 /* 2754 * See if the zone is shutting down. 2755 */ 2756 mutex_enter(&zone_status_lock); 2757 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2758 goto out; 2759 } 2760 2761 /* 2762 * Make sure the ntasks didn't change since we 2763 * dropped zone_lock. 2764 */ 2765 mutex_enter(&zone->zone_lock); 2766 if (refcnt != zone->zone_ntasks) { 2767 mutex_exit(&zone->zone_lock); 2768 goto out; 2769 } 2770 mutex_exit(&zone->zone_lock); 2771 2772 /* 2773 * No more user processes in the zone. The zone is empty. 2774 */ 2775 zone_status_set(zone, ZONE_IS_EMPTY); 2776 goto out; 2777 } 2778 2779 ASSERT(refcnt == 0); 2780 /* 2781 * zsched has exited; the zone is dead. 2782 */ 2783 zone->zone_zsched = NULL; /* paranoia */ 2784 mutex_enter(&zone_status_lock); 2785 zone_status_set(zone, ZONE_IS_DEAD); 2786 out: 2787 mutex_exit(&zone_status_lock); 2788 zone_rele(zone); 2789 } 2790 2791 zoneid_t 2792 getzoneid(void) 2793 { 2794 return (curproc->p_zone->zone_id); 2795 } 2796 2797 /* 2798 * Internal versions of zone_find_by_*(). These don't zone_hold() or 2799 * check the validity of a zone's state. 2800 */ 2801 static zone_t * 2802 zone_find_all_by_id(zoneid_t zoneid) 2803 { 2804 mod_hash_val_t hv; 2805 zone_t *zone = NULL; 2806 2807 ASSERT(MUTEX_HELD(&zonehash_lock)); 2808 2809 if (mod_hash_find(zonehashbyid, 2810 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 2811 zone = (zone_t *)hv; 2812 return (zone); 2813 } 2814 2815 static zone_t * 2816 zone_find_all_by_label(const ts_label_t *label) 2817 { 2818 mod_hash_val_t hv; 2819 zone_t *zone = NULL; 2820 2821 ASSERT(MUTEX_HELD(&zonehash_lock)); 2822 2823 /* 2824 * zonehashbylabel is not maintained for unlabeled systems 2825 */ 2826 if (!is_system_labeled()) 2827 return (NULL); 2828 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 2829 zone = (zone_t *)hv; 2830 return (zone); 2831 } 2832 2833 static zone_t * 2834 zone_find_all_by_name(char *name) 2835 { 2836 mod_hash_val_t hv; 2837 zone_t *zone = NULL; 2838 2839 ASSERT(MUTEX_HELD(&zonehash_lock)); 2840 2841 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 2842 zone = (zone_t *)hv; 2843 return (zone); 2844 } 2845 2846 /* 2847 * Public interface for looking up a zone by zoneid. Only returns the zone if 2848 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 2849 * Caller must call zone_rele() once it is done with the zone. 2850 * 2851 * The zone may begin the zone_destroy() sequence immediately after this 2852 * function returns, but may be safely used until zone_rele() is called. 2853 */ 2854 zone_t * 2855 zone_find_by_id(zoneid_t zoneid) 2856 { 2857 zone_t *zone; 2858 zone_status_t status; 2859 2860 mutex_enter(&zonehash_lock); 2861 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 2862 mutex_exit(&zonehash_lock); 2863 return (NULL); 2864 } 2865 status = zone_status_get(zone); 2866 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2867 /* 2868 * For all practical purposes the zone doesn't exist. 2869 */ 2870 mutex_exit(&zonehash_lock); 2871 return (NULL); 2872 } 2873 zone_hold(zone); 2874 mutex_exit(&zonehash_lock); 2875 return (zone); 2876 } 2877 2878 /* 2879 * Similar to zone_find_by_id, but using zone label as the key. 2880 */ 2881 zone_t * 2882 zone_find_by_label(const ts_label_t *label) 2883 { 2884 zone_t *zone; 2885 zone_status_t status; 2886 2887 mutex_enter(&zonehash_lock); 2888 if ((zone = zone_find_all_by_label(label)) == NULL) { 2889 mutex_exit(&zonehash_lock); 2890 return (NULL); 2891 } 2892 2893 status = zone_status_get(zone); 2894 if (status > ZONE_IS_DOWN) { 2895 /* 2896 * For all practical purposes the zone doesn't exist. 2897 */ 2898 mutex_exit(&zonehash_lock); 2899 return (NULL); 2900 } 2901 zone_hold(zone); 2902 mutex_exit(&zonehash_lock); 2903 return (zone); 2904 } 2905 2906 /* 2907 * Similar to zone_find_by_id, but using zone name as the key. 2908 */ 2909 zone_t * 2910 zone_find_by_name(char *name) 2911 { 2912 zone_t *zone; 2913 zone_status_t status; 2914 2915 mutex_enter(&zonehash_lock); 2916 if ((zone = zone_find_all_by_name(name)) == NULL) { 2917 mutex_exit(&zonehash_lock); 2918 return (NULL); 2919 } 2920 status = zone_status_get(zone); 2921 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2922 /* 2923 * For all practical purposes the zone doesn't exist. 2924 */ 2925 mutex_exit(&zonehash_lock); 2926 return (NULL); 2927 } 2928 zone_hold(zone); 2929 mutex_exit(&zonehash_lock); 2930 return (zone); 2931 } 2932 2933 /* 2934 * Similar to zone_find_by_id(), using the path as a key. For instance, 2935 * if there is a zone "foo" rooted at /foo/root, and the path argument 2936 * is "/foo/root/proc", it will return the held zone_t corresponding to 2937 * zone "foo". 2938 * 2939 * zone_find_by_path() always returns a non-NULL value, since at the 2940 * very least every path will be contained in the global zone. 2941 * 2942 * As with the other zone_find_by_*() functions, the caller is 2943 * responsible for zone_rele()ing the return value of this function. 2944 */ 2945 zone_t * 2946 zone_find_by_path(const char *path) 2947 { 2948 zone_t *zone; 2949 zone_t *zret = NULL; 2950 zone_status_t status; 2951 2952 if (path == NULL) { 2953 /* 2954 * Call from rootconf(). 2955 */ 2956 zone_hold(global_zone); 2957 return (global_zone); 2958 } 2959 ASSERT(*path == '/'); 2960 mutex_enter(&zonehash_lock); 2961 for (zone = list_head(&zone_active); zone != NULL; 2962 zone = list_next(&zone_active, zone)) { 2963 if (ZONE_PATH_VISIBLE(path, zone)) 2964 zret = zone; 2965 } 2966 ASSERT(zret != NULL); 2967 status = zone_status_get(zret); 2968 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2969 /* 2970 * Zone practically doesn't exist. 2971 */ 2972 zret = global_zone; 2973 } 2974 zone_hold(zret); 2975 mutex_exit(&zonehash_lock); 2976 return (zret); 2977 } 2978 2979 /* 2980 * Get the number of cpus visible to this zone. The system-wide global 2981 * 'ncpus' is returned if pools are disabled, the caller is in the 2982 * global zone, or a NULL zone argument is passed in. 2983 */ 2984 int 2985 zone_ncpus_get(zone_t *zone) 2986 { 2987 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 2988 2989 return (myncpus != 0 ? myncpus : ncpus); 2990 } 2991 2992 /* 2993 * Get the number of online cpus visible to this zone. The system-wide 2994 * global 'ncpus_online' is returned if pools are disabled, the caller 2995 * is in the global zone, or a NULL zone argument is passed in. 2996 */ 2997 int 2998 zone_ncpus_online_get(zone_t *zone) 2999 { 3000 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 3001 3002 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 3003 } 3004 3005 /* 3006 * Return the pool to which the zone is currently bound. 3007 */ 3008 pool_t * 3009 zone_pool_get(zone_t *zone) 3010 { 3011 ASSERT(pool_lock_held()); 3012 3013 return (zone->zone_pool); 3014 } 3015 3016 /* 3017 * Set the zone's pool pointer and update the zone's visibility to match 3018 * the resources in the new pool. 3019 */ 3020 void 3021 zone_pool_set(zone_t *zone, pool_t *pool) 3022 { 3023 ASSERT(pool_lock_held()); 3024 ASSERT(MUTEX_HELD(&cpu_lock)); 3025 3026 zone->zone_pool = pool; 3027 zone_pset_set(zone, pool->pool_pset->pset_id); 3028 } 3029 3030 /* 3031 * Return the cached value of the id of the processor set to which the 3032 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 3033 * facility is disabled. 3034 */ 3035 psetid_t 3036 zone_pset_get(zone_t *zone) 3037 { 3038 ASSERT(MUTEX_HELD(&cpu_lock)); 3039 3040 return (zone->zone_psetid); 3041 } 3042 3043 /* 3044 * Set the cached value of the id of the processor set to which the zone 3045 * is currently bound. Also update the zone's visibility to match the 3046 * resources in the new processor set. 3047 */ 3048 void 3049 zone_pset_set(zone_t *zone, psetid_t newpsetid) 3050 { 3051 psetid_t oldpsetid; 3052 3053 ASSERT(MUTEX_HELD(&cpu_lock)); 3054 oldpsetid = zone_pset_get(zone); 3055 3056 if (oldpsetid == newpsetid) 3057 return; 3058 /* 3059 * Global zone sees all. 3060 */ 3061 if (zone != global_zone) { 3062 zone->zone_psetid = newpsetid; 3063 if (newpsetid != ZONE_PS_INVAL) 3064 pool_pset_visibility_add(newpsetid, zone); 3065 if (oldpsetid != ZONE_PS_INVAL) 3066 pool_pset_visibility_remove(oldpsetid, zone); 3067 } 3068 /* 3069 * Disabling pools, so we should start using the global values 3070 * for ncpus and ncpus_online. 3071 */ 3072 if (newpsetid == ZONE_PS_INVAL) { 3073 zone->zone_ncpus = 0; 3074 zone->zone_ncpus_online = 0; 3075 } 3076 } 3077 3078 /* 3079 * Walk the list of active zones and issue the provided callback for 3080 * each of them. 3081 * 3082 * Caller must not be holding any locks that may be acquired under 3083 * zonehash_lock. See comment at the beginning of the file for a list of 3084 * common locks and their interactions with zones. 3085 */ 3086 int 3087 zone_walk(int (*cb)(zone_t *, void *), void *data) 3088 { 3089 zone_t *zone; 3090 int ret = 0; 3091 zone_status_t status; 3092 3093 mutex_enter(&zonehash_lock); 3094 for (zone = list_head(&zone_active); zone != NULL; 3095 zone = list_next(&zone_active, zone)) { 3096 /* 3097 * Skip zones that shouldn't be externally visible. 3098 */ 3099 status = zone_status_get(zone); 3100 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 3101 continue; 3102 /* 3103 * Bail immediately if any callback invocation returns a 3104 * non-zero value. 3105 */ 3106 ret = (*cb)(zone, data); 3107 if (ret != 0) 3108 break; 3109 } 3110 mutex_exit(&zonehash_lock); 3111 return (ret); 3112 } 3113 3114 static int 3115 zone_set_root(zone_t *zone, const char *upath) 3116 { 3117 vnode_t *vp; 3118 int trycount; 3119 int error = 0; 3120 char *path; 3121 struct pathname upn, pn; 3122 size_t pathlen; 3123 3124 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 3125 return (error); 3126 3127 pn_alloc(&pn); 3128 3129 /* prevent infinite loop */ 3130 trycount = 10; 3131 for (;;) { 3132 if (--trycount <= 0) { 3133 error = ESTALE; 3134 goto out; 3135 } 3136 3137 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 3138 /* 3139 * VOP_ACCESS() may cover 'vp' with a new 3140 * filesystem, if 'vp' is an autoFS vnode. 3141 * Get the new 'vp' if so. 3142 */ 3143 if ((error = 3144 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 3145 (!vn_ismntpt(vp) || 3146 (error = traverse(&vp)) == 0)) { 3147 pathlen = pn.pn_pathlen + 2; 3148 path = kmem_alloc(pathlen, KM_SLEEP); 3149 (void) strncpy(path, pn.pn_path, 3150 pn.pn_pathlen + 1); 3151 path[pathlen - 2] = '/'; 3152 path[pathlen - 1] = '\0'; 3153 pn_free(&pn); 3154 pn_free(&upn); 3155 3156 /* Success! */ 3157 break; 3158 } 3159 VN_RELE(vp); 3160 } 3161 if (error != ESTALE) 3162 goto out; 3163 } 3164 3165 ASSERT(error == 0); 3166 zone->zone_rootvp = vp; /* we hold a reference to vp */ 3167 zone->zone_rootpath = path; 3168 zone->zone_rootpathlen = pathlen; 3169 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 3170 zone->zone_flags |= ZF_IS_SCRATCH; 3171 return (0); 3172 3173 out: 3174 pn_free(&pn); 3175 pn_free(&upn); 3176 return (error); 3177 } 3178 3179 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 3180 ((c) >= 'a' && (c) <= 'z') || \ 3181 ((c) >= 'A' && (c) <= 'Z')) 3182 3183 static int 3184 zone_set_name(zone_t *zone, const char *uname) 3185 { 3186 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 3187 size_t len; 3188 int i, err; 3189 3190 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 3191 kmem_free(kname, ZONENAME_MAX); 3192 return (err); /* EFAULT or ENAMETOOLONG */ 3193 } 3194 3195 /* must be less than ZONENAME_MAX */ 3196 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 3197 kmem_free(kname, ZONENAME_MAX); 3198 return (EINVAL); 3199 } 3200 3201 /* 3202 * Name must start with an alphanumeric and must contain only 3203 * alphanumerics, '-', '_' and '.'. 3204 */ 3205 if (!isalnum(kname[0])) { 3206 kmem_free(kname, ZONENAME_MAX); 3207 return (EINVAL); 3208 } 3209 for (i = 1; i < len - 1; i++) { 3210 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 3211 kname[i] != '.') { 3212 kmem_free(kname, ZONENAME_MAX); 3213 return (EINVAL); 3214 } 3215 } 3216 3217 zone->zone_name = kname; 3218 return (0); 3219 } 3220 3221 /* 3222 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 3223 * is NULL or it points to a zone with no hostid emulation, then the machine's 3224 * hostid (i.e., the global zone's hostid) is returned. This function returns 3225 * zero if neither the zone nor the host machine (global zone) have hostids. It 3226 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 3227 * hostid and the machine's hostid is invalid. 3228 */ 3229 uint32_t 3230 zone_get_hostid(zone_t *zonep) 3231 { 3232 unsigned long machine_hostid; 3233 3234 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 3235 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 3236 return (HW_INVALID_HOSTID); 3237 return ((uint32_t)machine_hostid); 3238 } 3239 return (zonep->zone_hostid); 3240 } 3241 3242 /* 3243 * Similar to thread_create(), but makes sure the thread is in the appropriate 3244 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 3245 */ 3246 /*ARGSUSED*/ 3247 kthread_t * 3248 zthread_create( 3249 caddr_t stk, 3250 size_t stksize, 3251 void (*proc)(), 3252 void *arg, 3253 size_t len, 3254 pri_t pri) 3255 { 3256 kthread_t *t; 3257 zone_t *zone = curproc->p_zone; 3258 proc_t *pp = zone->zone_zsched; 3259 3260 zone_hold(zone); /* Reference to be dropped when thread exits */ 3261 3262 /* 3263 * No-one should be trying to create threads if the zone is shutting 3264 * down and there aren't any kernel threads around. See comment 3265 * in zthread_exit(). 3266 */ 3267 ASSERT(!(zone->zone_kthreads == NULL && 3268 zone_status_get(zone) >= ZONE_IS_EMPTY)); 3269 /* 3270 * Create a thread, but don't let it run until we've finished setting 3271 * things up. 3272 */ 3273 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 3274 ASSERT(t->t_forw == NULL); 3275 mutex_enter(&zone_status_lock); 3276 if (zone->zone_kthreads == NULL) { 3277 t->t_forw = t->t_back = t; 3278 } else { 3279 kthread_t *tx = zone->zone_kthreads; 3280 3281 t->t_forw = tx; 3282 t->t_back = tx->t_back; 3283 tx->t_back->t_forw = t; 3284 tx->t_back = t; 3285 } 3286 zone->zone_kthreads = t; 3287 mutex_exit(&zone_status_lock); 3288 3289 mutex_enter(&pp->p_lock); 3290 t->t_proc_flag |= TP_ZTHREAD; 3291 project_rele(t->t_proj); 3292 t->t_proj = project_hold(pp->p_task->tk_proj); 3293 3294 /* 3295 * Setup complete, let it run. 3296 */ 3297 thread_lock(t); 3298 t->t_schedflag |= TS_ALLSTART; 3299 setrun_locked(t); 3300 thread_unlock(t); 3301 3302 mutex_exit(&pp->p_lock); 3303 3304 return (t); 3305 } 3306 3307 /* 3308 * Similar to thread_exit(). Must be called by threads created via 3309 * zthread_exit(). 3310 */ 3311 void 3312 zthread_exit(void) 3313 { 3314 kthread_t *t = curthread; 3315 proc_t *pp = curproc; 3316 zone_t *zone = pp->p_zone; 3317 3318 mutex_enter(&zone_status_lock); 3319 3320 /* 3321 * Reparent to p0 3322 */ 3323 kpreempt_disable(); 3324 mutex_enter(&pp->p_lock); 3325 t->t_proc_flag &= ~TP_ZTHREAD; 3326 t->t_procp = &p0; 3327 hat_thread_exit(t); 3328 mutex_exit(&pp->p_lock); 3329 kpreempt_enable(); 3330 3331 if (t->t_back == t) { 3332 ASSERT(t->t_forw == t); 3333 /* 3334 * If the zone is empty, once the thread count 3335 * goes to zero no further kernel threads can be 3336 * created. This is because if the creator is a process 3337 * in the zone, then it must have exited before the zone 3338 * state could be set to ZONE_IS_EMPTY. 3339 * Otherwise, if the creator is a kernel thread in the 3340 * zone, the thread count is non-zero. 3341 * 3342 * This really means that non-zone kernel threads should 3343 * not create zone kernel threads. 3344 */ 3345 zone->zone_kthreads = NULL; 3346 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3347 zone_status_set(zone, ZONE_IS_DOWN); 3348 /* 3349 * Remove any CPU caps on this zone. 3350 */ 3351 cpucaps_zone_remove(zone); 3352 } 3353 } else { 3354 t->t_forw->t_back = t->t_back; 3355 t->t_back->t_forw = t->t_forw; 3356 if (zone->zone_kthreads == t) 3357 zone->zone_kthreads = t->t_forw; 3358 } 3359 mutex_exit(&zone_status_lock); 3360 zone_rele(zone); 3361 thread_exit(); 3362 /* NOTREACHED */ 3363 } 3364 3365 static void 3366 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3367 { 3368 vnode_t *oldvp; 3369 3370 /* we're going to hold a reference here to the directory */ 3371 VN_HOLD(vp); 3372 3373 /* update abs cwd/root path see c2/audit.c */ 3374 if (AU_AUDITING()) 3375 audit_chdirec(vp, vpp); 3376 3377 mutex_enter(&pp->p_lock); 3378 oldvp = *vpp; 3379 *vpp = vp; 3380 mutex_exit(&pp->p_lock); 3381 if (oldvp != NULL) 3382 VN_RELE(oldvp); 3383 } 3384 3385 /* 3386 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3387 */ 3388 static int 3389 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3390 { 3391 nvpair_t *nvp = NULL; 3392 boolean_t priv_set = B_FALSE; 3393 boolean_t limit_set = B_FALSE; 3394 boolean_t action_set = B_FALSE; 3395 3396 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3397 const char *name; 3398 uint64_t ui64; 3399 3400 name = nvpair_name(nvp); 3401 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3402 return (EINVAL); 3403 (void) nvpair_value_uint64(nvp, &ui64); 3404 if (strcmp(name, "privilege") == 0) { 3405 /* 3406 * Currently only privileged values are allowed, but 3407 * this may change in the future. 3408 */ 3409 if (ui64 != RCPRIV_PRIVILEGED) 3410 return (EINVAL); 3411 rv->rcv_privilege = ui64; 3412 priv_set = B_TRUE; 3413 } else if (strcmp(name, "limit") == 0) { 3414 rv->rcv_value = ui64; 3415 limit_set = B_TRUE; 3416 } else if (strcmp(name, "action") == 0) { 3417 if (ui64 != RCTL_LOCAL_NOACTION && 3418 ui64 != RCTL_LOCAL_DENY) 3419 return (EINVAL); 3420 rv->rcv_flagaction = ui64; 3421 action_set = B_TRUE; 3422 } else { 3423 return (EINVAL); 3424 } 3425 } 3426 3427 if (!(priv_set && limit_set && action_set)) 3428 return (EINVAL); 3429 rv->rcv_action_signal = 0; 3430 rv->rcv_action_recipient = NULL; 3431 rv->rcv_action_recip_pid = -1; 3432 rv->rcv_firing_time = 0; 3433 3434 return (0); 3435 } 3436 3437 /* 3438 * Non-global zone version of start_init. 3439 */ 3440 void 3441 zone_start_init(void) 3442 { 3443 proc_t *p = ttoproc(curthread); 3444 zone_t *z = p->p_zone; 3445 3446 ASSERT(!INGLOBALZONE(curproc)); 3447 3448 /* 3449 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3450 * storing just the pid of init is sufficient. 3451 */ 3452 z->zone_proc_initpid = p->p_pid; 3453 3454 /* 3455 * We maintain zone_boot_err so that we can return the cause of the 3456 * failure back to the caller of the zone_boot syscall. 3457 */ 3458 p->p_zone->zone_boot_err = start_init_common(); 3459 3460 /* 3461 * We will prevent booting zones from becoming running zones if the 3462 * global zone is shutting down. 3463 */ 3464 mutex_enter(&zone_status_lock); 3465 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3466 ZONE_IS_SHUTTING_DOWN) { 3467 /* 3468 * Make sure we are still in the booting state-- we could have 3469 * raced and already be shutting down, or even further along. 3470 */ 3471 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3472 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3473 } 3474 mutex_exit(&zone_status_lock); 3475 /* It's gone bad, dispose of the process */ 3476 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3477 mutex_enter(&p->p_lock); 3478 ASSERT(p->p_flag & SEXITLWPS); 3479 lwp_exit(); 3480 } 3481 } else { 3482 if (zone_status_get(z) == ZONE_IS_BOOTING) 3483 zone_status_set(z, ZONE_IS_RUNNING); 3484 mutex_exit(&zone_status_lock); 3485 /* cause the process to return to userland. */ 3486 lwp_rtt(); 3487 } 3488 } 3489 3490 struct zsched_arg { 3491 zone_t *zone; 3492 nvlist_t *nvlist; 3493 }; 3494 3495 /* 3496 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3497 * anything to do with scheduling, but rather with the fact that 3498 * per-zone kernel threads are parented to zsched, just like regular 3499 * kernel threads are parented to sched (p0). 3500 * 3501 * zsched is also responsible for launching init for the zone. 3502 */ 3503 static void 3504 zsched(void *arg) 3505 { 3506 struct zsched_arg *za = arg; 3507 proc_t *pp = curproc; 3508 proc_t *initp = proc_init; 3509 zone_t *zone = za->zone; 3510 cred_t *cr, *oldcred; 3511 rctl_set_t *set; 3512 rctl_alloc_gp_t *gp; 3513 contract_t *ct = NULL; 3514 task_t *tk, *oldtk; 3515 rctl_entity_p_t e; 3516 kproject_t *pj; 3517 3518 nvlist_t *nvl = za->nvlist; 3519 nvpair_t *nvp = NULL; 3520 3521 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3522 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3523 PTOU(pp)->u_argc = 0; 3524 PTOU(pp)->u_argv = NULL; 3525 PTOU(pp)->u_envp = NULL; 3526 closeall(P_FINFO(pp)); 3527 3528 /* 3529 * We are this zone's "zsched" process. As the zone isn't generally 3530 * visible yet we don't need to grab any locks before initializing its 3531 * zone_proc pointer. 3532 */ 3533 zone_hold(zone); /* this hold is released by zone_destroy() */ 3534 zone->zone_zsched = pp; 3535 mutex_enter(&pp->p_lock); 3536 pp->p_zone = zone; 3537 mutex_exit(&pp->p_lock); 3538 3539 /* 3540 * Disassociate process from its 'parent'; parent ourselves to init 3541 * (pid 1) and change other values as needed. 3542 */ 3543 sess_create(); 3544 3545 mutex_enter(&pidlock); 3546 proc_detach(pp); 3547 pp->p_ppid = 1; 3548 pp->p_flag |= SZONETOP; 3549 pp->p_ancpid = 1; 3550 pp->p_parent = initp; 3551 pp->p_psibling = NULL; 3552 if (initp->p_child) 3553 initp->p_child->p_psibling = pp; 3554 pp->p_sibling = initp->p_child; 3555 initp->p_child = pp; 3556 3557 /* Decrement what newproc() incremented. */ 3558 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3559 /* 3560 * Our credentials are about to become kcred-like, so we don't care 3561 * about the caller's ruid. 3562 */ 3563 upcount_inc(crgetruid(kcred), zone->zone_id); 3564 mutex_exit(&pidlock); 3565 3566 /* 3567 * getting out of global zone, so decrement lwp and process counts 3568 */ 3569 pj = pp->p_task->tk_proj; 3570 mutex_enter(&global_zone->zone_nlwps_lock); 3571 pj->kpj_nlwps -= pp->p_lwpcnt; 3572 global_zone->zone_nlwps -= pp->p_lwpcnt; 3573 pj->kpj_nprocs--; 3574 global_zone->zone_nprocs--; 3575 mutex_exit(&global_zone->zone_nlwps_lock); 3576 3577 /* 3578 * Decrement locked memory counts on old zone and project. 3579 */ 3580 mutex_enter(&global_zone->zone_mem_lock); 3581 global_zone->zone_locked_mem -= pp->p_locked_mem; 3582 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3583 mutex_exit(&global_zone->zone_mem_lock); 3584 3585 /* 3586 * Create and join a new task in project '0' of this zone. 3587 * 3588 * We don't need to call holdlwps() since we know we're the only lwp in 3589 * this process. 3590 * 3591 * task_join() returns with p_lock held. 3592 */ 3593 tk = task_create(0, zone); 3594 mutex_enter(&cpu_lock); 3595 oldtk = task_join(tk, 0); 3596 3597 pj = pp->p_task->tk_proj; 3598 3599 mutex_enter(&zone->zone_mem_lock); 3600 zone->zone_locked_mem += pp->p_locked_mem; 3601 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3602 mutex_exit(&zone->zone_mem_lock); 3603 3604 /* 3605 * add lwp and process counts to zsched's zone, and increment 3606 * project's task and process count due to the task created in 3607 * the above task_create. 3608 */ 3609 mutex_enter(&zone->zone_nlwps_lock); 3610 pj->kpj_nlwps += pp->p_lwpcnt; 3611 pj->kpj_ntasks += 1; 3612 zone->zone_nlwps += pp->p_lwpcnt; 3613 pj->kpj_nprocs++; 3614 zone->zone_nprocs++; 3615 mutex_exit(&zone->zone_nlwps_lock); 3616 3617 mutex_exit(&curproc->p_lock); 3618 mutex_exit(&cpu_lock); 3619 task_rele(oldtk); 3620 3621 /* 3622 * The process was created by a process in the global zone, hence the 3623 * credentials are wrong. We might as well have kcred-ish credentials. 3624 */ 3625 cr = zone->zone_kcred; 3626 crhold(cr); 3627 mutex_enter(&pp->p_crlock); 3628 oldcred = pp->p_cred; 3629 pp->p_cred = cr; 3630 mutex_exit(&pp->p_crlock); 3631 crfree(oldcred); 3632 3633 /* 3634 * Hold credentials again (for thread) 3635 */ 3636 crhold(cr); 3637 3638 /* 3639 * p_lwpcnt can't change since this is a kernel process. 3640 */ 3641 crset(pp, cr); 3642 3643 /* 3644 * Chroot 3645 */ 3646 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3647 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3648 3649 /* 3650 * Initialize zone's rctl set. 3651 */ 3652 set = rctl_set_create(); 3653 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3654 mutex_enter(&pp->p_lock); 3655 e.rcep_p.zone = zone; 3656 e.rcep_t = RCENTITY_ZONE; 3657 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3658 mutex_exit(&pp->p_lock); 3659 rctl_prealloc_destroy(gp); 3660 3661 /* 3662 * Apply the rctls passed in to zone_create(). This is basically a list 3663 * assignment: all of the old values are removed and the new ones 3664 * inserted. That is, if an empty list is passed in, all values are 3665 * removed. 3666 */ 3667 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3668 rctl_dict_entry_t *rde; 3669 rctl_hndl_t hndl; 3670 char *name; 3671 nvlist_t **nvlarray; 3672 uint_t i, nelem; 3673 int error; /* For ASSERT()s */ 3674 3675 name = nvpair_name(nvp); 3676 hndl = rctl_hndl_lookup(name); 3677 ASSERT(hndl != -1); 3678 rde = rctl_dict_lookup_hndl(hndl); 3679 ASSERT(rde != NULL); 3680 3681 for (; /* ever */; ) { 3682 rctl_val_t oval; 3683 3684 mutex_enter(&pp->p_lock); 3685 error = rctl_local_get(hndl, NULL, &oval, pp); 3686 mutex_exit(&pp->p_lock); 3687 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3688 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3689 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3690 break; 3691 mutex_enter(&pp->p_lock); 3692 error = rctl_local_delete(hndl, &oval, pp); 3693 mutex_exit(&pp->p_lock); 3694 ASSERT(error == 0); 3695 } 3696 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3697 ASSERT(error == 0); 3698 for (i = 0; i < nelem; i++) { 3699 rctl_val_t *nvalp; 3700 3701 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 3702 error = nvlist2rctlval(nvlarray[i], nvalp); 3703 ASSERT(error == 0); 3704 /* 3705 * rctl_local_insert can fail if the value being 3706 * inserted is a duplicate; this is OK. 3707 */ 3708 mutex_enter(&pp->p_lock); 3709 if (rctl_local_insert(hndl, nvalp, pp) != 0) 3710 kmem_cache_free(rctl_val_cache, nvalp); 3711 mutex_exit(&pp->p_lock); 3712 } 3713 } 3714 /* 3715 * Tell the world that we're done setting up. 3716 * 3717 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 3718 * and atomically set the zone's processor set visibility. Once 3719 * we drop pool_lock() this zone will automatically get updated 3720 * to reflect any future changes to the pools configuration. 3721 * 3722 * Note that after we drop the locks below (zonehash_lock in 3723 * particular) other operations such as a zone_getattr call can 3724 * now proceed and observe the zone. That is the reason for doing a 3725 * state transition to the INITIALIZED state. 3726 */ 3727 pool_lock(); 3728 mutex_enter(&cpu_lock); 3729 mutex_enter(&zonehash_lock); 3730 zone_uniqid(zone); 3731 zone_zsd_configure(zone); 3732 if (pool_state == POOL_ENABLED) 3733 zone_pset_set(zone, pool_default->pool_pset->pset_id); 3734 mutex_enter(&zone_status_lock); 3735 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 3736 zone_status_set(zone, ZONE_IS_INITIALIZED); 3737 mutex_exit(&zone_status_lock); 3738 mutex_exit(&zonehash_lock); 3739 mutex_exit(&cpu_lock); 3740 pool_unlock(); 3741 3742 /* Now call the create callback for this key */ 3743 zsd_apply_all_keys(zsd_apply_create, zone); 3744 3745 /* The callbacks are complete. Mark ZONE_IS_READY */ 3746 mutex_enter(&zone_status_lock); 3747 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 3748 zone_status_set(zone, ZONE_IS_READY); 3749 mutex_exit(&zone_status_lock); 3750 3751 /* 3752 * Once we see the zone transition to the ZONE_IS_BOOTING state, 3753 * we launch init, and set the state to running. 3754 */ 3755 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 3756 3757 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 3758 id_t cid; 3759 3760 /* 3761 * Ok, this is a little complicated. We need to grab the 3762 * zone's pool's scheduling class ID; note that by now, we 3763 * are already bound to a pool if we need to be (zoneadmd 3764 * will have done that to us while we're in the READY 3765 * state). *But* the scheduling class for the zone's 'init' 3766 * must be explicitly passed to newproc, which doesn't 3767 * respect pool bindings. 3768 * 3769 * We hold the pool_lock across the call to newproc() to 3770 * close the obvious race: the pool's scheduling class 3771 * could change before we manage to create the LWP with 3772 * classid 'cid'. 3773 */ 3774 pool_lock(); 3775 if (zone->zone_defaultcid > 0) 3776 cid = zone->zone_defaultcid; 3777 else 3778 cid = pool_get_class(zone->zone_pool); 3779 if (cid == -1) 3780 cid = defaultcid; 3781 3782 /* 3783 * If this fails, zone_boot will ultimately fail. The 3784 * state of the zone will be set to SHUTTING_DOWN-- userland 3785 * will have to tear down the zone, and fail, or try again. 3786 */ 3787 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 3788 minclsyspri - 1, &ct, 0)) != 0) { 3789 mutex_enter(&zone_status_lock); 3790 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3791 mutex_exit(&zone_status_lock); 3792 } else { 3793 zone->zone_boot_time = gethrestime_sec(); 3794 } 3795 3796 pool_unlock(); 3797 } 3798 3799 /* 3800 * Wait for zone_destroy() to be called. This is what we spend 3801 * most of our life doing. 3802 */ 3803 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 3804 3805 if (ct) 3806 /* 3807 * At this point the process contract should be empty. 3808 * (Though if it isn't, it's not the end of the world.) 3809 */ 3810 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 3811 3812 /* 3813 * Allow kcred to be freed when all referring processes 3814 * (including this one) go away. We can't just do this in 3815 * zone_free because we need to wait for the zone_cred_ref to 3816 * drop to 0 before calling zone_free, and the existence of 3817 * zone_kcred will prevent that. Thus, we call crfree here to 3818 * balance the crdup in zone_create. The crhold calls earlier 3819 * in zsched will be dropped when the thread and process exit. 3820 */ 3821 crfree(zone->zone_kcred); 3822 zone->zone_kcred = NULL; 3823 3824 exit(CLD_EXITED, 0); 3825 } 3826 3827 /* 3828 * Helper function to determine if there are any submounts of the 3829 * provided path. Used to make sure the zone doesn't "inherit" any 3830 * mounts from before it is created. 3831 */ 3832 static uint_t 3833 zone_mount_count(const char *rootpath) 3834 { 3835 vfs_t *vfsp; 3836 uint_t count = 0; 3837 size_t rootpathlen = strlen(rootpath); 3838 3839 /* 3840 * Holding zonehash_lock prevents race conditions with 3841 * vfs_list_add()/vfs_list_remove() since we serialize with 3842 * zone_find_by_path(). 3843 */ 3844 ASSERT(MUTEX_HELD(&zonehash_lock)); 3845 /* 3846 * The rootpath must end with a '/' 3847 */ 3848 ASSERT(rootpath[rootpathlen - 1] == '/'); 3849 3850 /* 3851 * This intentionally does not count the rootpath itself if that 3852 * happens to be a mount point. 3853 */ 3854 vfs_list_read_lock(); 3855 vfsp = rootvfs; 3856 do { 3857 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 3858 rootpathlen) == 0) 3859 count++; 3860 vfsp = vfsp->vfs_next; 3861 } while (vfsp != rootvfs); 3862 vfs_list_unlock(); 3863 return (count); 3864 } 3865 3866 /* 3867 * Helper function to make sure that a zone created on 'rootpath' 3868 * wouldn't end up containing other zones' rootpaths. 3869 */ 3870 static boolean_t 3871 zone_is_nested(const char *rootpath) 3872 { 3873 zone_t *zone; 3874 size_t rootpathlen = strlen(rootpath); 3875 size_t len; 3876 3877 ASSERT(MUTEX_HELD(&zonehash_lock)); 3878 3879 /* 3880 * zone_set_root() appended '/' and '\0' at the end of rootpath 3881 */ 3882 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 3883 (rootpath[1] == '/') && (rootpath[2] == '\0')) 3884 return (B_TRUE); 3885 3886 for (zone = list_head(&zone_active); zone != NULL; 3887 zone = list_next(&zone_active, zone)) { 3888 if (zone == global_zone) 3889 continue; 3890 len = strlen(zone->zone_rootpath); 3891 if (strncmp(rootpath, zone->zone_rootpath, 3892 MIN(rootpathlen, len)) == 0) 3893 return (B_TRUE); 3894 } 3895 return (B_FALSE); 3896 } 3897 3898 static int 3899 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 3900 size_t zone_privssz) 3901 { 3902 priv_set_t *privs; 3903 3904 if (zone_privssz < sizeof (priv_set_t)) 3905 return (ENOMEM); 3906 3907 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 3908 3909 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 3910 kmem_free(privs, sizeof (priv_set_t)); 3911 return (EFAULT); 3912 } 3913 3914 zone->zone_privset = privs; 3915 return (0); 3916 } 3917 3918 /* 3919 * We make creative use of nvlists to pass in rctls from userland. The list is 3920 * a list of the following structures: 3921 * 3922 * (name = rctl_name, value = nvpair_list_array) 3923 * 3924 * Where each element of the nvpair_list_array is of the form: 3925 * 3926 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 3927 * (name = "limit", value = uint64_t), 3928 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 3929 */ 3930 static int 3931 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 3932 { 3933 nvpair_t *nvp = NULL; 3934 nvlist_t *nvl = NULL; 3935 char *kbuf; 3936 int error; 3937 rctl_val_t rv; 3938 3939 *nvlp = NULL; 3940 3941 if (buflen == 0) 3942 return (0); 3943 3944 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3945 return (ENOMEM); 3946 if (copyin(ubuf, kbuf, buflen)) { 3947 error = EFAULT; 3948 goto out; 3949 } 3950 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 3951 /* 3952 * nvl may have been allocated/free'd, but the value set to 3953 * non-NULL, so we reset it here. 3954 */ 3955 nvl = NULL; 3956 error = EINVAL; 3957 goto out; 3958 } 3959 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3960 rctl_dict_entry_t *rde; 3961 rctl_hndl_t hndl; 3962 nvlist_t **nvlarray; 3963 uint_t i, nelem; 3964 char *name; 3965 3966 error = EINVAL; 3967 name = nvpair_name(nvp); 3968 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 3969 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 3970 goto out; 3971 } 3972 if ((hndl = rctl_hndl_lookup(name)) == -1) { 3973 goto out; 3974 } 3975 rde = rctl_dict_lookup_hndl(hndl); 3976 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3977 ASSERT(error == 0); 3978 for (i = 0; i < nelem; i++) { 3979 if (error = nvlist2rctlval(nvlarray[i], &rv)) 3980 goto out; 3981 } 3982 if (rctl_invalid_value(rde, &rv)) { 3983 error = EINVAL; 3984 goto out; 3985 } 3986 } 3987 error = 0; 3988 *nvlp = nvl; 3989 out: 3990 kmem_free(kbuf, buflen); 3991 if (error && nvl != NULL) 3992 nvlist_free(nvl); 3993 return (error); 3994 } 3995 3996 int 3997 zone_create_error(int er_error, int er_ext, int *er_out) { 3998 if (er_out != NULL) { 3999 if (copyout(&er_ext, er_out, sizeof (int))) { 4000 return (set_errno(EFAULT)); 4001 } 4002 } 4003 return (set_errno(er_error)); 4004 } 4005 4006 static int 4007 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 4008 { 4009 ts_label_t *tsl; 4010 bslabel_t blab; 4011 4012 /* Get label from user */ 4013 if (copyin(lab, &blab, sizeof (blab)) != 0) 4014 return (EFAULT); 4015 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 4016 if (tsl == NULL) 4017 return (ENOMEM); 4018 4019 zone->zone_slabel = tsl; 4020 return (0); 4021 } 4022 4023 /* 4024 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 4025 */ 4026 static int 4027 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 4028 { 4029 char *kbuf; 4030 char *dataset, *next; 4031 zone_dataset_t *zd; 4032 size_t len; 4033 4034 if (ubuf == NULL || buflen == 0) 4035 return (0); 4036 4037 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4038 return (ENOMEM); 4039 4040 if (copyin(ubuf, kbuf, buflen) != 0) { 4041 kmem_free(kbuf, buflen); 4042 return (EFAULT); 4043 } 4044 4045 dataset = next = kbuf; 4046 for (;;) { 4047 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 4048 4049 next = strchr(dataset, ','); 4050 4051 if (next == NULL) 4052 len = strlen(dataset); 4053 else 4054 len = next - dataset; 4055 4056 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 4057 bcopy(dataset, zd->zd_dataset, len); 4058 zd->zd_dataset[len] = '\0'; 4059 4060 list_insert_head(&zone->zone_datasets, zd); 4061 4062 if (next == NULL) 4063 break; 4064 4065 dataset = next + 1; 4066 } 4067 4068 kmem_free(kbuf, buflen); 4069 return (0); 4070 } 4071 4072 /* 4073 * System call to create/initialize a new zone named 'zone_name', rooted 4074 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 4075 * and initialized with the zone-wide rctls described in 'rctlbuf', and 4076 * with labeling set by 'match', 'doi', and 'label'. 4077 * 4078 * If extended error is non-null, we may use it to return more detailed 4079 * error information. 4080 */ 4081 static zoneid_t 4082 zone_create(const char *zone_name, const char *zone_root, 4083 const priv_set_t *zone_privs, size_t zone_privssz, 4084 caddr_t rctlbuf, size_t rctlbufsz, 4085 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 4086 int match, uint32_t doi, const bslabel_t *label, 4087 int flags) 4088 { 4089 struct zsched_arg zarg; 4090 nvlist_t *rctls = NULL; 4091 proc_t *pp = curproc; 4092 zone_t *zone, *ztmp; 4093 zoneid_t zoneid; 4094 int error; 4095 int error2 = 0; 4096 char *str; 4097 cred_t *zkcr; 4098 boolean_t insert_label_hash; 4099 4100 if (secpolicy_zone_config(CRED()) != 0) 4101 return (set_errno(EPERM)); 4102 4103 /* can't boot zone from within chroot environment */ 4104 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 4105 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 4106 extended_error)); 4107 4108 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 4109 zoneid = zone->zone_id = id_alloc(zoneid_space); 4110 zone->zone_status = ZONE_IS_UNINITIALIZED; 4111 zone->zone_pool = pool_default; 4112 zone->zone_pool_mod = gethrtime(); 4113 zone->zone_psetid = ZONE_PS_INVAL; 4114 zone->zone_ncpus = 0; 4115 zone->zone_ncpus_online = 0; 4116 zone->zone_restart_init = B_TRUE; 4117 zone->zone_brand = &native_brand; 4118 zone->zone_initname = NULL; 4119 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 4120 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 4121 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 4122 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 4123 list_create(&zone->zone_ref_list, sizeof (zone_ref_t), 4124 offsetof(zone_ref_t, zref_linkage)); 4125 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 4126 offsetof(struct zsd_entry, zsd_linkage)); 4127 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 4128 offsetof(zone_dataset_t, zd_linkage)); 4129 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 4130 offsetof(zone_dl_t, zdl_linkage)); 4131 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 4132 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 4133 4134 if (flags & ZCF_NET_EXCL) { 4135 zone->zone_flags |= ZF_NET_EXCL; 4136 } 4137 4138 if ((error = zone_set_name(zone, zone_name)) != 0) { 4139 zone_free(zone); 4140 return (zone_create_error(error, 0, extended_error)); 4141 } 4142 4143 if ((error = zone_set_root(zone, zone_root)) != 0) { 4144 zone_free(zone); 4145 return (zone_create_error(error, 0, extended_error)); 4146 } 4147 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 4148 zone_free(zone); 4149 return (zone_create_error(error, 0, extended_error)); 4150 } 4151 4152 /* initialize node name to be the same as zone name */ 4153 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4154 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 4155 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 4156 4157 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4158 zone->zone_domain[0] = '\0'; 4159 zone->zone_hostid = HW_INVALID_HOSTID; 4160 zone->zone_shares = 1; 4161 zone->zone_shmmax = 0; 4162 zone->zone_ipc.ipcq_shmmni = 0; 4163 zone->zone_ipc.ipcq_semmni = 0; 4164 zone->zone_ipc.ipcq_msgmni = 0; 4165 zone->zone_bootargs = NULL; 4166 zone->zone_fs_allowed = NULL; 4167 zone->zone_initname = 4168 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 4169 (void) strcpy(zone->zone_initname, zone_default_initname); 4170 zone->zone_nlwps = 0; 4171 zone->zone_nlwps_ctl = INT_MAX; 4172 zone->zone_nprocs = 0; 4173 zone->zone_nprocs_ctl = INT_MAX; 4174 zone->zone_locked_mem = 0; 4175 zone->zone_locked_mem_ctl = UINT64_MAX; 4176 zone->zone_max_swap = 0; 4177 zone->zone_max_swap_ctl = UINT64_MAX; 4178 zone->zone_max_lofi = 0; 4179 zone->zone_max_lofi_ctl = UINT64_MAX; 4180 zone0.zone_lockedmem_kstat = NULL; 4181 zone0.zone_swapresv_kstat = NULL; 4182 4183 /* 4184 * Zsched initializes the rctls. 4185 */ 4186 zone->zone_rctls = NULL; 4187 4188 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 4189 zone_free(zone); 4190 return (zone_create_error(error, 0, extended_error)); 4191 } 4192 4193 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 4194 zone_free(zone); 4195 return (set_errno(error)); 4196 } 4197 4198 /* 4199 * Read in the trusted system parameters: 4200 * match flag and sensitivity label. 4201 */ 4202 zone->zone_match = match; 4203 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4204 /* Fail if requested to set doi to anything but system's doi */ 4205 if (doi != 0 && doi != default_doi) { 4206 zone_free(zone); 4207 return (set_errno(EINVAL)); 4208 } 4209 /* Always apply system's doi to the zone */ 4210 error = zone_set_label(zone, label, default_doi); 4211 if (error != 0) { 4212 zone_free(zone); 4213 return (set_errno(error)); 4214 } 4215 insert_label_hash = B_TRUE; 4216 } else { 4217 /* all zones get an admin_low label if system is not labeled */ 4218 zone->zone_slabel = l_admin_low; 4219 label_hold(l_admin_low); 4220 insert_label_hash = B_FALSE; 4221 } 4222 4223 /* 4224 * Stop all lwps since that's what normally happens as part of fork(). 4225 * This needs to happen before we grab any locks to avoid deadlock 4226 * (another lwp in the process could be waiting for the held lock). 4227 */ 4228 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 4229 zone_free(zone); 4230 if (rctls) 4231 nvlist_free(rctls); 4232 return (zone_create_error(error, 0, extended_error)); 4233 } 4234 4235 if (block_mounts() == 0) { 4236 mutex_enter(&pp->p_lock); 4237 if (curthread != pp->p_agenttp) 4238 continuelwps(pp); 4239 mutex_exit(&pp->p_lock); 4240 zone_free(zone); 4241 if (rctls) 4242 nvlist_free(rctls); 4243 return (zone_create_error(error, 0, extended_error)); 4244 } 4245 4246 /* 4247 * Set up credential for kernel access. After this, any errors 4248 * should go through the dance in errout rather than calling 4249 * zone_free directly. 4250 */ 4251 zone->zone_kcred = crdup(kcred); 4252 crsetzone(zone->zone_kcred, zone); 4253 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 4254 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 4255 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 4256 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 4257 4258 mutex_enter(&zonehash_lock); 4259 /* 4260 * Make sure zone doesn't already exist. 4261 * 4262 * If the system and zone are labeled, 4263 * make sure no other zone exists that has the same label. 4264 */ 4265 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 4266 (insert_label_hash && 4267 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 4268 zone_status_t status; 4269 4270 status = zone_status_get(ztmp); 4271 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 4272 error = EEXIST; 4273 else 4274 error = EBUSY; 4275 4276 if (insert_label_hash) 4277 error2 = ZE_LABELINUSE; 4278 4279 goto errout; 4280 } 4281 4282 /* 4283 * Don't allow zone creations which would cause one zone's rootpath to 4284 * be accessible from that of another (non-global) zone. 4285 */ 4286 if (zone_is_nested(zone->zone_rootpath)) { 4287 error = EBUSY; 4288 goto errout; 4289 } 4290 4291 ASSERT(zonecount != 0); /* check for leaks */ 4292 if (zonecount + 1 > maxzones) { 4293 error = ENOMEM; 4294 goto errout; 4295 } 4296 4297 if (zone_mount_count(zone->zone_rootpath) != 0) { 4298 error = EBUSY; 4299 error2 = ZE_AREMOUNTS; 4300 goto errout; 4301 } 4302 4303 /* 4304 * Zone is still incomplete, but we need to drop all locks while 4305 * zsched() initializes this zone's kernel process. We 4306 * optimistically add the zone to the hashtable and associated 4307 * lists so a parallel zone_create() doesn't try to create the 4308 * same zone. 4309 */ 4310 zonecount++; 4311 (void) mod_hash_insert(zonehashbyid, 4312 (mod_hash_key_t)(uintptr_t)zone->zone_id, 4313 (mod_hash_val_t)(uintptr_t)zone); 4314 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 4315 (void) strcpy(str, zone->zone_name); 4316 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 4317 (mod_hash_val_t)(uintptr_t)zone); 4318 if (insert_label_hash) { 4319 (void) mod_hash_insert(zonehashbylabel, 4320 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 4321 zone->zone_flags |= ZF_HASHED_LABEL; 4322 } 4323 4324 /* 4325 * Insert into active list. At this point there are no 'hold's 4326 * on the zone, but everyone else knows not to use it, so we can 4327 * continue to use it. zsched() will do a zone_hold() if the 4328 * newproc() is successful. 4329 */ 4330 list_insert_tail(&zone_active, zone); 4331 mutex_exit(&zonehash_lock); 4332 4333 zarg.zone = zone; 4334 zarg.nvlist = rctls; 4335 /* 4336 * The process, task, and project rctls are probably wrong; 4337 * we need an interface to get the default values of all rctls, 4338 * and initialize zsched appropriately. I'm not sure that that 4339 * makes much of a difference, though. 4340 */ 4341 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); 4342 if (error != 0) { 4343 /* 4344 * We need to undo all globally visible state. 4345 */ 4346 mutex_enter(&zonehash_lock); 4347 list_remove(&zone_active, zone); 4348 if (zone->zone_flags & ZF_HASHED_LABEL) { 4349 ASSERT(zone->zone_slabel != NULL); 4350 (void) mod_hash_destroy(zonehashbylabel, 4351 (mod_hash_key_t)zone->zone_slabel); 4352 } 4353 (void) mod_hash_destroy(zonehashbyname, 4354 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4355 (void) mod_hash_destroy(zonehashbyid, 4356 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4357 ASSERT(zonecount > 1); 4358 zonecount--; 4359 goto errout; 4360 } 4361 4362 /* 4363 * Zone creation can't fail from now on. 4364 */ 4365 4366 /* 4367 * Create zone kstats 4368 */ 4369 zone_kstat_create(zone); 4370 4371 /* 4372 * Let the other lwps continue. 4373 */ 4374 mutex_enter(&pp->p_lock); 4375 if (curthread != pp->p_agenttp) 4376 continuelwps(pp); 4377 mutex_exit(&pp->p_lock); 4378 4379 /* 4380 * Wait for zsched to finish initializing the zone. 4381 */ 4382 zone_status_wait(zone, ZONE_IS_READY); 4383 /* 4384 * The zone is fully visible, so we can let mounts progress. 4385 */ 4386 resume_mounts(); 4387 if (rctls) 4388 nvlist_free(rctls); 4389 4390 return (zoneid); 4391 4392 errout: 4393 mutex_exit(&zonehash_lock); 4394 /* 4395 * Let the other lwps continue. 4396 */ 4397 mutex_enter(&pp->p_lock); 4398 if (curthread != pp->p_agenttp) 4399 continuelwps(pp); 4400 mutex_exit(&pp->p_lock); 4401 4402 resume_mounts(); 4403 if (rctls) 4404 nvlist_free(rctls); 4405 /* 4406 * There is currently one reference to the zone, a cred_ref from 4407 * zone_kcred. To free the zone, we call crfree, which will call 4408 * zone_cred_rele, which will call zone_free. 4409 */ 4410 ASSERT(zone->zone_cred_ref == 1); 4411 ASSERT(zone->zone_kcred->cr_ref == 1); 4412 ASSERT(zone->zone_ref == 0); 4413 zkcr = zone->zone_kcred; 4414 zone->zone_kcred = NULL; 4415 crfree(zkcr); /* triggers call to zone_free */ 4416 return (zone_create_error(error, error2, extended_error)); 4417 } 4418 4419 /* 4420 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4421 * the heavy lifting. initname is the path to the program to launch 4422 * at the "top" of the zone; if this is NULL, we use the system default, 4423 * which is stored at zone_default_initname. 4424 */ 4425 static int 4426 zone_boot(zoneid_t zoneid) 4427 { 4428 int err; 4429 zone_t *zone; 4430 4431 if (secpolicy_zone_config(CRED()) != 0) 4432 return (set_errno(EPERM)); 4433 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4434 return (set_errno(EINVAL)); 4435 4436 mutex_enter(&zonehash_lock); 4437 /* 4438 * Look for zone under hash lock to prevent races with calls to 4439 * zone_shutdown, zone_destroy, etc. 4440 */ 4441 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4442 mutex_exit(&zonehash_lock); 4443 return (set_errno(EINVAL)); 4444 } 4445 4446 mutex_enter(&zone_status_lock); 4447 if (zone_status_get(zone) != ZONE_IS_READY) { 4448 mutex_exit(&zone_status_lock); 4449 mutex_exit(&zonehash_lock); 4450 return (set_errno(EINVAL)); 4451 } 4452 zone_status_set(zone, ZONE_IS_BOOTING); 4453 mutex_exit(&zone_status_lock); 4454 4455 zone_hold(zone); /* so we can use the zone_t later */ 4456 mutex_exit(&zonehash_lock); 4457 4458 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4459 zone_rele(zone); 4460 return (set_errno(EINTR)); 4461 } 4462 4463 /* 4464 * Boot (starting init) might have failed, in which case the zone 4465 * will go to the SHUTTING_DOWN state; an appropriate errno will 4466 * be placed in zone->zone_boot_err, and so we return that. 4467 */ 4468 err = zone->zone_boot_err; 4469 zone_rele(zone); 4470 return (err ? set_errno(err) : 0); 4471 } 4472 4473 /* 4474 * Kills all user processes in the zone, waiting for them all to exit 4475 * before returning. 4476 */ 4477 static int 4478 zone_empty(zone_t *zone) 4479 { 4480 int waitstatus; 4481 4482 /* 4483 * We need to drop zonehash_lock before killing all 4484 * processes, otherwise we'll deadlock with zone_find_* 4485 * which can be called from the exit path. 4486 */ 4487 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4488 while ((waitstatus = zone_status_timedwait_sig(zone, 4489 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { 4490 killall(zone->zone_id); 4491 } 4492 /* 4493 * return EINTR if we were signaled 4494 */ 4495 if (waitstatus == 0) 4496 return (EINTR); 4497 return (0); 4498 } 4499 4500 /* 4501 * This function implements the policy for zone visibility. 4502 * 4503 * In standard Solaris, a non-global zone can only see itself. 4504 * 4505 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4506 * it dominates. For this test, the label of the global zone is treated as 4507 * admin_high so it is special-cased instead of being checked for dominance. 4508 * 4509 * Returns true if zone attributes are viewable, false otherwise. 4510 */ 4511 static boolean_t 4512 zone_list_access(zone_t *zone) 4513 { 4514 4515 if (curproc->p_zone == global_zone || 4516 curproc->p_zone == zone) { 4517 return (B_TRUE); 4518 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4519 bslabel_t *curproc_label; 4520 bslabel_t *zone_label; 4521 4522 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4523 zone_label = label2bslabel(zone->zone_slabel); 4524 4525 if (zone->zone_id != GLOBAL_ZONEID && 4526 bldominates(curproc_label, zone_label)) { 4527 return (B_TRUE); 4528 } else { 4529 return (B_FALSE); 4530 } 4531 } else { 4532 return (B_FALSE); 4533 } 4534 } 4535 4536 /* 4537 * Systemcall to start the zone's halt sequence. By the time this 4538 * function successfully returns, all user processes and kernel threads 4539 * executing in it will have exited, ZSD shutdown callbacks executed, 4540 * and the zone status set to ZONE_IS_DOWN. 4541 * 4542 * It is possible that the call will interrupt itself if the caller is the 4543 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4544 */ 4545 static int 4546 zone_shutdown(zoneid_t zoneid) 4547 { 4548 int error; 4549 zone_t *zone; 4550 zone_status_t status; 4551 4552 if (secpolicy_zone_config(CRED()) != 0) 4553 return (set_errno(EPERM)); 4554 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4555 return (set_errno(EINVAL)); 4556 4557 /* 4558 * Block mounts so that VFS_MOUNT() can get an accurate view of 4559 * the zone's status with regards to ZONE_IS_SHUTTING down. 4560 * 4561 * e.g. NFS can fail the mount if it determines that the zone 4562 * has already begun the shutdown sequence. 4563 */ 4564 if (block_mounts() == 0) 4565 return (set_errno(EINTR)); 4566 mutex_enter(&zonehash_lock); 4567 /* 4568 * Look for zone under hash lock to prevent races with other 4569 * calls to zone_shutdown and zone_destroy. 4570 */ 4571 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4572 mutex_exit(&zonehash_lock); 4573 resume_mounts(); 4574 return (set_errno(EINVAL)); 4575 } 4576 mutex_enter(&zone_status_lock); 4577 status = zone_status_get(zone); 4578 /* 4579 * Fail if the zone isn't fully initialized yet. 4580 */ 4581 if (status < ZONE_IS_READY) { 4582 mutex_exit(&zone_status_lock); 4583 mutex_exit(&zonehash_lock); 4584 resume_mounts(); 4585 return (set_errno(EINVAL)); 4586 } 4587 /* 4588 * If conditions required for zone_shutdown() to return have been met, 4589 * return success. 4590 */ 4591 if (status >= ZONE_IS_DOWN) { 4592 mutex_exit(&zone_status_lock); 4593 mutex_exit(&zonehash_lock); 4594 resume_mounts(); 4595 return (0); 4596 } 4597 /* 4598 * If zone_shutdown() hasn't been called before, go through the motions. 4599 * If it has, there's nothing to do but wait for the kernel threads to 4600 * drain. 4601 */ 4602 if (status < ZONE_IS_EMPTY) { 4603 uint_t ntasks; 4604 4605 mutex_enter(&zone->zone_lock); 4606 if ((ntasks = zone->zone_ntasks) != 1) { 4607 /* 4608 * There's still stuff running. 4609 */ 4610 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4611 } 4612 mutex_exit(&zone->zone_lock); 4613 if (ntasks == 1) { 4614 /* 4615 * The only way to create another task is through 4616 * zone_enter(), which will block until we drop 4617 * zonehash_lock. The zone is empty. 4618 */ 4619 if (zone->zone_kthreads == NULL) { 4620 /* 4621 * Skip ahead to ZONE_IS_DOWN 4622 */ 4623 zone_status_set(zone, ZONE_IS_DOWN); 4624 } else { 4625 zone_status_set(zone, ZONE_IS_EMPTY); 4626 } 4627 } 4628 } 4629 zone_hold(zone); /* so we can use the zone_t later */ 4630 mutex_exit(&zone_status_lock); 4631 mutex_exit(&zonehash_lock); 4632 resume_mounts(); 4633 4634 if (error = zone_empty(zone)) { 4635 zone_rele(zone); 4636 return (set_errno(error)); 4637 } 4638 /* 4639 * After the zone status goes to ZONE_IS_DOWN this zone will no 4640 * longer be notified of changes to the pools configuration, so 4641 * in order to not end up with a stale pool pointer, we point 4642 * ourselves at the default pool and remove all resource 4643 * visibility. This is especially important as the zone_t may 4644 * languish on the deathrow for a very long time waiting for 4645 * cred's to drain out. 4646 * 4647 * This rebinding of the zone can happen multiple times 4648 * (presumably due to interrupted or parallel systemcalls) 4649 * without any adverse effects. 4650 */ 4651 if (pool_lock_intr() != 0) { 4652 zone_rele(zone); 4653 return (set_errno(EINTR)); 4654 } 4655 if (pool_state == POOL_ENABLED) { 4656 mutex_enter(&cpu_lock); 4657 zone_pool_set(zone, pool_default); 4658 /* 4659 * The zone no longer needs to be able to see any cpus. 4660 */ 4661 zone_pset_set(zone, ZONE_PS_INVAL); 4662 mutex_exit(&cpu_lock); 4663 } 4664 pool_unlock(); 4665 4666 /* 4667 * ZSD shutdown callbacks can be executed multiple times, hence 4668 * it is safe to not be holding any locks across this call. 4669 */ 4670 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 4671 4672 mutex_enter(&zone_status_lock); 4673 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 4674 zone_status_set(zone, ZONE_IS_DOWN); 4675 mutex_exit(&zone_status_lock); 4676 4677 /* 4678 * Wait for kernel threads to drain. 4679 */ 4680 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 4681 zone_rele(zone); 4682 return (set_errno(EINTR)); 4683 } 4684 4685 /* 4686 * Zone can be become down/destroyable even if the above wait 4687 * returns EINTR, so any code added here may never execute. 4688 * (i.e. don't add code here) 4689 */ 4690 4691 zone_rele(zone); 4692 return (0); 4693 } 4694 4695 /* 4696 * Log the specified zone's reference counts. The caller should not be 4697 * holding the zone's zone_lock. 4698 */ 4699 static void 4700 zone_log_refcounts(zone_t *zone) 4701 { 4702 char *buffer; 4703 char *buffer_position; 4704 uint32_t buffer_size; 4705 uint32_t index; 4706 uint_t ref; 4707 uint_t cred_ref; 4708 4709 /* 4710 * Construct a string representing the subsystem-specific reference 4711 * counts. The counts are printed in ascending order by index into the 4712 * zone_t::zone_subsys_ref array. The list will be surrounded by 4713 * square brackets [] and will only contain nonzero reference counts. 4714 * 4715 * The buffer will hold two square bracket characters plus ten digits, 4716 * one colon, one space, one comma, and some characters for a 4717 * subsystem name per subsystem-specific reference count. (Unsigned 32- 4718 * bit integers have at most ten decimal digits.) The last 4719 * reference count's comma is replaced by the closing square 4720 * bracket and a NULL character to terminate the string. 4721 * 4722 * NOTE: We have to grab the zone's zone_lock to create a consistent 4723 * snapshot of the zone's reference counters. 4724 * 4725 * First, figure out how much space the string buffer will need. 4726 * The buffer's size is stored in buffer_size. 4727 */ 4728 buffer_size = 2; /* for the square brackets */ 4729 mutex_enter(&zone->zone_lock); 4730 zone->zone_flags |= ZF_REFCOUNTS_LOGGED; 4731 ref = zone->zone_ref; 4732 cred_ref = zone->zone_cred_ref; 4733 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) 4734 if (zone->zone_subsys_ref[index] != 0) 4735 buffer_size += strlen(zone_ref_subsys_names[index]) + 4736 13; 4737 if (buffer_size == 2) { 4738 /* 4739 * No subsystems had nonzero reference counts. Don't bother 4740 * with allocating a buffer; just log the general-purpose and 4741 * credential reference counts. 4742 */ 4743 mutex_exit(&zone->zone_lock); 4744 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 4745 "Zone '%s' (ID: %d) is shutting down, but %u zone " 4746 "references and %u credential references are still extant", 4747 zone->zone_name, zone->zone_id, ref, cred_ref); 4748 return; 4749 } 4750 4751 /* 4752 * buffer_size contains the exact number of characters that the 4753 * buffer will need. Allocate the buffer and fill it with nonzero 4754 * subsystem-specific reference counts. Surround the results with 4755 * square brackets afterwards. 4756 */ 4757 buffer = kmem_alloc(buffer_size, KM_SLEEP); 4758 buffer_position = &buffer[1]; 4759 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) { 4760 /* 4761 * NOTE: The DDI's version of sprintf() returns a pointer to 4762 * the modified buffer rather than the number of bytes written 4763 * (as in snprintf(3C)). This is unfortunate and annoying. 4764 * Therefore, we'll use snprintf() with INT_MAX to get the 4765 * number of bytes written. Using INT_MAX is safe because 4766 * the buffer is perfectly sized for the data: we'll never 4767 * overrun the buffer. 4768 */ 4769 if (zone->zone_subsys_ref[index] != 0) 4770 buffer_position += snprintf(buffer_position, INT_MAX, 4771 "%s: %u,", zone_ref_subsys_names[index], 4772 zone->zone_subsys_ref[index]); 4773 } 4774 mutex_exit(&zone->zone_lock); 4775 buffer[0] = '['; 4776 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size); 4777 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ','); 4778 buffer_position[-1] = ']'; 4779 4780 /* 4781 * Log the reference counts and free the message buffer. 4782 */ 4783 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 4784 "Zone '%s' (ID: %d) is shutting down, but %u zone references and " 4785 "%u credential references are still extant %s", zone->zone_name, 4786 zone->zone_id, ref, cred_ref, buffer); 4787 kmem_free(buffer, buffer_size); 4788 } 4789 4790 /* 4791 * Systemcall entry point to finalize the zone halt process. The caller 4792 * must have already successfully called zone_shutdown(). 4793 * 4794 * Upon successful completion, the zone will have been fully destroyed: 4795 * zsched will have exited, destructor callbacks executed, and the zone 4796 * removed from the list of active zones. 4797 */ 4798 static int 4799 zone_destroy(zoneid_t zoneid) 4800 { 4801 uint64_t uniqid; 4802 zone_t *zone; 4803 zone_status_t status; 4804 clock_t wait_time; 4805 boolean_t log_refcounts; 4806 4807 if (secpolicy_zone_config(CRED()) != 0) 4808 return (set_errno(EPERM)); 4809 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4810 return (set_errno(EINVAL)); 4811 4812 mutex_enter(&zonehash_lock); 4813 /* 4814 * Look for zone under hash lock to prevent races with other 4815 * calls to zone_destroy. 4816 */ 4817 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4818 mutex_exit(&zonehash_lock); 4819 return (set_errno(EINVAL)); 4820 } 4821 4822 if (zone_mount_count(zone->zone_rootpath) != 0) { 4823 mutex_exit(&zonehash_lock); 4824 return (set_errno(EBUSY)); 4825 } 4826 mutex_enter(&zone_status_lock); 4827 status = zone_status_get(zone); 4828 if (status < ZONE_IS_DOWN) { 4829 mutex_exit(&zone_status_lock); 4830 mutex_exit(&zonehash_lock); 4831 return (set_errno(EBUSY)); 4832 } else if (status == ZONE_IS_DOWN) { 4833 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 4834 } 4835 mutex_exit(&zone_status_lock); 4836 zone_hold(zone); 4837 mutex_exit(&zonehash_lock); 4838 4839 /* 4840 * wait for zsched to exit 4841 */ 4842 zone_status_wait(zone, ZONE_IS_DEAD); 4843 zone_zsd_callbacks(zone, ZSD_DESTROY); 4844 zone->zone_netstack = NULL; 4845 uniqid = zone->zone_uniqid; 4846 zone_rele(zone); 4847 zone = NULL; /* potentially free'd */ 4848 4849 log_refcounts = B_FALSE; 4850 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS); 4851 mutex_enter(&zonehash_lock); 4852 for (; /* ever */; ) { 4853 boolean_t unref; 4854 boolean_t refs_have_been_logged; 4855 4856 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 4857 zone->zone_uniqid != uniqid) { 4858 /* 4859 * The zone has gone away. Necessary conditions 4860 * are met, so we return success. 4861 */ 4862 mutex_exit(&zonehash_lock); 4863 return (0); 4864 } 4865 mutex_enter(&zone->zone_lock); 4866 unref = ZONE_IS_UNREF(zone); 4867 refs_have_been_logged = (zone->zone_flags & 4868 ZF_REFCOUNTS_LOGGED); 4869 mutex_exit(&zone->zone_lock); 4870 if (unref) { 4871 /* 4872 * There is only one reference to the zone -- that 4873 * added when the zone was added to the hashtables -- 4874 * and things will remain this way until we drop 4875 * zonehash_lock... we can go ahead and cleanup the 4876 * zone. 4877 */ 4878 break; 4879 } 4880 4881 /* 4882 * Wait for zone_rele_common() or zone_cred_rele() to signal 4883 * zone_destroy_cv. zone_destroy_cv is signaled only when 4884 * some zone's general-purpose reference count reaches one. 4885 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting 4886 * on zone_destroy_cv, then log the zone's reference counts and 4887 * continue to wait for zone_rele() and zone_cred_rele(). 4888 */ 4889 if (!refs_have_been_logged) { 4890 if (!log_refcounts) { 4891 /* 4892 * This thread hasn't timed out waiting on 4893 * zone_destroy_cv yet. Wait wait_time clock 4894 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS 4895 * seconds) for the zone's references to clear. 4896 */ 4897 ASSERT(wait_time > 0); 4898 wait_time = cv_reltimedwait_sig( 4899 &zone_destroy_cv, &zonehash_lock, wait_time, 4900 TR_SEC); 4901 if (wait_time > 0) { 4902 /* 4903 * A thread in zone_rele() or 4904 * zone_cred_rele() signaled 4905 * zone_destroy_cv before this thread's 4906 * wait timed out. The zone might have 4907 * only one reference left; find out! 4908 */ 4909 continue; 4910 } else if (wait_time == 0) { 4911 /* The thread's process was signaled. */ 4912 mutex_exit(&zonehash_lock); 4913 return (set_errno(EINTR)); 4914 } 4915 4916 /* 4917 * The thread timed out while waiting on 4918 * zone_destroy_cv. Even though the thread 4919 * timed out, it has to check whether another 4920 * thread woke up from zone_destroy_cv and 4921 * destroyed the zone. 4922 * 4923 * If the zone still exists and has more than 4924 * one unreleased general-purpose reference, 4925 * then log the zone's reference counts. 4926 */ 4927 log_refcounts = B_TRUE; 4928 continue; 4929 } 4930 4931 /* 4932 * The thread already timed out on zone_destroy_cv while 4933 * waiting for subsystems to release the zone's last 4934 * general-purpose references. Log the zone's reference 4935 * counts and wait indefinitely on zone_destroy_cv. 4936 */ 4937 zone_log_refcounts(zone); 4938 } 4939 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 4940 /* The thread's process was signaled. */ 4941 mutex_exit(&zonehash_lock); 4942 return (set_errno(EINTR)); 4943 } 4944 } 4945 4946 /* 4947 * Remove CPU cap for this zone now since we're not going to 4948 * fail below this point. 4949 */ 4950 cpucaps_zone_remove(zone); 4951 4952 /* Get rid of the zone's kstats */ 4953 zone_kstat_delete(zone); 4954 4955 /* remove the pfexecd doors */ 4956 if (zone->zone_pfexecd != NULL) { 4957 klpd_freelist(&zone->zone_pfexecd); 4958 zone->zone_pfexecd = NULL; 4959 } 4960 4961 /* free brand specific data */ 4962 if (ZONE_IS_BRANDED(zone)) 4963 ZBROP(zone)->b_free_brand_data(zone); 4964 4965 /* Say goodbye to brand framework. */ 4966 brand_unregister_zone(zone->zone_brand); 4967 4968 /* 4969 * It is now safe to let the zone be recreated; remove it from the 4970 * lists. The memory will not be freed until the last cred 4971 * reference goes away. 4972 */ 4973 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 4974 zonecount--; 4975 /* remove from active list and hash tables */ 4976 list_remove(&zone_active, zone); 4977 (void) mod_hash_destroy(zonehashbyname, 4978 (mod_hash_key_t)zone->zone_name); 4979 (void) mod_hash_destroy(zonehashbyid, 4980 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4981 if (zone->zone_flags & ZF_HASHED_LABEL) 4982 (void) mod_hash_destroy(zonehashbylabel, 4983 (mod_hash_key_t)zone->zone_slabel); 4984 mutex_exit(&zonehash_lock); 4985 4986 /* 4987 * Release the root vnode; we're not using it anymore. Nor should any 4988 * other thread that might access it exist. 4989 */ 4990 if (zone->zone_rootvp != NULL) { 4991 VN_RELE(zone->zone_rootvp); 4992 zone->zone_rootvp = NULL; 4993 } 4994 4995 /* add to deathrow list */ 4996 mutex_enter(&zone_deathrow_lock); 4997 list_insert_tail(&zone_deathrow, zone); 4998 mutex_exit(&zone_deathrow_lock); 4999 5000 /* 5001 * Drop last reference (which was added by zsched()), this will 5002 * free the zone unless there are outstanding cred references. 5003 */ 5004 zone_rele(zone); 5005 return (0); 5006 } 5007 5008 /* 5009 * Systemcall entry point for zone_getattr(2). 5010 */ 5011 static ssize_t 5012 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5013 { 5014 size_t size; 5015 int error = 0, err; 5016 zone_t *zone; 5017 char *zonepath; 5018 char *outstr; 5019 zone_status_t zone_status; 5020 pid_t initpid; 5021 boolean_t global = (curzone == global_zone); 5022 boolean_t inzone = (curzone->zone_id == zoneid); 5023 ushort_t flags; 5024 zone_net_data_t *zbuf; 5025 5026 mutex_enter(&zonehash_lock); 5027 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5028 mutex_exit(&zonehash_lock); 5029 return (set_errno(EINVAL)); 5030 } 5031 zone_status = zone_status_get(zone); 5032 if (zone_status < ZONE_IS_INITIALIZED) { 5033 mutex_exit(&zonehash_lock); 5034 return (set_errno(EINVAL)); 5035 } 5036 zone_hold(zone); 5037 mutex_exit(&zonehash_lock); 5038 5039 /* 5040 * If not in the global zone, don't show information about other zones, 5041 * unless the system is labeled and the local zone's label dominates 5042 * the other zone. 5043 */ 5044 if (!zone_list_access(zone)) { 5045 zone_rele(zone); 5046 return (set_errno(EINVAL)); 5047 } 5048 5049 switch (attr) { 5050 case ZONE_ATTR_ROOT: 5051 if (global) { 5052 /* 5053 * Copy the path to trim the trailing "/" (except for 5054 * the global zone). 5055 */ 5056 if (zone != global_zone) 5057 size = zone->zone_rootpathlen - 1; 5058 else 5059 size = zone->zone_rootpathlen; 5060 zonepath = kmem_alloc(size, KM_SLEEP); 5061 bcopy(zone->zone_rootpath, zonepath, size); 5062 zonepath[size - 1] = '\0'; 5063 } else { 5064 if (inzone || !is_system_labeled()) { 5065 /* 5066 * Caller is not in the global zone. 5067 * if the query is on the current zone 5068 * or the system is not labeled, 5069 * just return faked-up path for current zone. 5070 */ 5071 zonepath = "/"; 5072 size = 2; 5073 } else { 5074 /* 5075 * Return related path for current zone. 5076 */ 5077 int prefix_len = strlen(zone_prefix); 5078 int zname_len = strlen(zone->zone_name); 5079 5080 size = prefix_len + zname_len + 1; 5081 zonepath = kmem_alloc(size, KM_SLEEP); 5082 bcopy(zone_prefix, zonepath, prefix_len); 5083 bcopy(zone->zone_name, zonepath + 5084 prefix_len, zname_len); 5085 zonepath[size - 1] = '\0'; 5086 } 5087 } 5088 if (bufsize > size) 5089 bufsize = size; 5090 if (buf != NULL) { 5091 err = copyoutstr(zonepath, buf, bufsize, NULL); 5092 if (err != 0 && err != ENAMETOOLONG) 5093 error = EFAULT; 5094 } 5095 if (global || (is_system_labeled() && !inzone)) 5096 kmem_free(zonepath, size); 5097 break; 5098 5099 case ZONE_ATTR_NAME: 5100 size = strlen(zone->zone_name) + 1; 5101 if (bufsize > size) 5102 bufsize = size; 5103 if (buf != NULL) { 5104 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 5105 if (err != 0 && err != ENAMETOOLONG) 5106 error = EFAULT; 5107 } 5108 break; 5109 5110 case ZONE_ATTR_STATUS: 5111 /* 5112 * Since we're not holding zonehash_lock, the zone status 5113 * may be anything; leave it up to userland to sort it out. 5114 */ 5115 size = sizeof (zone_status); 5116 if (bufsize > size) 5117 bufsize = size; 5118 zone_status = zone_status_get(zone); 5119 if (buf != NULL && 5120 copyout(&zone_status, buf, bufsize) != 0) 5121 error = EFAULT; 5122 break; 5123 case ZONE_ATTR_FLAGS: 5124 size = sizeof (zone->zone_flags); 5125 if (bufsize > size) 5126 bufsize = size; 5127 flags = zone->zone_flags; 5128 if (buf != NULL && 5129 copyout(&flags, buf, bufsize) != 0) 5130 error = EFAULT; 5131 break; 5132 case ZONE_ATTR_PRIVSET: 5133 size = sizeof (priv_set_t); 5134 if (bufsize > size) 5135 bufsize = size; 5136 if (buf != NULL && 5137 copyout(zone->zone_privset, buf, bufsize) != 0) 5138 error = EFAULT; 5139 break; 5140 case ZONE_ATTR_UNIQID: 5141 size = sizeof (zone->zone_uniqid); 5142 if (bufsize > size) 5143 bufsize = size; 5144 if (buf != NULL && 5145 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 5146 error = EFAULT; 5147 break; 5148 case ZONE_ATTR_POOLID: 5149 { 5150 pool_t *pool; 5151 poolid_t poolid; 5152 5153 if (pool_lock_intr() != 0) { 5154 error = EINTR; 5155 break; 5156 } 5157 pool = zone_pool_get(zone); 5158 poolid = pool->pool_id; 5159 pool_unlock(); 5160 size = sizeof (poolid); 5161 if (bufsize > size) 5162 bufsize = size; 5163 if (buf != NULL && copyout(&poolid, buf, size) != 0) 5164 error = EFAULT; 5165 } 5166 break; 5167 case ZONE_ATTR_SLBL: 5168 size = sizeof (bslabel_t); 5169 if (bufsize > size) 5170 bufsize = size; 5171 if (zone->zone_slabel == NULL) 5172 error = EINVAL; 5173 else if (buf != NULL && 5174 copyout(label2bslabel(zone->zone_slabel), buf, 5175 bufsize) != 0) 5176 error = EFAULT; 5177 break; 5178 case ZONE_ATTR_INITPID: 5179 size = sizeof (initpid); 5180 if (bufsize > size) 5181 bufsize = size; 5182 initpid = zone->zone_proc_initpid; 5183 if (initpid == -1) { 5184 error = ESRCH; 5185 break; 5186 } 5187 if (buf != NULL && 5188 copyout(&initpid, buf, bufsize) != 0) 5189 error = EFAULT; 5190 break; 5191 case ZONE_ATTR_BRAND: 5192 size = strlen(zone->zone_brand->b_name) + 1; 5193 5194 if (bufsize > size) 5195 bufsize = size; 5196 if (buf != NULL) { 5197 err = copyoutstr(zone->zone_brand->b_name, buf, 5198 bufsize, NULL); 5199 if (err != 0 && err != ENAMETOOLONG) 5200 error = EFAULT; 5201 } 5202 break; 5203 case ZONE_ATTR_INITNAME: 5204 size = strlen(zone->zone_initname) + 1; 5205 if (bufsize > size) 5206 bufsize = size; 5207 if (buf != NULL) { 5208 err = copyoutstr(zone->zone_initname, buf, bufsize, 5209 NULL); 5210 if (err != 0 && err != ENAMETOOLONG) 5211 error = EFAULT; 5212 } 5213 break; 5214 case ZONE_ATTR_BOOTARGS: 5215 if (zone->zone_bootargs == NULL) 5216 outstr = ""; 5217 else 5218 outstr = zone->zone_bootargs; 5219 size = strlen(outstr) + 1; 5220 if (bufsize > size) 5221 bufsize = size; 5222 if (buf != NULL) { 5223 err = copyoutstr(outstr, buf, bufsize, NULL); 5224 if (err != 0 && err != ENAMETOOLONG) 5225 error = EFAULT; 5226 } 5227 break; 5228 case ZONE_ATTR_PHYS_MCAP: 5229 size = sizeof (zone->zone_phys_mcap); 5230 if (bufsize > size) 5231 bufsize = size; 5232 if (buf != NULL && 5233 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 5234 error = EFAULT; 5235 break; 5236 case ZONE_ATTR_SCHED_CLASS: 5237 mutex_enter(&class_lock); 5238 5239 if (zone->zone_defaultcid >= loaded_classes) 5240 outstr = ""; 5241 else 5242 outstr = sclass[zone->zone_defaultcid].cl_name; 5243 size = strlen(outstr) + 1; 5244 if (bufsize > size) 5245 bufsize = size; 5246 if (buf != NULL) { 5247 err = copyoutstr(outstr, buf, bufsize, NULL); 5248 if (err != 0 && err != ENAMETOOLONG) 5249 error = EFAULT; 5250 } 5251 5252 mutex_exit(&class_lock); 5253 break; 5254 case ZONE_ATTR_HOSTID: 5255 if (zone->zone_hostid != HW_INVALID_HOSTID && 5256 bufsize == sizeof (zone->zone_hostid)) { 5257 size = sizeof (zone->zone_hostid); 5258 if (buf != NULL && copyout(&zone->zone_hostid, buf, 5259 bufsize) != 0) 5260 error = EFAULT; 5261 } else { 5262 error = EINVAL; 5263 } 5264 break; 5265 case ZONE_ATTR_FS_ALLOWED: 5266 if (zone->zone_fs_allowed == NULL) 5267 outstr = ""; 5268 else 5269 outstr = zone->zone_fs_allowed; 5270 size = strlen(outstr) + 1; 5271 if (bufsize > size) 5272 bufsize = size; 5273 if (buf != NULL) { 5274 err = copyoutstr(outstr, buf, bufsize, NULL); 5275 if (err != 0 && err != ENAMETOOLONG) 5276 error = EFAULT; 5277 } 5278 break; 5279 case ZONE_ATTR_NETWORK: 5280 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5281 if (copyin(buf, zbuf, bufsize) != 0) { 5282 error = EFAULT; 5283 } else { 5284 error = zone_get_network(zoneid, zbuf); 5285 if (error == 0 && copyout(zbuf, buf, bufsize) != 0) 5286 error = EFAULT; 5287 } 5288 kmem_free(zbuf, bufsize); 5289 break; 5290 default: 5291 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 5292 size = bufsize; 5293 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 5294 } else { 5295 error = EINVAL; 5296 } 5297 } 5298 zone_rele(zone); 5299 5300 if (error) 5301 return (set_errno(error)); 5302 return ((ssize_t)size); 5303 } 5304 5305 /* 5306 * Systemcall entry point for zone_setattr(2). 5307 */ 5308 /*ARGSUSED*/ 5309 static int 5310 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5311 { 5312 zone_t *zone; 5313 zone_status_t zone_status; 5314 int err = -1; 5315 zone_net_data_t *zbuf; 5316 5317 if (secpolicy_zone_config(CRED()) != 0) 5318 return (set_errno(EPERM)); 5319 5320 /* 5321 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 5322 * global zone. 5323 */ 5324 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 5325 return (set_errno(EINVAL)); 5326 } 5327 5328 mutex_enter(&zonehash_lock); 5329 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5330 mutex_exit(&zonehash_lock); 5331 return (set_errno(EINVAL)); 5332 } 5333 zone_hold(zone); 5334 mutex_exit(&zonehash_lock); 5335 5336 /* 5337 * At present most attributes can only be set on non-running, 5338 * non-global zones. 5339 */ 5340 zone_status = zone_status_get(zone); 5341 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) { 5342 err = EINVAL; 5343 goto done; 5344 } 5345 5346 switch (attr) { 5347 case ZONE_ATTR_INITNAME: 5348 err = zone_set_initname(zone, (const char *)buf); 5349 break; 5350 case ZONE_ATTR_BOOTARGS: 5351 err = zone_set_bootargs(zone, (const char *)buf); 5352 break; 5353 case ZONE_ATTR_BRAND: 5354 err = zone_set_brand(zone, (const char *)buf); 5355 break; 5356 case ZONE_ATTR_FS_ALLOWED: 5357 err = zone_set_fs_allowed(zone, (const char *)buf); 5358 break; 5359 case ZONE_ATTR_PHYS_MCAP: 5360 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 5361 break; 5362 case ZONE_ATTR_SCHED_CLASS: 5363 err = zone_set_sched_class(zone, (const char *)buf); 5364 break; 5365 case ZONE_ATTR_HOSTID: 5366 if (bufsize == sizeof (zone->zone_hostid)) { 5367 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 5368 err = 0; 5369 else 5370 err = EFAULT; 5371 } else { 5372 err = EINVAL; 5373 } 5374 break; 5375 case ZONE_ATTR_NETWORK: 5376 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) { 5377 err = EINVAL; 5378 break; 5379 } 5380 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5381 if (copyin(buf, zbuf, bufsize) != 0) { 5382 kmem_free(zbuf, bufsize); 5383 err = EFAULT; 5384 break; 5385 } 5386 err = zone_set_network(zoneid, zbuf); 5387 kmem_free(zbuf, bufsize); 5388 break; 5389 default: 5390 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 5391 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 5392 else 5393 err = EINVAL; 5394 } 5395 5396 done: 5397 zone_rele(zone); 5398 ASSERT(err != -1); 5399 return (err != 0 ? set_errno(err) : 0); 5400 } 5401 5402 /* 5403 * Return zero if the process has at least one vnode mapped in to its 5404 * address space which shouldn't be allowed to change zones. 5405 * 5406 * Also return zero if the process has any shared mappings which reserve 5407 * swap. This is because the counting for zone.max-swap does not allow swap 5408 * reservation to be shared between zones. zone swap reservation is counted 5409 * on zone->zone_max_swap. 5410 */ 5411 static int 5412 as_can_change_zones(void) 5413 { 5414 proc_t *pp = curproc; 5415 struct seg *seg; 5416 struct as *as = pp->p_as; 5417 vnode_t *vp; 5418 int allow = 1; 5419 5420 ASSERT(pp->p_as != &kas); 5421 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 5422 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 5423 5424 /* 5425 * Cannot enter zone with shared anon memory which 5426 * reserves swap. See comment above. 5427 */ 5428 if (seg_can_change_zones(seg) == B_FALSE) { 5429 allow = 0; 5430 break; 5431 } 5432 /* 5433 * if we can't get a backing vnode for this segment then skip 5434 * it. 5435 */ 5436 vp = NULL; 5437 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 5438 continue; 5439 if (!vn_can_change_zones(vp)) { /* bail on first match */ 5440 allow = 0; 5441 break; 5442 } 5443 } 5444 AS_LOCK_EXIT(as, &as->a_lock); 5445 return (allow); 5446 } 5447 5448 /* 5449 * Count swap reserved by curproc's address space 5450 */ 5451 static size_t 5452 as_swresv(void) 5453 { 5454 proc_t *pp = curproc; 5455 struct seg *seg; 5456 struct as *as = pp->p_as; 5457 size_t swap = 0; 5458 5459 ASSERT(pp->p_as != &kas); 5460 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 5461 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 5462 swap += seg_swresv(seg); 5463 5464 return (swap); 5465 } 5466 5467 /* 5468 * Systemcall entry point for zone_enter(). 5469 * 5470 * The current process is injected into said zone. In the process 5471 * it will change its project membership, privileges, rootdir/cwd, 5472 * zone-wide rctls, and pool association to match those of the zone. 5473 * 5474 * The first zone_enter() called while the zone is in the ZONE_IS_READY 5475 * state will transition it to ZONE_IS_RUNNING. Processes may only 5476 * enter a zone that is "ready" or "running". 5477 */ 5478 static int 5479 zone_enter(zoneid_t zoneid) 5480 { 5481 zone_t *zone; 5482 vnode_t *vp; 5483 proc_t *pp = curproc; 5484 contract_t *ct; 5485 cont_process_t *ctp; 5486 task_t *tk, *oldtk; 5487 kproject_t *zone_proj0; 5488 cred_t *cr, *newcr; 5489 pool_t *oldpool, *newpool; 5490 sess_t *sp; 5491 uid_t uid; 5492 zone_status_t status; 5493 int err = 0; 5494 rctl_entity_p_t e; 5495 size_t swap; 5496 kthread_id_t t; 5497 5498 if (secpolicy_zone_config(CRED()) != 0) 5499 return (set_errno(EPERM)); 5500 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5501 return (set_errno(EINVAL)); 5502 5503 /* 5504 * Stop all lwps so we don't need to hold a lock to look at 5505 * curproc->p_zone. This needs to happen before we grab any 5506 * locks to avoid deadlock (another lwp in the process could 5507 * be waiting for the held lock). 5508 */ 5509 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 5510 return (set_errno(EINTR)); 5511 5512 /* 5513 * Make sure we're not changing zones with files open or mapped in 5514 * to our address space which shouldn't be changing zones. 5515 */ 5516 if (!files_can_change_zones()) { 5517 err = EBADF; 5518 goto out; 5519 } 5520 if (!as_can_change_zones()) { 5521 err = EFAULT; 5522 goto out; 5523 } 5524 5525 mutex_enter(&zonehash_lock); 5526 if (pp->p_zone != global_zone) { 5527 mutex_exit(&zonehash_lock); 5528 err = EINVAL; 5529 goto out; 5530 } 5531 5532 zone = zone_find_all_by_id(zoneid); 5533 if (zone == NULL) { 5534 mutex_exit(&zonehash_lock); 5535 err = EINVAL; 5536 goto out; 5537 } 5538 5539 /* 5540 * To prevent processes in a zone from holding contracts on 5541 * extrazonal resources, and to avoid process contract 5542 * memberships which span zones, contract holders and processes 5543 * which aren't the sole members of their encapsulating process 5544 * contracts are not allowed to zone_enter. 5545 */ 5546 ctp = pp->p_ct_process; 5547 ct = &ctp->conp_contract; 5548 mutex_enter(&ct->ct_lock); 5549 mutex_enter(&pp->p_lock); 5550 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5551 mutex_exit(&pp->p_lock); 5552 mutex_exit(&ct->ct_lock); 5553 mutex_exit(&zonehash_lock); 5554 err = EINVAL; 5555 goto out; 5556 } 5557 5558 /* 5559 * Moreover, we don't allow processes whose encapsulating 5560 * process contracts have inherited extrazonal contracts. 5561 * While it would be easier to eliminate all process contracts 5562 * with inherited contracts, we need to be able to give a 5563 * restarted init (or other zone-penetrating process) its 5564 * predecessor's contracts. 5565 */ 5566 if (ctp->conp_ninherited != 0) { 5567 contract_t *next; 5568 for (next = list_head(&ctp->conp_inherited); next; 5569 next = list_next(&ctp->conp_inherited, next)) { 5570 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5571 mutex_exit(&pp->p_lock); 5572 mutex_exit(&ct->ct_lock); 5573 mutex_exit(&zonehash_lock); 5574 err = EINVAL; 5575 goto out; 5576 } 5577 } 5578 } 5579 5580 mutex_exit(&pp->p_lock); 5581 mutex_exit(&ct->ct_lock); 5582 5583 status = zone_status_get(zone); 5584 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 5585 /* 5586 * Can't join 5587 */ 5588 mutex_exit(&zonehash_lock); 5589 err = EINVAL; 5590 goto out; 5591 } 5592 5593 /* 5594 * Make sure new priv set is within the permitted set for caller 5595 */ 5596 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5597 mutex_exit(&zonehash_lock); 5598 err = EPERM; 5599 goto out; 5600 } 5601 /* 5602 * We want to momentarily drop zonehash_lock while we optimistically 5603 * bind curproc to the pool it should be running in. This is safe 5604 * since the zone can't disappear (we have a hold on it). 5605 */ 5606 zone_hold(zone); 5607 mutex_exit(&zonehash_lock); 5608 5609 /* 5610 * Grab pool_lock to keep the pools configuration from changing 5611 * and to stop ourselves from getting rebound to another pool 5612 * until we join the zone. 5613 */ 5614 if (pool_lock_intr() != 0) { 5615 zone_rele(zone); 5616 err = EINTR; 5617 goto out; 5618 } 5619 ASSERT(secpolicy_pool(CRED()) == 0); 5620 /* 5621 * Bind ourselves to the pool currently associated with the zone. 5622 */ 5623 oldpool = curproc->p_pool; 5624 newpool = zone_pool_get(zone); 5625 if (pool_state == POOL_ENABLED && newpool != oldpool && 5626 (err = pool_do_bind(newpool, P_PID, P_MYID, 5627 POOL_BIND_ALL)) != 0) { 5628 pool_unlock(); 5629 zone_rele(zone); 5630 goto out; 5631 } 5632 5633 /* 5634 * Grab cpu_lock now; we'll need it later when we call 5635 * task_join(). 5636 */ 5637 mutex_enter(&cpu_lock); 5638 mutex_enter(&zonehash_lock); 5639 /* 5640 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 5641 */ 5642 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 5643 /* 5644 * Can't join anymore. 5645 */ 5646 mutex_exit(&zonehash_lock); 5647 mutex_exit(&cpu_lock); 5648 if (pool_state == POOL_ENABLED && 5649 newpool != oldpool) 5650 (void) pool_do_bind(oldpool, P_PID, P_MYID, 5651 POOL_BIND_ALL); 5652 pool_unlock(); 5653 zone_rele(zone); 5654 err = EINVAL; 5655 goto out; 5656 } 5657 5658 /* 5659 * a_lock must be held while transfering locked memory and swap 5660 * reservation from the global zone to the non global zone because 5661 * asynchronous faults on the processes' address space can lock 5662 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 5663 * segments respectively. 5664 */ 5665 AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER); 5666 swap = as_swresv(); 5667 mutex_enter(&pp->p_lock); 5668 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 5669 /* verify that we do not exceed and task or lwp limits */ 5670 mutex_enter(&zone->zone_nlwps_lock); 5671 /* add new lwps to zone and zone's proj0 */ 5672 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 5673 zone->zone_nlwps += pp->p_lwpcnt; 5674 /* add 1 task to zone's proj0 */ 5675 zone_proj0->kpj_ntasks += 1; 5676 5677 zone_proj0->kpj_nprocs++; 5678 zone->zone_nprocs++; 5679 mutex_exit(&zone->zone_nlwps_lock); 5680 5681 mutex_enter(&zone->zone_mem_lock); 5682 zone->zone_locked_mem += pp->p_locked_mem; 5683 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 5684 zone->zone_max_swap += swap; 5685 mutex_exit(&zone->zone_mem_lock); 5686 5687 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5688 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 5689 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5690 5691 /* remove lwps and process from proc's old zone and old project */ 5692 mutex_enter(&pp->p_zone->zone_nlwps_lock); 5693 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 5694 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 5695 pp->p_task->tk_proj->kpj_nprocs--; 5696 pp->p_zone->zone_nprocs--; 5697 mutex_exit(&pp->p_zone->zone_nlwps_lock); 5698 5699 mutex_enter(&pp->p_zone->zone_mem_lock); 5700 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 5701 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 5702 pp->p_zone->zone_max_swap -= swap; 5703 mutex_exit(&pp->p_zone->zone_mem_lock); 5704 5705 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5706 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 5707 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5708 5709 pp->p_flag |= SZONETOP; 5710 pp->p_zone = zone; 5711 mutex_exit(&pp->p_lock); 5712 AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock); 5713 5714 /* 5715 * Joining the zone cannot fail from now on. 5716 * 5717 * This means that a lot of the following code can be commonized and 5718 * shared with zsched(). 5719 */ 5720 5721 /* 5722 * If the process contract fmri was inherited, we need to 5723 * flag this so that any contract status will not leak 5724 * extra zone information, svc_fmri in this case 5725 */ 5726 if (ctp->conp_svc_ctid != ct->ct_id) { 5727 mutex_enter(&ct->ct_lock); 5728 ctp->conp_svc_zone_enter = ct->ct_id; 5729 mutex_exit(&ct->ct_lock); 5730 } 5731 5732 /* 5733 * Reset the encapsulating process contract's zone. 5734 */ 5735 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 5736 contract_setzuniqid(ct, zone->zone_uniqid); 5737 5738 /* 5739 * Create a new task and associate the process with the project keyed 5740 * by (projid,zoneid). 5741 * 5742 * We might as well be in project 0; the global zone's projid doesn't 5743 * make much sense in a zone anyhow. 5744 * 5745 * This also increments zone_ntasks, and returns with p_lock held. 5746 */ 5747 tk = task_create(0, zone); 5748 oldtk = task_join(tk, 0); 5749 mutex_exit(&cpu_lock); 5750 5751 /* 5752 * call RCTLOP_SET functions on this proc 5753 */ 5754 e.rcep_p.zone = zone; 5755 e.rcep_t = RCENTITY_ZONE; 5756 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 5757 RCD_CALLBACK); 5758 mutex_exit(&pp->p_lock); 5759 5760 /* 5761 * We don't need to hold any of zsched's locks here; not only do we know 5762 * the process and zone aren't going away, we know its session isn't 5763 * changing either. 5764 * 5765 * By joining zsched's session here, we mimic the behavior in the 5766 * global zone of init's sid being the pid of sched. We extend this 5767 * to all zlogin-like zone_enter()'ing processes as well. 5768 */ 5769 mutex_enter(&pidlock); 5770 sp = zone->zone_zsched->p_sessp; 5771 sess_hold(zone->zone_zsched); 5772 mutex_enter(&pp->p_lock); 5773 pgexit(pp); 5774 sess_rele(pp->p_sessp, B_TRUE); 5775 pp->p_sessp = sp; 5776 pgjoin(pp, zone->zone_zsched->p_pidp); 5777 5778 /* 5779 * If any threads are scheduled to be placed on zone wait queue they 5780 * should abandon the idea since the wait queue is changing. 5781 * We need to be holding pidlock & p_lock to do this. 5782 */ 5783 if ((t = pp->p_tlist) != NULL) { 5784 do { 5785 thread_lock(t); 5786 /* 5787 * Kick this thread so that he doesn't sit 5788 * on a wrong wait queue. 5789 */ 5790 if (ISWAITING(t)) 5791 setrun_locked(t); 5792 5793 if (t->t_schedflag & TS_ANYWAITQ) 5794 t->t_schedflag &= ~ TS_ANYWAITQ; 5795 5796 thread_unlock(t); 5797 } while ((t = t->t_forw) != pp->p_tlist); 5798 } 5799 5800 /* 5801 * If there is a default scheduling class for the zone and it is not 5802 * the class we are currently in, change all of the threads in the 5803 * process to the new class. We need to be holding pidlock & p_lock 5804 * when we call parmsset so this is a good place to do it. 5805 */ 5806 if (zone->zone_defaultcid > 0 && 5807 zone->zone_defaultcid != curthread->t_cid) { 5808 pcparms_t pcparms; 5809 5810 pcparms.pc_cid = zone->zone_defaultcid; 5811 pcparms.pc_clparms[0] = 0; 5812 5813 /* 5814 * If setting the class fails, we still want to enter the zone. 5815 */ 5816 if ((t = pp->p_tlist) != NULL) { 5817 do { 5818 (void) parmsset(&pcparms, t); 5819 } while ((t = t->t_forw) != pp->p_tlist); 5820 } 5821 } 5822 5823 mutex_exit(&pp->p_lock); 5824 mutex_exit(&pidlock); 5825 5826 mutex_exit(&zonehash_lock); 5827 /* 5828 * We're firmly in the zone; let pools progress. 5829 */ 5830 pool_unlock(); 5831 task_rele(oldtk); 5832 /* 5833 * We don't need to retain a hold on the zone since we already 5834 * incremented zone_ntasks, so the zone isn't going anywhere. 5835 */ 5836 zone_rele(zone); 5837 5838 /* 5839 * Chroot 5840 */ 5841 vp = zone->zone_rootvp; 5842 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 5843 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 5844 5845 /* 5846 * Change process credentials 5847 */ 5848 newcr = cralloc(); 5849 mutex_enter(&pp->p_crlock); 5850 cr = pp->p_cred; 5851 crcopy_to(cr, newcr); 5852 crsetzone(newcr, zone); 5853 pp->p_cred = newcr; 5854 5855 /* 5856 * Restrict all process privilege sets to zone limit 5857 */ 5858 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 5859 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 5860 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 5861 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 5862 mutex_exit(&pp->p_crlock); 5863 crset(pp, newcr); 5864 5865 /* 5866 * Adjust upcount to reflect zone entry. 5867 */ 5868 uid = crgetruid(newcr); 5869 mutex_enter(&pidlock); 5870 upcount_dec(uid, GLOBAL_ZONEID); 5871 upcount_inc(uid, zoneid); 5872 mutex_exit(&pidlock); 5873 5874 /* 5875 * Set up core file path and content. 5876 */ 5877 set_core_defaults(); 5878 5879 out: 5880 /* 5881 * Let the other lwps continue. 5882 */ 5883 mutex_enter(&pp->p_lock); 5884 if (curthread != pp->p_agenttp) 5885 continuelwps(pp); 5886 mutex_exit(&pp->p_lock); 5887 5888 return (err != 0 ? set_errno(err) : 0); 5889 } 5890 5891 /* 5892 * Systemcall entry point for zone_list(2). 5893 * 5894 * Processes running in a (non-global) zone only see themselves. 5895 * On labeled systems, they see all zones whose label they dominate. 5896 */ 5897 static int 5898 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 5899 { 5900 zoneid_t *zoneids; 5901 zone_t *zone, *myzone; 5902 uint_t user_nzones, real_nzones; 5903 uint_t domi_nzones; 5904 int error; 5905 5906 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 5907 return (set_errno(EFAULT)); 5908 5909 myzone = curproc->p_zone; 5910 if (myzone != global_zone) { 5911 bslabel_t *mybslab; 5912 5913 if (!is_system_labeled()) { 5914 /* just return current zone */ 5915 real_nzones = domi_nzones = 1; 5916 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 5917 zoneids[0] = myzone->zone_id; 5918 } else { 5919 /* return all zones that are dominated */ 5920 mutex_enter(&zonehash_lock); 5921 real_nzones = zonecount; 5922 domi_nzones = 0; 5923 if (real_nzones > 0) { 5924 zoneids = kmem_alloc(real_nzones * 5925 sizeof (zoneid_t), KM_SLEEP); 5926 mybslab = label2bslabel(myzone->zone_slabel); 5927 for (zone = list_head(&zone_active); 5928 zone != NULL; 5929 zone = list_next(&zone_active, zone)) { 5930 if (zone->zone_id == GLOBAL_ZONEID) 5931 continue; 5932 if (zone != myzone && 5933 (zone->zone_flags & ZF_IS_SCRATCH)) 5934 continue; 5935 /* 5936 * Note that a label always dominates 5937 * itself, so myzone is always included 5938 * in the list. 5939 */ 5940 if (bldominates(mybslab, 5941 label2bslabel(zone->zone_slabel))) { 5942 zoneids[domi_nzones++] = 5943 zone->zone_id; 5944 } 5945 } 5946 } 5947 mutex_exit(&zonehash_lock); 5948 } 5949 } else { 5950 mutex_enter(&zonehash_lock); 5951 real_nzones = zonecount; 5952 domi_nzones = 0; 5953 if (real_nzones > 0) { 5954 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 5955 KM_SLEEP); 5956 for (zone = list_head(&zone_active); zone != NULL; 5957 zone = list_next(&zone_active, zone)) 5958 zoneids[domi_nzones++] = zone->zone_id; 5959 ASSERT(domi_nzones == real_nzones); 5960 } 5961 mutex_exit(&zonehash_lock); 5962 } 5963 5964 /* 5965 * If user has allocated space for fewer entries than we found, then 5966 * return only up to his limit. Either way, tell him exactly how many 5967 * we found. 5968 */ 5969 if (domi_nzones < user_nzones) 5970 user_nzones = domi_nzones; 5971 error = 0; 5972 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 5973 error = EFAULT; 5974 } else if (zoneidlist != NULL && user_nzones != 0) { 5975 if (copyout(zoneids, zoneidlist, 5976 user_nzones * sizeof (zoneid_t)) != 0) 5977 error = EFAULT; 5978 } 5979 5980 if (real_nzones > 0) 5981 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 5982 5983 if (error != 0) 5984 return (set_errno(error)); 5985 else 5986 return (0); 5987 } 5988 5989 /* 5990 * Systemcall entry point for zone_lookup(2). 5991 * 5992 * Non-global zones are only able to see themselves and (on labeled systems) 5993 * the zones they dominate. 5994 */ 5995 static zoneid_t 5996 zone_lookup(const char *zone_name) 5997 { 5998 char *kname; 5999 zone_t *zone; 6000 zoneid_t zoneid; 6001 int err; 6002 6003 if (zone_name == NULL) { 6004 /* return caller's zone id */ 6005 return (getzoneid()); 6006 } 6007 6008 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 6009 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 6010 kmem_free(kname, ZONENAME_MAX); 6011 return (set_errno(err)); 6012 } 6013 6014 mutex_enter(&zonehash_lock); 6015 zone = zone_find_all_by_name(kname); 6016 kmem_free(kname, ZONENAME_MAX); 6017 /* 6018 * In a non-global zone, can only lookup global and own name. 6019 * In Trusted Extensions zone label dominance rules apply. 6020 */ 6021 if (zone == NULL || 6022 zone_status_get(zone) < ZONE_IS_READY || 6023 !zone_list_access(zone)) { 6024 mutex_exit(&zonehash_lock); 6025 return (set_errno(EINVAL)); 6026 } else { 6027 zoneid = zone->zone_id; 6028 mutex_exit(&zonehash_lock); 6029 return (zoneid); 6030 } 6031 } 6032 6033 static int 6034 zone_version(int *version_arg) 6035 { 6036 int version = ZONE_SYSCALL_API_VERSION; 6037 6038 if (copyout(&version, version_arg, sizeof (int)) != 0) 6039 return (set_errno(EFAULT)); 6040 return (0); 6041 } 6042 6043 /* ARGSUSED */ 6044 long 6045 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 6046 { 6047 zone_def zs; 6048 int err; 6049 6050 switch (cmd) { 6051 case ZONE_CREATE: 6052 if (get_udatamodel() == DATAMODEL_NATIVE) { 6053 if (copyin(arg1, &zs, sizeof (zone_def))) { 6054 return (set_errno(EFAULT)); 6055 } 6056 } else { 6057 #ifdef _SYSCALL32_IMPL 6058 zone_def32 zs32; 6059 6060 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 6061 return (set_errno(EFAULT)); 6062 } 6063 zs.zone_name = 6064 (const char *)(unsigned long)zs32.zone_name; 6065 zs.zone_root = 6066 (const char *)(unsigned long)zs32.zone_root; 6067 zs.zone_privs = 6068 (const struct priv_set *) 6069 (unsigned long)zs32.zone_privs; 6070 zs.zone_privssz = zs32.zone_privssz; 6071 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 6072 zs.rctlbufsz = zs32.rctlbufsz; 6073 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 6074 zs.zfsbufsz = zs32.zfsbufsz; 6075 zs.extended_error = 6076 (int *)(unsigned long)zs32.extended_error; 6077 zs.match = zs32.match; 6078 zs.doi = zs32.doi; 6079 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 6080 zs.flags = zs32.flags; 6081 #else 6082 panic("get_udatamodel() returned bogus result\n"); 6083 #endif 6084 } 6085 6086 return (zone_create(zs.zone_name, zs.zone_root, 6087 zs.zone_privs, zs.zone_privssz, 6088 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 6089 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 6090 zs.extended_error, zs.match, zs.doi, 6091 zs.label, zs.flags)); 6092 case ZONE_BOOT: 6093 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 6094 case ZONE_DESTROY: 6095 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 6096 case ZONE_GETATTR: 6097 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 6098 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6099 case ZONE_SETATTR: 6100 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 6101 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6102 case ZONE_ENTER: 6103 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 6104 case ZONE_LIST: 6105 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 6106 case ZONE_SHUTDOWN: 6107 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 6108 case ZONE_LOOKUP: 6109 return (zone_lookup((const char *)arg1)); 6110 case ZONE_VERSION: 6111 return (zone_version((int *)arg1)); 6112 case ZONE_ADD_DATALINK: 6113 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 6114 (datalink_id_t)(uintptr_t)arg2)); 6115 case ZONE_DEL_DATALINK: 6116 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 6117 (datalink_id_t)(uintptr_t)arg2)); 6118 case ZONE_CHECK_DATALINK: { 6119 zoneid_t zoneid; 6120 boolean_t need_copyout; 6121 6122 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 6123 return (EFAULT); 6124 need_copyout = (zoneid == ALL_ZONES); 6125 err = zone_check_datalink(&zoneid, 6126 (datalink_id_t)(uintptr_t)arg2); 6127 if (err == 0 && need_copyout) { 6128 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 6129 err = EFAULT; 6130 } 6131 return (err == 0 ? 0 : set_errno(err)); 6132 } 6133 case ZONE_LIST_DATALINK: 6134 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 6135 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 6136 default: 6137 return (set_errno(EINVAL)); 6138 } 6139 } 6140 6141 struct zarg { 6142 zone_t *zone; 6143 zone_cmd_arg_t arg; 6144 }; 6145 6146 static int 6147 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 6148 { 6149 char *buf; 6150 size_t buflen; 6151 int error; 6152 6153 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 6154 buf = kmem_alloc(buflen, KM_SLEEP); 6155 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 6156 error = door_ki_open(buf, doorp); 6157 kmem_free(buf, buflen); 6158 return (error); 6159 } 6160 6161 static void 6162 zone_release_door(door_handle_t *doorp) 6163 { 6164 door_ki_rele(*doorp); 6165 *doorp = NULL; 6166 } 6167 6168 static void 6169 zone_ki_call_zoneadmd(struct zarg *zargp) 6170 { 6171 door_handle_t door = NULL; 6172 door_arg_t darg, save_arg; 6173 char *zone_name; 6174 size_t zone_namelen; 6175 zoneid_t zoneid; 6176 zone_t *zone; 6177 zone_cmd_arg_t arg; 6178 uint64_t uniqid; 6179 size_t size; 6180 int error; 6181 int retry; 6182 6183 zone = zargp->zone; 6184 arg = zargp->arg; 6185 kmem_free(zargp, sizeof (*zargp)); 6186 6187 zone_namelen = strlen(zone->zone_name) + 1; 6188 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 6189 bcopy(zone->zone_name, zone_name, zone_namelen); 6190 zoneid = zone->zone_id; 6191 uniqid = zone->zone_uniqid; 6192 /* 6193 * zoneadmd may be down, but at least we can empty out the zone. 6194 * We can ignore the return value of zone_empty() since we're called 6195 * from a kernel thread and know we won't be delivered any signals. 6196 */ 6197 ASSERT(curproc == &p0); 6198 (void) zone_empty(zone); 6199 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 6200 zone_rele(zone); 6201 6202 size = sizeof (arg); 6203 darg.rbuf = (char *)&arg; 6204 darg.data_ptr = (char *)&arg; 6205 darg.rsize = size; 6206 darg.data_size = size; 6207 darg.desc_ptr = NULL; 6208 darg.desc_num = 0; 6209 6210 save_arg = darg; 6211 /* 6212 * Since we're not holding a reference to the zone, any number of 6213 * things can go wrong, including the zone disappearing before we get a 6214 * chance to talk to zoneadmd. 6215 */ 6216 for (retry = 0; /* forever */; retry++) { 6217 if (door == NULL && 6218 (error = zone_lookup_door(zone_name, &door)) != 0) { 6219 goto next; 6220 } 6221 ASSERT(door != NULL); 6222 6223 if ((error = door_ki_upcall_limited(door, &darg, NULL, 6224 SIZE_MAX, 0)) == 0) { 6225 break; 6226 } 6227 switch (error) { 6228 case EINTR: 6229 /* FALLTHROUGH */ 6230 case EAGAIN: /* process may be forking */ 6231 /* 6232 * Back off for a bit 6233 */ 6234 break; 6235 case EBADF: 6236 zone_release_door(&door); 6237 if (zone_lookup_door(zone_name, &door) != 0) { 6238 /* 6239 * zoneadmd may be dead, but it may come back to 6240 * life later. 6241 */ 6242 break; 6243 } 6244 break; 6245 default: 6246 cmn_err(CE_WARN, 6247 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 6248 error); 6249 goto out; 6250 } 6251 next: 6252 /* 6253 * If this isn't the same zone_t that we originally had in mind, 6254 * then this is the same as if two kadmin requests come in at 6255 * the same time: the first one wins. This means we lose, so we 6256 * bail. 6257 */ 6258 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6259 /* 6260 * Problem is solved. 6261 */ 6262 break; 6263 } 6264 if (zone->zone_uniqid != uniqid) { 6265 /* 6266 * zoneid recycled 6267 */ 6268 zone_rele(zone); 6269 break; 6270 } 6271 /* 6272 * We could zone_status_timedwait(), but there doesn't seem to 6273 * be much point in doing that (plus, it would mean that 6274 * zone_free() isn't called until this thread exits). 6275 */ 6276 zone_rele(zone); 6277 delay(hz); 6278 darg = save_arg; 6279 } 6280 out: 6281 if (door != NULL) { 6282 zone_release_door(&door); 6283 } 6284 kmem_free(zone_name, zone_namelen); 6285 thread_exit(); 6286 } 6287 6288 /* 6289 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 6290 * kadmin(). The caller is a process in the zone. 6291 * 6292 * In order to shutdown the zone, we will hand off control to zoneadmd 6293 * (running in the global zone) via a door. We do a half-hearted job at 6294 * killing all processes in the zone, create a kernel thread to contact 6295 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 6296 * a form of generation number used to let zoneadmd (as well as 6297 * zone_destroy()) know exactly which zone they're re talking about. 6298 */ 6299 int 6300 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 6301 { 6302 struct zarg *zargp; 6303 zone_cmd_t zcmd; 6304 zone_t *zone; 6305 6306 zone = curproc->p_zone; 6307 ASSERT(getzoneid() != GLOBAL_ZONEID); 6308 6309 switch (cmd) { 6310 case A_SHUTDOWN: 6311 switch (fcn) { 6312 case AD_HALT: 6313 case AD_POWEROFF: 6314 zcmd = Z_HALT; 6315 break; 6316 case AD_BOOT: 6317 zcmd = Z_REBOOT; 6318 break; 6319 case AD_IBOOT: 6320 case AD_SBOOT: 6321 case AD_SIBOOT: 6322 case AD_NOSYNC: 6323 return (ENOTSUP); 6324 default: 6325 return (EINVAL); 6326 } 6327 break; 6328 case A_REBOOT: 6329 zcmd = Z_REBOOT; 6330 break; 6331 case A_FTRACE: 6332 case A_REMOUNT: 6333 case A_FREEZE: 6334 case A_DUMP: 6335 case A_CONFIG: 6336 return (ENOTSUP); 6337 default: 6338 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 6339 return (EINVAL); 6340 } 6341 6342 if (secpolicy_zone_admin(credp, B_FALSE)) 6343 return (EPERM); 6344 mutex_enter(&zone_status_lock); 6345 6346 /* 6347 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 6348 * is in the zone. 6349 */ 6350 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 6351 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 6352 /* 6353 * This zone is already on its way down. 6354 */ 6355 mutex_exit(&zone_status_lock); 6356 return (0); 6357 } 6358 /* 6359 * Prevent future zone_enter()s 6360 */ 6361 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 6362 mutex_exit(&zone_status_lock); 6363 6364 /* 6365 * Kill everyone now and call zoneadmd later. 6366 * zone_ki_call_zoneadmd() will do a more thorough job of this 6367 * later. 6368 */ 6369 killall(zone->zone_id); 6370 /* 6371 * Now, create the thread to contact zoneadmd and do the rest of the 6372 * work. This thread can't be created in our zone otherwise 6373 * zone_destroy() would deadlock. 6374 */ 6375 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 6376 zargp->arg.cmd = zcmd; 6377 zargp->arg.uniqid = zone->zone_uniqid; 6378 zargp->zone = zone; 6379 (void) strcpy(zargp->arg.locale, "C"); 6380 /* mdep was already copied in for us by uadmin */ 6381 if (mdep != NULL) 6382 (void) strlcpy(zargp->arg.bootbuf, mdep, 6383 sizeof (zargp->arg.bootbuf)); 6384 zone_hold(zone); 6385 6386 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 6387 TS_RUN, minclsyspri); 6388 exit(CLD_EXITED, 0); 6389 6390 return (EINVAL); 6391 } 6392 6393 /* 6394 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 6395 * status to ZONE_IS_SHUTTING_DOWN. 6396 * 6397 * This function also shuts down all running zones to ensure that they won't 6398 * fork new processes. 6399 */ 6400 void 6401 zone_shutdown_global(void) 6402 { 6403 zone_t *current_zonep; 6404 6405 ASSERT(INGLOBALZONE(curproc)); 6406 mutex_enter(&zonehash_lock); 6407 mutex_enter(&zone_status_lock); 6408 6409 /* Modify the global zone's status first. */ 6410 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 6411 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 6412 6413 /* 6414 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 6415 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 6416 * could cause assertions to fail (e.g., assertions about a zone's 6417 * state during initialization, readying, or booting) or produce races. 6418 * We'll let threads continue to initialize and ready new zones: they'll 6419 * fail to boot the new zones when they see that the global zone is 6420 * shutting down. 6421 */ 6422 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 6423 current_zonep = list_next(&zone_active, current_zonep)) { 6424 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 6425 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 6426 } 6427 mutex_exit(&zone_status_lock); 6428 mutex_exit(&zonehash_lock); 6429 } 6430 6431 /* 6432 * Returns true if the named dataset is visible in the current zone. 6433 * The 'write' parameter is set to 1 if the dataset is also writable. 6434 */ 6435 int 6436 zone_dataset_visible(const char *dataset, int *write) 6437 { 6438 static int zfstype = -1; 6439 zone_dataset_t *zd; 6440 size_t len; 6441 zone_t *zone = curproc->p_zone; 6442 const char *name = NULL; 6443 vfs_t *vfsp = NULL; 6444 6445 if (dataset[0] == '\0') 6446 return (0); 6447 6448 /* 6449 * Walk the list once, looking for datasets which match exactly, or 6450 * specify a dataset underneath an exported dataset. If found, return 6451 * true and note that it is writable. 6452 */ 6453 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6454 zd = list_next(&zone->zone_datasets, zd)) { 6455 6456 len = strlen(zd->zd_dataset); 6457 if (strlen(dataset) >= len && 6458 bcmp(dataset, zd->zd_dataset, len) == 0 && 6459 (dataset[len] == '\0' || dataset[len] == '/' || 6460 dataset[len] == '@')) { 6461 if (write) 6462 *write = 1; 6463 return (1); 6464 } 6465 } 6466 6467 /* 6468 * Walk the list a second time, searching for datasets which are parents 6469 * of exported datasets. These should be visible, but read-only. 6470 * 6471 * Note that we also have to support forms such as 'pool/dataset/', with 6472 * a trailing slash. 6473 */ 6474 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6475 zd = list_next(&zone->zone_datasets, zd)) { 6476 6477 len = strlen(dataset); 6478 if (dataset[len - 1] == '/') 6479 len--; /* Ignore trailing slash */ 6480 if (len < strlen(zd->zd_dataset) && 6481 bcmp(dataset, zd->zd_dataset, len) == 0 && 6482 zd->zd_dataset[len] == '/') { 6483 if (write) 6484 *write = 0; 6485 return (1); 6486 } 6487 } 6488 6489 /* 6490 * We reach here if the given dataset is not found in the zone_dataset 6491 * list. Check if this dataset was added as a filesystem (ie. "add fs") 6492 * instead of delegation. For this we search for the dataset in the 6493 * zone_vfslist of this zone. If found, return true and note that it is 6494 * not writable. 6495 */ 6496 6497 /* 6498 * Initialize zfstype if it is not initialized yet. 6499 */ 6500 if (zfstype == -1) { 6501 struct vfssw *vswp = vfs_getvfssw("zfs"); 6502 zfstype = vswp - vfssw; 6503 vfs_unrefvfssw(vswp); 6504 } 6505 6506 vfs_list_read_lock(); 6507 vfsp = zone->zone_vfslist; 6508 do { 6509 ASSERT(vfsp); 6510 if (vfsp->vfs_fstype == zfstype) { 6511 name = refstr_value(vfsp->vfs_resource); 6512 6513 /* 6514 * Check if we have an exact match. 6515 */ 6516 if (strcmp(dataset, name) == 0) { 6517 vfs_list_unlock(); 6518 if (write) 6519 *write = 0; 6520 return (1); 6521 } 6522 /* 6523 * We need to check if we are looking for parents of 6524 * a dataset. These should be visible, but read-only. 6525 */ 6526 len = strlen(dataset); 6527 if (dataset[len - 1] == '/') 6528 len--; 6529 6530 if (len < strlen(name) && 6531 bcmp(dataset, name, len) == 0 && name[len] == '/') { 6532 vfs_list_unlock(); 6533 if (write) 6534 *write = 0; 6535 return (1); 6536 } 6537 } 6538 vfsp = vfsp->vfs_zone_next; 6539 } while (vfsp != zone->zone_vfslist); 6540 6541 vfs_list_unlock(); 6542 return (0); 6543 } 6544 6545 /* 6546 * zone_find_by_any_path() - 6547 * 6548 * kernel-private routine similar to zone_find_by_path(), but which 6549 * effectively compares against zone paths rather than zonerootpath 6550 * (i.e., the last component of zonerootpaths, which should be "root/", 6551 * are not compared.) This is done in order to accurately identify all 6552 * paths, whether zone-visible or not, including those which are parallel 6553 * to /root/, such as /dev/, /home/, etc... 6554 * 6555 * If the specified path does not fall under any zone path then global 6556 * zone is returned. 6557 * 6558 * The treat_abs parameter indicates whether the path should be treated as 6559 * an absolute path although it does not begin with "/". (This supports 6560 * nfs mount syntax such as host:any/path.) 6561 * 6562 * The caller is responsible for zone_rele of the returned zone. 6563 */ 6564 zone_t * 6565 zone_find_by_any_path(const char *path, boolean_t treat_abs) 6566 { 6567 zone_t *zone; 6568 int path_offset = 0; 6569 6570 if (path == NULL) { 6571 zone_hold(global_zone); 6572 return (global_zone); 6573 } 6574 6575 if (*path != '/') { 6576 ASSERT(treat_abs); 6577 path_offset = 1; 6578 } 6579 6580 mutex_enter(&zonehash_lock); 6581 for (zone = list_head(&zone_active); zone != NULL; 6582 zone = list_next(&zone_active, zone)) { 6583 char *c; 6584 size_t pathlen; 6585 char *rootpath_start; 6586 6587 if (zone == global_zone) /* skip global zone */ 6588 continue; 6589 6590 /* scan backwards to find start of last component */ 6591 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 6592 do { 6593 c--; 6594 } while (*c != '/'); 6595 6596 pathlen = c - zone->zone_rootpath + 1 - path_offset; 6597 rootpath_start = (zone->zone_rootpath + path_offset); 6598 if (strncmp(path, rootpath_start, pathlen) == 0) 6599 break; 6600 } 6601 if (zone == NULL) 6602 zone = global_zone; 6603 zone_hold(zone); 6604 mutex_exit(&zonehash_lock); 6605 return (zone); 6606 } 6607 6608 /* 6609 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 6610 * zone_dl_t pointer if found, and NULL otherwise. 6611 */ 6612 static zone_dl_t * 6613 zone_find_dl(zone_t *zone, datalink_id_t linkid) 6614 { 6615 zone_dl_t *zdl; 6616 6617 ASSERT(mutex_owned(&zone->zone_lock)); 6618 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6619 zdl = list_next(&zone->zone_dl_list, zdl)) { 6620 if (zdl->zdl_id == linkid) 6621 break; 6622 } 6623 return (zdl); 6624 } 6625 6626 static boolean_t 6627 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 6628 { 6629 boolean_t exists; 6630 6631 mutex_enter(&zone->zone_lock); 6632 exists = (zone_find_dl(zone, linkid) != NULL); 6633 mutex_exit(&zone->zone_lock); 6634 return (exists); 6635 } 6636 6637 /* 6638 * Add an data link name for the zone. 6639 */ 6640 static int 6641 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 6642 { 6643 zone_dl_t *zdl; 6644 zone_t *zone; 6645 zone_t *thiszone; 6646 6647 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 6648 return (set_errno(ENXIO)); 6649 6650 /* Verify that the datalink ID doesn't already belong to a zone. */ 6651 mutex_enter(&zonehash_lock); 6652 for (zone = list_head(&zone_active); zone != NULL; 6653 zone = list_next(&zone_active, zone)) { 6654 if (zone_dl_exists(zone, linkid)) { 6655 mutex_exit(&zonehash_lock); 6656 zone_rele(thiszone); 6657 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 6658 } 6659 } 6660 6661 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 6662 zdl->zdl_id = linkid; 6663 zdl->zdl_net = NULL; 6664 mutex_enter(&thiszone->zone_lock); 6665 list_insert_head(&thiszone->zone_dl_list, zdl); 6666 mutex_exit(&thiszone->zone_lock); 6667 mutex_exit(&zonehash_lock); 6668 zone_rele(thiszone); 6669 return (0); 6670 } 6671 6672 static int 6673 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 6674 { 6675 zone_dl_t *zdl; 6676 zone_t *zone; 6677 int err = 0; 6678 6679 if ((zone = zone_find_by_id(zoneid)) == NULL) 6680 return (set_errno(EINVAL)); 6681 6682 mutex_enter(&zone->zone_lock); 6683 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6684 err = ENXIO; 6685 } else { 6686 list_remove(&zone->zone_dl_list, zdl); 6687 if (zdl->zdl_net != NULL) 6688 nvlist_free(zdl->zdl_net); 6689 kmem_free(zdl, sizeof (zone_dl_t)); 6690 } 6691 mutex_exit(&zone->zone_lock); 6692 zone_rele(zone); 6693 return (err == 0 ? 0 : set_errno(err)); 6694 } 6695 6696 /* 6697 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 6698 * the linkid. Otherwise we just check if the specified zoneidp has been 6699 * assigned the supplied linkid. 6700 */ 6701 int 6702 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 6703 { 6704 zone_t *zone; 6705 int err = ENXIO; 6706 6707 if (*zoneidp != ALL_ZONES) { 6708 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 6709 if (zone_dl_exists(zone, linkid)) 6710 err = 0; 6711 zone_rele(zone); 6712 } 6713 return (err); 6714 } 6715 6716 mutex_enter(&zonehash_lock); 6717 for (zone = list_head(&zone_active); zone != NULL; 6718 zone = list_next(&zone_active, zone)) { 6719 if (zone_dl_exists(zone, linkid)) { 6720 *zoneidp = zone->zone_id; 6721 err = 0; 6722 break; 6723 } 6724 } 6725 mutex_exit(&zonehash_lock); 6726 return (err); 6727 } 6728 6729 /* 6730 * Get the list of datalink IDs assigned to a zone. 6731 * 6732 * On input, *nump is the number of datalink IDs that can fit in the supplied 6733 * idarray. Upon return, *nump is either set to the number of datalink IDs 6734 * that were placed in the array if the array was large enough, or to the 6735 * number of datalink IDs that the function needs to place in the array if the 6736 * array is too small. 6737 */ 6738 static int 6739 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 6740 { 6741 uint_t num, dlcount; 6742 zone_t *zone; 6743 zone_dl_t *zdl; 6744 datalink_id_t *idptr = idarray; 6745 6746 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 6747 return (set_errno(EFAULT)); 6748 if ((zone = zone_find_by_id(zoneid)) == NULL) 6749 return (set_errno(ENXIO)); 6750 6751 num = 0; 6752 mutex_enter(&zone->zone_lock); 6753 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6754 zdl = list_next(&zone->zone_dl_list, zdl)) { 6755 /* 6756 * If the list is bigger than what the caller supplied, just 6757 * count, don't do copyout. 6758 */ 6759 if (++num > dlcount) 6760 continue; 6761 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 6762 mutex_exit(&zone->zone_lock); 6763 zone_rele(zone); 6764 return (set_errno(EFAULT)); 6765 } 6766 idptr++; 6767 } 6768 mutex_exit(&zone->zone_lock); 6769 zone_rele(zone); 6770 6771 /* Increased or decreased, caller should be notified. */ 6772 if (num != dlcount) { 6773 if (copyout(&num, nump, sizeof (num)) != 0) 6774 return (set_errno(EFAULT)); 6775 } 6776 return (0); 6777 } 6778 6779 /* 6780 * Public interface for looking up a zone by zoneid. It's a customized version 6781 * for netstack_zone_create(). It can only be called from the zsd create 6782 * callbacks, since it doesn't have reference on the zone structure hence if 6783 * it is called elsewhere the zone could disappear after the zonehash_lock 6784 * is dropped. 6785 * 6786 * Furthermore it 6787 * 1. Doesn't check the status of the zone. 6788 * 2. It will be called even before zone_init is called, in that case the 6789 * address of zone0 is returned directly, and netstack_zone_create() 6790 * will only assign a value to zone0.zone_netstack, won't break anything. 6791 * 3. Returns without the zone being held. 6792 */ 6793 zone_t * 6794 zone_find_by_id_nolock(zoneid_t zoneid) 6795 { 6796 zone_t *zone; 6797 6798 mutex_enter(&zonehash_lock); 6799 if (zonehashbyid == NULL) 6800 zone = &zone0; 6801 else 6802 zone = zone_find_all_by_id(zoneid); 6803 mutex_exit(&zonehash_lock); 6804 return (zone); 6805 } 6806 6807 /* 6808 * Walk the datalinks for a given zone 6809 */ 6810 int 6811 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 6812 void *data) 6813 { 6814 zone_t *zone; 6815 zone_dl_t *zdl; 6816 datalink_id_t *idarray; 6817 uint_t idcount = 0; 6818 int i, ret = 0; 6819 6820 if ((zone = zone_find_by_id(zoneid)) == NULL) 6821 return (ENOENT); 6822 6823 /* 6824 * We first build an array of linkid's so that we can walk these and 6825 * execute the callback with the zone_lock dropped. 6826 */ 6827 mutex_enter(&zone->zone_lock); 6828 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6829 zdl = list_next(&zone->zone_dl_list, zdl)) { 6830 idcount++; 6831 } 6832 6833 if (idcount == 0) { 6834 mutex_exit(&zone->zone_lock); 6835 zone_rele(zone); 6836 return (0); 6837 } 6838 6839 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 6840 if (idarray == NULL) { 6841 mutex_exit(&zone->zone_lock); 6842 zone_rele(zone); 6843 return (ENOMEM); 6844 } 6845 6846 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6847 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 6848 idarray[i] = zdl->zdl_id; 6849 } 6850 6851 mutex_exit(&zone->zone_lock); 6852 6853 for (i = 0; i < idcount && ret == 0; i++) { 6854 if ((ret = (*cb)(idarray[i], data)) != 0) 6855 break; 6856 } 6857 6858 zone_rele(zone); 6859 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 6860 return (ret); 6861 } 6862 6863 static char * 6864 zone_net_type2name(int type) 6865 { 6866 switch (type) { 6867 case ZONE_NETWORK_ADDRESS: 6868 return (ZONE_NET_ADDRNAME); 6869 case ZONE_NETWORK_DEFROUTER: 6870 return (ZONE_NET_RTRNAME); 6871 default: 6872 return (NULL); 6873 } 6874 } 6875 6876 static int 6877 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf) 6878 { 6879 zone_t *zone; 6880 zone_dl_t *zdl; 6881 nvlist_t *nvl; 6882 int err = 0; 6883 uint8_t *new = NULL; 6884 char *nvname; 6885 int bufsize; 6886 datalink_id_t linkid = znbuf->zn_linkid; 6887 6888 if (secpolicy_zone_config(CRED()) != 0) 6889 return (set_errno(EPERM)); 6890 6891 if (zoneid == GLOBAL_ZONEID) 6892 return (set_errno(EINVAL)); 6893 6894 nvname = zone_net_type2name(znbuf->zn_type); 6895 bufsize = znbuf->zn_len; 6896 new = znbuf->zn_val; 6897 if (nvname == NULL) 6898 return (set_errno(EINVAL)); 6899 6900 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6901 return (set_errno(EINVAL)); 6902 } 6903 6904 mutex_enter(&zone->zone_lock); 6905 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6906 err = ENXIO; 6907 goto done; 6908 } 6909 if ((nvl = zdl->zdl_net) == NULL) { 6910 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) { 6911 err = ENOMEM; 6912 goto done; 6913 } else { 6914 zdl->zdl_net = nvl; 6915 } 6916 } 6917 if (nvlist_exists(nvl, nvname)) { 6918 err = EINVAL; 6919 goto done; 6920 } 6921 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize); 6922 ASSERT(err == 0); 6923 done: 6924 mutex_exit(&zone->zone_lock); 6925 zone_rele(zone); 6926 if (err != 0) 6927 return (set_errno(err)); 6928 else 6929 return (0); 6930 } 6931 6932 static int 6933 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf) 6934 { 6935 zone_t *zone; 6936 zone_dl_t *zdl; 6937 nvlist_t *nvl; 6938 uint8_t *ptr; 6939 uint_t psize; 6940 int err = 0; 6941 char *nvname; 6942 int bufsize; 6943 void *buf; 6944 datalink_id_t linkid = znbuf->zn_linkid; 6945 6946 if (zoneid == GLOBAL_ZONEID) 6947 return (set_errno(EINVAL)); 6948 6949 nvname = zone_net_type2name(znbuf->zn_type); 6950 bufsize = znbuf->zn_len; 6951 buf = znbuf->zn_val; 6952 6953 if (nvname == NULL) 6954 return (set_errno(EINVAL)); 6955 if ((zone = zone_find_by_id(zoneid)) == NULL) 6956 return (set_errno(EINVAL)); 6957 6958 mutex_enter(&zone->zone_lock); 6959 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6960 err = ENXIO; 6961 goto done; 6962 } 6963 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) { 6964 err = ENOENT; 6965 goto done; 6966 } 6967 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize); 6968 ASSERT(err == 0); 6969 6970 if (psize > bufsize) { 6971 err = ENOBUFS; 6972 goto done; 6973 } 6974 znbuf->zn_len = psize; 6975 bcopy(ptr, buf, psize); 6976 done: 6977 mutex_exit(&zone->zone_lock); 6978 zone_rele(zone); 6979 if (err != 0) 6980 return (set_errno(err)); 6981 else 6982 return (0); 6983 } 6984