1 /****************************************************************************** 2 3 Copyright (c) 2001-2011, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 /* 36 * 82543GC Gigabit Ethernet Controller (Fiber) 37 * 82543GC Gigabit Ethernet Controller (Copper) 38 * 82544EI Gigabit Ethernet Controller (Copper) 39 * 82544EI Gigabit Ethernet Controller (Fiber) 40 * 82544GC Gigabit Ethernet Controller (Copper) 41 * 82544GC Gigabit Ethernet Controller (LOM) 42 */ 43 44 #include "e1000_api.h" 45 46 static s32 e1000_init_phy_params_82543(struct e1000_hw *hw); 47 static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw); 48 static s32 e1000_init_mac_params_82543(struct e1000_hw *hw); 49 static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, 50 u16 *data); 51 static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, 52 u16 data); 53 static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw); 54 static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw); 55 static s32 e1000_reset_hw_82543(struct e1000_hw *hw); 56 static s32 e1000_init_hw_82543(struct e1000_hw *hw); 57 static s32 e1000_setup_link_82543(struct e1000_hw *hw); 58 static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw); 59 static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw); 60 static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw); 61 static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw); 62 static s32 e1000_led_on_82543(struct e1000_hw *hw); 63 static s32 e1000_led_off_82543(struct e1000_hw *hw); 64 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, 65 u32 value); 66 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw); 67 static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw); 68 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw); 69 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl); 70 static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw); 71 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl); 72 static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw); 73 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data, 74 u16 count); 75 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw); 76 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state); 77 static s32 e1000_read_mac_addr_82543(struct e1000_hw *hw); 78 79 80 /** 81 * e1000_init_phy_params_82543 - Init PHY func ptrs. 82 * @hw: pointer to the HW structure 83 **/ 84 static s32 e1000_init_phy_params_82543(struct e1000_hw *hw) 85 { 86 struct e1000_phy_info *phy = &hw->phy; 87 s32 ret_val = E1000_SUCCESS; 88 89 DEBUGFUNC("e1000_init_phy_params_82543"); 90 91 if (hw->phy.media_type != e1000_media_type_copper) { 92 phy->type = e1000_phy_none; 93 goto out; 94 } else { 95 phy->ops.power_up = e1000_power_up_phy_copper; 96 phy->ops.power_down = e1000_power_down_phy_copper; 97 } 98 99 phy->addr = 1; 100 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 101 phy->reset_delay_us = 10000; 102 phy->type = e1000_phy_m88; 103 104 /* Function Pointers */ 105 phy->ops.check_polarity = e1000_check_polarity_m88; 106 phy->ops.commit = e1000_phy_sw_reset_generic; 107 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543; 108 phy->ops.get_cable_length = e1000_get_cable_length_m88; 109 phy->ops.get_cfg_done = e1000_get_cfg_done_generic; 110 phy->ops.read_reg = (hw->mac.type == e1000_82543) 111 ? e1000_read_phy_reg_82543 112 : e1000_read_phy_reg_m88; 113 phy->ops.reset = (hw->mac.type == e1000_82543) 114 ? e1000_phy_hw_reset_82543 115 : e1000_phy_hw_reset_generic; 116 phy->ops.write_reg = (hw->mac.type == e1000_82543) 117 ? e1000_write_phy_reg_82543 118 : e1000_write_phy_reg_m88; 119 phy->ops.get_info = e1000_get_phy_info_m88; 120 121 /* 122 * The external PHY of the 82543 can be in a funky state. 123 * Resetting helps us read the PHY registers for acquiring 124 * the PHY ID. 125 */ 126 if (!e1000_init_phy_disabled_82543(hw)) { 127 ret_val = phy->ops.reset(hw); 128 if (ret_val) { 129 DEBUGOUT("Resetting PHY during init failed.\n"); 130 goto out; 131 } 132 msec_delay(20); 133 } 134 135 ret_val = e1000_get_phy_id(hw); 136 if (ret_val) 137 goto out; 138 139 /* Verify phy id */ 140 switch (hw->mac.type) { 141 case e1000_82543: 142 if (phy->id != M88E1000_E_PHY_ID) { 143 ret_val = -E1000_ERR_PHY; 144 goto out; 145 } 146 break; 147 case e1000_82544: 148 if (phy->id != M88E1000_I_PHY_ID) { 149 ret_val = -E1000_ERR_PHY; 150 goto out; 151 } 152 break; 153 default: 154 ret_val = -E1000_ERR_PHY; 155 goto out; 156 break; 157 } 158 159 out: 160 return ret_val; 161 } 162 163 /** 164 * e1000_init_nvm_params_82543 - Init NVM func ptrs. 165 * @hw: pointer to the HW structure 166 **/ 167 static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw) 168 { 169 struct e1000_nvm_info *nvm = &hw->nvm; 170 171 DEBUGFUNC("e1000_init_nvm_params_82543"); 172 173 nvm->type = e1000_nvm_eeprom_microwire; 174 nvm->word_size = 64; 175 nvm->delay_usec = 50; 176 nvm->address_bits = 6; 177 nvm->opcode_bits = 3; 178 179 /* Function Pointers */ 180 nvm->ops.read = e1000_read_nvm_microwire; 181 nvm->ops.update = e1000_update_nvm_checksum_generic; 182 nvm->ops.valid_led_default = e1000_valid_led_default_generic; 183 nvm->ops.validate = e1000_validate_nvm_checksum_generic; 184 nvm->ops.write = e1000_write_nvm_microwire; 185 186 return E1000_SUCCESS; 187 } 188 189 /** 190 * e1000_init_mac_params_82543 - Init MAC func ptrs. 191 * @hw: pointer to the HW structure 192 **/ 193 static s32 e1000_init_mac_params_82543(struct e1000_hw *hw) 194 { 195 struct e1000_mac_info *mac = &hw->mac; 196 197 DEBUGFUNC("e1000_init_mac_params_82543"); 198 199 /* Set media type */ 200 switch (hw->device_id) { 201 case E1000_DEV_ID_82543GC_FIBER: 202 case E1000_DEV_ID_82544EI_FIBER: 203 hw->phy.media_type = e1000_media_type_fiber; 204 break; 205 default: 206 hw->phy.media_type = e1000_media_type_copper; 207 break; 208 } 209 210 /* Set mta register count */ 211 mac->mta_reg_count = 128; 212 /* Set rar entry count */ 213 mac->rar_entry_count = E1000_RAR_ENTRIES; 214 215 /* Function pointers */ 216 217 /* bus type/speed/width */ 218 mac->ops.get_bus_info = e1000_get_bus_info_pci_generic; 219 /* function id */ 220 mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci; 221 /* reset */ 222 mac->ops.reset_hw = e1000_reset_hw_82543; 223 /* hw initialization */ 224 mac->ops.init_hw = e1000_init_hw_82543; 225 /* link setup */ 226 mac->ops.setup_link = e1000_setup_link_82543; 227 /* physical interface setup */ 228 mac->ops.setup_physical_interface = 229 (hw->phy.media_type == e1000_media_type_copper) 230 ? e1000_setup_copper_link_82543 231 : e1000_setup_fiber_link_82543; 232 /* check for link */ 233 mac->ops.check_for_link = 234 (hw->phy.media_type == e1000_media_type_copper) 235 ? e1000_check_for_copper_link_82543 236 : e1000_check_for_fiber_link_82543; 237 /* link info */ 238 mac->ops.get_link_up_info = 239 (hw->phy.media_type == e1000_media_type_copper) 240 ? e1000_get_speed_and_duplex_copper_generic 241 : e1000_get_speed_and_duplex_fiber_serdes_generic; 242 /* multicast address update */ 243 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; 244 /* writing VFTA */ 245 mac->ops.write_vfta = e1000_write_vfta_82543; 246 /* clearing VFTA */ 247 mac->ops.clear_vfta = e1000_clear_vfta_generic; 248 /* read mac address */ 249 mac->ops.read_mac_addr = e1000_read_mac_addr_82543; 250 /* turn on/off LED */ 251 mac->ops.led_on = e1000_led_on_82543; 252 mac->ops.led_off = e1000_led_off_82543; 253 /* clear hardware counters */ 254 mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543; 255 256 /* Set tbi compatibility */ 257 if ((hw->mac.type != e1000_82543) || 258 (hw->phy.media_type == e1000_media_type_fiber)) 259 e1000_set_tbi_compatibility_82543(hw, FALSE); 260 261 return E1000_SUCCESS; 262 } 263 264 /** 265 * e1000_init_function_pointers_82543 - Init func ptrs. 266 * @hw: pointer to the HW structure 267 * 268 * Called to initialize all function pointers and parameters. 269 **/ 270 void e1000_init_function_pointers_82543(struct e1000_hw *hw) 271 { 272 DEBUGFUNC("e1000_init_function_pointers_82543"); 273 274 hw->mac.ops.init_params = e1000_init_mac_params_82543; 275 hw->nvm.ops.init_params = e1000_init_nvm_params_82543; 276 hw->phy.ops.init_params = e1000_init_phy_params_82543; 277 } 278 279 /** 280 * e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status 281 * @hw: pointer to the HW structure 282 * 283 * Returns the current status of 10-bit Interface (TBI) compatibility 284 * (enabled/disabled). 285 **/ 286 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw) 287 { 288 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; 289 bool state = FALSE; 290 291 DEBUGFUNC("e1000_tbi_compatibility_enabled_82543"); 292 293 if (hw->mac.type != e1000_82543) { 294 DEBUGOUT("TBI compatibility workaround for 82543 only.\n"); 295 goto out; 296 } 297 298 state = (dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED) 299 ? TRUE : FALSE; 300 301 out: 302 return state; 303 } 304 305 /** 306 * e1000_set_tbi_compatibility_82543 - Set TBI compatibility 307 * @hw: pointer to the HW structure 308 * @state: enable/disable TBI compatibility 309 * 310 * Enables or disabled 10-bit Interface (TBI) compatibility. 311 **/ 312 void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state) 313 { 314 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; 315 316 DEBUGFUNC("e1000_set_tbi_compatibility_82543"); 317 318 if (hw->mac.type != e1000_82543) { 319 DEBUGOUT("TBI compatibility workaround for 82543 only.\n"); 320 goto out; 321 } 322 323 if (state) 324 dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED; 325 else 326 dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED; 327 328 out: 329 return; 330 } 331 332 /** 333 * e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status 334 * @hw: pointer to the HW structure 335 * 336 * Returns the current status of 10-bit Interface (TBI) store bad packet (SBP) 337 * (enabled/disabled). 338 **/ 339 bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw) 340 { 341 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; 342 bool state = FALSE; 343 344 DEBUGFUNC("e1000_tbi_sbp_enabled_82543"); 345 346 if (hw->mac.type != e1000_82543) { 347 DEBUGOUT("TBI compatibility workaround for 82543 only.\n"); 348 goto out; 349 } 350 351 state = (dev_spec->tbi_compatibility & TBI_SBP_ENABLED) 352 ? TRUE : FALSE; 353 354 out: 355 return state; 356 } 357 358 /** 359 * e1000_set_tbi_sbp_82543 - Set TBI SBP 360 * @hw: pointer to the HW structure 361 * @state: enable/disable TBI store bad packet 362 * 363 * Enables or disabled 10-bit Interface (TBI) store bad packet (SBP). 364 **/ 365 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state) 366 { 367 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; 368 369 DEBUGFUNC("e1000_set_tbi_sbp_82543"); 370 371 if (state && e1000_tbi_compatibility_enabled_82543(hw)) 372 dev_spec->tbi_compatibility |= TBI_SBP_ENABLED; 373 else 374 dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED; 375 376 return; 377 } 378 379 /** 380 * e1000_init_phy_disabled_82543 - Returns init PHY status 381 * @hw: pointer to the HW structure 382 * 383 * Returns the current status of whether PHY initialization is disabled. 384 * True if PHY initialization is disabled else FALSE. 385 **/ 386 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw) 387 { 388 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; 389 bool ret_val; 390 391 DEBUGFUNC("e1000_init_phy_disabled_82543"); 392 393 if (hw->mac.type != e1000_82543) { 394 ret_val = FALSE; 395 goto out; 396 } 397 398 ret_val = dev_spec->init_phy_disabled; 399 400 out: 401 return ret_val; 402 } 403 404 /** 405 * e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled 406 * @hw: pointer to the HW structure 407 * @stats: Struct containing statistic register values 408 * @frame_len: The length of the frame in question 409 * @mac_addr: The Ethernet destination address of the frame in question 410 * @max_frame_size: The maximum frame size 411 * 412 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT 413 **/ 414 void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw, 415 struct e1000_hw_stats *stats, u32 frame_len, 416 u8 *mac_addr, u32 max_frame_size) 417 { 418 if (!(e1000_tbi_sbp_enabled_82543(hw))) 419 goto out; 420 421 /* First adjust the frame length. */ 422 frame_len--; 423 /* 424 * We need to adjust the statistics counters, since the hardware 425 * counters overcount this packet as a CRC error and undercount 426 * the packet as a good packet 427 */ 428 /* This packet should not be counted as a CRC error. */ 429 stats->crcerrs--; 430 /* This packet does count as a Good Packet Received. */ 431 stats->gprc++; 432 433 /* Adjust the Good Octets received counters */ 434 stats->gorc += frame_len; 435 436 /* 437 * Is this a broadcast or multicast? Check broadcast first, 438 * since the test for a multicast frame will test positive on 439 * a broadcast frame. 440 */ 441 if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff)) 442 /* Broadcast packet */ 443 stats->bprc++; 444 else if (*mac_addr & 0x01) 445 /* Multicast packet */ 446 stats->mprc++; 447 448 /* 449 * In this case, the hardware has overcounted the number of 450 * oversize frames. 451 */ 452 if ((frame_len == max_frame_size) && (stats->roc > 0)) 453 stats->roc--; 454 455 /* 456 * Adjust the bin counters when the extra byte put the frame in the 457 * wrong bin. Remember that the frame_len was adjusted above. 458 */ 459 if (frame_len == 64) { 460 stats->prc64++; 461 stats->prc127--; 462 } else if (frame_len == 127) { 463 stats->prc127++; 464 stats->prc255--; 465 } else if (frame_len == 255) { 466 stats->prc255++; 467 stats->prc511--; 468 } else if (frame_len == 511) { 469 stats->prc511++; 470 stats->prc1023--; 471 } else if (frame_len == 1023) { 472 stats->prc1023++; 473 stats->prc1522--; 474 } else if (frame_len == 1522) { 475 stats->prc1522++; 476 } 477 478 out: 479 return; 480 } 481 482 /** 483 * e1000_read_phy_reg_82543 - Read PHY register 484 * @hw: pointer to the HW structure 485 * @offset: register offset to be read 486 * @data: pointer to the read data 487 * 488 * Reads the PHY at offset and stores the information read to data. 489 **/ 490 static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data) 491 { 492 u32 mdic; 493 s32 ret_val = E1000_SUCCESS; 494 495 DEBUGFUNC("e1000_read_phy_reg_82543"); 496 497 if (offset > MAX_PHY_REG_ADDRESS) { 498 DEBUGOUT1("PHY Address %d is out of range\n", offset); 499 ret_val = -E1000_ERR_PARAM; 500 goto out; 501 } 502 503 /* 504 * We must first send a preamble through the MDIO pin to signal the 505 * beginning of an MII instruction. This is done by sending 32 506 * consecutive "1" bits. 507 */ 508 e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); 509 510 /* 511 * Now combine the next few fields that are required for a read 512 * operation. We use this method instead of calling the 513 * e1000_shift_out_mdi_bits routine five different times. The format 514 * of an MII read instruction consists of a shift out of 14 bits and 515 * is defined as follows: 516 * <Preamble><SOF><Op Code><Phy Addr><Offset> 517 * followed by a shift in of 18 bits. This first two bits shifted in 518 * are TurnAround bits used to avoid contention on the MDIO pin when a 519 * READ operation is performed. These two bits are thrown away 520 * followed by a shift in of 16 bits which contains the desired data. 521 */ 522 mdic = (offset | (hw->phy.addr << 5) | 523 (PHY_OP_READ << 10) | (PHY_SOF << 12)); 524 525 e1000_shift_out_mdi_bits_82543(hw, mdic, 14); 526 527 /* 528 * Now that we've shifted out the read command to the MII, we need to 529 * "shift in" the 16-bit value (18 total bits) of the requested PHY 530 * register address. 531 */ 532 *data = e1000_shift_in_mdi_bits_82543(hw); 533 534 out: 535 return ret_val; 536 } 537 538 /** 539 * e1000_write_phy_reg_82543 - Write PHY register 540 * @hw: pointer to the HW structure 541 * @offset: register offset to be written 542 * @data: pointer to the data to be written at offset 543 * 544 * Writes data to the PHY at offset. 545 **/ 546 static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data) 547 { 548 u32 mdic; 549 s32 ret_val = E1000_SUCCESS; 550 551 DEBUGFUNC("e1000_write_phy_reg_82543"); 552 553 if (offset > MAX_PHY_REG_ADDRESS) { 554 DEBUGOUT1("PHY Address %d is out of range\n", offset); 555 ret_val = -E1000_ERR_PARAM; 556 goto out; 557 } 558 559 /* 560 * We'll need to use the SW defined pins to shift the write command 561 * out to the PHY. We first send a preamble to the PHY to signal the 562 * beginning of the MII instruction. This is done by sending 32 563 * consecutive "1" bits. 564 */ 565 e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); 566 567 /* 568 * Now combine the remaining required fields that will indicate a 569 * write operation. We use this method instead of calling the 570 * e1000_shift_out_mdi_bits routine for each field in the command. The 571 * format of a MII write instruction is as follows: 572 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. 573 */ 574 mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) | 575 (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); 576 mdic <<= 16; 577 mdic |= (u32) data; 578 579 e1000_shift_out_mdi_bits_82543(hw, mdic, 32); 580 581 out: 582 return ret_val; 583 } 584 585 /** 586 * e1000_raise_mdi_clk_82543 - Raise Management Data Input clock 587 * @hw: pointer to the HW structure 588 * @ctrl: pointer to the control register 589 * 590 * Raise the management data input clock by setting the MDC bit in the control 591 * register. 592 **/ 593 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl) 594 { 595 /* 596 * Raise the clock input to the Management Data Clock (by setting the 597 * MDC bit), and then delay a sufficient amount of time. 598 */ 599 E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC)); 600 E1000_WRITE_FLUSH(hw); 601 usec_delay(10); 602 } 603 604 /** 605 * e1000_lower_mdi_clk_82543 - Lower Management Data Input clock 606 * @hw: pointer to the HW structure 607 * @ctrl: pointer to the control register 608 * 609 * Lower the management data input clock by clearing the MDC bit in the 610 * control register. 611 **/ 612 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl) 613 { 614 /* 615 * Lower the clock input to the Management Data Clock (by clearing the 616 * MDC bit), and then delay a sufficient amount of time. 617 */ 618 E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC)); 619 E1000_WRITE_FLUSH(hw); 620 usec_delay(10); 621 } 622 623 /** 624 * e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY 625 * @hw: pointer to the HW structure 626 * @data: data to send to the PHY 627 * @count: number of bits to shift out 628 * 629 * We need to shift 'count' bits out to the PHY. So, the value in the 630 * "data" parameter will be shifted out to the PHY one bit at a time. 631 * In order to do this, "data" must be broken down into bits. 632 **/ 633 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data, 634 u16 count) 635 { 636 u32 ctrl, mask; 637 638 /* 639 * We need to shift "count" number of bits out to the PHY. So, the 640 * value in the "data" parameter will be shifted out to the PHY one 641 * bit at a time. In order to do this, "data" must be broken down 642 * into bits. 643 */ 644 mask = 0x01; 645 mask <<= (count -1); 646 647 ctrl = E1000_READ_REG(hw, E1000_CTRL); 648 649 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ 650 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); 651 652 while (mask) { 653 /* 654 * A "1" is shifted out to the PHY by setting the MDIO bit to 655 * "1" and then raising and lowering the Management Data Clock. 656 * A "0" is shifted out to the PHY by setting the MDIO bit to 657 * "0" and then raising and lowering the clock. 658 */ 659 if (data & mask) ctrl |= E1000_CTRL_MDIO; 660 else ctrl &= ~E1000_CTRL_MDIO; 661 662 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 663 E1000_WRITE_FLUSH(hw); 664 665 usec_delay(10); 666 667 e1000_raise_mdi_clk_82543(hw, &ctrl); 668 e1000_lower_mdi_clk_82543(hw, &ctrl); 669 670 mask >>= 1; 671 } 672 } 673 674 /** 675 * e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY 676 * @hw: pointer to the HW structure 677 * 678 * In order to read a register from the PHY, we need to shift 18 bits 679 * in from the PHY. Bits are "shifted in" by raising the clock input to 680 * the PHY (setting the MDC bit), and then reading the value of the data out 681 * MDIO bit. 682 **/ 683 static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw) 684 { 685 u32 ctrl; 686 u16 data = 0; 687 u8 i; 688 689 /* 690 * In order to read a register from the PHY, we need to shift in a 691 * total of 18 bits from the PHY. The first two bit (turnaround) 692 * times are used to avoid contention on the MDIO pin when a read 693 * operation is performed. These two bits are ignored by us and 694 * thrown away. Bits are "shifted in" by raising the input to the 695 * Management Data Clock (setting the MDC bit) and then reading the 696 * value of the MDIO bit. 697 */ 698 ctrl = E1000_READ_REG(hw, E1000_CTRL); 699 700 /* 701 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as 702 * input. 703 */ 704 ctrl &= ~E1000_CTRL_MDIO_DIR; 705 ctrl &= ~E1000_CTRL_MDIO; 706 707 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 708 E1000_WRITE_FLUSH(hw); 709 710 /* 711 * Raise and lower the clock before reading in the data. This accounts 712 * for the turnaround bits. The first clock occurred when we clocked 713 * out the last bit of the Register Address. 714 */ 715 e1000_raise_mdi_clk_82543(hw, &ctrl); 716 e1000_lower_mdi_clk_82543(hw, &ctrl); 717 718 for (data = 0, i = 0; i < 16; i++) { 719 data <<= 1; 720 e1000_raise_mdi_clk_82543(hw, &ctrl); 721 ctrl = E1000_READ_REG(hw, E1000_CTRL); 722 /* Check to see if we shifted in a "1". */ 723 if (ctrl & E1000_CTRL_MDIO) 724 data |= 1; 725 e1000_lower_mdi_clk_82543(hw, &ctrl); 726 } 727 728 e1000_raise_mdi_clk_82543(hw, &ctrl); 729 e1000_lower_mdi_clk_82543(hw, &ctrl); 730 731 return data; 732 } 733 734 /** 735 * e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY 736 * @hw: pointer to the HW structure 737 * 738 * Calls the function to force speed and duplex for the m88 PHY, and 739 * if the PHY is not auto-negotiating and the speed is forced to 10Mbit, 740 * then call the function for polarity reversal workaround. 741 **/ 742 static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw) 743 { 744 s32 ret_val; 745 746 DEBUGFUNC("e1000_phy_force_speed_duplex_82543"); 747 748 ret_val = e1000_phy_force_speed_duplex_m88(hw); 749 if (ret_val) 750 goto out; 751 752 if (!hw->mac.autoneg && 753 (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)) 754 ret_val = e1000_polarity_reversal_workaround_82543(hw); 755 756 out: 757 return ret_val; 758 } 759 760 /** 761 * e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal 762 * @hw: pointer to the HW structure 763 * 764 * When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity 765 * inadvertently. To workaround the issue, we disable the transmitter on 766 * the PHY until we have established the link partner's link parameters. 767 **/ 768 static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw) 769 { 770 s32 ret_val = E1000_SUCCESS; 771 u16 mii_status_reg; 772 u16 i; 773 bool link; 774 775 if (!(hw->phy.ops.write_reg)) 776 goto out; 777 778 /* Polarity reversal workaround for forced 10F/10H links. */ 779 780 /* Disable the transmitter on the PHY */ 781 782 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); 783 if (ret_val) 784 goto out; 785 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); 786 if (ret_val) 787 goto out; 788 789 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); 790 if (ret_val) 791 goto out; 792 793 /* 794 * This loop will early-out if the NO link condition has been met. 795 * In other words, DO NOT use e1000_phy_has_link_generic() here. 796 */ 797 for (i = PHY_FORCE_TIME; i > 0; i--) { 798 /* 799 * Read the MII Status Register and wait for Link Status bit 800 * to be clear. 801 */ 802 803 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); 804 if (ret_val) 805 goto out; 806 807 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); 808 if (ret_val) 809 goto out; 810 811 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) 812 break; 813 msec_delay_irq(100); 814 } 815 816 /* Recommended delay time after link has been lost */ 817 msec_delay_irq(1000); 818 819 /* Now we will re-enable the transmitter on the PHY */ 820 821 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); 822 if (ret_val) 823 goto out; 824 msec_delay_irq(50); 825 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); 826 if (ret_val) 827 goto out; 828 msec_delay_irq(50); 829 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); 830 if (ret_val) 831 goto out; 832 msec_delay_irq(50); 833 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); 834 if (ret_val) 835 goto out; 836 837 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); 838 if (ret_val) 839 goto out; 840 841 /* 842 * Read the MII Status Register and wait for Link Status bit 843 * to be set. 844 */ 845 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link); 846 if (ret_val) 847 goto out; 848 849 out: 850 return ret_val; 851 } 852 853 /** 854 * e1000_phy_hw_reset_82543 - PHY hardware reset 855 * @hw: pointer to the HW structure 856 * 857 * Sets the PHY_RESET_DIR bit in the extended device control register 858 * to put the PHY into a reset and waits for completion. Once the reset 859 * has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out 860 * of reset. 861 **/ 862 static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw) 863 { 864 u32 ctrl_ext; 865 s32 ret_val; 866 867 DEBUGFUNC("e1000_phy_hw_reset_82543"); 868 869 /* 870 * Read the Extended Device Control Register, assert the PHY_RESET_DIR 871 * bit to put the PHY into reset... 872 */ 873 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); 874 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; 875 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; 876 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); 877 E1000_WRITE_FLUSH(hw); 878 879 msec_delay(10); 880 881 /* ...then take it out of reset. */ 882 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; 883 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); 884 E1000_WRITE_FLUSH(hw); 885 886 usec_delay(150); 887 888 if (!(hw->phy.ops.get_cfg_done)) 889 return E1000_SUCCESS; 890 891 ret_val = hw->phy.ops.get_cfg_done(hw); 892 893 return ret_val; 894 } 895 896 /** 897 * e1000_reset_hw_82543 - Reset hardware 898 * @hw: pointer to the HW structure 899 * 900 * This resets the hardware into a known state. 901 **/ 902 static s32 e1000_reset_hw_82543(struct e1000_hw *hw) 903 { 904 u32 ctrl, icr; 905 s32 ret_val = E1000_SUCCESS; 906 907 DEBUGFUNC("e1000_reset_hw_82543"); 908 909 DEBUGOUT("Masking off all interrupts\n"); 910 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 911 912 E1000_WRITE_REG(hw, E1000_RCTL, 0); 913 E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); 914 E1000_WRITE_FLUSH(hw); 915 916 e1000_set_tbi_sbp_82543(hw, FALSE); 917 918 /* 919 * Delay to allow any outstanding PCI transactions to complete before 920 * resetting the device 921 */ 922 msec_delay(10); 923 924 ctrl = E1000_READ_REG(hw, E1000_CTRL); 925 926 DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n"); 927 if (hw->mac.type == e1000_82543) { 928 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); 929 } else { 930 /* 931 * The 82544 can't ACK the 64-bit write when issuing the 932 * reset, so use IO-mapping as a workaround. 933 */ 934 E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); 935 } 936 937 /* 938 * After MAC reset, force reload of NVM to restore power-on 939 * settings to device. 940 */ 941 hw->nvm.ops.reload(hw); 942 msec_delay(2); 943 944 /* Masking off and clearing any pending interrupts */ 945 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); 946 icr = E1000_READ_REG(hw, E1000_ICR); 947 948 return ret_val; 949 } 950 951 /** 952 * e1000_init_hw_82543 - Initialize hardware 953 * @hw: pointer to the HW structure 954 * 955 * This inits the hardware readying it for operation. 956 **/ 957 static s32 e1000_init_hw_82543(struct e1000_hw *hw) 958 { 959 struct e1000_mac_info *mac = &hw->mac; 960 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; 961 u32 ctrl; 962 s32 ret_val; 963 u16 i; 964 965 DEBUGFUNC("e1000_init_hw_82543"); 966 967 /* Disabling VLAN filtering */ 968 E1000_WRITE_REG(hw, E1000_VET, 0); 969 mac->ops.clear_vfta(hw); 970 971 /* Setup the receive address. */ 972 e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); 973 974 /* Zero out the Multicast HASH table */ 975 DEBUGOUT("Zeroing the MTA\n"); 976 for (i = 0; i < mac->mta_reg_count; i++) { 977 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 978 E1000_WRITE_FLUSH(hw); 979 } 980 981 /* 982 * Set the PCI priority bit correctly in the CTRL register. This 983 * determines if the adapter gives priority to receives, or if it 984 * gives equal priority to transmits and receives. 985 */ 986 if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) { 987 ctrl = E1000_READ_REG(hw, E1000_CTRL); 988 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR); 989 } 990 991 e1000_pcix_mmrbc_workaround_generic(hw); 992 993 /* Setup link and flow control */ 994 ret_val = mac->ops.setup_link(hw); 995 996 /* 997 * Clear all of the statistics registers (clear on read). It is 998 * important that we do this after we have tried to establish link 999 * because the symbol error count will increment wildly if there 1000 * is no link. 1001 */ 1002 e1000_clear_hw_cntrs_82543(hw); 1003 1004 return ret_val; 1005 } 1006 1007 /** 1008 * e1000_setup_link_82543 - Setup flow control and link settings 1009 * @hw: pointer to the HW structure 1010 * 1011 * Read the EEPROM to determine the initial polarity value and write the 1012 * extended device control register with the information before calling 1013 * the generic setup link function, which does the following: 1014 * Determines which flow control settings to use, then configures flow 1015 * control. Calls the appropriate media-specific link configuration 1016 * function. Assuming the adapter has a valid link partner, a valid link 1017 * should be established. Assumes the hardware has previously been reset 1018 * and the transmitter and receiver are not enabled. 1019 **/ 1020 static s32 e1000_setup_link_82543(struct e1000_hw *hw) 1021 { 1022 u32 ctrl_ext; 1023 s32 ret_val; 1024 u16 data; 1025 1026 DEBUGFUNC("e1000_setup_link_82543"); 1027 1028 /* 1029 * Take the 4 bits from NVM word 0xF that determine the initial 1030 * polarity value for the SW controlled pins, and setup the 1031 * Extended Device Control reg with that info. 1032 * This is needed because one of the SW controlled pins is used for 1033 * signal detection. So this should be done before phy setup. 1034 */ 1035 if (hw->mac.type == e1000_82543) { 1036 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data); 1037 if (ret_val) { 1038 DEBUGOUT("NVM Read Error\n"); 1039 ret_val = -E1000_ERR_NVM; 1040 goto out; 1041 } 1042 ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) << 1043 NVM_SWDPIO_EXT_SHIFT); 1044 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); 1045 } 1046 1047 ret_val = e1000_setup_link_generic(hw); 1048 1049 out: 1050 return ret_val; 1051 } 1052 1053 /** 1054 * e1000_setup_copper_link_82543 - Configure copper link settings 1055 * @hw: pointer to the HW structure 1056 * 1057 * Configures the link for auto-neg or forced speed and duplex. Then we check 1058 * for link, once link is established calls to configure collision distance 1059 * and flow control are called. 1060 **/ 1061 static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw) 1062 { 1063 u32 ctrl; 1064 s32 ret_val; 1065 bool link; 1066 1067 DEBUGFUNC("e1000_setup_copper_link_82543"); 1068 1069 ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU; 1070 /* 1071 * With 82543, we need to force speed and duplex on the MAC 1072 * equal to what the PHY speed and duplex configuration is. 1073 * In addition, we need to perform a hardware reset on the 1074 * PHY to take it out of reset. 1075 */ 1076 if (hw->mac.type == e1000_82543) { 1077 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1078 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 1079 ret_val = hw->phy.ops.reset(hw); 1080 if (ret_val) 1081 goto out; 1082 } else { 1083 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1084 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 1085 } 1086 1087 /* Set MDI/MDI-X, Polarity Reversal, and downshift settings */ 1088 ret_val = e1000_copper_link_setup_m88(hw); 1089 if (ret_val) 1090 goto out; 1091 1092 if (hw->mac.autoneg) { 1093 /* 1094 * Setup autoneg and flow control advertisement and perform 1095 * autonegotiation. 1096 */ 1097 ret_val = e1000_copper_link_autoneg(hw); 1098 if (ret_val) 1099 goto out; 1100 } else { 1101 /* 1102 * PHY will be set to 10H, 10F, 100H or 100F 1103 * depending on user settings. 1104 */ 1105 DEBUGOUT("Forcing Speed and Duplex\n"); 1106 ret_val = e1000_phy_force_speed_duplex_82543(hw); 1107 if (ret_val) { 1108 DEBUGOUT("Error Forcing Speed and Duplex\n"); 1109 goto out; 1110 } 1111 } 1112 1113 /* 1114 * Check link status. Wait up to 100 microseconds for link to become 1115 * valid. 1116 */ 1117 ret_val = e1000_phy_has_link_generic(hw, 1118 COPPER_LINK_UP_LIMIT, 1119 10, 1120 &link); 1121 if (ret_val) 1122 goto out; 1123 1124 1125 if (link) { 1126 DEBUGOUT("Valid link established!!!\n"); 1127 /* Config the MAC and PHY after link is up */ 1128 if (hw->mac.type == e1000_82544) { 1129 hw->mac.ops.config_collision_dist(hw); 1130 } else { 1131 ret_val = e1000_config_mac_to_phy_82543(hw); 1132 if (ret_val) 1133 goto out; 1134 } 1135 ret_val = e1000_config_fc_after_link_up_generic(hw); 1136 } else { 1137 DEBUGOUT("Unable to establish link!!!\n"); 1138 } 1139 1140 out: 1141 return ret_val; 1142 } 1143 1144 /** 1145 * e1000_setup_fiber_link_82543 - Setup link for fiber 1146 * @hw: pointer to the HW structure 1147 * 1148 * Configures collision distance and flow control for fiber links. Upon 1149 * successful setup, poll for link. 1150 **/ 1151 static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw) 1152 { 1153 u32 ctrl; 1154 s32 ret_val; 1155 1156 DEBUGFUNC("e1000_setup_fiber_link_82543"); 1157 1158 ctrl = E1000_READ_REG(hw, E1000_CTRL); 1159 1160 /* Take the link out of reset */ 1161 ctrl &= ~E1000_CTRL_LRST; 1162 1163 hw->mac.ops.config_collision_dist(hw); 1164 1165 ret_val = e1000_commit_fc_settings_generic(hw); 1166 if (ret_val) 1167 goto out; 1168 1169 DEBUGOUT("Auto-negotiation enabled\n"); 1170 1171 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 1172 E1000_WRITE_FLUSH(hw); 1173 msec_delay(1); 1174 1175 /* 1176 * For these adapters, the SW definable pin 1 is cleared when the 1177 * optics detect a signal. If we have a signal, then poll for a 1178 * "Link-Up" indication. 1179 */ 1180 if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) { 1181 ret_val = e1000_poll_fiber_serdes_link_generic(hw); 1182 } else { 1183 DEBUGOUT("No signal detected\n"); 1184 } 1185 1186 out: 1187 return ret_val; 1188 } 1189 1190 /** 1191 * e1000_check_for_copper_link_82543 - Check for link (Copper) 1192 * @hw: pointer to the HW structure 1193 * 1194 * Checks the phy for link, if link exists, do the following: 1195 * - check for downshift 1196 * - do polarity workaround (if necessary) 1197 * - configure collision distance 1198 * - configure flow control after link up 1199 * - configure tbi compatibility 1200 **/ 1201 static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw) 1202 { 1203 struct e1000_mac_info *mac = &hw->mac; 1204 u32 icr, rctl; 1205 s32 ret_val; 1206 u16 speed, duplex; 1207 bool link; 1208 1209 DEBUGFUNC("e1000_check_for_copper_link_82543"); 1210 1211 if (!mac->get_link_status) { 1212 ret_val = E1000_SUCCESS; 1213 goto out; 1214 } 1215 1216 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); 1217 if (ret_val) 1218 goto out; 1219 1220 if (!link) 1221 goto out; /* No link detected */ 1222 1223 mac->get_link_status = FALSE; 1224 1225 e1000_check_downshift_generic(hw); 1226 1227 /* 1228 * If we are forcing speed/duplex, then we can return since 1229 * we have already determined whether we have link or not. 1230 */ 1231 if (!mac->autoneg) { 1232 /* 1233 * If speed and duplex are forced to 10H or 10F, then we will 1234 * implement the polarity reversal workaround. We disable 1235 * interrupts first, and upon returning, place the devices 1236 * interrupt state to its previous value except for the link 1237 * status change interrupt which will happened due to the 1238 * execution of this workaround. 1239 */ 1240 if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) { 1241 E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); 1242 ret_val = e1000_polarity_reversal_workaround_82543(hw); 1243 icr = E1000_READ_REG(hw, E1000_ICR); 1244 E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC)); 1245 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK); 1246 } 1247 1248 ret_val = -E1000_ERR_CONFIG; 1249 goto out; 1250 } 1251 1252 /* 1253 * We have a M88E1000 PHY and Auto-Neg is enabled. If we 1254 * have Si on board that is 82544 or newer, Auto 1255 * Speed Detection takes care of MAC speed/duplex 1256 * configuration. So we only need to configure Collision 1257 * Distance in the MAC. Otherwise, we need to force 1258 * speed/duplex on the MAC to the current PHY speed/duplex 1259 * settings. 1260 */ 1261 if (mac->type == e1000_82544) 1262 hw->mac.ops.config_collision_dist(hw); 1263 else { 1264 ret_val = e1000_config_mac_to_phy_82543(hw); 1265 if (ret_val) { 1266 DEBUGOUT("Error configuring MAC to PHY settings\n"); 1267 goto out; 1268 } 1269 } 1270 1271 /* 1272 * Configure Flow Control now that Auto-Neg has completed. 1273 * First, we need to restore the desired flow control 1274 * settings because we may have had to re-autoneg with a 1275 * different link partner. 1276 */ 1277 ret_val = e1000_config_fc_after_link_up_generic(hw); 1278 if (ret_val) { 1279 DEBUGOUT("Error configuring flow control\n"); 1280 } 1281 1282 /* 1283 * At this point we know that we are on copper and we have 1284 * auto-negotiated link. These are conditions for checking the link 1285 * partner capability register. We use the link speed to determine if 1286 * TBI compatibility needs to be turned on or off. If the link is not 1287 * at gigabit speed, then TBI compatibility is not needed. If we are 1288 * at gigabit speed, we turn on TBI compatibility. 1289 */ 1290 if (e1000_tbi_compatibility_enabled_82543(hw)) { 1291 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); 1292 if (ret_val) { 1293 DEBUGOUT("Error getting link speed and duplex\n"); 1294 return ret_val; 1295 } 1296 if (speed != SPEED_1000) { 1297 /* 1298 * If link speed is not set to gigabit speed, 1299 * we do not need to enable TBI compatibility. 1300 */ 1301 if (e1000_tbi_sbp_enabled_82543(hw)) { 1302 /* 1303 * If we previously were in the mode, 1304 * turn it off. 1305 */ 1306 e1000_set_tbi_sbp_82543(hw, FALSE); 1307 rctl = E1000_READ_REG(hw, E1000_RCTL); 1308 rctl &= ~E1000_RCTL_SBP; 1309 E1000_WRITE_REG(hw, E1000_RCTL, rctl); 1310 } 1311 } else { 1312 /* 1313 * If TBI compatibility is was previously off, 1314 * turn it on. For compatibility with a TBI link 1315 * partner, we will store bad packets. Some 1316 * frames have an additional byte on the end and 1317 * will look like CRC errors to to the hardware. 1318 */ 1319 if (!e1000_tbi_sbp_enabled_82543(hw)) { 1320 e1000_set_tbi_sbp_82543(hw, TRUE); 1321 rctl = E1000_READ_REG(hw, E1000_RCTL); 1322 rctl |= E1000_RCTL_SBP; 1323 E1000_WRITE_REG(hw, E1000_RCTL, rctl); 1324 } 1325 } 1326 } 1327 out: 1328 return ret_val; 1329 } 1330 1331 /** 1332 * e1000_check_for_fiber_link_82543 - Check for link (Fiber) 1333 * @hw: pointer to the HW structure 1334 * 1335 * Checks for link up on the hardware. If link is not up and we have 1336 * a signal, then we need to force link up. 1337 **/ 1338 static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw) 1339 { 1340 struct e1000_mac_info *mac = &hw->mac; 1341 u32 rxcw, ctrl, status; 1342 s32 ret_val = E1000_SUCCESS; 1343 1344 DEBUGFUNC("e1000_check_for_fiber_link_82543"); 1345 1346 ctrl = E1000_READ_REG(hw, E1000_CTRL); 1347 status = E1000_READ_REG(hw, E1000_STATUS); 1348 rxcw = E1000_READ_REG(hw, E1000_RXCW); 1349 1350 /* 1351 * If we don't have link (auto-negotiation failed or link partner 1352 * cannot auto-negotiate), the cable is plugged in (we have signal), 1353 * and our link partner is not trying to auto-negotiate with us (we 1354 * are receiving idles or data), we need to force link up. We also 1355 * need to give auto-negotiation time to complete, in case the cable 1356 * was just plugged in. The autoneg_failed flag does this. 1357 */ 1358 /* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */ 1359 if ((!(ctrl & E1000_CTRL_SWDPIN1)) && 1360 (!(status & E1000_STATUS_LU)) && 1361 (!(rxcw & E1000_RXCW_C))) { 1362 if (mac->autoneg_failed == 0) { 1363 mac->autoneg_failed = 1; 1364 ret_val = 0; 1365 goto out; 1366 } 1367 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); 1368 1369 /* Disable auto-negotiation in the TXCW register */ 1370 E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); 1371 1372 /* Force link-up and also force full-duplex. */ 1373 ctrl = E1000_READ_REG(hw, E1000_CTRL); 1374 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 1375 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 1376 1377 /* Configure Flow Control after forcing link up. */ 1378 ret_val = e1000_config_fc_after_link_up_generic(hw); 1379 if (ret_val) { 1380 DEBUGOUT("Error configuring flow control\n"); 1381 goto out; 1382 } 1383 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { 1384 /* 1385 * If we are forcing link and we are receiving /C/ ordered 1386 * sets, re-enable auto-negotiation in the TXCW register 1387 * and disable forced link in the Device Control register 1388 * in an attempt to auto-negotiate with our link partner. 1389 */ 1390 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); 1391 E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); 1392 E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); 1393 1394 mac->serdes_has_link = TRUE; 1395 } 1396 1397 out: 1398 return ret_val; 1399 } 1400 1401 /** 1402 * e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings 1403 * @hw: pointer to the HW structure 1404 * 1405 * For the 82543 silicon, we need to set the MAC to match the settings 1406 * of the PHY, even if the PHY is auto-negotiating. 1407 **/ 1408 static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw) 1409 { 1410 u32 ctrl; 1411 s32 ret_val = E1000_SUCCESS; 1412 u16 phy_data; 1413 1414 DEBUGFUNC("e1000_config_mac_to_phy_82543"); 1415 1416 if (!(hw->phy.ops.read_reg)) 1417 goto out; 1418 1419 /* Set the bits to force speed and duplex */ 1420 ctrl = E1000_READ_REG(hw, E1000_CTRL); 1421 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1422 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); 1423 1424 /* 1425 * Set up duplex in the Device Control and Transmit Control 1426 * registers depending on negotiated values. 1427 */ 1428 ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1429 if (ret_val) 1430 goto out; 1431 1432 ctrl &= ~E1000_CTRL_FD; 1433 if (phy_data & M88E1000_PSSR_DPLX) 1434 ctrl |= E1000_CTRL_FD; 1435 1436 hw->mac.ops.config_collision_dist(hw); 1437 1438 /* 1439 * Set up speed in the Device Control register depending on 1440 * negotiated values. 1441 */ 1442 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) 1443 ctrl |= E1000_CTRL_SPD_1000; 1444 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) 1445 ctrl |= E1000_CTRL_SPD_100; 1446 1447 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 1448 1449 out: 1450 return ret_val; 1451 } 1452 1453 /** 1454 * e1000_write_vfta_82543 - Write value to VLAN filter table 1455 * @hw: pointer to the HW structure 1456 * @offset: the 32-bit offset in which to write the value to. 1457 * @value: the 32-bit value to write at location offset. 1458 * 1459 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 1460 * table. 1461 **/ 1462 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value) 1463 { 1464 u32 temp; 1465 1466 DEBUGFUNC("e1000_write_vfta_82543"); 1467 1468 if ((hw->mac.type == e1000_82544) && (offset & 1)) { 1469 temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1); 1470 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); 1471 E1000_WRITE_FLUSH(hw); 1472 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp); 1473 E1000_WRITE_FLUSH(hw); 1474 } else { 1475 e1000_write_vfta_generic(hw, offset, value); 1476 } 1477 } 1478 1479 /** 1480 * e1000_led_on_82543 - Turn on SW controllable LED 1481 * @hw: pointer to the HW structure 1482 * 1483 * Turns the SW defined LED on. 1484 **/ 1485 static s32 e1000_led_on_82543(struct e1000_hw *hw) 1486 { 1487 u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); 1488 1489 DEBUGFUNC("e1000_led_on_82543"); 1490 1491 if (hw->mac.type == e1000_82544 && 1492 hw->phy.media_type == e1000_media_type_copper) { 1493 /* Clear SW-definable Pin 0 to turn on the LED */ 1494 ctrl &= ~E1000_CTRL_SWDPIN0; 1495 ctrl |= E1000_CTRL_SWDPIO0; 1496 } else { 1497 /* Fiber 82544 and all 82543 use this method */ 1498 ctrl |= E1000_CTRL_SWDPIN0; 1499 ctrl |= E1000_CTRL_SWDPIO0; 1500 } 1501 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 1502 1503 return E1000_SUCCESS; 1504 } 1505 1506 /** 1507 * e1000_led_off_82543 - Turn off SW controllable LED 1508 * @hw: pointer to the HW structure 1509 * 1510 * Turns the SW defined LED off. 1511 **/ 1512 static s32 e1000_led_off_82543(struct e1000_hw *hw) 1513 { 1514 u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); 1515 1516 DEBUGFUNC("e1000_led_off_82543"); 1517 1518 if (hw->mac.type == e1000_82544 && 1519 hw->phy.media_type == e1000_media_type_copper) { 1520 /* Set SW-definable Pin 0 to turn off the LED */ 1521 ctrl |= E1000_CTRL_SWDPIN0; 1522 ctrl |= E1000_CTRL_SWDPIO0; 1523 } else { 1524 ctrl &= ~E1000_CTRL_SWDPIN0; 1525 ctrl |= E1000_CTRL_SWDPIO0; 1526 } 1527 E1000_WRITE_REG(hw, E1000_CTRL, ctrl); 1528 1529 return E1000_SUCCESS; 1530 } 1531 1532 /** 1533 * e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters 1534 * @hw: pointer to the HW structure 1535 * 1536 * Clears the hardware counters by reading the counter registers. 1537 **/ 1538 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw) 1539 { 1540 DEBUGFUNC("e1000_clear_hw_cntrs_82543"); 1541 1542 e1000_clear_hw_cntrs_base_generic(hw); 1543 1544 E1000_READ_REG(hw, E1000_PRC64); 1545 E1000_READ_REG(hw, E1000_PRC127); 1546 E1000_READ_REG(hw, E1000_PRC255); 1547 E1000_READ_REG(hw, E1000_PRC511); 1548 E1000_READ_REG(hw, E1000_PRC1023); 1549 E1000_READ_REG(hw, E1000_PRC1522); 1550 E1000_READ_REG(hw, E1000_PTC64); 1551 E1000_READ_REG(hw, E1000_PTC127); 1552 E1000_READ_REG(hw, E1000_PTC255); 1553 E1000_READ_REG(hw, E1000_PTC511); 1554 E1000_READ_REG(hw, E1000_PTC1023); 1555 E1000_READ_REG(hw, E1000_PTC1522); 1556 1557 E1000_READ_REG(hw, E1000_ALGNERRC); 1558 E1000_READ_REG(hw, E1000_RXERRC); 1559 E1000_READ_REG(hw, E1000_TNCRS); 1560 E1000_READ_REG(hw, E1000_CEXTERR); 1561 E1000_READ_REG(hw, E1000_TSCTC); 1562 E1000_READ_REG(hw, E1000_TSCTFC); 1563 } 1564 1565 /** 1566 * e1000_read_mac_addr_82543 - Read device MAC address 1567 * @hw: pointer to the HW structure 1568 * 1569 * Reads the device MAC address from the EEPROM and stores the value. 1570 * Since devices with two ports use the same EEPROM, we increment the 1571 * last bit in the MAC address for the second port. 1572 * 1573 **/ 1574 s32 e1000_read_mac_addr_82543(struct e1000_hw *hw) 1575 { 1576 s32 ret_val = E1000_SUCCESS; 1577 u16 offset, nvm_data, i; 1578 1579 DEBUGFUNC("e1000_read_mac_addr"); 1580 1581 for (i = 0; i < ETH_ADDR_LEN; i += 2) { 1582 offset = i >> 1; 1583 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); 1584 if (ret_val) { 1585 DEBUGOUT("NVM Read Error\n"); 1586 goto out; 1587 } 1588 hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); 1589 hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); 1590 } 1591 1592 /* Flip last bit of mac address if we're on second port */ 1593 if (hw->bus.func == E1000_FUNC_1) 1594 hw->mac.perm_addr[5] ^= 1; 1595 1596 for (i = 0; i < ETH_ADDR_LEN; i++) 1597 hw->mac.addr[i] = hw->mac.perm_addr[i]; 1598 1599 out: 1600 return ret_val; 1601 } 1602