1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 30 /* 31 * This file contains routines that manipulate Internet Routing Entries (IREs). 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/ddi.h> 39 #include <sys/cmn_err.h> 40 #include <sys/policy.h> 41 42 #include <sys/systm.h> 43 #include <sys/kmem.h> 44 #include <sys/param.h> 45 #include <sys/socket.h> 46 #include <net/if.h> 47 #include <net/route.h> 48 #include <netinet/in.h> 49 #include <net/if_dl.h> 50 #include <netinet/ip6.h> 51 #include <netinet/icmp6.h> 52 53 #include <inet/common.h> 54 #include <inet/mi.h> 55 #include <inet/ip.h> 56 #include <inet/ip6.h> 57 #include <inet/ip_ndp.h> 58 #include <inet/arp.h> 59 #include <inet/ip_if.h> 60 #include <inet/ip_ire.h> 61 #include <inet/ip_ftable.h> 62 #include <inet/ip_rts.h> 63 #include <inet/nd.h> 64 65 #include <net/pfkeyv2.h> 66 #include <inet/ipsec_info.h> 67 #include <inet/sadb.h> 68 #include <sys/kmem.h> 69 #include <inet/tcp.h> 70 #include <inet/ipclassifier.h> 71 #include <sys/zone.h> 72 #include <sys/cpuvar.h> 73 74 #include <sys/tsol/label.h> 75 #include <sys/tsol/tnet.h> 76 #include <sys/dlpi.h> 77 78 struct kmem_cache *rt_entry_cache; 79 80 /* 81 * Synchronization notes: 82 * 83 * The fields of the ire_t struct are protected in the following way : 84 * 85 * ire_next/ire_ptpn 86 * 87 * - bucket lock of the respective tables (cache or forwarding tables). 88 * 89 * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask, 90 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif, 91 * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr 92 * 93 * - Set in ire_create_v4/v6 and never changes after that. Thus, 94 * we don't need a lock whenever these fields are accessed. 95 * 96 * - ire_bucket and ire_masklen (also set in ire_create) is set in 97 * ire_add_v4/ire_add_v6 before inserting in the bucket and never 98 * changes after that. Thus we don't need a lock whenever these 99 * fields are accessed. 100 * 101 * ire_gateway_addr_v4[v6] 102 * 103 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 104 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 105 * it assumed to be atomic and hence the other parts of the code 106 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 107 * and hence any access to it uses ire_lock to get/set the right value. 108 * 109 * ire_ident, ire_refcnt 110 * 111 * - Updated atomically using atomic_add_32 112 * 113 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 114 * 115 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 116 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 117 * 118 * ire_max_frag, ire_frag_flag 119 * 120 * - ire_lock is used to set/read both of them together. 121 * 122 * ire_tire_mark 123 * 124 * - Set in ire_create and updated in ire_expire, which is called 125 * by only one function namely ip_trash_timer_expire. Thus only 126 * one function updates and examines the value. 127 * 128 * ire_marks 129 * - bucket lock protects this. 130 * 131 * ire_ipsec_overhead/ire_ll_hdr_length 132 * 133 * - Place holder for returning the information to the upper layers 134 * when IRE_DB_REQ comes down. 135 * 136 * 137 * ipv6_ire_default_count is protected by the bucket lock of 138 * ip_forwarding_table_v6[0][0]. 139 * 140 * ipv6_ire_default_index is not protected as it is just a hint 141 * at which default gateway to use. There is nothing 142 * wrong in using the same gateway for two different connections. 143 * 144 * As we always hold the bucket locks in all the places while accessing 145 * the above values, it is natural to use them for protecting them. 146 * 147 * We have a separate cache table and forwarding table for IPv4 and IPv6. 148 * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an 149 * array of irb_t structure and forwarding table (ip_forwarding_table/ 150 * ip_forwarding_table_v6) is an array of pointers to array of irb_t 151 * structure. ip_forwarding_table_v6 is allocated dynamically in 152 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads 153 * initializing the same bucket. Once a bucket is initialized, it is never 154 * de-alloacted. This assumption enables us to access 155 * ip_forwarding_table_v6[i] without any locks. 156 * 157 * Each irb_t - ire bucket structure has a lock to protect 158 * a bucket and the ires residing in the bucket have a back pointer to 159 * the bucket structure. It also has a reference count for the number 160 * of threads walking the bucket - irb_refcnt which is bumped up 161 * using the macro IRB_REFHOLD macro. The flags irb_flags can be 162 * set to IRE_MARK_CONDEMNED indicating that there are some ires 163 * in this bucket that are marked with IRE_MARK_CONDEMNED and the 164 * last thread to leave the bucket should delete the ires. Usually 165 * this is done by the IRB_REFRELE macro which is used to decrement 166 * the reference count on a bucket. 167 * 168 * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/ 169 * decrements the reference count, ire_refcnt, atomically on the ire. 170 * ire_refcnt is modified only using this macro. Operations on the IRE 171 * could be described as follows : 172 * 173 * CREATE an ire with reference count initialized to 1. 174 * 175 * ADDITION of an ire holds the bucket lock, checks for duplicates 176 * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after 177 * bumping up once more i.e the reference count is 2. This is to avoid 178 * an extra lookup in the functions calling ire_add which wants to 179 * work with the ire after adding. 180 * 181 * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD 182 * macro. It is valid to bump up the referece count of the IRE, 183 * after the lookup has returned an ire. Following are the lookup 184 * functions that return an HELD ire : 185 * 186 * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6], 187 * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6], 188 * ipif_to_ire[_v6]. 189 * 190 * DELETION of an ire holds the bucket lock, removes it from the list 191 * and then decrements the reference count for having removed from the list 192 * by using the IRE_REFRELE macro. If some other thread has looked up 193 * the ire, the reference count would have been bumped up and hence 194 * this ire will not be freed once deleted. It will be freed once the 195 * reference count drops to zero. 196 * 197 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 198 * lookups acquire the bucket lock as RW_READER. 199 * 200 * NOTE : The only functions that does the IRE_REFRELE when an ire is 201 * passed as an argument are : 202 * 203 * 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the 204 * broadcast ires it looks up internally within 205 * the function. Currently, for simplicity it does 206 * not differentiate the one that is passed in and 207 * the ones it looks up internally. It always 208 * IRE_REFRELEs. 209 * 2) ire_send 210 * ire_send_v6 : As ire_send calls ip_wput_ire and other functions 211 * that take ire as an argument, it has to selectively 212 * IRE_REFRELE the ire. To maintain symmetry, 213 * ire_send_v6 does the same. 214 * 215 * Otherwise, the general rule is to do the IRE_REFRELE in the function 216 * that is passing the ire as an argument. 217 * 218 * In trying to locate ires the following points are to be noted. 219 * 220 * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is 221 * to be ignored when walking the ires using ire_next. 222 * 223 * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the 224 * benefit of in.mpathd which needs to probe interfaces for failures. Normal 225 * applications should not be seeing this ire and hence this ire is ignored 226 * in most cases in the search using ire_next. 227 * 228 * Zones note: 229 * Walking IREs within a given zone also walks certain ires in other 230 * zones. This is done intentionally. IRE walks with a specified 231 * zoneid are used only when doing informational reports, and 232 * zone users want to see things that they can access. See block 233 * comment in ire_walk_ill_match(). 234 */ 235 236 /* 237 * The minimum size of IRE cache table. It will be recalcuated in 238 * ip_ire_init(). 239 * Setable in /etc/system 240 */ 241 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE; 242 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE; 243 244 /* 245 * The size of the forwarding table. We will make sure that it is a 246 * power of 2 in ip_ire_init(). 247 * Setable in /etc/system 248 */ 249 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 250 251 struct kmem_cache *ire_cache; 252 static ire_t ire_null; 253 254 /* 255 * The threshold number of IRE in a bucket when the IREs are 256 * cleaned up. This threshold is calculated later in ip_open() 257 * based on the speed of CPU and available memory. This default 258 * value is the maximum. 259 * 260 * We have two kinds of cached IRE, temporary and 261 * non-temporary. Temporary IREs are marked with 262 * IRE_MARK_TEMPORARY. They are IREs created for non 263 * TCP traffic and for forwarding purposes. All others 264 * are non-temporary IREs. We don't mark IRE created for 265 * TCP as temporary because TCP is stateful and there are 266 * info stored in the IRE which can be shared by other TCP 267 * connections to the same destination. For connected 268 * endpoint, we also don't want to mark the IRE used as 269 * temporary because the same IRE will be used frequently, 270 * otherwise, the app should not do a connect(). We change 271 * the marking at ip_bind_connected_*() if necessary. 272 * 273 * We want to keep the cache IRE hash bucket length reasonably 274 * short, otherwise IRE lookup functions will take "forever." 275 * We use the "crude" function that the IRE bucket 276 * length should be based on the CPU speed, which is 1 entry 277 * per x MHz, depending on the shift factor ip_ire_cpu_ratio 278 * (n). This means that with a 750MHz CPU, the max bucket 279 * length can be (750 >> n) entries. 280 * 281 * Note that this threshold is separate for temp and non-temp 282 * IREs. This means that the actual bucket length can be 283 * twice as that. And while we try to keep temporary IRE 284 * length at most at the threshold value, we do not attempt to 285 * make the length for non-temporary IREs fixed, for the 286 * reason stated above. Instead, we start trying to find 287 * "unused" non-temporary IREs when the bucket length reaches 288 * this threshold and clean them up. 289 * 290 * We also want to limit the amount of memory used by 291 * IREs. So if we are allowed to use ~3% of memory (M) 292 * for those IREs, each bucket should not have more than 293 * 294 * M / num of cache bucket / sizeof (ire_t) 295 * 296 * Again the above memory uses are separate for temp and 297 * non-temp cached IREs. 298 * 299 * We may also want the limit to be a function of the number 300 * of interfaces and number of CPUs. Doing the initialization 301 * in ip_open() means that every time an interface is plumbed, 302 * the max is re-calculated. Right now, we don't do anything 303 * different. In future, when we have more experience, we 304 * may want to change this behavior. 305 */ 306 uint32_t ip_ire_max_bucket_cnt = 10; /* Setable in /etc/system */ 307 uint32_t ip6_ire_max_bucket_cnt = 10; 308 309 /* 310 * The minimum of the temporary IRE bucket count. We do not want 311 * the length of each bucket to be too short. This may hurt 312 * performance of some apps as the temporary IREs are removed too 313 * often. 314 */ 315 uint32_t ip_ire_min_bucket_cnt = 3; /* /etc/system - not used */ 316 uint32_t ip6_ire_min_bucket_cnt = 3; 317 318 /* 319 * The ratio of memory consumed by IRE used for temporary to available 320 * memory. This is a shift factor, so 6 means the ratio 1 to 64. This 321 * value can be changed in /etc/system. 6 is a reasonable number. 322 */ 323 uint32_t ip_ire_mem_ratio = 6; /* /etc/system */ 324 /* The shift factor for CPU speed to calculate the max IRE bucket length. */ 325 uint32_t ip_ire_cpu_ratio = 7; /* /etc/system */ 326 327 typedef struct nce_clookup_s { 328 ipaddr_t ncecl_addr; 329 boolean_t ncecl_found; 330 } nce_clookup_t; 331 332 /* 333 * The maximum number of buckets in IRE cache table. In future, we may 334 * want to make it a dynamic hash table. For the moment, we fix the 335 * size and allocate the table in ip_ire_init() when IP is first loaded. 336 * We take into account the amount of memory a system has. 337 */ 338 #define IP_MAX_CACHE_TABLE_SIZE 4096 339 340 /* Setable in /etc/system */ 341 static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 342 static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 343 344 #define NUM_ILLS 2 /* To build the ILL list to unlock */ 345 346 /* Zero iulp_t for initialization. */ 347 const iulp_t ire_uinfo_null = { 0 }; 348 349 static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 350 ipsq_func_t func, boolean_t); 351 static void ire_delete_v4(ire_t *ire); 352 static void ire_report_ctable(ire_t *ire, char *mp); 353 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 354 zoneid_t zoneid, ip_stack_t *); 355 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 356 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 357 static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt); 358 extern void ill_unlock_ills(ill_t **list, int cnt); 359 static void ip_nce_clookup_and_delete(nce_t *nce, void *arg); 360 extern void th_trace_rrecord(th_trace_t *); 361 #ifdef IRE_DEBUG 362 static void ire_trace_inactive(ire_t *); 363 #endif 364 365 /* 366 * To avoid bloating the code, we call this function instead of 367 * using the macro IRE_REFRELE. Use macro only in performance 368 * critical paths. 369 * 370 * Must not be called while holding any locks. Otherwise if this is 371 * the last reference to be released there is a chance of recursive mutex 372 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 373 * to restart an ioctl. The one exception is when the caller is sure that 374 * this is not the last reference to be released. Eg. if the caller is 375 * sure that the ire has not been deleted and won't be deleted. 376 */ 377 void 378 ire_refrele(ire_t *ire) 379 { 380 IRE_REFRELE(ire); 381 } 382 383 void 384 ire_refrele_notr(ire_t *ire) 385 { 386 IRE_REFRELE_NOTR(ire); 387 } 388 389 /* 390 * kmem_cache_alloc constructor for IRE in kma space. 391 * Note that when ire_mp is set the IRE is stored in that mblk and 392 * not in this cache. 393 */ 394 /* ARGSUSED */ 395 static int 396 ip_ire_constructor(void *buf, void *cdrarg, int kmflags) 397 { 398 ire_t *ire = buf; 399 400 ire->ire_nce = NULL; 401 402 return (0); 403 } 404 405 /* ARGSUSED1 */ 406 static void 407 ip_ire_destructor(void *buf, void *cdrarg) 408 { 409 ire_t *ire = buf; 410 411 ASSERT(ire->ire_nce == NULL); 412 } 413 414 /* 415 * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY 416 * IOCTL. It is used by TCP (or other ULPs) to supply revised information 417 * for an existing CACHED IRE. 418 */ 419 /* ARGSUSED */ 420 int 421 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 422 { 423 uchar_t *addr_ucp; 424 ipic_t *ipic; 425 ire_t *ire; 426 ipaddr_t addr; 427 in6_addr_t v6addr; 428 irb_t *irb; 429 zoneid_t zoneid; 430 ip_stack_t *ipst = CONNQ_TO_IPST(q); 431 432 ASSERT(q->q_next == NULL); 433 zoneid = Q_TO_CONN(q)->conn_zoneid; 434 435 /* 436 * Check privilege using the ioctl credential; if it is NULL 437 * then this is a kernel message and therefor privileged. 438 */ 439 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 440 return (EPERM); 441 442 ipic = (ipic_t *)mp->b_rptr; 443 if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset, 444 ipic->ipic_addr_length))) { 445 return (EINVAL); 446 } 447 if (!OK_32PTR(addr_ucp)) 448 return (EINVAL); 449 switch (ipic->ipic_addr_length) { 450 case IP_ADDR_LEN: { 451 /* Extract the destination address. */ 452 addr = *(ipaddr_t *)addr_ucp; 453 /* Find the corresponding IRE. */ 454 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 455 break; 456 } 457 case IPV6_ADDR_LEN: { 458 /* Extract the destination address. */ 459 v6addr = *(in6_addr_t *)addr_ucp; 460 /* Find the corresponding IRE. */ 461 ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst); 462 break; 463 } 464 default: 465 return (EINVAL); 466 } 467 468 if (ire == NULL) 469 return (ENOENT); 470 /* 471 * Update the round trip time estimate and/or the max frag size 472 * and/or the slow start threshold. 473 * 474 * We serialize multiple advises using ire_lock. 475 */ 476 mutex_enter(&ire->ire_lock); 477 if (ipic->ipic_rtt) { 478 /* 479 * If there is no old cached values, initialize them 480 * conservatively. Set them to be (1.5 * new value). 481 */ 482 if (ire->ire_uinfo.iulp_rtt != 0) { 483 ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + 484 ipic->ipic_rtt) >> 1; 485 } else { 486 ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt + 487 (ipic->ipic_rtt >> 1); 488 } 489 if (ire->ire_uinfo.iulp_rtt_sd != 0) { 490 ire->ire_uinfo.iulp_rtt_sd = 491 (ire->ire_uinfo.iulp_rtt_sd + 492 ipic->ipic_rtt_sd) >> 1; 493 } else { 494 ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd + 495 (ipic->ipic_rtt_sd >> 1); 496 } 497 } 498 if (ipic->ipic_max_frag) 499 ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET); 500 if (ipic->ipic_ssthresh != 0) { 501 if (ire->ire_uinfo.iulp_ssthresh != 0) 502 ire->ire_uinfo.iulp_ssthresh = 503 (ipic->ipic_ssthresh + 504 ire->ire_uinfo.iulp_ssthresh) >> 1; 505 else 506 ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh; 507 } 508 /* 509 * Don't need the ire_lock below this. ire_type does not change 510 * after initialization. ire_marks is protected by irb_lock. 511 */ 512 mutex_exit(&ire->ire_lock); 513 514 if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) { 515 /* 516 * Only increment the temporary IRE count if the original 517 * IRE is not already marked temporary. 518 */ 519 irb = ire->ire_bucket; 520 rw_enter(&irb->irb_lock, RW_WRITER); 521 if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) && 522 !(ire->ire_marks & IRE_MARK_TEMPORARY)) { 523 irb->irb_tmp_ire_cnt++; 524 } 525 ire->ire_marks |= ipic->ipic_ire_marks; 526 rw_exit(&irb->irb_lock); 527 } 528 529 ire_refrele(ire); 530 return (0); 531 } 532 533 /* 534 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 535 * IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE 536 * for a host that is not responding. This will force an attempt to 537 * establish a new route, if available, and flush out the ARP entry so 538 * it will re-resolve. Management processes may want to use the 539 * version that generates a reply. 540 * 541 * This function does not support IPv6 since Neighbor Unreachability Detection 542 * means that negative advise like this is useless. 543 */ 544 /* ARGSUSED */ 545 int 546 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 547 { 548 uchar_t *addr_ucp; 549 ipaddr_t addr; 550 ire_t *ire; 551 ipid_t *ipid; 552 boolean_t routing_sock_info = B_FALSE; /* Sent info? */ 553 zoneid_t zoneid; 554 ire_t *gire = NULL; 555 ill_t *ill; 556 mblk_t *arp_mp; 557 ip_stack_t *ipst; 558 559 ASSERT(q->q_next == NULL); 560 zoneid = Q_TO_CONN(q)->conn_zoneid; 561 ipst = CONNQ_TO_IPST(q); 562 563 /* 564 * Check privilege using the ioctl credential; if it is NULL 565 * then this is a kernel message and therefor privileged. 566 */ 567 if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 568 return (EPERM); 569 570 ipid = (ipid_t *)mp->b_rptr; 571 572 /* Only actions on IRE_CACHEs are acceptable at present. */ 573 if (ipid->ipid_ire_type != IRE_CACHE) 574 return (EINVAL); 575 576 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 577 ipid->ipid_addr_length); 578 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 579 return (EINVAL); 580 switch (ipid->ipid_addr_length) { 581 case IP_ADDR_LEN: 582 /* addr_ucp points at IP addr */ 583 break; 584 case sizeof (sin_t): { 585 sin_t *sin; 586 /* 587 * got complete (sockaddr) address - increment addr_ucp to point 588 * at the ip_addr field. 589 */ 590 sin = (sin_t *)addr_ucp; 591 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 592 break; 593 } 594 default: 595 return (EINVAL); 596 } 597 /* Extract the destination address. */ 598 bcopy(addr_ucp, &addr, IP_ADDR_LEN); 599 600 /* Try to find the CACHED IRE. */ 601 ire = ire_cache_lookup(addr, zoneid, NULL, ipst); 602 603 /* Nail it. */ 604 if (ire) { 605 /* Allow delete only on CACHE entries */ 606 if (ire->ire_type != IRE_CACHE) { 607 ire_refrele(ire); 608 return (EINVAL); 609 } 610 611 /* 612 * Verify that the IRE has been around for a while. 613 * This is to protect against transport protocols 614 * that are too eager in sending delete messages. 615 */ 616 if (gethrestime_sec() < 617 ire->ire_create_time + ipst->ips_ip_ignore_delete_time) { 618 ire_refrele(ire); 619 return (EINVAL); 620 } 621 /* 622 * Now we have a potentially dead cache entry. We need 623 * to remove it. 624 * If this cache entry is generated from a 625 * default route (i.e., ire_cmask == 0), 626 * search the default list and mark it dead and some 627 * background process will try to activate it. 628 */ 629 if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) { 630 /* 631 * Make sure that we pick a different 632 * IRE_DEFAULT next time. 633 */ 634 ire_t *gw_ire; 635 irb_t *irb = NULL; 636 uint_t match_flags; 637 638 match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE); 639 640 gire = ire_ftable_lookup(ire->ire_addr, 641 ire->ire_cmask, 0, 0, 642 ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags, 643 ipst); 644 645 ip3dbg(("ire_ftable_lookup() returned gire %p\n", 646 (void *)gire)); 647 648 if (gire != NULL) { 649 irb = gire->ire_bucket; 650 651 /* 652 * We grab it as writer just to serialize 653 * multiple threads trying to bump up 654 * irb_rr_origin 655 */ 656 rw_enter(&irb->irb_lock, RW_WRITER); 657 if ((gw_ire = irb->irb_rr_origin) == NULL) { 658 rw_exit(&irb->irb_lock); 659 goto done; 660 } 661 662 DTRACE_PROBE1(ip__ire__del__origin, 663 (ire_t *), gw_ire); 664 665 /* Skip past the potentially bad gateway */ 666 if (ire->ire_gateway_addr == 667 gw_ire->ire_gateway_addr) { 668 ire_t *next = gw_ire->ire_next; 669 670 DTRACE_PROBE2(ip__ire__del, 671 (ire_t *), gw_ire, (irb_t *), irb); 672 IRE_FIND_NEXT_ORIGIN(next); 673 irb->irb_rr_origin = next; 674 } 675 rw_exit(&irb->irb_lock); 676 } 677 } 678 done: 679 if (gire != NULL) 680 IRE_REFRELE(gire); 681 /* report the bad route to routing sockets */ 682 ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, 683 ire->ire_mask, ire->ire_src_addr, 0, 0, 0, 684 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst); 685 routing_sock_info = B_TRUE; 686 687 /* 688 * TCP is really telling us to start over completely, and it 689 * expects that we'll resend the ARP query. Tell ARP to 690 * discard the entry, if this is a local destination. 691 */ 692 ill = ire->ire_stq->q_ptr; 693 if (ire->ire_gateway_addr == 0 && 694 (arp_mp = ill_ared_alloc(ill, addr)) != NULL) { 695 putnext(ill->ill_rq, arp_mp); 696 } 697 698 ire_delete(ire); 699 ire_refrele(ire); 700 } 701 /* 702 * Also look for an IRE_HOST type redirect ire and 703 * remove it if present. 704 */ 705 ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL, 706 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 707 708 /* Nail it. */ 709 if (ire != NULL) { 710 if (ire->ire_flags & RTF_DYNAMIC) { 711 if (!routing_sock_info) { 712 ip_rts_change(RTM_LOSING, ire->ire_addr, 713 ire->ire_gateway_addr, ire->ire_mask, 714 ire->ire_src_addr, 0, 0, 0, 715 (RTA_DST | RTA_GATEWAY | 716 RTA_NETMASK | RTA_IFA), 717 ipst); 718 } 719 ire_delete(ire); 720 } 721 ire_refrele(ire); 722 } 723 return (0); 724 } 725 726 /* 727 * Named Dispatch routine to produce a formatted report on all IREs. 728 * This report is accessed by using the ndd utility to "get" ND variable 729 * "ipv4_ire_status". 730 */ 731 /* ARGSUSED */ 732 int 733 ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 734 { 735 zoneid_t zoneid; 736 ip_stack_t *ipst; 737 738 if (CONN_Q(q)) 739 ipst = CONNQ_TO_IPST(q); 740 else 741 ipst = ILLQ_TO_IPST(q); 742 743 (void) mi_mpprintf(mp, 744 "IRE " MI_COL_HDRPAD_STR 745 /* 01234567[89ABCDEF] */ 746 "rfq " MI_COL_HDRPAD_STR 747 /* 01234567[89ABCDEF] */ 748 "stq " MI_COL_HDRPAD_STR 749 /* 01234567[89ABCDEF] */ 750 " zone " 751 /* 12345 */ 752 "addr mask " 753 /* 123.123.123.123 123.123.123.123 */ 754 "src gateway mxfrg rtt rtt_sd ssthresh ref " 755 /* 123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */ 756 "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe " 757 /* 123456 123456789 123456789 123456 12345678 1234 12345678 */ 758 "recvpipe in/out/forward type"); 759 /* 12345678 in/out/forward xxxxxxxxxx */ 760 761 /* 762 * Because of the ndd constraint, at most we can have 64K buffer 763 * to put in all IRE info. So to be more efficient, just 764 * allocate a 64K buffer here, assuming we need that large buffer. 765 * This should be OK as only root can do ndd /dev/ip. 766 */ 767 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 768 /* The following may work even if we cannot get a large buf. */ 769 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 770 return (0); 771 } 772 773 zoneid = Q_TO_CONN(q)->conn_zoneid; 774 if (zoneid == GLOBAL_ZONEID) 775 zoneid = ALL_ZONES; 776 777 ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid, ipst); 778 ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid, ipst); 779 780 return (0); 781 } 782 783 784 /* ire_walk routine invoked for ip_ire_report for each cached IRE. */ 785 static void 786 ire_report_ctable(ire_t *ire, char *mp) 787 { 788 char buf1[16]; 789 char buf2[16]; 790 char buf3[16]; 791 char buf4[16]; 792 uint_t fo_pkt_count; 793 uint_t ib_pkt_count; 794 int ref; 795 uint_t print_len, buf_len; 796 797 if ((ire->ire_type & IRE_CACHETABLE) == 0) 798 return; 799 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 800 if (buf_len <= 0) 801 return; 802 803 /* Number of active references of this ire */ 804 ref = ire->ire_refcnt; 805 /* "inbound" to a non local address is a forward */ 806 ib_pkt_count = ire->ire_ib_pkt_count; 807 fo_pkt_count = 0; 808 if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { 809 fo_pkt_count = ib_pkt_count; 810 ib_pkt_count = 0; 811 } 812 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 813 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " 814 "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " 815 "%04d %08d %08d %d/%d/%d %s\n", 816 (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, 817 (int)ire->ire_zoneid, 818 ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2), 819 ip_dot_addr(ire->ire_src_addr, buf3), 820 ip_dot_addr(ire->ire_gateway_addr, buf4), 821 ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, 822 ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref, 823 ire->ire_uinfo.iulp_rtomax, 824 (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), 825 (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), 826 (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), 827 (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), 828 ire->ire_uinfo.iulp_sack, 829 ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, 830 ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, 831 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)); 832 if (print_len < buf_len) { 833 ((mblk_t *)mp)->b_wptr += print_len; 834 } else { 835 ((mblk_t *)mp)->b_wptr += buf_len; 836 } 837 } 838 839 /* 840 * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed 841 * down from the Upper Level Protocol to request a copy of the IRE (to check 842 * its type or to extract information like round-trip time estimates or the 843 * MTU.) 844 * The address is assumed to be in the ire_addr field. If no IRE is found 845 * an IRE is returned with ire_type being zero. 846 * Note that the upper lavel protocol has to check for broadcast 847 * (IRE_BROADCAST) and multicast (CLASSD(addr)). 848 * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the 849 * end of the returned message. 850 * 851 * TCP sends down a message of this type with a connection request packet 852 * chained on. UDP and ICMP send it down to verify that a route exists for 853 * the destination address when they get connected. 854 */ 855 void 856 ip_ire_req(queue_t *q, mblk_t *mp) 857 { 858 ire_t *inire; 859 ire_t *ire; 860 mblk_t *mp1; 861 ire_t *sire = NULL; 862 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 863 ip_stack_t *ipst = CONNQ_TO_IPST(q); 864 865 ASSERT(q->q_next == NULL); 866 867 if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) || 868 !OK_32PTR(mp->b_rptr)) { 869 freemsg(mp); 870 return; 871 } 872 inire = (ire_t *)mp->b_rptr; 873 /* 874 * Got it, now take our best shot at an IRE. 875 */ 876 if (inire->ire_ipversion == IPV6_VERSION) { 877 ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0, 878 NULL, &sire, zoneid, NULL, 879 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 880 } else { 881 ASSERT(inire->ire_ipversion == IPV4_VERSION); 882 ire = ire_route_lookup(inire->ire_addr, 0, 0, 0, 883 NULL, &sire, zoneid, NULL, 884 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst); 885 } 886 887 /* 888 * We prevent returning IRES with source address INADDR_ANY 889 * as these were temporarily created for sending packets 890 * from endpoints that have conn_unspec_src set. 891 */ 892 if (ire == NULL || 893 (ire->ire_ipversion == IPV4_VERSION && 894 ire->ire_src_addr == INADDR_ANY) || 895 (ire->ire_ipversion == IPV6_VERSION && 896 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) { 897 inire->ire_type = 0; 898 } else { 899 bcopy(ire, inire, sizeof (ire_t)); 900 /* Copy the route metrics from the parent. */ 901 if (sire != NULL) { 902 bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo), 903 sizeof (iulp_t)); 904 } 905 906 /* 907 * As we don't lookup global policy here, we may not 908 * pass the right size if per-socket policy is not 909 * present. For these cases, path mtu discovery will 910 * do the right thing. 911 */ 912 inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q)); 913 914 /* Pass the latest setting of the ip_path_mtu_discovery */ 915 inire->ire_frag_flag |= 916 (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 917 } 918 if (ire != NULL) 919 ire_refrele(ire); 920 if (sire != NULL) 921 ire_refrele(sire); 922 mp->b_wptr = &mp->b_rptr[sizeof (ire_t)]; 923 mp->b_datap->db_type = IRE_DB_TYPE; 924 925 /* Put the IRE_DB_TYPE mblk last in the chain */ 926 mp1 = mp->b_cont; 927 if (mp1 != NULL) { 928 mp->b_cont = NULL; 929 linkb(mp1, mp); 930 mp = mp1; 931 } 932 qreply(q, mp); 933 } 934 935 /* 936 * Send a packet using the specified IRE. 937 * If ire_src_addr_v6 is all zero then discard the IRE after 938 * the packet has been sent. 939 */ 940 static void 941 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire) 942 { 943 mblk_t *ipsec_mp; 944 boolean_t is_secure; 945 uint_t ifindex; 946 ill_t *ill; 947 zoneid_t zoneid = ire->ire_zoneid; 948 ip_stack_t *ipst = ire->ire_ipst; 949 950 ASSERT(ire->ire_ipversion == IPV4_VERSION); 951 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 952 ipsec_mp = pkt; 953 is_secure = (pkt->b_datap->db_type == M_CTL); 954 if (is_secure) { 955 ipsec_out_t *io; 956 957 pkt = pkt->b_cont; 958 io = (ipsec_out_t *)ipsec_mp->b_rptr; 959 if (io->ipsec_out_type == IPSEC_OUT) 960 zoneid = io->ipsec_out_zoneid; 961 } 962 963 /* If the packet originated externally then */ 964 if (pkt->b_prev) { 965 ire_refrele(ire); 966 /* 967 * Extract the ifindex from b_prev (set in ip_rput_noire). 968 * Look up interface to see if it still exists (it could have 969 * been unplumbed by the time the reply came back from ARP) 970 */ 971 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 972 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 973 NULL, NULL, NULL, NULL, ipst); 974 if (ill == NULL) { 975 pkt->b_prev = NULL; 976 pkt->b_next = NULL; 977 freemsg(ipsec_mp); 978 return; 979 } 980 q = ill->ill_rq; 981 pkt->b_prev = NULL; 982 /* 983 * This packet has not gone through IPSEC processing 984 * and hence we should not have any IPSEC message 985 * prepended. 986 */ 987 ASSERT(ipsec_mp == pkt); 988 put(q, pkt); 989 ill_refrele(ill); 990 } else if (pkt->b_next) { 991 /* Packets from multicast router */ 992 pkt->b_next = NULL; 993 /* 994 * We never get the IPSEC_OUT while forwarding the 995 * packet for multicast router. 996 */ 997 ASSERT(ipsec_mp == pkt); 998 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL); 999 ire_refrele(ire); 1000 } else { 1001 /* Locally originated packets */ 1002 boolean_t is_inaddr_any; 1003 ipha_t *ipha = (ipha_t *)pkt->b_rptr; 1004 1005 /* 1006 * We need to do an ire_delete below for which 1007 * we need to make sure that the IRE will be 1008 * around even after calling ip_wput_ire - 1009 * which does ire_refrele. Otherwise somebody 1010 * could potentially delete this ire and hence 1011 * free this ire and we will be calling ire_delete 1012 * on a freed ire below. 1013 */ 1014 is_inaddr_any = (ire->ire_src_addr == INADDR_ANY); 1015 if (is_inaddr_any) { 1016 IRE_REFHOLD(ire); 1017 } 1018 /* 1019 * If we were resolving a router we can not use the 1020 * routers IRE for sending the packet (since it would 1021 * violate the uniqness of the IP idents) thus we 1022 * make another pass through ip_wput to create the IRE_CACHE 1023 * for the destination. 1024 * When IRE_MARK_NOADD is set, ire_add() is not called. 1025 * Thus ip_wput() will never find a ire and result in an 1026 * infinite loop. Thus we check whether IRE_MARK_NOADD is 1027 * is set. This also implies that IRE_MARK_NOADD can only be 1028 * used to send packets to directly connected hosts. 1029 */ 1030 if (ipha->ipha_dst != ire->ire_addr && 1031 !(ire->ire_marks & IRE_MARK_NOADD)) { 1032 ire_refrele(ire); /* Held in ire_add */ 1033 if (CONN_Q(q)) { 1034 (void) ip_output(Q_TO_CONN(q), ipsec_mp, q, 1035 IRE_SEND); 1036 } else { 1037 (void) ip_output((void *)(uintptr_t)zoneid, 1038 ipsec_mp, q, IRE_SEND); 1039 } 1040 } else { 1041 if (is_secure) { 1042 ipsec_out_t *oi; 1043 ipha_t *ipha; 1044 1045 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1046 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 1047 if (oi->ipsec_out_proc_begin) { 1048 /* 1049 * This is the case where 1050 * ip_wput_ipsec_out could not find 1051 * the IRE and recreated a new one. 1052 * As ip_wput_ipsec_out does ire 1053 * lookups, ire_refrele for the extra 1054 * bump in ire_add. 1055 */ 1056 ire_refrele(ire); 1057 ip_wput_ipsec_out(q, ipsec_mp, ipha, 1058 NULL, NULL); 1059 } else { 1060 /* 1061 * IRE_REFRELE will be done in 1062 * ip_wput_ire. 1063 */ 1064 ip_wput_ire(q, ipsec_mp, ire, NULL, 1065 IRE_SEND, zoneid); 1066 } 1067 } else { 1068 /* 1069 * IRE_REFRELE will be done in ip_wput_ire. 1070 */ 1071 ip_wput_ire(q, ipsec_mp, ire, NULL, 1072 IRE_SEND, zoneid); 1073 } 1074 } 1075 /* 1076 * Special code to support sending a single packet with 1077 * conn_unspec_src using an IRE which has no source address. 1078 * The IRE is deleted here after sending the packet to avoid 1079 * having other code trip on it. But before we delete the 1080 * ire, somebody could have looked up this ire. 1081 * We prevent returning/using this IRE by the upper layers 1082 * by making checks to NULL source address in other places 1083 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected. 1084 * Though, this does not completely prevent other threads 1085 * from using this ire, this should not cause any problems. 1086 * 1087 * NOTE : We use is_inaddr_any instead of using ire_src_addr 1088 * because for the normal case i.e !is_inaddr_any, ire_refrele 1089 * above could have potentially freed the ire. 1090 */ 1091 if (is_inaddr_any) { 1092 /* 1093 * If this IRE has been deleted by another thread, then 1094 * ire_bucket won't be NULL, but ire_ptpn will be NULL. 1095 * Thus, ire_delete will do nothing. This check 1096 * guards against calling ire_delete when the IRE was 1097 * never inserted in the table, which is handled by 1098 * ire_delete as dropping another reference. 1099 */ 1100 if (ire->ire_bucket != NULL) { 1101 ip1dbg(("ire_send: delete IRE\n")); 1102 ire_delete(ire); 1103 } 1104 ire_refrele(ire); /* Held above */ 1105 } 1106 } 1107 } 1108 1109 /* 1110 * Send a packet using the specified IRE. 1111 * If ire_src_addr_v6 is all zero then discard the IRE after 1112 * the packet has been sent. 1113 */ 1114 static void 1115 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire) 1116 { 1117 mblk_t *ipsec_mp; 1118 boolean_t secure; 1119 uint_t ifindex; 1120 zoneid_t zoneid = ire->ire_zoneid; 1121 ip_stack_t *ipst = ire->ire_ipst; 1122 1123 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1124 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 1125 if (pkt->b_datap->db_type == M_CTL) { 1126 ipsec_out_t *io; 1127 1128 ipsec_mp = pkt; 1129 pkt = pkt->b_cont; 1130 secure = B_TRUE; 1131 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1132 if (io->ipsec_out_type == IPSEC_OUT) 1133 zoneid = io->ipsec_out_zoneid; 1134 } else { 1135 ipsec_mp = pkt; 1136 secure = B_FALSE; 1137 } 1138 1139 /* If the packet originated externally then */ 1140 if (pkt->b_prev) { 1141 ill_t *ill; 1142 /* 1143 * Extract the ifindex from b_prev (set in ip_rput_data_v6). 1144 * Look up interface to see if it still exists (it could have 1145 * been unplumbed by the time the reply came back from the 1146 * resolver). 1147 */ 1148 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1149 ill = ill_lookup_on_ifindex(ifindex, B_TRUE, 1150 NULL, NULL, NULL, NULL, ipst); 1151 if (ill == NULL) { 1152 pkt->b_prev = NULL; 1153 pkt->b_next = NULL; 1154 freemsg(ipsec_mp); 1155 ire_refrele(ire); /* Held in ire_add */ 1156 return; 1157 } 1158 q = ill->ill_rq; 1159 pkt->b_prev = NULL; 1160 /* 1161 * This packet has not gone through IPSEC processing 1162 * and hence we should not have any IPSEC message 1163 * prepended. 1164 */ 1165 ASSERT(ipsec_mp == pkt); 1166 put(q, pkt); 1167 ill_refrele(ill); 1168 } else if (pkt->b_next) { 1169 /* Packets from multicast router */ 1170 pkt->b_next = NULL; 1171 /* 1172 * We never get the IPSEC_OUT while forwarding the 1173 * packet for multicast router. 1174 */ 1175 ASSERT(ipsec_mp == pkt); 1176 /* 1177 * XXX TODO IPv6. 1178 */ 1179 freemsg(pkt); 1180 #ifdef XXX 1181 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL); 1182 #endif 1183 } else { 1184 if (secure) { 1185 ipsec_out_t *oi; 1186 ip6_t *ip6h; 1187 1188 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1189 ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr; 1190 if (oi->ipsec_out_proc_begin) { 1191 /* 1192 * This is the case where 1193 * ip_wput_ipsec_out could not find 1194 * the IRE and recreated a new one. 1195 */ 1196 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, 1197 NULL, NULL); 1198 } else { 1199 if (CONN_Q(q)) { 1200 (void) ip_output_v6(Q_TO_CONN(q), 1201 ipsec_mp, q, IRE_SEND); 1202 } else { 1203 (void) ip_output_v6( 1204 (void *)(uintptr_t)zoneid, 1205 ipsec_mp, q, IRE_SEND); 1206 } 1207 } 1208 } else { 1209 /* 1210 * Send packets through ip_output_v6 so that any 1211 * ip6_info header can be processed again. 1212 */ 1213 if (CONN_Q(q)) { 1214 (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, 1215 IRE_SEND); 1216 } else { 1217 (void) ip_output_v6((void *)(uintptr_t)zoneid, 1218 ipsec_mp, q, IRE_SEND); 1219 } 1220 } 1221 /* 1222 * Special code to support sending a single packet with 1223 * conn_unspec_src using an IRE which has no source address. 1224 * The IRE is deleted here after sending the packet to avoid 1225 * having other code trip on it. But before we delete the 1226 * ire, somebody could have looked up this ire. 1227 * We prevent returning/using this IRE by the upper layers 1228 * by making checks to NULL source address in other places 1229 * like e.g ip_ire_append_v6, ip_ire_req and 1230 * ip_bind_connected_v6. Though, this does not completely 1231 * prevent other threads from using this ire, this should 1232 * not cause any problems. 1233 */ 1234 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) { 1235 ip1dbg(("ire_send_v6: delete IRE\n")); 1236 ire_delete(ire); 1237 } 1238 } 1239 ire_refrele(ire); /* Held in ire_add */ 1240 } 1241 1242 /* 1243 * Make sure that IRE bucket does not get too long. 1244 * This can cause lock up because ire_cache_lookup() 1245 * may take "forever" to finish. 1246 * 1247 * We just remove cnt IREs each time. This means that 1248 * the bucket length will stay approximately constant, 1249 * depending on cnt. This should be enough to defend 1250 * against DoS attack based on creating temporary IREs 1251 * (for forwarding and non-TCP traffic). 1252 * 1253 * Note that new IRE is normally added at the tail of the 1254 * bucket. This means that we are removing the "oldest" 1255 * temporary IRE added. Only if there are IREs with 1256 * the same ire_addr, do we not add it at the tail. Refer 1257 * to ire_add_v*(). It should be OK for our purpose. 1258 * 1259 * For non-temporary cached IREs, we make sure that they 1260 * have not been used for some time (defined below), they 1261 * are non-local destinations, and there is no one using 1262 * them at the moment (refcnt == 1). 1263 * 1264 * The above means that the IRE bucket length may become 1265 * very long, consisting of mostly non-temporary IREs. 1266 * This can happen when the hash function does a bad job 1267 * so that most TCP connections cluster to a specific bucket. 1268 * This "hopefully" should never happen. It can also 1269 * happen if most TCP connections have very long lives. 1270 * Even with the minimal hash table size of 256, there 1271 * has to be a lot of such connections to make the bucket 1272 * length unreasonably long. This should probably not 1273 * happen either. The third can when this can happen is 1274 * when the machine is under attack, such as SYN flooding. 1275 * TCP should already have the proper mechanism to protect 1276 * that. So we should be safe. 1277 * 1278 * This function is called by ire_add_then_send() after 1279 * a new IRE is added and the packet is sent. 1280 * 1281 * The idle cutoff interval is set to 60s. It can be 1282 * changed using /etc/system. 1283 */ 1284 uint32_t ire_idle_cutoff_interval = 60000; 1285 1286 static void 1287 ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt) 1288 { 1289 ire_t *ire; 1290 int tmp_cnt = cnt; 1291 clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000); 1292 1293 /* 1294 * irb is NULL if the IRE is not added to the hash. This 1295 * happens when IRE_MARK_NOADD is set in ire_add_then_send(). 1296 */ 1297 if (irb == NULL) 1298 return; 1299 1300 IRB_REFHOLD(irb); 1301 if (irb->irb_tmp_ire_cnt > threshold) { 1302 for (ire = irb->irb_ire; ire != NULL && tmp_cnt > 0; 1303 ire = ire->ire_next) { 1304 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1305 continue; 1306 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 1307 ASSERT(ire->ire_type == IRE_CACHE); 1308 ire_delete(ire); 1309 tmp_cnt--; 1310 } 1311 } 1312 } 1313 if (irb->irb_ire_cnt - irb->irb_tmp_ire_cnt > threshold) { 1314 for (ire = irb->irb_ire; ire != NULL && cnt > 0; 1315 ire = ire->ire_next) { 1316 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1317 continue; 1318 if (ire->ire_ipversion == IPV4_VERSION) { 1319 if (ire->ire_gateway_addr == 0) 1320 continue; 1321 } else { 1322 if (IN6_IS_ADDR_UNSPECIFIED( 1323 &ire->ire_gateway_addr_v6)) 1324 continue; 1325 } 1326 if ((ire->ire_type == IRE_CACHE) && 1327 (lbolt - ire->ire_last_used_time > cut_off) && 1328 (ire->ire_refcnt == 1)) { 1329 ire_delete(ire); 1330 cnt--; 1331 } 1332 } 1333 } 1334 IRB_REFRELE(irb); 1335 } 1336 1337 /* 1338 * ire_add_then_send is called when a new IRE has been created in order to 1339 * route an outgoing packet. Typically, it is called from ip_wput when 1340 * a response comes back down from a resolver. We add the IRE, and then 1341 * possibly run the packet through ip_wput or ip_rput, as appropriate. 1342 * However, we do not add the newly created IRE in the cache when 1343 * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at 1344 * ip_newroute_ipif(). The ires with IRE_MARK_NOADD are ire_refrele'd by 1345 * ip_wput_ire() and get deleted. 1346 * Multirouting support: the packet is silently discarded when the new IRE 1347 * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the 1348 * RTF_MULTIRT flag for the same destination address. 1349 * In this case, we just want to register this additional ire without 1350 * sending the packet, as it has already been replicated through 1351 * existing multirt routes in ip_wput(). 1352 */ 1353 void 1354 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp) 1355 { 1356 irb_t *irb; 1357 boolean_t drop = B_FALSE; 1358 /* LINTED : set but not used in function */ 1359 boolean_t mctl_present; 1360 mblk_t *first_mp = NULL; 1361 mblk_t *save_mp = NULL; 1362 ire_t *dst_ire; 1363 ipha_t *ipha; 1364 ip6_t *ip6h; 1365 ip_stack_t *ipst = ire->ire_ipst; 1366 1367 if (mp != NULL) { 1368 /* 1369 * We first have to retrieve the destination address carried 1370 * by the packet. 1371 * We can't rely on ire as it can be related to a gateway. 1372 * The destination address will help in determining if 1373 * other RTF_MULTIRT ires are already registered. 1374 * 1375 * We first need to know where we are going : v4 or V6. 1376 * the ire version is enough, as there is no risk that 1377 * we resolve an IPv6 address with an IPv4 ire 1378 * or vice versa. 1379 */ 1380 if (ire->ire_ipversion == IPV4_VERSION) { 1381 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1382 ipha = (ipha_t *)mp->b_rptr; 1383 save_mp = mp; 1384 mp = first_mp; 1385 1386 dst_ire = ire_cache_lookup(ipha->ipha_dst, 1387 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1388 } else { 1389 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1390 /* 1391 * Get a pointer to the beginning of the IPv6 header. 1392 * Ignore leading IPsec control mblks. 1393 */ 1394 first_mp = mp; 1395 if (mp->b_datap->db_type == M_CTL) { 1396 mp = mp->b_cont; 1397 } 1398 ip6h = (ip6_t *)mp->b_rptr; 1399 save_mp = mp; 1400 mp = first_mp; 1401 dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst, 1402 ire->ire_zoneid, MBLK_GETLABEL(mp), ipst); 1403 } 1404 if (dst_ire != NULL) { 1405 if (dst_ire->ire_flags & RTF_MULTIRT) { 1406 /* 1407 * At least one resolved multirt route 1408 * already exists for the destination, 1409 * don't sent this packet: either drop it 1410 * or complete the pending resolution, 1411 * depending on the ire. 1412 */ 1413 drop = B_TRUE; 1414 } 1415 ip1dbg(("ire_add_then_send: dst_ire %p " 1416 "[dst %08x, gw %08x], drop %d\n", 1417 (void *)dst_ire, 1418 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1419 ntohl(dst_ire->ire_addr) : \ 1420 ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)), 1421 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1422 ntohl(dst_ire->ire_gateway_addr) : \ 1423 ntohl(V4_PART_OF_V6( 1424 dst_ire->ire_gateway_addr_v6)), 1425 drop)); 1426 ire_refrele(dst_ire); 1427 } 1428 } 1429 1430 if (!(ire->ire_marks & IRE_MARK_NOADD)) { 1431 /* Regular packets with cache bound ires are here. */ 1432 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 1433 1434 if (ire == NULL) { 1435 mp->b_prev = NULL; 1436 mp->b_next = NULL; 1437 MULTIRT_DEBUG_UNTAG(mp); 1438 freemsg(mp); 1439 return; 1440 } 1441 if (mp == NULL) { 1442 ire_refrele(ire); /* Held in ire_add_v4/v6 */ 1443 return; 1444 } 1445 } 1446 if (drop) { 1447 /* 1448 * If we're adding an RTF_MULTIRT ire, the resolution 1449 * is over: we just drop the packet. 1450 */ 1451 if (ire->ire_flags & RTF_MULTIRT) { 1452 if (save_mp) { 1453 save_mp->b_prev = NULL; 1454 save_mp->b_next = NULL; 1455 } 1456 MULTIRT_DEBUG_UNTAG(mp); 1457 freemsg(mp); 1458 } else { 1459 /* 1460 * Otherwise, we're adding the ire to a gateway 1461 * for a multirt route. 1462 * Invoke ip_newroute() to complete the resolution 1463 * of the route. We will then come back here and 1464 * finally drop this packet in the above code. 1465 */ 1466 if (ire->ire_ipversion == IPV4_VERSION) { 1467 /* 1468 * TODO: in order for CGTP to work in non-global 1469 * zones, ip_newroute() must create the IRE 1470 * cache in the zone indicated by 1471 * ire->ire_zoneid. 1472 */ 1473 ip_newroute(q, mp, ipha->ipha_dst, 1474 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 1475 ire->ire_zoneid, ipst); 1476 } else { 1477 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1478 ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL, 1479 NULL, ire->ire_zoneid, ipst); 1480 } 1481 } 1482 1483 ire_refrele(ire); /* As done by ire_send(). */ 1484 return; 1485 } 1486 /* 1487 * Need to remember ire_bucket here as ire_send*() may delete 1488 * the ire so we cannot reference it after that. 1489 */ 1490 irb = ire->ire_bucket; 1491 if (ire->ire_ipversion == IPV6_VERSION) { 1492 ire_send_v6(q, mp, ire); 1493 /* 1494 * Clean up more than 1 IRE so that the clean up does not 1495 * need to be done every time when a new IRE is added and 1496 * the threshold is reached. 1497 */ 1498 ire_cache_cleanup(irb, ip6_ire_max_bucket_cnt, 2); 1499 } else { 1500 ire_send(q, mp, ire); 1501 ire_cache_cleanup(irb, ip_ire_max_bucket_cnt, 2); 1502 } 1503 } 1504 1505 /* 1506 * Initialize the ire that is specific to IPv4 part and call 1507 * ire_init_common to finish it. 1508 */ 1509 ire_t * 1510 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr, 1511 uchar_t *gateway, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1512 queue_t *stq, ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1513 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1514 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1515 { 1516 /* 1517 * Reject IRE security attribute creation/initialization 1518 * if system is not running in Trusted mode. 1519 */ 1520 if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) 1521 return (NULL); 1522 1523 1524 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); 1525 1526 if (addr != NULL) 1527 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 1528 if (src_addr != NULL) 1529 bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN); 1530 if (mask != NULL) { 1531 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 1532 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 1533 } 1534 if (gateway != NULL) { 1535 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 1536 } 1537 1538 if (type == IRE_CACHE) 1539 ire->ire_cmask = cmask; 1540 1541 /* ire_init_common will free the mblks upon encountering any failure */ 1542 if (!ire_init_common(ire, max_fragp, src_nce, rfq, stq, type, ipif, 1543 phandle, ihandle, flags, IPV4_VERSION, ulp_info, gc, gcgrp, ipst)) 1544 return (NULL); 1545 1546 return (ire); 1547 } 1548 1549 /* 1550 * Similar to ire_create except that it is called only when 1551 * we want to allocate ire as an mblk e.g. we have an external 1552 * resolver ARP. 1553 */ 1554 ire_t * 1555 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1556 uint_t max_frag, nce_t *src_nce, queue_t *rfq, queue_t *stq, ushort_t type, 1557 ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, 1558 uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, 1559 ip_stack_t *ipst) 1560 { 1561 ire_t *ire, *buf; 1562 ire_t *ret_ire; 1563 mblk_t *mp; 1564 size_t bufsize; 1565 frtn_t *frtnp; 1566 ill_t *ill; 1567 1568 bufsize = sizeof (ire_t) + sizeof (frtn_t); 1569 buf = kmem_alloc(bufsize, KM_NOSLEEP); 1570 if (buf == NULL) { 1571 ip1dbg(("ire_create_mp: alloc failed\n")); 1572 return (NULL); 1573 } 1574 frtnp = (frtn_t *)(buf + 1); 1575 frtnp->free_arg = (caddr_t)buf; 1576 frtnp->free_func = ire_freemblk; 1577 1578 /* 1579 * Allocate the new IRE. The ire created will hold a ref on 1580 * an nce_t after ire_nce_init, and this ref must either be 1581 * (a) transferred to the ire_cache entry created when ire_add_v4 1582 * is called after successful arp resolution, or, 1583 * (b) released, when arp resolution fails 1584 * Case (b) is handled in ire_freemblk() which will be called 1585 * when mp is freed as a result of failed arp. 1586 */ 1587 mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 1588 if (mp == NULL) { 1589 ip1dbg(("ire_create_mp: alloc failed\n")); 1590 kmem_free(buf, bufsize); 1591 return (NULL); 1592 } 1593 ire = (ire_t *)mp->b_rptr; 1594 mp->b_wptr = (uchar_t *)&ire[1]; 1595 1596 /* Start clean. */ 1597 *ire = ire_null; 1598 ire->ire_mp = mp; 1599 mp->b_datap->db_type = IRE_DB_TYPE; 1600 ire->ire_marks |= IRE_MARK_UNCACHED; 1601 1602 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, NULL, src_nce, 1603 rfq, stq, type, ipif, cmask, phandle, ihandle, flags, ulp_info, gc, 1604 gcgrp, ipst); 1605 1606 ill = (ill_t *)(stq->q_ptr); 1607 if (ret_ire == NULL) { 1608 /* ire_freemblk needs these set */ 1609 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1610 ire->ire_ipst = ipst; 1611 freeb(ire->ire_mp); 1612 return (NULL); 1613 } 1614 ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1615 ASSERT(ret_ire == ire); 1616 /* 1617 * ire_max_frag is normally zero here and is atomically set 1618 * under the irebucket lock in ire_add_v[46] except for the 1619 * case of IRE_MARK_NOADD. In that event the the ire_max_frag 1620 * is non-zero here. 1621 */ 1622 ire->ire_max_frag = max_frag; 1623 return (ire); 1624 } 1625 1626 /* 1627 * ire_create is called to allocate and initialize a new IRE. 1628 * 1629 * NOTE : This is called as writer sometimes though not required 1630 * by this function. 1631 */ 1632 ire_t * 1633 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1634 uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, queue_t *stq, 1635 ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, 1636 uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, 1637 tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1638 { 1639 ire_t *ire; 1640 ire_t *ret_ire; 1641 1642 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 1643 if (ire == NULL) { 1644 ip1dbg(("ire_create: alloc failed\n")); 1645 return (NULL); 1646 } 1647 *ire = ire_null; 1648 1649 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, max_fragp, 1650 src_nce, rfq, stq, type, ipif, cmask, phandle, ihandle, flags, 1651 ulp_info, gc, gcgrp, ipst); 1652 1653 if (ret_ire == NULL) { 1654 kmem_cache_free(ire_cache, ire); 1655 return (NULL); 1656 } 1657 ASSERT(ret_ire == ire); 1658 return (ire); 1659 } 1660 1661 1662 /* 1663 * Common to IPv4 and IPv6 1664 */ 1665 boolean_t 1666 ire_init_common(ire_t *ire, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, 1667 queue_t *stq, ushort_t type, ipif_t *ipif, uint32_t phandle, 1668 uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info, 1669 tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, ip_stack_t *ipst) 1670 { 1671 ire->ire_max_fragp = max_fragp; 1672 ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0; 1673 1674 #ifdef DEBUG 1675 if (ipif != NULL) { 1676 if (ipif->ipif_isv6) 1677 ASSERT(ipversion == IPV6_VERSION); 1678 else 1679 ASSERT(ipversion == IPV4_VERSION); 1680 } 1681 #endif /* DEBUG */ 1682 1683 /* 1684 * Create/initialize IRE security attribute only in Trusted mode; 1685 * if the passed in gc/gcgrp is non-NULL, we expect that the caller 1686 * has held a reference to it and will release it when this routine 1687 * returns a failure, otherwise we own the reference. We do this 1688 * prior to initializing the rest IRE fields. 1689 * 1690 * Don't allocate ire_gw_secattr for the resolver case to prevent 1691 * memory leak (in case of external resolution failure). We'll 1692 * allocate it after a successful external resolution, in ire_add(). 1693 * Note that ire->ire_mp != NULL here means this ire is headed 1694 * to an external resolver. 1695 */ 1696 if (is_system_labeled()) { 1697 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 1698 IRE_INTERFACE)) != 0) { 1699 /* release references on behalf of caller */ 1700 if (gc != NULL) 1701 GC_REFRELE(gc); 1702 if (gcgrp != NULL) 1703 GCGRP_REFRELE(gcgrp); 1704 } else if ((ire->ire_mp == NULL) && 1705 tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) { 1706 return (B_FALSE); 1707 } 1708 } 1709 1710 ire->ire_stq = stq; 1711 ire->ire_rfq = rfq; 1712 ire->ire_type = type; 1713 ire->ire_flags = RTF_UP | flags; 1714 ire->ire_ident = TICK_TO_MSEC(lbolt); 1715 bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t)); 1716 1717 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 1718 ire->ire_last_used_time = lbolt; 1719 ire->ire_create_time = (uint32_t)gethrestime_sec(); 1720 1721 /* 1722 * If this IRE is an IRE_CACHE, inherit the handles from the 1723 * parent IREs. For others in the forwarding table, assign appropriate 1724 * new ones. 1725 * 1726 * The mutex protecting ire_handle is because ire_create is not always 1727 * called as a writer. 1728 */ 1729 if (ire->ire_type & IRE_OFFSUBNET) { 1730 mutex_enter(&ipst->ips_ire_handle_lock); 1731 ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++; 1732 mutex_exit(&ipst->ips_ire_handle_lock); 1733 } else if (ire->ire_type & IRE_INTERFACE) { 1734 mutex_enter(&ipst->ips_ire_handle_lock); 1735 ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++; 1736 mutex_exit(&ipst->ips_ire_handle_lock); 1737 } else if (ire->ire_type == IRE_CACHE) { 1738 ire->ire_phandle = phandle; 1739 ire->ire_ihandle = ihandle; 1740 } 1741 ire->ire_ipif = ipif; 1742 if (ipif != NULL) { 1743 ire->ire_ipif_seqid = ipif->ipif_seqid; 1744 ire->ire_zoneid = ipif->ipif_zoneid; 1745 } else { 1746 ire->ire_zoneid = GLOBAL_ZONEID; 1747 } 1748 ire->ire_ipversion = ipversion; 1749 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 1750 if (ipversion == IPV4_VERSION) { 1751 /* 1752 * IPv6 initializes the ire_nce in ire_add_v6, which expects 1753 * to find the ire_nce to be null when it is called. 1754 */ 1755 if (ire_nce_init(ire, src_nce) != 0) { 1756 /* some failure occurred. propagate error back */ 1757 return (B_FALSE); 1758 } 1759 } 1760 ire->ire_refcnt = 1; 1761 ire->ire_ipst = ipst; /* No netstack_hold */ 1762 1763 #ifdef IRE_DEBUG 1764 bzero(ire->ire_trace, sizeof (th_trace_t *) * IP_TR_HASH_MAX); 1765 #endif 1766 1767 return (B_TRUE); 1768 } 1769 1770 /* 1771 * This routine is called repeatedly by ipif_up to create broadcast IREs. 1772 * It is passed a pointer to a slot in an IRE pointer array into which to 1773 * place the pointer to the new IRE, if indeed we create one. If the 1774 * IRE corresponding to the address passed in would be a duplicate of an 1775 * existing one, we don't create the new one. irep is incremented before 1776 * return only if we do create a new IRE. (Always called as writer.) 1777 * 1778 * Note that with the "match_flags" parameter, we can match on either 1779 * a particular logical interface (MATCH_IRE_IPIF) or for all logical 1780 * interfaces for a given physical interface (MATCH_IRE_ILL). Currently, 1781 * we only create broadcast ire's on a per physical interface basis. If 1782 * someone is going to be mucking with logical interfaces, it is important 1783 * to call "ipif_check_bcast_ires()" to make sure that any change to a 1784 * logical interface will not cause critical broadcast IRE's to be deleted. 1785 */ 1786 ire_t ** 1787 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep, 1788 int match_flags) 1789 { 1790 ire_t *ire; 1791 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 1792 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1793 1794 /* 1795 * No broadcast IREs for the LOOPBACK interface 1796 * or others such as point to point and IPIF_NOXMIT. 1797 */ 1798 if (!(ipif->ipif_flags & IPIF_BROADCAST) || 1799 (ipif->ipif_flags & IPIF_NOXMIT)) 1800 return (irep); 1801 1802 /* If this would be a duplicate, don't bother. */ 1803 if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, 1804 ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) { 1805 /* 1806 * We look for non-deprecated (and non-anycast, non-nolocal) 1807 * ipifs as the best choice. ipifs with check_flags matching 1808 * (deprecated, etc) are used only if non-deprecated ipifs 1809 * are not available. if the existing ire's ipif is deprecated 1810 * and the new ipif is non-deprecated, switch to the new ipif 1811 */ 1812 if ((!(ire->ire_ipif->ipif_flags & check_flags)) || 1813 (ipif->ipif_flags & check_flags)) { 1814 ire_refrele(ire); 1815 return (irep); 1816 } 1817 /* 1818 * Bcast ires exist in pairs. Both have to be deleted, 1819 * Since we are exclusive we can make the above assertion. 1820 * The 1st has to be refrele'd since it was ctable_lookup'd. 1821 */ 1822 ASSERT(IAM_WRITER_IPIF(ipif)); 1823 ASSERT(ire->ire_next->ire_addr == ire->ire_addr); 1824 ire_delete(ire->ire_next); 1825 ire_delete(ire); 1826 ire_refrele(ire); 1827 } 1828 1829 irep = ire_create_bcast(ipif, addr, irep); 1830 1831 return (irep); 1832 } 1833 1834 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU; 1835 1836 /* 1837 * This routine is called from ipif_check_bcast_ires and ire_check_bcast. 1838 * It leaves all the verifying and deleting to those routines. So it always 1839 * creates 2 bcast ires and chains them into the ire array passed in. 1840 */ 1841 ire_t ** 1842 ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep) 1843 { 1844 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 1845 1846 *irep++ = ire_create( 1847 (uchar_t *)&addr, /* dest addr */ 1848 (uchar_t *)&ip_g_all_ones, /* mask */ 1849 (uchar_t *)&ipif->ipif_src_addr, /* source addr */ 1850 NULL, /* no gateway */ 1851 &ipif->ipif_mtu, /* max frag */ 1852 NULL, /* no src nce */ 1853 ipif->ipif_rq, /* recv-from queue */ 1854 ipif->ipif_wq, /* send-to queue */ 1855 IRE_BROADCAST, 1856 ipif, 1857 0, 1858 0, 1859 0, 1860 0, 1861 &ire_uinfo_null, 1862 NULL, 1863 NULL, 1864 ipst); 1865 1866 *irep++ = ire_create( 1867 (uchar_t *)&addr, /* dest address */ 1868 (uchar_t *)&ip_g_all_ones, /* mask */ 1869 (uchar_t *)&ipif->ipif_src_addr, /* source address */ 1870 NULL, /* no gateway */ 1871 &ip_loopback_mtu, /* max frag size */ 1872 NULL, /* no src_nce */ 1873 ipif->ipif_rq, /* recv-from queue */ 1874 NULL, /* no send-to queue */ 1875 IRE_BROADCAST, /* Needed for fanout in wput */ 1876 ipif, 1877 0, 1878 0, 1879 0, 1880 0, 1881 &ire_uinfo_null, 1882 NULL, 1883 NULL, 1884 ipst); 1885 1886 return (irep); 1887 } 1888 1889 /* 1890 * ire_walk routine to delete or update any IRE_CACHE that might contain 1891 * stale information. 1892 * The flags state which entries to delete or update. 1893 * Garbage collection is done separately using kmem alloc callbacks to 1894 * ip_trash_ire_reclaim. 1895 * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME 1896 * since other stale information is cleaned up using NUD. 1897 */ 1898 void 1899 ire_expire(ire_t *ire, char *arg) 1900 { 1901 ire_expire_arg_t *ieap = (ire_expire_arg_t *)(uintptr_t)arg; 1902 ill_t *stq_ill; 1903 int flush_flags = ieap->iea_flush_flag; 1904 ip_stack_t *ipst = ieap->iea_ipst; 1905 1906 if ((flush_flags & FLUSH_REDIRECT_TIME) && 1907 (ire->ire_flags & RTF_DYNAMIC)) { 1908 /* Make sure we delete the corresponding IRE_CACHE */ 1909 ip1dbg(("ire_expire: all redirects\n")); 1910 ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst); 1911 ire_delete(ire); 1912 atomic_dec_32(&ipst->ips_ip_redirect_cnt); 1913 return; 1914 } 1915 if (ire->ire_type != IRE_CACHE) 1916 return; 1917 1918 if (flush_flags & FLUSH_ARP_TIME) { 1919 /* 1920 * Remove all IRE_CACHE. 1921 * Verify that create time is more than 1922 * ip_ire_arp_interval milliseconds ago. 1923 */ 1924 if (NCE_EXPIRED(ire->ire_nce, ipst)) { 1925 ire_delete(ire); 1926 return; 1927 } 1928 } 1929 1930 if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) && 1931 (ire->ire_ipif != NULL)) { 1932 /* Increase pmtu if it is less than the interface mtu */ 1933 mutex_enter(&ire->ire_lock); 1934 /* 1935 * If the ipif is a vni (whose mtu is 0, since it's virtual) 1936 * get the mtu from the sending interfaces' ipif 1937 */ 1938 if (IS_VNI(ire->ire_ipif->ipif_ill)) { 1939 stq_ill = ire->ire_stq->q_ptr; 1940 ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu, 1941 IP_MAXPACKET); 1942 } else { 1943 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, 1944 IP_MAXPACKET); 1945 } 1946 ire->ire_frag_flag |= IPH_DF; 1947 mutex_exit(&ire->ire_lock); 1948 } 1949 } 1950 1951 /* 1952 * Return any local address. We use this to target ourselves 1953 * when the src address was specified as 'default'. 1954 * Preference for IRE_LOCAL entries. 1955 */ 1956 ire_t * 1957 ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst) 1958 { 1959 ire_t *ire; 1960 irb_t *irb; 1961 ire_t *maybe = NULL; 1962 int i; 1963 1964 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 1965 irb = &ipst->ips_ip_cache_table[i]; 1966 if (irb->irb_ire == NULL) 1967 continue; 1968 rw_enter(&irb->irb_lock, RW_READER); 1969 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 1970 if ((ire->ire_marks & IRE_MARK_CONDEMNED) || 1971 (ire->ire_zoneid != zoneid && 1972 ire->ire_zoneid != ALL_ZONES)) 1973 continue; 1974 switch (ire->ire_type) { 1975 case IRE_LOOPBACK: 1976 if (maybe == NULL) { 1977 IRE_REFHOLD(ire); 1978 maybe = ire; 1979 } 1980 break; 1981 case IRE_LOCAL: 1982 if (maybe != NULL) { 1983 ire_refrele(maybe); 1984 } 1985 IRE_REFHOLD(ire); 1986 rw_exit(&irb->irb_lock); 1987 return (ire); 1988 } 1989 } 1990 rw_exit(&irb->irb_lock); 1991 } 1992 return (maybe); 1993 } 1994 1995 /* 1996 * If the specified IRE is associated with a particular ILL, return 1997 * that ILL pointer (May be called as writer.). 1998 * 1999 * NOTE : This is not a generic function that can be used always. 2000 * This function always returns the ill of the outgoing packets 2001 * if this ire is used. 2002 */ 2003 ill_t * 2004 ire_to_ill(const ire_t *ire) 2005 { 2006 ill_t *ill = NULL; 2007 2008 /* 2009 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained 2010 * the source address from. ire_stq is the one where the 2011 * packets will be sent out on. We return that here. 2012 * 2013 * 2) IRE_BROADCAST normally has a loopback and a non-loopback 2014 * copy and they always exist next to each other with loopback 2015 * copy being the first one. If we are called on the non-loopback 2016 * copy, return the one pointed by ire_stq. If it was called on 2017 * a loopback copy, we still return the one pointed by the next 2018 * ire's ire_stq pointer i.e the one pointed by the non-loopback 2019 * copy. We don't want use ire_ipif as it might represent the 2020 * source address (if we borrow source addresses for 2021 * IRE_BROADCASTS in the future). 2022 * However if an interface is currently coming up, the above 2023 * condition may not hold during that period since the ires 2024 * are added one at a time. Thus one of the pair could have been 2025 * added and the other not yet added. 2026 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill. 2027 * 4) For all others return the ones pointed by ire_ipif->ipif_ill. 2028 * That handles IRE_LOOPBACK. 2029 */ 2030 2031 if (ire->ire_type == IRE_CACHE) { 2032 ill = (ill_t *)ire->ire_stq->q_ptr; 2033 } else if (ire->ire_type == IRE_BROADCAST) { 2034 if (ire->ire_stq != NULL) { 2035 ill = (ill_t *)ire->ire_stq->q_ptr; 2036 } else { 2037 ire_t *ire_next; 2038 2039 ire_next = ire->ire_next; 2040 if (ire_next != NULL && 2041 ire_next->ire_type == IRE_BROADCAST && 2042 ire_next->ire_addr == ire->ire_addr && 2043 ire_next->ire_ipif == ire->ire_ipif) { 2044 ill = (ill_t *)ire_next->ire_stq->q_ptr; 2045 } 2046 } 2047 } else if (ire->ire_rfq != NULL) { 2048 ill = ire->ire_rfq->q_ptr; 2049 } else if (ire->ire_ipif != NULL) { 2050 ill = ire->ire_ipif->ipif_ill; 2051 } 2052 return (ill); 2053 } 2054 2055 /* Arrange to call the specified function for every IRE in the world. */ 2056 void 2057 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) 2058 { 2059 ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); 2060 } 2061 2062 void 2063 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 2064 { 2065 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); 2066 } 2067 2068 void 2069 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 2070 { 2071 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); 2072 } 2073 2074 /* 2075 * Walk a particular version. version == 0 means both v4 and v6. 2076 */ 2077 static void 2078 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, 2079 ip_stack_t *ipst) 2080 { 2081 if (vers != IPV6_VERSION) { 2082 /* 2083 * ip_forwarding_table variable doesn't matter for IPv4 since 2084 * ire_walk_ill_tables uses ips_ip_ftable for IPv4. 2085 */ 2086 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 2087 0, NULL, 2088 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 2089 NULL, zoneid, ipst); 2090 } 2091 if (vers != IPV4_VERSION) { 2092 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 2093 ipst->ips_ip6_ftable_hash_size, 2094 ipst->ips_ip_forwarding_table_v6, 2095 ipst->ips_ip6_cache_table_size, 2096 ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst); 2097 } 2098 } 2099 2100 /* 2101 * Arrange to call the specified 2102 * function for every IRE that matches the ill. 2103 */ 2104 void 2105 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2106 ill_t *ill) 2107 { 2108 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill); 2109 } 2110 2111 void 2112 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2113 ill_t *ill) 2114 { 2115 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION, 2116 ill); 2117 } 2118 2119 void 2120 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2121 ill_t *ill) 2122 { 2123 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION, 2124 ill); 2125 } 2126 2127 /* 2128 * Walk a particular ill and version. version == 0 means both v4 and v6. 2129 */ 2130 static void 2131 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 2132 void *arg, uchar_t vers, ill_t *ill) 2133 { 2134 ip_stack_t *ipst = ill->ill_ipst; 2135 2136 if (vers != IPV6_VERSION) { 2137 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2138 IP_MASK_TABLE_SIZE, 0, 2139 NULL, ipst->ips_ip_cache_table_size, 2140 ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst); 2141 } 2142 if (vers != IPV4_VERSION) { 2143 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2144 IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, 2145 ipst->ips_ip_forwarding_table_v6, 2146 ipst->ips_ip6_cache_table_size, 2147 ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst); 2148 } 2149 } 2150 2151 boolean_t 2152 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 2153 ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) 2154 { 2155 ill_t *ire_stq_ill = NULL; 2156 ill_t *ire_ipif_ill = NULL; 2157 ill_group_t *ire_ill_group = NULL; 2158 2159 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 2160 /* 2161 * 1) MATCH_IRE_WQ : Used specifically to match on ire_stq. 2162 * The fast path update uses this to make sure it does not 2163 * update the fast path header of interface X with the fast 2164 * path updates it recieved on interface Y. It is similar 2165 * in handling DL_NOTE_FASTPATH_FLUSH. 2166 * 2167 * 2) MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill 2168 * pointed by ire_stq and ire_ipif. Only in the case of 2169 * IRE_CACHEs can ire_stq and ire_ipif be pointing to 2170 * different ills. But we want to keep this function generic 2171 * enough for future use. So, we always try to match on both. 2172 * The only caller of this function ire_walk_ill_tables, will 2173 * call "func" after we return from this function. We expect 2174 * "func" to do the right filtering of ires in this case. 2175 * 2176 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups 2177 * pointed by ire_stq and ire_ipif should always be the same. 2178 * So, we just match on only one of them. 2179 */ 2180 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 2181 if (ire->ire_stq != NULL) 2182 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2183 if (ire->ire_ipif != NULL) 2184 ire_ipif_ill = ire->ire_ipif->ipif_ill; 2185 if (ire_stq_ill != NULL) 2186 ire_ill_group = ire_stq_ill->ill_group; 2187 if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL)) 2188 ire_ill_group = ire_ipif_ill->ill_group; 2189 } 2190 2191 if (zoneid != ALL_ZONES) { 2192 /* 2193 * We're walking the IREs for a specific zone. The only relevant 2194 * IREs are: 2195 * - all IREs with a matching ire_zoneid 2196 * - all IRE_OFFSUBNETs as they're shared across all zones 2197 * - IRE_INTERFACE IREs for interfaces with a usable source addr 2198 * with a matching zone 2199 * - IRE_DEFAULTs with a gateway reachable from the zone 2200 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs 2201 * using the same rule; but the above rules are consistent with 2202 * the behavior of ire_ftable_lookup[_v6]() so that all the 2203 * routes that can be matched during lookup are also matched 2204 * here. 2205 */ 2206 if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { 2207 /* 2208 * Note, IRE_INTERFACE can have the stq as NULL. For 2209 * example, if the default multicast route is tied to 2210 * the loopback address. 2211 */ 2212 if ((ire->ire_type & IRE_INTERFACE) && 2213 (ire->ire_stq != NULL)) { 2214 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2215 if (ire->ire_ipversion == IPV4_VERSION) { 2216 if (!ipif_usesrc_avail(ire_stq_ill, 2217 zoneid)) 2218 /* No usable src addr in zone */ 2219 return (B_FALSE); 2220 } else if (ire_stq_ill->ill_usesrc_ifindex 2221 != 0) { 2222 /* 2223 * For IPv6 use ipif_select_source_v6() 2224 * so the right scope selection is done 2225 */ 2226 ipif_t *src_ipif; 2227 src_ipif = 2228 ipif_select_source_v6(ire_stq_ill, 2229 &ire->ire_addr_v6, RESTRICT_TO_NONE, 2230 IPV6_PREFER_SRC_DEFAULT, 2231 zoneid); 2232 if (src_ipif != NULL) { 2233 ipif_refrele(src_ipif); 2234 } else { 2235 return (B_FALSE); 2236 } 2237 } else { 2238 return (B_FALSE); 2239 } 2240 2241 } else if (!(ire->ire_type & IRE_OFFSUBNET)) { 2242 return (B_FALSE); 2243 } 2244 } 2245 2246 /* 2247 * Match all default routes from the global zone, irrespective 2248 * of reachability. For a non-global zone only match those 2249 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid. 2250 */ 2251 if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) { 2252 int ire_match_flags = 0; 2253 in6_addr_t gw_addr_v6; 2254 ire_t *rire; 2255 2256 ire_match_flags |= MATCH_IRE_TYPE; 2257 if (ire->ire_ipif != NULL) { 2258 ire_match_flags |= MATCH_IRE_ILL_GROUP; 2259 } 2260 if (ire->ire_ipversion == IPV4_VERSION) { 2261 rire = ire_route_lookup(ire->ire_gateway_addr, 2262 0, 0, IRE_INTERFACE, ire->ire_ipif, NULL, 2263 zoneid, NULL, ire_match_flags, ipst); 2264 } else { 2265 ASSERT(ire->ire_ipversion == IPV6_VERSION); 2266 mutex_enter(&ire->ire_lock); 2267 gw_addr_v6 = ire->ire_gateway_addr_v6; 2268 mutex_exit(&ire->ire_lock); 2269 rire = ire_route_lookup_v6(&gw_addr_v6, 2270 NULL, NULL, IRE_INTERFACE, ire->ire_ipif, 2271 NULL, zoneid, NULL, ire_match_flags, ipst); 2272 } 2273 if (rire == NULL) { 2274 return (B_FALSE); 2275 } 2276 ire_refrele(rire); 2277 } 2278 } 2279 2280 if (((!(match_flags & MATCH_IRE_TYPE)) || 2281 (ire->ire_type & ire_type)) && 2282 ((!(match_flags & MATCH_IRE_WQ)) || 2283 (ire->ire_stq == ill->ill_wq)) && 2284 ((!(match_flags & MATCH_IRE_ILL)) || 2285 (ire_stq_ill == ill || ire_ipif_ill == ill)) && 2286 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 2287 (ire_stq_ill == ill) || (ire_ipif_ill == ill) || 2288 (ire_ill_group != NULL && 2289 ire_ill_group == ill->ill_group))) { 2290 return (B_TRUE); 2291 } 2292 return (B_FALSE); 2293 } 2294 2295 int 2296 rtfunc(struct radix_node *rn, void *arg) 2297 { 2298 struct rtfuncarg *rtf = arg; 2299 struct rt_entry *rt; 2300 irb_t *irb; 2301 ire_t *ire; 2302 boolean_t ret; 2303 2304 rt = (struct rt_entry *)rn; 2305 ASSERT(rt != NULL); 2306 irb = &rt->rt_irb; 2307 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2308 if ((rtf->rt_match_flags != 0) || 2309 (rtf->rt_zoneid != ALL_ZONES)) { 2310 ret = ire_walk_ill_match(rtf->rt_match_flags, 2311 rtf->rt_ire_type, ire, 2312 rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); 2313 } else 2314 ret = B_TRUE; 2315 if (ret) 2316 (*rtf->rt_func)(ire, rtf->rt_arg); 2317 } 2318 return (0); 2319 } 2320 2321 /* 2322 * Walk the ftable and the ctable entries that match the ill. 2323 */ 2324 void 2325 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 2326 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 2327 size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid, 2328 ip_stack_t *ipst) 2329 { 2330 irb_t *irb_ptr; 2331 irb_t *irb; 2332 ire_t *ire; 2333 int i, j; 2334 boolean_t ret; 2335 struct rtfuncarg rtfarg; 2336 2337 ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL | 2338 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 2339 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 2340 /* 2341 * Optimize by not looking at the forwarding table if there 2342 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE 2343 * specified in ire_type. 2344 */ 2345 if (!(match_flags & MATCH_IRE_TYPE) || 2346 ((ire_type & IRE_FORWARDTABLE) != 0)) { 2347 /* knobs such that routine is called only for v6 case */ 2348 if (ipftbl == ipst->ips_ip_forwarding_table_v6) { 2349 for (i = (ftbl_sz - 1); i >= 0; i--) { 2350 if ((irb_ptr = ipftbl[i]) == NULL) 2351 continue; 2352 for (j = 0; j < htbl_sz; j++) { 2353 irb = &irb_ptr[j]; 2354 if (irb->irb_ire == NULL) 2355 continue; 2356 2357 IRB_REFHOLD(irb); 2358 for (ire = irb->irb_ire; ire != NULL; 2359 ire = ire->ire_next) { 2360 if (match_flags == 0 && 2361 zoneid == ALL_ZONES) { 2362 ret = B_TRUE; 2363 } else { 2364 ret = 2365 ire_walk_ill_match( 2366 match_flags, 2367 ire_type, ire, ill, 2368 zoneid, ipst); 2369 } 2370 if (ret) 2371 (*func)(ire, arg); 2372 } 2373 IRB_REFRELE(irb); 2374 } 2375 } 2376 } else { 2377 (void) memset(&rtfarg, 0, sizeof (rtfarg)); 2378 rtfarg.rt_func = func; 2379 rtfarg.rt_arg = arg; 2380 if (match_flags != 0) { 2381 rtfarg.rt_match_flags = match_flags; 2382 } 2383 rtfarg.rt_ire_type = ire_type; 2384 rtfarg.rt_ill = ill; 2385 rtfarg.rt_zoneid = zoneid; 2386 rtfarg.rt_ipst = ipst; /* No netstack_hold */ 2387 (void) ipst->ips_ip_ftable->rnh_walktree_mt( 2388 ipst->ips_ip_ftable, 2389 rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); 2390 } 2391 } 2392 2393 /* 2394 * Optimize by not looking at the cache table if there 2395 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE 2396 * specified in ire_type. 2397 */ 2398 if (!(match_flags & MATCH_IRE_TYPE) || 2399 ((ire_type & IRE_CACHETABLE) != 0)) { 2400 for (i = 0; i < ctbl_sz; i++) { 2401 irb = &ipctbl[i]; 2402 if (irb->irb_ire == NULL) 2403 continue; 2404 IRB_REFHOLD(irb); 2405 for (ire = irb->irb_ire; ire != NULL; 2406 ire = ire->ire_next) { 2407 if (match_flags == 0 && zoneid == ALL_ZONES) { 2408 ret = B_TRUE; 2409 } else { 2410 ret = ire_walk_ill_match( 2411 match_flags, ire_type, 2412 ire, ill, zoneid, ipst); 2413 } 2414 if (ret) 2415 (*func)(ire, arg); 2416 } 2417 IRB_REFRELE(irb); 2418 } 2419 } 2420 } 2421 2422 /* 2423 * This function takes a mask and returns 2424 * number of bits set in the mask. If no 2425 * bit is set it returns 0. 2426 * Assumes a contiguous mask. 2427 */ 2428 int 2429 ip_mask_to_plen(ipaddr_t mask) 2430 { 2431 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 2432 } 2433 2434 /* 2435 * Convert length for a mask to the mask. 2436 */ 2437 ipaddr_t 2438 ip_plen_to_mask(uint_t masklen) 2439 { 2440 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 2441 } 2442 2443 void 2444 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 2445 { 2446 ill_t *ill_list[NUM_ILLS]; 2447 ip_stack_t *ipst = ire->ire_ipst; 2448 2449 ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; 2450 ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; 2451 ill_unlock_ills(ill_list, NUM_ILLS); 2452 rw_exit(&irb_ptr->irb_lock); 2453 rw_exit(&ipst->ips_ill_g_usesrc_lock); 2454 } 2455 2456 /* 2457 * ire_add_v[46] atomically make sure that the ipif or ill associated 2458 * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING 2459 * before adding the ire to the table. This ensures that we don't create 2460 * new IRE_CACHEs with stale values for parameters that are passed to 2461 * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer 2462 * to the ipif_mtu, and not the value. The actual value is derived from the 2463 * parent ire or ipif under the bucket lock. 2464 */ 2465 int 2466 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp, 2467 ipsq_func_t func) 2468 { 2469 ill_t *stq_ill; 2470 ill_t *ipif_ill; 2471 ill_t *ill_list[NUM_ILLS]; 2472 int cnt = NUM_ILLS; 2473 int error = 0; 2474 ill_t *ill = NULL; 2475 ip_stack_t *ipst = ire->ire_ipst; 2476 2477 ill_list[0] = stq_ill = ire->ire_stq != 2478 NULL ? ire->ire_stq->q_ptr : NULL; 2479 ill_list[1] = ipif_ill = ire->ire_ipif != 2480 NULL ? ire->ire_ipif->ipif_ill : NULL; 2481 2482 ASSERT((q != NULL && mp != NULL && func != NULL) || 2483 (q == NULL && mp == NULL && func == NULL)); 2484 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 2485 GRAB_CONN_LOCK(q); 2486 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 2487 ill_lock_ills(ill_list, cnt); 2488 2489 /* 2490 * While the IRE is in the process of being added, a user may have 2491 * invoked the ifconfig usesrc option on the stq_ill to make it a 2492 * usesrc client ILL. Check for this possibility here, if it is true 2493 * then we fail adding the IRE_CACHE. Another check is to make sure 2494 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc 2495 * group. The ill_g_usesrc_lock is released in ire_atomic_end 2496 */ 2497 if ((ire->ire_type & IRE_CACHE) && 2498 (ire->ire_marks & IRE_MARK_USESRC_CHECK)) { 2499 if (stq_ill->ill_usesrc_ifindex != 0) { 2500 ASSERT(stq_ill->ill_usesrc_grp_next != NULL); 2501 if ((ipif_ill->ill_phyint->phyint_ifindex != 2502 stq_ill->ill_usesrc_ifindex) || 2503 (ipif_ill->ill_usesrc_grp_next == NULL) || 2504 (ipif_ill->ill_usesrc_ifindex != 0)) { 2505 error = EINVAL; 2506 goto done; 2507 } 2508 } else if (ipif_ill->ill_usesrc_grp_next != NULL) { 2509 error = EINVAL; 2510 goto done; 2511 } 2512 } 2513 2514 /* 2515 * IPMP flag settings happen without taking the exclusive route 2516 * in ip_sioctl_flags. So we need to make an atomic check here 2517 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the 2518 * FAILBACK=no case. 2519 */ 2520 if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) { 2521 if (stq_ill->ill_state_flags & ILL_CHANGING) { 2522 ill = stq_ill; 2523 error = EAGAIN; 2524 } else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2525 (ill_is_probeonly(stq_ill) && 2526 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2527 error = EINVAL; 2528 } 2529 goto done; 2530 } 2531 2532 /* 2533 * We don't check for OFFLINE/FAILED in this case because 2534 * the source address selection logic (ipif_select_source) 2535 * may still select a source address from such an ill. The 2536 * assumption is that these addresses will be moved by in.mpathd 2537 * soon. (i.e. this is a race). However link local addresses 2538 * will not move and hence ipif_select_source_v6 tries to avoid 2539 * FAILED ills. Please see ipif_select_source_v6 for more info 2540 */ 2541 if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) && 2542 (ipif_ill->ill_state_flags & ILL_CHANGING)) { 2543 ill = ipif_ill; 2544 error = EAGAIN; 2545 goto done; 2546 } 2547 2548 if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) && 2549 (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) { 2550 ill = ire->ire_ipif->ipif_ill; 2551 ASSERT(ill != NULL); 2552 error = EAGAIN; 2553 goto done; 2554 } 2555 2556 done: 2557 if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) { 2558 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 2559 mutex_enter(&ipsq->ipsq_lock); 2560 ire_atomic_end(irb_ptr, ire); 2561 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 2562 mutex_exit(&ipsq->ipsq_lock); 2563 error = EINPROGRESS; 2564 } else if (error != 0) { 2565 ire_atomic_end(irb_ptr, ire); 2566 } 2567 2568 RELEASE_CONN_LOCK(q); 2569 return (error); 2570 } 2571 2572 /* 2573 * Add a fully initialized IRE to an appropriate table based on 2574 * ire_type. 2575 * 2576 * allow_unresolved == B_FALSE indicates a legacy code-path call 2577 * that has prohibited the addition of incomplete ire's. If this 2578 * parameter is set, and we find an nce that is in a state other 2579 * than ND_REACHABLE, we fail the add. Note that nce_state could be 2580 * something other than ND_REACHABLE if the nce had just expired and 2581 * the ire_create preceding the ire_add added a new ND_INITIAL nce. 2582 */ 2583 int 2584 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func, 2585 boolean_t allow_unresolved) 2586 { 2587 ire_t *ire1; 2588 ill_t *stq_ill = NULL; 2589 ill_t *ill; 2590 ipif_t *ipif = NULL; 2591 ill_walk_context_t ctx; 2592 ire_t *ire = *irep; 2593 int error; 2594 boolean_t ire_is_mblk = B_FALSE; 2595 tsol_gcgrp_t *gcgrp = NULL; 2596 tsol_gcgrp_addr_t ga; 2597 ip_stack_t *ipst = ire->ire_ipst; 2598 2599 /* get ready for the day when original ire is not created as mblk */ 2600 if (ire->ire_mp != NULL) { 2601 ire_is_mblk = B_TRUE; 2602 /* Copy the ire to a kmem_alloc'ed area */ 2603 ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 2604 if (ire1 == NULL) { 2605 ip1dbg(("ire_add: alloc failed\n")); 2606 ire_delete(ire); 2607 *irep = NULL; 2608 return (ENOMEM); 2609 } 2610 ire->ire_marks &= ~IRE_MARK_UNCACHED; 2611 *ire1 = *ire; 2612 ire1->ire_mp = NULL; 2613 ire1->ire_stq_ifindex = 0; 2614 freeb(ire->ire_mp); 2615 ire = ire1; 2616 } 2617 if (ire->ire_stq != NULL) 2618 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2619 2620 if (ire->ire_type == IRE_CACHE) { 2621 /* 2622 * If this interface is FAILED, or INACTIVE or has hit 2623 * the FAILBACK=no case, we create IRE_CACHES marked 2624 * HIDDEN for some special cases e.g. bind to 2625 * IPIF_NOFAILOVER address etc. So, if this interface 2626 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are 2627 * not creating hidden ires, we should not allow that. 2628 * This happens because the state of the interface 2629 * changed while we were waiting in ARP. If this is the 2630 * daemon sending probes, the next probe will create 2631 * HIDDEN ires and we will create an ire then. This 2632 * cannot happen with NDP currently because IRE is 2633 * never queued in NDP. But it can happen in the 2634 * future when we have external resolvers with IPv6. 2635 * If the interface gets marked with OFFLINE while we 2636 * are waiting in ARP, don't add the ire. 2637 */ 2638 if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 2639 (ill_is_probeonly(stq_ill) && 2640 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 2641 /* 2642 * We don't know whether it is a valid ipif or not. 2643 * unless we do the check below. So, set it to NULL. 2644 */ 2645 ire->ire_ipif = NULL; 2646 ire_delete(ire); 2647 *irep = NULL; 2648 return (EINVAL); 2649 } 2650 } 2651 2652 if (stq_ill != NULL && ire->ire_type == IRE_CACHE && 2653 stq_ill->ill_net_type == IRE_IF_RESOLVER) { 2654 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2655 ill = ILL_START_WALK_ALL(&ctx, ipst); 2656 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 2657 mutex_enter(&ill->ill_lock); 2658 if (ill->ill_state_flags & ILL_CONDEMNED) { 2659 mutex_exit(&ill->ill_lock); 2660 continue; 2661 } 2662 /* 2663 * We need to make sure that the ipif is a valid one 2664 * before adding the IRE_CACHE. This happens only 2665 * with IRE_CACHE when there is an external resolver. 2666 * 2667 * We can unplumb a logical interface while the 2668 * packet is waiting in ARP with the IRE. Then, 2669 * later on when we feed the IRE back, the ipif 2670 * has to be re-checked. This can't happen with 2671 * NDP currently, as we never queue the IRE with 2672 * the packet. We always try to recreate the IRE 2673 * when the resolution is completed. But, we do 2674 * it for IPv6 also here so that in future if 2675 * we have external resolvers, it will work without 2676 * any change. 2677 */ 2678 ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid); 2679 if (ipif != NULL) { 2680 ipif_refhold_locked(ipif); 2681 mutex_exit(&ill->ill_lock); 2682 break; 2683 } 2684 mutex_exit(&ill->ill_lock); 2685 } 2686 rw_exit(&ipst->ips_ill_g_lock); 2687 if (ipif == NULL || 2688 (ipif->ipif_isv6 && 2689 !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 2690 &ipif->ipif_v6src_addr)) || 2691 (!ipif->ipif_isv6 && 2692 ire->ire_src_addr != ipif->ipif_src_addr) || 2693 ire->ire_zoneid != ipif->ipif_zoneid) { 2694 2695 if (ipif != NULL) 2696 ipif_refrele(ipif); 2697 ire->ire_ipif = NULL; 2698 ire_delete(ire); 2699 *irep = NULL; 2700 return (EINVAL); 2701 } 2702 2703 2704 ASSERT(ill != NULL); 2705 /* 2706 * If this group was dismantled while this packets was 2707 * queued in ARP, don't add it here. 2708 */ 2709 if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) { 2710 /* We don't want ire_inactive bump stats for this */ 2711 ipif_refrele(ipif); 2712 ire->ire_ipif = NULL; 2713 ire_delete(ire); 2714 *irep = NULL; 2715 return (EINVAL); 2716 } 2717 2718 /* 2719 * Since we didn't attach label security attributes to the 2720 * ire for the resolver case, we need to add it now. (only 2721 * for v4 resolver and v6 xresolv case). 2722 */ 2723 if (is_system_labeled() && ire_is_mblk) { 2724 if (ire->ire_ipversion == IPV4_VERSION) { 2725 ga.ga_af = AF_INET; 2726 IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr != 2727 INADDR_ANY ? ire->ire_gateway_addr : 2728 ire->ire_addr, &ga.ga_addr); 2729 } else { 2730 ga.ga_af = AF_INET6; 2731 ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED( 2732 &ire->ire_gateway_addr_v6) ? 2733 ire->ire_addr_v6 : 2734 ire->ire_gateway_addr_v6; 2735 } 2736 gcgrp = gcgrp_lookup(&ga, B_FALSE); 2737 error = tsol_ire_init_gwattr(ire, ire->ire_ipversion, 2738 NULL, gcgrp); 2739 if (error != 0) { 2740 if (gcgrp != NULL) { 2741 GCGRP_REFRELE(gcgrp); 2742 gcgrp = NULL; 2743 } 2744 ipif_refrele(ipif); 2745 ire->ire_ipif = NULL; 2746 ire_delete(ire); 2747 *irep = NULL; 2748 return (error); 2749 } 2750 } 2751 } 2752 2753 /* 2754 * In case ire was changed 2755 */ 2756 *irep = ire; 2757 if (ire->ire_ipversion == IPV6_VERSION) 2758 error = ire_add_v6(irep, q, mp, func); 2759 else 2760 error = ire_add_v4(irep, q, mp, func, allow_unresolved); 2761 if (ipif != NULL) 2762 ipif_refrele(ipif); 2763 return (error); 2764 } 2765 2766 /* 2767 * Add an initialized IRE to an appropriate table based on ire_type. 2768 * 2769 * The forward table contains IRE_PREFIX/IRE_HOST and 2770 * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. 2771 * 2772 * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK 2773 * and IRE_CACHE. 2774 * 2775 * NOTE : This function is called as writer though not required 2776 * by this function. 2777 */ 2778 static int 2779 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func, 2780 boolean_t allow_unresolved) 2781 { 2782 ire_t *ire1; 2783 irb_t *irb_ptr; 2784 ire_t **irep; 2785 int flags; 2786 ire_t *pire = NULL; 2787 ill_t *stq_ill; 2788 ire_t *ire = *ire_p; 2789 int error; 2790 boolean_t need_refrele = B_FALSE; 2791 nce_t *nce; 2792 ip_stack_t *ipst = ire->ire_ipst; 2793 2794 if (ire->ire_ipif != NULL) 2795 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 2796 if (ire->ire_stq != NULL) 2797 ASSERT(!MUTEX_HELD( 2798 &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock)); 2799 ASSERT(ire->ire_ipversion == IPV4_VERSION); 2800 ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ 2801 2802 /* Find the appropriate list head. */ 2803 switch (ire->ire_type) { 2804 case IRE_HOST: 2805 ire->ire_mask = IP_HOST_MASK; 2806 ire->ire_masklen = IP_ABITS; 2807 if ((ire->ire_flags & RTF_SETSRC) == 0) 2808 ire->ire_src_addr = 0; 2809 break; 2810 case IRE_CACHE: 2811 case IRE_BROADCAST: 2812 case IRE_LOCAL: 2813 case IRE_LOOPBACK: 2814 ire->ire_mask = IP_HOST_MASK; 2815 ire->ire_masklen = IP_ABITS; 2816 break; 2817 case IRE_PREFIX: 2818 if ((ire->ire_flags & RTF_SETSRC) == 0) 2819 ire->ire_src_addr = 0; 2820 break; 2821 case IRE_DEFAULT: 2822 if ((ire->ire_flags & RTF_SETSRC) == 0) 2823 ire->ire_src_addr = 0; 2824 break; 2825 case IRE_IF_RESOLVER: 2826 case IRE_IF_NORESOLVER: 2827 break; 2828 default: 2829 ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n", 2830 (void *)ire, ire->ire_type)); 2831 ire_delete(ire); 2832 *ire_p = NULL; 2833 return (EINVAL); 2834 } 2835 2836 /* Make sure the address is properly masked. */ 2837 ire->ire_addr &= ire->ire_mask; 2838 2839 /* 2840 * ip_newroute/ip_newroute_multi are unable to prevent the deletion 2841 * of the interface route while adding an IRE_CACHE for an on-link 2842 * destination in the IRE_IF_RESOLVER case, since the ire has to 2843 * go to ARP and return. We can't do a REFHOLD on the 2844 * associated interface ire for fear of ARP freeing the message. 2845 * Here we look up the interface ire in the forwarding table and 2846 * make sure that the interface route has not been deleted. 2847 */ 2848 if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 && 2849 ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) { 2850 2851 ASSERT(ire->ire_max_fragp == NULL); 2852 if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) { 2853 /* 2854 * The ihandle that we used in ip_newroute_multi 2855 * comes from the interface route corresponding 2856 * to ire_ipif. Lookup here to see if it exists 2857 * still. 2858 * If the ire has a source address assigned using 2859 * RTF_SETSRC, ire_ipif is the logical interface holding 2860 * this source address, so we can't use it to check for 2861 * the existence of the interface route. Instead we rely 2862 * on the brute force ihandle search in 2863 * ire_ihandle_lookup_onlink() below. 2864 */ 2865 pire = ipif_to_ire(ire->ire_ipif); 2866 if (pire == NULL) { 2867 ire_delete(ire); 2868 *ire_p = NULL; 2869 return (EINVAL); 2870 } else if (pire->ire_ihandle != ire->ire_ihandle) { 2871 ire_refrele(pire); 2872 ire_delete(ire); 2873 *ire_p = NULL; 2874 return (EINVAL); 2875 } 2876 } else { 2877 pire = ire_ihandle_lookup_onlink(ire); 2878 if (pire == NULL) { 2879 ire_delete(ire); 2880 *ire_p = NULL; 2881 return (EINVAL); 2882 } 2883 } 2884 /* Prevent pire from getting deleted */ 2885 IRB_REFHOLD(pire->ire_bucket); 2886 /* Has it been removed already ? */ 2887 if (pire->ire_marks & IRE_MARK_CONDEMNED) { 2888 IRB_REFRELE(pire->ire_bucket); 2889 ire_refrele(pire); 2890 ire_delete(ire); 2891 *ire_p = NULL; 2892 return (EINVAL); 2893 } 2894 } else { 2895 ASSERT(ire->ire_max_fragp != NULL); 2896 } 2897 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 2898 2899 if (ire->ire_ipif != NULL) { 2900 /* 2901 * We use MATCH_IRE_IPIF while adding IRE_CACHES only 2902 * for historic reasons and to maintain symmetry with 2903 * IPv6 code path. Historically this was used by 2904 * multicast code to create multiple IRE_CACHES on 2905 * a single ill with different ipifs. This was used 2906 * so that multicast packets leaving the node had the 2907 * right source address. This is no longer needed as 2908 * ip_wput initializes the address correctly. 2909 */ 2910 flags |= MATCH_IRE_IPIF; 2911 /* 2912 * If we are creating hidden ires, make sure we search on 2913 * this ill (MATCH_IRE_ILL) and a hidden ire, 2914 * while we are searching for duplicates below. Otherwise we 2915 * could potentially find an IRE on some other interface 2916 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We 2917 * shouldn't do this as this will lead to an infinite loop 2918 * (if we get to ip_wput again) eventually we need an hidden 2919 * ire for this packet to go out. MATCH_IRE_ILL is explicitly 2920 * done below. 2921 */ 2922 if (ire->ire_type == IRE_CACHE && 2923 (ire->ire_marks & IRE_MARK_HIDDEN)) 2924 flags |= (MATCH_IRE_MARK_HIDDEN); 2925 } 2926 if ((ire->ire_type & IRE_CACHETABLE) == 0) { 2927 irb_ptr = ire_get_bucket(ire); 2928 need_refrele = B_TRUE; 2929 if (irb_ptr == NULL) { 2930 /* 2931 * This assumes that the ire has not added 2932 * a reference to the ipif. 2933 */ 2934 ire->ire_ipif = NULL; 2935 ire_delete(ire); 2936 if (pire != NULL) { 2937 IRB_REFRELE(pire->ire_bucket); 2938 ire_refrele(pire); 2939 } 2940 *ire_p = NULL; 2941 return (EINVAL); 2942 } 2943 } else { 2944 irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH( 2945 ire->ire_addr, ipst->ips_ip_cache_table_size)]); 2946 } 2947 2948 /* 2949 * Start the atomic add of the ire. Grab the ill locks, 2950 * ill_g_usesrc_lock and the bucket lock. Check for condemned 2951 * 2952 * If ipif or ill is changing ire_atomic_start() may queue the 2953 * request and return EINPROGRESS. 2954 * To avoid lock order problems, get the ndp4->ndp_g_lock. 2955 */ 2956 mutex_enter(&ipst->ips_ndp4->ndp_g_lock); 2957 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 2958 if (error != 0) { 2959 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 2960 /* 2961 * We don't know whether it is a valid ipif or not. 2962 * So, set it to NULL. This assumes that the ire has not added 2963 * a reference to the ipif. 2964 */ 2965 ire->ire_ipif = NULL; 2966 ire_delete(ire); 2967 if (pire != NULL) { 2968 IRB_REFRELE(pire->ire_bucket); 2969 ire_refrele(pire); 2970 } 2971 *ire_p = NULL; 2972 if (need_refrele) 2973 IRB_REFRELE(irb_ptr); 2974 return (error); 2975 } 2976 /* 2977 * To avoid creating ires having stale values for the ire_max_frag 2978 * we get the latest value atomically here. For more details 2979 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE 2980 * in ip_rput_dlpi_writer 2981 */ 2982 if (ire->ire_max_fragp == NULL) { 2983 if (CLASSD(ire->ire_addr)) 2984 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 2985 else 2986 ire->ire_max_frag = pire->ire_max_frag; 2987 } else { 2988 uint_t max_frag; 2989 2990 max_frag = *ire->ire_max_fragp; 2991 ire->ire_max_fragp = NULL; 2992 ire->ire_max_frag = max_frag; 2993 } 2994 /* 2995 * Atomically check for duplicate and insert in the table. 2996 */ 2997 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 2998 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 2999 continue; 3000 if (ire->ire_ipif != NULL) { 3001 /* 3002 * We do MATCH_IRE_ILL implicitly here for IREs 3003 * with a non-null ire_ipif, including IRE_CACHEs. 3004 * As ire_ipif and ire_stq could point to two 3005 * different ills, we can't pass just ire_ipif to 3006 * ire_match_args and get a match on both ills. 3007 * This is just needed for duplicate checks here and 3008 * so we don't add an extra argument to 3009 * ire_match_args for this. Do it locally. 3010 * 3011 * NOTE : Currently there is no part of the code 3012 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL 3013 * match for IRE_CACHEs. Thus we don't want to 3014 * extend the arguments to ire_match_args. 3015 */ 3016 if (ire1->ire_stq != ire->ire_stq) 3017 continue; 3018 /* 3019 * Multiroute IRE_CACHEs for a given destination can 3020 * have the same ire_ipif, typically if their source 3021 * address is forced using RTF_SETSRC, and the same 3022 * send-to queue. We differentiate them using the parent 3023 * handle. 3024 */ 3025 if (ire->ire_type == IRE_CACHE && 3026 (ire1->ire_flags & RTF_MULTIRT) && 3027 (ire->ire_flags & RTF_MULTIRT) && 3028 (ire1->ire_phandle != ire->ire_phandle)) 3029 continue; 3030 } 3031 if (ire1->ire_zoneid != ire->ire_zoneid) 3032 continue; 3033 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 3034 ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif, 3035 ire->ire_zoneid, 0, NULL, flags)) { 3036 /* 3037 * Return the old ire after doing a REFHOLD. 3038 * As most of the callers continue to use the IRE 3039 * after adding, we return a held ire. This will 3040 * avoid a lookup in the caller again. If the callers 3041 * don't want to use it, they need to do a REFRELE. 3042 */ 3043 ip1dbg(("found dup ire existing %p new %p", 3044 (void *)ire1, (void *)ire)); 3045 IRE_REFHOLD(ire1); 3046 ire_atomic_end(irb_ptr, ire); 3047 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3048 ire_delete(ire); 3049 if (pire != NULL) { 3050 /* 3051 * Assert that it is not removed from the 3052 * list yet. 3053 */ 3054 ASSERT(pire->ire_ptpn != NULL); 3055 IRB_REFRELE(pire->ire_bucket); 3056 ire_refrele(pire); 3057 } 3058 *ire_p = ire1; 3059 if (need_refrele) 3060 IRB_REFRELE(irb_ptr); 3061 return (0); 3062 } 3063 } 3064 if (ire->ire_type & IRE_CACHE) { 3065 ASSERT(ire->ire_stq != NULL); 3066 nce = ndp_lookup_v4(ire_to_ill(ire), 3067 ((ire->ire_gateway_addr != INADDR_ANY) ? 3068 &ire->ire_gateway_addr : &ire->ire_addr), 3069 B_TRUE); 3070 if (nce != NULL) 3071 mutex_enter(&nce->nce_lock); 3072 /* 3073 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE 3074 * and the caller has prohibited the addition of incomplete 3075 * ire's, we fail the add. Note that nce_state could be 3076 * something other than ND_REACHABLE if the nce had 3077 * just expired and the ire_create preceding the 3078 * ire_add added a new ND_INITIAL nce. 3079 */ 3080 if ((nce == NULL) || 3081 (nce->nce_flags & NCE_F_CONDEMNED) || 3082 (!allow_unresolved && 3083 (nce->nce_state != ND_REACHABLE))) { 3084 if (nce != NULL) { 3085 DTRACE_PROBE1(ire__bad__nce, nce_t *, nce); 3086 mutex_exit(&nce->nce_lock); 3087 } 3088 ire_atomic_end(irb_ptr, ire); 3089 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3090 if (nce != NULL) 3091 NCE_REFRELE(nce); 3092 DTRACE_PROBE1(ire__no__nce, ire_t *, ire); 3093 ire_delete(ire); 3094 if (pire != NULL) { 3095 IRB_REFRELE(pire->ire_bucket); 3096 ire_refrele(pire); 3097 } 3098 *ire_p = NULL; 3099 if (need_refrele) 3100 IRB_REFRELE(irb_ptr); 3101 return (EINVAL); 3102 } else { 3103 ire->ire_nce = nce; 3104 mutex_exit(&nce->nce_lock); 3105 /* 3106 * We are associating this nce to the ire, so 3107 * change the nce ref taken in ndp_lookup_v4() from 3108 * NCE_REFHOLD to NCE_REFHOLD_NOTR 3109 */ 3110 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 3111 } 3112 } 3113 /* 3114 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by 3115 * grouping identical addresses together on the hash chain. We also 3116 * don't want to send multiple copies out if there are two ills part 3117 * of the same group. Thus we group the ires with same addr and same 3118 * ill group together so that ip_wput_ire can easily skip all the 3119 * ires with same addr and same group after sending the first copy. 3120 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently 3121 * interested in such groupings only for broadcasts. 3122 * 3123 * NOTE : If the interfaces are brought up first and then grouped, 3124 * illgrp_insert will handle it. We come here when the interfaces 3125 * are already in group and we are bringing them UP. 3126 * 3127 * Find the first entry that matches ire_addr. *irep will be null 3128 * if no match. 3129 * 3130 * Note: the loopback and non-loopback broadcast entries for an 3131 * interface MUST be added before any MULTIRT entries. 3132 */ 3133 irep = (ire_t **)irb_ptr; 3134 while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr) 3135 irep = &ire1->ire_next; 3136 if (ire->ire_type == IRE_BROADCAST && *irep != NULL) { 3137 /* 3138 * We found some ire (i.e *irep) with a matching addr. We 3139 * want to group ires with same addr and same ill group 3140 * together. 3141 * 3142 * First get to the entry that matches our address and 3143 * ill group i.e stop as soon as we find the first ire 3144 * matching the ill group and address. If there is only 3145 * an address match, we should walk and look for some 3146 * group match. These are some of the possible scenarios : 3147 * 3148 * 1) There are no groups at all i.e all ire's ill_group 3149 * are NULL. In that case we will essentially group 3150 * all the ires with the same addr together. Same as 3151 * the "else" block of this "if". 3152 * 3153 * 2) There are some groups and this ire's ill_group is 3154 * NULL. In this case, we will first find the group 3155 * that matches the address and a NULL group. Then 3156 * we will insert the ire at the end of that group. 3157 * 3158 * 3) There are some groups and this ires's ill_group is 3159 * non-NULL. In this case we will first find the group 3160 * that matches the address and the ill_group. Then 3161 * we will insert the ire at the end of that group. 3162 */ 3163 for (;;) { 3164 ire1 = *irep; 3165 if ((ire1->ire_next == NULL) || 3166 (ire1->ire_next->ire_addr != ire->ire_addr) || 3167 (ire1->ire_type != IRE_BROADCAST) || 3168 (ire1->ire_flags & RTF_MULTIRT) || 3169 (ire1->ire_ipif->ipif_ill->ill_group == 3170 ire->ire_ipif->ipif_ill->ill_group)) 3171 break; 3172 irep = &ire1->ire_next; 3173 } 3174 ASSERT(*irep != NULL); 3175 /* 3176 * The ire will be added before *irep, so 3177 * if irep is a MULTIRT ire, just break to 3178 * ire insertion code. 3179 */ 3180 if (((*irep)->ire_flags & RTF_MULTIRT) != 0) 3181 goto insert_ire; 3182 3183 irep = &((*irep)->ire_next); 3184 3185 /* 3186 * Either we have hit the end of the list or the address 3187 * did not match or the group *matched*. If we found 3188 * a match on the group, skip to the end of the group. 3189 */ 3190 while (*irep != NULL) { 3191 ire1 = *irep; 3192 if ((ire1->ire_addr != ire->ire_addr) || 3193 (ire1->ire_type != IRE_BROADCAST) || 3194 (ire1->ire_ipif->ipif_ill->ill_group != 3195 ire->ire_ipif->ipif_ill->ill_group)) 3196 break; 3197 if (ire1->ire_ipif->ipif_ill->ill_group == NULL && 3198 ire1->ire_ipif == ire->ire_ipif) { 3199 irep = &ire1->ire_next; 3200 break; 3201 } 3202 irep = &ire1->ire_next; 3203 } 3204 } else if (*irep != NULL) { 3205 /* 3206 * Find the last ire which matches ire_addr. 3207 * Needed to do tail insertion among entries with the same 3208 * ire_addr. 3209 */ 3210 while (ire->ire_addr == ire1->ire_addr) { 3211 irep = &ire1->ire_next; 3212 ire1 = *irep; 3213 if (ire1 == NULL) 3214 break; 3215 } 3216 } 3217 3218 insert_ire: 3219 /* Insert at *irep */ 3220 ire1 = *irep; 3221 if (ire1 != NULL) 3222 ire1->ire_ptpn = &ire->ire_next; 3223 ire->ire_next = ire1; 3224 /* Link the new one in. */ 3225 ire->ire_ptpn = irep; 3226 3227 /* 3228 * ire_walk routines de-reference ire_next without holding 3229 * a lock. Before we point to the new ire, we want to make 3230 * sure the store that sets the ire_next of the new ire 3231 * reaches global visibility, so that ire_walk routines 3232 * don't see a truncated list of ires i.e if the ire_next 3233 * of the new ire gets set after we do "*irep = ire" due 3234 * to re-ordering, the ire_walk thread will see a NULL 3235 * once it accesses the ire_next of the new ire. 3236 * membar_producer() makes sure that the following store 3237 * happens *after* all of the above stores. 3238 */ 3239 membar_producer(); 3240 *irep = ire; 3241 ire->ire_bucket = irb_ptr; 3242 /* 3243 * We return a bumped up IRE above. Keep it symmetrical 3244 * so that the callers will always have to release. This 3245 * helps the callers of this function because they continue 3246 * to use the IRE after adding and hence they don't have to 3247 * lookup again after we return the IRE. 3248 * 3249 * NOTE : We don't have to use atomics as this is appearing 3250 * in the list for the first time and no one else can bump 3251 * up the reference count on this yet. 3252 */ 3253 IRE_REFHOLD_LOCKED(ire); 3254 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 3255 3256 irb_ptr->irb_ire_cnt++; 3257 if (irb_ptr->irb_marks & IRB_MARK_FTABLE) 3258 irb_ptr->irb_nire++; 3259 3260 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3261 irb_ptr->irb_tmp_ire_cnt++; 3262 3263 if (ire->ire_ipif != NULL) { 3264 ire->ire_ipif->ipif_ire_cnt++; 3265 if (ire->ire_stq != NULL) { 3266 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3267 stq_ill->ill_ire_cnt++; 3268 } 3269 } else { 3270 ASSERT(ire->ire_stq == NULL); 3271 } 3272 3273 ire_atomic_end(irb_ptr, ire); 3274 mutex_exit(&ipst->ips_ndp4->ndp_g_lock); 3275 3276 if (pire != NULL) { 3277 /* Assert that it is not removed from the list yet */ 3278 ASSERT(pire->ire_ptpn != NULL); 3279 IRB_REFRELE(pire->ire_bucket); 3280 ire_refrele(pire); 3281 } 3282 3283 if (ire->ire_type != IRE_CACHE) { 3284 /* 3285 * For ire's with host mask see if there is an entry 3286 * in the cache. If there is one flush the whole cache as 3287 * there might be multiple entries due to RTF_MULTIRT (CGTP). 3288 * If no entry is found than there is no need to flush the 3289 * cache. 3290 */ 3291 if (ire->ire_mask == IP_HOST_MASK) { 3292 ire_t *lire; 3293 lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE, 3294 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3295 if (lire != NULL) { 3296 ire_refrele(lire); 3297 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3298 } 3299 } else { 3300 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3301 } 3302 } 3303 /* 3304 * We had to delay the fast path probe until the ire is inserted 3305 * in the list. Otherwise the fast path ack won't find the ire in 3306 * the table. 3307 */ 3308 if (ire->ire_type == IRE_CACHE || 3309 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) { 3310 ASSERT(ire->ire_nce != NULL); 3311 if (ire->ire_nce->nce_state == ND_REACHABLE) 3312 nce_fastpath(ire->ire_nce); 3313 } 3314 if (ire->ire_ipif != NULL) 3315 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3316 *ire_p = ire; 3317 if (need_refrele) { 3318 IRB_REFRELE(irb_ptr); 3319 } 3320 return (0); 3321 } 3322 3323 /* 3324 * IRB_REFRELE is the only caller of the function. ire_unlink calls to 3325 * do the final cleanup for this ire. 3326 */ 3327 void 3328 ire_cleanup(ire_t *ire) 3329 { 3330 ire_t *ire_next; 3331 ip_stack_t *ipst = ire->ire_ipst; 3332 3333 ASSERT(ire != NULL); 3334 3335 while (ire != NULL) { 3336 ire_next = ire->ire_next; 3337 if (ire->ire_ipversion == IPV4_VERSION) { 3338 ire_delete_v4(ire); 3339 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 3340 ire_stats_deleted); 3341 } else { 3342 ASSERT(ire->ire_ipversion == IPV6_VERSION); 3343 ire_delete_v6(ire); 3344 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, 3345 ire_stats_deleted); 3346 } 3347 /* 3348 * Now it's really out of the list. Before doing the 3349 * REFRELE, set ire_next to NULL as ire_inactive asserts 3350 * so. 3351 */ 3352 ire->ire_next = NULL; 3353 IRE_REFRELE_NOTR(ire); 3354 ire = ire_next; 3355 } 3356 } 3357 3358 /* 3359 * IRB_REFRELE is the only caller of the function. It calls to unlink 3360 * all the CONDEMNED ires from this bucket. 3361 */ 3362 ire_t * 3363 ire_unlink(irb_t *irb) 3364 { 3365 ire_t *ire; 3366 ire_t *ire1; 3367 ire_t **ptpn; 3368 ire_t *ire_list = NULL; 3369 3370 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 3371 ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) || 3372 (irb->irb_refcnt == 0)); 3373 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 3374 ASSERT(irb->irb_ire != NULL); 3375 3376 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 3377 ip_stack_t *ipst = ire->ire_ipst; 3378 3379 ire1 = ire->ire_next; 3380 if (ire->ire_marks & IRE_MARK_CONDEMNED) { 3381 ptpn = ire->ire_ptpn; 3382 ire1 = ire->ire_next; 3383 if (ire1) 3384 ire1->ire_ptpn = ptpn; 3385 *ptpn = ire1; 3386 ire->ire_ptpn = NULL; 3387 ire->ire_next = NULL; 3388 if (ire->ire_type == IRE_DEFAULT) { 3389 /* 3390 * IRE is out of the list. We need to adjust 3391 * the accounting before the caller drops 3392 * the lock. 3393 */ 3394 if (ire->ire_ipversion == IPV6_VERSION) { 3395 ASSERT(ipst-> 3396 ips_ipv6_ire_default_count != 3397 0); 3398 ipst->ips_ipv6_ire_default_count--; 3399 } 3400 } 3401 /* 3402 * We need to call ire_delete_v4 or ire_delete_v6 3403 * to clean up the cache or the redirects pointing at 3404 * the default gateway. We need to drop the lock 3405 * as ire_flush_cache/ire_delete_host_redircts require 3406 * so. But we can't drop the lock, as ire_unlink needs 3407 * to atomically remove the ires from the list. 3408 * So, create a temporary list of CONDEMNED ires 3409 * for doing ire_delete_v4/ire_delete_v6 operations 3410 * later on. 3411 */ 3412 ire->ire_next = ire_list; 3413 ire_list = ire; 3414 } 3415 } 3416 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 3417 return (ire_list); 3418 } 3419 3420 /* 3421 * Delete all the cache entries with this 'addr'. When IP gets a gratuitous 3422 * ARP message on any of its interface queue, it scans the nce table and 3423 * deletes and calls ndp_delete() for the appropriate nce. This action 3424 * also deletes all the neighbor/ire cache entries for that address. 3425 * This function is called from ip_arp_news in ip.c and also for 3426 * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns 3427 * true if it finds a nce entry which is used by ip_arp_news to determine if 3428 * it needs to do an ire_walk_v4. The return value is also used for the 3429 * same purpose by ARP IOCTL processing * in ip_if.c when deleting 3430 * ARP entries. For SIOC*IFARP ioctls in addition to the address, 3431 * ip_if->ipif_ill also needs to be matched. 3432 */ 3433 boolean_t 3434 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst) 3435 { 3436 ill_t *ill; 3437 nce_t *nce; 3438 3439 ill = (ipif ? ipif->ipif_ill : NULL); 3440 3441 if (ill != NULL) { 3442 /* 3443 * clean up the nce (and any relevant ire's) that matches 3444 * on addr and ill. 3445 */ 3446 nce = ndp_lookup_v4(ill, &addr, B_FALSE); 3447 if (nce != NULL) { 3448 ndp_delete(nce); 3449 return (B_TRUE); 3450 } 3451 } else { 3452 /* 3453 * ill is wildcard. clean up all nce's and 3454 * ire's that match on addr 3455 */ 3456 nce_clookup_t cl; 3457 3458 cl.ncecl_addr = addr; 3459 cl.ncecl_found = B_FALSE; 3460 3461 ndp_walk_common(ipst->ips_ndp4, NULL, 3462 (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE); 3463 3464 /* 3465 * ncecl_found would be set by ip_nce_clookup_and_delete if 3466 * we found a matching nce. 3467 */ 3468 return (cl.ncecl_found); 3469 } 3470 return (B_FALSE); 3471 3472 } 3473 3474 /* Delete the supplied nce if its nce_addr matches the supplied address */ 3475 static void 3476 ip_nce_clookup_and_delete(nce_t *nce, void *arg) 3477 { 3478 nce_clookup_t *cl = (nce_clookup_t *)arg; 3479 ipaddr_t nce_addr; 3480 3481 IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr); 3482 if (nce_addr == cl->ncecl_addr) { 3483 cl->ncecl_found = B_TRUE; 3484 /* clean up the nce (and any relevant ire's) */ 3485 ndp_delete(nce); 3486 } 3487 } 3488 3489 /* 3490 * Clean up the radix node for this ire. Must be called by IRB_REFRELE 3491 * when there are no ire's left in the bucket. Returns TRUE if the bucket 3492 * is deleted and freed. 3493 */ 3494 boolean_t 3495 irb_inactive(irb_t *irb) 3496 { 3497 struct rt_entry *rt; 3498 struct radix_node *rn; 3499 ip_stack_t *ipst = irb->irb_ipst; 3500 3501 ASSERT(irb->irb_ipst != NULL); 3502 3503 rt = IRB2RT(irb); 3504 rn = (struct radix_node *)rt; 3505 3506 /* first remove it from the radix tree. */ 3507 RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); 3508 rw_enter(&irb->irb_lock, RW_WRITER); 3509 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 3510 rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 3511 ipst->ips_ip_ftable); 3512 DTRACE_PROBE1(irb__free, rt_t *, rt); 3513 ASSERT((void *)rn == (void *)rt); 3514 Free(rt, rt_entry_cache); 3515 /* irb_lock is freed */ 3516 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3517 return (B_TRUE); 3518 } 3519 rw_exit(&irb->irb_lock); 3520 RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); 3521 return (B_FALSE); 3522 } 3523 3524 /* 3525 * Delete the specified IRE. 3526 */ 3527 void 3528 ire_delete(ire_t *ire) 3529 { 3530 ire_t *ire1; 3531 ire_t **ptpn; 3532 irb_t *irb; 3533 ip_stack_t *ipst = ire->ire_ipst; 3534 3535 if ((irb = ire->ire_bucket) == NULL) { 3536 /* 3537 * It was never inserted in the list. Should call REFRELE 3538 * to free this IRE. 3539 */ 3540 IRE_REFRELE_NOTR(ire); 3541 return; 3542 } 3543 3544 rw_enter(&irb->irb_lock, RW_WRITER); 3545 3546 if (irb->irb_rr_origin == ire) { 3547 irb->irb_rr_origin = NULL; 3548 } 3549 3550 /* 3551 * In case of V4 we might still be waiting for fastpath ack. 3552 */ 3553 if (ire->ire_ipversion == IPV4_VERSION && 3554 (ire->ire_type == IRE_CACHE || 3555 (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) { 3556 ASSERT(ire->ire_nce != NULL); 3557 nce_fastpath_list_delete(ire->ire_nce); 3558 } 3559 3560 if (ire->ire_ptpn == NULL) { 3561 /* 3562 * Some other thread has removed us from the list. 3563 * It should have done the REFRELE for us. 3564 */ 3565 rw_exit(&irb->irb_lock); 3566 return; 3567 } 3568 3569 if (irb->irb_refcnt != 0) { 3570 /* 3571 * The last thread to leave this bucket will 3572 * delete this ire. 3573 */ 3574 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3575 irb->irb_ire_cnt--; 3576 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3577 irb->irb_tmp_ire_cnt--; 3578 ire->ire_marks |= IRE_MARK_CONDEMNED; 3579 } 3580 irb->irb_marks |= IRB_MARK_CONDEMNED; 3581 rw_exit(&irb->irb_lock); 3582 return; 3583 } 3584 3585 /* 3586 * Normally to delete an ire, we walk the bucket. While we 3587 * walk the bucket, we normally bump up irb_refcnt and hence 3588 * we return from above where we mark CONDEMNED and the ire 3589 * gets deleted from ire_unlink. This case is where somebody 3590 * knows the ire e.g by doing a lookup, and wants to delete the 3591 * IRE. irb_refcnt would be 0 in this case if nobody is walking 3592 * the bucket. 3593 */ 3594 ptpn = ire->ire_ptpn; 3595 ire1 = ire->ire_next; 3596 if (ire1 != NULL) 3597 ire1->ire_ptpn = ptpn; 3598 ASSERT(ptpn != NULL); 3599 *ptpn = ire1; 3600 ire->ire_ptpn = NULL; 3601 ire->ire_next = NULL; 3602 if (ire->ire_ipversion == IPV6_VERSION) { 3603 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); 3604 } else { 3605 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); 3606 } 3607 /* 3608 * ip_wput/ip_wput_v6 checks this flag to see whether 3609 * it should still use the cached ire or not. 3610 */ 3611 ire->ire_marks |= IRE_MARK_CONDEMNED; 3612 if (ire->ire_type == IRE_DEFAULT) { 3613 /* 3614 * IRE is out of the list. We need to adjust the 3615 * accounting before we drop the lock. 3616 */ 3617 if (ire->ire_ipversion == IPV6_VERSION) { 3618 ASSERT(ipst->ips_ipv6_ire_default_count != 0); 3619 ipst->ips_ipv6_ire_default_count--; 3620 } 3621 } 3622 irb->irb_ire_cnt--; 3623 3624 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3625 irb->irb_tmp_ire_cnt--; 3626 rw_exit(&irb->irb_lock); 3627 3628 if (ire->ire_ipversion == IPV6_VERSION) { 3629 ire_delete_v6(ire); 3630 } else { 3631 ire_delete_v4(ire); 3632 } 3633 /* 3634 * We removed it from the list. Decrement the 3635 * reference count. 3636 */ 3637 IRE_REFRELE_NOTR(ire); 3638 } 3639 3640 /* 3641 * Delete the specified IRE. 3642 * All calls should use ire_delete(). 3643 * Sometimes called as writer though not required by this function. 3644 * 3645 * NOTE : This function is called only if the ire was added 3646 * in the list. 3647 */ 3648 static void 3649 ire_delete_v4(ire_t *ire) 3650 { 3651 ip_stack_t *ipst = ire->ire_ipst; 3652 3653 ASSERT(ire->ire_refcnt >= 1); 3654 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3655 3656 if (ire->ire_type != IRE_CACHE) 3657 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 3658 if (ire->ire_type == IRE_DEFAULT) { 3659 /* 3660 * when a default gateway is going away 3661 * delete all the host redirects pointing at that 3662 * gateway. 3663 */ 3664 ire_delete_host_redirects(ire->ire_gateway_addr, ipst); 3665 } 3666 } 3667 3668 /* 3669 * IRE_REFRELE/ire_refrele are the only caller of the function. It calls 3670 * to free the ire when the reference count goes to zero. 3671 */ 3672 void 3673 ire_inactive(ire_t *ire) 3674 { 3675 nce_t *nce; 3676 ill_t *ill = NULL; 3677 ill_t *stq_ill = NULL; 3678 ipif_t *ipif; 3679 boolean_t need_wakeup = B_FALSE; 3680 irb_t *irb; 3681 ip_stack_t *ipst = ire->ire_ipst; 3682 3683 ASSERT(ire->ire_refcnt == 0); 3684 ASSERT(ire->ire_ptpn == NULL); 3685 ASSERT(ire->ire_next == NULL); 3686 3687 if (ire->ire_gw_secattr != NULL) { 3688 ire_gw_secattr_free(ire->ire_gw_secattr); 3689 ire->ire_gw_secattr = NULL; 3690 } 3691 3692 if (ire->ire_mp != NULL) { 3693 ASSERT(ire->ire_bucket == NULL); 3694 mutex_destroy(&ire->ire_lock); 3695 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3696 if (ire->ire_nce != NULL) 3697 NCE_REFRELE_NOTR(ire->ire_nce); 3698 freeb(ire->ire_mp); 3699 return; 3700 } 3701 3702 if ((nce = ire->ire_nce) != NULL) { 3703 NCE_REFRELE_NOTR(nce); 3704 ire->ire_nce = NULL; 3705 } 3706 3707 if (ire->ire_ipif == NULL) 3708 goto end; 3709 3710 ipif = ire->ire_ipif; 3711 ill = ipif->ipif_ill; 3712 3713 if (ire->ire_bucket == NULL) { 3714 /* The ire was never inserted in the table. */ 3715 goto end; 3716 } 3717 3718 /* 3719 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is 3720 * non-null ill_ire_count also goes down by 1. 3721 * 3722 * The ipif that is associated with an ire is ire->ire_ipif and 3723 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call 3724 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as 3725 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only 3726 * in the case of IRE_CACHES when IPMP is used, stq_ill can be 3727 * different. If this is different from ire->ire_ipif->ipif_ill and 3728 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call 3729 * ipif_ill_refrele_tail on the stq_ill. 3730 */ 3731 3732 if (ire->ire_stq != NULL) 3733 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3734 3735 if (stq_ill == NULL || stq_ill == ill) { 3736 /* Optimize the most common case */ 3737 mutex_enter(&ill->ill_lock); 3738 ASSERT(ipif->ipif_ire_cnt != 0); 3739 ipif->ipif_ire_cnt--; 3740 if (ipif->ipif_ire_cnt == 0) 3741 need_wakeup = B_TRUE; 3742 if (stq_ill != NULL) { 3743 ASSERT(stq_ill->ill_ire_cnt != 0); 3744 stq_ill->ill_ire_cnt--; 3745 if (stq_ill->ill_ire_cnt == 0) 3746 need_wakeup = B_TRUE; 3747 } 3748 if (need_wakeup) { 3749 /* Drops the ill lock */ 3750 ipif_ill_refrele_tail(ill); 3751 } else { 3752 mutex_exit(&ill->ill_lock); 3753 } 3754 } else { 3755 /* 3756 * We can't grab all the ill locks at the same time. 3757 * It can lead to recursive lock enter in the call to 3758 * ipif_ill_refrele_tail and later. Instead do it 1 at 3759 * a time. 3760 */ 3761 mutex_enter(&ill->ill_lock); 3762 ASSERT(ipif->ipif_ire_cnt != 0); 3763 ipif->ipif_ire_cnt--; 3764 if (ipif->ipif_ire_cnt == 0) { 3765 /* Drops the lock */ 3766 ipif_ill_refrele_tail(ill); 3767 } else { 3768 mutex_exit(&ill->ill_lock); 3769 } 3770 if (stq_ill != NULL) { 3771 mutex_enter(&stq_ill->ill_lock); 3772 ASSERT(stq_ill->ill_ire_cnt != 0); 3773 stq_ill->ill_ire_cnt--; 3774 if (stq_ill->ill_ire_cnt == 0) { 3775 /* Drops the ill lock */ 3776 ipif_ill_refrele_tail(stq_ill); 3777 } else { 3778 mutex_exit(&stq_ill->ill_lock); 3779 } 3780 } 3781 } 3782 end: 3783 /* This should be true for both V4 and V6 */ 3784 3785 if ((ire->ire_type & IRE_FORWARDTABLE) && 3786 (ire->ire_ipversion == IPV4_VERSION) && 3787 ((irb = ire->ire_bucket) != NULL)) { 3788 rw_enter(&irb->irb_lock, RW_WRITER); 3789 irb->irb_nire--; 3790 /* 3791 * Instead of examining the conditions for freeing 3792 * the radix node here, we do it by calling 3793 * IRB_REFRELE which is a single point in the code 3794 * that embeds that logic. Bump up the refcnt to 3795 * be able to call IRB_REFRELE 3796 */ 3797 IRB_REFHOLD_LOCKED(irb); 3798 rw_exit(&irb->irb_lock); 3799 IRB_REFRELE(irb); 3800 } 3801 ire->ire_ipif = NULL; 3802 3803 #ifdef IRE_DEBUG 3804 ire_trace_inactive(ire); 3805 #endif 3806 mutex_destroy(&ire->ire_lock); 3807 if (ire->ire_ipversion == IPV6_VERSION) { 3808 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); 3809 } else { 3810 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); 3811 } 3812 ASSERT(ire->ire_mp == NULL); 3813 /* Has been allocated out of the cache */ 3814 kmem_cache_free(ire_cache, ire); 3815 } 3816 3817 /* 3818 * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect 3819 * entries that have a given gateway address. 3820 */ 3821 void 3822 ire_delete_cache_gw(ire_t *ire, char *cp) 3823 { 3824 ipaddr_t gw_addr; 3825 3826 if (!(ire->ire_type & IRE_CACHE) && 3827 !(ire->ire_flags & RTF_DYNAMIC)) 3828 return; 3829 3830 bcopy(cp, &gw_addr, sizeof (gw_addr)); 3831 if (ire->ire_gateway_addr == gw_addr) { 3832 ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n", 3833 (int)ntohl(ire->ire_addr), ire->ire_type, 3834 (int)ntohl(ire->ire_gateway_addr))); 3835 ire_delete(ire); 3836 } 3837 } 3838 3839 /* 3840 * Remove all IRE_CACHE entries that match the ire specified. 3841 * 3842 * The flag argument indicates if the flush request is due to addition 3843 * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE). 3844 * 3845 * This routine takes only the IREs from the forwarding table and flushes 3846 * the corresponding entries from the cache table. 3847 * 3848 * When flushing due to the deletion of an old route, it 3849 * just checks the cache handles (ire_phandle and ire_ihandle) and 3850 * deletes the ones that match. 3851 * 3852 * When flushing due to the creation of a new route, it checks 3853 * if a cache entry's address matches the one in the IRE and 3854 * that the cache entry's parent has a less specific mask than the 3855 * one in IRE. The destination of such a cache entry could be the 3856 * gateway for other cache entries, so we need to flush those as 3857 * well by looking for gateway addresses matching the IRE's address. 3858 */ 3859 void 3860 ire_flush_cache_v4(ire_t *ire, int flag) 3861 { 3862 int i; 3863 ire_t *cire; 3864 irb_t *irb; 3865 ip_stack_t *ipst = ire->ire_ipst; 3866 3867 if (ire->ire_type & IRE_CACHE) 3868 return; 3869 3870 /* 3871 * If a default is just created, there is no point 3872 * in going through the cache, as there will not be any 3873 * cached ires. 3874 */ 3875 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) 3876 return; 3877 if (flag == IRE_FLUSH_ADD) { 3878 /* 3879 * This selective flush is due to the addition of 3880 * new IRE. 3881 */ 3882 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3883 irb = &ipst->ips_ip_cache_table[i]; 3884 if ((cire = irb->irb_ire) == NULL) 3885 continue; 3886 IRB_REFHOLD(irb); 3887 for (cire = irb->irb_ire; cire != NULL; 3888 cire = cire->ire_next) { 3889 if (cire->ire_type != IRE_CACHE) 3890 continue; 3891 /* 3892 * If 'cire' belongs to the same subnet 3893 * as the new ire being added, and 'cire' 3894 * is derived from a prefix that is less 3895 * specific than the new ire being added, 3896 * we need to flush 'cire'; for instance, 3897 * when a new interface comes up. 3898 */ 3899 if (((cire->ire_addr & ire->ire_mask) == 3900 (ire->ire_addr & ire->ire_mask)) && 3901 (ip_mask_to_plen(cire->ire_cmask) <= 3902 ire->ire_masklen)) { 3903 ire_delete(cire); 3904 continue; 3905 } 3906 /* 3907 * This is the case when the ire_gateway_addr 3908 * of 'cire' belongs to the same subnet as 3909 * the new ire being added. 3910 * Flushing such ires is sometimes required to 3911 * avoid misrouting: say we have a machine with 3912 * two interfaces (I1 and I2), a default router 3913 * R on the I1 subnet, and a host route to an 3914 * off-link destination D with a gateway G on 3915 * the I2 subnet. 3916 * Under normal operation, we will have an 3917 * on-link cache entry for G and an off-link 3918 * cache entry for D with G as ire_gateway_addr, 3919 * traffic to D will reach its destination 3920 * through gateway G. 3921 * If the administrator does 'ifconfig I2 down', 3922 * the cache entries for D and G will be 3923 * flushed. However, G will now be resolved as 3924 * an off-link destination using R (the default 3925 * router) as gateway. Then D will also be 3926 * resolved as an off-link destination using G 3927 * as gateway - this behavior is due to 3928 * compatibility reasons, see comment in 3929 * ire_ihandle_lookup_offlink(). Traffic to D 3930 * will go to the router R and probably won't 3931 * reach the destination. 3932 * The administrator then does 'ifconfig I2 up'. 3933 * Since G is on the I2 subnet, this routine 3934 * will flush its cache entry. It must also 3935 * flush the cache entry for D, otherwise 3936 * traffic will stay misrouted until the IRE 3937 * times out. 3938 */ 3939 if ((cire->ire_gateway_addr & ire->ire_mask) == 3940 (ire->ire_addr & ire->ire_mask)) { 3941 ire_delete(cire); 3942 continue; 3943 } 3944 } 3945 IRB_REFRELE(irb); 3946 } 3947 } else { 3948 /* 3949 * delete the cache entries based on 3950 * handle in the IRE as this IRE is 3951 * being deleted/changed. 3952 */ 3953 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 3954 irb = &ipst->ips_ip_cache_table[i]; 3955 if ((cire = irb->irb_ire) == NULL) 3956 continue; 3957 IRB_REFHOLD(irb); 3958 for (cire = irb->irb_ire; cire != NULL; 3959 cire = cire->ire_next) { 3960 if (cire->ire_type != IRE_CACHE) 3961 continue; 3962 if ((cire->ire_phandle == 0 || 3963 cire->ire_phandle != ire->ire_phandle) && 3964 (cire->ire_ihandle == 0 || 3965 cire->ire_ihandle != ire->ire_ihandle)) 3966 continue; 3967 ire_delete(cire); 3968 } 3969 IRB_REFRELE(irb); 3970 } 3971 } 3972 } 3973 3974 /* 3975 * Matches the arguments passed with the values in the ire. 3976 * 3977 * Note: for match types that match using "ipif" passed in, ipif 3978 * must be checked for non-NULL before calling this routine. 3979 */ 3980 boolean_t 3981 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 3982 int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, 3983 const ts_label_t *tsl, int match_flags) 3984 { 3985 ill_t *ire_ill = NULL, *dst_ill; 3986 ill_t *ipif_ill = NULL; 3987 ill_group_t *ire_ill_group = NULL; 3988 ill_group_t *ipif_ill_group = NULL; 3989 3990 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3991 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 3992 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) || 3993 (ipif != NULL && !ipif->ipif_isv6)); 3994 ASSERT(!(match_flags & MATCH_IRE_WQ)); 3995 3996 /* 3997 * HIDDEN cache entries have to be looked up specifically with 3998 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set 3999 * when the interface is FAILED or INACTIVE. In that case, 4000 * any IRE_CACHES that exists should be marked with 4001 * IRE_MARK_HIDDEN. So, we don't really need to match below 4002 * for IRE_MARK_HIDDEN. But we do so for consistency. 4003 */ 4004 if (!(match_flags & MATCH_IRE_MARK_HIDDEN) && 4005 (ire->ire_marks & IRE_MARK_HIDDEN)) 4006 return (B_FALSE); 4007 4008 /* 4009 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option 4010 * is used. In that case the routing table is bypassed and the 4011 * packets are sent directly to the specified nexthop. The 4012 * IRE_CACHE entry representing this route should be marked 4013 * with IRE_MARK_PRIVATE_ADDR. 4014 */ 4015 4016 if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) && 4017 (ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) 4018 return (B_FALSE); 4019 4020 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 4021 ire->ire_zoneid != ALL_ZONES) { 4022 /* 4023 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is 4024 * valid and does not match that of ire_zoneid, a failure to 4025 * match is reported at this point. Otherwise, since some IREs 4026 * that are available in the global zone can be used in local 4027 * zones, additional checks need to be performed: 4028 * 4029 * IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK 4030 * entries should never be matched in this situation. 4031 * 4032 * IRE entries that have an interface associated with them 4033 * should in general not match unless they are an IRE_LOCAL 4034 * or in the case when MATCH_IRE_DEFAULT has been set in 4035 * the caller. In the case of the former, checking of the 4036 * other fields supplied should take place. 4037 * 4038 * In the case where MATCH_IRE_DEFAULT has been set, 4039 * all of the ipif's associated with the IRE's ill are 4040 * checked to see if there is a matching zoneid. If any 4041 * one ipif has a matching zoneid, this IRE is a 4042 * potential candidate so checking of the other fields 4043 * takes place. 4044 * 4045 * In the case where the IRE_INTERFACE has a usable source 4046 * address (indicated by ill_usesrc_ifindex) in the 4047 * correct zone then it's permitted to return this IRE 4048 */ 4049 if (match_flags & MATCH_IRE_ZONEONLY) 4050 return (B_FALSE); 4051 if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK)) 4052 return (B_FALSE); 4053 /* 4054 * Note, IRE_INTERFACE can have the stq as NULL. For 4055 * example, if the default multicast route is tied to 4056 * the loopback address. 4057 */ 4058 if ((ire->ire_type & IRE_INTERFACE) && 4059 (ire->ire_stq != NULL)) { 4060 dst_ill = (ill_t *)ire->ire_stq->q_ptr; 4061 /* 4062 * If there is a usable source address in the 4063 * zone, then it's ok to return an 4064 * IRE_INTERFACE 4065 */ 4066 if (ipif_usesrc_avail(dst_ill, zoneid)) { 4067 ip3dbg(("ire_match_args: dst_ill %p match %d\n", 4068 (void *)dst_ill, 4069 (ire->ire_addr == (addr & mask)))); 4070 } else { 4071 ip3dbg(("ire_match_args: src_ipif NULL" 4072 " dst_ill %p\n", (void *)dst_ill)); 4073 return (B_FALSE); 4074 } 4075 } 4076 if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && 4077 !(ire->ire_type & IRE_INTERFACE)) { 4078 ipif_t *tipif; 4079 4080 if ((match_flags & MATCH_IRE_DEFAULT) == 0) { 4081 return (B_FALSE); 4082 } 4083 mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); 4084 for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; 4085 tipif != NULL; tipif = tipif->ipif_next) { 4086 if (IPIF_CAN_LOOKUP(tipif) && 4087 (tipif->ipif_flags & IPIF_UP) && 4088 (tipif->ipif_zoneid == zoneid || 4089 tipif->ipif_zoneid == ALL_ZONES)) 4090 break; 4091 } 4092 mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); 4093 if (tipif == NULL) { 4094 return (B_FALSE); 4095 } 4096 } 4097 } 4098 4099 /* 4100 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that 4101 * somebody wants to send out on a particular interface which 4102 * is given by ire_stq and hence use ire_stq to derive the ill 4103 * value. ire_ipif for IRE_CACHES is just the means of getting 4104 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr. 4105 * ire_to_ill does the right thing for this. 4106 */ 4107 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 4108 ire_ill = ire_to_ill(ire); 4109 if (ire_ill != NULL) 4110 ire_ill_group = ire_ill->ill_group; 4111 ipif_ill = ipif->ipif_ill; 4112 ipif_ill_group = ipif_ill->ill_group; 4113 } 4114 4115 if ((ire->ire_addr == (addr & mask)) && 4116 ((!(match_flags & MATCH_IRE_GW)) || 4117 (ire->ire_gateway_addr == gateway)) && 4118 ((!(match_flags & MATCH_IRE_TYPE)) || 4119 (ire->ire_type & type)) && 4120 ((!(match_flags & MATCH_IRE_SRC)) || 4121 (ire->ire_src_addr == ipif->ipif_src_addr)) && 4122 ((!(match_flags & MATCH_IRE_IPIF)) || 4123 (ire->ire_ipif == ipif)) && 4124 ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) || 4125 (ire->ire_type != IRE_CACHE || 4126 ire->ire_marks & IRE_MARK_HIDDEN)) && 4127 ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) || 4128 (ire->ire_type != IRE_CACHE || 4129 ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) && 4130 ((!(match_flags & MATCH_IRE_ILL)) || 4131 (ire_ill == ipif_ill)) && 4132 ((!(match_flags & MATCH_IRE_IHANDLE)) || 4133 (ire->ire_ihandle == ihandle)) && 4134 ((!(match_flags & MATCH_IRE_MASK)) || 4135 (ire->ire_mask == mask)) && 4136 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 4137 (ire_ill == ipif_ill) || 4138 (ire_ill_group != NULL && 4139 ire_ill_group == ipif_ill_group)) && 4140 ((!(match_flags & MATCH_IRE_SECATTR)) || 4141 (!is_system_labeled()) || 4142 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 4143 /* We found the matched IRE */ 4144 return (B_TRUE); 4145 } 4146 return (B_FALSE); 4147 } 4148 4149 4150 /* 4151 * Lookup for a route in all the tables 4152 */ 4153 ire_t * 4154 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4155 int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, 4156 const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4157 { 4158 ire_t *ire = NULL; 4159 4160 /* 4161 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4162 * MATCH_IRE_ILL is set. 4163 */ 4164 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4165 (ipif == NULL)) 4166 return (NULL); 4167 4168 /* 4169 * might be asking for a cache lookup, 4170 * This is not best way to lookup cache, 4171 * user should call ire_cache_lookup directly. 4172 * 4173 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then 4174 * in the forwarding table, if the applicable type flags were set. 4175 */ 4176 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { 4177 ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid, 4178 tsl, flags, ipst); 4179 if (ire != NULL) 4180 return (ire); 4181 } 4182 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { 4183 ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire, 4184 zoneid, 0, tsl, flags, ipst); 4185 } 4186 return (ire); 4187 } 4188 4189 4190 /* 4191 * Delete the IRE cache for the gateway and all IRE caches whose 4192 * ire_gateway_addr points to this gateway, and allow them to 4193 * be created on demand by ip_newroute. 4194 */ 4195 void 4196 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 4197 { 4198 irb_t *irb; 4199 ire_t *ire; 4200 4201 irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4202 ipst->ips_ip_cache_table_size)]; 4203 IRB_REFHOLD(irb); 4204 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 4205 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4206 continue; 4207 4208 ASSERT(ire->ire_mask == IP_HOST_MASK); 4209 if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE, 4210 NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) { 4211 ire_delete(ire); 4212 } 4213 } 4214 IRB_REFRELE(irb); 4215 4216 ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst); 4217 } 4218 4219 /* 4220 * Looks up cache table for a route. 4221 * specific lookup can be indicated by 4222 * passing the MATCH_* flags and the 4223 * necessary parameters. 4224 */ 4225 ire_t * 4226 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif, 4227 zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst) 4228 { 4229 irb_t *irb_ptr; 4230 ire_t *ire; 4231 4232 /* 4233 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4234 * MATCH_IRE_ILL is set. 4235 */ 4236 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4237 (ipif == NULL)) 4238 return (NULL); 4239 4240 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4241 ipst->ips_ip_cache_table_size)]; 4242 rw_enter(&irb_ptr->irb_lock, RW_READER); 4243 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4244 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4245 continue; 4246 ASSERT(ire->ire_mask == IP_HOST_MASK); 4247 if (ire_match_args(ire, addr, ire->ire_mask, gateway, type, 4248 ipif, zoneid, 0, tsl, flags)) { 4249 IRE_REFHOLD(ire); 4250 rw_exit(&irb_ptr->irb_lock); 4251 return (ire); 4252 } 4253 } 4254 rw_exit(&irb_ptr->irb_lock); 4255 return (NULL); 4256 } 4257 4258 /* 4259 * Check whether the IRE_LOCAL and the IRE potentially used to transmit 4260 * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of 4261 * the same ill group. 4262 */ 4263 boolean_t 4264 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire) 4265 { 4266 ill_t *recv_ill, *xmit_ill; 4267 ill_group_t *recv_group, *xmit_group; 4268 4269 ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK)); 4270 ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE)); 4271 4272 recv_ill = ire_to_ill(ire_local); 4273 xmit_ill = ire_to_ill(xmit_ire); 4274 4275 ASSERT(recv_ill != NULL); 4276 ASSERT(xmit_ill != NULL); 4277 4278 if (recv_ill == xmit_ill) 4279 return (B_TRUE); 4280 4281 recv_group = recv_ill->ill_group; 4282 xmit_group = xmit_ill->ill_group; 4283 4284 if (recv_group != NULL && recv_group == xmit_group) 4285 return (B_TRUE); 4286 4287 return (B_FALSE); 4288 } 4289 4290 /* 4291 * Check if the IRE_LOCAL uses the same ill (group) as another route would use. 4292 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, 4293 * then we don't allow this IRE_LOCAL to be used. 4294 */ 4295 boolean_t 4296 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr, 4297 const ts_label_t *tsl, ip_stack_t *ipst) 4298 { 4299 ire_t *alt_ire; 4300 boolean_t rval; 4301 4302 if (ire_local->ire_ipversion == IPV4_VERSION) { 4303 alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL, 4304 NULL, zoneid, 0, tsl, 4305 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4306 MATCH_IRE_RJ_BHOLE, ipst); 4307 } else { 4308 alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 4309 0, NULL, NULL, zoneid, 0, tsl, 4310 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4311 MATCH_IRE_RJ_BHOLE, ipst); 4312 } 4313 4314 if (alt_ire == NULL) 4315 return (B_FALSE); 4316 4317 if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4318 ire_refrele(alt_ire); 4319 return (B_FALSE); 4320 } 4321 rval = ire_local_same_ill_group(ire_local, alt_ire); 4322 4323 ire_refrele(alt_ire); 4324 return (rval); 4325 } 4326 4327 /* 4328 * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers 4329 * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get 4330 * to the hidden ones. 4331 * 4332 * In general the zoneid has to match (where ALL_ZONES match all of them). 4333 * But for IRE_LOCAL we also need to handle the case where L2 should 4334 * conceptually loop back the packet. This is necessary since neither 4335 * Ethernet drivers nor Ethernet hardware loops back packets sent to their 4336 * own MAC address. This loopback is needed when the normal 4337 * routes (ignoring IREs with different zoneids) would send out the packet on 4338 * the same ill (or ill group) as the ill with which this IRE_LOCAL is 4339 * associated. 4340 * 4341 * Earlier versions of this code always matched an IRE_LOCAL independently of 4342 * the zoneid. We preserve that earlier behavior when 4343 * ip_restrict_interzone_loopback is turned off. 4344 */ 4345 ire_t * 4346 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl, 4347 ip_stack_t *ipst) 4348 { 4349 irb_t *irb_ptr; 4350 ire_t *ire; 4351 4352 irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr, 4353 ipst->ips_ip_cache_table_size)]; 4354 rw_enter(&irb_ptr->irb_lock, RW_READER); 4355 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4356 if (ire->ire_marks & (IRE_MARK_CONDEMNED | 4357 IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) { 4358 continue; 4359 } 4360 if (ire->ire_addr == addr) { 4361 /* 4362 * Finally, check if the security policy has any 4363 * restriction on using this route for the specified 4364 * message. 4365 */ 4366 if (tsl != NULL && 4367 ire->ire_gw_secattr != NULL && 4368 tsol_ire_match_gwattr(ire, tsl) != 0) { 4369 continue; 4370 } 4371 4372 if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || 4373 ire->ire_zoneid == ALL_ZONES) { 4374 IRE_REFHOLD(ire); 4375 rw_exit(&irb_ptr->irb_lock); 4376 return (ire); 4377 } 4378 4379 if (ire->ire_type == IRE_LOCAL) { 4380 if (ipst->ips_ip_restrict_interzone_loopback && 4381 !ire_local_ok_across_zones(ire, zoneid, 4382 &addr, tsl, ipst)) 4383 continue; 4384 4385 IRE_REFHOLD(ire); 4386 rw_exit(&irb_ptr->irb_lock); 4387 return (ire); 4388 } 4389 } 4390 } 4391 rw_exit(&irb_ptr->irb_lock); 4392 return (NULL); 4393 } 4394 4395 /* 4396 * Locate the interface ire that is tied to the cache ire 'cire' via 4397 * cire->ire_ihandle. 4398 * 4399 * We are trying to create the cache ire for an offlink destn based 4400 * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire 4401 * as found by ip_newroute(). We are called from ip_newroute() in 4402 * the IRE_CACHE case. 4403 */ 4404 ire_t * 4405 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire) 4406 { 4407 ire_t *ire; 4408 int match_flags; 4409 ipaddr_t gw_addr; 4410 ipif_t *gw_ipif; 4411 ip_stack_t *ipst = cire->ire_ipst; 4412 4413 ASSERT(cire != NULL && pire != NULL); 4414 4415 /* 4416 * We don't need to specify the zoneid to ire_ftable_lookup() below 4417 * because the ihandle refers to an ipif which can be in only one zone. 4418 */ 4419 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 4420 /* 4421 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only 4422 * for on-link hosts. We should never be here for onlink. 4423 * Thus, use MATCH_IRE_ILL_GROUP. 4424 */ 4425 if (pire->ire_ipif != NULL) 4426 match_flags |= MATCH_IRE_ILL_GROUP; 4427 /* 4428 * We know that the mask of the interface ire equals cire->ire_cmask. 4429 * (When ip_newroute() created 'cire' for the gateway it set its 4430 * cmask from the interface ire's mask) 4431 */ 4432 ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, 4433 IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, 4434 NULL, match_flags, ipst); 4435 if (ire != NULL) 4436 return (ire); 4437 /* 4438 * If we didn't find an interface ire above, we can't declare failure. 4439 * For backwards compatibility, we need to support prefix routes 4440 * pointing to next hop gateways that are not on-link. 4441 * 4442 * Assume we are trying to ping some offlink destn, and we have the 4443 * routing table below. 4444 * 4445 * Eg. default - gw1 <--- pire (line 1) 4446 * gw1 - gw2 (line 2) 4447 * gw2 - hme0 (line 3) 4448 * 4449 * If we already have a cache ire for gw1 in 'cire', the 4450 * ire_ftable_lookup above would have failed, since there is no 4451 * interface ire to reach gw1. We will fallthru below. 4452 * 4453 * Here we duplicate the steps that ire_ftable_lookup() did in 4454 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. 4455 * The differences are the following 4456 * i. We want the interface ire only, so we call ire_ftable_lookup() 4457 * instead of ire_route_lookup() 4458 * ii. We look for only prefix routes in the 1st call below. 4459 * ii. We want to match on the ihandle in the 2nd call below. 4460 */ 4461 match_flags = MATCH_IRE_TYPE; 4462 if (pire->ire_ipif != NULL) 4463 match_flags |= MATCH_IRE_ILL_GROUP; 4464 ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET, 4465 pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 4466 if (ire == NULL) 4467 return (NULL); 4468 /* 4469 * At this point 'ire' corresponds to the entry shown in line 2. 4470 * gw_addr is 'gw2' in the example above. 4471 */ 4472 gw_addr = ire->ire_gateway_addr; 4473 gw_ipif = ire->ire_ipif; 4474 ire_refrele(ire); 4475 4476 match_flags |= MATCH_IRE_IHANDLE; 4477 ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, 4478 gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags, 4479 ipst); 4480 return (ire); 4481 } 4482 4483 /* 4484 * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER 4485 * ire associated with the specified ipif. 4486 * 4487 * This might occasionally be called when IPIF_UP is not set since 4488 * the IP_MULTICAST_IF as well as creating interface routes 4489 * allows specifying a down ipif (ipif_lookup* match ipifs that are down). 4490 * 4491 * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on 4492 * the ipif, this routine might return NULL. 4493 */ 4494 ire_t * 4495 ipif_to_ire(const ipif_t *ipif) 4496 { 4497 ire_t *ire; 4498 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 4499 4500 ASSERT(!ipif->ipif_isv6); 4501 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 4502 ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK, 4503 ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 4504 ipst); 4505 } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4506 /* In this case we need to lookup destination address. */ 4507 ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0, 4508 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 4509 (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK), ipst); 4510 } else { 4511 ire = ire_ftable_lookup(ipif->ipif_subnet, 4512 ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL, 4513 ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | 4514 MATCH_IRE_MASK), ipst); 4515 } 4516 return (ire); 4517 } 4518 4519 /* 4520 * ire_walk function. 4521 * Count the number of IRE_CACHE entries in different categories. 4522 */ 4523 void 4524 ire_cache_count(ire_t *ire, char *arg) 4525 { 4526 ire_cache_count_t *icc = (ire_cache_count_t *)arg; 4527 4528 if (ire->ire_type != IRE_CACHE) 4529 return; 4530 4531 icc->icc_total++; 4532 4533 if (ire->ire_ipversion == IPV6_VERSION) { 4534 mutex_enter(&ire->ire_lock); 4535 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4536 mutex_exit(&ire->ire_lock); 4537 icc->icc_onlink++; 4538 return; 4539 } 4540 mutex_exit(&ire->ire_lock); 4541 } else { 4542 if (ire->ire_gateway_addr == 0) { 4543 icc->icc_onlink++; 4544 return; 4545 } 4546 } 4547 4548 ASSERT(ire->ire_ipif != NULL); 4549 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) 4550 icc->icc_pmtu++; 4551 else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4552 ire->ire_ib_pkt_count) 4553 icc->icc_offlink++; 4554 else 4555 icc->icc_unused++; 4556 } 4557 4558 /* 4559 * ire_walk function called by ip_trash_ire_reclaim(). 4560 * Free a fraction of the IRE_CACHE cache entries. The fractions are 4561 * different for different categories of IRE_CACHE entries. 4562 * A fraction of zero means to not free any in that category. 4563 * Use the hash bucket id plus lbolt as a random number. Thus if the fraction 4564 * is N then every Nth hash bucket chain will be freed. 4565 */ 4566 void 4567 ire_cache_reclaim(ire_t *ire, char *arg) 4568 { 4569 ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg; 4570 uint_t rand; 4571 ip_stack_t *ipst = icr->icr_ipst; 4572 4573 if (ire->ire_type != IRE_CACHE) 4574 return; 4575 4576 if (ire->ire_ipversion == IPV6_VERSION) { 4577 rand = (uint_t)lbolt + 4578 IRE_ADDR_HASH_V6(ire->ire_addr_v6, 4579 ipst->ips_ip6_cache_table_size); 4580 mutex_enter(&ire->ire_lock); 4581 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4582 mutex_exit(&ire->ire_lock); 4583 if (icr->icr_onlink != 0 && 4584 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4585 ire_delete(ire); 4586 return; 4587 } 4588 goto done; 4589 } 4590 mutex_exit(&ire->ire_lock); 4591 } else { 4592 rand = (uint_t)lbolt + 4593 IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size); 4594 if (ire->ire_gateway_addr == 0) { 4595 if (icr->icr_onlink != 0 && 4596 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 4597 ire_delete(ire); 4598 return; 4599 } 4600 goto done; 4601 } 4602 } 4603 /* Not onlink IRE */ 4604 ASSERT(ire->ire_ipif != NULL); 4605 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) { 4606 /* Use ptmu fraction */ 4607 if (icr->icr_pmtu != 0 && 4608 (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) { 4609 ire_delete(ire); 4610 return; 4611 } 4612 } else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 4613 ire->ire_ib_pkt_count) { 4614 /* Use offlink fraction */ 4615 if (icr->icr_offlink != 0 && 4616 (rand/icr->icr_offlink)*icr->icr_offlink == rand) { 4617 ire_delete(ire); 4618 return; 4619 } 4620 } else { 4621 /* Use unused fraction */ 4622 if (icr->icr_unused != 0 && 4623 (rand/icr->icr_unused)*icr->icr_unused == rand) { 4624 ire_delete(ire); 4625 return; 4626 } 4627 } 4628 done: 4629 /* 4630 * Update tire_mark so that those that haven't been used since this 4631 * reclaim will be considered unused next time we reclaim. 4632 */ 4633 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 4634 } 4635 4636 static void 4637 power2_roundup(uint32_t *value) 4638 { 4639 int i; 4640 4641 for (i = 1; i < 31; i++) { 4642 if (*value <= (1 << i)) 4643 break; 4644 } 4645 *value = (1 << i); 4646 } 4647 4648 /* Global init for all zones */ 4649 void 4650 ip_ire_g_init() 4651 { 4652 /* 4653 * Create ire caches, ire_reclaim() 4654 * will give IRE_CACHE back to system when needed. 4655 * This needs to be done here before anything else, since 4656 * ire_add() expects the cache to be created. 4657 */ 4658 ire_cache = kmem_cache_create("ire_cache", 4659 sizeof (ire_t), 0, ip_ire_constructor, 4660 ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0); 4661 4662 rt_entry_cache = kmem_cache_create("rt_entry", 4663 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 4664 4665 /* 4666 * Have radix code setup kmem caches etc. 4667 */ 4668 rn_init(); 4669 } 4670 4671 void 4672 ip_ire_init(ip_stack_t *ipst) 4673 { 4674 int i; 4675 uint32_t mem_cnt; 4676 uint32_t cpu_cnt; 4677 uint32_t min_cnt; 4678 pgcnt_t mem_avail; 4679 4680 /* 4681 * ip_ire_max_bucket_cnt is sized below based on the memory 4682 * size and the cpu speed of the machine. This is upper 4683 * bounded by the compile time value of ip_ire_max_bucket_cnt 4684 * and is lower bounded by the compile time value of 4685 * ip_ire_min_bucket_cnt. Similar logic applies to 4686 * ip6_ire_max_bucket_cnt. 4687 * 4688 * We calculate this for each IP Instances in order to use 4689 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are 4690 * in effect when the zone is booted. 4691 */ 4692 mem_avail = kmem_avail(); 4693 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4694 ip_cache_table_size / sizeof (ire_t); 4695 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 4696 4697 min_cnt = MIN(cpu_cnt, mem_cnt); 4698 if (min_cnt < ip_ire_min_bucket_cnt) 4699 min_cnt = ip_ire_min_bucket_cnt; 4700 if (ip_ire_max_bucket_cnt > min_cnt) { 4701 ip_ire_max_bucket_cnt = min_cnt; 4702 } 4703 4704 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 4705 ip6_cache_table_size / sizeof (ire_t); 4706 min_cnt = MIN(cpu_cnt, mem_cnt); 4707 if (min_cnt < ip6_ire_min_bucket_cnt) 4708 min_cnt = ip6_ire_min_bucket_cnt; 4709 if (ip6_ire_max_bucket_cnt > min_cnt) { 4710 ip6_ire_max_bucket_cnt = min_cnt; 4711 } 4712 4713 mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 4714 mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL); 4715 4716 (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); 4717 4718 4719 /* Calculate the IPv4 cache table size. */ 4720 ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size, 4721 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4722 ip_ire_max_bucket_cnt)); 4723 if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size) 4724 ipst->ips_ip_cache_table_size = ip_max_cache_table_size; 4725 /* 4726 * Make sure that the table size is always a power of 2. The 4727 * hash macro IRE_ADDR_HASH() depends on that. 4728 */ 4729 power2_roundup(&ipst->ips_ip_cache_table_size); 4730 4731 ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size * 4732 sizeof (irb_t), KM_SLEEP); 4733 4734 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4735 rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL, 4736 RW_DEFAULT, NULL); 4737 } 4738 4739 /* Calculate the IPv6 cache table size. */ 4740 ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size, 4741 ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) / 4742 ip6_ire_max_bucket_cnt)); 4743 if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size) 4744 ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size; 4745 /* 4746 * Make sure that the table size is always a power of 2. The 4747 * hash macro IRE_ADDR_HASH_V6() depends on that. 4748 */ 4749 power2_roundup(&ipst->ips_ip6_cache_table_size); 4750 4751 ipst->ips_ip_cache_table_v6 = kmem_zalloc( 4752 ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP); 4753 4754 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4755 rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL, 4756 RW_DEFAULT, NULL); 4757 } 4758 4759 /* 4760 * Make sure that the forwarding table size is a power of 2. 4761 * The IRE*_ADDR_HASH() macroes depend on that. 4762 */ 4763 ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; 4764 power2_roundup(&ipst->ips_ip6_ftable_hash_size); 4765 4766 ipst->ips_ire_handle = 1; 4767 } 4768 4769 void 4770 ip_ire_g_fini(void) 4771 { 4772 kmem_cache_destroy(ire_cache); 4773 kmem_cache_destroy(rt_entry_cache); 4774 4775 rn_fini(); 4776 } 4777 4778 void 4779 ip_ire_fini(ip_stack_t *ipst) 4780 { 4781 int i; 4782 4783 /* 4784 * Delete all IREs - assumes that the ill/ipifs have 4785 * been removed so what remains are just the ftable and IRE_CACHE. 4786 */ 4787 ire_walk(ire_delete, NULL, ipst); 4788 4789 rn_freehead(ipst->ips_ip_ftable); 4790 ipst->ips_ip_ftable = NULL; 4791 4792 mutex_destroy(&ipst->ips_ire_ft_init_lock); 4793 mutex_destroy(&ipst->ips_ire_handle_lock); 4794 4795 for (i = 0; i < ipst->ips_ip_cache_table_size; i++) { 4796 ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL); 4797 rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock); 4798 } 4799 kmem_free(ipst->ips_ip_cache_table, 4800 ipst->ips_ip_cache_table_size * sizeof (irb_t)); 4801 ipst->ips_ip_cache_table = NULL; 4802 4803 for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) { 4804 ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL); 4805 rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock); 4806 } 4807 kmem_free(ipst->ips_ip_cache_table_v6, 4808 ipst->ips_ip6_cache_table_size * sizeof (irb_t)); 4809 ipst->ips_ip_cache_table_v6 = NULL; 4810 4811 for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { 4812 irb_t *ptr; 4813 int j; 4814 4815 if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) 4816 continue; 4817 4818 for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { 4819 ASSERT(ptr[j].irb_ire == NULL); 4820 rw_destroy(&ptr[j].irb_lock); 4821 } 4822 mi_free(ptr); 4823 ipst->ips_ip_forwarding_table_v6[i] = NULL; 4824 } 4825 } 4826 4827 /* 4828 * Check if another multirt route resolution is needed. 4829 * B_TRUE is returned is there remain a resolvable route, 4830 * or if no route for that dst is resolved yet. 4831 * B_FALSE is returned if all routes for that dst are resolved 4832 * or if the remaining unresolved routes are actually not 4833 * resolvable. 4834 * This only works in the global zone. 4835 */ 4836 boolean_t 4837 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst) 4838 { 4839 ire_t *first_fire; 4840 ire_t *first_cire; 4841 ire_t *fire; 4842 ire_t *cire; 4843 irb_t *firb; 4844 irb_t *cirb; 4845 int unres_cnt = 0; 4846 boolean_t resolvable = B_FALSE; 4847 4848 /* Retrieve the first IRE_HOST that matches the destination */ 4849 first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL, 4850 NULL, ALL_ZONES, 0, tsl, 4851 MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 4852 4853 /* No route at all */ 4854 if (first_fire == NULL) { 4855 return (B_TRUE); 4856 } 4857 4858 firb = first_fire->ire_bucket; 4859 ASSERT(firb != NULL); 4860 4861 /* Retrieve the first IRE_CACHE ire for that destination. */ 4862 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 4863 4864 /* No resolved route. */ 4865 if (first_cire == NULL) { 4866 ire_refrele(first_fire); 4867 return (B_TRUE); 4868 } 4869 4870 /* 4871 * At least one route is resolved. Here we look through the forward 4872 * and cache tables, to compare the number of declared routes 4873 * with the number of resolved routes. The search for a resolvable 4874 * route is performed only if at least one route remains 4875 * unresolved. 4876 */ 4877 cirb = first_cire->ire_bucket; 4878 ASSERT(cirb != NULL); 4879 4880 /* Count the number of routes to that dest that are declared. */ 4881 IRB_REFHOLD(firb); 4882 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 4883 if (!(fire->ire_flags & RTF_MULTIRT)) 4884 continue; 4885 if (fire->ire_addr != dst) 4886 continue; 4887 unres_cnt++; 4888 } 4889 IRB_REFRELE(firb); 4890 4891 /* Then subtract the number of routes to that dst that are resolved */ 4892 IRB_REFHOLD(cirb); 4893 for (cire = first_cire; cire != NULL; cire = cire->ire_next) { 4894 if (!(cire->ire_flags & RTF_MULTIRT)) 4895 continue; 4896 if (cire->ire_addr != dst) 4897 continue; 4898 if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 4899 continue; 4900 unres_cnt--; 4901 } 4902 IRB_REFRELE(cirb); 4903 4904 /* At least one route is unresolved; search for a resolvable route. */ 4905 if (unres_cnt > 0) 4906 resolvable = ire_multirt_lookup(&first_cire, &first_fire, 4907 MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl, ipst); 4908 4909 if (first_fire != NULL) 4910 ire_refrele(first_fire); 4911 4912 if (first_cire != NULL) 4913 ire_refrele(first_cire); 4914 4915 return (resolvable); 4916 } 4917 4918 4919 /* 4920 * Explore a forward_table bucket, starting from fire_arg. 4921 * fire_arg MUST be an IRE_HOST entry. 4922 * 4923 * Return B_TRUE and update *ire_arg and *fire_arg 4924 * if at least one resolvable route is found. *ire_arg 4925 * is the IRE entry for *fire_arg's gateway. 4926 * 4927 * Return B_FALSE otherwise (all routes are resolved or 4928 * the remaining unresolved routes are all unresolvable). 4929 * 4930 * The IRE selection relies on a priority mechanism 4931 * driven by the flags passed in by the caller. 4932 * The caller, such as ip_newroute_ipif(), can get the most 4933 * relevant ire at each stage of a multiple route resolution. 4934 * 4935 * The rules are: 4936 * 4937 * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE 4938 * ires are preferred for the gateway. This gives the highest 4939 * priority to routes that can be resolved without using 4940 * a resolver. 4941 * 4942 * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW 4943 * is specified but no IRE_CACHETABLE ire entry for the gateway 4944 * is found, the following rules apply. 4945 * 4946 * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE 4947 * ires for the gateway, that have not been tried since 4948 * a configurable amount of time, are preferred. 4949 * This applies when a resolver must be invoked for 4950 * a missing route, but we don't want to use the resolver 4951 * upon each packet emission. If no such resolver is found, 4952 * B_FALSE is returned. 4953 * The MULTIRT_USESTAMP flag can be combined with 4954 * MULTIRT_CACHEGW. 4955 * 4956 * - if MULTIRT_USESTAMP is not specified in flags, the first 4957 * unresolved but resolvable route is selected. 4958 * 4959 * - Otherwise, there is no resolvalble route, and 4960 * B_FALSE is returned. 4961 * 4962 * At last, MULTIRT_SETSTAMP can be specified in flags to 4963 * request the timestamp of unresolvable routes to 4964 * be refreshed. This prevents the useless exploration 4965 * of those routes for a while, when MULTIRT_USESTAMP is used. 4966 * 4967 * This only works in the global zone. 4968 */ 4969 boolean_t 4970 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags, 4971 const ts_label_t *tsl, ip_stack_t *ipst) 4972 { 4973 clock_t delta; 4974 ire_t *best_fire = NULL; 4975 ire_t *best_cire = NULL; 4976 ire_t *first_fire; 4977 ire_t *first_cire; 4978 ire_t *fire; 4979 ire_t *cire; 4980 irb_t *firb = NULL; 4981 irb_t *cirb = NULL; 4982 ire_t *gw_ire; 4983 boolean_t already_resolved; 4984 boolean_t res; 4985 ipaddr_t dst; 4986 ipaddr_t gw; 4987 4988 ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n", 4989 (void *)*ire_arg, (void *)*fire_arg, flags)); 4990 4991 ASSERT(ire_arg != NULL); 4992 ASSERT(fire_arg != NULL); 4993 4994 /* Not an IRE_HOST ire; give up. */ 4995 if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) { 4996 return (B_FALSE); 4997 } 4998 4999 /* This is the first IRE_HOST ire for that destination. */ 5000 first_fire = *fire_arg; 5001 firb = first_fire->ire_bucket; 5002 ASSERT(firb != NULL); 5003 5004 dst = first_fire->ire_addr; 5005 5006 ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst))); 5007 5008 /* 5009 * Retrieve the first IRE_CACHE ire for that destination; 5010 * if we don't find one, no route for that dest is 5011 * resolved yet. 5012 */ 5013 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst); 5014 if (first_cire != NULL) { 5015 cirb = first_cire->ire_bucket; 5016 } 5017 5018 ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire)); 5019 5020 /* 5021 * Search for a resolvable route, giving the top priority 5022 * to routes that can be resolved without any call to the resolver. 5023 */ 5024 IRB_REFHOLD(firb); 5025 5026 if (!CLASSD(dst)) { 5027 /* 5028 * For all multiroute IRE_HOST ires for that destination, 5029 * check if the route via the IRE_HOST's gateway is 5030 * resolved yet. 5031 */ 5032 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 5033 5034 if (!(fire->ire_flags & RTF_MULTIRT)) 5035 continue; 5036 if (fire->ire_addr != dst) 5037 continue; 5038 5039 if (fire->ire_gw_secattr != NULL && 5040 tsol_ire_match_gwattr(fire, tsl) != 0) { 5041 continue; 5042 } 5043 5044 gw = fire->ire_gateway_addr; 5045 5046 ip2dbg(("ire_multirt_lookup: fire %p, " 5047 "ire_addr %08x, ire_gateway_addr %08x\n", 5048 (void *)fire, ntohl(fire->ire_addr), ntohl(gw))); 5049 5050 already_resolved = B_FALSE; 5051 5052 if (first_cire != NULL) { 5053 ASSERT(cirb != NULL); 5054 5055 IRB_REFHOLD(cirb); 5056 /* 5057 * For all IRE_CACHE ires for that 5058 * destination. 5059 */ 5060 for (cire = first_cire; 5061 cire != NULL; 5062 cire = cire->ire_next) { 5063 5064 if (!(cire->ire_flags & RTF_MULTIRT)) 5065 continue; 5066 if (cire->ire_addr != dst) 5067 continue; 5068 if (cire->ire_marks & 5069 (IRE_MARK_CONDEMNED | 5070 IRE_MARK_HIDDEN)) 5071 continue; 5072 5073 if (cire->ire_gw_secattr != NULL && 5074 tsol_ire_match_gwattr(cire, 5075 tsl) != 0) { 5076 continue; 5077 } 5078 5079 /* 5080 * Check if the IRE_CACHE's gateway 5081 * matches the IRE_HOST's gateway. 5082 */ 5083 if (cire->ire_gateway_addr == gw) { 5084 already_resolved = B_TRUE; 5085 break; 5086 } 5087 } 5088 IRB_REFRELE(cirb); 5089 } 5090 5091 /* 5092 * This route is already resolved; 5093 * proceed with next one. 5094 */ 5095 if (already_resolved) { 5096 ip2dbg(("ire_multirt_lookup: found cire %p, " 5097 "already resolved\n", (void *)cire)); 5098 continue; 5099 } 5100 5101 /* 5102 * The route is unresolved; is it actually 5103 * resolvable, i.e. is there a cache or a resolver 5104 * for the gateway? 5105 */ 5106 gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL, 5107 ALL_ZONES, tsl, 5108 MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst); 5109 5110 ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n", 5111 (void *)gw_ire)); 5112 5113 /* 5114 * If gw_ire is typed IRE_CACHETABLE, 5115 * this route can be resolved without any call to the 5116 * resolver. If the MULTIRT_CACHEGW flag is set, 5117 * give the top priority to this ire and exit the 5118 * loop. 5119 * This is typically the case when an ARP reply 5120 * is processed through ip_wput_nondata(). 5121 */ 5122 if ((flags & MULTIRT_CACHEGW) && 5123 (gw_ire != NULL) && 5124 (gw_ire->ire_type & IRE_CACHETABLE)) { 5125 ASSERT(gw_ire->ire_nce == NULL || 5126 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5127 /* 5128 * Release the resolver associated to the 5129 * previous candidate best ire, if any. 5130 */ 5131 if (best_cire != NULL) { 5132 ire_refrele(best_cire); 5133 ASSERT(best_fire != NULL); 5134 } 5135 5136 best_fire = fire; 5137 best_cire = gw_ire; 5138 5139 ip2dbg(("ire_multirt_lookup: found top prio " 5140 "best_fire %p, best_cire %p\n", 5141 (void *)best_fire, (void *)best_cire)); 5142 break; 5143 } 5144 5145 /* 5146 * Compute the time elapsed since our preceding 5147 * attempt to resolve that route. 5148 * If the MULTIRT_USESTAMP flag is set, we take that 5149 * route into account only if this time interval 5150 * exceeds ip_multirt_resolution_interval; 5151 * this prevents us from attempting to resolve a 5152 * broken route upon each sending of a packet. 5153 */ 5154 delta = lbolt - fire->ire_last_used_time; 5155 delta = TICK_TO_MSEC(delta); 5156 5157 res = (boolean_t)((delta > 5158 ipst->ips_ip_multirt_resolution_interval) || 5159 (!(flags & MULTIRT_USESTAMP))); 5160 5161 ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, " 5162 "res %d\n", 5163 (void *)fire, delta, res)); 5164 5165 if (res) { 5166 /* 5167 * We are here if MULTIRT_USESTAMP flag is set 5168 * and the resolver for fire's gateway 5169 * has not been tried since 5170 * ip_multirt_resolution_interval, or if 5171 * MULTIRT_USESTAMP is not set but gw_ire did 5172 * not fill the conditions for MULTIRT_CACHEGW, 5173 * or if neither MULTIRT_USESTAMP nor 5174 * MULTIRT_CACHEGW are set. 5175 */ 5176 if (gw_ire != NULL) { 5177 if (best_fire == NULL) { 5178 ASSERT(best_cire == NULL); 5179 5180 best_fire = fire; 5181 best_cire = gw_ire; 5182 5183 ip2dbg(("ire_multirt_lookup:" 5184 "found candidate " 5185 "best_fire %p, " 5186 "best_cire %p\n", 5187 (void *)best_fire, 5188 (void *)best_cire)); 5189 5190 /* 5191 * If MULTIRT_CACHEGW is not 5192 * set, we ignore the top 5193 * priority ires that can 5194 * be resolved without any 5195 * call to the resolver; 5196 * In that case, there is 5197 * actually no need 5198 * to continue the loop. 5199 */ 5200 if (!(flags & 5201 MULTIRT_CACHEGW)) { 5202 break; 5203 } 5204 continue; 5205 } 5206 } else { 5207 /* 5208 * No resolver for the gateway: the 5209 * route is not resolvable. 5210 * If the MULTIRT_SETSTAMP flag is 5211 * set, we stamp the IRE_HOST ire, 5212 * so we will not select it again 5213 * during this resolution interval. 5214 */ 5215 if (flags & MULTIRT_SETSTAMP) 5216 fire->ire_last_used_time = 5217 lbolt; 5218 } 5219 } 5220 5221 if (gw_ire != NULL) 5222 ire_refrele(gw_ire); 5223 } 5224 } else { /* CLASSD(dst) */ 5225 5226 for (fire = first_fire; 5227 fire != NULL; 5228 fire = fire->ire_next) { 5229 5230 if (!(fire->ire_flags & RTF_MULTIRT)) 5231 continue; 5232 if (fire->ire_addr != dst) 5233 continue; 5234 5235 if (fire->ire_gw_secattr != NULL && 5236 tsol_ire_match_gwattr(fire, tsl) != 0) { 5237 continue; 5238 } 5239 5240 already_resolved = B_FALSE; 5241 5242 gw = fire->ire_gateway_addr; 5243 5244 gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE, 5245 NULL, NULL, ALL_ZONES, 0, tsl, 5246 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE | 5247 MATCH_IRE_SECATTR, ipst); 5248 5249 /* No resolver for the gateway; we skip this ire. */ 5250 if (gw_ire == NULL) { 5251 continue; 5252 } 5253 ASSERT(gw_ire->ire_nce == NULL || 5254 gw_ire->ire_nce->nce_state == ND_REACHABLE); 5255 5256 if (first_cire != NULL) { 5257 5258 IRB_REFHOLD(cirb); 5259 /* 5260 * For all IRE_CACHE ires for that 5261 * destination. 5262 */ 5263 for (cire = first_cire; 5264 cire != NULL; 5265 cire = cire->ire_next) { 5266 5267 if (!(cire->ire_flags & RTF_MULTIRT)) 5268 continue; 5269 if (cire->ire_addr != dst) 5270 continue; 5271 if (cire->ire_marks & 5272 (IRE_MARK_CONDEMNED | 5273 IRE_MARK_HIDDEN)) 5274 continue; 5275 5276 if (cire->ire_gw_secattr != NULL && 5277 tsol_ire_match_gwattr(cire, 5278 tsl) != 0) { 5279 continue; 5280 } 5281 5282 /* 5283 * Cache entries are linked to the 5284 * parent routes using the parent handle 5285 * (ire_phandle). If no cache entry has 5286 * the same handle as fire, fire is 5287 * still unresolved. 5288 */ 5289 ASSERT(cire->ire_phandle != 0); 5290 if (cire->ire_phandle == 5291 fire->ire_phandle) { 5292 already_resolved = B_TRUE; 5293 break; 5294 } 5295 } 5296 IRB_REFRELE(cirb); 5297 } 5298 5299 /* 5300 * This route is already resolved; proceed with 5301 * next one. 5302 */ 5303 if (already_resolved) { 5304 ire_refrele(gw_ire); 5305 continue; 5306 } 5307 5308 /* 5309 * Compute the time elapsed since our preceding 5310 * attempt to resolve that route. 5311 * If the MULTIRT_USESTAMP flag is set, we take 5312 * that route into account only if this time 5313 * interval exceeds ip_multirt_resolution_interval; 5314 * this prevents us from attempting to resolve a 5315 * broken route upon each sending of a packet. 5316 */ 5317 delta = lbolt - fire->ire_last_used_time; 5318 delta = TICK_TO_MSEC(delta); 5319 5320 res = (boolean_t)((delta > 5321 ipst->ips_ip_multirt_resolution_interval) || 5322 (!(flags & MULTIRT_USESTAMP))); 5323 5324 ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, " 5325 "flags %04x, res %d\n", 5326 (void *)fire, delta, flags, res)); 5327 5328 if (res) { 5329 if (best_cire != NULL) { 5330 /* 5331 * Release the resolver associated 5332 * to the preceding candidate best 5333 * ire, if any. 5334 */ 5335 ire_refrele(best_cire); 5336 ASSERT(best_fire != NULL); 5337 } 5338 best_fire = fire; 5339 best_cire = gw_ire; 5340 continue; 5341 } 5342 5343 ire_refrele(gw_ire); 5344 } 5345 } 5346 5347 if (best_fire != NULL) { 5348 IRE_REFHOLD(best_fire); 5349 } 5350 IRB_REFRELE(firb); 5351 5352 /* Release the first IRE_CACHE we initially looked up, if any. */ 5353 if (first_cire != NULL) 5354 ire_refrele(first_cire); 5355 5356 /* Found a resolvable route. */ 5357 if (best_fire != NULL) { 5358 ASSERT(best_cire != NULL); 5359 5360 if (*fire_arg != NULL) 5361 ire_refrele(*fire_arg); 5362 if (*ire_arg != NULL) 5363 ire_refrele(*ire_arg); 5364 5365 /* 5366 * Update the passed-in arguments with the 5367 * resolvable multirt route we found. 5368 */ 5369 *fire_arg = best_fire; 5370 *ire_arg = best_cire; 5371 5372 ip2dbg(("ire_multirt_lookup: returning B_TRUE, " 5373 "*fire_arg %p, *ire_arg %p\n", 5374 (void *)best_fire, (void *)best_cire)); 5375 5376 return (B_TRUE); 5377 } 5378 5379 ASSERT(best_cire == NULL); 5380 5381 ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, " 5382 "*ire_arg %p\n", 5383 (void *)*fire_arg, (void *)*ire_arg)); 5384 5385 /* No resolvable route. */ 5386 return (B_FALSE); 5387 } 5388 5389 /* 5390 * IRE iterator for inbound and loopback broadcast processing. 5391 * Given an IRE_BROADCAST ire, walk the ires with the same destination 5392 * address, but skip over the passed-in ire. Returns the next ire without 5393 * a hold - assumes that the caller holds a reference on the IRE bucket. 5394 */ 5395 ire_t * 5396 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire) 5397 { 5398 ill_t *ill; 5399 5400 if (curr == NULL) { 5401 for (curr = ire->ire_bucket->irb_ire; curr != NULL; 5402 curr = curr->ire_next) { 5403 if (curr->ire_addr == ire->ire_addr) 5404 break; 5405 } 5406 } else { 5407 curr = curr->ire_next; 5408 } 5409 ill = ire_to_ill(ire); 5410 for (; curr != NULL; curr = curr->ire_next) { 5411 if (curr->ire_addr != ire->ire_addr) { 5412 /* 5413 * All the IREs to a given destination are contiguous; 5414 * break out once the address doesn't match. 5415 */ 5416 break; 5417 } 5418 if (curr == ire) { 5419 /* skip over the passed-in ire */ 5420 continue; 5421 } 5422 if ((curr->ire_stq != NULL && ire->ire_stq == NULL) || 5423 (curr->ire_stq == NULL && ire->ire_stq != NULL)) { 5424 /* 5425 * If the passed-in ire is loopback, skip over 5426 * non-loopback ires and vice versa. 5427 */ 5428 continue; 5429 } 5430 if (ire_to_ill(curr) != ill) { 5431 /* skip over IREs going through a different interface */ 5432 continue; 5433 } 5434 if (curr->ire_marks & IRE_MARK_CONDEMNED) { 5435 /* skip over deleted IREs */ 5436 continue; 5437 } 5438 return (curr); 5439 } 5440 return (NULL); 5441 } 5442 5443 #ifdef IRE_DEBUG 5444 th_trace_t * 5445 th_trace_ire_lookup(ire_t *ire) 5446 { 5447 int bucket_id; 5448 th_trace_t *th_trace; 5449 5450 ASSERT(MUTEX_HELD(&ire->ire_lock)); 5451 5452 bucket_id = IP_TR_HASH(curthread); 5453 ASSERT(bucket_id < IP_TR_HASH_MAX); 5454 5455 for (th_trace = ire->ire_trace[bucket_id]; th_trace != NULL; 5456 th_trace = th_trace->th_next) { 5457 if (th_trace->th_id == curthread) 5458 return (th_trace); 5459 } 5460 return (NULL); 5461 } 5462 5463 void 5464 ire_trace_ref(ire_t *ire) 5465 { 5466 int bucket_id; 5467 th_trace_t *th_trace; 5468 5469 /* 5470 * Attempt to locate the trace buffer for the curthread. 5471 * If it does not exist, then allocate a new trace buffer 5472 * and link it in list of trace bufs for this ipif, at the head 5473 */ 5474 mutex_enter(&ire->ire_lock); 5475 if (ire->ire_trace_disable == B_TRUE) { 5476 mutex_exit(&ire->ire_lock); 5477 return; 5478 } 5479 th_trace = th_trace_ire_lookup(ire); 5480 if (th_trace == NULL) { 5481 bucket_id = IP_TR_HASH(curthread); 5482 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5483 KM_NOSLEEP); 5484 if (th_trace == NULL) { 5485 ire->ire_trace_disable = B_TRUE; 5486 mutex_exit(&ire->ire_lock); 5487 ire_trace_inactive(ire); 5488 return; 5489 } 5490 5491 th_trace->th_id = curthread; 5492 th_trace->th_next = ire->ire_trace[bucket_id]; 5493 th_trace->th_prev = &ire->ire_trace[bucket_id]; 5494 if (th_trace->th_next != NULL) 5495 th_trace->th_next->th_prev = &th_trace->th_next; 5496 ire->ire_trace[bucket_id] = th_trace; 5497 } 5498 ASSERT(th_trace->th_refcnt < TR_BUF_MAX - 1); 5499 th_trace->th_refcnt++; 5500 th_trace_rrecord(th_trace); 5501 mutex_exit(&ire->ire_lock); 5502 } 5503 5504 void 5505 ire_trace_free(th_trace_t *th_trace) 5506 { 5507 /* unlink th_trace and free it */ 5508 *th_trace->th_prev = th_trace->th_next; 5509 if (th_trace->th_next != NULL) 5510 th_trace->th_next->th_prev = th_trace->th_prev; 5511 th_trace->th_next = NULL; 5512 th_trace->th_prev = NULL; 5513 kmem_free(th_trace, sizeof (th_trace_t)); 5514 } 5515 5516 void 5517 ire_untrace_ref(ire_t *ire) 5518 { 5519 th_trace_t *th_trace; 5520 5521 mutex_enter(&ire->ire_lock); 5522 5523 if (ire->ire_trace_disable == B_TRUE) { 5524 mutex_exit(&ire->ire_lock); 5525 return; 5526 } 5527 5528 th_trace = th_trace_ire_lookup(ire); 5529 ASSERT(th_trace != NULL && th_trace->th_refcnt > 0); 5530 th_trace_rrecord(th_trace); 5531 th_trace->th_refcnt--; 5532 5533 if (th_trace->th_refcnt == 0) 5534 ire_trace_free(th_trace); 5535 5536 mutex_exit(&ire->ire_lock); 5537 } 5538 5539 static void 5540 ire_trace_inactive(ire_t *ire) 5541 { 5542 th_trace_t *th_trace; 5543 int i; 5544 5545 mutex_enter(&ire->ire_lock); 5546 for (i = 0; i < IP_TR_HASH_MAX; i++) { 5547 while (ire->ire_trace[i] != NULL) { 5548 th_trace = ire->ire_trace[i]; 5549 5550 /* unlink th_trace and free it */ 5551 ire->ire_trace[i] = th_trace->th_next; 5552 if (th_trace->th_next != NULL) 5553 th_trace->th_next->th_prev = 5554 &ire->ire_trace[i]; 5555 5556 th_trace->th_next = NULL; 5557 th_trace->th_prev = NULL; 5558 kmem_free(th_trace, sizeof (th_trace_t)); 5559 } 5560 } 5561 5562 mutex_exit(&ire->ire_lock); 5563 } 5564 5565 /* ARGSUSED */ 5566 void 5567 ire_thread_exit(ire_t *ire, caddr_t arg) 5568 { 5569 th_trace_t *th_trace; 5570 5571 mutex_enter(&ire->ire_lock); 5572 th_trace = th_trace_ire_lookup(ire); 5573 if (th_trace == NULL) { 5574 mutex_exit(&ire->ire_lock); 5575 return; 5576 } 5577 ASSERT(th_trace->th_refcnt == 0); 5578 5579 ire_trace_free(th_trace); 5580 mutex_exit(&ire->ire_lock); 5581 } 5582 5583 #endif 5584 5585 /* 5586 * Generate a message chain with an arp request to resolve the in_ire. 5587 * It is assumed that in_ire itself is currently in the ire cache table, 5588 * so we create a fake_ire filled with enough information about ire_addr etc. 5589 * to retrieve in_ire when the DL_UNITDATA response from the resolver 5590 * comes back. The fake_ire itself is created by calling esballoc with 5591 * the fr_rtnp (free routine) set to ire_freemblk. This routine will be 5592 * invoked when the mblk containing fake_ire is freed. 5593 */ 5594 void 5595 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill) 5596 { 5597 areq_t *areq; 5598 ipaddr_t *addrp; 5599 mblk_t *ire_mp, *areq_mp; 5600 ire_t *ire, *buf; 5601 size_t bufsize; 5602 frtn_t *frtnp; 5603 ill_t *ill; 5604 ip_stack_t *ipst = dst_ill->ill_ipst; 5605 5606 /* 5607 * Construct message chain for the resolver 5608 * of the form: 5609 * ARP_REQ_MBLK-->IRE_MBLK 5610 * 5611 * NOTE : If the response does not 5612 * come back, ARP frees the packet. For this reason, 5613 * we can't REFHOLD the bucket of save_ire to prevent 5614 * deletions. We may not be able to REFRELE the bucket 5615 * if the response never comes back. Thus, before 5616 * adding the ire, ire_add_v4 will make sure that the 5617 * interface route does not get deleted. This is the 5618 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 5619 * where we can always prevent deletions because of 5620 * the synchronous nature of adding IRES i.e 5621 * ire_add_then_send is called after creating the IRE. 5622 */ 5623 5624 /* 5625 * We use esballoc to allocate the second part(the ire_t size mblk) 5626 * of the message chain depicted above. THis mblk will be freed 5627 * by arp when there is a timeout, and otherwise passed to IP 5628 * and IP will * free it after processing the ARP response. 5629 */ 5630 5631 bufsize = sizeof (ire_t) + sizeof (frtn_t); 5632 buf = kmem_alloc(bufsize, KM_NOSLEEP); 5633 if (buf == NULL) { 5634 ip1dbg(("ire_arpresolver:alloc buffer failed\n ")); 5635 return; 5636 } 5637 frtnp = (frtn_t *)(buf + 1); 5638 frtnp->free_arg = (caddr_t)buf; 5639 frtnp->free_func = ire_freemblk; 5640 5641 ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 5642 5643 if (ire_mp == NULL) { 5644 ip1dbg(("ire_arpresolve: esballoc failed\n")); 5645 kmem_free(buf, bufsize); 5646 return; 5647 } 5648 ASSERT(in_ire->ire_nce != NULL); 5649 areq_mp = copyb(dst_ill->ill_resolver_mp); 5650 if (areq_mp == NULL) { 5651 kmem_free(buf, bufsize); 5652 return; 5653 } 5654 5655 ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE; 5656 ire = (ire_t *)buf; 5657 /* 5658 * keep enough info in the fake ire so that we can pull up 5659 * the incomplete ire (in_ire) after result comes back from 5660 * arp and make it complete. 5661 */ 5662 *ire = ire_null; 5663 ire->ire_u = in_ire->ire_u; 5664 ire->ire_ipif_seqid = in_ire->ire_ipif_seqid; 5665 ire->ire_ipif = in_ire->ire_ipif; 5666 ire->ire_stq = in_ire->ire_stq; 5667 ill = ire_to_ill(ire); 5668 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 5669 ire->ire_zoneid = in_ire->ire_zoneid; 5670 ire->ire_ipst = ipst; 5671 5672 /* 5673 * ire_freemblk will be called when ire_mp is freed, both for 5674 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set 5675 * when the arp resolution failed. 5676 */ 5677 ire->ire_marks |= IRE_MARK_UNCACHED; 5678 ire->ire_mp = ire_mp; 5679 ire_mp->b_wptr = (uchar_t *)&ire[1]; 5680 ire_mp->b_cont = NULL; 5681 linkb(areq_mp, ire_mp); 5682 5683 /* 5684 * Fill in the source and dest addrs for the resolver. 5685 * NOTE: this depends on memory layouts imposed by 5686 * ill_init(). 5687 */ 5688 areq = (areq_t *)areq_mp->b_rptr; 5689 addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset); 5690 *addrp = ire->ire_src_addr; 5691 5692 addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset); 5693 if (ire->ire_gateway_addr != INADDR_ANY) { 5694 *addrp = ire->ire_gateway_addr; 5695 } else { 5696 *addrp = ire->ire_addr; 5697 } 5698 5699 /* Up to the resolver. */ 5700 if (canputnext(dst_ill->ill_rq)) { 5701 putnext(dst_ill->ill_rq, areq_mp); 5702 } else { 5703 freemsg(areq_mp); 5704 } 5705 } 5706 5707 /* 5708 * Esballoc free function for AR_ENTRY_QUERY request to clean up any 5709 * unresolved ire_t and/or nce_t structures when ARP resolution fails. 5710 * 5711 * This function can be called by ARP via free routine for ire_mp or 5712 * by IPv4(both host and forwarding path) via ire_delete 5713 * in case ARP resolution fails. 5714 * NOTE: Since IP is MT, ARP can call into IP but not vice versa 5715 * (for IP to talk to ARP, it still has to send AR* messages). 5716 * 5717 * Note that the ARP/IP merge should replace the functioanlity by providing 5718 * direct function calls to clean up unresolved entries in ire/nce lists. 5719 */ 5720 void 5721 ire_freemblk(ire_t *ire_mp) 5722 { 5723 nce_t *nce = NULL; 5724 ill_t *ill; 5725 ip_stack_t *ipst; 5726 5727 ASSERT(ire_mp != NULL); 5728 5729 if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) { 5730 ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n", 5731 (void *)ire_mp)); 5732 goto cleanup; 5733 } 5734 if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) { 5735 goto cleanup; /* everything succeeded. just free and return */ 5736 } 5737 5738 /* 5739 * the arp information corresponding to this ire_mp was not 5740 * transferred to a ire_cache entry. Need 5741 * to clean up incomplete ire's and nce, if necessary. 5742 */ 5743 ASSERT(ire_mp->ire_stq != NULL); 5744 ASSERT(ire_mp->ire_stq_ifindex != 0); 5745 ASSERT(ire_mp->ire_ipst != NULL); 5746 5747 ipst = ire_mp->ire_ipst; 5748 5749 /* 5750 * Get any nce's corresponding to this ire_mp. We first have to 5751 * make sure that the ill is still around. 5752 */ 5753 ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex, 5754 B_FALSE, NULL, NULL, NULL, NULL, ipst); 5755 if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) || 5756 (ill->ill_state_flags & ILL_CONDEMNED)) { 5757 /* 5758 * ill went away. no nce to clean up. 5759 * Note that the ill_state_flags could be set to 5760 * ILL_CONDEMNED after this point, but if we know 5761 * that it is CONDEMNED now, we just bail out quickly. 5762 */ 5763 if (ill != NULL) 5764 ill_refrele(ill); 5765 goto cleanup; 5766 } 5767 nce = ndp_lookup_v4(ill, 5768 ((ire_mp->ire_gateway_addr != INADDR_ANY) ? 5769 &ire_mp->ire_gateway_addr : &ire_mp->ire_addr), 5770 B_FALSE); 5771 ill_refrele(ill); 5772 5773 if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) { 5774 /* 5775 * some incomplete nce was found. 5776 */ 5777 DTRACE_PROBE2(ire__freemblk__arp__resolv__fail, 5778 nce_t *, nce, ire_t *, ire_mp); 5779 /* 5780 * Send the icmp_unreachable messages for the queued mblks in 5781 * ire->ire_nce->nce_qd_mp, since ARP resolution failed 5782 * for this ire 5783 */ 5784 arp_resolv_failed(nce); 5785 /* 5786 * Delete the nce and clean up all ire's pointing at this nce 5787 * in the cachetable 5788 */ 5789 ndp_delete(nce); 5790 } 5791 if (nce != NULL) 5792 NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */ 5793 5794 cleanup: 5795 /* 5796 * Get rid of the ire buffer 5797 * We call kmem_free here(instead of ire_delete()), since 5798 * this is the freeb's callback. 5799 */ 5800 kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t)); 5801 } 5802 5803 /* 5804 * find, or create if needed, a neighbor cache entry nce_t for IRE_CACHE and 5805 * non-loopback IRE_BROADCAST ire's. 5806 * 5807 * If a neighbor-cache entry has to be created (i.e., one does not already 5808 * exist in the nce list) the nce_res_mp and nce_state of the neighbor cache 5809 * entry are initialized in ndp_add_v4(). These values are picked from 5810 * the src_nce, if one is passed in. Otherwise (if src_nce == NULL) the 5811 * ire->ire_type and the outgoing interface (ire_to_ill(ire)) values 5812 * determine the {nce_state, nce_res_mp} of the nce_t created. All 5813 * IRE_BROADCAST entries have nce_state = ND_REACHABLE, and the nce_res_mp 5814 * is set to the ill_bcast_mp of the outgoing inerface. For unicast ire 5815 * entries, 5816 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created 5817 * nce_t will have a null nce_res_mp, and will be in the ND_INITIAL state. 5818 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link 5819 * layer resolution is necessary, so that the nce_t will be in the 5820 * ND_REACHABLE state and the nce_res_mp will have a copy of the 5821 * ill_resolver_mp of the outgoing interface. 5822 * 5823 * The link layer information needed for broadcast addresses, and for 5824 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that 5825 * never needs re-verification for the lifetime of the nce_t. These are 5826 * therefore marked NCE_F_PERMANENT, and never allowed to expire via 5827 * NCE_EXPIRED. 5828 * 5829 * IRE_CACHE ire's contain the information for the nexthop (ire_gateway_addr) 5830 * in the case of indirect routes, and for the dst itself (ire_addr) in the 5831 * case of direct routes, with the nce_res_mp containing a template 5832 * DL_UNITDATA request. 5833 * 5834 * The actual association of the ire_nce to the nce created here is 5835 * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions 5836 * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which 5837 * the ire_nce assignment is done in ire_add_then_send. 5838 */ 5839 int 5840 ire_nce_init(ire_t *ire, nce_t *src_nce) 5841 { 5842 in_addr_t addr4; 5843 int err; 5844 nce_t *nce = NULL; 5845 ill_t *ire_ill; 5846 uint16_t nce_flags = 0; 5847 ip_stack_t *ipst; 5848 5849 if (ire->ire_stq == NULL) 5850 return (0); /* no need to create nce for local/loopback */ 5851 5852 switch (ire->ire_type) { 5853 case IRE_CACHE: 5854 if (ire->ire_gateway_addr != INADDR_ANY) 5855 addr4 = ire->ire_gateway_addr; /* 'G' route */ 5856 else 5857 addr4 = ire->ire_addr; /* direct route */ 5858 break; 5859 case IRE_BROADCAST: 5860 addr4 = ire->ire_addr; 5861 nce_flags |= (NCE_F_PERMANENT|NCE_F_BCAST); 5862 break; 5863 default: 5864 return (0); 5865 } 5866 5867 /* 5868 * ire_ipif is picked based on RTF_SETSRC, usesrc etc. 5869 * rules in ire_forward_src_ipif. We want the dlureq_mp 5870 * for the outgoing interface, which we get from the ire_stq. 5871 */ 5872 ire_ill = ire_to_ill(ire); 5873 ipst = ire_ill->ill_ipst; 5874 5875 /* 5876 * IRE_IF_NORESOLVER entries never need re-verification and 5877 * do not expire, so we mark them as NCE_F_PERMANENT. 5878 */ 5879 if (ire_ill->ill_net_type == IRE_IF_NORESOLVER) 5880 nce_flags |= NCE_F_PERMANENT; 5881 5882 retry_nce: 5883 err = ndp_lookup_then_add_v4(ire_ill, &addr4, nce_flags, 5884 &nce, src_nce); 5885 5886 if (err == EEXIST && NCE_EXPIRED(nce, ipst)) { 5887 /* 5888 * We looked up an expired nce. 5889 * Go back and try to create one again. 5890 */ 5891 ndp_delete(nce); 5892 NCE_REFRELE(nce); 5893 nce = NULL; 5894 goto retry_nce; 5895 } 5896 5897 ip1dbg(("ire 0x%p addr 0x%lx type 0x%x; found nce 0x%p err %d\n", 5898 (void *)ire, (ulong_t)addr4, ire->ire_type, (void *)nce, err)); 5899 5900 switch (err) { 5901 case 0: 5902 case EEXIST: 5903 /* 5904 * return a pointer to a newly created or existing nce_t; 5905 * note that the ire-nce mapping is many-one, i.e., 5906 * multiple ire's could point to the same nce_t. 5907 */ 5908 break; 5909 default: 5910 DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err); 5911 return (EINVAL); 5912 } 5913 if (ire->ire_type == IRE_BROADCAST) { 5914 /* 5915 * Two bcast ires are created for each interface; 5916 * 1. loopback copy (which does not have an 5917 * ire_stq, and therefore has no ire_nce), and, 5918 * 2. the non-loopback copy, which has the nce_res_mp 5919 * initialized to a copy of the ill_bcast_mp, and 5920 * is marked as ND_REACHABLE at this point. 5921 * This nce does not undergo any further state changes, 5922 * and exists as long as the interface is plumbed. 5923 * Note: we do the ire_nce assignment here for IRE_BROADCAST 5924 * because some functions like ill_mark_bcast() inline the 5925 * ire_add functionality. 5926 */ 5927 ire->ire_nce = nce; 5928 /* 5929 * We are associating this nce to the ire, 5930 * so change the nce ref taken in 5931 * ndp_lookup_then_add_v4() from 5932 * NCE_REFHOLD to NCE_REFHOLD_NOTR 5933 */ 5934 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 5935 } else { 5936 /* 5937 * We are not using this nce_t just yet so release 5938 * the ref taken in ndp_lookup_then_add_v4() 5939 */ 5940 NCE_REFRELE(nce); 5941 } 5942 return (0); 5943 } 5944