1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * - General Introduction: 29 * 30 * This file contains the implementation of the MAC client kernel 31 * API and related code. The MAC client API allows a kernel module 32 * to gain access to a MAC instance (physical NIC, link aggregation, etc). 33 * It allows a MAC client to associate itself with a MAC address, 34 * VLANs, callback functions for data traffic and for promiscuous mode. 35 * The MAC client API is also used to specify the properties associated 36 * with a MAC client, such as bandwidth limits, priority, CPUS, etc. 37 * These properties are further used to determine the hardware resources 38 * to allocate to the various MAC clients. 39 * 40 * - Primary MAC clients: 41 * 42 * The MAC client API refers to "primary MAC clients". A primary MAC 43 * client is a client which "owns" the primary MAC address of 44 * the underlying MAC instance. The primary MAC address is called out 45 * since it is associated with specific semantics: the primary MAC 46 * address is the MAC address which is assigned to the IP interface 47 * when it is plumbed, and the primary MAC address is assigned 48 * to VLAN data-links. The primary address of a MAC instance can 49 * also change dynamically from under the MAC client, for example 50 * as a result of a change of state of a link aggregation. In that 51 * case the MAC layer automatically updates all data-structures which 52 * refer to the current value of the primary MAC address. Typical 53 * primary MAC clients are dls, aggr, and xnb. A typical non-primary 54 * MAC client is the vnic driver. 55 * 56 * - Virtual Switching: 57 * 58 * The MAC layer implements a virtual switch between the MAC clients 59 * (primary and non-primary) defined on top of the same underlying 60 * NIC (physical, link aggregation, etc). The virtual switch is 61 * VLAN-aware, i.e. it allows multiple MAC clients to be member 62 * of one or more VLANs, and the virtual switch will distribute 63 * multicast tagged packets only to the member of the corresponding 64 * VLANs. 65 * 66 * - Upper vs Lower MAC: 67 * 68 * Creating a VNIC on top of a MAC instance effectively causes 69 * two MAC instances to be layered on top of each other, one for 70 * the VNIC(s), one for the underlying MAC instance (physical NIC, 71 * link aggregation, etc). In the code below we refer to the 72 * underlying NIC as the "lower MAC", and we refer to VNICs as 73 * the "upper MAC". 74 * 75 * - Pass-through for VNICs: 76 * 77 * When VNICs are created on top of an underlying MAC, this causes 78 * a layering of two MAC instances. Since the lower MAC already 79 * does the switching and demultiplexing to its MAC clients, the 80 * upper MAC would simply have to pass packets to the layer below 81 * or above it, which would introduce overhead. In order to avoid 82 * this overhead, the MAC layer implements a pass-through mechanism 83 * for VNICs. When a VNIC opens the lower MAC instance, it saves 84 * the MAC client handle it optains from the MAC layer. When a MAC 85 * client opens a VNIC (upper MAC), the MAC layer detects that 86 * the MAC being opened is a VNIC, and gets the MAC client handle 87 * that the VNIC driver obtained from the lower MAC. This exchange 88 * is doing through a private capability between the MAC layer 89 * and the VNIC driver. The upper MAC then returns that handle 90 * directly to its MAC client. Any operation done by the upper 91 * MAC client is now done on the lower MAC client handle, which 92 * allows the VNIC driver to be completely bypassed for the 93 * performance sensitive data-path. 94 * 95 */ 96 97 #include <sys/types.h> 98 #include <sys/conf.h> 99 #include <sys/id_space.h> 100 #include <sys/esunddi.h> 101 #include <sys/stat.h> 102 #include <sys/mkdev.h> 103 #include <sys/stream.h> 104 #include <sys/strsun.h> 105 #include <sys/strsubr.h> 106 #include <sys/dlpi.h> 107 #include <sys/modhash.h> 108 #include <sys/mac_impl.h> 109 #include <sys/mac_client_impl.h> 110 #include <sys/mac_soft_ring.h> 111 #include <sys/dls.h> 112 #include <sys/dld.h> 113 #include <sys/modctl.h> 114 #include <sys/fs/dv_node.h> 115 #include <sys/thread.h> 116 #include <sys/proc.h> 117 #include <sys/callb.h> 118 #include <sys/cpuvar.h> 119 #include <sys/atomic.h> 120 #include <sys/sdt.h> 121 #include <sys/mac_flow.h> 122 #include <sys/ddi_intr_impl.h> 123 #include <sys/disp.h> 124 #include <sys/sdt.h> 125 #include <sys/vnic.h> 126 #include <sys/vnic_impl.h> 127 #include <sys/vlan.h> 128 #include <inet/ip.h> 129 #include <inet/ip6.h> 130 #include <sys/exacct.h> 131 #include <sys/exacct_impl.h> 132 #include <inet/nd.h> 133 #include <sys/ethernet.h> 134 135 kmem_cache_t *mac_client_impl_cache; 136 kmem_cache_t *mac_promisc_impl_cache; 137 138 static boolean_t mac_client_single_rcvr(mac_client_impl_t *); 139 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *); 140 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *, 141 mac_unicast_impl_t *); 142 static void mac_client_remove_flow_from_list(mac_client_impl_t *, 143 flow_entry_t *); 144 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *); 145 static void mac_rename_flow_names(mac_client_impl_t *, const char *); 146 static void mac_virtual_link_update(mac_impl_t *); 147 148 /* ARGSUSED */ 149 static int 150 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag) 151 { 152 int i; 153 mac_client_impl_t *mcip = buf; 154 155 bzero(buf, MAC_CLIENT_IMPL_SIZE); 156 mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL); 157 mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock; 158 159 ASSERT(mac_tx_percpu_cnt >= 0); 160 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 161 mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL, 162 MUTEX_DRIVER, NULL); 163 } 164 cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL); 165 166 return (0); 167 } 168 169 /* ARGSUSED */ 170 static void 171 i_mac_client_impl_dtor(void *buf, void *arg) 172 { 173 int i; 174 mac_client_impl_t *mcip = buf; 175 176 ASSERT(mcip->mci_promisc_list == NULL); 177 ASSERT(mcip->mci_unicast_list == NULL); 178 ASSERT(mcip->mci_state_flags == 0); 179 ASSERT(mcip->mci_tx_flag == 0); 180 181 mutex_destroy(&mcip->mci_tx_cb_lock); 182 183 ASSERT(mac_tx_percpu_cnt >= 0); 184 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 185 ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0); 186 mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 187 } 188 cv_destroy(&mcip->mci_tx_cv); 189 } 190 191 /* ARGSUSED */ 192 static int 193 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag) 194 { 195 mac_promisc_impl_t *mpip = buf; 196 197 bzero(buf, sizeof (mac_promisc_impl_t)); 198 mpip->mpi_mci_link.mcb_objp = buf; 199 mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t); 200 mpip->mpi_mi_link.mcb_objp = buf; 201 mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t); 202 return (0); 203 } 204 205 /* ARGSUSED */ 206 static void 207 i_mac_promisc_impl_dtor(void *buf, void *arg) 208 { 209 mac_promisc_impl_t *mpip = buf; 210 211 ASSERT(mpip->mpi_mci_link.mcb_objp != NULL); 212 ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 213 ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp); 214 ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 215 216 mpip->mpi_mci_link.mcb_objp = NULL; 217 mpip->mpi_mci_link.mcb_objsize = 0; 218 mpip->mpi_mi_link.mcb_objp = NULL; 219 mpip->mpi_mi_link.mcb_objsize = 0; 220 221 ASSERT(mpip->mpi_mci_link.mcb_flags == 0); 222 mpip->mpi_mci_link.mcb_objsize = 0; 223 } 224 225 void 226 mac_client_init(void) 227 { 228 ASSERT(mac_tx_percpu_cnt >= 0); 229 230 mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache", 231 MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor, 232 i_mac_client_impl_dtor, NULL, NULL, NULL, 0); 233 ASSERT(mac_client_impl_cache != NULL); 234 235 mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache", 236 sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor, 237 i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0); 238 ASSERT(mac_promisc_impl_cache != NULL); 239 } 240 241 void 242 mac_client_fini(void) 243 { 244 kmem_cache_destroy(mac_client_impl_cache); 245 kmem_cache_destroy(mac_promisc_impl_cache); 246 } 247 248 /* 249 * Return the lower MAC client handle from the VNIC driver for the 250 * specified VNIC MAC instance. 251 */ 252 mac_client_impl_t * 253 mac_vnic_lower(mac_impl_t *mip) 254 { 255 mac_capab_vnic_t cap; 256 mac_client_impl_t *mcip; 257 258 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap)); 259 mcip = cap.mcv_mac_client_handle(cap.mcv_arg); 260 261 return (mcip); 262 } 263 264 /* 265 * Return the MAC client handle of the primary MAC client for the 266 * specified MAC instance, or NULL otherwise. 267 */ 268 mac_client_impl_t * 269 mac_primary_client_handle(mac_impl_t *mip) 270 { 271 mac_client_impl_t *mcip; 272 273 if (mip->mi_state_flags & MIS_IS_VNIC) 274 return (mac_vnic_lower(mip)); 275 276 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 277 278 for (mcip = mip->mi_clients_list; mcip != NULL; 279 mcip = mcip->mci_client_next) { 280 if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip)) 281 return (mcip); 282 } 283 return (NULL); 284 } 285 286 /* 287 * Open a MAC specified by its MAC name. 288 */ 289 int 290 mac_open(const char *macname, mac_handle_t *mhp) 291 { 292 mac_impl_t *mip; 293 int err; 294 295 /* 296 * Look up its entry in the global hash table. 297 */ 298 if ((err = mac_hold(macname, &mip)) != 0) 299 return (err); 300 301 /* 302 * Hold the dip associated to the MAC to prevent it from being 303 * detached. For a softmac, its underlying dip is held by the 304 * mi_open() callback. 305 * 306 * This is done to be more tolerant with some defective drivers, 307 * which incorrectly handle mac_unregister() failure in their 308 * xxx_detach() routine. For example, some drivers ignore the 309 * failure of mac_unregister() and free all resources that 310 * that are needed for data transmition. 311 */ 312 e_ddi_hold_devi(mip->mi_dip); 313 314 if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) { 315 *mhp = (mac_handle_t)mip; 316 return (0); 317 } 318 319 /* 320 * The mac perimeter is used in both mac_open and mac_close by the 321 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 322 */ 323 i_mac_perim_enter(mip); 324 mip->mi_oref++; 325 if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) { 326 *mhp = (mac_handle_t)mip; 327 i_mac_perim_exit(mip); 328 return (0); 329 } 330 mip->mi_oref--; 331 ddi_release_devi(mip->mi_dip); 332 mac_rele(mip); 333 i_mac_perim_exit(mip); 334 return (err); 335 } 336 337 /* 338 * Open a MAC specified by its linkid. 339 */ 340 int 341 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp) 342 { 343 dls_dl_handle_t dlh; 344 int err; 345 346 if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0) 347 return (err); 348 349 dls_devnet_prop_task_wait(dlh); 350 351 err = mac_open(dls_devnet_mac(dlh), mhp); 352 353 dls_devnet_rele_tmp(dlh); 354 return (err); 355 } 356 357 /* 358 * Open a MAC specified by its link name. 359 */ 360 int 361 mac_open_by_linkname(const char *link, mac_handle_t *mhp) 362 { 363 datalink_id_t linkid; 364 int err; 365 366 if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0) 367 return (err); 368 return (mac_open_by_linkid(linkid, mhp)); 369 } 370 371 /* 372 * Close the specified MAC. 373 */ 374 void 375 mac_close(mac_handle_t mh) 376 { 377 mac_impl_t *mip = (mac_impl_t *)mh; 378 379 i_mac_perim_enter(mip); 380 /* 381 * The mac perimeter is used in both mac_open and mac_close by the 382 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 383 */ 384 if (mip->mi_callbacks->mc_callbacks & MC_OPEN) { 385 ASSERT(mip->mi_oref != 0); 386 if (--mip->mi_oref == 0) { 387 if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE)) 388 mip->mi_close(mip->mi_driver); 389 } 390 } 391 i_mac_perim_exit(mip); 392 ddi_release_devi(mip->mi_dip); 393 mac_rele(mip); 394 } 395 396 /* 397 * Misc utility functions to retrieve various information about a MAC 398 * instance or a MAC client. 399 */ 400 401 const mac_info_t * 402 mac_info(mac_handle_t mh) 403 { 404 return (&((mac_impl_t *)mh)->mi_info); 405 } 406 407 dev_info_t * 408 mac_devinfo_get(mac_handle_t mh) 409 { 410 return (((mac_impl_t *)mh)->mi_dip); 411 } 412 413 void * 414 mac_driver(mac_handle_t mh) 415 { 416 return (((mac_impl_t *)mh)->mi_driver); 417 } 418 419 const char * 420 mac_name(mac_handle_t mh) 421 { 422 return (((mac_impl_t *)mh)->mi_name); 423 } 424 425 char * 426 mac_client_name(mac_client_handle_t mch) 427 { 428 return (((mac_client_impl_t *)mch)->mci_name); 429 } 430 431 minor_t 432 mac_minor(mac_handle_t mh) 433 { 434 return (((mac_impl_t *)mh)->mi_minor); 435 } 436 437 /* 438 * Return the VID associated with a MAC client. This function should 439 * be called for clients which are associated with only one VID. 440 */ 441 uint16_t 442 mac_client_vid(mac_client_handle_t mch) 443 { 444 uint16_t vid = VLAN_ID_NONE; 445 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 446 flow_desc_t flow_desc; 447 448 if (mcip->mci_nflents == 0) 449 return (vid); 450 451 ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip)); 452 453 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 454 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 455 vid = flow_desc.fd_vid; 456 457 return (vid); 458 } 459 460 /* 461 * Return the link speed associated with the specified MAC client. 462 * 463 * The link speed of a MAC client is equal to the smallest value of 464 * 1) the current link speed of the underlying NIC, or 465 * 2) the bandwidth limit set for the MAC client. 466 * 467 * Note that the bandwidth limit can be higher than the speed 468 * of the underlying NIC. This is allowed to avoid spurious 469 * administration action failures or artifically lowering the 470 * bandwidth limit of a link that may have temporarily lowered 471 * its link speed due to hardware problem or administrator action. 472 */ 473 static uint64_t 474 mac_client_ifspeed(mac_client_impl_t *mcip) 475 { 476 mac_impl_t *mip = mcip->mci_mip; 477 uint64_t nic_speed; 478 479 nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED); 480 481 if (nic_speed == 0) { 482 return (0); 483 } else { 484 uint64_t policy_limit = (uint64_t)-1; 485 486 if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW) 487 policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip); 488 489 return (MIN(policy_limit, nic_speed)); 490 } 491 } 492 493 /* 494 * Return the link state of the specified client. If here are more 495 * than one clients of the underying mac_impl_t, the link state 496 * will always be UP regardless of the link state of the underlying 497 * mac_impl_t. This is needed to allow the MAC clients to continue 498 * to communicate with each other even when the physical link of 499 * their mac_impl_t is down. 500 */ 501 static uint64_t 502 mac_client_link_state(mac_client_impl_t *mcip) 503 { 504 mac_impl_t *mip = mcip->mci_mip; 505 uint16_t vid; 506 mac_client_impl_t *mci_list; 507 mac_unicast_impl_t *mui_list, *oth_mui_list; 508 509 /* 510 * Returns LINK_STATE_UP if there are other MAC clients defined on 511 * mac_impl_t which share same VLAN ID as that of mcip. Note that 512 * if 'mcip' has more than one VID's then we match ANY one of the 513 * VID's with other MAC client's VID's and return LINK_STATE_UP. 514 */ 515 rw_enter(&mcip->mci_rw_lock, RW_READER); 516 for (mui_list = mcip->mci_unicast_list; mui_list != NULL; 517 mui_list = mui_list->mui_next) { 518 vid = mui_list->mui_vid; 519 for (mci_list = mip->mi_clients_list; mci_list != NULL; 520 mci_list = mci_list->mci_client_next) { 521 if (mci_list == mcip) 522 continue; 523 for (oth_mui_list = mci_list->mci_unicast_list; 524 oth_mui_list != NULL; oth_mui_list = oth_mui_list-> 525 mui_next) { 526 if (vid == oth_mui_list->mui_vid) { 527 rw_exit(&mcip->mci_rw_lock); 528 return (LINK_STATE_UP); 529 } 530 } 531 } 532 } 533 rw_exit(&mcip->mci_rw_lock); 534 535 return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE)); 536 } 537 538 /* 539 * Return the statistics of a MAC client. These statistics are different 540 * then the statistics of the underlying MAC which are returned by 541 * mac_stat_get(). 542 */ 543 uint64_t 544 mac_client_stat_get(mac_client_handle_t mch, uint_t stat) 545 { 546 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 547 mac_impl_t *mip = mcip->mci_mip; 548 uint64_t val; 549 550 switch (stat) { 551 case MAC_STAT_LINK_STATE: 552 val = mac_client_link_state(mcip); 553 break; 554 case MAC_STAT_LINK_UP: 555 val = (mac_client_link_state(mcip) == LINK_STATE_UP); 556 break; 557 case MAC_STAT_PROMISC: 558 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC); 559 break; 560 case MAC_STAT_IFSPEED: 561 val = mac_client_ifspeed(mcip); 562 break; 563 case MAC_STAT_MULTIRCV: 564 val = mcip->mci_stat_multircv; 565 break; 566 case MAC_STAT_BRDCSTRCV: 567 val = mcip->mci_stat_brdcstrcv; 568 break; 569 case MAC_STAT_MULTIXMT: 570 val = mcip->mci_stat_multixmt; 571 break; 572 case MAC_STAT_BRDCSTXMT: 573 val = mcip->mci_stat_brdcstxmt; 574 break; 575 case MAC_STAT_OBYTES: 576 val = mcip->mci_stat_obytes; 577 break; 578 case MAC_STAT_OPACKETS: 579 val = mcip->mci_stat_opackets; 580 break; 581 case MAC_STAT_OERRORS: 582 val = mcip->mci_stat_oerrors; 583 break; 584 case MAC_STAT_IPACKETS: 585 val = mcip->mci_stat_ipackets; 586 break; 587 case MAC_STAT_RBYTES: 588 val = mcip->mci_stat_ibytes; 589 break; 590 case MAC_STAT_IERRORS: 591 val = mcip->mci_stat_ierrors; 592 break; 593 default: 594 val = mac_stat_default(mip, stat); 595 break; 596 } 597 598 return (val); 599 } 600 601 /* 602 * Return the statistics of the specified MAC instance. 603 */ 604 uint64_t 605 mac_stat_get(mac_handle_t mh, uint_t stat) 606 { 607 mac_impl_t *mip = (mac_impl_t *)mh; 608 uint64_t val; 609 int ret; 610 611 /* 612 * The range of stat determines where it is maintained. Stat 613 * values from 0 up to (but not including) MAC_STAT_MIN are 614 * mainteined by the mac module itself. Everything else is 615 * maintained by the driver. 616 * 617 * If the mac_impl_t being queried corresponds to a VNIC, 618 * the stats need to be queried from the lower MAC client 619 * corresponding to the VNIC. (The mac_link_update() 620 * invoked by the driver to the lower MAC causes the *lower 621 * MAC* to update its mi_linkstate, and send a notification 622 * to its MAC clients. Due to the VNIC passthrough, 623 * these notifications are sent to the upper MAC clients 624 * of the VNIC directly, and the upper mac_impl_t of the VNIC 625 * does not have a valid mi_linkstate. 626 */ 627 if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) { 628 /* these stats are maintained by the mac module itself */ 629 switch (stat) { 630 case MAC_STAT_LINK_STATE: 631 return (mip->mi_linkstate); 632 case MAC_STAT_LINK_UP: 633 return (mip->mi_linkstate == LINK_STATE_UP); 634 case MAC_STAT_PROMISC: 635 return (mip->mi_devpromisc != 0); 636 default: 637 ASSERT(B_FALSE); 638 } 639 } 640 641 /* 642 * Call the driver to get the given statistic. 643 */ 644 ret = mip->mi_getstat(mip->mi_driver, stat, &val); 645 if (ret != 0) { 646 /* 647 * The driver doesn't support this statistic. Get the 648 * statistic's default value. 649 */ 650 val = mac_stat_default(mip, stat); 651 } 652 return (val); 653 } 654 655 /* 656 * Utility function which returns the VID associated with a flow entry. 657 */ 658 uint16_t 659 i_mac_flow_vid(flow_entry_t *flent) 660 { 661 flow_desc_t flow_desc; 662 663 mac_flow_get_desc(flent, &flow_desc); 664 665 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 666 return (flow_desc.fd_vid); 667 return (VLAN_ID_NONE); 668 } 669 670 /* 671 * Verify the validity of the specified unicast MAC address. Returns B_TRUE 672 * if the address is valid, B_FALSE otherwise (multicast address, or incorrect 673 * length. 674 */ 675 boolean_t 676 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len) 677 { 678 mac_impl_t *mip = (mac_impl_t *)mh; 679 680 /* 681 * Verify the address. No lock is needed since mi_type and plugin 682 * details don't change after mac_register(). 683 */ 684 if ((len != mip->mi_type->mt_addr_length) || 685 (mip->mi_type->mt_ops.mtops_unicst_verify(addr, 686 mip->mi_pdata)) != 0) { 687 return (B_FALSE); 688 } else { 689 return (B_TRUE); 690 } 691 } 692 693 void 694 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu) 695 { 696 mac_impl_t *mip = (mac_impl_t *)mh; 697 698 if (min_sdu != NULL) 699 *min_sdu = mip->mi_sdu_min; 700 if (max_sdu != NULL) 701 *max_sdu = mip->mi_sdu_max; 702 } 703 704 /* 705 * Update the MAC unicast address of the specified client's flows. Currently 706 * only one unicast MAC unicast address is allowed per client. 707 */ 708 static void 709 mac_unicast_update_client_flow(mac_client_impl_t *mcip) 710 { 711 mac_impl_t *mip = mcip->mci_mip; 712 flow_entry_t *flent = mcip->mci_flent; 713 mac_address_t *map = mcip->mci_unicast; 714 flow_desc_t flow_desc; 715 716 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 717 ASSERT(flent != NULL); 718 719 mac_flow_get_desc(flent, &flow_desc); 720 ASSERT(flow_desc.fd_mask & FLOW_LINK_DST); 721 722 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 723 mac_flow_set_desc(flent, &flow_desc); 724 725 /* 726 * A MAC client could have one MAC address but multiple 727 * VLANs. In that case update the flow entries corresponding 728 * to all VLANs of the MAC client. 729 */ 730 for (flent = mcip->mci_flent_list; flent != NULL; 731 flent = flent->fe_client_next) { 732 mac_flow_get_desc(flent, &flow_desc); 733 if (!(flent->fe_type & FLOW_PRIMARY_MAC || 734 flent->fe_type & FLOW_VNIC_MAC)) 735 continue; 736 737 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 738 mac_flow_set_desc(flent, &flow_desc); 739 } 740 } 741 742 /* 743 * Update all clients that share the same unicast address. 744 */ 745 void 746 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map) 747 { 748 mac_client_impl_t *mcip; 749 750 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 751 752 /* 753 * Find all clients that share the same unicast MAC address and update 754 * them appropriately. 755 */ 756 for (mcip = mip->mi_clients_list; mcip != NULL; 757 mcip = mcip->mci_client_next) { 758 /* 759 * Ignore clients that don't share this MAC address. 760 */ 761 if (map != mcip->mci_unicast) 762 continue; 763 764 /* 765 * Update those clients with same old unicast MAC address. 766 */ 767 mac_unicast_update_client_flow(mcip); 768 } 769 } 770 771 /* 772 * Update the unicast MAC address of the specified VNIC MAC client. 773 * 774 * Check whether the operation is valid. Any of following cases should fail: 775 * 776 * 1. It's a VLAN type of VNIC. 777 * 2. The new value is current "primary" MAC address. 778 * 3. The current MAC address is shared with other clients. 779 * 4. The new MAC address has been used. This case will be valid when 780 * client migration is fully supported. 781 */ 782 int 783 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr) 784 { 785 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 786 mac_impl_t *mip = mcip->mci_mip; 787 mac_address_t *map = mcip->mci_unicast; 788 int err; 789 790 ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC)); 791 ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC); 792 ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY); 793 794 i_mac_perim_enter(mip); 795 796 /* 797 * If this is a VLAN type of VNIC, it's using "primary" MAC address 798 * of the underlying interface. Must fail here. Refer to case 1 above. 799 */ 800 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) { 801 i_mac_perim_exit(mip); 802 return (ENOTSUP); 803 } 804 805 /* 806 * If the new address is the "primary" one, must fail. Refer to 807 * case 2 above. 808 */ 809 if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) { 810 i_mac_perim_exit(mip); 811 return (EACCES); 812 } 813 814 /* 815 * If the address is shared by multiple clients, must fail. Refer 816 * to case 3 above. 817 */ 818 if (mac_check_macaddr_shared(map)) { 819 i_mac_perim_exit(mip); 820 return (EBUSY); 821 } 822 823 /* 824 * If the new address has been used, must fail for now. Refer to 825 * case 4 above. 826 */ 827 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) { 828 i_mac_perim_exit(mip); 829 return (ENOTSUP); 830 } 831 832 /* 833 * Update the MAC address. 834 */ 835 err = mac_update_macaddr(map, (uint8_t *)addr); 836 837 if (err != 0) { 838 i_mac_perim_exit(mip); 839 return (err); 840 } 841 842 /* 843 * Update all flows of this MAC client. 844 */ 845 mac_unicast_update_client_flow(mcip); 846 847 i_mac_perim_exit(mip); 848 return (0); 849 } 850 851 /* 852 * Program the new primary unicast address of the specified MAC. 853 * 854 * Function mac_update_macaddr() takes care different types of underlying 855 * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd 856 * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set() 857 * which will take care of updating the MAC address of the corresponding 858 * MAC client. 859 * 860 * This is the only interface that allow the client to update the "primary" 861 * MAC address of the underlying MAC. The new value must have not been 862 * used by other clients. 863 */ 864 int 865 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr) 866 { 867 mac_impl_t *mip = (mac_impl_t *)mh; 868 mac_address_t *map; 869 int err; 870 871 /* verify the address validity */ 872 if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length)) 873 return (EINVAL); 874 875 i_mac_perim_enter(mip); 876 877 /* 878 * If the new value is the same as the current primary address value, 879 * there's nothing to do. 880 */ 881 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) { 882 i_mac_perim_exit(mip); 883 return (0); 884 } 885 886 if (mac_find_macaddr(mip, (uint8_t *)addr) != 0) { 887 i_mac_perim_exit(mip); 888 return (EBUSY); 889 } 890 891 map = mac_find_macaddr(mip, mip->mi_addr); 892 ASSERT(map != NULL); 893 894 /* 895 * Update the MAC address. 896 */ 897 if (mip->mi_state_flags & MIS_IS_AGGR) { 898 mac_capab_aggr_t aggr_cap; 899 900 /* 901 * If the mac is an aggregation, other than the unicast 902 * addresses programming, aggr must be informed about this 903 * primary unicst address change to change its mac address 904 * policy to be user-specified. 905 */ 906 ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED); 907 VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap)); 908 err = aggr_cap.mca_unicst(mip->mi_driver, addr); 909 if (err == 0) 910 bcopy(addr, map->ma_addr, map->ma_len); 911 } else { 912 err = mac_update_macaddr(map, (uint8_t *)addr); 913 } 914 915 if (err != 0) { 916 i_mac_perim_exit(mip); 917 return (err); 918 } 919 920 mac_unicast_update_clients(mip, map); 921 922 /* 923 * Save the new primary MAC address in mac_impl_t. 924 */ 925 bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length); 926 927 i_mac_perim_exit(mip); 928 929 if (err == 0) 930 i_mac_notify(mip, MAC_NOTE_UNICST); 931 932 return (err); 933 } 934 935 /* 936 * Return the current primary MAC address of the specified MAC. 937 */ 938 void 939 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr) 940 { 941 mac_impl_t *mip = (mac_impl_t *)mh; 942 943 rw_enter(&mip->mi_rw_lock, RW_READER); 944 bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length); 945 rw_exit(&mip->mi_rw_lock); 946 } 947 948 /* 949 * Return information about the use of the primary MAC address of the 950 * specified MAC instance: 951 * 952 * - if client_name is non-NULL, it must point to a string of at 953 * least MAXNAMELEN bytes, and will be set to the name of the MAC 954 * client which uses the primary MAC address. 955 * 956 * - if in_use is non-NULL, used to return whether the primary MAC 957 * address is currently in use. 958 */ 959 void 960 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use) 961 { 962 mac_impl_t *mip = (mac_impl_t *)mh; 963 mac_client_impl_t *cur_client; 964 965 if (in_use != NULL) 966 *in_use = B_FALSE; 967 if (client_name != NULL) 968 bzero(client_name, MAXNAMELEN); 969 970 /* 971 * The mi_rw_lock is used to protect threads that don't hold the 972 * mac perimeter to get a consistent view of the mi_clients_list. 973 * Threads that modify the list must hold both the mac perimeter and 974 * mi_rw_lock(RW_WRITER) 975 */ 976 rw_enter(&mip->mi_rw_lock, RW_READER); 977 for (cur_client = mip->mi_clients_list; cur_client != NULL; 978 cur_client = cur_client->mci_client_next) { 979 if (mac_is_primary_client(cur_client) || 980 (mip->mi_state_flags & MIS_IS_VNIC)) { 981 rw_exit(&mip->mi_rw_lock); 982 if (in_use != NULL) 983 *in_use = B_TRUE; 984 if (client_name != NULL) { 985 bcopy(cur_client->mci_name, client_name, 986 MAXNAMELEN); 987 } 988 return; 989 } 990 } 991 rw_exit(&mip->mi_rw_lock); 992 } 993 994 /* 995 * Add the specified MAC client to the list of clients which opened 996 * the specified MAC. 997 */ 998 static void 999 mac_client_add(mac_client_impl_t *mcip) 1000 { 1001 mac_impl_t *mip = mcip->mci_mip; 1002 1003 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1004 1005 /* add VNIC to the front of the list */ 1006 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1007 mcip->mci_client_next = mip->mi_clients_list; 1008 mip->mi_clients_list = mcip; 1009 mip->mi_nclients++; 1010 rw_exit(&mip->mi_rw_lock); 1011 } 1012 1013 /* 1014 * Remove the specified MAC client from the list of clients which opened 1015 * the specified MAC. 1016 */ 1017 static void 1018 mac_client_remove(mac_client_impl_t *mcip) 1019 { 1020 mac_impl_t *mip = mcip->mci_mip; 1021 mac_client_impl_t **prev, *cclient; 1022 1023 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1024 1025 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1026 prev = &mip->mi_clients_list; 1027 cclient = *prev; 1028 while (cclient != NULL && cclient != mcip) { 1029 prev = &cclient->mci_client_next; 1030 cclient = *prev; 1031 } 1032 ASSERT(cclient != NULL); 1033 *prev = cclient->mci_client_next; 1034 mip->mi_nclients--; 1035 rw_exit(&mip->mi_rw_lock); 1036 } 1037 1038 static mac_unicast_impl_t * 1039 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid) 1040 { 1041 mac_unicast_impl_t *muip = mcip->mci_unicast_list; 1042 1043 while ((muip != NULL) && (muip->mui_vid != vid)) 1044 muip = muip->mui_next; 1045 1046 return (muip); 1047 } 1048 1049 /* 1050 * Return whether the specified (MAC address, VID) tuple is already used by 1051 * one of the MAC clients associated with the specified MAC. 1052 */ 1053 static boolean_t 1054 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid) 1055 { 1056 mac_client_impl_t *client; 1057 mac_address_t *map; 1058 1059 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1060 1061 for (client = mip->mi_clients_list; client != NULL; 1062 client = client->mci_client_next) { 1063 1064 /* 1065 * Ignore clients that don't have unicast address. 1066 */ 1067 if (client->mci_unicast_list == NULL) 1068 continue; 1069 1070 map = client->mci_unicast; 1071 1072 if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) && 1073 (mac_client_find_vid(client, vid) != NULL)) { 1074 return (B_TRUE); 1075 } 1076 } 1077 1078 return (B_FALSE); 1079 } 1080 1081 /* 1082 * Generate a random MAC address. The MAC address prefix is 1083 * stored in the array pointed to by mac_addr, and its length, in bytes, 1084 * is specified by prefix_len. The least significant bits 1085 * after prefix_len bytes are generated, and stored after the prefix 1086 * in the mac_addr array. 1087 */ 1088 int 1089 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len, 1090 uint8_t *mac_addr, mac_diag_t *diag) 1091 { 1092 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1093 mac_impl_t *mip = mcip->mci_mip; 1094 size_t addr_len = mip->mi_type->mt_addr_length; 1095 1096 if (prefix_len >= addr_len) { 1097 *diag = MAC_DIAG_MACPREFIXLEN_INVALID; 1098 return (EINVAL); 1099 } 1100 1101 /* check the prefix value */ 1102 if (prefix_len > 0) { 1103 bzero(mac_addr + prefix_len, addr_len - prefix_len); 1104 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, 1105 addr_len)) { 1106 *diag = MAC_DIAG_MACPREFIX_INVALID; 1107 return (EINVAL); 1108 } 1109 } 1110 1111 /* generate the MAC address */ 1112 if (prefix_len < addr_len) { 1113 (void) random_get_pseudo_bytes(mac_addr + 1114 prefix_len, addr_len - prefix_len); 1115 } 1116 1117 *diag = 0; 1118 return (0); 1119 } 1120 1121 /* 1122 * Set the priority range for this MAC client. This will be used to 1123 * determine the absolute priority for the threads created for this 1124 * MAC client using the specified "low", "medium" and "high" level. 1125 * This will also be used for any subflows on this MAC client. 1126 */ 1127 #define MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) { \ 1128 (mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI, \ 1129 MAXCLSYSPRI, (pri)); \ 1130 (mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI, \ 1131 MAXCLSYSPRI, (mcip)->mci_min_pri); \ 1132 } 1133 1134 /* 1135 * MAC client open entry point. Return a new MAC client handle. Each 1136 * MAC client is associated with a name, specified through the 'name' 1137 * argument. 1138 */ 1139 int 1140 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name, 1141 uint16_t flags) 1142 { 1143 mac_impl_t *mip = (mac_impl_t *)mh; 1144 mac_client_impl_t *mcip; 1145 int err = 0; 1146 boolean_t share_desired = 1147 ((flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0); 1148 boolean_t no_hwrings = ((flags & MAC_OPEN_FLAGS_NO_HWRINGS) != 0); 1149 boolean_t req_hwrings = ((flags & MAC_OPEN_FLAGS_REQ_HWRINGS) != 0); 1150 flow_entry_t *flent = NULL; 1151 1152 *mchp = NULL; 1153 if (share_desired && no_hwrings) { 1154 /* can't have shares but no hardware rings */ 1155 return (EINVAL); 1156 } 1157 1158 i_mac_perim_enter(mip); 1159 1160 if (mip->mi_state_flags & MIS_IS_VNIC) { 1161 /* 1162 * The underlying MAC is a VNIC. Return the MAC client 1163 * handle of the lower MAC which was obtained by 1164 * the VNIC driver when it did its mac_client_open(). 1165 */ 1166 1167 mcip = mac_vnic_lower(mip); 1168 1169 /* 1170 * Note that multiple mac clients share the same mcip in 1171 * this case. 1172 */ 1173 if (flags & MAC_OPEN_FLAGS_EXCLUSIVE) 1174 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1175 1176 mip->mi_clients_list = mcip; 1177 i_mac_perim_exit(mip); 1178 *mchp = (mac_client_handle_t)mcip; 1179 return (err); 1180 } 1181 1182 mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP); 1183 1184 mcip->mci_mip = mip; 1185 mcip->mci_upper_mip = NULL; 1186 mcip->mci_rx_fn = mac_pkt_drop; 1187 mcip->mci_rx_arg = NULL; 1188 mcip->mci_direct_rx_fn = NULL; 1189 mcip->mci_direct_rx_arg = NULL; 1190 1191 if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0) 1192 mcip->mci_state_flags |= MCIS_IS_VNIC; 1193 1194 if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0) 1195 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1196 1197 if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0) 1198 mcip->mci_state_flags |= MCIS_IS_AGGR_PORT; 1199 1200 if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) { 1201 datalink_id_t linkid; 1202 1203 ASSERT(name == NULL); 1204 if ((err = dls_devnet_macname2linkid(mip->mi_name, 1205 &linkid)) != 0) { 1206 goto done; 1207 } 1208 if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL, 1209 NULL, NULL)) != 0) { 1210 /* 1211 * Use mac name if dlmgmtd is not available. 1212 */ 1213 if (err == EBADF) { 1214 (void) strlcpy(mcip->mci_name, mip->mi_name, 1215 sizeof (mcip->mci_name)); 1216 err = 0; 1217 } else { 1218 goto done; 1219 } 1220 } 1221 mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME; 1222 } else { 1223 ASSERT(name != NULL); 1224 if (strlen(name) > MAXNAMELEN) { 1225 err = EINVAL; 1226 goto done; 1227 } 1228 (void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name)); 1229 } 1230 /* the subflow table will be created dynamically */ 1231 mcip->mci_subflow_tab = NULL; 1232 mcip->mci_stat_multircv = 0; 1233 mcip->mci_stat_brdcstrcv = 0; 1234 mcip->mci_stat_multixmt = 0; 1235 mcip->mci_stat_brdcstxmt = 0; 1236 1237 mcip->mci_stat_obytes = 0; 1238 mcip->mci_stat_opackets = 0; 1239 mcip->mci_stat_oerrors = 0; 1240 mcip->mci_stat_ibytes = 0; 1241 mcip->mci_stat_ipackets = 0; 1242 mcip->mci_stat_ierrors = 0; 1243 1244 /* Create an initial flow */ 1245 1246 err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL, 1247 mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC : 1248 FLOW_PRIMARY_MAC, &flent); 1249 if (err != 0) 1250 goto done; 1251 mcip->mci_flent = flent; 1252 FLOW_MARK(flent, FE_MC_NO_DATAPATH); 1253 flent->fe_mcip = mcip; 1254 /* 1255 * Place initial creation reference on the flow. This reference 1256 * is released in the corresponding delete action viz. 1257 * mac_unicast_remove after waiting for all transient refs to 1258 * to go away. The wait happens in mac_flow_wait. 1259 */ 1260 FLOW_REFHOLD(flent); 1261 1262 /* 1263 * Do this ahead of the mac_bcast_add() below so that the mi_nclients 1264 * will have the right value for mac_rx_srs_setup(). 1265 */ 1266 mac_client_add(mcip); 1267 1268 if (no_hwrings) 1269 mcip->mci_state_flags |= MCIS_NO_HWRINGS; 1270 if (req_hwrings) 1271 mcip->mci_state_flags |= MCIS_REQ_HWRINGS; 1272 mcip->mci_share = NULL; 1273 if (share_desired) { 1274 ASSERT(!no_hwrings); 1275 i_mac_share_alloc(mcip); 1276 } 1277 1278 DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *, 1279 mcip->mci_mip, mac_client_impl_t *, mcip); 1280 *mchp = (mac_client_handle_t)mcip; 1281 1282 i_mac_perim_exit(mip); 1283 return (0); 1284 1285 done: 1286 i_mac_perim_exit(mip); 1287 mcip->mci_state_flags = 0; 1288 mcip->mci_tx_flag = 0; 1289 kmem_cache_free(mac_client_impl_cache, mcip); 1290 return (err); 1291 } 1292 1293 /* 1294 * Close the specified MAC client handle. 1295 */ 1296 void 1297 mac_client_close(mac_client_handle_t mch, uint16_t flags) 1298 { 1299 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1300 mac_impl_t *mip = mcip->mci_mip; 1301 flow_entry_t *flent; 1302 1303 i_mac_perim_enter(mip); 1304 1305 if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE) 1306 mcip->mci_state_flags &= ~MCIS_EXCLUSIVE; 1307 1308 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 1309 !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) { 1310 /* 1311 * This is an upper VNIC client initiated operation. 1312 * The lower MAC client will be closed by the VNIC driver 1313 * when the VNIC is deleted. 1314 */ 1315 1316 i_mac_perim_exit(mip); 1317 return; 1318 } 1319 1320 /* 1321 * Remove the flent associated with the MAC client 1322 */ 1323 flent = mcip->mci_flent; 1324 mcip->mci_flent = NULL; 1325 FLOW_FINAL_REFRELE(flent); 1326 1327 /* 1328 * MAC clients must remove the unicast addresses and promisc callbacks 1329 * they added before issuing a mac_client_close(). 1330 */ 1331 ASSERT(mcip->mci_unicast_list == NULL); 1332 ASSERT(mcip->mci_promisc_list == NULL); 1333 ASSERT(mcip->mci_tx_notify_cb_list == NULL); 1334 1335 i_mac_share_free(mcip); 1336 1337 mac_client_remove(mcip); 1338 1339 i_mac_perim_exit(mip); 1340 mcip->mci_subflow_tab = NULL; 1341 mcip->mci_state_flags = 0; 1342 mcip->mci_tx_flag = 0; 1343 kmem_cache_free(mac_client_impl_cache, mch); 1344 } 1345 1346 /* 1347 * Enable bypass for the specified MAC client. 1348 */ 1349 boolean_t 1350 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1) 1351 { 1352 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1353 mac_impl_t *mip = mcip->mci_mip; 1354 1355 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1356 1357 /* 1358 * If the mac_client is a VLAN, we should not do DLS bypass and 1359 * instead let the packets come up via mac_rx_deliver so the vlan 1360 * header can be stripped. 1361 */ 1362 if (mcip->mci_nvids > 0) 1363 return (B_FALSE); 1364 1365 /* 1366 * These are not accessed directly in the data path, and hence 1367 * don't need any protection 1368 */ 1369 mcip->mci_direct_rx_fn = rx_fn; 1370 mcip->mci_direct_rx_arg = arg1; 1371 mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE; 1372 return (B_TRUE); 1373 } 1374 1375 /* 1376 * Set the receive callback for the specified MAC client. There can be 1377 * at most one such callback per MAC client. 1378 */ 1379 void 1380 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg) 1381 { 1382 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1383 mac_impl_t *mip = mcip->mci_mip; 1384 1385 /* 1386 * Instead of adding an extra set of locks and refcnts in 1387 * the datapath at the mac client boundary, we temporarily quiesce 1388 * the SRS and related entities. We then change the receive function 1389 * without interference from any receive data thread and then reenable 1390 * the data flow subsequently. 1391 */ 1392 i_mac_perim_enter(mip); 1393 mac_rx_client_quiesce(mch); 1394 1395 mcip->mci_rx_fn = rx_fn; 1396 mcip->mci_rx_arg = arg; 1397 mac_rx_client_restart(mch); 1398 i_mac_perim_exit(mip); 1399 } 1400 1401 /* 1402 * Reset the receive callback for the specified MAC client. 1403 */ 1404 void 1405 mac_rx_clear(mac_client_handle_t mch) 1406 { 1407 mac_rx_set(mch, mac_pkt_drop, NULL); 1408 } 1409 1410 /* 1411 * Walk the MAC client subflow table and updates their priority values. 1412 */ 1413 static int 1414 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg) 1415 { 1416 mac_flow_update_priority(arg, flent); 1417 return (0); 1418 } 1419 1420 void 1421 mac_update_subflow_priority(mac_client_impl_t *mcip) 1422 { 1423 (void) mac_flow_walk(mcip->mci_subflow_tab, 1424 mac_update_subflow_priority_cb, mcip); 1425 } 1426 1427 /* 1428 * When the MAC client is being brought up (i.e. we do a unicast_add) we need 1429 * to initialize the cpu and resource control structure in the 1430 * mac_client_impl_t from the mac_impl_t (i.e if there are any cached 1431 * properties before the flow entry for the unicast address was created). 1432 */ 1433 int 1434 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 1435 { 1436 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1437 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 1438 int err = 0; 1439 1440 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1441 1442 err = mac_validate_props(mrp); 1443 if (err != 0) 1444 return (err); 1445 1446 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 1447 if (MCIP_DATAPATH_SETUP(mcip)) { 1448 /* 1449 * We have to set this prior to calling mac_flow_modify. 1450 */ 1451 if (mrp->mrp_mask & MRP_PRIORITY) { 1452 if (mrp->mrp_priority == MPL_RESET) { 1453 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 1454 MPL_LINK_DEFAULT); 1455 } else { 1456 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 1457 mrp->mrp_priority); 1458 } 1459 } 1460 1461 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp); 1462 if (mrp->mrp_mask & MRP_PRIORITY) 1463 mac_update_subflow_priority(mcip); 1464 return (0); 1465 } 1466 return (0); 1467 } 1468 1469 void 1470 mac_resource_ctl_get(mac_client_handle_t mch, mac_resource_props_t *mrp) 1471 { 1472 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1473 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip); 1474 1475 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 1476 } 1477 1478 static int 1479 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr, 1480 uint16_t vid, boolean_t is_primary, boolean_t first_flow, 1481 flow_entry_t **flent, mac_resource_props_t *mrp) 1482 { 1483 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 1484 flow_desc_t flow_desc; 1485 char flowname[MAXFLOWNAMELEN]; 1486 int err; 1487 uint_t flent_flags; 1488 1489 /* 1490 * First unicast address being added, create a new flow 1491 * for that MAC client. 1492 */ 1493 bzero(&flow_desc, sizeof (flow_desc)); 1494 1495 flow_desc.fd_mac_len = mip->mi_type->mt_addr_length; 1496 bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len); 1497 flow_desc.fd_mask = FLOW_LINK_DST; 1498 if (vid != 0) { 1499 flow_desc.fd_vid = vid; 1500 flow_desc.fd_mask |= FLOW_LINK_VID; 1501 } 1502 1503 /* 1504 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC 1505 * and FLOW_VNIC. Even though they're a hack inherited 1506 * from the SRS code, we'll keep them for now. They're currently 1507 * consumed by mac_datapath_setup() to create the SRS. 1508 * That code should be eventually moved out of 1509 * mac_datapath_setup() and moved to a mac_srs_create() 1510 * function of some sort to keep things clean. 1511 * 1512 * Also, there's no reason why the SRS for the primary MAC 1513 * client should be different than any other MAC client. Until 1514 * this is cleaned-up, we support only one MAC unicast address 1515 * per client. 1516 * 1517 * We set FLOW_PRIMARY_MAC for the primary MAC address, 1518 * FLOW_VNIC for everything else. 1519 */ 1520 if (is_primary) 1521 flent_flags = FLOW_PRIMARY_MAC; 1522 else 1523 flent_flags = FLOW_VNIC_MAC; 1524 1525 /* 1526 * For the first flow we use the mac client's name - mci_name, for 1527 * subsequent ones we just create a name with the vid. This is 1528 * so that we can add these flows to the same flow table. This is 1529 * fine as the flow name (except for the one with the mac client's 1530 * name) is not visible. When the first flow is removed, we just replace 1531 * its fdesc with another from the list, so we will still retain the 1532 * flent with the MAC client's flow name. 1533 */ 1534 if (first_flow) { 1535 bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN); 1536 } else { 1537 (void) sprintf(flowname, "%s%u", mcip->mci_name, vid); 1538 flent_flags = FLOW_NO_STATS; 1539 } 1540 1541 if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL, 1542 flent_flags, flent)) != 0) 1543 return (err); 1544 1545 FLOW_MARK(*flent, FE_INCIPIENT); 1546 (*flent)->fe_mcip = mcip; 1547 1548 /* 1549 * Place initial creation reference on the flow. This reference 1550 * is released in the corresponding delete action viz. 1551 * mac_unicast_remove after waiting for all transient refs to 1552 * to go away. The wait happens in mac_flow_wait. 1553 * We have already held the reference in mac_client_open(). 1554 */ 1555 if (!first_flow) 1556 FLOW_REFHOLD(*flent); 1557 return (0); 1558 } 1559 1560 /* Refresh the multicast grouping for this VID. */ 1561 int 1562 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp) 1563 { 1564 flow_entry_t *flent = arg; 1565 mac_client_impl_t *mcip = flent->fe_mcip; 1566 uint16_t vid; 1567 flow_desc_t flow_desc; 1568 1569 mac_flow_get_desc(flent, &flow_desc); 1570 vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ? 1571 flow_desc.fd_vid : VLAN_ID_NONE; 1572 1573 /* 1574 * We don't call mac_multicast_add()/mac_multicast_remove() as 1575 * we want to add/remove for this specific vid. 1576 */ 1577 if (add) { 1578 return (mac_bcast_add(mcip, addrp, vid, 1579 MAC_ADDRTYPE_MULTICAST)); 1580 } else { 1581 mac_bcast_delete(mcip, addrp, vid); 1582 return (0); 1583 } 1584 } 1585 1586 static void 1587 mac_update_single_active_client(mac_impl_t *mip) 1588 { 1589 mac_client_impl_t *client = NULL; 1590 1591 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1592 1593 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1594 if (mip->mi_nactiveclients == 1) { 1595 /* 1596 * Find the one active MAC client from the list of MAC 1597 * clients. The active MAC client has at least one 1598 * unicast address. 1599 */ 1600 for (client = mip->mi_clients_list; client != NULL; 1601 client = client->mci_client_next) { 1602 if (client->mci_unicast_list != NULL) 1603 break; 1604 } 1605 ASSERT(client != NULL); 1606 } 1607 1608 /* 1609 * mi_single_active_client is protected by the MAC impl's read/writer 1610 * lock, which allows mac_rx() to check the value of that pointer 1611 * as a reader. 1612 */ 1613 mip->mi_single_active_client = client; 1614 rw_exit(&mip->mi_rw_lock); 1615 } 1616 1617 /* 1618 * Add a new unicast address to the MAC client. 1619 * 1620 * The MAC address can be specified either by value, or the MAC client 1621 * can specify that it wants to use the primary MAC address of the 1622 * underlying MAC. See the introductory comments at the beginning 1623 * of this file for more more information on primary MAC addresses. 1624 * 1625 * Note also the tuple (MAC address, VID) must be unique 1626 * for the MAC clients defined on top of the same underlying MAC 1627 * instance, unless the MAC_UNICAST_NODUPCHECK is specified. 1628 */ 1629 int 1630 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 1631 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 1632 { 1633 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1634 mac_impl_t *mip = mcip->mci_mip; 1635 mac_unicast_impl_t *muip; 1636 flow_entry_t *flent; 1637 int err; 1638 uint_t mac_len = mip->mi_type->mt_addr_length; 1639 boolean_t check_dups = !(flags & MAC_UNICAST_NODUPCHECK); 1640 boolean_t is_primary = (flags & MAC_UNICAST_PRIMARY); 1641 boolean_t is_vnic_primary = (flags & MAC_UNICAST_VNIC_PRIMARY); 1642 boolean_t is_unicast_hw = (flags & MAC_UNICAST_HW); 1643 boolean_t bcast_added = B_FALSE; 1644 boolean_t nactiveclients_added = B_FALSE; 1645 boolean_t mac_started = B_FALSE; 1646 boolean_t fastpath_disabled = B_FALSE; 1647 mac_resource_props_t mrp; 1648 1649 /* when VID is non-zero, the underlying MAC can not be VNIC */ 1650 ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != 0))); 1651 1652 /* 1653 * Check whether it's the primary client and flag it. 1654 */ 1655 if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && vid == 0) 1656 mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY; 1657 1658 /* 1659 * is_vnic_primary is true when we come here as a VLAN VNIC 1660 * which uses the primary mac client's address but with a non-zero 1661 * VID. In this case the MAC address is not specified by an upper 1662 * MAC client. 1663 */ 1664 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && 1665 !is_vnic_primary) { 1666 /* 1667 * The address is being set by the upper MAC client 1668 * of a VNIC. The MAC address was already set by the 1669 * VNIC driver during VNIC creation. 1670 * 1671 * Note: a VNIC has only one MAC address. We return 1672 * the MAC unicast address handle of the lower MAC client 1673 * corresponding to the VNIC. We allocate a new entry 1674 * which is flagged appropriately, so that mac_unicast_remove() 1675 * doesn't attempt to free the original entry that 1676 * was allocated by the VNIC driver. 1677 */ 1678 ASSERT(mcip->mci_unicast != NULL); 1679 1680 /* Check for VLAN flags, if present */ 1681 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0) 1682 mcip->mci_state_flags |= MCIS_TAG_DISABLE; 1683 1684 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0) 1685 mcip->mci_state_flags |= MCIS_STRIP_DISABLE; 1686 1687 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0) 1688 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK; 1689 1690 /* 1691 * Ensure that the primary unicast address of the VNIC 1692 * is added only once. 1693 */ 1694 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) 1695 return (EBUSY); 1696 1697 mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY; 1698 1699 /* 1700 * Create a handle for vid 0. 1701 */ 1702 ASSERT(vid == 0); 1703 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 1704 muip->mui_vid = vid; 1705 *mah = (mac_unicast_handle_t)muip; 1706 return (0); 1707 } 1708 1709 /* primary MAC clients cannot be opened on top of anchor VNICs */ 1710 if ((is_vnic_primary || is_primary) && 1711 i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) { 1712 return (ENXIO); 1713 } 1714 1715 /* 1716 * If this is a VNIC/VLAN, disable softmac fast-path. 1717 */ 1718 if (mcip->mci_state_flags & MCIS_IS_VNIC) { 1719 err = mac_fastpath_disable((mac_handle_t)mip); 1720 if (err != 0) 1721 return (err); 1722 fastpath_disabled = B_TRUE; 1723 } 1724 1725 /* 1726 * Return EBUSY if: 1727 * - there is an exclusively active mac client exists. 1728 * - this is an exclusive active mac client but 1729 * a. there is already active mac clients exist, or 1730 * b. fastpath streams are already plumbed on this legacy device 1731 */ 1732 if (mip->mi_state_flags & MIS_EXCLUSIVE) { 1733 if (fastpath_disabled) 1734 mac_fastpath_enable((mac_handle_t)mip); 1735 return (EBUSY); 1736 } 1737 1738 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 1739 ASSERT(!fastpath_disabled); 1740 if (mip->mi_nactiveclients != 0) 1741 return (EBUSY); 1742 1743 if ((mip->mi_state_flags & MIS_LEGACY) && 1744 !(mip->mi_capab_legacy.ml_active_set(mip->mi_driver))) { 1745 return (EBUSY); 1746 } 1747 mip->mi_state_flags |= MIS_EXCLUSIVE; 1748 } 1749 1750 bzero(&mrp, sizeof (mac_resource_props_t)); 1751 if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC | 1752 MCIS_IS_AGGR_PORT))) { 1753 /* 1754 * Apply the property cached in the mac_impl_t to the primary 1755 * mac client. If the mac client is a VNIC or an aggregation 1756 * port, its property should be set in the mcip when the 1757 * VNIC/aggr was created. 1758 */ 1759 mac_get_resources((mac_handle_t)mip, &mrp); 1760 (void) mac_client_set_resources(mch, &mrp); 1761 } else if (mcip->mci_state_flags & MCIS_IS_VNIC) { 1762 bcopy(MCIP_RESOURCE_PROPS(mcip), &mrp, 1763 sizeof (mac_resource_props_t)); 1764 } 1765 1766 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 1767 muip->mui_vid = vid; 1768 1769 if (is_primary || is_vnic_primary) { 1770 mac_addr = mip->mi_addr; 1771 check_dups = B_TRUE; 1772 } else { 1773 1774 /* 1775 * Verify the validity of the specified MAC addresses value. 1776 */ 1777 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) { 1778 *diag = MAC_DIAG_MACADDR_INVALID; 1779 err = EINVAL; 1780 goto bail; 1781 } 1782 1783 /* 1784 * Make sure that the specified MAC address is different 1785 * than the unicast MAC address of the underlying NIC. 1786 */ 1787 if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) { 1788 *diag = MAC_DIAG_MACADDR_NIC; 1789 err = EINVAL; 1790 goto bail; 1791 } 1792 } 1793 1794 /* 1795 * Make sure the MAC address is not already used by 1796 * another MAC client defined on top of the same 1797 * underlying NIC. 1798 * xxx-venu mac_unicast_add doesnt' seem to be called 1799 * with MAC_UNICAST_NODUPCHECK currently, if it does 1800 * get called we need to do mac_addr_in_use() just 1801 * to check for addr_in_use till 6697876 is fixed. 1802 */ 1803 if (check_dups && mac_addr_in_use(mip, mac_addr, vid)) { 1804 *diag = MAC_DIAG_MACADDR_INUSE; 1805 err = EEXIST; 1806 goto bail; 1807 } 1808 1809 if ((err = mac_start((mac_handle_t)mip)) != 0) 1810 goto bail; 1811 1812 mac_started = B_TRUE; 1813 1814 /* add the MAC client to the broadcast address group by default */ 1815 if (mip->mi_type->mt_brdcst_addr != NULL) { 1816 err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid, 1817 MAC_ADDRTYPE_BROADCAST); 1818 if (err != 0) 1819 goto bail; 1820 bcast_added = B_TRUE; 1821 } 1822 1823 /* 1824 * If this is the first unicast address addition for this 1825 * client, reuse the pre-allocated larval flow entry associated with 1826 * the MAC client. 1827 */ 1828 flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL; 1829 1830 /* We are configuring the unicast flow now */ 1831 if (!MCIP_DATAPATH_SETUP(mcip)) { 1832 if (is_unicast_hw) { 1833 /* 1834 * The client requires a hardware MAC address slot 1835 * for that unicast address. Since we support only 1836 * one unicast MAC address per client, flag the 1837 * MAC client itself. 1838 */ 1839 mcip->mci_state_flags |= MCIS_UNICAST_HW; 1840 } 1841 1842 /* Check for VLAN flags, if present */ 1843 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0) 1844 mcip->mci_state_flags |= MCIS_TAG_DISABLE; 1845 1846 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0) 1847 mcip->mci_state_flags |= MCIS_STRIP_DISABLE; 1848 1849 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0) 1850 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK; 1851 1852 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 1853 (mrp.mrp_mask & MRP_PRIORITY) ? mrp.mrp_priority : 1854 MPL_LINK_DEFAULT); 1855 1856 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 1857 is_primary || is_vnic_primary, B_TRUE, &flent, &mrp)) != 0) 1858 goto bail; 1859 1860 mip->mi_nactiveclients++; 1861 nactiveclients_added = B_TRUE; 1862 1863 /* 1864 * This will allocate the RX ring group if possible for the 1865 * flow and program the software classifier as needed. 1866 */ 1867 if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0) 1868 goto bail; 1869 1870 /* 1871 * The unicast MAC address must have been added successfully. 1872 */ 1873 ASSERT(mcip->mci_unicast != NULL); 1874 /* 1875 * Push down the sub-flows that were defined on this link 1876 * hitherto. The flows are added to the active flow table 1877 * and SRS, softrings etc. are created as needed. 1878 */ 1879 mac_link_init_flows(mch); 1880 } else { 1881 mac_address_t *map = mcip->mci_unicast; 1882 1883 /* 1884 * A unicast flow already exists for that MAC client, 1885 * this flow must be the same mac address but with 1886 * different VID. It has been checked by mac_addr_in_use(). 1887 * 1888 * We will use the SRS etc. from the mci_flent. Note that 1889 * We don't need to create kstat for this as except for 1890 * the fdesc, everything will be used from in the 1st flent. 1891 */ 1892 1893 /* 1894 * Assert that the specified flags are consistent with the 1895 * flags specified by previous calls to mac_unicast_add(). 1896 */ 1897 ASSERT(((flags & MAC_UNICAST_TAG_DISABLE) != 0 && 1898 (mcip->mci_state_flags & MCIS_TAG_DISABLE) != 0) || 1899 ((flags & MAC_UNICAST_TAG_DISABLE) == 0 && 1900 (mcip->mci_state_flags & MCIS_TAG_DISABLE) == 0)); 1901 1902 ASSERT(((flags & MAC_UNICAST_STRIP_DISABLE) != 0 && 1903 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) != 0) || 1904 ((flags & MAC_UNICAST_STRIP_DISABLE) == 0 && 1905 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) == 0)); 1906 1907 ASSERT(((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0 && 1908 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) != 0) || 1909 ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) == 0 && 1910 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) == 0)); 1911 1912 if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) { 1913 err = EINVAL; 1914 goto bail; 1915 } 1916 1917 /* 1918 * Make sure the client is consistent about its requests 1919 * for MAC addresses. I.e. all requests from the clients 1920 * must have the MAC_UNICAST_HW flag set or clear. 1921 */ 1922 if ((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 && 1923 !is_unicast_hw || 1924 (mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 && 1925 is_unicast_hw) { 1926 err = EINVAL; 1927 goto bail; 1928 } 1929 1930 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 1931 is_primary || is_vnic_primary, B_FALSE, &flent, NULL)) != 0) 1932 goto bail; 1933 1934 if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) { 1935 FLOW_FINAL_REFRELE(flent); 1936 goto bail; 1937 } 1938 1939 /* update the multicast group for this vid */ 1940 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 1941 (void *)flent, B_TRUE); 1942 1943 } 1944 1945 /* populate the shared MAC address */ 1946 muip->mui_map = mcip->mci_unicast; 1947 1948 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 1949 muip->mui_next = mcip->mci_unicast_list; 1950 mcip->mci_unicast_list = muip; 1951 rw_exit(&mcip->mci_rw_lock); 1952 1953 *mah = (mac_unicast_handle_t)muip; 1954 1955 /* 1956 * First add the flent to the flow list of this mcip. Then set 1957 * the mip's mi_single_active_client if needed. The Rx path assumes 1958 * that mip->mi_single_active_client will always have an associated 1959 * flent. 1960 */ 1961 mac_client_add_to_flow_list(mcip, flent); 1962 1963 if (nactiveclients_added) 1964 mac_update_single_active_client(mip); 1965 /* 1966 * Trigger a renegotiation of the capabilities when the number of 1967 * active clients changes from 1 to 2, since some of the capabilities 1968 * might have to be disabled. Also send a MAC_NOTE_LINK notification 1969 * to all the MAC clients whenever physical link is DOWN. 1970 */ 1971 if (mip->mi_nactiveclients == 2) { 1972 mac_capab_update((mac_handle_t)mip); 1973 mac_virtual_link_update(mip); 1974 } 1975 /* 1976 * Now that the setup is complete, clear the INCIPIENT flag. 1977 * The flag was set to avoid incoming packets seeing inconsistent 1978 * structures while the setup was in progress. Clear the mci_tx_flag 1979 * by calling mac_tx_client_block. It is possible that 1980 * mac_unicast_remove was called prior to this mac_unicast_add which 1981 * could have set the MCI_TX_QUIESCE flag. 1982 */ 1983 if (flent->fe_rx_ring_group != NULL) 1984 mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT); 1985 FLOW_UNMARK(flent, FE_INCIPIENT); 1986 FLOW_UNMARK(flent, FE_MC_NO_DATAPATH); 1987 mac_tx_client_unblock(mcip); 1988 return (0); 1989 bail: 1990 if (bcast_added) 1991 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid); 1992 if (mac_started) 1993 mac_stop((mac_handle_t)mip); 1994 1995 if (nactiveclients_added) 1996 mip->mi_nactiveclients--; 1997 1998 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 1999 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 2000 if (mip->mi_state_flags & MIS_LEGACY) 2001 mip->mi_capab_legacy.ml_active_clear(mip->mi_driver); 2002 } 2003 2004 if (fastpath_disabled) 2005 mac_fastpath_enable((mac_handle_t)mip); 2006 2007 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2008 return (err); 2009 } 2010 2011 int 2012 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 2013 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 2014 { 2015 mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip; 2016 uint_t err; 2017 2018 i_mac_perim_enter(mip); 2019 err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag); 2020 i_mac_perim_exit(mip); 2021 2022 return (err); 2023 } 2024 2025 /* 2026 * Remove a MAC address which was previously added by mac_unicast_add(). 2027 */ 2028 int 2029 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah) 2030 { 2031 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2032 mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah; 2033 mac_unicast_impl_t *pre; 2034 mac_impl_t *mip = mcip->mci_mip; 2035 flow_entry_t *flent; 2036 2037 i_mac_perim_enter(mip); 2038 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) { 2039 /* 2040 * Called made by the upper MAC client of a VNIC. 2041 * There's nothing much to do, the unicast address will 2042 * be removed by the VNIC driver when the VNIC is deleted, 2043 * but let's ensure that all our transmit is done before 2044 * the client does a mac_client_stop lest it trigger an 2045 * assert in the driver. 2046 */ 2047 ASSERT(muip->mui_vid == 0); 2048 2049 mac_tx_client_flush(mcip); 2050 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY; 2051 2052 if (mcip->mci_state_flags & MCIS_TAG_DISABLE) 2053 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE; 2054 2055 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE) 2056 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE; 2057 2058 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) 2059 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK; 2060 2061 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2062 i_mac_perim_exit(mip); 2063 return (0); 2064 } 2065 2066 ASSERT(muip != NULL); 2067 2068 /* 2069 * Remove the VID from the list of client's VIDs. 2070 */ 2071 pre = mcip->mci_unicast_list; 2072 if (muip == pre) { 2073 mcip->mci_unicast_list = muip->mui_next; 2074 } else { 2075 while ((pre->mui_next != NULL) && (pre->mui_next != muip)) 2076 pre = pre->mui_next; 2077 ASSERT(pre->mui_next == muip); 2078 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 2079 pre->mui_next = muip->mui_next; 2080 rw_exit(&mcip->mci_rw_lock); 2081 } 2082 2083 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) && muip->mui_vid == 0) 2084 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY; 2085 2086 if (!mac_client_single_rcvr(mcip)) { 2087 /* 2088 * This MAC client is shared by more than one unicast 2089 * addresses, so we will just remove the flent 2090 * corresponding to the address being removed. We don't invoke 2091 * mac_rx_classify_flow_rem() since the additional flow is 2092 * not associated with its own separate set of SRS and rings, 2093 * and these constructs are still needed for the remaining 2094 * flows. 2095 */ 2096 flent = mac_client_get_flow(mcip, muip); 2097 ASSERT(flent != NULL); 2098 2099 /* 2100 * The first one is disappearing, need to make sure 2101 * we replace it with another from the list of 2102 * shared clients. 2103 */ 2104 if (flent == mcip->mci_flent) 2105 flent = mac_client_swap_mciflent(mcip); 2106 mac_client_remove_flow_from_list(mcip, flent); 2107 mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE); 2108 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 2109 2110 /* 2111 * The multicast groups that were added by the client so 2112 * far must be removed from the brodcast domain corresponding 2113 * to the VID being removed. 2114 */ 2115 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 2116 (void *)flent, B_FALSE); 2117 2118 if (mip->mi_type->mt_brdcst_addr != NULL) { 2119 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 2120 muip->mui_vid); 2121 } 2122 2123 FLOW_FINAL_REFRELE(flent); 2124 ASSERT(!(mcip->mci_state_flags & MCIS_EXCLUSIVE)); 2125 goto done; 2126 } 2127 2128 /* 2129 * We would have initialized subflows etc. only if we brought up 2130 * the primary client and set the unicast unicast address etc. 2131 * Deactivate the flows. The flow entry will be removed from the 2132 * active flow tables, and the associated SRS, softrings etc will 2133 * be deleted. But the flow entry itself won't be destroyed, instead 2134 * it will continue to be archived off the the global flow hash 2135 * list, for a possible future activation when say IP is plumbed 2136 * again. 2137 */ 2138 mac_link_release_flows(mch); 2139 2140 mip->mi_nactiveclients--; 2141 mac_update_single_active_client(mip); 2142 2143 /* Tear down the Data path */ 2144 mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK); 2145 2146 /* 2147 * Prevent any future access to the flow entry through the mci_flent 2148 * pointer by setting the mci_flent to NULL. Access to mci_flent in 2149 * mac_bcast_send is also under mi_rw_lock. 2150 */ 2151 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2152 flent = mcip->mci_flent; 2153 mac_client_remove_flow_from_list(mcip, flent); 2154 2155 if (mcip->mci_state_flags & MCIS_DESC_LOGGED) 2156 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 2157 2158 /* 2159 * This is the last unicast address being removed and there shouldn't 2160 * be any outbound data threads at this point coming down from mac 2161 * clients. We have waited for the data threads to finish before 2162 * starting dld_str_detach. Non-data threads must access TX SRS 2163 * under mi_rw_lock. 2164 */ 2165 rw_exit(&mip->mi_rw_lock); 2166 2167 /* 2168 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might 2169 * contain other flags, such as FE_CONDEMNED, which we need to 2170 * cleared. We don't call mac_flow_cleanup() for this unicast 2171 * flow as we have a already cleaned up SRSs etc. (via the teadown 2172 * path). We just clear the stats and reset the initial callback 2173 * function, the rest will be set when we call mac_flow_create, 2174 * if at all. 2175 */ 2176 mutex_enter(&flent->fe_lock); 2177 ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL && 2178 flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0); 2179 flent->fe_flags = FE_MC_NO_DATAPATH; 2180 flow_stat_destroy(flent); 2181 2182 /* Initialize the receiver function to a safe routine */ 2183 flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop; 2184 flent->fe_cb_arg1 = NULL; 2185 flent->fe_cb_arg2 = NULL; 2186 2187 flent->fe_index = -1; 2188 mutex_exit(&flent->fe_lock); 2189 2190 if (mip->mi_type->mt_brdcst_addr != NULL) { 2191 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 2192 muip->mui_vid); 2193 } 2194 2195 if (mip->mi_nactiveclients == 1) { 2196 mac_capab_update((mac_handle_t)mip); 2197 mac_virtual_link_update(mip); 2198 } 2199 2200 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 2201 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 2202 2203 if (mip->mi_state_flags & MIS_LEGACY) 2204 mip->mi_capab_legacy.ml_active_clear(mip->mi_driver); 2205 } 2206 2207 mcip->mci_state_flags &= ~MCIS_UNICAST_HW; 2208 2209 if (mcip->mci_state_flags & MCIS_TAG_DISABLE) 2210 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE; 2211 2212 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE) 2213 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE; 2214 2215 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) 2216 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK; 2217 2218 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2219 2220 done: 2221 /* 2222 * Disable fastpath if this is a VNIC or a VLAN. 2223 */ 2224 if (mcip->mci_state_flags & MCIS_IS_VNIC) 2225 mac_fastpath_enable((mac_handle_t)mip); 2226 mac_stop((mac_handle_t)mip); 2227 i_mac_perim_exit(mip); 2228 return (0); 2229 } 2230 2231 /* 2232 * Multicast add function invoked by MAC clients. 2233 */ 2234 int 2235 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr) 2236 { 2237 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2238 mac_impl_t *mip = mcip->mci_mip; 2239 flow_entry_t *flent = mcip->mci_flent_list; 2240 flow_entry_t *prev_fe = NULL; 2241 uint16_t vid; 2242 int err = 0; 2243 2244 /* Verify the address is a valid multicast address */ 2245 if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr, 2246 mip->mi_pdata)) != 0) 2247 return (err); 2248 2249 i_mac_perim_enter(mip); 2250 while (flent != NULL) { 2251 vid = i_mac_flow_vid(flent); 2252 2253 err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid, 2254 MAC_ADDRTYPE_MULTICAST); 2255 if (err != 0) 2256 break; 2257 prev_fe = flent; 2258 flent = flent->fe_client_next; 2259 } 2260 2261 /* 2262 * If we failed adding, then undo all, rather than partial 2263 * success. 2264 */ 2265 if (flent != NULL && prev_fe != NULL) { 2266 flent = mcip->mci_flent_list; 2267 while (flent != prev_fe->fe_client_next) { 2268 vid = i_mac_flow_vid(flent); 2269 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 2270 flent = flent->fe_client_next; 2271 } 2272 } 2273 i_mac_perim_exit(mip); 2274 return (err); 2275 } 2276 2277 /* 2278 * Multicast delete function invoked by MAC clients. 2279 */ 2280 void 2281 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr) 2282 { 2283 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2284 mac_impl_t *mip = mcip->mci_mip; 2285 flow_entry_t *flent; 2286 uint16_t vid; 2287 2288 i_mac_perim_enter(mip); 2289 for (flent = mcip->mci_flent_list; flent != NULL; 2290 flent = flent->fe_client_next) { 2291 vid = i_mac_flow_vid(flent); 2292 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 2293 } 2294 i_mac_perim_exit(mip); 2295 } 2296 2297 /* 2298 * When a MAC client desires to capture packets on an interface, 2299 * it registers a promiscuous call back with mac_promisc_add(). 2300 * There are three types of promiscuous callbacks: 2301 * 2302 * * MAC_CLIENT_PROMISC_ALL 2303 * Captures all packets sent and received by the MAC client, 2304 * the physical interface, as well as all other MAC clients 2305 * defined on top of the same MAC. 2306 * 2307 * * MAC_CLIENT_PROMISC_FILTERED 2308 * Captures all packets sent and received by the MAC client, 2309 * plus all multicast traffic sent and received by the phyisical 2310 * interface and the other MAC clients. 2311 * 2312 * * MAC_CLIENT_PROMISC_MULTI 2313 * Captures all broadcast and multicast packets sent and 2314 * received by the MAC clients as well as the physical interface. 2315 * 2316 * In all cases, the underlying MAC is put in promiscuous mode. 2317 */ 2318 int 2319 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type, 2320 mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags) 2321 { 2322 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2323 mac_impl_t *mip = mcip->mci_mip; 2324 mac_promisc_impl_t *mpip; 2325 mac_cb_info_t *mcbi; 2326 int rc; 2327 2328 i_mac_perim_enter(mip); 2329 2330 if ((rc = mac_start((mac_handle_t)mip)) != 0) { 2331 i_mac_perim_exit(mip); 2332 return (rc); 2333 } 2334 2335 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 2336 type == MAC_CLIENT_PROMISC_ALL) { 2337 /* 2338 * The function is being invoked by the upper MAC client 2339 * of a VNIC. The VNIC should only see the traffic 2340 * it is entitled to. 2341 */ 2342 type = MAC_CLIENT_PROMISC_FILTERED; 2343 } 2344 2345 2346 /* 2347 * Turn on promiscuous mode for the underlying NIC. 2348 * This is needed even for filtered callbacks which 2349 * expect to receive all multicast traffic on the wire. 2350 * 2351 * Physical promiscuous mode should not be turned on if 2352 * MAC_PROMISC_FLAGS_NO_PHYS is set. 2353 */ 2354 if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) { 2355 if ((rc = i_mac_promisc_set(mip, B_TRUE, MAC_DEVPROMISC)) 2356 != 0) { 2357 mac_stop((mac_handle_t)mip); 2358 i_mac_perim_exit(mip); 2359 return (rc); 2360 } 2361 } 2362 2363 mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP); 2364 2365 mpip->mpi_type = type; 2366 mpip->mpi_fn = fn; 2367 mpip->mpi_arg = arg; 2368 mpip->mpi_mcip = mcip; 2369 mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0); 2370 mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0); 2371 mpip->mpi_strip_vlan_tag = 2372 ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0); 2373 2374 mcbi = &mip->mi_promisc_cb_info; 2375 mutex_enter(mcbi->mcbi_lockp); 2376 2377 mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list, 2378 &mpip->mpi_mci_link); 2379 mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list, 2380 &mpip->mpi_mi_link); 2381 2382 mutex_exit(mcbi->mcbi_lockp); 2383 2384 *mphp = (mac_promisc_handle_t)mpip; 2385 i_mac_perim_exit(mip); 2386 return (0); 2387 } 2388 2389 /* 2390 * Remove a multicast address previously aded through mac_promisc_add(). 2391 */ 2392 void 2393 mac_promisc_remove(mac_promisc_handle_t mph) 2394 { 2395 mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph; 2396 mac_client_impl_t *mcip = mpip->mpi_mcip; 2397 mac_impl_t *mip = mcip->mci_mip; 2398 mac_cb_info_t *mcbi; 2399 2400 i_mac_perim_enter(mip); 2401 2402 /* 2403 * Even if the device can't be reset into normal mode, we still 2404 * need to clear the client promisc callbacks. The client may want 2405 * to close the mac end point and we can't have stale callbacks. 2406 */ 2407 if (!(mpip->mpi_no_phys)) { 2408 (void) mac_promisc_set((mac_handle_t)mip, B_FALSE, 2409 MAC_DEVPROMISC); 2410 } 2411 mcbi = &mip->mi_promisc_cb_info; 2412 mutex_enter(mcbi->mcbi_lockp); 2413 if (mac_callback_remove(mcbi, &mip->mi_promisc_list, 2414 &mpip->mpi_mi_link)) { 2415 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 2416 &mcip->mci_promisc_list, &mpip->mpi_mci_link)); 2417 kmem_cache_free(mac_promisc_impl_cache, mpip); 2418 } else { 2419 mac_callback_remove_wait(&mip->mi_promisc_cb_info); 2420 } 2421 mutex_exit(mcbi->mcbi_lockp); 2422 mac_stop((mac_handle_t)mip); 2423 2424 i_mac_perim_exit(mip); 2425 } 2426 2427 /* 2428 * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates 2429 * that a control operation wants to quiesce the Tx data flow in which case 2430 * we return an error. Holding any of the per cpu locks ensures that the 2431 * mci_tx_flag won't change. 2432 * 2433 * 'CPU' must be accessed just once and used to compute the index into the 2434 * percpu array, and that index must be used for the entire duration of the 2435 * packet send operation. Note that the thread may be preempted and run on 2436 * another cpu any time and so we can't use 'CPU' more than once for the 2437 * operation. 2438 */ 2439 #define MAC_TX_TRY_HOLD(mcip, mytx, error) \ 2440 { \ 2441 (error) = 0; \ 2442 (mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \ 2443 mutex_enter(&(mytx)->pcpu_tx_lock); \ 2444 if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) { \ 2445 (mytx)->pcpu_tx_refcnt++; \ 2446 } else { \ 2447 (error) = -1; \ 2448 } \ 2449 mutex_exit(&(mytx)->pcpu_tx_lock); \ 2450 } 2451 2452 /* 2453 * Release the reference. If needed, signal any control operation waiting 2454 * for Tx quiescence. The wait and signal are always done using the 2455 * mci_tx_pcpu[0]'s lock 2456 */ 2457 #define MAC_TX_RELE(mcip, mytx) { \ 2458 mutex_enter(&(mytx)->pcpu_tx_lock); \ 2459 if (--(mytx)->pcpu_tx_refcnt == 0 && \ 2460 (mcip)->mci_tx_flag & MCI_TX_QUIESCE) { \ 2461 mutex_exit(&(mytx)->pcpu_tx_lock); \ 2462 mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 2463 cv_signal(&(mcip)->mci_tx_cv); \ 2464 mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 2465 } else { \ 2466 mutex_exit(&(mytx)->pcpu_tx_lock); \ 2467 } \ 2468 } 2469 2470 /* 2471 * Bump the count of the number of active Tx threads. This is maintained as 2472 * a per CPU counter. On (CMT kind of) machines with large number of CPUs, 2473 * a single mci_tx_lock may become contended. However a count of the total 2474 * number of Tx threads per client is needed in order to quiesce the Tx side 2475 * prior to reassigning a Tx ring dynamically to another client. The thread 2476 * that needs to quiesce the Tx traffic grabs all the percpu locks and checks 2477 * the sum of the individual percpu refcnts. Each Tx data thread only grabs 2478 * its own percpu lock and increments its own refcnt. 2479 */ 2480 void * 2481 mac_tx_hold(mac_client_handle_t mch) 2482 { 2483 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2484 mac_tx_percpu_t *mytx; 2485 int error; 2486 2487 MAC_TX_TRY_HOLD(mcip, mytx, error); 2488 return (error == 0 ? (void *)mytx : NULL); 2489 } 2490 2491 void 2492 mac_tx_rele(mac_client_handle_t mch, void *mytx_handle) 2493 { 2494 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2495 mac_tx_percpu_t *mytx = mytx_handle; 2496 2497 MAC_TX_RELE(mcip, mytx) 2498 } 2499 2500 /* 2501 * Send function invoked by MAC clients. 2502 */ 2503 mac_tx_cookie_t 2504 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint, 2505 uint16_t flag, mblk_t **ret_mp) 2506 { 2507 mac_tx_cookie_t cookie; 2508 int error; 2509 mac_tx_percpu_t *mytx; 2510 mac_soft_ring_set_t *srs; 2511 flow_entry_t *flent; 2512 boolean_t is_subflow = B_FALSE; 2513 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2514 mac_impl_t *mip = mcip->mci_mip; 2515 mac_srs_tx_t *srs_tx; 2516 2517 /* 2518 * Check whether the active Tx threads count is bumped already. 2519 */ 2520 if (!(flag & MAC_TX_NO_HOLD)) { 2521 MAC_TX_TRY_HOLD(mcip, mytx, error); 2522 if (error != 0) { 2523 freemsgchain(mp_chain); 2524 return (NULL); 2525 } 2526 } 2527 2528 if (mcip->mci_subflow_tab != NULL && 2529 mcip->mci_subflow_tab->ft_flow_count > 0 && 2530 mac_flow_lookup(mcip->mci_subflow_tab, mp_chain, 2531 FLOW_OUTBOUND, &flent) == 0) { 2532 /* 2533 * The main assumption here is that if in the event 2534 * we get a chain, all the packets will be classified 2535 * to the same Flow/SRS. If this changes for any 2536 * reason, the following logic should change as well. 2537 * I suppose the fanout_hint also assumes this . 2538 */ 2539 ASSERT(flent != NULL); 2540 is_subflow = B_TRUE; 2541 } else { 2542 flent = mcip->mci_flent; 2543 } 2544 2545 srs = flent->fe_tx_srs; 2546 srs_tx = &srs->srs_tx; 2547 if (srs_tx->st_mode == SRS_TX_DEFAULT && 2548 (srs->srs_state & SRS_ENQUEUED) == 0 && 2549 mip->mi_nactiveclients == 1 && mip->mi_promisc_list == NULL && 2550 mp_chain->b_next == NULL) { 2551 uint64_t obytes; 2552 2553 /* 2554 * Since dls always opens the underlying MAC, nclients equals 2555 * to 1 means that the only active client is dls itself acting 2556 * as a primary client of the MAC instance. Since dls will not 2557 * send tagged packets in that case, and dls is trusted to send 2558 * packets for its allowed VLAN(s), the VLAN tag insertion and 2559 * check is required only if nclients is greater than 1. 2560 */ 2561 if (mip->mi_nclients > 1) { 2562 if (MAC_VID_CHECK_NEEDED(mcip)) { 2563 int err = 0; 2564 2565 MAC_VID_CHECK(mcip, mp_chain, err); 2566 if (err != 0) { 2567 freemsg(mp_chain); 2568 mcip->mci_stat_oerrors++; 2569 goto done; 2570 } 2571 } 2572 if (MAC_TAG_NEEDED(mcip)) { 2573 mp_chain = mac_add_vlan_tag(mp_chain, 0, 2574 mac_client_vid(mch)); 2575 if (mp_chain == NULL) { 2576 mcip->mci_stat_oerrors++; 2577 goto done; 2578 } 2579 } 2580 } 2581 2582 obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) : 2583 msgdsize(mp_chain)); 2584 2585 MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip); 2586 2587 if (mp_chain == NULL) { 2588 cookie = NULL; 2589 mcip->mci_stat_obytes += obytes; 2590 mcip->mci_stat_opackets += 1; 2591 if ((srs->srs_type & SRST_FLOW) != 0) { 2592 FLOW_STAT_UPDATE(flent, obytes, obytes); 2593 FLOW_STAT_UPDATE(flent, opackets, 1); 2594 } 2595 } else { 2596 mutex_enter(&srs->srs_lock); 2597 cookie = mac_tx_srs_no_desc(srs, mp_chain, 2598 flag, ret_mp); 2599 mutex_exit(&srs->srs_lock); 2600 } 2601 } else { 2602 cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp); 2603 } 2604 2605 done: 2606 if (is_subflow) 2607 FLOW_REFRELE(flent); 2608 2609 if (!(flag & MAC_TX_NO_HOLD)) 2610 MAC_TX_RELE(mcip, mytx); 2611 2612 return (cookie); 2613 } 2614 2615 /* 2616 * mac_tx_is_blocked 2617 * 2618 * Given a cookie, it returns if the ring identified by the cookie is 2619 * flow-controlled or not. If NULL is passed in place of a cookie, 2620 * then it finds out if any of the underlying rings belonging to the 2621 * SRS is flow controlled or not and returns that status. 2622 */ 2623 /* ARGSUSED */ 2624 boolean_t 2625 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie) 2626 { 2627 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2628 mac_soft_ring_set_t *mac_srs; 2629 mac_soft_ring_t *sringp; 2630 boolean_t blocked = B_FALSE; 2631 mac_tx_percpu_t *mytx; 2632 int err; 2633 int i; 2634 2635 /* 2636 * Bump the reference count so that mac_srs won't be deleted. 2637 * If the client is currently quiesced and we failed to bump 2638 * the reference, return B_TRUE so that flow control stays 2639 * as enabled. 2640 * 2641 * Flow control will then be disabled once the client is no 2642 * longer quiesced. 2643 */ 2644 MAC_TX_TRY_HOLD(mcip, mytx, err); 2645 if (err != 0) 2646 return (B_TRUE); 2647 2648 if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) { 2649 MAC_TX_RELE(mcip, mytx); 2650 return (B_FALSE); 2651 } 2652 2653 mutex_enter(&mac_srs->srs_lock); 2654 if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT) { 2655 if (cookie != NULL) { 2656 sringp = (mac_soft_ring_t *)cookie; 2657 mutex_enter(&sringp->s_ring_lock); 2658 if (sringp->s_ring_state & S_RING_TX_HIWAT) 2659 blocked = B_TRUE; 2660 mutex_exit(&sringp->s_ring_lock); 2661 } else { 2662 for (i = 0; i < mac_srs->srs_oth_ring_count; i++) { 2663 sringp = mac_srs->srs_oth_soft_rings[i]; 2664 mutex_enter(&sringp->s_ring_lock); 2665 if (sringp->s_ring_state & S_RING_TX_HIWAT) { 2666 blocked = B_TRUE; 2667 mutex_exit(&sringp->s_ring_lock); 2668 break; 2669 } 2670 mutex_exit(&sringp->s_ring_lock); 2671 } 2672 } 2673 } else { 2674 blocked = (mac_srs->srs_state & SRS_TX_HIWAT); 2675 } 2676 mutex_exit(&mac_srs->srs_lock); 2677 MAC_TX_RELE(mcip, mytx); 2678 return (blocked); 2679 } 2680 2681 /* 2682 * Check if the MAC client is the primary MAC client. 2683 */ 2684 boolean_t 2685 mac_is_primary_client(mac_client_impl_t *mcip) 2686 { 2687 return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY); 2688 } 2689 2690 void 2691 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp) 2692 { 2693 mac_impl_t *mip = (mac_impl_t *)mh; 2694 int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd; 2695 2696 if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) || 2697 (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) { 2698 /* 2699 * If ndd props were registered, call them. 2700 * Note that ndd ioctls are Obsolete 2701 */ 2702 mac_ndd_ioctl(mip, wq, bp); 2703 return; 2704 } 2705 2706 /* 2707 * Call the driver to handle the ioctl. The driver may not support 2708 * any ioctls, in which case we reply with a NAK on its behalf. 2709 */ 2710 if (mip->mi_callbacks->mc_callbacks & MC_IOCTL) 2711 mip->mi_ioctl(mip->mi_driver, wq, bp); 2712 else 2713 miocnak(wq, bp, 0, EINVAL); 2714 } 2715 2716 /* 2717 * Return the link state of the specified MAC instance. 2718 */ 2719 link_state_t 2720 mac_link_get(mac_handle_t mh) 2721 { 2722 return (((mac_impl_t *)mh)->mi_linkstate); 2723 } 2724 2725 /* 2726 * Add a mac client specified notification callback. Please see the comments 2727 * above mac_callback_add() for general information about mac callback 2728 * addition/deletion in the presence of mac callback list walkers 2729 */ 2730 mac_notify_handle_t 2731 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg) 2732 { 2733 mac_impl_t *mip = (mac_impl_t *)mh; 2734 mac_notify_cb_t *mncb; 2735 mac_cb_info_t *mcbi; 2736 2737 /* 2738 * Allocate a notify callback structure, fill in the details and 2739 * use the mac callback list manipulation functions to chain into 2740 * the list of callbacks. 2741 */ 2742 mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP); 2743 mncb->mncb_fn = notify_fn; 2744 mncb->mncb_arg = arg; 2745 mncb->mncb_mip = mip; 2746 mncb->mncb_link.mcb_objp = mncb; 2747 mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t); 2748 mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T; 2749 2750 mcbi = &mip->mi_notify_cb_info; 2751 2752 i_mac_perim_enter(mip); 2753 mutex_enter(mcbi->mcbi_lockp); 2754 2755 mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list, 2756 &mncb->mncb_link); 2757 2758 mutex_exit(mcbi->mcbi_lockp); 2759 i_mac_perim_exit(mip); 2760 return ((mac_notify_handle_t)mncb); 2761 } 2762 2763 void 2764 mac_notify_remove_wait(mac_handle_t mh) 2765 { 2766 mac_impl_t *mip = (mac_impl_t *)mh; 2767 mac_cb_info_t *mcbi = &mip->mi_notify_cb_info; 2768 2769 mutex_enter(mcbi->mcbi_lockp); 2770 mac_callback_remove_wait(&mip->mi_notify_cb_info); 2771 mutex_exit(mcbi->mcbi_lockp); 2772 } 2773 2774 /* 2775 * Remove a mac client specified notification callback 2776 */ 2777 int 2778 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait) 2779 { 2780 mac_notify_cb_t *mncb = (mac_notify_cb_t *)mnh; 2781 mac_impl_t *mip = mncb->mncb_mip; 2782 mac_cb_info_t *mcbi; 2783 int err = 0; 2784 2785 mcbi = &mip->mi_notify_cb_info; 2786 2787 i_mac_perim_enter(mip); 2788 mutex_enter(mcbi->mcbi_lockp); 2789 2790 ASSERT(mncb->mncb_link.mcb_objp == mncb); 2791 /* 2792 * If there aren't any list walkers, the remove would succeed 2793 * inline, else we wait for the deferred remove to complete 2794 */ 2795 if (mac_callback_remove(&mip->mi_notify_cb_info, 2796 &mip->mi_notify_cb_list, &mncb->mncb_link)) { 2797 kmem_free(mncb, sizeof (mac_notify_cb_t)); 2798 } else { 2799 err = EBUSY; 2800 } 2801 2802 mutex_exit(mcbi->mcbi_lockp); 2803 i_mac_perim_exit(mip); 2804 2805 /* 2806 * If we failed to remove the notification callback and "wait" is set 2807 * to be B_TRUE, wait for the callback to finish after we exit the 2808 * mac perimeter. 2809 */ 2810 if (err != 0 && wait) { 2811 mac_notify_remove_wait((mac_handle_t)mip); 2812 return (0); 2813 } 2814 2815 return (err); 2816 } 2817 2818 /* 2819 * Associate resource management callbacks with the specified MAC 2820 * clients. 2821 */ 2822 2823 void 2824 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add, 2825 mac_resource_remove_t remove, mac_resource_quiesce_t quiesce, 2826 mac_resource_restart_t restart, mac_resource_bind_t bind, 2827 void *arg) 2828 { 2829 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2830 2831 mcip->mci_resource_add = add; 2832 mcip->mci_resource_remove = remove; 2833 mcip->mci_resource_quiesce = quiesce; 2834 mcip->mci_resource_restart = restart; 2835 mcip->mci_resource_bind = bind; 2836 mcip->mci_resource_arg = arg; 2837 2838 if (arg == NULL) 2839 mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE; 2840 } 2841 2842 void 2843 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg) 2844 { 2845 /* update the 'resource_add' callback */ 2846 mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg); 2847 } 2848 2849 /* 2850 * Sets up the client resources and enable the polling interface over all the 2851 * SRS's and the soft rings of the client 2852 */ 2853 void 2854 mac_client_poll_enable(mac_client_handle_t mch) 2855 { 2856 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2857 mac_soft_ring_set_t *mac_srs; 2858 flow_entry_t *flent; 2859 int i; 2860 2861 flent = mcip->mci_flent; 2862 ASSERT(flent != NULL); 2863 2864 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2865 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 2866 ASSERT(mac_srs->srs_mcip == mcip); 2867 mac_srs_client_poll_enable(mcip, mac_srs); 2868 } 2869 } 2870 2871 /* 2872 * Tears down the client resources and disable the polling interface over all 2873 * the SRS's and the soft rings of the client 2874 */ 2875 void 2876 mac_client_poll_disable(mac_client_handle_t mch) 2877 { 2878 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2879 mac_soft_ring_set_t *mac_srs; 2880 flow_entry_t *flent; 2881 int i; 2882 2883 flent = mcip->mci_flent; 2884 ASSERT(flent != NULL); 2885 2886 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 2887 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 2888 ASSERT(mac_srs->srs_mcip == mcip); 2889 mac_srs_client_poll_disable(mcip, mac_srs); 2890 } 2891 } 2892 2893 /* 2894 * Associate the CPUs specified by the given property with a MAC client. 2895 */ 2896 int 2897 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 2898 { 2899 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2900 mac_impl_t *mip = mcip->mci_mip; 2901 int err = 0; 2902 2903 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2904 2905 if ((err = mac_validate_props(mrp)) != 0) 2906 return (err); 2907 2908 if (MCIP_DATAPATH_SETUP(mcip)) 2909 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp); 2910 2911 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 2912 return (0); 2913 } 2914 2915 /* 2916 * Apply the specified properties to the specified MAC client. 2917 */ 2918 int 2919 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 2920 { 2921 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2922 mac_impl_t *mip = mcip->mci_mip; 2923 int err = 0; 2924 2925 i_mac_perim_enter(mip); 2926 2927 if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) { 2928 err = mac_resource_ctl_set(mch, mrp); 2929 if (err != 0) { 2930 i_mac_perim_exit(mip); 2931 return (err); 2932 } 2933 } 2934 2935 if (mrp->mrp_mask & MRP_CPUS) 2936 err = mac_cpu_set(mch, mrp); 2937 2938 i_mac_perim_exit(mip); 2939 return (err); 2940 } 2941 2942 /* 2943 * Return the properties currently associated with the specified MAC client. 2944 */ 2945 void 2946 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 2947 { 2948 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2949 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip); 2950 2951 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 2952 } 2953 2954 /* 2955 * Pass a copy of the specified packet to the promiscuous callbacks 2956 * of the specified MAC. 2957 * 2958 * If sender is NULL, the function is being invoked for a packet chain 2959 * received from the wire. If sender is non-NULL, it points to 2960 * the MAC client from which the packet is being sent. 2961 * 2962 * The packets are distributed to the promiscuous callbacks as follows: 2963 * 2964 * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks 2965 * - all broadcast and multicast packets are sent to the 2966 * MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI. 2967 * 2968 * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched 2969 * after classification by mac_rx_deliver(). 2970 */ 2971 2972 static void 2973 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp, 2974 boolean_t loopback) 2975 { 2976 mblk_t *mp_copy; 2977 2978 mp_copy = copymsg(mp); 2979 if (mp_copy == NULL) 2980 return; 2981 mp_copy->b_next = NULL; 2982 2983 if (mpip->mpi_strip_vlan_tag) { 2984 if ((mp_copy = mac_strip_vlan_tag_chain(mp_copy)) == NULL) 2985 return; 2986 } 2987 mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback); 2988 } 2989 2990 /* 2991 * Return the VID of a packet. Zero if the packet is not tagged. 2992 */ 2993 static uint16_t 2994 mac_ether_vid(mblk_t *mp) 2995 { 2996 struct ether_header *eth = (struct ether_header *)mp->b_rptr; 2997 2998 if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) { 2999 struct ether_vlan_header *t_evhp = 3000 (struct ether_vlan_header *)mp->b_rptr; 3001 return (VLAN_ID(ntohs(t_evhp->ether_tci))); 3002 } 3003 3004 return (0); 3005 } 3006 3007 /* 3008 * Return whether the specified packet contains a multicast or broadcast 3009 * destination MAC address. 3010 */ 3011 static boolean_t 3012 mac_is_mcast(mac_impl_t *mip, mblk_t *mp) 3013 { 3014 mac_header_info_t hdr_info; 3015 3016 if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0) 3017 return (B_FALSE); 3018 return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) || 3019 (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST)); 3020 } 3021 3022 /* 3023 * Send a copy of an mblk chain to the MAC clients of the specified MAC. 3024 * "sender" points to the sender MAC client for outbound packets, and 3025 * is set to NULL for inbound packets. 3026 */ 3027 void 3028 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain, 3029 mac_client_impl_t *sender) 3030 { 3031 mac_promisc_impl_t *mpip; 3032 mac_cb_t *mcb; 3033 mblk_t *mp; 3034 boolean_t is_mcast, is_sender; 3035 3036 MAC_PROMISC_WALKER_INC(mip); 3037 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 3038 is_mcast = mac_is_mcast(mip, mp); 3039 /* send packet to interested callbacks */ 3040 for (mcb = mip->mi_promisc_list; mcb != NULL; 3041 mcb = mcb->mcb_nextp) { 3042 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 3043 is_sender = (mpip->mpi_mcip == sender); 3044 3045 if (is_sender && mpip->mpi_no_tx_loop) 3046 /* 3047 * The sender doesn't want to receive 3048 * copies of the packets it sends. 3049 */ 3050 continue; 3051 3052 /* 3053 * For an ethernet MAC, don't displatch a multicast 3054 * packet to a non-PROMISC_ALL callbacks unless the VID 3055 * of the packet matches the VID of the client. 3056 */ 3057 if (is_mcast && 3058 mpip->mpi_type != MAC_CLIENT_PROMISC_ALL && 3059 !mac_client_check_flow_vid(mpip->mpi_mcip, 3060 mac_ether_vid(mp))) 3061 continue; 3062 3063 if (is_sender || 3064 mpip->mpi_type == MAC_CLIENT_PROMISC_ALL || 3065 is_mcast) 3066 mac_promisc_dispatch_one(mpip, mp, is_sender); 3067 } 3068 } 3069 MAC_PROMISC_WALKER_DCR(mip); 3070 } 3071 3072 void 3073 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain) 3074 { 3075 mac_impl_t *mip = mcip->mci_mip; 3076 mac_promisc_impl_t *mpip; 3077 boolean_t is_mcast; 3078 mblk_t *mp; 3079 mac_cb_t *mcb; 3080 3081 /* 3082 * The unicast packets for the MAC client still 3083 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED 3084 * promiscuous callbacks. The broadcast and multicast 3085 * packets were delivered from mac_rx(). 3086 */ 3087 MAC_PROMISC_WALKER_INC(mip); 3088 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 3089 is_mcast = mac_is_mcast(mip, mp); 3090 for (mcb = mcip->mci_promisc_list; mcb != NULL; 3091 mcb = mcb->mcb_nextp) { 3092 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 3093 if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED && 3094 !is_mcast) { 3095 mac_promisc_dispatch_one(mpip, mp, B_FALSE); 3096 } 3097 } 3098 } 3099 MAC_PROMISC_WALKER_DCR(mip); 3100 } 3101 3102 /* 3103 * Return the margin value currently assigned to the specified MAC instance. 3104 */ 3105 void 3106 mac_margin_get(mac_handle_t mh, uint32_t *marginp) 3107 { 3108 mac_impl_t *mip = (mac_impl_t *)mh; 3109 3110 rw_enter(&(mip->mi_rw_lock), RW_READER); 3111 *marginp = mip->mi_margin; 3112 rw_exit(&(mip->mi_rw_lock)); 3113 } 3114 3115 /* 3116 * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is 3117 * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find 3118 * the first mac_impl_t with a matching driver name; then we copy its mac_info_t 3119 * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t 3120 * cannot disappear while we are accessing it. 3121 */ 3122 typedef struct i_mac_info_state_s { 3123 const char *mi_name; 3124 mac_info_t *mi_infop; 3125 } i_mac_info_state_t; 3126 3127 /*ARGSUSED*/ 3128 static uint_t 3129 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 3130 { 3131 i_mac_info_state_t *statep = arg; 3132 mac_impl_t *mip = (mac_impl_t *)val; 3133 3134 if (mip->mi_state_flags & MIS_DISABLED) 3135 return (MH_WALK_CONTINUE); 3136 3137 if (strcmp(statep->mi_name, 3138 ddi_driver_name(mip->mi_dip)) != 0) 3139 return (MH_WALK_CONTINUE); 3140 3141 statep->mi_infop = &mip->mi_info; 3142 return (MH_WALK_TERMINATE); 3143 } 3144 3145 boolean_t 3146 mac_info_get(const char *name, mac_info_t *minfop) 3147 { 3148 i_mac_info_state_t state; 3149 3150 rw_enter(&i_mac_impl_lock, RW_READER); 3151 state.mi_name = name; 3152 state.mi_infop = NULL; 3153 mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state); 3154 if (state.mi_infop == NULL) { 3155 rw_exit(&i_mac_impl_lock); 3156 return (B_FALSE); 3157 } 3158 *minfop = *state.mi_infop; 3159 rw_exit(&i_mac_impl_lock); 3160 return (B_TRUE); 3161 } 3162 3163 /* 3164 * To get the capabilities that MAC layer cares about, such as rings, factory 3165 * mac address, vnic or not, it should directly invoke this function 3166 */ 3167 boolean_t 3168 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 3169 { 3170 mac_impl_t *mip = (mac_impl_t *)mh; 3171 3172 if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB) 3173 return (mip->mi_getcapab(mip->mi_driver, cap, cap_data)); 3174 else 3175 return (B_FALSE); 3176 } 3177 3178 /* 3179 * Capability query function. If number of active mac clients is greater than 3180 * 1, only limited capabilities can be advertised to the caller no matter the 3181 * driver has certain capability or not. Else, we query the driver to get the 3182 * capability. 3183 */ 3184 boolean_t 3185 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 3186 { 3187 mac_impl_t *mip = (mac_impl_t *)mh; 3188 3189 /* 3190 * if mi_nactiveclients > 1, only MAC_CAPAB_LEGACY, MAC_CAPAB_HCKSUM, 3191 * MAC_CAPAB_NO_NATIVEVLAN and MAC_CAPAB_NO_ZCOPY can be advertised. 3192 */ 3193 if (mip->mi_nactiveclients > 1) { 3194 switch (cap) { 3195 case MAC_CAPAB_NO_NATIVEVLAN: 3196 case MAC_CAPAB_NO_ZCOPY: 3197 return (B_TRUE); 3198 case MAC_CAPAB_LEGACY: 3199 case MAC_CAPAB_HCKSUM: 3200 break; 3201 default: 3202 return (B_FALSE); 3203 } 3204 } 3205 3206 /* else get capab from driver */ 3207 return (i_mac_capab_get(mh, cap, cap_data)); 3208 } 3209 3210 boolean_t 3211 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap) 3212 { 3213 mac_impl_t *mip = (mac_impl_t *)mh; 3214 3215 return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap, 3216 mip->mi_pdata)); 3217 } 3218 3219 mblk_t * 3220 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload, 3221 size_t extra_len) 3222 { 3223 mac_impl_t *mip = (mac_impl_t *)mh; 3224 3225 return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, daddr, sap, 3226 mip->mi_pdata, payload, extra_len)); 3227 } 3228 3229 int 3230 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip) 3231 { 3232 mac_impl_t *mip = (mac_impl_t *)mh; 3233 3234 return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata, 3235 mhip)); 3236 } 3237 3238 mblk_t * 3239 mac_header_cook(mac_handle_t mh, mblk_t *mp) 3240 { 3241 mac_impl_t *mip = (mac_impl_t *)mh; 3242 3243 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) { 3244 if (DB_REF(mp) > 1) { 3245 mblk_t *newmp = copymsg(mp); 3246 if (newmp == NULL) 3247 return (NULL); 3248 freemsg(mp); 3249 mp = newmp; 3250 } 3251 return (mip->mi_type->mt_ops.mtops_header_cook(mp, 3252 mip->mi_pdata)); 3253 } 3254 return (mp); 3255 } 3256 3257 mblk_t * 3258 mac_header_uncook(mac_handle_t mh, mblk_t *mp) 3259 { 3260 mac_impl_t *mip = (mac_impl_t *)mh; 3261 3262 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) { 3263 if (DB_REF(mp) > 1) { 3264 mblk_t *newmp = copymsg(mp); 3265 if (newmp == NULL) 3266 return (NULL); 3267 freemsg(mp); 3268 mp = newmp; 3269 } 3270 return (mip->mi_type->mt_ops.mtops_header_uncook(mp, 3271 mip->mi_pdata)); 3272 } 3273 return (mp); 3274 } 3275 3276 uint_t 3277 mac_addr_len(mac_handle_t mh) 3278 { 3279 mac_impl_t *mip = (mac_impl_t *)mh; 3280 3281 return (mip->mi_type->mt_addr_length); 3282 } 3283 3284 /* True if a MAC is a VNIC */ 3285 boolean_t 3286 mac_is_vnic(mac_handle_t mh) 3287 { 3288 return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC); 3289 } 3290 3291 mac_handle_t 3292 mac_get_lower_mac_handle(mac_handle_t mh) 3293 { 3294 mac_impl_t *mip = (mac_impl_t *)mh; 3295 3296 ASSERT(mac_is_vnic(mh)); 3297 return (((vnic_t *)mip->mi_driver)->vn_lower_mh); 3298 } 3299 3300 void 3301 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp, 3302 boolean_t is_user_flow) 3303 { 3304 if (nmrp != NULL && cmrp != NULL) { 3305 if (nmrp->mrp_mask & MRP_PRIORITY) { 3306 if (nmrp->mrp_priority == MPL_RESET) { 3307 cmrp->mrp_mask &= ~MRP_PRIORITY; 3308 if (is_user_flow) { 3309 cmrp->mrp_priority = 3310 MPL_SUBFLOW_DEFAULT; 3311 } else { 3312 cmrp->mrp_priority = MPL_LINK_DEFAULT; 3313 } 3314 } else { 3315 cmrp->mrp_mask |= MRP_PRIORITY; 3316 cmrp->mrp_priority = nmrp->mrp_priority; 3317 } 3318 } 3319 if (nmrp->mrp_mask & MRP_MAXBW) { 3320 cmrp->mrp_maxbw = nmrp->mrp_maxbw; 3321 if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL) 3322 cmrp->mrp_mask &= ~MRP_MAXBW; 3323 else 3324 cmrp->mrp_mask |= MRP_MAXBW; 3325 } 3326 if (nmrp->mrp_mask & MRP_CPUS) 3327 MAC_COPY_CPUS(nmrp, cmrp); 3328 } 3329 } 3330 3331 /* 3332 * i_mac_set_resources: 3333 * 3334 * This routine associates properties with the primary MAC client of 3335 * the specified MAC instance. 3336 * - Cache the properties in mac_impl_t 3337 * - Apply the properties to the primary MAC client if exists 3338 */ 3339 int 3340 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 3341 { 3342 mac_impl_t *mip = (mac_impl_t *)mh; 3343 mac_client_impl_t *mcip; 3344 int err = 0; 3345 uint32_t resmask, newresmask; 3346 mac_resource_props_t tmrp, umrp; 3347 3348 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3349 3350 err = mac_validate_props(mrp); 3351 if (err != 0) 3352 return (err); 3353 3354 bcopy(&mip->mi_resource_props, &umrp, sizeof (mac_resource_props_t)); 3355 resmask = umrp.mrp_mask; 3356 mac_update_resources(mrp, &umrp, B_FALSE); 3357 newresmask = umrp.mrp_mask; 3358 3359 if (resmask == 0 && newresmask != 0) { 3360 /* 3361 * Bandwidth, priority or cpu link properties configured, 3362 * must disable fastpath. 3363 */ 3364 if ((err = mac_fastpath_disable((mac_handle_t)mip)) != 0) 3365 return (err); 3366 } 3367 3368 /* 3369 * Since bind_cpu may be modified by mac_client_set_resources() 3370 * we use a copy of bind_cpu and finally cache bind_cpu in mip. 3371 * This allows us to cache only user edits in mip. 3372 */ 3373 bcopy(mrp, &tmrp, sizeof (mac_resource_props_t)); 3374 mcip = mac_primary_client_handle(mip); 3375 if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) { 3376 err = 3377 mac_client_set_resources((mac_client_handle_t)mcip, &tmrp); 3378 } 3379 3380 /* Only update the values if mac_client_set_resources succeeded */ 3381 if (err == 0) { 3382 bcopy(&umrp, &mip->mi_resource_props, 3383 sizeof (mac_resource_props_t)); 3384 /* 3385 * If bankwidth, priority or cpu link properties cleared, 3386 * renable fastpath. 3387 */ 3388 if (resmask != 0 && newresmask == 0) 3389 mac_fastpath_enable((mac_handle_t)mip); 3390 } else if (resmask == 0 && newresmask != 0) { 3391 mac_fastpath_enable((mac_handle_t)mip); 3392 } 3393 return (err); 3394 } 3395 3396 int 3397 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 3398 { 3399 int err; 3400 3401 i_mac_perim_enter((mac_impl_t *)mh); 3402 err = i_mac_set_resources(mh, mrp); 3403 i_mac_perim_exit((mac_impl_t *)mh); 3404 return (err); 3405 } 3406 3407 /* 3408 * Get the properties cached for the specified MAC instance. 3409 */ 3410 void 3411 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp) 3412 { 3413 mac_impl_t *mip = (mac_impl_t *)mh; 3414 mac_client_impl_t *mcip; 3415 3416 if (mip->mi_state_flags & MIS_IS_VNIC) { 3417 mcip = mac_primary_client_handle(mip); 3418 if (mcip != NULL) { 3419 mac_client_get_resources((mac_client_handle_t)mcip, 3420 mrp); 3421 return; 3422 } 3423 } 3424 bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t)); 3425 } 3426 3427 /* 3428 * Rename a mac client, its flow, and the kstat. 3429 */ 3430 int 3431 mac_rename_primary(mac_handle_t mh, const char *new_name) 3432 { 3433 mac_impl_t *mip = (mac_impl_t *)mh; 3434 mac_client_impl_t *cur_clnt = NULL; 3435 flow_entry_t *fep; 3436 3437 i_mac_perim_enter(mip); 3438 3439 /* 3440 * VNICs: we need to change the sys flow name and 3441 * the associated flow kstat. 3442 */ 3443 if (mip->mi_state_flags & MIS_IS_VNIC) { 3444 ASSERT(new_name != NULL); 3445 mac_rename_flow_names(mac_vnic_lower(mip), new_name); 3446 goto done; 3447 } 3448 /* 3449 * This mac may itself be an aggr link, or it may have some client 3450 * which is an aggr port. For both cases, we need to change the 3451 * aggr port's mac client name, its flow name and the associated flow 3452 * kstat. 3453 */ 3454 if (mip->mi_state_flags & MIS_IS_AGGR) { 3455 mac_capab_aggr_t aggr_cap; 3456 mac_rename_fn_t rename_fn; 3457 boolean_t ret; 3458 3459 ASSERT(new_name != NULL); 3460 ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, 3461 (void *)(&aggr_cap)); 3462 ASSERT(ret == B_TRUE); 3463 rename_fn = aggr_cap.mca_rename_fn; 3464 rename_fn(new_name, mip->mi_driver); 3465 /* 3466 * The aggr's client name and kstat flow name will be 3467 * updated below, i.e. via mac_rename_flow_names. 3468 */ 3469 } 3470 3471 for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL; 3472 cur_clnt = cur_clnt->mci_client_next) { 3473 if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) { 3474 if (new_name != NULL) { 3475 char *str_st = cur_clnt->mci_name; 3476 char *str_del = strchr(str_st, '-'); 3477 3478 ASSERT(str_del != NULL); 3479 bzero(str_del + 1, MAXNAMELEN - 3480 (str_del - str_st + 1)); 3481 bcopy(new_name, str_del + 1, 3482 strlen(new_name)); 3483 } 3484 fep = cur_clnt->mci_flent; 3485 mac_rename_flow(fep, cur_clnt->mci_name); 3486 break; 3487 } else if (new_name != NULL && 3488 cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) { 3489 mac_rename_flow_names(cur_clnt, new_name); 3490 break; 3491 } 3492 } 3493 3494 done: 3495 i_mac_perim_exit(mip); 3496 return (0); 3497 } 3498 3499 /* 3500 * Rename the MAC client's flow names 3501 */ 3502 static void 3503 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name) 3504 { 3505 flow_entry_t *flent; 3506 uint16_t vid; 3507 char flowname[MAXFLOWNAMELEN]; 3508 mac_impl_t *mip = mcip->mci_mip; 3509 3510 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3511 3512 /* 3513 * Use mi_rw_lock to ensure that threads not in the mac perimeter 3514 * see a self-consistent value for mci_name 3515 */ 3516 rw_enter(&mip->mi_rw_lock, RW_WRITER); 3517 (void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name)); 3518 rw_exit(&mip->mi_rw_lock); 3519 3520 mac_rename_flow(mcip->mci_flent, new_name); 3521 3522 if (mcip->mci_nflents == 1) 3523 return; 3524 3525 /* 3526 * We have to rename all the others too, no stats to destroy for 3527 * these. 3528 */ 3529 for (flent = mcip->mci_flent_list; flent != NULL; 3530 flent = flent->fe_client_next) { 3531 if (flent != mcip->mci_flent) { 3532 vid = i_mac_flow_vid(flent); 3533 (void) sprintf(flowname, "%s%u", new_name, vid); 3534 mac_flow_set_name(flent, flowname); 3535 } 3536 } 3537 } 3538 3539 3540 /* 3541 * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples 3542 * defined for the specified MAC client. 3543 */ 3544 static void 3545 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent) 3546 { 3547 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 3548 /* 3549 * The promisc Rx data path walks the mci_flent_list. Protect by 3550 * using mi_rw_lock 3551 */ 3552 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 3553 3554 /* Add it to the head */ 3555 flent->fe_client_next = mcip->mci_flent_list; 3556 mcip->mci_flent_list = flent; 3557 mcip->mci_nflents++; 3558 3559 /* 3560 * Keep track of the number of non-zero VIDs addresses per MAC 3561 * client to avoid figuring it out in the data-path. 3562 */ 3563 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 3564 mcip->mci_nvids++; 3565 3566 rw_exit(&mcip->mci_rw_lock); 3567 } 3568 3569 /* 3570 * Remove a flow entry from the MAC client's list. 3571 */ 3572 static void 3573 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent) 3574 { 3575 flow_entry_t *fe = mcip->mci_flent_list; 3576 flow_entry_t *prev_fe = NULL; 3577 3578 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 3579 /* 3580 * The promisc Rx data path walks the mci_flent_list. Protect by 3581 * using mci_rw_lock 3582 */ 3583 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 3584 while ((fe != NULL) && (fe != flent)) { 3585 prev_fe = fe; 3586 fe = fe->fe_client_next; 3587 } 3588 3589 ASSERT(fe != NULL); 3590 if (prev_fe == NULL) { 3591 /* Deleting the first node */ 3592 mcip->mci_flent_list = fe->fe_client_next; 3593 } else { 3594 prev_fe->fe_client_next = fe->fe_client_next; 3595 } 3596 mcip->mci_nflents--; 3597 3598 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 3599 mcip->mci_nvids--; 3600 3601 rw_exit(&mcip->mci_rw_lock); 3602 } 3603 3604 /* 3605 * Check if the given VID belongs to this MAC client. 3606 */ 3607 boolean_t 3608 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid) 3609 { 3610 flow_entry_t *flent; 3611 uint16_t mci_vid; 3612 3613 /* The mci_flent_list is protected by mci_rw_lock */ 3614 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 3615 for (flent = mcip->mci_flent_list; flent != NULL; 3616 flent = flent->fe_client_next) { 3617 mci_vid = i_mac_flow_vid(flent); 3618 if (vid == mci_vid) { 3619 rw_exit(&mcip->mci_rw_lock); 3620 return (B_TRUE); 3621 } 3622 } 3623 rw_exit(&mcip->mci_rw_lock); 3624 return (B_FALSE); 3625 } 3626 3627 /* 3628 * Get the flow entry for the specified <MAC addr, VID> tuple. 3629 */ 3630 static flow_entry_t * 3631 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip) 3632 { 3633 mac_address_t *map = mcip->mci_unicast; 3634 flow_entry_t *flent; 3635 uint16_t vid; 3636 flow_desc_t flow_desc; 3637 3638 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 3639 3640 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 3641 if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0) 3642 return (NULL); 3643 3644 for (flent = mcip->mci_flent_list; flent != NULL; 3645 flent = flent->fe_client_next) { 3646 vid = i_mac_flow_vid(flent); 3647 if (vid == muip->mui_vid) { 3648 return (flent); 3649 } 3650 } 3651 3652 return (NULL); 3653 } 3654 3655 /* 3656 * Since mci_flent has the SRSs, when we want to remove it, we replace 3657 * the flow_desc_t in mci_flent with that of an existing flent and then 3658 * remove that flent instead of mci_flent. 3659 */ 3660 static flow_entry_t * 3661 mac_client_swap_mciflent(mac_client_impl_t *mcip) 3662 { 3663 flow_entry_t *flent = mcip->mci_flent; 3664 flow_tab_t *ft = flent->fe_flow_tab; 3665 flow_entry_t *flent1; 3666 flow_desc_t fl_desc; 3667 char fl_name[MAXFLOWNAMELEN]; 3668 int err; 3669 3670 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 3671 ASSERT(mcip->mci_nflents > 1); 3672 3673 /* get the next flent following the primary flent */ 3674 flent1 = mcip->mci_flent_list->fe_client_next; 3675 ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft); 3676 3677 /* 3678 * Remove the flent from the flow table before updating the 3679 * flow descriptor as the hash depends on the flow descriptor. 3680 * This also helps incoming packet classification avoid having 3681 * to grab fe_lock. Access to fe_flow_desc of a flent not in the 3682 * flow table is done under the fe_lock so that log or stat functions 3683 * see a self-consistent fe_flow_desc. The name and desc are specific 3684 * to a flow, the rest are shared by all the clients, including 3685 * resource control etc. 3686 */ 3687 mac_flow_remove(ft, flent, B_TRUE); 3688 mac_flow_remove(ft, flent1, B_TRUE); 3689 3690 bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t)); 3691 bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN); 3692 3693 /* update the primary flow entry */ 3694 mutex_enter(&flent->fe_lock); 3695 bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc, 3696 sizeof (flow_desc_t)); 3697 bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN); 3698 mutex_exit(&flent->fe_lock); 3699 3700 /* update the flow entry that is to be freed */ 3701 mutex_enter(&flent1->fe_lock); 3702 bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t)); 3703 bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN); 3704 mutex_exit(&flent1->fe_lock); 3705 3706 /* now reinsert the flow entries in the table */ 3707 err = mac_flow_add(ft, flent); 3708 ASSERT(err == 0); 3709 3710 err = mac_flow_add(ft, flent1); 3711 ASSERT(err == 0); 3712 3713 return (flent1); 3714 } 3715 3716 /* 3717 * Return whether there is only one flow entry associated with this 3718 * MAC client. 3719 */ 3720 static boolean_t 3721 mac_client_single_rcvr(mac_client_impl_t *mcip) 3722 { 3723 return (mcip->mci_nflents == 1); 3724 } 3725 3726 int 3727 mac_validate_props(mac_resource_props_t *mrp) 3728 { 3729 if (mrp == NULL) 3730 return (0); 3731 3732 if (mrp->mrp_mask & MRP_PRIORITY) { 3733 mac_priority_level_t pri = mrp->mrp_priority; 3734 3735 if (pri < MPL_LOW || pri > MPL_RESET) 3736 return (EINVAL); 3737 } 3738 3739 if (mrp->mrp_mask & MRP_MAXBW) { 3740 uint64_t maxbw = mrp->mrp_maxbw; 3741 3742 if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0) 3743 return (EINVAL); 3744 } 3745 if (mrp->mrp_mask & MRP_CPUS) { 3746 int i, j; 3747 mac_cpu_mode_t fanout; 3748 3749 if (mrp->mrp_ncpus > ncpus || mrp->mrp_ncpus > MAX_SR_FANOUT) 3750 return (EINVAL); 3751 3752 for (i = 0; i < mrp->mrp_ncpus; i++) { 3753 for (j = 0; j < mrp->mrp_ncpus; j++) { 3754 if (i != j && 3755 mrp->mrp_cpu[i] == mrp->mrp_cpu[j]) { 3756 return (EINVAL); 3757 } 3758 } 3759 } 3760 3761 for (i = 0; i < mrp->mrp_ncpus; i++) { 3762 cpu_t *cp; 3763 int rv; 3764 3765 mutex_enter(&cpu_lock); 3766 cp = cpu_get(mrp->mrp_cpu[i]); 3767 if (cp != NULL) 3768 rv = cpu_is_online(cp); 3769 else 3770 rv = 0; 3771 mutex_exit(&cpu_lock); 3772 if (rv == 0) 3773 return (EINVAL); 3774 } 3775 3776 fanout = mrp->mrp_fanout_mode; 3777 if (fanout < 0 || fanout > MCM_CPUS) 3778 return (EINVAL); 3779 } 3780 return (0); 3781 } 3782 3783 /* 3784 * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the 3785 * underlying physical link is down. This is to allow MAC clients to 3786 * communicate with other clients. 3787 */ 3788 void 3789 mac_virtual_link_update(mac_impl_t *mip) 3790 { 3791 if (mip->mi_linkstate != LINK_STATE_UP) 3792 i_mac_notify(mip, MAC_NOTE_LINK); 3793 } 3794 3795 /* 3796 * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's 3797 * mac handle in the client. 3798 */ 3799 void 3800 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh) 3801 { 3802 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3803 3804 mcip->mci_upper_mip = (mac_impl_t *)mh; 3805 } 3806 3807 /* 3808 * Mark the mac as being used exclusively by the single mac client that is 3809 * doing some control operation on this mac. No further opens of this mac 3810 * will be allowed until this client calls mac_unmark_exclusive. The mac 3811 * client calling this function must already be in the mac perimeter 3812 */ 3813 int 3814 mac_mark_exclusive(mac_handle_t mh) 3815 { 3816 mac_impl_t *mip = (mac_impl_t *)mh; 3817 3818 ASSERT(MAC_PERIM_HELD(mh)); 3819 /* 3820 * Look up its entry in the global hash table. 3821 */ 3822 rw_enter(&i_mac_impl_lock, RW_WRITER); 3823 if (mip->mi_state_flags & MIS_DISABLED) { 3824 rw_exit(&i_mac_impl_lock); 3825 return (ENOENT); 3826 } 3827 3828 /* 3829 * A reference to mac is held even if the link is not plumbed. 3830 * In i_dls_link_create() we open the MAC interface and hold the 3831 * reference. There is an additional reference for the mac_open 3832 * done in acquiring the mac perimeter 3833 */ 3834 if (mip->mi_ref != 2) { 3835 rw_exit(&i_mac_impl_lock); 3836 return (EBUSY); 3837 } 3838 3839 ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 3840 mip->mi_state_flags |= MIS_EXCLUSIVE_HELD; 3841 rw_exit(&i_mac_impl_lock); 3842 return (0); 3843 } 3844 3845 void 3846 mac_unmark_exclusive(mac_handle_t mh) 3847 { 3848 mac_impl_t *mip = (mac_impl_t *)mh; 3849 3850 ASSERT(MAC_PERIM_HELD(mh)); 3851 3852 rw_enter(&i_mac_impl_lock, RW_WRITER); 3853 /* 1 for the creation and another for the perimeter */ 3854 ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 3855 mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD; 3856 rw_exit(&i_mac_impl_lock); 3857 } 3858 3859 /* 3860 * Set the MTU for the specified device. The function returns EBUSY if 3861 * another MAC client prevents the caller to become the exclusive client. 3862 * Returns EAGAIN if the client is started. 3863 */ 3864 int 3865 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg) 3866 { 3867 mac_impl_t *mip = (mac_impl_t *)mh; 3868 uint_t old_mtu; 3869 int rv; 3870 boolean_t exclusive = B_FALSE; 3871 3872 i_mac_perim_enter(mip); 3873 3874 if ((mip->mi_callbacks->mc_callbacks & MC_SETPROP) == 0 || 3875 (mip->mi_callbacks->mc_callbacks & MC_GETPROP) == 0) { 3876 rv = ENOTSUP; 3877 goto bail; 3878 } 3879 3880 if ((rv = mac_mark_exclusive(mh)) != 0) 3881 goto bail; 3882 exclusive = B_TRUE; 3883 3884 if (mip->mi_active > 0) { 3885 /* 3886 * The MAC instance is started, for example due to the 3887 * presence of a promiscuous clients. Fail the operation 3888 * since the MAC's MTU cannot be changed while the NIC 3889 * is started. 3890 */ 3891 rv = EAGAIN; 3892 goto bail; 3893 } 3894 3895 mac_sdu_get(mh, NULL, &old_mtu); 3896 3897 if (old_mtu != new_mtu) { 3898 rv = mip->mi_callbacks->mc_setprop(mip->mi_driver, 3899 "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu); 3900 } 3901 3902 bail: 3903 if (exclusive) 3904 mac_unmark_exclusive(mh); 3905 i_mac_perim_exit(mip); 3906 3907 if (rv == 0 && old_mtu_arg != NULL) 3908 *old_mtu_arg = old_mtu; 3909 return (rv); 3910 } 3911 3912 void 3913 mac_get_hwgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num, 3914 uint_t *n_rings, uint_t *type, uint_t *n_clnts, char *clnts_name) 3915 { 3916 mac_impl_t *mip = (mac_impl_t *)mh; 3917 mac_grp_client_t *mcip; 3918 uint_t i = 0, index = 0; 3919 3920 /* Revisit when we implement fully dynamic group allocation */ 3921 ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count); 3922 3923 rw_enter(&mip->mi_rw_lock, RW_READER); 3924 *grp_num = mip->mi_rx_groups[grp_index].mrg_index; 3925 *type = mip->mi_rx_groups[grp_index].mrg_type; 3926 *n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count; 3927 for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL; 3928 mcip = mcip->mgc_next) { 3929 int name_len = strlen(mcip->mgc_client->mci_name); 3930 3931 /* 3932 * MAXCLIENTNAMELEN is the buffer size reserved for client 3933 * names. 3934 * XXXX Formating the client name string needs to be moved 3935 * to user land when fixing the size of dhi_clnts in 3936 * dld_hwgrpinfo_t. We should use n_clients * client_name for 3937 * dhi_clntsin instead of MAXCLIENTNAMELEN 3938 */ 3939 if (index + name_len >= MAXCLIENTNAMELEN) { 3940 index = MAXCLIENTNAMELEN; 3941 break; 3942 } 3943 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]), 3944 name_len); 3945 index += name_len; 3946 clnts_name[index++] = ','; 3947 i++; 3948 } 3949 3950 /* Get rid of the last , */ 3951 if (index > 0) 3952 clnts_name[index - 1] = '\0'; 3953 *n_clnts = i; 3954 rw_exit(&mip->mi_rw_lock); 3955 } 3956 3957 uint_t 3958 mac_hwgrp_num(mac_handle_t mh) 3959 { 3960 mac_impl_t *mip = (mac_impl_t *)mh; 3961 3962 return (mip->mi_rx_group_count); 3963 } 3964