xref: /titanic_41/usr/src/uts/common/io/ixgbe/ixgbe_common.c (revision 1e4c938b57d1656808e4112127ff1dce3eba5314)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright(c) 2007-2010 Intel Corporation. All rights reserved.
24  */
25 
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  */
29 
30 /* IntelVersion: 1.238 scm_061610_003709 */
31 
32 #include "ixgbe_common.h"
33 #include "ixgbe_phy.h"
34 #include "ixgbe_api.h"
35 
36 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
37 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
38 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
39 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
40 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
41 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
42     u16 count);
43 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
44 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
45 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
47 
48 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
49 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
50     u16 *san_mac_offset);
51 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw);
52 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw);
53 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw);
54 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw);
55 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
56     u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm);
57 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan);
58 
59 /*
60  * ixgbe_init_ops_generic - Inits function ptrs
61  * @hw: pointer to the hardware structure
62  *
63  * Initialize the function pointers.
64  */
65 s32
66 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
67 {
68 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
69 	struct ixgbe_mac_info *mac = &hw->mac;
70 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
71 
72 	DEBUGFUNC("ixgbe_init_ops_generic");
73 
74 	/* EEPROM */
75 	eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
76 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
77 	if (eec & (1 << 8))
78 		eeprom->ops.read = &ixgbe_read_eerd_generic;
79 	else
80 		eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
81 	eeprom->ops.write = &ixgbe_write_eeprom_generic;
82 	eeprom->ops.validate_checksum =
83 	    &ixgbe_validate_eeprom_checksum_generic;
84 	eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
85 	eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
86 
87 	/* MAC */
88 	mac->ops.init_hw = &ixgbe_init_hw_generic;
89 	mac->ops.reset_hw = NULL;
90 	mac->ops.start_hw = &ixgbe_start_hw_generic;
91 	mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
92 	mac->ops.get_media_type = NULL;
93 	mac->ops.get_supported_physical_layer = NULL;
94 	mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
95 	mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
96 	mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
97 	mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
98 	mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
99 	mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
100 	mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
101 
102 	/* LEDs */
103 	mac->ops.led_on = &ixgbe_led_on_generic;
104 	mac->ops.led_off = &ixgbe_led_off_generic;
105 	mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
106 	mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
107 
108 	/* RAR, Multicast, VLAN */
109 	mac->ops.set_rar = &ixgbe_set_rar_generic;
110 	mac->ops.clear_rar = &ixgbe_clear_rar_generic;
111 	mac->ops.insert_mac_addr = NULL;
112 	mac->ops.set_vmdq = NULL;
113 	mac->ops.clear_vmdq = NULL;
114 	mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
115 	mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
116 	mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
117 	mac->ops.enable_mc = &ixgbe_enable_mc_generic;
118 	mac->ops.disable_mc = &ixgbe_disable_mc_generic;
119 	mac->ops.clear_vfta = NULL;
120 	mac->ops.set_vfta = NULL;
121 	mac->ops.init_uta_tables = NULL;
122 
123 	/* Flow Control */
124 	mac->ops.fc_enable = &ixgbe_fc_enable_generic;
125 
126 	/* Link */
127 	mac->ops.get_link_capabilities = NULL;
128 	mac->ops.setup_link = NULL;
129 	mac->ops.check_link = NULL;
130 
131 	return (IXGBE_SUCCESS);
132 }
133 
134 /*
135  * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
136  * @hw: pointer to hardware structure
137  *
138  * Starts the hardware by filling the bus info structure and media type, clears
139  * all on chip counters, initializes receive address registers, multicast
140  * table, VLAN filter table, calls routine to set up link and flow control
141  * settings, and leaves transmit and receive units disabled and uninitialized
142  */
143 s32
144 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
145 {
146 	u32 ctrl_ext;
147 
148 	DEBUGFUNC("ixgbe_start_hw_generic");
149 
150 	/* Set the media type */
151 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
152 
153 	/* PHY ops initialization must be done in reset_hw() */
154 
155 	/* Clear the VLAN filter table */
156 	hw->mac.ops.clear_vfta(hw);
157 
158 	/* Clear statistics registers */
159 	hw->mac.ops.clear_hw_cntrs(hw);
160 
161 	/* Set No Snoop Disable */
162 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
163 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
164 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
165 	IXGBE_WRITE_FLUSH(hw);
166 
167 	/* Setup flow control */
168 	(void) ixgbe_setup_fc(hw, 0);
169 
170 	/* Clear adapter stopped flag */
171 	hw->adapter_stopped = false;
172 
173 	return (IXGBE_SUCCESS);
174 }
175 
176 /*
177  * ixgbe_init_hw_generic - Generic hardware initialization
178  * @hw: pointer to hardware structure
179  *
180  * Initialize the hardware by resetting the hardware, filling the bus info
181  * structure and media type, clears all on chip counters, initializes receive
182  * address registers, multicast table, VLAN filter table, calls routine to set
183  * up link and flow control settings, and leaves transmit and receive units
184  * disabled and uninitialized
185  */
186 s32
187 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
188 {
189 	s32 status = IXGBE_SUCCESS;
190 
191 	DEBUGFUNC("ixgbe_init_hw_generic");
192 
193 	/* Reset the hardware */
194 	status = hw->mac.ops.reset_hw(hw);
195 
196 	if (status == IXGBE_SUCCESS) {
197 		/* Start the HW */
198 		status = hw->mac.ops.start_hw(hw);
199 	}
200 
201 	return (status);
202 }
203 
204 /*
205  * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
206  * @hw: pointer to hardware structure
207  *
208  * Clears all hardware statistics counters by reading them from the hardware
209  * Statistics counters are clear on read.
210  */
211 s32
212 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
213 {
214 	u16 i = 0;
215 
216 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
217 
218 	(void) IXGBE_READ_REG(hw, IXGBE_CRCERRS);
219 	(void) IXGBE_READ_REG(hw, IXGBE_ILLERRC);
220 	(void) IXGBE_READ_REG(hw, IXGBE_ERRBC);
221 	(void) IXGBE_READ_REG(hw, IXGBE_MSPDC);
222 	for (i = 0; i < 8; i++)
223 		(void) IXGBE_READ_REG(hw, IXGBE_MPC(i));
224 
225 	(void) IXGBE_READ_REG(hw, IXGBE_MLFC);
226 	(void) IXGBE_READ_REG(hw, IXGBE_MRFC);
227 	(void) IXGBE_READ_REG(hw, IXGBE_RLEC);
228 	(void) IXGBE_READ_REG(hw, IXGBE_LXONTXC);
229 	(void) IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
230 	if (hw->mac.type >= ixgbe_mac_82599EB) {
231 		(void) IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
232 		(void) IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
233 	} else {
234 		(void) IXGBE_READ_REG(hw, IXGBE_LXONRXC);
235 		(void) IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
236 	}
237 
238 	for (i = 0; i < 8; i++) {
239 		(void) IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
240 		(void) IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
241 		if (hw->mac.type >= ixgbe_mac_82599EB) {
242 			(void) IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
243 			(void) IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
244 		} else {
245 			(void) IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
246 			(void) IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
247 		}
248 	}
249 	if (hw->mac.type >= ixgbe_mac_82599EB)
250 		for (i = 0; i < 8; i++)
251 			(void) IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
252 
253 	(void) IXGBE_READ_REG(hw, IXGBE_PRC64);
254 	(void) IXGBE_READ_REG(hw, IXGBE_PRC127);
255 	(void) IXGBE_READ_REG(hw, IXGBE_PRC255);
256 	(void) IXGBE_READ_REG(hw, IXGBE_PRC511);
257 	(void) IXGBE_READ_REG(hw, IXGBE_PRC1023);
258 	(void) IXGBE_READ_REG(hw, IXGBE_PRC1522);
259 	(void) IXGBE_READ_REG(hw, IXGBE_GPRC);
260 	(void) IXGBE_READ_REG(hw, IXGBE_BPRC);
261 	(void) IXGBE_READ_REG(hw, IXGBE_MPRC);
262 	(void) IXGBE_READ_REG(hw, IXGBE_GPTC);
263 	(void) IXGBE_READ_REG(hw, IXGBE_GORCL);
264 	(void) IXGBE_READ_REG(hw, IXGBE_GORCH);
265 	(void) IXGBE_READ_REG(hw, IXGBE_GOTCL);
266 	(void) IXGBE_READ_REG(hw, IXGBE_GOTCH);
267 	for (i = 0; i < 8; i++)
268 		(void) IXGBE_READ_REG(hw, IXGBE_RNBC(i));
269 	(void) IXGBE_READ_REG(hw, IXGBE_RUC);
270 	(void) IXGBE_READ_REG(hw, IXGBE_RFC);
271 	(void) IXGBE_READ_REG(hw, IXGBE_ROC);
272 	(void) IXGBE_READ_REG(hw, IXGBE_RJC);
273 	(void) IXGBE_READ_REG(hw, IXGBE_MNGPRC);
274 	(void) IXGBE_READ_REG(hw, IXGBE_MNGPDC);
275 	(void) IXGBE_READ_REG(hw, IXGBE_MNGPTC);
276 	(void) IXGBE_READ_REG(hw, IXGBE_TORL);
277 	(void) IXGBE_READ_REG(hw, IXGBE_TORH);
278 	(void) IXGBE_READ_REG(hw, IXGBE_TPR);
279 	(void) IXGBE_READ_REG(hw, IXGBE_TPT);
280 	(void) IXGBE_READ_REG(hw, IXGBE_PTC64);
281 	(void) IXGBE_READ_REG(hw, IXGBE_PTC127);
282 	(void) IXGBE_READ_REG(hw, IXGBE_PTC255);
283 	(void) IXGBE_READ_REG(hw, IXGBE_PTC511);
284 	(void) IXGBE_READ_REG(hw, IXGBE_PTC1023);
285 	(void) IXGBE_READ_REG(hw, IXGBE_PTC1522);
286 	(void) IXGBE_READ_REG(hw, IXGBE_MPTC);
287 	(void) IXGBE_READ_REG(hw, IXGBE_BPTC);
288 	for (i = 0; i < 16; i++) {
289 		(void) IXGBE_READ_REG(hw, IXGBE_QPRC(i));
290 		(void) IXGBE_READ_REG(hw, IXGBE_QPTC(i));
291 		if (hw->mac.type >= ixgbe_mac_82599EB) {
292 			(void) IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
293 			(void) IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
294 			(void) IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
295 			(void) IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
296 			(void) IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
297 		} else {
298 			(void) IXGBE_READ_REG(hw, IXGBE_QBRC(i));
299 			(void) IXGBE_READ_REG(hw, IXGBE_QBTC(i));
300 		}
301 	}
302 
303 	return (IXGBE_SUCCESS);
304 }
305 
306 /*
307  * ixgbe_read_pba_num_generic - Reads part number from EEPROM
308  * @hw: pointer to hardware structure
309  * @pba_num: stores the part number from the EEPROM
310  *
311  * Reads the part number from the EEPROM.
312  */
313 s32
314 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
315 {
316 	s32 ret_val;
317 	u16 data;
318 
319 	DEBUGFUNC("ixgbe_read_pba_num_generic");
320 
321 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
322 	if (ret_val) {
323 		DEBUGOUT("NVM Read Error\n");
324 		return (ret_val);
325 	}
326 	*pba_num = (u32)(data << 16);
327 
328 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
329 	if (ret_val) {
330 		DEBUGOUT("NVM Read Error\n");
331 		return (ret_val);
332 	}
333 	*pba_num |= data;
334 
335 	return (IXGBE_SUCCESS);
336 }
337 
338 /*
339  * ixgbe_get_mac_addr_generic - Generic get MAC address
340  * @hw: pointer to hardware structure
341  * @mac_addr: Adapter MAC address
342  *
343  * Reads the adapter's MAC address from first Receive Address Register (RAR0)
344  * A reset of the adapter must be performed prior to calling this function
345  * in order for the MAC address to have been loaded from the EEPROM into RAR0
346  */
347 s32
348 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
349 {
350 	u32 rar_high;
351 	u32 rar_low;
352 	u16 i;
353 
354 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
355 
356 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
357 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
358 
359 	for (i = 0; i < 4; i++)
360 		mac_addr[i] = (u8)(rar_low >> (i*8));
361 
362 	for (i = 0; i < 2; i++)
363 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
364 
365 	return (IXGBE_SUCCESS);
366 }
367 
368 /*
369  * ixgbe_get_bus_info_generic - Generic set PCI bus info
370  * @hw: pointer to hardware structure
371  *
372  * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
373  */
374 s32
375 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
376 {
377 	struct ixgbe_mac_info *mac = &hw->mac;
378 	u16 link_status;
379 
380 	DEBUGFUNC("ixgbe_get_bus_info_generic");
381 
382 	hw->bus.type = ixgbe_bus_type_pci_express;
383 
384 	/* Get the negotiated link width and speed from PCI config space */
385 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
386 
387 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
388 	case IXGBE_PCI_LINK_WIDTH_1:
389 		hw->bus.width = ixgbe_bus_width_pcie_x1;
390 		break;
391 	case IXGBE_PCI_LINK_WIDTH_2:
392 		hw->bus.width = ixgbe_bus_width_pcie_x2;
393 		break;
394 	case IXGBE_PCI_LINK_WIDTH_4:
395 		hw->bus.width = ixgbe_bus_width_pcie_x4;
396 		break;
397 	case IXGBE_PCI_LINK_WIDTH_8:
398 		hw->bus.width = ixgbe_bus_width_pcie_x8;
399 		break;
400 	default:
401 		hw->bus.width = ixgbe_bus_width_unknown;
402 		break;
403 	}
404 
405 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
406 	case IXGBE_PCI_LINK_SPEED_2500:
407 		hw->bus.speed = ixgbe_bus_speed_2500;
408 		break;
409 	case IXGBE_PCI_LINK_SPEED_5000:
410 		hw->bus.speed = ixgbe_bus_speed_5000;
411 		break;
412 	default:
413 		hw->bus.speed = ixgbe_bus_speed_unknown;
414 		break;
415 	}
416 
417 	mac->ops.set_lan_id(hw);
418 
419 	return (IXGBE_SUCCESS);
420 }
421 
422 
423 /*
424  * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
425  * @hw: pointer to the HW structure
426  *
427  * Determines the LAN function id by reading memory-mapped registers
428  * and swaps the port value if requested.
429  */
430 void
431 ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
432 {
433 	struct ixgbe_bus_info *bus = &hw->bus;
434 	u32 reg;
435 
436 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
437 
438 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
439 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
440 	bus->lan_id = bus->func;
441 
442 	/* check for a port swap */
443 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
444 	if (reg & IXGBE_FACTPS_LFS)
445 		bus->func ^= 0x1;
446 }
447 
448 /*
449  * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
450  * @hw: pointer to hardware structure
451  *
452  * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
453  * disables transmit and receive units. The adapter_stopped flag is used by
454  * the shared code and drivers to determine if the adapter is in a stopped
455  * state and should not touch the hardware.
456  */
457 s32
458 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
459 {
460 	u32 number_of_queues;
461 	u32 reg_val;
462 	u16 i;
463 
464 	DEBUGFUNC("ixgbe_stop_adapter_generic");
465 
466 	/*
467 	 * Set the adapter_stopped flag so other driver functions stop touching
468 	 * the hardware
469 	 */
470 	hw->adapter_stopped = true;
471 
472 	/* Disable the receive unit */
473 	reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
474 	reg_val &= ~(IXGBE_RXCTRL_RXEN);
475 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
476 	IXGBE_WRITE_FLUSH(hw);
477 	msec_delay(2);
478 
479 	/* Clear interrupt mask to stop from interrupts being generated */
480 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
481 
482 	/* Clear any pending interrupts */
483 	(void) IXGBE_READ_REG(hw, IXGBE_EICR);
484 
485 	/* Disable the transmit unit.  Each queue must be disabled. */
486 	number_of_queues = hw->mac.max_tx_queues;
487 	for (i = 0; i < number_of_queues; i++) {
488 		reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
489 		if (reg_val & IXGBE_TXDCTL_ENABLE) {
490 			reg_val &= ~IXGBE_TXDCTL_ENABLE;
491 			IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
492 		}
493 	}
494 
495 	/*
496 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
497 	 * access and verify no pending requests
498 	 */
499 	(void) ixgbe_disable_pcie_master(hw);
500 
501 	return (IXGBE_SUCCESS);
502 }
503 
504 /*
505  * ixgbe_led_on_generic - Turns on the software controllable LEDs.
506  * @hw: pointer to hardware structure
507  * @index: led number to turn on
508  */
509 s32
510 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
511 {
512 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
513 
514 	DEBUGFUNC("ixgbe_led_on_generic");
515 
516 	/* To turn on the LED, set mode to ON. */
517 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
518 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
519 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
520 	IXGBE_WRITE_FLUSH(hw);
521 
522 	return (IXGBE_SUCCESS);
523 }
524 
525 /*
526  * ixgbe_led_off_generic - Turns off the software controllable LEDs.
527  * @hw: pointer to hardware structure
528  * @index: led number to turn off
529  */
530 s32
531 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
532 {
533 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
534 
535 	DEBUGFUNC("ixgbe_led_off_generic");
536 
537 	/* To turn off the LED, set mode to OFF. */
538 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
539 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
540 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
541 	IXGBE_WRITE_FLUSH(hw);
542 
543 	return (IXGBE_SUCCESS);
544 }
545 
546 /*
547  * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
548  * @hw: pointer to hardware structure
549  *
550  * Initializes the EEPROM parameters ixgbe_eeprom_info within the
551  * ixgbe_hw struct in order to set up EEPROM access.
552  */
553 s32
554 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
555 {
556 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
557 	u32 eec;
558 	u16 eeprom_size;
559 
560 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
561 
562 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
563 		eeprom->type = ixgbe_eeprom_none;
564 		/*
565 		 * Set default semaphore delay to 10ms which is a well
566 		 * tested value
567 		 */
568 		eeprom->semaphore_delay = 10;
569 
570 		/*
571 		 * Check for EEPROM present first.
572 		 * If not present leave as none
573 		 */
574 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
575 		if (eec & IXGBE_EEC_PRES) {
576 			eeprom->type = ixgbe_eeprom_spi;
577 
578 			/*
579 			 * SPI EEPROM is assumed here.  This code would need to
580 			 * change if a future EEPROM is not SPI.
581 			 */
582 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
583 			    IXGBE_EEC_SIZE_SHIFT);
584 			eeprom->word_size = 1 << (eeprom_size +
585 			    IXGBE_EEPROM_WORD_SIZE_BASE_SHIFT);
586 		}
587 
588 		if (eec & IXGBE_EEC_ADDR_SIZE)
589 			eeprom->address_bits = 16;
590 		else
591 			eeprom->address_bits = 8;
592 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
593 		    "%d\n", eeprom->type, eeprom->word_size,
594 		    eeprom->address_bits);
595 	}
596 
597 	return (IXGBE_SUCCESS);
598 }
599 
600 /*
601  * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
602  * @hw: pointer to hardware structure
603  * @offset: offset within the EEPROM to be written to
604  * @data: 16 bit word to be written to the EEPROM
605  *
606  * If ixgbe_eeprom_update_checksum is not called after this function, the
607  * EEPROM will most likely contain an invalid checksum.
608  */
609 s32
610 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
611 {
612 	s32 status;
613 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
614 
615 	DEBUGFUNC("ixgbe_write_eeprom_generic");
616 
617 	hw->eeprom.ops.init_params(hw);
618 
619 	if (offset >= hw->eeprom.word_size) {
620 		status = IXGBE_ERR_EEPROM;
621 		goto out;
622 	}
623 
624 	/* Prepare the EEPROM for writing  */
625 	status = ixgbe_acquire_eeprom(hw);
626 
627 	if (status == IXGBE_SUCCESS) {
628 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
629 			ixgbe_release_eeprom(hw);
630 			status = IXGBE_ERR_EEPROM;
631 		}
632 	}
633 
634 	if (status == IXGBE_SUCCESS) {
635 		ixgbe_standby_eeprom(hw);
636 
637 		/*  Send the WRITE ENABLE command (8 bit opcode )  */
638 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
639 		    IXGBE_EEPROM_OPCODE_BITS);
640 
641 		ixgbe_standby_eeprom(hw);
642 
643 		/*
644 		 * Some SPI eeproms use the 8th address bit embedded in the
645 		 * opcode
646 		 */
647 		if ((hw->eeprom.address_bits == 8) && (offset >= 128))
648 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
649 
650 		/* Send the Write command (8-bit opcode + addr) */
651 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
652 		    IXGBE_EEPROM_OPCODE_BITS);
653 		ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
654 		    hw->eeprom.address_bits);
655 
656 		/* Send the data */
657 		data = (data >> 8) | (data << 8);
658 		ixgbe_shift_out_eeprom_bits(hw, data, 16);
659 		ixgbe_standby_eeprom(hw);
660 
661 		/* Done with writing - release the EEPROM */
662 		ixgbe_release_eeprom(hw);
663 	}
664 
665 out:
666 	return (status);
667 }
668 
669 /*
670  * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
671  * @hw: pointer to hardware structure
672  * @offset: offset within the EEPROM to be read
673  * @data: read 16 bit value from EEPROM
674  *
675  * Reads 16 bit value from EEPROM through bit-bang method
676  */
677 s32
678 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
679 	u16 *data)
680 {
681 	s32 status;
682 	u16 word_in;
683 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
684 
685 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
686 
687 	hw->eeprom.ops.init_params(hw);
688 
689 	if (offset >= hw->eeprom.word_size) {
690 		status = IXGBE_ERR_EEPROM;
691 		goto out;
692 	}
693 
694 	/* Prepare the EEPROM for reading  */
695 	status = ixgbe_acquire_eeprom(hw);
696 
697 	if (status == IXGBE_SUCCESS) {
698 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
699 			ixgbe_release_eeprom(hw);
700 			status = IXGBE_ERR_EEPROM;
701 		}
702 	}
703 
704 	if (status == IXGBE_SUCCESS) {
705 		ixgbe_standby_eeprom(hw);
706 
707 		/*
708 		 * Some SPI eeproms use the 8th address bit embedded in the
709 		 * opcode
710 		 */
711 		if ((hw->eeprom.address_bits == 8) && (offset >= 128))
712 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
713 
714 		/* Send the READ command (opcode + addr) */
715 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
716 		    IXGBE_EEPROM_OPCODE_BITS);
717 		ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
718 		    hw->eeprom.address_bits);
719 
720 		/* Read the data. */
721 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
722 		*data = (word_in >> 8) | (word_in << 8);
723 
724 		/* End this read operation */
725 		ixgbe_release_eeprom(hw);
726 	}
727 
728 out:
729 	return (status);
730 }
731 
732 /*
733  * ixgbe_read_eerd_generic - Read EEPROM word using EERD
734  * @hw: pointer to hardware structure
735  * @offset: offset of  word in the EEPROM to read
736  * @data: word read from the EEPROM
737  *
738  * Reads a 16 bit word from the EEPROM using the EERD register.
739  */
740 s32
741 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
742 {
743 	u32 eerd;
744 	s32 status;
745 
746 	DEBUGFUNC("ixgbe_read_eerd_generic");
747 
748 	hw->eeprom.ops.init_params(hw);
749 
750 	if (offset >= hw->eeprom.word_size) {
751 		status = IXGBE_ERR_EEPROM;
752 		goto out;
753 	}
754 
755 	eerd = (offset << IXGBE_EEPROM_RW_ADDR_SHIFT) +
756 	    IXGBE_EEPROM_RW_REG_START;
757 
758 	IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
759 	status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
760 
761 	if (status == IXGBE_SUCCESS)
762 		*data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
763 		    IXGBE_EEPROM_RW_REG_DATA);
764 	else
765 		DEBUGOUT("Eeprom read timed out\n");
766 
767 out:
768 	return (status);
769 }
770 
771 /*
772  * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
773  * @hw: pointer to hardware structure
774  * @ee_reg: EEPROM flag for polling
775  *
776  * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
777  * read or write is done respectively.
778  */
779 s32
780 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
781 {
782 	u32 i;
783 	u32 reg;
784 	s32 status = IXGBE_ERR_EEPROM;
785 
786 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
787 
788 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
789 		if (ee_reg == IXGBE_NVM_POLL_READ)
790 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
791 		else
792 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
793 
794 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
795 			status = IXGBE_SUCCESS;
796 			break;
797 		}
798 		usec_delay(5);
799 	}
800 	return (status);
801 }
802 
803 /*
804  * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
805  * @hw: pointer to hardware structure
806  *
807  * Prepares EEPROM for access using bit-bang method. This function should
808  * be called before issuing a command to the EEPROM.
809  */
810 static s32
811 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
812 {
813 	s32 status = IXGBE_SUCCESS;
814 	u32 eec;
815 	u32 i;
816 
817 	DEBUGFUNC("ixgbe_acquire_eeprom");
818 
819 	if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != IXGBE_SUCCESS)
820 		status = IXGBE_ERR_SWFW_SYNC;
821 
822 	if (status == IXGBE_SUCCESS) {
823 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
824 
825 		/* Request EEPROM Access */
826 		eec |= IXGBE_EEC_REQ;
827 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
828 
829 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
830 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
831 			if (eec & IXGBE_EEC_GNT)
832 				break;
833 			usec_delay(5);
834 		}
835 
836 		/* Release if grant not acquired */
837 		if (!(eec & IXGBE_EEC_GNT)) {
838 			eec &= ~IXGBE_EEC_REQ;
839 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
840 			DEBUGOUT("Could not acquire EEPROM grant\n");
841 
842 			ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
843 			status = IXGBE_ERR_EEPROM;
844 		}
845 	}
846 
847 	/* Setup EEPROM for Read/Write */
848 	if (status == IXGBE_SUCCESS) {
849 		/* Clear CS and SK */
850 		eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
851 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
852 		IXGBE_WRITE_FLUSH(hw);
853 		usec_delay(1);
854 	}
855 	return (status);
856 }
857 
858 /*
859  * ixgbe_get_eeprom_semaphore - Get hardware semaphore
860  * @hw: pointer to hardware structure
861  *
862  * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
863  */
864 static s32
865 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
866 {
867 	s32 status = IXGBE_ERR_EEPROM;
868 	u32 timeout = 2000;
869 	u32 i;
870 	u32 swsm;
871 
872 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
873 
874 	/* Get SMBI software semaphore between device drivers first */
875 	for (i = 0; i < timeout; i++) {
876 		/*
877 		 * If the SMBI bit is 0 when we read it, then the bit will be
878 		 * set and we have the semaphore
879 		 */
880 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
881 		if (!(swsm & IXGBE_SWSM_SMBI)) {
882 			status = IXGBE_SUCCESS;
883 			break;
884 		}
885 		usec_delay(50);
886 	}
887 
888 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
889 	if (status == IXGBE_SUCCESS) {
890 		for (i = 0; i < timeout; i++) {
891 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
892 
893 			/* Set the SW EEPROM semaphore bit to request access */
894 			swsm |= IXGBE_SWSM_SWESMBI;
895 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
896 
897 			/*
898 			 * If we set the bit successfully then we got the
899 			 * semaphore.
900 			 */
901 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
902 			if (swsm & IXGBE_SWSM_SWESMBI)
903 				break;
904 
905 			usec_delay(50);
906 		}
907 
908 		/*
909 		 * Release semaphores and return error if SW EEPROM semaphore
910 		 * was not granted because we don't have access to the EEPROM
911 		 */
912 		if (i >= timeout) {
913 			DEBUGOUT("SWESMBI Software EEPROM semaphore "
914 			    "not granted.\n");
915 			ixgbe_release_eeprom_semaphore(hw);
916 			status = IXGBE_ERR_EEPROM;
917 		}
918 	} else {
919 		DEBUGOUT("Software semaphore SMBI between device drivers "
920 		    "not granted.\n");
921 	}
922 
923 	return (status);
924 }
925 
926 /*
927  * ixgbe_release_eeprom_semaphore - Release hardware semaphore
928  * @hw: pointer to hardware structure
929  *
930  * This function clears hardware semaphore bits.
931  */
932 static void
933 ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
934 {
935 	u32 swsm;
936 
937 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
938 
939 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
940 
941 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
942 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
943 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
944 	IXGBE_WRITE_FLUSH(hw);
945 }
946 
947 /*
948  * ixgbe_ready_eeprom - Polls for EEPROM ready
949  * @hw: pointer to hardware structure
950  */
951 static s32
952 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
953 {
954 	s32 status = IXGBE_SUCCESS;
955 	u16 i;
956 	u8 spi_stat_reg;
957 
958 	DEBUGFUNC("ixgbe_ready_eeprom");
959 
960 	/*
961 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
962 	 * EEPROM will signal that the command has been completed by clearing
963 	 * bit 0 of the internal status register.  If it's not cleared within
964 	 * 5 milliseconds, then error out.
965 	 */
966 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
967 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
968 		    IXGBE_EEPROM_OPCODE_BITS);
969 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
970 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
971 			break;
972 
973 		usec_delay(5);
974 		ixgbe_standby_eeprom(hw);
975 	};
976 
977 	/*
978 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
979 	 * devices (and only 0-5mSec on 5V devices)
980 	 */
981 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
982 		DEBUGOUT("SPI EEPROM Status error\n");
983 		status = IXGBE_ERR_EEPROM;
984 	}
985 
986 	return (status);
987 }
988 
989 /*
990  * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
991  * @hw: pointer to hardware structure
992  */
993 static void
994 ixgbe_standby_eeprom(struct ixgbe_hw *hw)
995 {
996 	u32 eec;
997 
998 	DEBUGFUNC("ixgbe_standby_eeprom");
999 
1000 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1001 
1002 	/* Toggle CS to flush commands */
1003 	eec |= IXGBE_EEC_CS;
1004 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1005 	IXGBE_WRITE_FLUSH(hw);
1006 	usec_delay(1);
1007 	eec &= ~IXGBE_EEC_CS;
1008 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1009 	IXGBE_WRITE_FLUSH(hw);
1010 	usec_delay(1);
1011 }
1012 
1013 /*
1014  * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1015  * @hw: pointer to hardware structure
1016  * @data: data to send to the EEPROM
1017  * @count: number of bits to shift out
1018  */
1019 static void
1020 ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1021     u16 count)
1022 {
1023 	u32 eec;
1024 	u32 mask;
1025 	u32 i;
1026 
1027 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1028 
1029 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1030 
1031 	/*
1032 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1033 	 * one bit at a time.  Determine the starting bit based on count
1034 	 */
1035 	mask = 0x01 << (count - 1);
1036 
1037 	for (i = 0; i < count; i++) {
1038 		/*
1039 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1040 		 * "1", and then raising and then lowering the clock (the SK
1041 		 * bit controls the clock input to the EEPROM).  A "0" is
1042 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1043 		 * raising and then lowering the clock.
1044 		 */
1045 		if (data & mask)
1046 			eec |= IXGBE_EEC_DI;
1047 		else
1048 			eec &= ~IXGBE_EEC_DI;
1049 
1050 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1051 		IXGBE_WRITE_FLUSH(hw);
1052 
1053 		usec_delay(1);
1054 
1055 		ixgbe_raise_eeprom_clk(hw, &eec);
1056 		ixgbe_lower_eeprom_clk(hw, &eec);
1057 
1058 		/*
1059 		 * Shift mask to signify next bit of data to shift in to the
1060 		 * EEPROM
1061 		 */
1062 		mask = mask >> 1;
1063 	};
1064 
1065 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1066 	eec &= ~IXGBE_EEC_DI;
1067 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1068 	IXGBE_WRITE_FLUSH(hw);
1069 }
1070 
1071 /*
1072  * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1073  * @hw: pointer to hardware structure
1074  */
1075 static u16
1076 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1077 {
1078 	u32 eec;
1079 	u32 i;
1080 	u16 data = 0;
1081 
1082 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
1083 
1084 	/*
1085 	 * In order to read a register from the EEPROM, we need to shift
1086 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1087 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1088 	 * the value of the "DO" bit.  During this "shifting in" process the
1089 	 * "DI" bit should always be clear.
1090 	 */
1091 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1092 
1093 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1094 
1095 	for (i = 0; i < count; i++) {
1096 		data = data << 1;
1097 		ixgbe_raise_eeprom_clk(hw, &eec);
1098 
1099 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1100 
1101 		eec &= ~(IXGBE_EEC_DI);
1102 		if (eec & IXGBE_EEC_DO)
1103 			data |= 1;
1104 
1105 		ixgbe_lower_eeprom_clk(hw, &eec);
1106 	}
1107 
1108 	return (data);
1109 }
1110 
1111 /*
1112  * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1113  * @hw: pointer to hardware structure
1114  * @eec: EEC register's current value
1115  */
1116 static void
1117 ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1118 {
1119 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
1120 
1121 	/*
1122 	 * Raise the clock input to the EEPROM
1123 	 * (setting the SK bit), then delay
1124 	 */
1125 	*eec = *eec | IXGBE_EEC_SK;
1126 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1127 	IXGBE_WRITE_FLUSH(hw);
1128 	usec_delay(1);
1129 }
1130 
1131 /*
1132  * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1133  * @hw: pointer to hardware structure
1134  * @eecd: EECD's current value
1135  */
1136 static void
1137 ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1138 {
1139 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
1140 
1141 	/*
1142 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1143 	 * delay
1144 	 */
1145 	*eec = *eec & ~IXGBE_EEC_SK;
1146 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1147 	IXGBE_WRITE_FLUSH(hw);
1148 	usec_delay(1);
1149 }
1150 
1151 /*
1152  * ixgbe_release_eeprom - Release EEPROM, release semaphores
1153  * @hw: pointer to hardware structure
1154  */
1155 static void
1156 ixgbe_release_eeprom(struct ixgbe_hw *hw)
1157 {
1158 	u32 eec;
1159 
1160 	DEBUGFUNC("ixgbe_release_eeprom");
1161 
1162 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1163 
1164 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1165 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1166 
1167 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1168 	IXGBE_WRITE_FLUSH(hw);
1169 
1170 	usec_delay(1);
1171 
1172 	/* Stop requesting EEPROM access */
1173 	eec &= ~IXGBE_EEC_REQ;
1174 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1175 
1176 	ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1177 
1178 	/* Delay before attempt to obtain semaphore again to allow FW access */
1179 	msec_delay(hw->eeprom.semaphore_delay);
1180 }
1181 
1182 /*
1183  * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1184  * @hw: pointer to hardware structure
1185  */
1186 u16
1187 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1188 {
1189 	u16 i;
1190 	u16 j;
1191 	u16 checksum = 0;
1192 	u16 length = 0;
1193 	u16 pointer = 0;
1194 	u16 word = 0;
1195 
1196 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
1197 
1198 	/* Include 0x0-0x3F in the checksum */
1199 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1200 		if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
1201 			DEBUGOUT("EEPROM read failed\n");
1202 			break;
1203 		}
1204 		checksum += word;
1205 	}
1206 
1207 	/* Include all data from pointers except for the fw pointer */
1208 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1209 		hw->eeprom.ops.read(hw, i, &pointer);
1210 
1211 		/* Make sure the pointer seems valid */
1212 		if (pointer != 0xFFFF && pointer != 0) {
1213 			hw->eeprom.ops.read(hw, pointer, &length);
1214 
1215 			if (length != 0xFFFF && length != 0) {
1216 				for (j = pointer+1; j <= pointer+length; j++) {
1217 					hw->eeprom.ops.read(hw, j, &word);
1218 					checksum += word;
1219 				}
1220 			}
1221 		}
1222 	}
1223 
1224 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1225 
1226 	return (checksum);
1227 }
1228 
1229 /*
1230  * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1231  * @hw: pointer to hardware structure
1232  * @checksum_val: calculated checksum
1233  *
1234  * Performs checksum calculation and validates the EEPROM checksum.  If the
1235  * caller does not need checksum_val, the value can be NULL.
1236  */
1237 s32
1238 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1239     u16 *checksum_val)
1240 {
1241 	s32 status;
1242 	u16 checksum;
1243 	u16 read_checksum = 0;
1244 
1245 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
1246 
1247 	/*
1248 	 * Read the first word from the EEPROM. If this times out or fails, do
1249 	 * not continue or we could be in for a very long wait while every
1250 	 * EEPROM read fails
1251 	 */
1252 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1253 
1254 	if (status == IXGBE_SUCCESS) {
1255 		checksum = hw->eeprom.ops.calc_checksum(hw);
1256 
1257 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1258 
1259 		/*
1260 		 * Verify read checksum from EEPROM is the same as
1261 		 * calculated checksum
1262 		 */
1263 		if (read_checksum != checksum)
1264 			status = IXGBE_ERR_EEPROM_CHECKSUM;
1265 
1266 		/* If the user cares, return the calculated checksum */
1267 		if (checksum_val)
1268 			*checksum_val = checksum;
1269 	} else {
1270 		DEBUGOUT("EEPROM read failed\n");
1271 	}
1272 
1273 	return (status);
1274 }
1275 
1276 /*
1277  * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1278  * @hw: pointer to hardware structure
1279  */
1280 s32
1281 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1282 {
1283 	s32 status;
1284 	u16 checksum;
1285 
1286 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
1287 
1288 	/*
1289 	 * Read the first word from the EEPROM. If this times out or fails, do
1290 	 * not continue or we could be in for a very long wait while every
1291 	 * EEPROM read fails
1292 	 */
1293 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1294 
1295 	if (status == IXGBE_SUCCESS) {
1296 		checksum = hw->eeprom.ops.calc_checksum(hw);
1297 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1298 		    checksum);
1299 	} else {
1300 		DEBUGOUT("EEPROM read failed\n");
1301 	}
1302 
1303 	return (status);
1304 }
1305 
1306 /*
1307  * ixgbe_validate_mac_addr - Validate MAC address
1308  * @mac_addr: pointer to MAC address.
1309  *
1310  * Tests a MAC address to ensure it is a valid Individual Address
1311  */
1312 s32
1313 ixgbe_validate_mac_addr(u8 *mac_addr)
1314 {
1315 	s32 status = IXGBE_SUCCESS;
1316 
1317 	DEBUGFUNC("ixgbe_validate_mac_addr");
1318 
1319 	/* Make sure it is not a multicast address */
1320 	if (IXGBE_IS_MULTICAST(mac_addr)) {
1321 		DEBUGOUT("MAC address is multicast\n");
1322 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1323 	/* Not a broadcast address */
1324 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
1325 		DEBUGOUT("MAC address is broadcast\n");
1326 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1327 	/* Reject the zero address */
1328 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1329 	    mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
1330 		DEBUGOUT("MAC address is all zeros\n");
1331 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1332 	}
1333 	return (status);
1334 }
1335 
1336 /*
1337  * ixgbe_set_rar_generic - Set Rx address register
1338  * @hw: pointer to hardware structure
1339  * @index: Receive address register to write
1340  * @addr: Address to put into receive address register
1341  * @vmdq: VMDq "set" or "pool" index
1342  * @enable_addr: set flag that address is active
1343  *
1344  * Puts an ethernet address into a receive address register.
1345  */
1346 s32
1347 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1348     u32 enable_addr)
1349 {
1350 	u32 rar_low, rar_high;
1351 	u32 rar_entries = hw->mac.num_rar_entries;
1352 
1353 	DEBUGFUNC("ixgbe_set_rar_generic");
1354 
1355 	/* setup VMDq pool selection before this RAR gets enabled */
1356 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1357 
1358 	/* Make sure we are using a valid rar index range */
1359 	if (index < rar_entries) {
1360 		/*
1361 		 * HW expects these in little endian so we reverse the byte
1362 		 * order from network order (big endian) to little endian
1363 		 */
1364 		rar_low = ((u32)addr[0] |
1365 		    ((u32)addr[1] << 8) |
1366 		    ((u32)addr[2] << 16) |
1367 		    ((u32)addr[3] << 24));
1368 		/*
1369 		 * Some parts put the VMDq setting in the extra RAH bits,
1370 		 * so save everything except the lower 16 bits that hold part
1371 		 * of the address and the address valid bit.
1372 		 */
1373 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1374 		rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1375 		rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1376 
1377 		if (enable_addr != 0)
1378 			rar_high |= IXGBE_RAH_AV;
1379 
1380 		IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1381 		IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1382 	} else {
1383 		DEBUGOUT1("RAR index %d is out of range.\n", index);
1384 	}
1385 
1386 	return (IXGBE_SUCCESS);
1387 }
1388 
1389 /*
1390  * ixgbe_clear_rar_generic - Remove Rx address register
1391  * @hw: pointer to hardware structure
1392  * @index: Receive address register to write
1393  *
1394  * Clears an ethernet address from a receive address register.
1395  */
1396 s32
1397 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1398 {
1399 	u32 rar_high;
1400 	u32 rar_entries = hw->mac.num_rar_entries;
1401 
1402 	DEBUGFUNC("ixgbe_clear_rar_generic");
1403 
1404 	/* Make sure we are using a valid rar index range */
1405 	if (index < rar_entries) {
1406 		/*
1407 		 * Some parts put the VMDq setting in the extra RAH bits,
1408 		 * so save everything except the lower 16 bits that hold part
1409 		 * of the address and the address valid bit.
1410 		 */
1411 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1412 		rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1413 
1414 		IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1415 		IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1416 	} else {
1417 		DEBUGOUT1("RAR index %d is out of range.\n", index);
1418 	}
1419 
1420 	/* clear VMDq pool/queue selection for this RAR */
1421 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1422 
1423 	return (IXGBE_SUCCESS);
1424 }
1425 
1426 /*
1427  * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1428  * @hw: pointer to hardware structure
1429  *
1430  * Places the MAC address in receive address register 0 and clears the rest
1431  * of the receive address registers. Clears the multicast table. Assumes
1432  * the receiver is in reset when the routine is called.
1433  */
1434 s32
1435 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1436 {
1437 	u32 i;
1438 	u32 rar_entries = hw->mac.num_rar_entries;
1439 
1440 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
1441 
1442 	/*
1443 	 * If the current mac address is valid, assume it is a software override
1444 	 * to the permanent address.
1445 	 * Otherwise, use the permanent address from the eeprom.
1446 	 */
1447 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1448 	    IXGBE_ERR_INVALID_MAC_ADDR) {
1449 		/* Get the MAC address from the RAR0 for later reference */
1450 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1451 
1452 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
1453 		    hw->mac.addr[0], hw->mac.addr[1],
1454 		    hw->mac.addr[2]);
1455 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
1456 		    hw->mac.addr[4], hw->mac.addr[5]);
1457 	} else {
1458 		/* Setup the receive address. */
1459 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
1460 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
1461 		    hw->mac.addr[0], hw->mac.addr[1],
1462 		    hw->mac.addr[2]);
1463 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
1464 		    hw->mac.addr[4], hw->mac.addr[5]);
1465 
1466 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1467 	}
1468 	hw->addr_ctrl.overflow_promisc = 0;
1469 
1470 	hw->addr_ctrl.rar_used_count = 1;
1471 
1472 	/* Zero out the other receive addresses. */
1473 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
1474 	for (i = 1; i < rar_entries; i++) {
1475 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1476 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1477 	}
1478 
1479 	/* Clear the MTA */
1480 	hw->addr_ctrl.mta_in_use = 0;
1481 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1482 
1483 	DEBUGOUT(" Clearing MTA\n");
1484 	for (i = 0; i < hw->mac.mcft_size; i++)
1485 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1486 
1487 	(void) ixgbe_init_uta_tables(hw);
1488 
1489 	return (IXGBE_SUCCESS);
1490 }
1491 
1492 
1493 /*
1494  * ixgbe_add_uc_addr - Adds a secondary unicast address.
1495  * @hw: pointer to hardware structure
1496  * @addr: new address
1497  *
1498  * Adds it to unused receive address register or goes into promiscuous mode.
1499  */
1500 void
1501 ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
1502 {
1503 	u32 rar_entries = hw->mac.num_rar_entries;
1504 	u32 rar;
1505 
1506 	DEBUGFUNC("ixgbe_add_uc_addr");
1507 
1508 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
1509 	    addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
1510 
1511 	/*
1512 	 * Place this address in the RAR if there is room,
1513 	 * else put the controller into promiscuous mode
1514 	 */
1515 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
1516 		rar = hw->addr_ctrl.rar_used_count;
1517 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
1518 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
1519 		hw->addr_ctrl.rar_used_count++;
1520 	} else {
1521 		hw->addr_ctrl.overflow_promisc++;
1522 	}
1523 
1524 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
1525 }
1526 
1527 /*
1528  * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
1529  * @hw: pointer to hardware structure
1530  * @addr_list: the list of new addresses
1531  * @addr_count: number of addresses
1532  * @next: iterator function to walk the address list
1533  *
1534  * The given list replaces any existing list.  Clears the secondary addrs from
1535  * receive address registers.  Uses unused receive address registers for the
1536  * first secondary addresses, and falls back to promiscuous mode as needed.
1537  *
1538  * Drivers using secondary unicast addresses must set user_set_promisc when
1539  * manually putting the device into promiscuous mode.
1540  */
1541 s32
1542 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
1543     u32 addr_count, ixgbe_mc_addr_itr next)
1544 {
1545 	u8 *addr;
1546 	u32 i;
1547 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
1548 	u32 uc_addr_in_use;
1549 	u32 fctrl;
1550 	u32 vmdq;
1551 
1552 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
1553 
1554 	/*
1555 	 * Clear accounting of old secondary address list,
1556 	 * don't count RAR[0]
1557 	 */
1558 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
1559 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
1560 	hw->addr_ctrl.overflow_promisc = 0;
1561 
1562 	/* Zero out the other receive addresses */
1563 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use + 1);
1564 	for (i = 0; i < uc_addr_in_use; i++) {
1565 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i + 1), 0);
1566 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i + 1), 0);
1567 	}
1568 
1569 	/* Add the new addresses */
1570 	for (i = 0; i < addr_count; i++) {
1571 		DEBUGOUT(" Adding the secondary addresses:\n");
1572 		addr = next(hw, &addr_list, &vmdq);
1573 		ixgbe_add_uc_addr(hw, addr, vmdq);
1574 	}
1575 
1576 	if (hw->addr_ctrl.overflow_promisc) {
1577 		/* enable promisc if not already in overflow or set by user */
1578 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1579 			DEBUGOUT(" Entering address overflow promisc mode\n");
1580 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1581 			fctrl |= IXGBE_FCTRL_UPE;
1582 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1583 		}
1584 	} else {
1585 		/* only disable if set by overflow, not by user */
1586 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1587 			DEBUGOUT(" Leaving address overflow promisc mode\n");
1588 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1589 			fctrl &= ~IXGBE_FCTRL_UPE;
1590 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1591 		}
1592 	}
1593 
1594 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
1595 	return (IXGBE_SUCCESS);
1596 }
1597 
1598 /*
1599  * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1600  * @hw: pointer to hardware structure
1601  * @mc_addr: the multicast address
1602  *
1603  * Extracts the 12 bits, from a multicast address, to determine which
1604  * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1605  * incoming rx multicast addresses, to determine the bit-vector to check in
1606  * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1607  * by the MO field of the MCSTCTRL. The MO field is set during initialization
1608  * to mc_filter_type.
1609  */
1610 static s32
1611 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1612 {
1613 	u32 vector = 0;
1614 
1615 	DEBUGFUNC("ixgbe_mta_vector");
1616 
1617 	switch (hw->mac.mc_filter_type) {
1618 	case 0:   /* use bits [47:36] of the address */
1619 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1620 		break;
1621 	case 1:   /* use bits [46:35] of the address */
1622 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1623 		break;
1624 	case 2:   /* use bits [45:34] of the address */
1625 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1626 		break;
1627 	case 3:   /* use bits [43:32] of the address */
1628 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1629 		break;
1630 	default:  /* Invalid mc_filter_type */
1631 		DEBUGOUT("MC filter type param set incorrectly\n");
1632 		ASSERT(0);
1633 		break;
1634 	}
1635 
1636 	/* vector can only be 12-bits or boundary will be exceeded */
1637 	vector &= 0xFFF;
1638 	return (vector);
1639 }
1640 
1641 /*
1642  * ixgbe_set_mta - Set bit-vector in multicast table
1643  * @hw: pointer to hardware structure
1644  * @hash_value: Multicast address hash value
1645  *
1646  * Sets the bit-vector in the multicast table.
1647  */
1648 void
1649 ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1650 {
1651 	u32 vector;
1652 	u32 vector_bit;
1653 	u32 vector_reg;
1654 
1655 	DEBUGFUNC("ixgbe_set_mta");
1656 
1657 	hw->addr_ctrl.mta_in_use++;
1658 
1659 	vector = ixgbe_mta_vector(hw, mc_addr);
1660 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
1661 
1662 	/*
1663 	 * The MTA is a register array of 128 32-bit registers. It is treated
1664 	 * like an array of 4096 bits.  We want to set bit
1665 	 * BitArray[vector_value]. So we figure out what register the bit is
1666 	 * in, read it, OR in the new bit, then write back the new value.  The
1667 	 * register is determined by the upper 7 bits of the vector value and
1668 	 * the bit within that register are determined by the lower 5 bits of
1669 	 * the value.
1670 	 */
1671 	vector_reg = (vector >> 5) & 0x7F;
1672 	vector_bit = vector & 0x1F;
1673 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1674 }
1675 
1676 /*
1677  * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1678  * @hw: pointer to hardware structure
1679  * @mc_addr_list: the list of new multicast addresses
1680  * @mc_addr_count: number of addresses
1681  * @next: iterator function to walk the multicast address list
1682  *
1683  * The given list replaces any existing list. Clears the MC addrs from receive
1684  * address registers and the multicast table. Uses unused receive address
1685  * registers for the first multicast addresses, and hashes the rest into the
1686  * multicast table.
1687  */
1688 s32
1689 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
1690     u32 mc_addr_count, ixgbe_mc_addr_itr next)
1691 {
1692 	u32 i;
1693 	u32 vmdq;
1694 
1695 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
1696 
1697 	/*
1698 	 * Set the new number of MC addresses that we are being requested to
1699 	 * use.
1700 	 */
1701 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
1702 	hw->addr_ctrl.mta_in_use = 0;
1703 
1704 	/* Clear mta_shadow */
1705 	DEBUGOUT(" Clearing MTA\n");
1706 	(void) memset(&hw->mac.mta_shadow, 0, sizeof (hw->mac.mta_shadow));
1707 
1708 	/* Update mta_shadow */
1709 	for (i = 0; i < mc_addr_count; i++) {
1710 		DEBUGOUT(" Adding the multicast addresses:\n");
1711 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
1712 	}
1713 
1714 	/* Enable mta */
1715 	for (i = 0; i < hw->mac.mcft_size; i++)
1716 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
1717 		    hw->mac.mta_shadow[i]);
1718 
1719 	if (hw->addr_ctrl.mta_in_use > 0)
1720 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1721 		    IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1722 
1723 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
1724 	return (IXGBE_SUCCESS);
1725 }
1726 
1727 /*
1728  * ixgbe_enable_mc_generic - Enable multicast address in RAR
1729  * @hw: pointer to hardware structure
1730  *
1731  * Enables multicast address in RAR and the use of the multicast hash table.
1732  */
1733 s32
1734 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1735 {
1736 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1737 
1738 	DEBUGFUNC("ixgbe_enable_mc_generic");
1739 
1740 	if (a->mta_in_use > 0)
1741 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1742 		    hw->mac.mc_filter_type);
1743 
1744 	return (IXGBE_SUCCESS);
1745 }
1746 
1747 /*
1748  * ixgbe_disable_mc_generic - Disable multicast address in RAR
1749  * @hw: pointer to hardware structure
1750  *
1751  * Disables multicast address in RAR and the use of the multicast hash table.
1752  */
1753 s32
1754 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1755 {
1756 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1757 
1758 	DEBUGFUNC("ixgbe_disable_mc_generic");
1759 
1760 	if (a->mta_in_use > 0)
1761 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1762 
1763 	return (IXGBE_SUCCESS);
1764 }
1765 
1766 /*
1767  * ixgbe_fc_enable_generic - Enable flow control
1768  * @hw: pointer to hardware structure
1769  * @packetbuf_num: packet buffer number (0-7)
1770  *
1771  * Enable flow control according to the current settings.
1772  */
1773 s32
1774 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
1775 {
1776 	s32 ret_val = IXGBE_SUCCESS;
1777 	u32 mflcn_reg, fccfg_reg;
1778 	u32 reg;
1779 	u32 rx_pba_size;
1780 
1781 	DEBUGFUNC("ixgbe_fc_enable_generic");
1782 
1783 	/* Negotiate the fc mode to use */
1784 	ret_val = ixgbe_fc_autoneg(hw);
1785 	if (ret_val == IXGBE_ERR_FLOW_CONTROL)
1786 		goto out;
1787 
1788 	/* Disable any previous flow control settings */
1789 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
1790 	mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
1791 
1792 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
1793 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
1794 
1795 	/*
1796 	 * The possible values of fc.current_mode are:
1797 	 * 0: Flow control is completely disabled
1798 	 * 1: Rx flow control is enabled (we can receive pause frames,
1799 	 *    but not send pause frames).
1800 	 * 2: Tx flow control is enabled (we can send pause frames but
1801 	 *    we do not support receiving pause frames).
1802 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1803 	 * other: Invalid.
1804 	 */
1805 	switch (hw->fc.current_mode) {
1806 	case ixgbe_fc_none:
1807 		/*
1808 		 * Flow control is disabled by software override or autoneg.
1809 		 * The code below will actually disable it in the HW.
1810 		 */
1811 		break;
1812 	case ixgbe_fc_rx_pause:
1813 		/*
1814 		 * Rx Flow control is enabled and Tx Flow control is
1815 		 * disabled by software override. Since there really
1816 		 * isn't a way to advertise that we are capable of RX
1817 		 * Pause ONLY, we will advertise that we support both
1818 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
1819 		 * disable the adapter's ability to send PAUSE frames.
1820 		 */
1821 		mflcn_reg |= IXGBE_MFLCN_RFCE;
1822 		break;
1823 	case ixgbe_fc_tx_pause:
1824 		/*
1825 		 * Tx Flow control is enabled, and Rx Flow control is
1826 		 * disabled by software override.
1827 		 */
1828 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1829 		break;
1830 	case ixgbe_fc_full:
1831 		/* Flow control (both Rx and Tx) is enabled by SW override. */
1832 		mflcn_reg |= IXGBE_MFLCN_RFCE;
1833 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1834 		break;
1835 	default:
1836 		DEBUGOUT("Flow control param set incorrectly\n");
1837 		ret_val = IXGBE_ERR_CONFIG;
1838 		goto out;
1839 	}
1840 
1841 	/* Set 802.3x based flow control settings. */
1842 	mflcn_reg |= IXGBE_MFLCN_DPF;
1843 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
1844 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
1845 
1846 	reg = IXGBE_READ_REG(hw, IXGBE_MTQC);
1847 	/* Thresholds are different for link flow control when in DCB mode */
1848 	if (reg & IXGBE_MTQC_RT_ENA) {
1849 		rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num));
1850 
1851 		/* Always disable XON for LFC when in DCB mode */
1852 		reg = (rx_pba_size >> 5) & 0xFFE0;
1853 		IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), reg);
1854 
1855 		reg = (rx_pba_size >> 2) & 0xFFE0;
1856 		if (hw->fc.current_mode & ixgbe_fc_tx_pause)
1857 			reg |= IXGBE_FCRTH_FCEN;
1858 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), reg);
1859 	} else {
1860 		/*
1861 		 * Set up and enable Rx high/low water mark thresholds,
1862 		 * enable XON.
1863 		 */
1864 		if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
1865 			if (hw->fc.send_xon) {
1866 				IXGBE_WRITE_REG(hw,
1867 				    IXGBE_FCRTL_82599(packetbuf_num),
1868 				    (hw->fc.low_water | IXGBE_FCRTL_XONE));
1869 			} else {
1870 				IXGBE_WRITE_REG(hw,
1871 				    IXGBE_FCRTL_82599(packetbuf_num),
1872 				    hw->fc.low_water);
1873 			}
1874 
1875 			IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num),
1876 			    (hw->fc.high_water | IXGBE_FCRTH_FCEN));
1877 		}
1878 	}
1879 
1880 	/* Configure pause time (2 TCs per register) */
1881 	reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
1882 	if ((packetbuf_num & 1) == 0)
1883 		reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
1884 	else
1885 		reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
1886 	IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
1887 
1888 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
1889 
1890 out:
1891 	return (ret_val);
1892 }
1893 
1894 /*
1895  * ixgbe_fc_autoneg - Configure flow control
1896  * @hw: pointer to hardware structure
1897  *
1898  * Compares our advertised flow control capabilities to those advertised by
1899  * our link partner, and determines the proper flow control mode to use.
1900  */
1901 s32
1902 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
1903 {
1904 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
1905 	ixgbe_link_speed speed;
1906 	bool link_up;
1907 
1908 	DEBUGFUNC("ixgbe_fc_autoneg");
1909 
1910 	if (hw->fc.disable_fc_autoneg)
1911 		goto out;
1912 
1913 	/*
1914 	 * AN should have completed when the cable was plugged in.
1915 	 * Look for reasons to bail out.  Bail out if:
1916 	 * - FC autoneg is disabled, or if
1917 	 * - link is not up.
1918 	 *
1919 	 * Since we're being called from an LSC, link is already known to be up.
1920 	 * So use link_up_wait_to_complete=false.
1921 	 */
1922 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
1923 	if (!link_up) {
1924 		ret_val = IXGBE_ERR_FLOW_CONTROL;
1925 		goto out;
1926 	}
1927 
1928 	switch (hw->phy.media_type) {
1929 	/* Autoneg flow control on fiber adapters */
1930 	case ixgbe_media_type_fiber:
1931 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
1932 			ret_val = ixgbe_fc_autoneg_fiber(hw);
1933 		break;
1934 
1935 	/* Autoneg flow control on backplane adapters */
1936 	case ixgbe_media_type_backplane:
1937 		ret_val = ixgbe_fc_autoneg_backplane(hw);
1938 		break;
1939 
1940 	/* Autoneg flow control on copper adapters */
1941 	case ixgbe_media_type_copper:
1942 		if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)
1943 			ret_val = ixgbe_fc_autoneg_copper(hw);
1944 		break;
1945 
1946 	default:
1947 		break;
1948 	}
1949 
1950 out:
1951 	if (ret_val == IXGBE_SUCCESS) {
1952 		hw->fc.fc_was_autonegged = true;
1953 	} else {
1954 		hw->fc.fc_was_autonegged = false;
1955 		hw->fc.current_mode = hw->fc.requested_mode;
1956 	}
1957 	return (ret_val);
1958 }
1959 
1960 /*
1961  * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
1962  * @hw: pointer to hardware structure
1963  * @speed:
1964  * @link_up
1965  *
1966  * Enable flow control according on 1 gig fiber.
1967  */
1968 static s32
1969 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
1970 {
1971 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
1972 	s32 ret_val;
1973 
1974 	/*
1975 	 * On multispeed fiber at 1g, bail out if
1976 	 * - link is up but AN did not complete, or if
1977 	 * - link is up and AN completed but timed out
1978 	 */
1979 
1980 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
1981 	if (((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
1982 	    ((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
1983 		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
1984 		goto out;
1985 	}
1986 
1987 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
1988 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
1989 
1990 	ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
1991 	    pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
1992 	    IXGBE_PCS1GANA_ASM_PAUSE,
1993 	    IXGBE_PCS1GANA_SYM_PAUSE,
1994 	    IXGBE_PCS1GANA_ASM_PAUSE);
1995 
1996 out:
1997 	return (ret_val);
1998 }
1999 
2000 /*
2001  * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2002  * @hw: pointer to hardware structure
2003  *
2004  * Enable flow control according to IEEE clause 37.
2005  */
2006 static s32
2007 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2008 {
2009 	u32 links2, anlp1_reg, autoc_reg, links;
2010 	s32 ret_val;
2011 
2012 	/*
2013 	 * On backplane, bail out if
2014 	 * - backplane autoneg was not completed, or if
2015 	 * - we are 82599 and link partner is not AN enabled
2016 	 */
2017 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2018 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2019 		hw->fc.fc_was_autonegged = false;
2020 		hw->fc.current_mode = hw->fc.requested_mode;
2021 		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2022 		goto out;
2023 	}
2024 
2025 	if (hw->mac.type == ixgbe_mac_82599EB) {
2026 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2027 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2028 			hw->fc.fc_was_autonegged = false;
2029 			hw->fc.current_mode = hw->fc.requested_mode;
2030 			ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2031 			goto out;
2032 		}
2033 	}
2034 	/*
2035 	 * Read the 10g AN autoc and LP ability registers and resolve
2036 	 * local flow control settings accordingly
2037 	 */
2038 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2039 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2040 
2041 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2042 	    anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2043 	    IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2044 
2045 out:
2046 	return (ret_val);
2047 }
2048 
2049 /*
2050  * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2051  * @hw: pointer to hardware structure
2052  *
2053  * Enable flow control according to IEEE clause 37.
2054  */
2055 static s32
2056 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2057 {
2058 	u16 technology_ability_reg = 0;
2059 	u16 lp_technology_ability_reg = 0;
2060 
2061 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2062 	    IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &technology_ability_reg);
2063 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2064 	    IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &lp_technology_ability_reg);
2065 
2066 	return (ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2067 	    (u32)lp_technology_ability_reg,
2068 	    IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2069 	    IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE));
2070 }
2071 
2072 /*
2073  * ixgbe_negotiate_fc - Negotiate flow control
2074  * @hw: pointer to hardware structure
2075  * @adv_reg: flow control advertised settings
2076  * @lp_reg: link partner's flow control settings
2077  * @adv_sym: symmetric pause bit in advertisement
2078  * @adv_asm: asymmetric pause bit in advertisement
2079  * @lp_sym: symmetric pause bit in link partner advertisement
2080  * @lp_asm: asymmetric pause bit in link partner advertisement
2081  *
2082  * Find the intersection between advertised settings and link partner's
2083  * advertised settings
2084  */
2085 static s32
2086 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2087     u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2088 {
2089 	if ((!(adv_reg)) || (!(lp_reg)))
2090 		return (IXGBE_ERR_FC_NOT_NEGOTIATED);
2091 
2092 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2093 		/*
2094 		 * Now we need to check if the user selected Rx ONLY
2095 		 * of pause frames.  In this case, we had to advertise
2096 		 * FULL flow control because we could not advertise RX
2097 		 * ONLY. Hence, we must now check to see if we need to
2098 		 * turn OFF the TRANSMISSION of PAUSE frames.
2099 		 */
2100 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2101 			hw->fc.current_mode = ixgbe_fc_full;
2102 			DEBUGOUT("Flow Control = FULL.\n");
2103 		} else {
2104 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2105 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2106 		}
2107 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2108 	    (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2109 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2110 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2111 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2112 	    !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2113 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2114 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2115 	} else {
2116 		hw->fc.current_mode = ixgbe_fc_none;
2117 		DEBUGOUT("Flow Control = NONE.\n");
2118 	}
2119 	return (IXGBE_SUCCESS);
2120 }
2121 
2122 /*
2123  * ixgbe_setup_fc - Set up flow control
2124  * @hw: pointer to hardware structure
2125  *
2126  * Called at init time to set up flow control.
2127  */
2128 s32
2129 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
2130 {
2131 	s32 ret_val = IXGBE_SUCCESS;
2132 	u32 reg = 0, reg_bp = 0;
2133 	u16 reg_cu = 0;
2134 
2135 	DEBUGFUNC("ixgbe_setup_fc");
2136 
2137 	/* Validate the packetbuf configuration */
2138 	if (packetbuf_num < 0 || packetbuf_num > 7) {
2139 		DEBUGOUT1("Invalid packet buffer number [%d], expected range is"
2140 		    " 0-7\n", packetbuf_num);
2141 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2142 		goto out;
2143 	}
2144 
2145 	/*
2146 	 * Validate the water mark configuration.  Zero water marks are invalid
2147 	 * because it causes the controller to just blast out fc packets.
2148 	 */
2149 	if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
2150 		DEBUGOUT("Invalid water mark configuration\n");
2151 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2152 		goto out;
2153 	}
2154 
2155 	/*
2156 	 * Validate the requested mode.  Strict IEEE mode does not allow
2157 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
2158 	 */
2159 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
2160 		DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
2161 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2162 		goto out;
2163 	}
2164 
2165 	/*
2166 	 * 10gig parts do not have a word in the EEPROM to determine the
2167 	 * default flow control setting, so we explicitly set it to full.
2168 	 */
2169 	if (hw->fc.requested_mode == ixgbe_fc_default)
2170 		hw->fc.requested_mode = ixgbe_fc_full;
2171 
2172 	/*
2173 	 * Set up the 1G and 10G flow control advertisement registers so the
2174 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
2175 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
2176 	 */
2177 	switch (hw->phy.media_type) {
2178 	case ixgbe_media_type_fiber:
2179 	case ixgbe_media_type_backplane:
2180 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2181 		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2182 		break;
2183 
2184 	case ixgbe_media_type_copper:
2185 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2186 		    IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
2187 		break;
2188 
2189 	default:
2190 		;
2191 	}
2192 
2193 	/*
2194 	 * The possible values of fc.requested_mode are:
2195 	 * 0: Flow control is completely disabled
2196 	 * 1: Rx flow control is enabled (we can receive pause frames,
2197 	 *    but not send pause frames).
2198 	 * 2: Tx flow control is enabled (we can send pause frames but
2199 	 *    we do not support receiving pause frames).
2200 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2201 	 * other: Invalid.
2202 	 */
2203 	switch (hw->fc.requested_mode) {
2204 	case ixgbe_fc_none:
2205 		/* Flow control completely disabled by software override. */
2206 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2207 		if (hw->phy.media_type == ixgbe_media_type_backplane)
2208 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
2209 			    IXGBE_AUTOC_ASM_PAUSE);
2210 		else if (hw->phy.media_type == ixgbe_media_type_copper)
2211 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2212 		break;
2213 	case ixgbe_fc_rx_pause:
2214 		/*
2215 		 * Rx Flow control is enabled and Tx Flow control is
2216 		 * disabled by software override. Since there really
2217 		 * isn't a way to advertise that we are capable of RX
2218 		 * Pause ONLY, we will advertise that we support both
2219 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2220 		 * disable the adapter's ability to send PAUSE frames.
2221 		 */
2222 		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2223 		if (hw->phy.media_type == ixgbe_media_type_backplane)
2224 			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2225 			    IXGBE_AUTOC_ASM_PAUSE);
2226 		else if (hw->phy.media_type == ixgbe_media_type_copper)
2227 			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2228 		break;
2229 	case ixgbe_fc_tx_pause:
2230 		/*
2231 		 * Tx Flow control is enabled, and Rx Flow control is
2232 		 * disabled by software override.
2233 		 */
2234 		reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
2235 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
2236 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
2237 			reg_bp |= (IXGBE_AUTOC_ASM_PAUSE);
2238 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE);
2239 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
2240 			reg_cu |= (IXGBE_TAF_ASM_PAUSE);
2241 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE);
2242 		}
2243 		break;
2244 	case ixgbe_fc_full:
2245 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2246 		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2247 		if (hw->phy.media_type == ixgbe_media_type_backplane)
2248 			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2249 			    IXGBE_AUTOC_ASM_PAUSE);
2250 		else if (hw->phy.media_type == ixgbe_media_type_copper)
2251 			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2252 		break;
2253 	default:
2254 		DEBUGOUT("Flow control param set incorrectly\n");
2255 		ret_val = IXGBE_ERR_CONFIG;
2256 		goto out;
2257 	}
2258 
2259 	IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
2260 	reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
2261 
2262 	/* Disable AN timeout */
2263 	if (hw->fc.strict_ieee)
2264 		reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
2265 
2266 	IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
2267 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
2268 
2269 	/*
2270 	 * AUTOC restart handles negotiation of 1G and 10G. There is
2271 	 * no need to set the PCS1GCTL register.
2272 	 */
2273 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
2274 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
2275 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
2276 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
2277 	    (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) {
2278 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2279 		    IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
2280 	}
2281 
2282 	DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
2283 
2284 out:
2285 	return (ret_val);
2286 }
2287 
2288 /*
2289  * ixgbe_disable_pcie_master - Disable PCI-express master access
2290  * @hw: pointer to hardware structure
2291  *
2292  * Disables PCI-Express master access and verifies there are no pending
2293  * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2294  * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
2295  * is returned signifying master requests disabled.
2296  */
2297 s32
2298 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2299 {
2300 	u32 i;
2301 	u32 reg_val;
2302 	u32 number_of_queues;
2303 	s32 status = IXGBE_SUCCESS;
2304 
2305 	DEBUGFUNC("ixgbe_disable_pcie_master");
2306 
2307 	/* Just jump out if bus mastering is already disabled */
2308 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2309 		goto out;
2310 
2311 	/* Disable the receive unit by stopping each queue */
2312 	number_of_queues = hw->mac.max_rx_queues;
2313 	for (i = 0; i < number_of_queues; i++) {
2314 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
2315 		if (reg_val & IXGBE_RXDCTL_ENABLE) {
2316 			reg_val &= ~IXGBE_RXDCTL_ENABLE;
2317 			IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
2318 		}
2319 	}
2320 
2321 	reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
2322 	reg_val |= IXGBE_CTRL_GIO_DIS;
2323 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
2324 
2325 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2326 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2327 			goto out;
2328 		usec_delay(100);
2329 	}
2330 
2331 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
2332 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2333 
2334 	/*
2335 	 * The GIO Master Disable bit didn't clear.  There are multiple reasons
2336 	 * for this listed in the datasheet 5.2.5.3.2 Master Disable, and they
2337 	 * all require a double reset to recover from.  Before proceeding, we
2338 	 * first wait a little more to try to ensure that, at a minimum, the
2339 	 * PCIe block has no transactions pending.
2340 	 */
2341 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2342 		if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
2343 		    IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2344 			break;
2345 		usec_delay(100);
2346 	}
2347 
2348 	if (i == IXGBE_PCI_MASTER_DISABLE_TIMEOUT)
2349 		DEBUGOUT("PCIe transaction pending bit also did not clear.\n");
2350 
2351 	/*
2352 	 * Two consecutive resets are required via CTRL.RST per datasheet
2353 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2354 	 * of this need.  The first reset prevents new master requests from
2355 	 * being issued by our device.  We then must wait 1usec for any
2356 	 * remaining completions from the PCIe bus to trickle in, and then reset
2357 	 * again to clear out any effects they may have had on our device.
2358 	 */
2359 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2360 
2361 out:
2362 	return (status);
2363 }
2364 
2365 /*
2366  * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2367  * @hw: pointer to hardware structure
2368  * @mask: Mask to specify which semaphore to acquire
2369  *
2370  * Acquires the SWFW semaphore thought the GSSR register for the specified
2371  * function (CSR, PHY0, PHY1, EEPROM, Flash)
2372  */
2373 s32
2374 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2375 {
2376 	u32 gssr;
2377 	u32 swmask = mask;
2378 	u32 fwmask = mask << 5;
2379 	s32 timeout = 200;
2380 
2381 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
2382 
2383 	while (timeout) {
2384 		/*
2385 		 * SW EEPROM semaphore bit is used for access to all
2386 		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2387 		 */
2388 		if (ixgbe_get_eeprom_semaphore(hw))
2389 			return (IXGBE_ERR_SWFW_SYNC);
2390 
2391 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2392 		if (!(gssr & (fwmask | swmask)))
2393 			break;
2394 
2395 		/*
2396 		 * Firmware currently using resource (fwmask) or other software
2397 		 * thread currently using resource (swmask)
2398 		 */
2399 		ixgbe_release_eeprom_semaphore(hw);
2400 		msec_delay(5);
2401 		timeout--;
2402 	}
2403 
2404 	if (!timeout) {
2405 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
2406 		return (IXGBE_ERR_SWFW_SYNC);
2407 	}
2408 
2409 	gssr |= swmask;
2410 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2411 
2412 	ixgbe_release_eeprom_semaphore(hw);
2413 	return (IXGBE_SUCCESS);
2414 }
2415 
2416 /*
2417  * ixgbe_release_swfw_sync - Release SWFW semaphore
2418  * @hw: pointer to hardware structure
2419  * @mask: Mask to specify which semaphore to release
2420  *
2421  * Releases the SWFW semaphore thought the GSSR register for the specified
2422  * function (CSR, PHY0, PHY1, EEPROM, Flash)
2423  */
2424 void
2425 ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2426 {
2427 	u32 gssr;
2428 	u32 swmask = mask;
2429 
2430 	DEBUGFUNC("ixgbe_release_swfw_sync");
2431 
2432 	(void) ixgbe_get_eeprom_semaphore(hw);
2433 
2434 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2435 	gssr &= ~swmask;
2436 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2437 
2438 	ixgbe_release_eeprom_semaphore(hw);
2439 }
2440 
2441 /*
2442  * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2443  * @hw: pointer to hardware structure
2444  * @regval: register value to write to RXCTRL
2445  *
2446  * Enables the Rx DMA unit
2447  */
2448 s32
2449 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2450 {
2451 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
2452 
2453 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2454 
2455 	return (IXGBE_SUCCESS);
2456 }
2457 
2458 /*
2459  * ixgbe_blink_led_start_generic - Blink LED based on index.
2460  * @hw: pointer to hardware structure
2461  * @index: led number to blink
2462  */
2463 s32
2464 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2465 {
2466 	ixgbe_link_speed speed = 0;
2467 	bool link_up = 0;
2468 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2469 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2470 
2471 	DEBUGFUNC("ixgbe_blink_led_start_generic");
2472 
2473 	/*
2474 	 * Link must be up to auto-blink the LEDs;
2475 	 * Force it if link is down.
2476 	 */
2477 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2478 
2479 	if (!link_up) {
2480 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2481 		autoc_reg |= IXGBE_AUTOC_FLU;
2482 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2483 		msec_delay(10);
2484 	}
2485 
2486 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2487 	led_reg |= IXGBE_LED_BLINK(index);
2488 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2489 	IXGBE_WRITE_FLUSH(hw);
2490 
2491 	return (IXGBE_SUCCESS);
2492 }
2493 
2494 /*
2495  * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2496  * @hw: pointer to hardware structure
2497  * @index: led number to stop blinking
2498  */
2499 s32
2500 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2501 {
2502 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2503 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2504 
2505 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
2506 
2507 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2508 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2509 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2510 
2511 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2512 	led_reg &= ~IXGBE_LED_BLINK(index);
2513 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2514 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2515 	IXGBE_WRITE_FLUSH(hw);
2516 
2517 	return (IXGBE_SUCCESS);
2518 }
2519 
2520 /*
2521  * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2522  * @hw: pointer to hardware structure
2523  * @san_mac_offset: SAN MAC address offset
2524  *
2525  * This function will read the EEPROM location for the SAN MAC address
2526  * pointer, and returns the value at that location.  This is used in both
2527  * get and set mac_addr routines.
2528  */
2529 static s32
2530 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw, u16 *san_mac_offset)
2531 {
2532 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
2533 
2534 	/*
2535 	 * First read the EEPROM pointer to see if the MAC addresses are
2536 	 * available.
2537 	 */
2538 	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2539 
2540 	return (IXGBE_SUCCESS);
2541 }
2542 
2543 /*
2544  * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2545  * @hw: pointer to hardware structure
2546  * @san_mac_addr: SAN MAC address
2547  *
2548  * Reads the SAN MAC address from the EEPROM, if it's available.  This is
2549  * per-port, so set_lan_id() must be called before reading the addresses.
2550  * set_lan_id() is called by identify_sfp(), but this cannot be relied
2551  * upon for non-SFP connections, so we must call it here.
2552  */
2553 s32
2554 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2555 {
2556 	u16 san_mac_data, san_mac_offset;
2557 	u8 i;
2558 
2559 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
2560 
2561 	/*
2562 	 * First read the EEPROM pointer to see if the MAC addresses are
2563 	 * available.  If they're not, no point in calling set_lan_id() here.
2564 	 */
2565 	(void) ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2566 
2567 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2568 		/*
2569 		 * No addresses available in this EEPROM.  It's not an
2570 		 * error though, so just wipe the local address and return.
2571 		 */
2572 		for (i = 0; i < 6; i++)
2573 			san_mac_addr[i] = 0xFF;
2574 
2575 		goto san_mac_addr_out;
2576 	}
2577 
2578 	/* make sure we know which port we need to program */
2579 	hw->mac.ops.set_lan_id(hw);
2580 	/* apply the port offset to the address offset */
2581 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2582 	    (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2583 	for (i = 0; i < 3; i++) {
2584 		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2585 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2586 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2587 		san_mac_offset++;
2588 	}
2589 
2590 san_mac_addr_out:
2591 	return (IXGBE_SUCCESS);
2592 }
2593 
2594 /*
2595  * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
2596  * @hw: pointer to hardware structure
2597  * @san_mac_addr: SAN MAC address
2598  *
2599  * Write a SAN MAC address to the EEPROM.
2600  */
2601 s32
2602 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2603 {
2604 	s32 status = IXGBE_SUCCESS;
2605 	u16 san_mac_data, san_mac_offset;
2606 	u8 i;
2607 
2608 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
2609 
2610 	/* Look for SAN mac address pointer.  If not defined, return */
2611 	(void) ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2612 
2613 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2614 		status = IXGBE_ERR_NO_SAN_ADDR_PTR;
2615 		goto san_mac_addr_out;
2616 	}
2617 
2618 	/* Make sure we know which port we need to write */
2619 	hw->mac.ops.set_lan_id(hw);
2620 	/* Apply the port offset to the address offset */
2621 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2622 	    (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2623 
2624 	for (i = 0; i < 3; i++) {
2625 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
2626 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
2627 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
2628 		san_mac_offset++;
2629 	}
2630 
2631 san_mac_addr_out:
2632 	return (status);
2633 }
2634 
2635 /*
2636  * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2637  * @hw: pointer to hardware structure
2638  *
2639  * Read PCIe configuration space, and get the MSI-X vector count from
2640  * the capabilities table.
2641  */
2642 u32
2643 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2644 {
2645 	u32 msix_count = 64;
2646 
2647 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
2648 	if (hw->mac.msix_vectors_from_pcie) {
2649 		msix_count = IXGBE_READ_PCIE_WORD(hw,
2650 		    IXGBE_PCIE_MSIX_82599_CAPS);
2651 		msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2652 
2653 		/*
2654 		 * MSI-X count is zero-based in HW, so increment to give
2655 		 * proper value.
2656 		 */
2657 		msix_count++;
2658 	}
2659 
2660 	return (msix_count);
2661 }
2662 
2663 /*
2664  * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
2665  * @hw: pointer to hardware structure
2666  * @addr: Address to put into receive address register
2667  * @vmdq: VMDq pool to assign
2668  *
2669  * Puts an ethernet address into a receive address register, or
2670  * finds the rar that it is aleady in; adds to the pool list
2671  */
2672 s32
2673 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2674 {
2675 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
2676 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
2677 	u32 rar;
2678 	u32 rar_low, rar_high;
2679 	u32 addr_low, addr_high;
2680 
2681 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
2682 
2683 	/* swap bytes for HW little endian */
2684 	addr_low  = addr[0] | (addr[1] << 8)
2685 	    | (addr[2] << 16)
2686 	    | (addr[3] << 24);
2687 	addr_high = addr[4] | (addr[5] << 8);
2688 
2689 	/*
2690 	 * Either find the mac_id in rar or find the first empty space.
2691 	 * rar_highwater points to just after the highest currently used
2692 	 * rar in order to shorten the search.  It grows when we add a new
2693 	 * rar to the top.
2694 	 */
2695 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
2696 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
2697 
2698 		if (((IXGBE_RAH_AV & rar_high) == 0) &&
2699 		    first_empty_rar == NO_EMPTY_RAR_FOUND) {
2700 			first_empty_rar = rar;
2701 		} else if ((rar_high & 0xFFFF) == addr_high) {
2702 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
2703 			if (rar_low == addr_low)
2704 				break;    /* found it already in the rars */
2705 		}
2706 	}
2707 
2708 	if (rar < hw->mac.rar_highwater) {
2709 		/* already there so just add to the pool bits */
2710 		(void) ixgbe_set_vmdq(hw, rar, vmdq);
2711 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
2712 		/* stick it into first empty RAR slot we found */
2713 		rar = first_empty_rar;
2714 		(void) ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2715 	} else if (rar == hw->mac.rar_highwater) {
2716 		/* add it to the top of the list and inc the highwater mark */
2717 		(void) ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2718 		hw->mac.rar_highwater++;
2719 	} else if (rar >= hw->mac.num_rar_entries) {
2720 		return (IXGBE_ERR_INVALID_MAC_ADDR);
2721 	}
2722 
2723 	/*
2724 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
2725 	 * remains cleared to be sure default pool packets will get delivered
2726 	 */
2727 	if (rar == 0)
2728 		(void) ixgbe_clear_vmdq(hw, rar, 0);
2729 
2730 	return (rar);
2731 }
2732 
2733 /*
2734  * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2735  * @hw: pointer to hardware struct
2736  * @rar: receive address register index to disassociate
2737  * @vmdq: VMDq pool index to remove from the rar
2738  */
2739 s32
2740 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2741 {
2742 	u32 mpsar_lo, mpsar_hi;
2743 	u32 rar_entries = hw->mac.num_rar_entries;
2744 
2745 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
2746 
2747 	if (rar < rar_entries) {
2748 		mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2749 		mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2750 
2751 		if (!mpsar_lo && !mpsar_hi)
2752 			goto done;
2753 
2754 		if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2755 			if (mpsar_lo) {
2756 				IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2757 				mpsar_lo = 0;
2758 			}
2759 			if (mpsar_hi) {
2760 				IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2761 				mpsar_hi = 0;
2762 			}
2763 		} else if (vmdq < 32) {
2764 			mpsar_lo &= ~(1 << vmdq);
2765 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2766 		} else {
2767 			mpsar_hi &= ~(1 << (vmdq - 32));
2768 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2769 		}
2770 
2771 		/* was that the last pool using this rar? */
2772 		if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2773 			hw->mac.ops.clear_rar(hw, rar);
2774 	} else {
2775 		DEBUGOUT1("RAR index %d is out of range.\n", rar);
2776 	}
2777 
2778 done:
2779 	return (IXGBE_SUCCESS);
2780 }
2781 
2782 /*
2783  * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2784  * @hw: pointer to hardware struct
2785  * @rar: receive address register index to associate with a VMDq index
2786  * @vmdq: VMDq pool index
2787  */
2788 s32
2789 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2790 {
2791 	u32 mpsar;
2792 	u32 rar_entries = hw->mac.num_rar_entries;
2793 
2794 	DEBUGFUNC("ixgbe_set_vmdq_generic");
2795 
2796 	if (rar < rar_entries) {
2797 		if (vmdq < 32) {
2798 			mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2799 			mpsar |= 1 << vmdq;
2800 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2801 		} else {
2802 			mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2803 			mpsar |= 1 << (vmdq - 32);
2804 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2805 		}
2806 	} else {
2807 		DEBUGOUT1("RAR index %d is out of range.\n", rar);
2808 	}
2809 	return (IXGBE_SUCCESS);
2810 }
2811 
2812 /*
2813  * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2814  * @hw: pointer to hardware structure
2815  */
2816 s32
2817 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2818 {
2819 	int i;
2820 
2821 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
2822 	DEBUGOUT(" Clearing UTA\n");
2823 
2824 	for (i = 0; i < 128; i++)
2825 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2826 
2827 	return (IXGBE_SUCCESS);
2828 }
2829 
2830 /*
2831  * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2832  * @hw: pointer to hardware structure
2833  * @vlan: VLAN id to write to VLAN filter
2834  *
2835  * return the VLVF index where this VLAN id should be placed
2836  *
2837  */
2838 s32
2839 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2840 {
2841 	u32 bits = 0;
2842 	u32 first_empty_slot = 0;
2843 	s32 regindex;
2844 
2845 	/* short cut the special case */
2846 	if (vlan == 0)
2847 		return (0);
2848 
2849 	/*
2850 	 * Search for the vlan id in the VLVF entries. Save off the first empty
2851 	 * slot found along the way
2852 	 */
2853 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2854 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2855 		if (!bits && !(first_empty_slot))
2856 			first_empty_slot = regindex;
2857 		else if ((bits & 0x0FFF) == vlan)
2858 			break;
2859 	}
2860 
2861 	/*
2862 	 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2863 	 * in the VLVF. Else use the first empty VLVF register for this
2864 	 * vlan id.
2865 	 */
2866 	if (regindex >= IXGBE_VLVF_ENTRIES) {
2867 		if (first_empty_slot)
2868 			regindex = first_empty_slot;
2869 		else {
2870 			DEBUGOUT("No space in VLVF.\n");
2871 			regindex = IXGBE_ERR_NO_SPACE;
2872 		}
2873 	}
2874 
2875 	return (regindex);
2876 }
2877 
2878 /*
2879  * ixgbe_set_vfta_generic - Set VLAN filter table
2880  * @hw: pointer to hardware structure
2881  * @vlan: VLAN id to write to VLAN filter
2882  * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2883  * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2884  *
2885  * Turn on/off specified VLAN in the VLAN filter table.
2886  */
2887 s32
2888 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind, bool vlan_on)
2889 {
2890 	s32 regindex;
2891 	u32 bitindex;
2892 	u32 vfta;
2893 	u32 bits;
2894 	u32 vt;
2895 	u32 targetbit;
2896 	bool vfta_changed = false;
2897 
2898 	DEBUGFUNC("ixgbe_set_vfta_generic");
2899 
2900 	if (vlan > 4095)
2901 		return (IXGBE_ERR_PARAM);
2902 
2903 	/*
2904 	 * this is a 2 part operation - first the VFTA, then the
2905 	 * VLVF and VLVFB if VT Mode is set
2906 	 * We don't write the VFTA until we know the VLVF part succeeded.
2907 	 */
2908 
2909 	/*
2910 	 * Part 1
2911 	 * The VFTA is a bitstring made up of 128 32-bit registers
2912 	 * that enable the particular VLAN id, much like the MTA:
2913 	 *    bits[11-5]: which register
2914 	 *    bits[4-0]:  which bit in the register
2915 	 */
2916 	regindex = (vlan >> 5) & 0x7F;
2917 	bitindex = vlan & 0x1F;
2918 	targetbit = (1 << bitindex);
2919 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
2920 
2921 	if (vlan_on) {
2922 		if (!(vfta & targetbit)) {
2923 			vfta |= targetbit;
2924 			vfta_changed = true;
2925 		}
2926 	} else {
2927 		if ((vfta & targetbit)) {
2928 			vfta &= ~targetbit;
2929 			vfta_changed = true;
2930 		}
2931 	}
2932 
2933 
2934 	/*
2935 	 * Part 2
2936 	 * If VT Mode is set
2937 	 *  Either vlan_on
2938 	 *   make sure the vlan is in VLVF
2939 	 *   set the vind bit in the matching VLVFB
2940 	 *  Or !vlan_on
2941 	 *   clear the pool bit and possibly the vind
2942 	 */
2943 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
2944 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
2945 		s32 vlvf_index;
2946 
2947 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
2948 		if (vlvf_index < 0)
2949 			return (vlvf_index);
2950 
2951 		if (vlan_on) {
2952 			/* set the pool bit */
2953 			if (vind < 32) {
2954 				bits = IXGBE_READ_REG(hw,
2955 				    IXGBE_VLVFB(vlvf_index * 2));
2956 				bits |= (1 << vind);
2957 				IXGBE_WRITE_REG(hw,
2958 				    IXGBE_VLVFB(vlvf_index * 2),
2959 				    bits);
2960 			} else {
2961 				bits = IXGBE_READ_REG(hw,
2962 				    IXGBE_VLVFB((vlvf_index * 2) + 1));
2963 				bits |= (1 << (vind - 32));
2964 				IXGBE_WRITE_REG(hw,
2965 				    IXGBE_VLVFB((vlvf_index * 2) + 1),
2966 				    bits);
2967 			}
2968 		} else {
2969 			/* clear the pool bit */
2970 			if (vind < 32) {
2971 				bits = IXGBE_READ_REG(hw,
2972 				    IXGBE_VLVFB(vlvf_index * 2));
2973 				bits &= ~(1 << vind);
2974 				IXGBE_WRITE_REG(hw,
2975 				    IXGBE_VLVFB(vlvf_index * 2),
2976 				    bits);
2977 				bits |= IXGBE_READ_REG(hw,
2978 				    IXGBE_VLVFB((vlvf_index * 2) + 1));
2979 			} else {
2980 				bits = IXGBE_READ_REG(hw,
2981 				    IXGBE_VLVFB((vlvf_index * 2) + 1));
2982 				bits &= ~(1 << (vind - 32));
2983 				IXGBE_WRITE_REG(hw,
2984 				    IXGBE_VLVFB((vlvf_index * 2) + 1),
2985 				    bits);
2986 				bits |= IXGBE_READ_REG(hw,
2987 				    IXGBE_VLVFB(vlvf_index * 2));
2988 			}
2989 		}
2990 
2991 		/*
2992 		 * If there are still bits set in the VLVFB registers
2993 		 * for the VLAN ID indicated we need to see if the
2994 		 * caller is requesting that we clear the VFTA entry bit.
2995 		 * If the caller has requested that we clear the VFTA
2996 		 * entry bit but there are still pools/VFs using this VLAN
2997 		 * ID entry then ignore the request.  We're not worried
2998 		 * about the case where we're turning the VFTA VLAN ID
2999 		 * entry bit on, only when requested to turn it off as
3000 		 * there may be multiple pools and/or VFs using the
3001 		 * VLAN ID entry.  In that case we cannot clear the
3002 		 * VFTA bit until all pools/VFs using that VLAN ID have also
3003 		 * been cleared.  This will be indicated by "bits" being
3004 		 * zero.
3005 		 */
3006 		if (bits) {
3007 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3008 			    (IXGBE_VLVF_VIEN | vlan));
3009 			if (!vlan_on) {
3010 				/*
3011 				 * someone wants to clear the vfta entry
3012 				 * but some pools/VFs are still using it.
3013 				 * Ignore it.
3014 				 */
3015 				vfta_changed = false;
3016 			}
3017 		} else {
3018 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3019 		}
3020 	}
3021 
3022 	if (vfta_changed)
3023 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3024 
3025 	return (IXGBE_SUCCESS);
3026 }
3027 
3028 /*
3029  * ixgbe_clear_vfta_generic - Clear VLAN filter table
3030  * @hw: pointer to hardware structure
3031  *
3032  * Clears the VLAN filer table, and the VMDq index associated with the filter
3033  */
3034 s32
3035 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3036 {
3037 	u32 offset;
3038 
3039 	DEBUGFUNC("ixgbe_clear_vfta_generic");
3040 
3041 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3042 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3043 
3044 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3045 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3046 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3047 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3048 	}
3049 
3050 	return (IXGBE_SUCCESS);
3051 }
3052 
3053 /*
3054  * ixgbe_check_mac_link_generic - Determine link and speed status
3055  * @hw: pointer to hardware structure
3056  * @speed: pointer to link speed
3057  * @link_up: true when link is up
3058  * @link_up_wait_to_complete: bool used to wait for link up or not
3059  *
3060  * Reads the links register to determine if link is up and the current speed
3061  */
3062 s32
3063 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3064     bool *link_up, bool link_up_wait_to_complete)
3065 {
3066 	u32 links_reg, links_orig;
3067 	u32 i;
3068 
3069 	DEBUGFUNC("ixgbe_check_mac_link_generic");
3070 
3071 	/* clear the old state */
3072 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3073 
3074 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3075 
3076 	if (links_orig != links_reg) {
3077 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
3078 		    links_orig, links_reg);
3079 	}
3080 
3081 	if (link_up_wait_to_complete) {
3082 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3083 			if (links_reg & IXGBE_LINKS_UP) {
3084 				*link_up = true;
3085 				break;
3086 			} else {
3087 				*link_up = false;
3088 			}
3089 			msec_delay(100);
3090 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3091 		}
3092 	} else {
3093 		if (links_reg & IXGBE_LINKS_UP)
3094 			*link_up = true;
3095 		else
3096 			*link_up = false;
3097 	}
3098 
3099 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3100 	    IXGBE_LINKS_SPEED_10G_82599)
3101 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
3102 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3103 	    IXGBE_LINKS_SPEED_1G_82599)
3104 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3105 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3106 	    IXGBE_LINKS_SPEED_100_82599)
3107 		*speed = IXGBE_LINK_SPEED_100_FULL;
3108 	else
3109 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3110 
3111 	/* if link is down, zero out the current_mode */
3112 	if (*link_up == false) {
3113 		hw->fc.current_mode = ixgbe_fc_none;
3114 		hw->fc.fc_was_autonegged = false;
3115 	}
3116 
3117 	return (IXGBE_SUCCESS);
3118 }
3119 
3120 /*
3121  * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3122  * the EEPROM
3123  * @hw: pointer to hardware structure
3124  * @wwnn_prefix: the alternative WWNN prefix
3125  * @wwpn_prefix: the alternative WWPN prefix
3126  *
3127  * This function will read the EEPROM from the alternative SAN MAC address
3128  * block to check the support for the alternative WWNN/WWPN prefix support.
3129  */
3130 s32
3131 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3132     u16 *wwpn_prefix)
3133 {
3134 	u16 offset, caps;
3135 	u16 alt_san_mac_blk_offset;
3136 
3137 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
3138 
3139 	/* clear output first */
3140 	*wwnn_prefix = 0xFFFF;
3141 	*wwpn_prefix = 0xFFFF;
3142 
3143 	/* check if alternative SAN MAC is supported */
3144 	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3145 	    &alt_san_mac_blk_offset);
3146 
3147 	if ((alt_san_mac_blk_offset == 0) ||
3148 	    (alt_san_mac_blk_offset == 0xFFFF))
3149 		goto wwn_prefix_out;
3150 
3151 	/* check capability in alternative san mac address block */
3152 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3153 	hw->eeprom.ops.read(hw, offset, &caps);
3154 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3155 		goto wwn_prefix_out;
3156 
3157 	/* get the corresponding prefix for WWNN/WWPN */
3158 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3159 	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3160 
3161 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3162 	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3163 
3164 wwn_prefix_out:
3165 	return (IXGBE_SUCCESS);
3166 }
3167 
3168 /*
3169  * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
3170  * @hw: pointer to hardware structure
3171  * @bs: the fcoe boot status
3172  *
3173  * This function will read the FCOE boot status from the iSCSI FCOE block
3174  */
3175 s32
3176 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
3177 {
3178 	u16 offset, caps, flags;
3179 	s32 status;
3180 
3181 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
3182 
3183 	/* clear output first */
3184 	*bs = ixgbe_fcoe_bootstatus_unavailable;
3185 
3186 	/* check if FCOE IBA block is present */
3187 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
3188 	status = hw->eeprom.ops.read(hw, offset, &caps);
3189 	if (status != IXGBE_SUCCESS)
3190 		goto out;
3191 
3192 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
3193 		goto out;
3194 
3195 	/* check if iSCSI FCOE block is populated */
3196 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
3197 	if (status != IXGBE_SUCCESS)
3198 		goto out;
3199 
3200 	if ((offset == 0) || (offset == 0xFFFF))
3201 		goto out;
3202 
3203 	/* read fcoe flags in iSCSI FCOE block */
3204 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
3205 	status = hw->eeprom.ops.read(hw, offset, &flags);
3206 	if (status != IXGBE_SUCCESS)
3207 		goto out;
3208 
3209 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
3210 		*bs = ixgbe_fcoe_bootstatus_enabled;
3211 	else
3212 		*bs = ixgbe_fcoe_bootstatus_disabled;
3213 
3214 out:
3215 	return (status);
3216 }
3217 
3218 /*
3219  * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
3220  * control
3221  * @hw: pointer to hardware structure
3222  *
3223  * There are several phys that do not support autoneg flow control. This
3224  * function check the device id to see if the associated phy supports
3225  * autoneg flow control.
3226  */
3227 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
3228 {
3229 
3230 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
3231 
3232 	switch (hw->device_id) {
3233 	case IXGBE_DEV_ID_82599_T3_LOM:
3234 		return (IXGBE_SUCCESS);
3235 	default:
3236 		return (IXGBE_ERR_FC_NOT_SUPPORTED);
3237 	}
3238 }
3239