1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/systm.h> 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/thread.h> 32 #include <sys/cpuvar.h> 33 #include <sys/cpupart.h> 34 #include <sys/kmem.h> 35 #include <sys/cmn_err.h> 36 #include <sys/kstat.h> 37 #include <sys/processor.h> 38 #include <sys/disp.h> 39 #include <sys/group.h> 40 #include <sys/pg.h> 41 42 /* 43 * Processor groups 44 * 45 * With the introduction of Chip Multi-Threaded (CMT) processor architectures, 46 * it is no longer necessarily true that a given physical processor module 47 * will present itself as a single schedulable entity (cpu_t). Rather, each 48 * chip and/or processor core may present itself as one or more "logical" CPUs. 49 * 50 * The logical CPUs presented may share physical components such as caches, 51 * data pipes, execution pipelines, FPUs, etc. It is advantageous to have the 52 * kernel be aware of the relationships existing between logical CPUs so that 53 * the appropriate optmizations may be employed. 54 * 55 * The processor group abstraction represents a set of logical CPUs that 56 * generally share some sort of physical or characteristic relationship. 57 * 58 * In the case of a physical sharing relationship, the CPUs in the group may 59 * share a pipeline, cache or floating point unit. In the case of a logical 60 * relationship, a PG may represent the set of CPUs in a processor set, or the 61 * set of CPUs running at a particular clock speed. 62 * 63 * The generic processor group structure, pg_t, contains the elements generic 64 * to a group of CPUs. Depending on the nature of the CPU relationship 65 * (LOGICAL or PHYSICAL), a pointer to a pg may be recast to a "view" of that 66 * PG where more specific data is represented. 67 * 68 * As an example, a PG representing a PHYSICAL relationship, may be recast to 69 * a pghw_t, where data further describing the hardware sharing relationship 70 * is maintained. See pghw.c and pghw.h for details on physical PGs. 71 * 72 * At this time a more specialized casting of a PG representing a LOGICAL 73 * relationship has not been implemented, but the architecture allows for this 74 * in the future. 75 * 76 * Processor Group Classes 77 * 78 * Processor group consumers may wish to maintain and associate specific 79 * data with the PGs they create. For this reason, a mechanism for creating 80 * class specific PGs exists. Classes may overload the default functions for 81 * creating, destroying, and associating CPUs with PGs, and may also register 82 * class specific callbacks to be invoked when the CPU related system 83 * configuration changes. Class specific data is stored/associated with 84 * PGs by incorporating the pg_t (or pghw_t, as appropriate), as the first 85 * element of a class specific PG object. In memory, such a structure may look 86 * like: 87 * 88 * ----------------------- - - - 89 * | common | | | | <--(pg_t *) 90 * ----------------------- | | - 91 * | HW specific | | | <-----(pghw_t *) 92 * ----------------------- | - 93 * | class specific | | <-------(pg_cmt_t *) 94 * ----------------------- - 95 * 96 * Access to the PG class specific data can be had by casting a pointer to 97 * it's class specific view. 98 */ 99 100 static pg_t *pg_alloc_default(pg_class_t); 101 static void pg_free_default(pg_t *); 102 103 /* 104 * Bootstrap CPU specific PG data 105 * See pg_cpu_bootstrap() 106 */ 107 static cpu_pg_t bootstrap_pg_data; 108 109 /* 110 * Bitset of allocated PG ids (they are sequential) 111 * and the next free id in the set. 112 */ 113 static bitset_t pg_id_set; 114 static pgid_t pg_id_next = 0; 115 116 /* 117 * Default and externed PG ops vectors 118 */ 119 static struct pg_ops pg_ops_default = { 120 pg_alloc_default, /* alloc */ 121 pg_free_default, /* free */ 122 NULL, /* cpu_init */ 123 NULL, /* cpu_fini */ 124 NULL, /* cpu_active */ 125 NULL, /* cpu_inactive */ 126 NULL, /* cpupart_in */ 127 NULL, /* cpupart_out */ 128 NULL, /* cpupart_move */ 129 NULL, /* cpu_belongs */ 130 }; 131 132 /* 133 * Class specific PG allocation callbacks 134 */ 135 #define PG_ALLOC(class) \ 136 (pg_classes[class].pgc_ops->alloc ? \ 137 pg_classes[class].pgc_ops->alloc() : \ 138 pg_classes[pg_default_cid].pgc_ops->alloc()) 139 140 #define PG_FREE(pg) \ 141 ((pg)->pg_class->pgc_ops->free ? \ 142 (pg)->pg_class->pgc_ops->free(pg) : \ 143 pg_classes[pg_default_cid].pgc_ops->free(pg)) \ 144 145 146 /* 147 * Class specific membership test callback 148 */ 149 #define PG_CPU_BELONGS(pg, cp) \ 150 ((pg)->pg_class->pgc_ops->cpu_belongs ? \ 151 (pg)->pg_class->pgc_ops->cpu_belongs(pg, cp) : 0) \ 152 153 /* 154 * CPU configuration callbacks 155 */ 156 #define PG_CPU_INIT(class, cp) \ 157 { \ 158 if (pg_classes[class].pgc_ops->cpu_init) \ 159 pg_classes[class].pgc_ops->cpu_init(cp); \ 160 } 161 162 #define PG_CPU_FINI(class, cp) \ 163 { \ 164 if (pg_classes[class].pgc_ops->cpu_fini) \ 165 pg_classes[class].pgc_ops->cpu_fini(cp); \ 166 } 167 168 #define PG_CPU_ACTIVE(class, cp) \ 169 { \ 170 if (pg_classes[class].pgc_ops->cpu_active) \ 171 pg_classes[class].pgc_ops->cpu_active(cp); \ 172 } 173 174 #define PG_CPU_INACTIVE(class, cp) \ 175 { \ 176 if (pg_classes[class].pgc_ops->cpu_inactive) \ 177 pg_classes[class].pgc_ops->cpu_inactive(cp); \ 178 } 179 180 /* 181 * CPU / cpupart configuration callbacks 182 */ 183 #define PG_CPUPART_IN(class, cp, pp) \ 184 { \ 185 if (pg_classes[class].pgc_ops->cpupart_in) \ 186 pg_classes[class].pgc_ops->cpupart_in(cp, pp); \ 187 } 188 189 #define PG_CPUPART_OUT(class, cp, pp) \ 190 { \ 191 if (pg_classes[class].pgc_ops->cpupart_out) \ 192 pg_classes[class].pgc_ops->cpupart_out(cp, pp); \ 193 } 194 195 #define PG_CPUPART_MOVE(class, cp, old, new) \ 196 { \ 197 if (pg_classes[class].pgc_ops->cpupart_move) \ 198 pg_classes[class].pgc_ops->cpupart_move(cp, old, new); \ 199 } 200 201 202 203 static pg_class_t *pg_classes; 204 static int pg_nclasses; 205 206 static pg_cid_t pg_default_cid; 207 208 /* 209 * Initialze common PG subsystem. Perform CPU 0 initialization 210 */ 211 void 212 pg_init(void) 213 { 214 pg_default_cid = 215 pg_class_register("default", &pg_ops_default, PGR_LOGICAL); 216 } 217 218 /* 219 * Perform CPU 0 initialization 220 */ 221 void 222 pg_cpu0_init(void) 223 { 224 extern void pghw_physid_create(); 225 226 /* 227 * Create the physical ID cache for the boot CPU 228 */ 229 pghw_physid_create(CPU); 230 231 /* 232 * pg_cpu_* require that cpu_lock be held 233 */ 234 mutex_enter(&cpu_lock); 235 236 pg_cpu_init(CPU); 237 pg_cpupart_in(CPU, &cp_default); 238 pg_cpu_active(CPU); 239 240 mutex_exit(&cpu_lock); 241 } 242 243 /* 244 * Register a new PG class 245 */ 246 pg_cid_t 247 pg_class_register(char *name, struct pg_ops *ops, pg_relation_t relation) 248 { 249 pg_class_t *newclass; 250 pg_class_t *classes_old; 251 id_t cid; 252 253 mutex_enter(&cpu_lock); 254 255 /* 256 * Allocate a new pg_class_t in the pg_classes array 257 */ 258 if (pg_nclasses == 0) { 259 pg_classes = kmem_zalloc(sizeof (pg_class_t), KM_SLEEP); 260 } else { 261 classes_old = pg_classes; 262 pg_classes = 263 kmem_zalloc(sizeof (pg_class_t) * (pg_nclasses + 1), 264 KM_SLEEP); 265 (void) kcopy(classes_old, pg_classes, 266 sizeof (pg_class_t) * pg_nclasses); 267 kmem_free(classes_old, sizeof (pg_class_t) * pg_nclasses); 268 } 269 270 cid = pg_nclasses++; 271 newclass = &pg_classes[cid]; 272 273 (void) strncpy(newclass->pgc_name, name, PG_CLASS_NAME_MAX); 274 newclass->pgc_id = cid; 275 newclass->pgc_ops = ops; 276 newclass->pgc_relation = relation; 277 278 mutex_exit(&cpu_lock); 279 280 return (cid); 281 } 282 283 /* 284 * Try to find an existing pg in set in which to place cp. 285 * Returns the pg if found, and NULL otherwise. 286 * In the event that the CPU could belong to multiple 287 * PGs in the set, the first matching PG will be returned. 288 */ 289 pg_t * 290 pg_cpu_find_pg(cpu_t *cp, group_t *set) 291 { 292 pg_t *pg; 293 group_iter_t i; 294 295 group_iter_init(&i); 296 while ((pg = group_iterate(set, &i)) != NULL) { 297 /* 298 * Ask the class if the CPU belongs here 299 */ 300 if (PG_CPU_BELONGS(pg, cp)) 301 return (pg); 302 } 303 return (NULL); 304 } 305 306 /* 307 * Iterate over the CPUs in a PG after initializing 308 * the iterator with PG_CPU_ITR_INIT() 309 */ 310 cpu_t * 311 pg_cpu_next(pg_cpu_itr_t *itr) 312 { 313 cpu_t *cpu; 314 pg_t *pg = itr->pg; 315 316 cpu = group_iterate(&pg->pg_cpus, &itr->position); 317 return (cpu); 318 } 319 320 /* 321 * Create a PG of a given class. 322 * This routine may block. 323 */ 324 pg_t * 325 pg_create(pg_cid_t cid) 326 { 327 pg_t *pg; 328 pgid_t id; 329 330 ASSERT(MUTEX_HELD(&cpu_lock)); 331 332 /* 333 * Call the class specific PG allocation routine 334 */ 335 pg = PG_ALLOC(cid); 336 pg->pg_class = &pg_classes[cid]; 337 pg->pg_relation = pg->pg_class->pgc_relation; 338 339 /* 340 * Find the next free sequential pg id 341 */ 342 do { 343 if (pg_id_next >= bitset_capacity(&pg_id_set)) 344 bitset_resize(&pg_id_set, pg_id_next + 1); 345 id = pg_id_next++; 346 } while (bitset_in_set(&pg_id_set, id)); 347 348 pg->pg_id = id; 349 bitset_add(&pg_id_set, pg->pg_id); 350 351 /* 352 * Create the PG's CPU group 353 */ 354 group_create(&pg->pg_cpus); 355 356 return (pg); 357 } 358 359 /* 360 * Destroy a PG. 361 * This routine may block. 362 */ 363 void 364 pg_destroy(pg_t *pg) 365 { 366 ASSERT(MUTEX_HELD(&cpu_lock)); 367 368 group_destroy(&pg->pg_cpus); 369 370 /* 371 * Unassign the pg_id 372 */ 373 if (pg_id_next > pg->pg_id) 374 pg_id_next = pg->pg_id; 375 bitset_del(&pg_id_set, pg->pg_id); 376 377 /* 378 * Invoke the class specific de-allocation routine 379 */ 380 PG_FREE(pg); 381 } 382 383 /* 384 * Add the CPU "cp" to processor group "pg" 385 * This routine may block. 386 */ 387 void 388 pg_cpu_add(pg_t *pg, cpu_t *cp) 389 { 390 int err; 391 392 ASSERT(MUTEX_HELD(&cpu_lock)); 393 394 /* This adds the CPU to the PG's CPU group */ 395 err = group_add(&pg->pg_cpus, cp, GRP_RESIZE); 396 ASSERT(err == 0); 397 398 /* This adds the PG to the CPUs PG group */ 399 ASSERT(cp->cpu_pg != &bootstrap_pg_data); 400 err = group_add(&cp->cpu_pg->pgs, pg, GRP_RESIZE); 401 ASSERT(err == 0); 402 } 403 404 /* 405 * Remove "cp" from "pg". 406 * This routine may block. 407 */ 408 void 409 pg_cpu_delete(pg_t *pg, cpu_t *cp) 410 { 411 int err; 412 413 ASSERT(MUTEX_HELD(&cpu_lock)); 414 415 /* Remove the CPU from the PG */ 416 err = group_remove(&pg->pg_cpus, cp, GRP_RESIZE); 417 ASSERT(err == 0); 418 419 /* Remove the PG from the CPU's PG group */ 420 ASSERT(cp->cpu_pg != &bootstrap_pg_data); 421 err = group_remove(&cp->cpu_pg->pgs, pg, GRP_RESIZE); 422 ASSERT(err == 0); 423 } 424 425 /* 426 * Allocate a CPU's PG data. This hangs off struct cpu at cpu_pg 427 */ 428 static cpu_pg_t * 429 pg_cpu_data_alloc(void) 430 { 431 cpu_pg_t *pgd; 432 433 pgd = kmem_zalloc(sizeof (cpu_pg_t), KM_SLEEP); 434 group_create(&pgd->pgs); 435 group_create(&pgd->cmt_pgs); 436 437 return (pgd); 438 } 439 440 /* 441 * Free the CPU's PG data. 442 */ 443 static void 444 pg_cpu_data_free(cpu_pg_t *pgd) 445 { 446 group_destroy(&pgd->pgs); 447 group_destroy(&pgd->cmt_pgs); 448 kmem_free(pgd, sizeof (cpu_pg_t)); 449 } 450 451 /* 452 * A new CPU is coming into the system, either via booting or DR. 453 * Allocate it's PG data, and notify all registered classes about 454 * the new CPU. 455 * 456 * This routine may block. 457 */ 458 void 459 pg_cpu_init(cpu_t *cp) 460 { 461 pg_cid_t i; 462 463 ASSERT(MUTEX_HELD(&cpu_lock)); 464 465 /* 466 * Allocate and size the per CPU pg data 467 */ 468 cp->cpu_pg = pg_cpu_data_alloc(); 469 470 /* 471 * Notify all registered classes about the new CPU 472 */ 473 for (i = 0; i < pg_nclasses; i++) 474 PG_CPU_INIT(i, cp); 475 } 476 477 /* 478 * This CPU is being deleted from the system. Notify the classes 479 * and free up the CPU's PG data. 480 */ 481 void 482 pg_cpu_fini(cpu_t *cp) 483 { 484 pg_cid_t i; 485 486 ASSERT(MUTEX_HELD(&cpu_lock)); 487 488 /* 489 * This can happen if the CPU coming into the system 490 * failed to power on. 491 */ 492 if (cp->cpu_pg == NULL || 493 cp->cpu_pg == &bootstrap_pg_data) 494 return; 495 496 for (i = 0; i < pg_nclasses; i++) 497 PG_CPU_FINI(i, cp); 498 499 pg_cpu_data_free(cp->cpu_pg); 500 cp->cpu_pg = NULL; 501 } 502 503 /* 504 * This CPU is becoming active (online) 505 * This routine may not block as it is called from paused CPUs 506 * context. 507 */ 508 void 509 pg_cpu_active(cpu_t *cp) 510 { 511 pg_cid_t i; 512 513 ASSERT(MUTEX_HELD(&cpu_lock)); 514 515 /* 516 * Notify all registered classes about the new CPU 517 */ 518 for (i = 0; i < pg_nclasses; i++) 519 PG_CPU_ACTIVE(i, cp); 520 } 521 522 /* 523 * This CPU is going inactive (offline) 524 * This routine may not block, as it is called from paused 525 * CPUs context. 526 */ 527 void 528 pg_cpu_inactive(cpu_t *cp) 529 { 530 pg_cid_t i; 531 532 ASSERT(MUTEX_HELD(&cpu_lock)); 533 534 /* 535 * Notify all registered classes about the new CPU 536 */ 537 for (i = 0; i < pg_nclasses; i++) 538 PG_CPU_INACTIVE(i, cp); 539 } 540 541 /* 542 * Invoked when the CPU is about to move into the partition 543 * This routine may block. 544 */ 545 void 546 pg_cpupart_in(cpu_t *cp, cpupart_t *pp) 547 { 548 int i; 549 550 ASSERT(MUTEX_HELD(&cpu_lock)); 551 552 /* 553 * Notify all registered classes that the 554 * CPU is about to enter the CPU partition 555 */ 556 for (i = 0; i < pg_nclasses; i++) 557 PG_CPUPART_IN(i, cp, pp); 558 } 559 560 /* 561 * Invoked when the CPU is about to move out of the partition 562 * This routine may block. 563 */ 564 /*ARGSUSED*/ 565 void 566 pg_cpupart_out(cpu_t *cp, cpupart_t *pp) 567 { 568 int i; 569 570 ASSERT(MUTEX_HELD(&cpu_lock)); 571 572 /* 573 * Notify all registered classes that the 574 * CPU is about to leave the CPU partition 575 */ 576 for (i = 0; i < pg_nclasses; i++) 577 PG_CPUPART_OUT(i, cp, pp); 578 } 579 580 /* 581 * Invoked when the CPU is *moving* partitions. 582 * 583 * This routine may not block, as it is called from paused CPUs 584 * context. 585 */ 586 void 587 pg_cpupart_move(cpu_t *cp, cpupart_t *oldpp, cpupart_t *newpp) 588 { 589 int i; 590 591 ASSERT(MUTEX_HELD(&cpu_lock)); 592 593 /* 594 * Notify all registered classes that the 595 * CPU is about to leave the CPU partition 596 */ 597 for (i = 0; i < pg_nclasses; i++) 598 PG_CPUPART_MOVE(i, cp, oldpp, newpp); 599 } 600 601 /* 602 * Provide the specified CPU a bootstrap pg 603 * This is needed to allow sane behaviour if any PG consuming 604 * code needs to deal with a partially initialized CPU 605 */ 606 void 607 pg_cpu_bootstrap(cpu_t *cp) 608 { 609 cp->cpu_pg = &bootstrap_pg_data; 610 } 611 612 /*ARGSUSED*/ 613 static pg_t * 614 pg_alloc_default(pg_class_t class) 615 { 616 return (kmem_zalloc(sizeof (pg_t), KM_SLEEP)); 617 } 618 619 /*ARGSUSED*/ 620 static void 621 pg_free_default(struct pg *pg) 622 { 623 kmem_free(pg, sizeof (pg_t)); 624 } 625