1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/thread.h> 28 #include <sys/proc.h> 29 #include <sys/debug.h> 30 #include <sys/cmn_err.h> 31 #include <sys/systm.h> 32 #include <sys/sobject.h> 33 #include <sys/sleepq.h> 34 #include <sys/cpuvar.h> 35 #include <sys/condvar.h> 36 #include <sys/condvar_impl.h> 37 #include <sys/schedctl.h> 38 #include <sys/procfs.h> 39 #include <sys/sdt.h> 40 #include <sys/callo.h> 41 42 clock_t cv_timedwait_hires(kcondvar_t *, kmutex_t *, hrtime_t, hrtime_t, int); 43 44 /* 45 * CV_MAX_WAITERS is the maximum number of waiters we track; once 46 * the number becomes higher than that, we look at the sleepq to 47 * see whether there are *really* any waiters. 48 */ 49 #define CV_MAX_WAITERS 1024 /* must be power of 2 */ 50 #define CV_WAITERS_MASK (CV_MAX_WAITERS - 1) 51 52 /* 53 * Threads don't "own" condition variables. 54 */ 55 /* ARGSUSED */ 56 static kthread_t * 57 cv_owner(void *cvp) 58 { 59 return (NULL); 60 } 61 62 /* 63 * Unsleep a thread that's blocked on a condition variable. 64 */ 65 static void 66 cv_unsleep(kthread_t *t) 67 { 68 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 69 sleepq_head_t *sqh = SQHASH(cvp); 70 71 ASSERT(THREAD_LOCK_HELD(t)); 72 73 if (cvp == NULL) 74 panic("cv_unsleep: thread %p not on sleepq %p", 75 (void *)t, (void *)sqh); 76 DTRACE_SCHED1(wakeup, kthread_t *, t); 77 sleepq_unsleep(t); 78 if (cvp->cv_waiters != CV_MAX_WAITERS) 79 cvp->cv_waiters--; 80 disp_lock_exit_high(&sqh->sq_lock); 81 CL_SETRUN(t); 82 } 83 84 /* 85 * Change the priority of a thread that's blocked on a condition variable. 86 */ 87 static void 88 cv_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip) 89 { 90 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 91 sleepq_t *sqp = t->t_sleepq; 92 93 ASSERT(THREAD_LOCK_HELD(t)); 94 ASSERT(&SQHASH(cvp)->sq_queue == sqp); 95 96 if (cvp == NULL) 97 panic("cv_change_pri: %p not on sleep queue", (void *)t); 98 sleepq_dequeue(t); 99 *t_prip = pri; 100 sleepq_insert(sqp, t); 101 } 102 103 /* 104 * The sobj_ops vector exports a set of functions needed when a thread 105 * is asleep on a synchronization object of this type. 106 */ 107 static sobj_ops_t cv_sobj_ops = { 108 SOBJ_CV, cv_owner, cv_unsleep, cv_change_pri 109 }; 110 111 /* ARGSUSED */ 112 void 113 cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg) 114 { 115 ((condvar_impl_t *)cvp)->cv_waiters = 0; 116 } 117 118 /* 119 * cv_destroy is not currently needed, but is part of the DDI. 120 * This is in case cv_init ever needs to allocate something for a cv. 121 */ 122 /* ARGSUSED */ 123 void 124 cv_destroy(kcondvar_t *cvp) 125 { 126 ASSERT((((condvar_impl_t *)cvp)->cv_waiters & CV_WAITERS_MASK) == 0); 127 } 128 129 /* 130 * The cv_block() function blocks a thread on a condition variable 131 * by putting it in a hashed sleep queue associated with the 132 * synchronization object. 133 * 134 * Threads are taken off the hashed sleep queues via calls to 135 * cv_signal(), cv_broadcast(), or cv_unsleep(). 136 */ 137 static void 138 cv_block(condvar_impl_t *cvp) 139 { 140 kthread_t *t = curthread; 141 klwp_t *lwp = ttolwp(t); 142 sleepq_head_t *sqh; 143 144 ASSERT(THREAD_LOCK_HELD(t)); 145 ASSERT(t != CPU->cpu_idle_thread); 146 ASSERT(CPU_ON_INTR(CPU) == 0); 147 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 148 ASSERT(t->t_state == TS_ONPROC); 149 150 t->t_schedflag &= ~TS_SIGNALLED; 151 CL_SLEEP(t); /* assign kernel priority */ 152 t->t_wchan = (caddr_t)cvp; 153 t->t_sobj_ops = &cv_sobj_ops; 154 DTRACE_SCHED(sleep); 155 156 /* 157 * The check for t_intr is to avoid doing the 158 * account for an interrupt thread on the still-pinned 159 * lwp's statistics. 160 */ 161 if (lwp != NULL && t->t_intr == NULL) { 162 lwp->lwp_ru.nvcsw++; 163 (void) new_mstate(t, LMS_SLEEP); 164 } 165 166 sqh = SQHASH(cvp); 167 disp_lock_enter_high(&sqh->sq_lock); 168 if (cvp->cv_waiters < CV_MAX_WAITERS) 169 cvp->cv_waiters++; 170 ASSERT(cvp->cv_waiters <= CV_MAX_WAITERS); 171 THREAD_SLEEP(t, &sqh->sq_lock); 172 sleepq_insert(&sqh->sq_queue, t); 173 /* 174 * THREAD_SLEEP() moves curthread->t_lockp to point to the 175 * lock sqh->sq_lock. This lock is later released by the caller 176 * when it calls thread_unlock() on curthread. 177 */ 178 } 179 180 #define cv_block_sig(t, cvp) \ 181 { (t)->t_flag |= T_WAKEABLE; cv_block(cvp); } 182 183 /* 184 * Block on the indicated condition variable and release the 185 * associated kmutex while blocked. 186 */ 187 void 188 cv_wait(kcondvar_t *cvp, kmutex_t *mp) 189 { 190 if (panicstr) 191 return; 192 ASSERT(!quiesce_active); 193 194 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 195 thread_lock(curthread); /* lock the thread */ 196 cv_block((condvar_impl_t *)cvp); 197 thread_unlock_nopreempt(curthread); /* unlock the waiters field */ 198 mutex_exit(mp); 199 swtch(); 200 mutex_enter(mp); 201 } 202 203 static void 204 cv_wakeup(void *arg) 205 { 206 kthread_t *t = arg; 207 208 /* 209 * This mutex is acquired and released in order to make sure that 210 * the wakeup does not happen before the block itself happens. 211 */ 212 mutex_enter(&t->t_wait_mutex); 213 mutex_exit(&t->t_wait_mutex); 214 setrun(t); 215 } 216 217 /* 218 * Same as cv_wait except the thread will unblock at 'tim' 219 * (an absolute time) if it hasn't already unblocked. 220 * 221 * Returns the amount of time left from the original 'tim' value 222 * when it was unblocked. 223 */ 224 clock_t 225 cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 226 { 227 hrtime_t hrtim; 228 clock_t now = ddi_get_lbolt(); 229 230 if (tim <= now) 231 return (-1); 232 233 hrtim = TICK_TO_NSEC(tim - now); 234 return (cv_timedwait_hires(cvp, mp, hrtim, nsec_per_tick, 0)); 235 } 236 237 /* 238 * Same as cv_timedwait() except that the third argument is a relative 239 * timeout value, as opposed to an absolute one. There is also a fourth 240 * argument that specifies how accurately the timeout must be implemented. 241 */ 242 clock_t 243 cv_reltimedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t delta, time_res_t res) 244 { 245 hrtime_t exp; 246 247 ASSERT(TIME_RES_VALID(res)); 248 249 if (delta <= 0) 250 return (-1); 251 252 if ((exp = TICK_TO_NSEC(delta)) < 0) 253 exp = CY_INFINITY; 254 255 return (cv_timedwait_hires(cvp, mp, exp, time_res[res], 0)); 256 } 257 258 clock_t 259 cv_timedwait_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim, 260 hrtime_t res, int flag) 261 { 262 kthread_t *t = curthread; 263 callout_id_t id; 264 clock_t timeleft; 265 hrtime_t limit; 266 int signalled; 267 268 if (panicstr) 269 return (-1); 270 ASSERT(!quiesce_active); 271 272 limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0; 273 if (tim <= limit) 274 return (-1); 275 mutex_enter(&t->t_wait_mutex); 276 id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t, 277 tim, res, flag); 278 thread_lock(t); /* lock the thread */ 279 cv_block((condvar_impl_t *)cvp); 280 thread_unlock_nopreempt(t); 281 mutex_exit(&t->t_wait_mutex); 282 mutex_exit(mp); 283 swtch(); 284 signalled = (t->t_schedflag & TS_SIGNALLED); 285 /* 286 * Get the time left. untimeout() returns -1 if the timeout has 287 * occured or the time remaining. If the time remaining is zero, 288 * the timeout has occured between when we were awoken and 289 * we called untimeout. We will treat this as if the timeout 290 * has occured and set timeleft to -1. 291 */ 292 timeleft = untimeout_default(id, 0); 293 mutex_enter(mp); 294 if (timeleft <= 0) { 295 timeleft = -1; 296 if (signalled) /* avoid consuming the cv_signal() */ 297 cv_signal(cvp); 298 } 299 return (timeleft); 300 } 301 302 int 303 cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp) 304 { 305 kthread_t *t = curthread; 306 proc_t *p = ttoproc(t); 307 klwp_t *lwp = ttolwp(t); 308 int cancel_pending; 309 int rval = 1; 310 int signalled = 0; 311 312 if (panicstr) 313 return (rval); 314 ASSERT(!quiesce_active); 315 316 /* 317 * The check for t_intr is to catch an interrupt thread 318 * that has not yet unpinned the thread underneath. 319 */ 320 if (lwp == NULL || t->t_intr) { 321 cv_wait(cvp, mp); 322 return (rval); 323 } 324 325 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 326 cancel_pending = schedctl_cancel_pending(); 327 lwp->lwp_asleep = 1; 328 lwp->lwp_sysabort = 0; 329 thread_lock(t); 330 cv_block_sig(t, (condvar_impl_t *)cvp); 331 thread_unlock_nopreempt(t); 332 mutex_exit(mp); 333 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 334 setrun(t); 335 /* ASSERT(no locks are held) */ 336 swtch(); 337 signalled = (t->t_schedflag & TS_SIGNALLED); 338 t->t_flag &= ~T_WAKEABLE; 339 mutex_enter(mp); 340 if (ISSIG_PENDING(t, lwp, p)) { 341 mutex_exit(mp); 342 if (issig(FORREAL)) 343 rval = 0; 344 mutex_enter(mp); 345 } 346 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 347 rval = 0; 348 if (rval != 0 && cancel_pending) { 349 schedctl_cancel_eintr(); 350 rval = 0; 351 } 352 lwp->lwp_asleep = 0; 353 lwp->lwp_sysabort = 0; 354 if (rval == 0 && signalled) /* avoid consuming the cv_signal() */ 355 cv_signal(cvp); 356 return (rval); 357 } 358 359 static clock_t 360 cv_timedwait_sig_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim, 361 hrtime_t res, int flag) 362 { 363 kthread_t *t = curthread; 364 proc_t *p = ttoproc(t); 365 klwp_t *lwp = ttolwp(t); 366 int cancel_pending = 0; 367 callout_id_t id; 368 clock_t rval = 1; 369 hrtime_t limit; 370 int signalled = 0; 371 372 if (panicstr) 373 return (rval); 374 ASSERT(!quiesce_active); 375 376 /* 377 * If there is no lwp, then we don't need to wait for a signal. 378 * The check for t_intr is to catch an interrupt thread 379 * that has not yet unpinned the thread underneath. 380 */ 381 if (lwp == NULL || t->t_intr) 382 return (cv_timedwait_hires(cvp, mp, tim, res, flag)); 383 384 /* 385 * If tim is less than or equal to current hrtime, then the timeout 386 * has already occured. So just check to see if there is a signal 387 * pending. If so return 0 indicating that there is a signal pending. 388 * Else return -1 indicating that the timeout occured. No need to 389 * wait on anything. 390 */ 391 limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0; 392 if (tim <= limit) { 393 lwp->lwp_asleep = 1; 394 lwp->lwp_sysabort = 0; 395 rval = -1; 396 goto out; 397 } 398 399 /* 400 * Set the timeout and wait. 401 */ 402 cancel_pending = schedctl_cancel_pending(); 403 mutex_enter(&t->t_wait_mutex); 404 id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t, 405 tim, res, flag); 406 lwp->lwp_asleep = 1; 407 lwp->lwp_sysabort = 0; 408 thread_lock(t); 409 cv_block_sig(t, (condvar_impl_t *)cvp); 410 thread_unlock_nopreempt(t); 411 mutex_exit(&t->t_wait_mutex); 412 mutex_exit(mp); 413 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 414 setrun(t); 415 /* ASSERT(no locks are held) */ 416 swtch(); 417 signalled = (t->t_schedflag & TS_SIGNALLED); 418 t->t_flag &= ~T_WAKEABLE; 419 420 /* 421 * Untimeout the thread. untimeout() returns -1 if the timeout has 422 * occured or the time remaining. If the time remaining is zero, 423 * the timeout has occured between when we were awoken and 424 * we called untimeout. We will treat this as if the timeout 425 * has occured and set rval to -1. 426 */ 427 rval = untimeout_default(id, 0); 428 mutex_enter(mp); 429 if (rval <= 0) 430 rval = -1; 431 432 /* 433 * Check to see if a signal is pending. If so, regardless of whether 434 * or not we were awoken due to the signal, the signal is now pending 435 * and a return of 0 has the highest priority. 436 */ 437 out: 438 if (ISSIG_PENDING(t, lwp, p)) { 439 mutex_exit(mp); 440 if (issig(FORREAL)) 441 rval = 0; 442 mutex_enter(mp); 443 } 444 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 445 rval = 0; 446 if (rval != 0 && cancel_pending) { 447 schedctl_cancel_eintr(); 448 rval = 0; 449 } 450 lwp->lwp_asleep = 0; 451 lwp->lwp_sysabort = 0; 452 if (rval <= 0 && signalled) /* avoid consuming the cv_signal() */ 453 cv_signal(cvp); 454 return (rval); 455 } 456 457 /* 458 * Returns: 459 * Function result in order of precedence: 460 * 0 if a signal was received 461 * -1 if timeout occured 462 * >0 if awakened via cv_signal() or cv_broadcast(). 463 * (returns time remaining) 464 * 465 * cv_timedwait_sig() is now part of the DDI. 466 * 467 * This function is now just a wrapper for cv_timedwait_sig_hires(). 468 */ 469 clock_t 470 cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 471 { 472 hrtime_t hrtim; 473 474 hrtim = TICK_TO_NSEC(tim - ddi_get_lbolt()); 475 return (cv_timedwait_sig_hires(cvp, mp, hrtim, nsec_per_tick, 0)); 476 } 477 478 /* 479 * Same as cv_timedwait_sig() except that the third argument is a relative 480 * timeout value, as opposed to an absolute one. There is also a fourth 481 * argument that specifies how accurately the timeout must be implemented. 482 */ 483 clock_t 484 cv_reltimedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t delta, 485 time_res_t res) 486 { 487 hrtime_t exp; 488 489 ASSERT(TIME_RES_VALID(res)); 490 491 if ((exp = TICK_TO_NSEC(delta)) < 0) 492 exp = CY_INFINITY; 493 494 return (cv_timedwait_sig_hires(cvp, mp, exp, time_res[res], 0)); 495 } 496 497 /* 498 * Like cv_wait_sig_swap but allows the caller to indicate (with a 499 * non-NULL sigret) that they will take care of signalling the cv 500 * after wakeup, if necessary. This is a vile hack that should only 501 * be used when no other option is available; almost all callers 502 * should just use cv_wait_sig_swap (which takes care of the cv_signal 503 * stuff automatically) instead. 504 */ 505 int 506 cv_wait_sig_swap_core(kcondvar_t *cvp, kmutex_t *mp, int *sigret) 507 { 508 kthread_t *t = curthread; 509 proc_t *p = ttoproc(t); 510 klwp_t *lwp = ttolwp(t); 511 int cancel_pending; 512 int rval = 1; 513 int signalled = 0; 514 515 if (panicstr) 516 return (rval); 517 518 /* 519 * The check for t_intr is to catch an interrupt thread 520 * that has not yet unpinned the thread underneath. 521 */ 522 if (lwp == NULL || t->t_intr) { 523 cv_wait(cvp, mp); 524 return (rval); 525 } 526 527 cancel_pending = schedctl_cancel_pending(); 528 lwp->lwp_asleep = 1; 529 lwp->lwp_sysabort = 0; 530 thread_lock(t); 531 t->t_kpri_req = 0; /* don't need kernel priority */ 532 cv_block_sig(t, (condvar_impl_t *)cvp); 533 /* I can be swapped now */ 534 curthread->t_schedflag &= ~TS_DONT_SWAP; 535 thread_unlock_nopreempt(t); 536 mutex_exit(mp); 537 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 538 setrun(t); 539 /* ASSERT(no locks are held) */ 540 swtch(); 541 signalled = (t->t_schedflag & TS_SIGNALLED); 542 t->t_flag &= ~T_WAKEABLE; 543 /* TS_DONT_SWAP set by disp() */ 544 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 545 mutex_enter(mp); 546 if (ISSIG_PENDING(t, lwp, p)) { 547 mutex_exit(mp); 548 if (issig(FORREAL)) 549 rval = 0; 550 mutex_enter(mp); 551 } 552 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 553 rval = 0; 554 if (rval != 0 && cancel_pending) { 555 schedctl_cancel_eintr(); 556 rval = 0; 557 } 558 lwp->lwp_asleep = 0; 559 lwp->lwp_sysabort = 0; 560 if (rval == 0) { 561 if (sigret != NULL) 562 *sigret = signalled; /* just tell the caller */ 563 else if (signalled) 564 cv_signal(cvp); /* avoid consuming the cv_signal() */ 565 } 566 return (rval); 567 } 568 569 /* 570 * Same as cv_wait_sig but the thread can be swapped out while waiting. 571 * This should only be used when we know we aren't holding any locks. 572 */ 573 int 574 cv_wait_sig_swap(kcondvar_t *cvp, kmutex_t *mp) 575 { 576 return (cv_wait_sig_swap_core(cvp, mp, NULL)); 577 } 578 579 void 580 cv_signal(kcondvar_t *cvp) 581 { 582 condvar_impl_t *cp = (condvar_impl_t *)cvp; 583 584 /* make sure the cv_waiters field looks sane */ 585 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 586 if (cp->cv_waiters > 0) { 587 sleepq_head_t *sqh = SQHASH(cp); 588 disp_lock_enter(&sqh->sq_lock); 589 ASSERT(CPU_ON_INTR(CPU) == 0); 590 if (cp->cv_waiters & CV_WAITERS_MASK) { 591 kthread_t *t; 592 cp->cv_waiters--; 593 t = sleepq_wakeone_chan(&sqh->sq_queue, cp); 594 /* 595 * If cv_waiters is non-zero (and less than 596 * CV_MAX_WAITERS) there should be a thread 597 * in the queue. 598 */ 599 ASSERT(t != NULL); 600 } else if (sleepq_wakeone_chan(&sqh->sq_queue, cp) == NULL) { 601 cp->cv_waiters = 0; 602 } 603 disp_lock_exit(&sqh->sq_lock); 604 } 605 } 606 607 void 608 cv_broadcast(kcondvar_t *cvp) 609 { 610 condvar_impl_t *cp = (condvar_impl_t *)cvp; 611 612 /* make sure the cv_waiters field looks sane */ 613 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 614 if (cp->cv_waiters > 0) { 615 sleepq_head_t *sqh = SQHASH(cp); 616 disp_lock_enter(&sqh->sq_lock); 617 ASSERT(CPU_ON_INTR(CPU) == 0); 618 sleepq_wakeall_chan(&sqh->sq_queue, cp); 619 cp->cv_waiters = 0; 620 disp_lock_exit(&sqh->sq_lock); 621 } 622 } 623 624 /* 625 * Same as cv_wait(), but wakes up (after wakeup_time milliseconds) to check 626 * for requests to stop, like cv_wait_sig() but without dealing with signals. 627 * This is a horrible kludge. It is evil. It is vile. It is swill. 628 * If your code has to call this function then your code is the same. 629 */ 630 void 631 cv_wait_stop(kcondvar_t *cvp, kmutex_t *mp, int wakeup_time) 632 { 633 kthread_t *t = curthread; 634 klwp_t *lwp = ttolwp(t); 635 proc_t *p = ttoproc(t); 636 callout_id_t id; 637 clock_t tim; 638 639 if (panicstr) 640 return; 641 642 /* 643 * If there is no lwp, then we don't need to eventually stop it 644 * The check for t_intr is to catch an interrupt thread 645 * that has not yet unpinned the thread underneath. 646 */ 647 if (lwp == NULL || t->t_intr) { 648 cv_wait(cvp, mp); 649 return; 650 } 651 652 /* 653 * Wakeup in wakeup_time milliseconds, i.e., human time. 654 */ 655 tim = ddi_get_lbolt() + MSEC_TO_TICK(wakeup_time); 656 mutex_enter(&t->t_wait_mutex); 657 id = realtime_timeout_default((void (*)(void *))cv_wakeup, t, 658 tim - ddi_get_lbolt()); 659 thread_lock(t); /* lock the thread */ 660 cv_block((condvar_impl_t *)cvp); 661 thread_unlock_nopreempt(t); 662 mutex_exit(&t->t_wait_mutex); 663 mutex_exit(mp); 664 /* ASSERT(no locks are held); */ 665 swtch(); 666 (void) untimeout_default(id, 0); 667 668 /* 669 * Check for reasons to stop, if lwp_nostop is not true. 670 * See issig_forreal() for explanations of the various stops. 671 */ 672 mutex_enter(&p->p_lock); 673 while (lwp->lwp_nostop == 0 && !(p->p_flag & SEXITLWPS)) { 674 /* 675 * Hold the lwp here for watchpoint manipulation. 676 */ 677 if (t->t_proc_flag & TP_PAUSE) { 678 stop(PR_SUSPENDED, SUSPEND_PAUSE); 679 continue; 680 } 681 /* 682 * System checkpoint. 683 */ 684 if (t->t_proc_flag & TP_CHKPT) { 685 stop(PR_CHECKPOINT, 0); 686 continue; 687 } 688 /* 689 * Honor fork1(), watchpoint activity (remapping a page), 690 * and lwp_suspend() requests. 691 */ 692 if ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) || 693 (t->t_proc_flag & TP_HOLDLWP)) { 694 stop(PR_SUSPENDED, SUSPEND_NORMAL); 695 continue; 696 } 697 /* 698 * Honor /proc requested stop. 699 */ 700 if (t->t_proc_flag & TP_PRSTOP) { 701 stop(PR_REQUESTED, 0); 702 } 703 /* 704 * If some lwp in the process has already stopped 705 * showing PR_JOBCONTROL, stop in sympathy with it. 706 */ 707 if (p->p_stopsig && t != p->p_agenttp) { 708 stop(PR_JOBCONTROL, p->p_stopsig); 709 continue; 710 } 711 break; 712 } 713 mutex_exit(&p->p_lock); 714 mutex_enter(mp); 715 } 716 717 /* 718 * Like cv_timedwait_sig(), but takes an absolute hires future time 719 * rather than a future time in clock ticks. Will not return showing 720 * that a timeout occurred until the future time is passed. 721 * If 'when' is a NULL pointer, no timeout will occur. 722 * Returns: 723 * Function result in order of precedence: 724 * 0 if a signal was received 725 * -1 if timeout occured 726 * >0 if awakened via cv_signal() or cv_broadcast() 727 * or by a spurious wakeup. 728 * (might return time remaining) 729 * As a special test, if someone abruptly resets the system time 730 * (but not through adjtime(2); drifting of the clock is allowed and 731 * expected [see timespectohz_adj()]), then we force a return of -1 732 * so the caller can return a premature timeout to the calling process 733 * so it can reevaluate the situation in light of the new system time. 734 * (The system clock has been reset if timecheck != timechanged.) 735 */ 736 int 737 cv_waituntil_sig(kcondvar_t *cvp, kmutex_t *mp, 738 timestruc_t *when, int timecheck) 739 { 740 timestruc_t now; 741 timestruc_t delta; 742 hrtime_t interval; 743 int rval; 744 745 if (when == NULL) 746 return (cv_wait_sig_swap(cvp, mp)); 747 748 gethrestime(&now); 749 delta = *when; 750 timespecsub(&delta, &now); 751 if (delta.tv_sec < 0 || (delta.tv_sec == 0 && delta.tv_nsec == 0)) { 752 /* 753 * We have already reached the absolute future time. 754 * Call cv_timedwait_sig() just to check for signals. 755 * We will return immediately with either 0 or -1. 756 */ 757 rval = cv_timedwait_sig_hires(cvp, mp, 0, 1, 0); 758 } else { 759 if (timecheck == timechanged) { 760 /* 761 * Make sure that the interval is atleast one tick. 762 * This is to prevent a user from flooding the system 763 * with very small, high resolution timers. 764 */ 765 interval = ts2hrt(&delta); 766 if (interval < nsec_per_tick) 767 interval = nsec_per_tick; 768 rval = cv_timedwait_sig_hires(cvp, mp, interval, 1, 769 CALLOUT_FLAG_HRESTIME); 770 } else { 771 /* 772 * Someone reset the system time; 773 * just force an immediate timeout. 774 */ 775 rval = -1; 776 } 777 if (rval == -1 && timecheck == timechanged) { 778 /* 779 * Even though cv_timedwait_sig() returned showing a 780 * timeout, the future time may not have passed yet. 781 * If not, change rval to indicate a normal wakeup. 782 */ 783 gethrestime(&now); 784 delta = *when; 785 timespecsub(&delta, &now); 786 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 787 delta.tv_nsec > 0)) 788 rval = 1; 789 } 790 } 791 return (rval); 792 } 793