1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 49 #include <sys/kmem.h> 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/socket.h> 53 #include <sys/isa_defs.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/if_types.h> 57 #include <net/if_dl.h> 58 #include <net/route.h> 59 #include <sys/sockio.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/igmp_var.h> 64 #include <sys/strsun.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 68 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 69 #include <inet/mi.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/mib2.h> 73 #include <inet/ip.h> 74 #include <inet/ip6.h> 75 #include <inet/ip6_asp.h> 76 #include <inet/tcp.h> 77 #include <inet/ip_multi.h> 78 #include <inet/ip_ire.h> 79 #include <inet/ip_ftable.h> 80 #include <inet/ip_rts.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/ip_if.h> 83 #include <inet/ip_impl.h> 84 #include <inet/tun.h> 85 #include <inet/sctp_ip.h> 86 #include <inet/ip_netinfo.h> 87 #include <inet/mib2.h> 88 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/sadb.h> 92 #include <inet/ipsec_impl.h> 93 #include <sys/iphada.h> 94 95 96 #include <netinet/igmp.h> 97 #include <inet/ip_listutils.h> 98 #include <inet/ipclassifier.h> 99 #include <sys/mac.h> 100 101 #include <sys/systeminfo.h> 102 #include <sys/bootconf.h> 103 104 #include <sys/tsol/tndb.h> 105 #include <sys/tsol/tnet.h> 106 107 /* The character which tells where the ill_name ends */ 108 #define IPIF_SEPARATOR_CHAR ':' 109 110 /* IP ioctl function table entry */ 111 typedef struct ipft_s { 112 int ipft_cmd; 113 pfi_t ipft_pfi; 114 int ipft_min_size; 115 int ipft_flags; 116 } ipft_t; 117 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 118 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 119 120 typedef struct ip_sock_ar_s { 121 union { 122 area_t ip_sock_area; 123 ared_t ip_sock_ared; 124 areq_t ip_sock_areq; 125 } ip_sock_ar_u; 126 queue_t *ip_sock_ar_q; 127 } ip_sock_ar_t; 128 129 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 130 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 131 char *value, caddr_t cp, cred_t *ioc_cr); 132 133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 134 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 135 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 140 queue_t *q, mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 142 mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 146 queue_t *q, mblk_t *mp, boolean_t need_up); 147 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 148 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 149 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 150 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 151 static void ipsq_flush(ill_t *ill); 152 static void ipsq_clean_all(ill_t *ill); 153 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 154 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 155 queue_t *q, mblk_t *mp, boolean_t need_up); 156 static void ipsq_delete(ipsq_t *); 157 158 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 159 boolean_t initialize); 160 static void ipif_check_bcast_ires(ipif_t *test_ipif); 161 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 162 static void ipif_delete_cache_ire(ire_t *, char *); 163 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 164 static void ipif_free(ipif_t *ipif); 165 static void ipif_free_tail(ipif_t *ipif); 166 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 167 static void ipif_multicast_down(ipif_t *ipif); 168 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 169 static void ipif_set_default(ipif_t *ipif); 170 static int ipif_set_values(queue_t *q, mblk_t *mp, 171 char *interf_name, uint_t *ppa); 172 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 173 queue_t *q); 174 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 175 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 176 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 177 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 178 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 179 180 static int ill_alloc_ppa(ill_if_t *, ill_t *); 181 static int ill_arp_off(ill_t *ill); 182 static int ill_arp_on(ill_t *ill); 183 static void ill_delete_interface_type(ill_if_t *); 184 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 185 static void ill_dl_down(ill_t *ill); 186 static void ill_down(ill_t *ill); 187 static void ill_downi(ire_t *ire, char *ill_arg); 188 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 189 static void ill_down_tail(ill_t *ill); 190 static void ill_free_mib(ill_t *ill); 191 static void ill_glist_delete(ill_t *); 192 static boolean_t ill_has_usable_ipif(ill_t *); 193 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 194 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 195 static void ill_phyint_free(ill_t *ill); 196 static void ill_phyint_reinit(ill_t *ill); 197 static void ill_set_nce_router_flags(ill_t *, boolean_t); 198 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 199 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 200 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 201 static void ill_stq_cache_delete(ire_t *, char *); 202 203 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 204 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 in6_addr_t *); 207 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 ipaddr_t *); 209 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 210 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 211 in6_addr_t *); 212 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 213 ipaddr_t *); 214 215 static void ipif_save_ire(ipif_t *, ire_t *); 216 static void ipif_remove_ire(ipif_t *, ire_t *); 217 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 218 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 219 220 /* 221 * Per-ill IPsec capabilities management. 222 */ 223 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 224 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 225 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 226 static void ill_ipsec_capab_delete(ill_t *, uint_t); 227 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 228 static void ill_capability_proto(ill_t *, int, mblk_t *); 229 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 230 boolean_t); 231 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 234 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 236 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 238 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 239 dl_capability_sub_t *); 240 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 241 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 242 static void ill_capability_lso_reset(ill_t *, mblk_t **); 243 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 244 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 245 static void ill_capability_dls_reset(ill_t *, mblk_t **); 246 static void ill_capability_dls_disable(ill_t *); 247 248 static void illgrp_cache_delete(ire_t *, char *); 249 static void illgrp_delete(ill_t *ill); 250 static void illgrp_reset_schednext(ill_t *ill); 251 252 static ill_t *ill_prev_usesrc(ill_t *); 253 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 254 static void ill_disband_usesrc_group(ill_t *); 255 256 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 257 258 /* 259 * if we go over the memory footprint limit more than once in this msec 260 * interval, we'll start pruning aggressively. 261 */ 262 int ip_min_frag_prune_time = 0; 263 264 /* 265 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 266 * and the IPsec DOI 267 */ 268 #define MAX_IPSEC_ALGS 256 269 270 #define BITSPERBYTE 8 271 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 272 273 #define IPSEC_ALG_ENABLE(algs, algid) \ 274 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 275 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 276 277 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 278 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 279 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 280 281 typedef uint8_t ipsec_capab_elem_t; 282 283 /* 284 * Per-algorithm parameters. Note that at present, only encryption 285 * algorithms have variable keysize (IKE does not provide a way to negotiate 286 * auth algorithm keysize). 287 * 288 * All sizes here are in bits. 289 */ 290 typedef struct 291 { 292 uint16_t minkeylen; 293 uint16_t maxkeylen; 294 } ipsec_capab_algparm_t; 295 296 /* 297 * Per-ill capabilities. 298 */ 299 struct ill_ipsec_capab_s { 300 ipsec_capab_elem_t *encr_hw_algs; 301 ipsec_capab_elem_t *auth_hw_algs; 302 uint32_t algs_size; /* size of _hw_algs in bytes */ 303 /* algorithm key lengths */ 304 ipsec_capab_algparm_t *encr_algparm; 305 uint32_t encr_algparm_size; 306 uint32_t encr_algparm_end; 307 }; 308 309 /* 310 * The field values are larger than strictly necessary for simple 311 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 312 */ 313 static area_t ip_area_template = { 314 AR_ENTRY_ADD, /* area_cmd */ 315 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 316 /* area_name_offset */ 317 /* area_name_length temporarily holds this structure length */ 318 sizeof (area_t), /* area_name_length */ 319 IP_ARP_PROTO_TYPE, /* area_proto */ 320 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 321 IP_ADDR_LEN, /* area_proto_addr_length */ 322 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 323 /* area_proto_mask_offset */ 324 0, /* area_flags */ 325 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 326 /* area_hw_addr_offset */ 327 /* Zero length hw_addr_length means 'use your idea of the address' */ 328 0 /* area_hw_addr_length */ 329 }; 330 331 /* 332 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 333 * support 334 */ 335 static area_t ip6_area_template = { 336 AR_ENTRY_ADD, /* area_cmd */ 337 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 338 /* area_name_offset */ 339 /* area_name_length temporarily holds this structure length */ 340 sizeof (area_t), /* area_name_length */ 341 IP_ARP_PROTO_TYPE, /* area_proto */ 342 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 343 IPV6_ADDR_LEN, /* area_proto_addr_length */ 344 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 345 /* area_proto_mask_offset */ 346 0, /* area_flags */ 347 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 348 /* area_hw_addr_offset */ 349 /* Zero length hw_addr_length means 'use your idea of the address' */ 350 0 /* area_hw_addr_length */ 351 }; 352 353 static ared_t ip_ared_template = { 354 AR_ENTRY_DELETE, 355 sizeof (ared_t) + IP_ADDR_LEN, 356 sizeof (ared_t), 357 IP_ARP_PROTO_TYPE, 358 sizeof (ared_t), 359 IP_ADDR_LEN 360 }; 361 362 static ared_t ip6_ared_template = { 363 AR_ENTRY_DELETE, 364 sizeof (ared_t) + IPV6_ADDR_LEN, 365 sizeof (ared_t), 366 IP_ARP_PROTO_TYPE, 367 sizeof (ared_t), 368 IPV6_ADDR_LEN 369 }; 370 371 /* 372 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 373 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 374 * areq is used). 375 */ 376 static areq_t ip_areq_template = { 377 AR_ENTRY_QUERY, /* cmd */ 378 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 379 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 380 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 381 sizeof (areq_t), /* target addr offset */ 382 IP_ADDR_LEN, /* target addr_length */ 383 0, /* flags */ 384 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 385 IP_ADDR_LEN, /* sender addr length */ 386 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 387 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 388 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 389 /* anything else filled in by the code */ 390 }; 391 392 static arc_t ip_aru_template = { 393 AR_INTERFACE_UP, 394 sizeof (arc_t), /* Name offset */ 395 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 396 }; 397 398 static arc_t ip_ard_template = { 399 AR_INTERFACE_DOWN, 400 sizeof (arc_t), /* Name offset */ 401 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 402 }; 403 404 static arc_t ip_aron_template = { 405 AR_INTERFACE_ON, 406 sizeof (arc_t), /* Name offset */ 407 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 408 }; 409 410 static arc_t ip_aroff_template = { 411 AR_INTERFACE_OFF, 412 sizeof (arc_t), /* Name offset */ 413 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 414 }; 415 416 417 static arma_t ip_arma_multi_template = { 418 AR_MAPPING_ADD, 419 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 420 /* Name offset */ 421 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 422 IP_ARP_PROTO_TYPE, 423 sizeof (arma_t), /* proto_addr_offset */ 424 IP_ADDR_LEN, /* proto_addr_length */ 425 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 426 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 427 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 428 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 429 IP_MAX_HW_LEN, /* hw_addr_length */ 430 0, /* hw_mapping_start */ 431 }; 432 433 static ipft_t ip_ioctl_ftbl[] = { 434 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 435 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 436 IPFT_F_NO_REPLY }, 437 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 438 IPFT_F_NO_REPLY }, 439 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 440 { 0 } 441 }; 442 443 /* Simple ICMP IP Header Template */ 444 static ipha_t icmp_ipha = { 445 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 446 }; 447 448 /* Flag descriptors for ip_ipif_report */ 449 static nv_t ipif_nv_tbl[] = { 450 { IPIF_UP, "UP" }, 451 { IPIF_BROADCAST, "BROADCAST" }, 452 { ILLF_DEBUG, "DEBUG" }, 453 { PHYI_LOOPBACK, "LOOPBACK" }, 454 { IPIF_POINTOPOINT, "POINTOPOINT" }, 455 { ILLF_NOTRAILERS, "NOTRAILERS" }, 456 { PHYI_RUNNING, "RUNNING" }, 457 { ILLF_NOARP, "NOARP" }, 458 { PHYI_PROMISC, "PROMISC" }, 459 { PHYI_ALLMULTI, "ALLMULTI" }, 460 { PHYI_INTELLIGENT, "INTELLIGENT" }, 461 { ILLF_MULTICAST, "MULTICAST" }, 462 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 463 { IPIF_UNNUMBERED, "UNNUMBERED" }, 464 { IPIF_DHCPRUNNING, "DHCP" }, 465 { IPIF_PRIVATE, "PRIVATE" }, 466 { IPIF_NOXMIT, "NOXMIT" }, 467 { IPIF_NOLOCAL, "NOLOCAL" }, 468 { IPIF_DEPRECATED, "DEPRECATED" }, 469 { IPIF_PREFERRED, "PREFERRED" }, 470 { IPIF_TEMPORARY, "TEMPORARY" }, 471 { IPIF_ADDRCONF, "ADDRCONF" }, 472 { PHYI_VIRTUAL, "VIRTUAL" }, 473 { ILLF_ROUTER, "ROUTER" }, 474 { ILLF_NONUD, "NONUD" }, 475 { IPIF_ANYCAST, "ANYCAST" }, 476 { ILLF_NORTEXCH, "NORTEXCH" }, 477 { ILLF_IPV4, "IPV4" }, 478 { ILLF_IPV6, "IPV6" }, 479 { IPIF_MIPRUNNING, "MIP" }, 480 { IPIF_NOFAILOVER, "NOFAILOVER" }, 481 { PHYI_FAILED, "FAILED" }, 482 { PHYI_STANDBY, "STANDBY" }, 483 { PHYI_INACTIVE, "INACTIVE" }, 484 { PHYI_OFFLINE, "OFFLINE" }, 485 }; 486 487 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 488 489 static ip_m_t ip_m_tbl[] = { 490 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 491 ip_ether_v6intfid }, 492 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 493 ip_nodef_v6intfid }, 494 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 495 ip_nodef_v6intfid }, 496 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 497 ip_nodef_v6intfid }, 498 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 499 ip_ether_v6intfid }, 500 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 501 ip_ib_v6intfid }, 502 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 503 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_nodef_v6intfid } 505 }; 506 507 static ill_t ill_null; /* Empty ILL for init. */ 508 char ipif_loopback_name[] = "lo0"; 509 static char *ipv4_forward_suffix = ":ip_forwarding"; 510 static char *ipv6_forward_suffix = ":ip6_forwarding"; 511 static sin6_t sin6_null; /* Zero address for quick clears */ 512 static sin_t sin_null; /* Zero address for quick clears */ 513 514 /* When set search for unused ipif_seqid */ 515 static ipif_t ipif_zero; 516 517 /* 518 * ppa arena is created after these many 519 * interfaces have been plumbed. 520 */ 521 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 522 523 /* 524 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 525 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 526 * set through platform specific code (Niagara/Ontario). 527 */ 528 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 529 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 530 531 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 532 533 static uint_t 534 ipif_rand(ip_stack_t *ipst) 535 { 536 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 537 12345; 538 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 539 } 540 541 /* 542 * Allocate per-interface mibs. 543 * Returns true if ok. False otherwise. 544 * ipsq may not yet be allocated (loopback case ). 545 */ 546 static boolean_t 547 ill_allocate_mibs(ill_t *ill) 548 { 549 /* Already allocated? */ 550 if (ill->ill_ip_mib != NULL) { 551 if (ill->ill_isv6) 552 ASSERT(ill->ill_icmp6_mib != NULL); 553 return (B_TRUE); 554 } 555 556 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 557 KM_NOSLEEP); 558 if (ill->ill_ip_mib == NULL) { 559 return (B_FALSE); 560 } 561 562 /* Setup static information */ 563 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 564 sizeof (mib2_ipIfStatsEntry_t)); 565 if (ill->ill_isv6) { 566 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 567 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 568 sizeof (mib2_ipv6AddrEntry_t)); 569 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 570 sizeof (mib2_ipv6RouteEntry_t)); 571 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 572 sizeof (mib2_ipv6NetToMediaEntry_t)); 573 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 574 sizeof (ipv6_member_t)); 575 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 576 sizeof (ipv6_grpsrc_t)); 577 } else { 578 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 579 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 580 sizeof (mib2_ipAddrEntry_t)); 581 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 582 sizeof (mib2_ipRouteEntry_t)); 583 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 584 sizeof (mib2_ipNetToMediaEntry_t)); 585 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 586 sizeof (ip_member_t)); 587 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 588 sizeof (ip_grpsrc_t)); 589 590 /* 591 * For a v4 ill, we are done at this point, because per ill 592 * icmp mibs are only used for v6. 593 */ 594 return (B_TRUE); 595 } 596 597 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 598 KM_NOSLEEP); 599 if (ill->ill_icmp6_mib == NULL) { 600 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 601 ill->ill_ip_mib = NULL; 602 return (B_FALSE); 603 } 604 /* static icmp info */ 605 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 606 sizeof (mib2_ipv6IfIcmpEntry_t); 607 /* 608 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 609 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 610 * -> ill_phyint_reinit 611 */ 612 return (B_TRUE); 613 } 614 615 /* 616 * Common code for preparation of ARP commands. Two points to remember: 617 * 1) The ill_name is tacked on at the end of the allocated space so 618 * the templates name_offset field must contain the total space 619 * to allocate less the name length. 620 * 621 * 2) The templates name_length field should contain the *template* 622 * length. We use it as a parameter to bcopy() and then write 623 * the real ill_name_length into the name_length field of the copy. 624 * (Always called as writer.) 625 */ 626 mblk_t * 627 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 628 { 629 arc_t *arc = (arc_t *)template; 630 char *cp; 631 int len; 632 mblk_t *mp; 633 uint_t name_length = ill->ill_name_length; 634 uint_t template_len = arc->arc_name_length; 635 636 len = arc->arc_name_offset + name_length; 637 mp = allocb(len, BPRI_HI); 638 if (mp == NULL) 639 return (NULL); 640 cp = (char *)mp->b_rptr; 641 mp->b_wptr = (uchar_t *)&cp[len]; 642 if (template_len) 643 bcopy(template, cp, template_len); 644 if (len > template_len) 645 bzero(&cp[template_len], len - template_len); 646 mp->b_datap->db_type = M_PROTO; 647 648 arc = (arc_t *)cp; 649 arc->arc_name_length = name_length; 650 cp = (char *)arc + arc->arc_name_offset; 651 bcopy(ill->ill_name, cp, name_length); 652 653 if (addr) { 654 area_t *area = (area_t *)mp->b_rptr; 655 656 cp = (char *)area + area->area_proto_addr_offset; 657 bcopy(addr, cp, area->area_proto_addr_length); 658 if (area->area_cmd == AR_ENTRY_ADD) { 659 cp = (char *)area; 660 len = area->area_proto_addr_length; 661 if (area->area_proto_mask_offset) 662 cp += area->area_proto_mask_offset; 663 else 664 cp += area->area_proto_addr_offset + len; 665 while (len-- > 0) 666 *cp++ = (char)~0; 667 } 668 } 669 return (mp); 670 } 671 672 mblk_t * 673 ipif_area_alloc(ipif_t *ipif) 674 { 675 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 676 (char *)&ipif->ipif_lcl_addr)); 677 } 678 679 mblk_t * 680 ipif_ared_alloc(ipif_t *ipif) 681 { 682 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 683 (char *)&ipif->ipif_lcl_addr)); 684 } 685 686 mblk_t * 687 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 688 { 689 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 690 (char *)&addr)); 691 } 692 693 /* 694 * Completely vaporize a lower level tap and all associated interfaces. 695 * ill_delete is called only out of ip_close when the device control 696 * stream is being closed. 697 */ 698 void 699 ill_delete(ill_t *ill) 700 { 701 ipif_t *ipif; 702 ill_t *prev_ill; 703 ip_stack_t *ipst = ill->ill_ipst; 704 705 /* 706 * ill_delete may be forcibly entering the ipsq. The previous 707 * ioctl may not have completed and may need to be aborted. 708 * ipsq_flush takes care of it. If we don't need to enter the 709 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 710 * ill_delete_tail is sufficient. 711 */ 712 ipsq_flush(ill); 713 714 /* 715 * Nuke all interfaces. ipif_free will take down the interface, 716 * remove it from the list, and free the data structure. 717 * Walk down the ipif list and remove the logical interfaces 718 * first before removing the main ipif. We can't unplumb 719 * zeroth interface first in the case of IPv6 as reset_conn_ill 720 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 721 * POINTOPOINT. 722 * 723 * If ill_ipif was not properly initialized (i.e low on memory), 724 * then no interfaces to clean up. In this case just clean up the 725 * ill. 726 */ 727 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 728 ipif_free(ipif); 729 730 /* 731 * Used only by ill_arp_on and ill_arp_off, which are writers. 732 * So nobody can be using this mp now. Free the mp allocated for 733 * honoring ILLF_NOARP 734 */ 735 freemsg(ill->ill_arp_on_mp); 736 ill->ill_arp_on_mp = NULL; 737 738 /* Clean up msgs on pending upcalls for mrouted */ 739 reset_mrt_ill(ill); 740 741 /* 742 * ipif_free -> reset_conn_ipif will remove all multicast 743 * references for IPv4. For IPv6, we need to do it here as 744 * it points only at ills. 745 */ 746 reset_conn_ill(ill); 747 748 /* 749 * ill_down will arrange to blow off any IRE's dependent on this 750 * ILL, and shut down fragmentation reassembly. 751 */ 752 ill_down(ill); 753 754 /* Let SCTP know, so that it can remove this from its list. */ 755 sctp_update_ill(ill, SCTP_ILL_REMOVE); 756 757 /* 758 * If an address on this ILL is being used as a source address then 759 * clear out the pointers in other ILLs that point to this ILL. 760 */ 761 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 762 if (ill->ill_usesrc_grp_next != NULL) { 763 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 764 ill_disband_usesrc_group(ill); 765 } else { /* consumer of the usesrc ILL */ 766 prev_ill = ill_prev_usesrc(ill); 767 prev_ill->ill_usesrc_grp_next = 768 ill->ill_usesrc_grp_next; 769 } 770 } 771 rw_exit(&ipst->ips_ill_g_usesrc_lock); 772 } 773 774 static void 775 ipif_non_duplicate(ipif_t *ipif) 776 { 777 ill_t *ill = ipif->ipif_ill; 778 mutex_enter(&ill->ill_lock); 779 if (ipif->ipif_flags & IPIF_DUPLICATE) { 780 ipif->ipif_flags &= ~IPIF_DUPLICATE; 781 ASSERT(ill->ill_ipif_dup_count > 0); 782 ill->ill_ipif_dup_count--; 783 } 784 mutex_exit(&ill->ill_lock); 785 } 786 787 /* 788 * Send all deferred messages without waiting for their ACKs. 789 */ 790 void 791 ill_send_all_deferred_mp(ill_t *ill) 792 { 793 mblk_t *mp, *next; 794 795 /* 796 * Clear ill_dlpi_pending so that the message is not queued in 797 * ill_dlpi_send(). 798 */ 799 ill->ill_dlpi_pending = DL_PRIM_INVAL; 800 801 for (mp = ill->ill_dlpi_deferred; mp != NULL; mp = next) { 802 next = mp->b_next; 803 mp->b_next = NULL; 804 ill_dlpi_send(ill, mp); 805 } 806 ill->ill_dlpi_deferred = NULL; 807 } 808 809 /* 810 * ill_delete_tail is called from ip_modclose after all references 811 * to the closing ill are gone. The wait is done in ip_modclose 812 */ 813 void 814 ill_delete_tail(ill_t *ill) 815 { 816 mblk_t **mpp; 817 ipif_t *ipif; 818 ip_stack_t *ipst = ill->ill_ipst; 819 820 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 821 ipif_non_duplicate(ipif); 822 ipif_down_tail(ipif); 823 } 824 825 ASSERT(ill->ill_ipif_dup_count == 0 && 826 ill->ill_arp_down_mp == NULL && 827 ill->ill_arp_del_mapping_mp == NULL); 828 829 /* 830 * If polling capability is enabled (which signifies direct 831 * upcall into IP and driver has ill saved as a handle), 832 * we need to make sure that unbind has completed before we 833 * let the ill disappear and driver no longer has any reference 834 * to this ill. 835 */ 836 mutex_enter(&ill->ill_lock); 837 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 838 cv_wait(&ill->ill_cv, &ill->ill_lock); 839 mutex_exit(&ill->ill_lock); 840 841 /* 842 * Clean up polling and soft ring capabilities 843 */ 844 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 845 ill_capability_dls_disable(ill); 846 847 /* 848 * Send the detach if there's one to send (i.e., if we're above a 849 * style 2 DLPI driver). 850 */ 851 if (ill->ill_detach_mp != NULL) { 852 ill_dlpi_send(ill, ill->ill_detach_mp); 853 ill->ill_detach_mp = NULL; 854 } 855 856 if (ill->ill_net_type != IRE_LOOPBACK) 857 qprocsoff(ill->ill_rq); 858 859 /* 860 * We do an ipsq_flush once again now. New messages could have 861 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 862 * could also have landed up if an ioctl thread had looked up 863 * the ill before we set the ILL_CONDEMNED flag, but not yet 864 * enqueued the ioctl when we did the ipsq_flush last time. 865 */ 866 ipsq_flush(ill); 867 868 /* 869 * Free capabilities. 870 */ 871 if (ill->ill_ipsec_capab_ah != NULL) { 872 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 873 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 874 ill->ill_ipsec_capab_ah = NULL; 875 } 876 877 if (ill->ill_ipsec_capab_esp != NULL) { 878 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 879 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 880 ill->ill_ipsec_capab_esp = NULL; 881 } 882 883 if (ill->ill_mdt_capab != NULL) { 884 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 885 ill->ill_mdt_capab = NULL; 886 } 887 888 if (ill->ill_hcksum_capab != NULL) { 889 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 890 ill->ill_hcksum_capab = NULL; 891 } 892 893 if (ill->ill_zerocopy_capab != NULL) { 894 kmem_free(ill->ill_zerocopy_capab, 895 sizeof (ill_zerocopy_capab_t)); 896 ill->ill_zerocopy_capab = NULL; 897 } 898 899 if (ill->ill_lso_capab != NULL) { 900 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 901 ill->ill_lso_capab = NULL; 902 } 903 904 if (ill->ill_dls_capab != NULL) { 905 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 906 ill->ill_dls_capab->ill_unbind_conn = NULL; 907 kmem_free(ill->ill_dls_capab, 908 sizeof (ill_dls_capab_t) + 909 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 910 ill->ill_dls_capab = NULL; 911 } 912 913 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 914 915 while (ill->ill_ipif != NULL) 916 ipif_free_tail(ill->ill_ipif); 917 918 ill_down_tail(ill); 919 920 /* 921 * We have removed all references to ilm from conn and the ones joined 922 * within the kernel. 923 * 924 * We don't walk conns, mrts and ires because 925 * 926 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 927 * 2) ill_down ->ill_downi walks all the ires and cleans up 928 * ill references. 929 */ 930 ASSERT(ilm_walk_ill(ill) == 0); 931 /* 932 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 933 * could free the phyint. No more reference to the phyint after this 934 * point. 935 */ 936 (void) ill_glist_delete(ill); 937 938 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 939 if (ill->ill_ndd_name != NULL) 940 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 941 rw_exit(&ipst->ips_ip_g_nd_lock); 942 943 944 if (ill->ill_frag_ptr != NULL) { 945 uint_t count; 946 947 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 948 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 949 } 950 mi_free(ill->ill_frag_ptr); 951 ill->ill_frag_ptr = NULL; 952 ill->ill_frag_hash_tbl = NULL; 953 } 954 955 freemsg(ill->ill_nd_lla_mp); 956 /* Free all retained control messages. */ 957 mpp = &ill->ill_first_mp_to_free; 958 do { 959 while (mpp[0]) { 960 mblk_t *mp; 961 mblk_t *mp1; 962 963 mp = mpp[0]; 964 mpp[0] = mp->b_next; 965 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 966 mp1->b_next = NULL; 967 mp1->b_prev = NULL; 968 } 969 freemsg(mp); 970 } 971 } while (mpp++ != &ill->ill_last_mp_to_free); 972 973 ill_free_mib(ill); 974 /* Drop refcnt here */ 975 netstack_rele(ill->ill_ipst->ips_netstack); 976 ill->ill_ipst = NULL; 977 978 ILL_TRACE_CLEANUP(ill); 979 } 980 981 static void 982 ill_free_mib(ill_t *ill) 983 { 984 ip_stack_t *ipst = ill->ill_ipst; 985 986 /* 987 * MIB statistics must not be lost, so when an interface 988 * goes away the counter values will be added to the global 989 * MIBs. 990 */ 991 if (ill->ill_ip_mib != NULL) { 992 if (ill->ill_isv6) { 993 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 994 ill->ill_ip_mib); 995 } else { 996 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 997 ill->ill_ip_mib); 998 } 999 1000 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 1001 ill->ill_ip_mib = NULL; 1002 } 1003 if (ill->ill_icmp6_mib != NULL) { 1004 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 1005 ill->ill_icmp6_mib); 1006 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 1007 ill->ill_icmp6_mib = NULL; 1008 } 1009 } 1010 1011 /* 1012 * Concatenate together a physical address and a sap. 1013 * 1014 * Sap_lengths are interpreted as follows: 1015 * sap_length == 0 ==> no sap 1016 * sap_length > 0 ==> sap is at the head of the dlpi address 1017 * sap_length < 0 ==> sap is at the tail of the dlpi address 1018 */ 1019 static void 1020 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 1021 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1022 { 1023 uint16_t sap_addr = (uint16_t)sap_src; 1024 1025 if (sap_length == 0) { 1026 if (phys_src == NULL) 1027 bzero(dst, phys_length); 1028 else 1029 bcopy(phys_src, dst, phys_length); 1030 } else if (sap_length < 0) { 1031 if (phys_src == NULL) 1032 bzero(dst, phys_length); 1033 else 1034 bcopy(phys_src, dst, phys_length); 1035 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1036 } else { 1037 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1038 if (phys_src == NULL) 1039 bzero((char *)dst + sap_length, phys_length); 1040 else 1041 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1042 } 1043 } 1044 1045 /* 1046 * Generate a dl_unitdata_req mblk for the device and address given. 1047 * addr_length is the length of the physical portion of the address. 1048 * If addr is NULL include an all zero address of the specified length. 1049 * TRUE? In any case, addr_length is taken to be the entire length of the 1050 * dlpi address, including the absolute value of sap_length. 1051 */ 1052 mblk_t * 1053 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1054 t_scalar_t sap_length) 1055 { 1056 dl_unitdata_req_t *dlur; 1057 mblk_t *mp; 1058 t_scalar_t abs_sap_length; /* absolute value */ 1059 1060 abs_sap_length = ABS(sap_length); 1061 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1062 DL_UNITDATA_REQ); 1063 if (mp == NULL) 1064 return (NULL); 1065 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1066 /* HACK: accomodate incompatible DLPI drivers */ 1067 if (addr_length == 8) 1068 addr_length = 6; 1069 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1070 dlur->dl_dest_addr_offset = sizeof (*dlur); 1071 dlur->dl_priority.dl_min = 0; 1072 dlur->dl_priority.dl_max = 0; 1073 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1074 (uchar_t *)&dlur[1]); 1075 return (mp); 1076 } 1077 1078 /* 1079 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1080 * Return an error if we already have 1 or more ioctls in progress. 1081 * This is used only for non-exclusive ioctls. Currently this is used 1082 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1083 * and thus need to use ipsq_pending_mp_add. 1084 */ 1085 boolean_t 1086 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1087 { 1088 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1089 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1090 /* 1091 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1092 */ 1093 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1094 (add_mp->b_datap->db_type == M_IOCTL)); 1095 1096 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1097 /* 1098 * Return error if the conn has started closing. The conn 1099 * could have finished cleaning up the pending mp list, 1100 * If so we should not add another mp to the list negating 1101 * the cleanup. 1102 */ 1103 if (connp->conn_state_flags & CONN_CLOSING) 1104 return (B_FALSE); 1105 /* 1106 * Add the pending mp to the head of the list, chained by b_next. 1107 * Note down the conn on which the ioctl request came, in b_prev. 1108 * This will be used to later get the conn, when we get a response 1109 * on the ill queue, from some other module (typically arp) 1110 */ 1111 add_mp->b_next = (void *)ill->ill_pending_mp; 1112 add_mp->b_queue = CONNP_TO_WQ(connp); 1113 ill->ill_pending_mp = add_mp; 1114 if (connp != NULL) 1115 connp->conn_oper_pending_ill = ill; 1116 return (B_TRUE); 1117 } 1118 1119 /* 1120 * Retrieve the ill_pending_mp and return it. We have to walk the list 1121 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1122 */ 1123 mblk_t * 1124 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1125 { 1126 mblk_t *prev = NULL; 1127 mblk_t *curr = NULL; 1128 uint_t id; 1129 conn_t *connp; 1130 1131 /* 1132 * When the conn closes, conn_ioctl_cleanup needs to clean 1133 * up the pending mp, but it does not know the ioc_id and 1134 * passes in a zero for it. 1135 */ 1136 mutex_enter(&ill->ill_lock); 1137 if (ioc_id != 0) 1138 *connpp = NULL; 1139 1140 /* Search the list for the appropriate ioctl based on ioc_id */ 1141 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1142 prev = curr, curr = curr->b_next) { 1143 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1144 connp = Q_TO_CONN(curr->b_queue); 1145 /* Match based on the ioc_id or based on the conn */ 1146 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1147 break; 1148 } 1149 1150 if (curr != NULL) { 1151 /* Unlink the mblk from the pending mp list */ 1152 if (prev != NULL) { 1153 prev->b_next = curr->b_next; 1154 } else { 1155 ASSERT(ill->ill_pending_mp == curr); 1156 ill->ill_pending_mp = curr->b_next; 1157 } 1158 1159 /* 1160 * conn refcnt must have been bumped up at the start of 1161 * the ioctl. So we can safely access the conn. 1162 */ 1163 ASSERT(CONN_Q(curr->b_queue)); 1164 *connpp = Q_TO_CONN(curr->b_queue); 1165 curr->b_next = NULL; 1166 curr->b_queue = NULL; 1167 } 1168 1169 mutex_exit(&ill->ill_lock); 1170 1171 return (curr); 1172 } 1173 1174 /* 1175 * Add the pending mp to the list. There can be only 1 pending mp 1176 * in the list. Any exclusive ioctl that needs to wait for a response 1177 * from another module or driver needs to use this function to set 1178 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1179 * the other module/driver. This is also used while waiting for the 1180 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1181 */ 1182 boolean_t 1183 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1184 int waitfor) 1185 { 1186 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1187 1188 ASSERT(IAM_WRITER_IPIF(ipif)); 1189 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1190 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1191 ASSERT(ipsq->ipsq_pending_mp == NULL); 1192 /* 1193 * The caller may be using a different ipif than the one passed into 1194 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1195 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1196 * that `ipsq_current_ipif == ipif'. 1197 */ 1198 ASSERT(ipsq->ipsq_current_ipif != NULL); 1199 1200 /* 1201 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1202 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1203 */ 1204 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1205 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1206 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1207 1208 if (connp != NULL) { 1209 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1210 /* 1211 * Return error if the conn has started closing. The conn 1212 * could have finished cleaning up the pending mp list, 1213 * If so we should not add another mp to the list negating 1214 * the cleanup. 1215 */ 1216 if (connp->conn_state_flags & CONN_CLOSING) 1217 return (B_FALSE); 1218 } 1219 mutex_enter(&ipsq->ipsq_lock); 1220 ipsq->ipsq_pending_ipif = ipif; 1221 /* 1222 * Note down the queue in b_queue. This will be returned by 1223 * ipsq_pending_mp_get. Caller will then use these values to restart 1224 * the processing 1225 */ 1226 add_mp->b_next = NULL; 1227 add_mp->b_queue = q; 1228 ipsq->ipsq_pending_mp = add_mp; 1229 ipsq->ipsq_waitfor = waitfor; 1230 1231 if (connp != NULL) 1232 connp->conn_oper_pending_ill = ipif->ipif_ill; 1233 mutex_exit(&ipsq->ipsq_lock); 1234 return (B_TRUE); 1235 } 1236 1237 /* 1238 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1239 * queued in the list. 1240 */ 1241 mblk_t * 1242 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1243 { 1244 mblk_t *curr = NULL; 1245 1246 mutex_enter(&ipsq->ipsq_lock); 1247 *connpp = NULL; 1248 if (ipsq->ipsq_pending_mp == NULL) { 1249 mutex_exit(&ipsq->ipsq_lock); 1250 return (NULL); 1251 } 1252 1253 /* There can be only 1 such excl message */ 1254 curr = ipsq->ipsq_pending_mp; 1255 ASSERT(curr != NULL && curr->b_next == NULL); 1256 ipsq->ipsq_pending_ipif = NULL; 1257 ipsq->ipsq_pending_mp = NULL; 1258 ipsq->ipsq_waitfor = 0; 1259 mutex_exit(&ipsq->ipsq_lock); 1260 1261 if (CONN_Q(curr->b_queue)) { 1262 /* 1263 * This mp did a refhold on the conn, at the start of the ioctl. 1264 * So we can safely return a pointer to the conn to the caller. 1265 */ 1266 *connpp = Q_TO_CONN(curr->b_queue); 1267 } else { 1268 *connpp = NULL; 1269 } 1270 curr->b_next = NULL; 1271 curr->b_prev = NULL; 1272 return (curr); 1273 } 1274 1275 /* 1276 * Cleanup the ioctl mp queued in ipsq_pending_mp 1277 * - Called in the ill_delete path 1278 * - Called in the M_ERROR or M_HANGUP path on the ill. 1279 * - Called in the conn close path. 1280 */ 1281 boolean_t 1282 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1283 { 1284 mblk_t *mp; 1285 ipsq_t *ipsq; 1286 queue_t *q; 1287 ipif_t *ipif; 1288 1289 ASSERT(IAM_WRITER_ILL(ill)); 1290 ipsq = ill->ill_phyint->phyint_ipsq; 1291 mutex_enter(&ipsq->ipsq_lock); 1292 /* 1293 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1294 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1295 * even if it is meant for another ill, since we have to enqueue 1296 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1297 * If connp is non-null we are called from the conn close path. 1298 */ 1299 mp = ipsq->ipsq_pending_mp; 1300 if (mp == NULL || (connp != NULL && 1301 mp->b_queue != CONNP_TO_WQ(connp))) { 1302 mutex_exit(&ipsq->ipsq_lock); 1303 return (B_FALSE); 1304 } 1305 /* Now remove from the ipsq_pending_mp */ 1306 ipsq->ipsq_pending_mp = NULL; 1307 q = mp->b_queue; 1308 mp->b_next = NULL; 1309 mp->b_prev = NULL; 1310 mp->b_queue = NULL; 1311 1312 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1313 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1314 if (ill->ill_move_in_progress) { 1315 ILL_CLEAR_MOVE(ill); 1316 } else if (ill->ill_up_ipifs) { 1317 ill_group_cleanup(ill); 1318 } 1319 1320 ipif = ipsq->ipsq_pending_ipif; 1321 ipsq->ipsq_pending_ipif = NULL; 1322 ipsq->ipsq_waitfor = 0; 1323 ipsq->ipsq_current_ipif = NULL; 1324 ipsq->ipsq_current_ioctl = 0; 1325 mutex_exit(&ipsq->ipsq_lock); 1326 1327 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1328 if (connp == NULL) { 1329 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1330 } else { 1331 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1332 mutex_enter(&ipif->ipif_ill->ill_lock); 1333 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1334 mutex_exit(&ipif->ipif_ill->ill_lock); 1335 } 1336 } else { 1337 /* 1338 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1339 * be just inet_freemsg. we have to restart it 1340 * otherwise the thread will be stuck. 1341 */ 1342 inet_freemsg(mp); 1343 } 1344 return (B_TRUE); 1345 } 1346 1347 /* 1348 * The ill is closing. Cleanup all the pending mps. Called exclusively 1349 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1350 * knows this ill, and hence nobody can add an mp to this list 1351 */ 1352 static void 1353 ill_pending_mp_cleanup(ill_t *ill) 1354 { 1355 mblk_t *mp; 1356 queue_t *q; 1357 1358 ASSERT(IAM_WRITER_ILL(ill)); 1359 1360 mutex_enter(&ill->ill_lock); 1361 /* 1362 * Every mp on the pending mp list originating from an ioctl 1363 * added 1 to the conn refcnt, at the start of the ioctl. 1364 * So bump it down now. See comments in ip_wput_nondata() 1365 */ 1366 while (ill->ill_pending_mp != NULL) { 1367 mp = ill->ill_pending_mp; 1368 ill->ill_pending_mp = mp->b_next; 1369 mutex_exit(&ill->ill_lock); 1370 1371 q = mp->b_queue; 1372 ASSERT(CONN_Q(q)); 1373 mp->b_next = NULL; 1374 mp->b_prev = NULL; 1375 mp->b_queue = NULL; 1376 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1377 mutex_enter(&ill->ill_lock); 1378 } 1379 ill->ill_pending_ipif = NULL; 1380 1381 mutex_exit(&ill->ill_lock); 1382 } 1383 1384 /* 1385 * Called in the conn close path and ill delete path 1386 */ 1387 static void 1388 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1389 { 1390 ipsq_t *ipsq; 1391 mblk_t *prev; 1392 mblk_t *curr; 1393 mblk_t *next; 1394 queue_t *q; 1395 mblk_t *tmp_list = NULL; 1396 1397 ASSERT(IAM_WRITER_ILL(ill)); 1398 if (connp != NULL) 1399 q = CONNP_TO_WQ(connp); 1400 else 1401 q = ill->ill_wq; 1402 1403 ipsq = ill->ill_phyint->phyint_ipsq; 1404 /* 1405 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1406 * In the case of ioctl from a conn, there can be only 1 mp 1407 * queued on the ipsq. If an ill is being unplumbed, only messages 1408 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1409 * ioctls meant for this ill form conn's are not flushed. They will 1410 * be processed during ipsq_exit and will not find the ill and will 1411 * return error. 1412 */ 1413 mutex_enter(&ipsq->ipsq_lock); 1414 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1415 curr = next) { 1416 next = curr->b_next; 1417 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1418 /* Unlink the mblk from the pending mp list */ 1419 if (prev != NULL) { 1420 prev->b_next = curr->b_next; 1421 } else { 1422 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1423 ipsq->ipsq_xopq_mphead = curr->b_next; 1424 } 1425 if (ipsq->ipsq_xopq_mptail == curr) 1426 ipsq->ipsq_xopq_mptail = prev; 1427 /* 1428 * Create a temporary list and release the ipsq lock 1429 * New elements are added to the head of the tmp_list 1430 */ 1431 curr->b_next = tmp_list; 1432 tmp_list = curr; 1433 } else { 1434 prev = curr; 1435 } 1436 } 1437 mutex_exit(&ipsq->ipsq_lock); 1438 1439 while (tmp_list != NULL) { 1440 curr = tmp_list; 1441 tmp_list = curr->b_next; 1442 curr->b_next = NULL; 1443 curr->b_prev = NULL; 1444 curr->b_queue = NULL; 1445 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1446 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1447 CONN_CLOSE : NO_COPYOUT, NULL); 1448 } else { 1449 /* 1450 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1451 * this can't be just inet_freemsg. we have to 1452 * restart it otherwise the thread will be stuck. 1453 */ 1454 inet_freemsg(curr); 1455 } 1456 } 1457 } 1458 1459 /* 1460 * This conn has started closing. Cleanup any pending ioctl from this conn. 1461 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1462 */ 1463 void 1464 conn_ioctl_cleanup(conn_t *connp) 1465 { 1466 mblk_t *curr; 1467 ipsq_t *ipsq; 1468 ill_t *ill; 1469 boolean_t refheld; 1470 1471 /* 1472 * Is any exclusive ioctl pending ? If so clean it up. If the 1473 * ioctl has not yet started, the mp is pending in the list headed by 1474 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1475 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1476 * is currently executing now the mp is not queued anywhere but 1477 * conn_oper_pending_ill is null. The conn close will wait 1478 * till the conn_ref drops to zero. 1479 */ 1480 mutex_enter(&connp->conn_lock); 1481 ill = connp->conn_oper_pending_ill; 1482 if (ill == NULL) { 1483 mutex_exit(&connp->conn_lock); 1484 return; 1485 } 1486 1487 curr = ill_pending_mp_get(ill, &connp, 0); 1488 if (curr != NULL) { 1489 mutex_exit(&connp->conn_lock); 1490 CONN_DEC_REF(connp); 1491 inet_freemsg(curr); 1492 return; 1493 } 1494 /* 1495 * We may not be able to refhold the ill if the ill/ipif 1496 * is changing. But we need to make sure that the ill will 1497 * not vanish. So we just bump up the ill_waiter count. 1498 */ 1499 refheld = ill_waiter_inc(ill); 1500 mutex_exit(&connp->conn_lock); 1501 if (refheld) { 1502 if (ipsq_enter(ill, B_TRUE)) { 1503 ill_waiter_dcr(ill); 1504 /* 1505 * Check whether this ioctl has started and is 1506 * pending now in ipsq_pending_mp. If it is not 1507 * found there then check whether this ioctl has 1508 * not even started and is in the ipsq_xopq list. 1509 */ 1510 if (!ipsq_pending_mp_cleanup(ill, connp)) 1511 ipsq_xopq_mp_cleanup(ill, connp); 1512 ipsq = ill->ill_phyint->phyint_ipsq; 1513 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1514 return; 1515 } 1516 } 1517 1518 /* 1519 * The ill is also closing and we could not bump up the 1520 * ill_waiter_count or we could not enter the ipsq. Leave 1521 * the cleanup to ill_delete 1522 */ 1523 mutex_enter(&connp->conn_lock); 1524 while (connp->conn_oper_pending_ill != NULL) 1525 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1526 mutex_exit(&connp->conn_lock); 1527 if (refheld) 1528 ill_waiter_dcr(ill); 1529 } 1530 1531 /* 1532 * ipcl_walk function for cleaning up conn_*_ill fields. 1533 */ 1534 static void 1535 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1536 { 1537 ill_t *ill = (ill_t *)arg; 1538 ire_t *ire; 1539 1540 mutex_enter(&connp->conn_lock); 1541 if (connp->conn_multicast_ill == ill) { 1542 /* Revert to late binding */ 1543 connp->conn_multicast_ill = NULL; 1544 connp->conn_orig_multicast_ifindex = 0; 1545 } 1546 if (connp->conn_incoming_ill == ill) 1547 connp->conn_incoming_ill = NULL; 1548 if (connp->conn_outgoing_ill == ill) 1549 connp->conn_outgoing_ill = NULL; 1550 if (connp->conn_outgoing_pill == ill) 1551 connp->conn_outgoing_pill = NULL; 1552 if (connp->conn_nofailover_ill == ill) 1553 connp->conn_nofailover_ill = NULL; 1554 if (connp->conn_xmit_if_ill == ill) 1555 connp->conn_xmit_if_ill = NULL; 1556 if (connp->conn_ire_cache != NULL) { 1557 ire = connp->conn_ire_cache; 1558 /* 1559 * ip_newroute creates IRE_CACHE with ire_stq coming from 1560 * interface X and ipif coming from interface Y, if interface 1561 * X and Y are part of the same IPMPgroup. Thus whenever 1562 * interface X goes down, remove all references to it by 1563 * checking both on ire_ipif and ire_stq. 1564 */ 1565 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1566 (ire->ire_type == IRE_CACHE && 1567 ire->ire_stq == ill->ill_wq)) { 1568 connp->conn_ire_cache = NULL; 1569 mutex_exit(&connp->conn_lock); 1570 ire_refrele_notr(ire); 1571 return; 1572 } 1573 } 1574 mutex_exit(&connp->conn_lock); 1575 1576 } 1577 1578 /* ARGSUSED */ 1579 void 1580 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1581 { 1582 ill_t *ill = q->q_ptr; 1583 ipif_t *ipif; 1584 1585 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1586 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1587 ipif_non_duplicate(ipif); 1588 ipif_down_tail(ipif); 1589 } 1590 ill_down_tail(ill); 1591 freemsg(mp); 1592 ipsq_current_finish(ipsq); 1593 } 1594 1595 /* 1596 * ill_down_start is called when we want to down this ill and bring it up again 1597 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1598 * all interfaces, but don't tear down any plumbing. 1599 */ 1600 boolean_t 1601 ill_down_start(queue_t *q, mblk_t *mp) 1602 { 1603 ill_t *ill = q->q_ptr; 1604 ipif_t *ipif; 1605 1606 ASSERT(IAM_WRITER_ILL(ill)); 1607 1608 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1609 (void) ipif_down(ipif, NULL, NULL); 1610 1611 ill_down(ill); 1612 1613 (void) ipsq_pending_mp_cleanup(ill, NULL); 1614 1615 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1616 1617 /* 1618 * Atomically test and add the pending mp if references are active. 1619 */ 1620 mutex_enter(&ill->ill_lock); 1621 if (!ill_is_quiescent(ill)) { 1622 /* call cannot fail since `conn_t *' argument is NULL */ 1623 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1624 mp, ILL_DOWN); 1625 mutex_exit(&ill->ill_lock); 1626 return (B_FALSE); 1627 } 1628 mutex_exit(&ill->ill_lock); 1629 return (B_TRUE); 1630 } 1631 1632 static void 1633 ill_down(ill_t *ill) 1634 { 1635 ip_stack_t *ipst = ill->ill_ipst; 1636 1637 /* Blow off any IREs dependent on this ILL. */ 1638 ire_walk(ill_downi, (char *)ill, ipst); 1639 1640 mutex_enter(&ipst->ips_ire_mrtun_lock); 1641 if (ipst->ips_ire_mrtun_count != 0) { 1642 mutex_exit(&ipst->ips_ire_mrtun_lock); 1643 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1644 (char *)ill, NULL, ipst); 1645 } else { 1646 mutex_exit(&ipst->ips_ire_mrtun_lock); 1647 } 1648 1649 /* 1650 * If any interface based forwarding table exists 1651 * Blow off the ires there dependent on this ill 1652 */ 1653 mutex_enter(&ipst->ips_ire_srcif_table_lock); 1654 if (ipst->ips_ire_srcif_table_count > 0) { 1655 mutex_exit(&ipst->ips_ire_srcif_table_lock); 1656 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill, 1657 ipst); 1658 } else { 1659 mutex_exit(&ipst->ips_ire_srcif_table_lock); 1660 } 1661 1662 /* Remove any conn_*_ill depending on this ill */ 1663 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1664 1665 if (ill->ill_group != NULL) { 1666 illgrp_delete(ill); 1667 } 1668 } 1669 1670 static void 1671 ill_down_tail(ill_t *ill) 1672 { 1673 int i; 1674 1675 /* Destroy ill_srcif_table if it exists */ 1676 /* Lock not reqd really because nobody should be able to access */ 1677 mutex_enter(&ill->ill_lock); 1678 if (ill->ill_srcif_table != NULL) { 1679 ill->ill_srcif_refcnt = 0; 1680 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1681 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1682 } 1683 kmem_free(ill->ill_srcif_table, 1684 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1685 ill->ill_srcif_table = NULL; 1686 ill->ill_srcif_refcnt = 0; 1687 ill->ill_mrtun_refcnt = 0; 1688 } 1689 mutex_exit(&ill->ill_lock); 1690 } 1691 1692 /* 1693 * ire_walk routine used to delete every IRE that depends on queues 1694 * associated with 'ill'. (Always called as writer.) 1695 */ 1696 static void 1697 ill_downi(ire_t *ire, char *ill_arg) 1698 { 1699 ill_t *ill = (ill_t *)ill_arg; 1700 1701 /* 1702 * ip_newroute creates IRE_CACHE with ire_stq coming from 1703 * interface X and ipif coming from interface Y, if interface 1704 * X and Y are part of the same IPMP group. Thus whenever interface 1705 * X goes down, remove all references to it by checking both 1706 * on ire_ipif and ire_stq. 1707 */ 1708 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1709 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1710 ire_delete(ire); 1711 } 1712 } 1713 1714 /* 1715 * A seperate routine for deleting revtun and srcif based routes 1716 * are needed because the ires only deleted when the interface 1717 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1718 * we want to keep mobile IP specific code separate. 1719 */ 1720 static void 1721 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1722 { 1723 ill_t *ill = (ill_t *)ill_arg; 1724 1725 ASSERT(ire->ire_in_ill != NULL); 1726 1727 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1728 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1729 ire_delete(ire); 1730 } 1731 } 1732 1733 /* 1734 * Remove ire/nce from the fastpath list. 1735 */ 1736 void 1737 ill_fastpath_nack(ill_t *ill) 1738 { 1739 nce_fastpath_list_dispatch(ill, NULL, NULL); 1740 } 1741 1742 /* Consume an M_IOCACK of the fastpath probe. */ 1743 void 1744 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1745 { 1746 mblk_t *mp1 = mp; 1747 1748 /* 1749 * If this was the first attempt turn on the fastpath probing. 1750 */ 1751 mutex_enter(&ill->ill_lock); 1752 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1753 ill->ill_dlpi_fastpath_state = IDS_OK; 1754 mutex_exit(&ill->ill_lock); 1755 1756 /* Free the M_IOCACK mblk, hold on to the data */ 1757 mp = mp->b_cont; 1758 freeb(mp1); 1759 if (mp == NULL) 1760 return; 1761 if (mp->b_cont != NULL) { 1762 /* 1763 * Update all IRE's or NCE's that are waiting for 1764 * fastpath update. 1765 */ 1766 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1767 mp1 = mp->b_cont; 1768 freeb(mp); 1769 mp = mp1; 1770 } else { 1771 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1772 } 1773 1774 freeb(mp); 1775 } 1776 1777 /* 1778 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1779 * The data portion of the request is a dl_unitdata_req_t template for 1780 * what we would send downstream in the absence of a fastpath confirmation. 1781 */ 1782 int 1783 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1784 { 1785 struct iocblk *ioc; 1786 mblk_t *mp; 1787 1788 if (dlur_mp == NULL) 1789 return (EINVAL); 1790 1791 mutex_enter(&ill->ill_lock); 1792 switch (ill->ill_dlpi_fastpath_state) { 1793 case IDS_FAILED: 1794 /* 1795 * Driver NAKed the first fastpath ioctl - assume it doesn't 1796 * support it. 1797 */ 1798 mutex_exit(&ill->ill_lock); 1799 return (ENOTSUP); 1800 case IDS_UNKNOWN: 1801 /* This is the first probe */ 1802 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1803 break; 1804 default: 1805 break; 1806 } 1807 mutex_exit(&ill->ill_lock); 1808 1809 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1810 return (EAGAIN); 1811 1812 mp->b_cont = copyb(dlur_mp); 1813 if (mp->b_cont == NULL) { 1814 freeb(mp); 1815 return (EAGAIN); 1816 } 1817 1818 ioc = (struct iocblk *)mp->b_rptr; 1819 ioc->ioc_count = msgdsize(mp->b_cont); 1820 1821 putnext(ill->ill_wq, mp); 1822 return (0); 1823 } 1824 1825 void 1826 ill_capability_probe(ill_t *ill) 1827 { 1828 /* 1829 * Do so only if negotiation is enabled, capabilities are unknown, 1830 * and a capability negotiation is not already in progress. 1831 */ 1832 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1833 ill->ill_dlpi_capab_state != IDS_RENEG) 1834 return; 1835 1836 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1837 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1838 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1839 } 1840 1841 void 1842 ill_capability_reset(ill_t *ill) 1843 { 1844 mblk_t *sc_mp = NULL; 1845 mblk_t *tmp; 1846 1847 /* 1848 * Note here that we reset the state to UNKNOWN, and later send 1849 * down the DL_CAPABILITY_REQ without first setting the state to 1850 * INPROGRESS. We do this in order to distinguish the 1851 * DL_CAPABILITY_ACK response which may come back in response to 1852 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1853 * also handle the case where the driver doesn't send us back 1854 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1855 * requires the state to be in UNKNOWN anyway. In any case, all 1856 * features are turned off until the state reaches IDS_OK. 1857 */ 1858 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1859 1860 /* 1861 * Disable sub-capabilities and request a list of sub-capability 1862 * messages which will be sent down to the driver. Each handler 1863 * allocates the corresponding dl_capability_sub_t inside an 1864 * mblk, and links it to the existing sc_mp mblk, or return it 1865 * as sc_mp if it's the first sub-capability (the passed in 1866 * sc_mp is NULL). Upon returning from all capability handlers, 1867 * sc_mp will be pulled-up, before passing it downstream. 1868 */ 1869 ill_capability_mdt_reset(ill, &sc_mp); 1870 ill_capability_hcksum_reset(ill, &sc_mp); 1871 ill_capability_zerocopy_reset(ill, &sc_mp); 1872 ill_capability_ipsec_reset(ill, &sc_mp); 1873 ill_capability_dls_reset(ill, &sc_mp); 1874 ill_capability_lso_reset(ill, &sc_mp); 1875 1876 /* Nothing to send down in order to disable the capabilities? */ 1877 if (sc_mp == NULL) 1878 return; 1879 1880 tmp = msgpullup(sc_mp, -1); 1881 freemsg(sc_mp); 1882 if ((sc_mp = tmp) == NULL) { 1883 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1884 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1885 return; 1886 } 1887 1888 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1889 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1890 } 1891 1892 /* 1893 * Request or set new-style hardware capabilities supported by DLS provider. 1894 */ 1895 static void 1896 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1897 { 1898 mblk_t *mp; 1899 dl_capability_req_t *capb; 1900 size_t size = 0; 1901 uint8_t *ptr; 1902 1903 if (reqp != NULL) 1904 size = MBLKL(reqp); 1905 1906 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1907 if (mp == NULL) { 1908 freemsg(reqp); 1909 return; 1910 } 1911 ptr = mp->b_rptr; 1912 1913 capb = (dl_capability_req_t *)ptr; 1914 ptr += sizeof (dl_capability_req_t); 1915 1916 if (reqp != NULL) { 1917 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1918 capb->dl_sub_length = size; 1919 bcopy(reqp->b_rptr, ptr, size); 1920 ptr += size; 1921 mp->b_cont = reqp->b_cont; 1922 freeb(reqp); 1923 } 1924 ASSERT(ptr == mp->b_wptr); 1925 1926 ill_dlpi_send(ill, mp); 1927 } 1928 1929 static void 1930 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1931 { 1932 dl_capab_id_t *id_ic; 1933 uint_t sub_dl_cap = outers->dl_cap; 1934 dl_capability_sub_t *inners; 1935 uint8_t *capend; 1936 1937 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1938 1939 /* 1940 * Note: range checks here are not absolutely sufficient to 1941 * make us robust against malformed messages sent by drivers; 1942 * this is in keeping with the rest of IP's dlpi handling. 1943 * (Remember, it's coming from something else in the kernel 1944 * address space) 1945 */ 1946 1947 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1948 if (capend > mp->b_wptr) { 1949 cmn_err(CE_WARN, "ill_capability_id_ack: " 1950 "malformed sub-capability too long for mblk"); 1951 return; 1952 } 1953 1954 id_ic = (dl_capab_id_t *)(outers + 1); 1955 1956 if (outers->dl_length < sizeof (*id_ic) || 1957 (inners = &id_ic->id_subcap, 1958 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1959 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1960 "encapsulated capab type %d too long for mblk", 1961 inners->dl_cap); 1962 return; 1963 } 1964 1965 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1966 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1967 "isn't as expected; pass-thru module(s) detected, " 1968 "discarding capability\n", inners->dl_cap)); 1969 return; 1970 } 1971 1972 /* Process the encapsulated sub-capability */ 1973 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1974 } 1975 1976 /* 1977 * Process Multidata Transmit capability negotiation ack received from a 1978 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1979 * DL_CAPABILITY_ACK message. 1980 */ 1981 static void 1982 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1983 { 1984 mblk_t *nmp = NULL; 1985 dl_capability_req_t *oc; 1986 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1987 ill_mdt_capab_t **ill_mdt_capab; 1988 uint_t sub_dl_cap = isub->dl_cap; 1989 uint8_t *capend; 1990 1991 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1992 1993 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1994 1995 /* 1996 * Note: range checks here are not absolutely sufficient to 1997 * make us robust against malformed messages sent by drivers; 1998 * this is in keeping with the rest of IP's dlpi handling. 1999 * (Remember, it's coming from something else in the kernel 2000 * address space) 2001 */ 2002 2003 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2004 if (capend > mp->b_wptr) { 2005 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2006 "malformed sub-capability too long for mblk"); 2007 return; 2008 } 2009 2010 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 2011 2012 if (mdt_ic->mdt_version != MDT_VERSION_2) { 2013 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 2014 "unsupported MDT sub-capability (version %d, expected %d)", 2015 mdt_ic->mdt_version, MDT_VERSION_2); 2016 return; 2017 } 2018 2019 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 2020 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 2021 "capability isn't as expected; pass-thru module(s) " 2022 "detected, discarding capability\n")); 2023 return; 2024 } 2025 2026 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 2027 2028 if (*ill_mdt_capab == NULL) { 2029 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 2030 KM_NOSLEEP); 2031 2032 if (*ill_mdt_capab == NULL) { 2033 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2034 "could not enable MDT version %d " 2035 "for %s (ENOMEM)\n", MDT_VERSION_2, 2036 ill->ill_name); 2037 return; 2038 } 2039 } 2040 2041 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 2042 "MDT version %d (%d bytes leading, %d bytes trailing " 2043 "header spaces, %d max pld bufs, %d span limit)\n", 2044 ill->ill_name, MDT_VERSION_2, 2045 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 2046 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 2047 2048 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2049 (*ill_mdt_capab)->ill_mdt_on = 1; 2050 /* 2051 * Round the following values to the nearest 32-bit; ULP 2052 * may further adjust them to accomodate for additional 2053 * protocol headers. We pass these values to ULP during 2054 * bind time. 2055 */ 2056 (*ill_mdt_capab)->ill_mdt_hdr_head = 2057 roundup(mdt_ic->mdt_hdr_head, 4); 2058 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2059 roundup(mdt_ic->mdt_hdr_tail, 4); 2060 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2061 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2062 2063 ill->ill_capabilities |= ILL_CAPAB_MDT; 2064 } else { 2065 uint_t size; 2066 uchar_t *rptr; 2067 2068 size = sizeof (dl_capability_req_t) + 2069 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2070 2071 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2072 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2073 "could not enable MDT for %s (ENOMEM)\n", 2074 ill->ill_name); 2075 return; 2076 } 2077 2078 rptr = nmp->b_rptr; 2079 /* initialize dl_capability_req_t */ 2080 oc = (dl_capability_req_t *)nmp->b_rptr; 2081 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2082 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2083 sizeof (dl_capab_mdt_t); 2084 nmp->b_rptr += sizeof (dl_capability_req_t); 2085 2086 /* initialize dl_capability_sub_t */ 2087 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2088 nmp->b_rptr += sizeof (*isub); 2089 2090 /* initialize dl_capab_mdt_t */ 2091 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2092 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2093 2094 nmp->b_rptr = rptr; 2095 2096 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2097 "to enable MDT version %d\n", ill->ill_name, 2098 MDT_VERSION_2)); 2099 2100 /* set ENABLE flag */ 2101 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2102 2103 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2104 ill_dlpi_send(ill, nmp); 2105 } 2106 } 2107 2108 static void 2109 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2110 { 2111 mblk_t *mp; 2112 dl_capab_mdt_t *mdt_subcap; 2113 dl_capability_sub_t *dl_subcap; 2114 int size; 2115 2116 if (!ILL_MDT_CAPABLE(ill)) 2117 return; 2118 2119 ASSERT(ill->ill_mdt_capab != NULL); 2120 /* 2121 * Clear the capability flag for MDT but retain the ill_mdt_capab 2122 * structure since it's possible that another thread is still 2123 * referring to it. The structure only gets deallocated when 2124 * we destroy the ill. 2125 */ 2126 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2127 2128 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2129 2130 mp = allocb(size, BPRI_HI); 2131 if (mp == NULL) { 2132 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2133 "request to disable MDT\n")); 2134 return; 2135 } 2136 2137 mp->b_wptr = mp->b_rptr + size; 2138 2139 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2140 dl_subcap->dl_cap = DL_CAPAB_MDT; 2141 dl_subcap->dl_length = sizeof (*mdt_subcap); 2142 2143 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2144 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2145 mdt_subcap->mdt_flags = 0; 2146 mdt_subcap->mdt_hdr_head = 0; 2147 mdt_subcap->mdt_hdr_tail = 0; 2148 2149 if (*sc_mp != NULL) 2150 linkb(*sc_mp, mp); 2151 else 2152 *sc_mp = mp; 2153 } 2154 2155 /* 2156 * Send a DL_NOTIFY_REQ to the specified ill to enable 2157 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2158 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2159 * acceleration. 2160 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2161 */ 2162 static boolean_t 2163 ill_enable_promisc_notify(ill_t *ill) 2164 { 2165 mblk_t *mp; 2166 dl_notify_req_t *req; 2167 2168 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2169 2170 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2171 if (mp == NULL) 2172 return (B_FALSE); 2173 2174 req = (dl_notify_req_t *)mp->b_rptr; 2175 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2176 DL_NOTE_PROMISC_OFF_PHYS; 2177 2178 ill_dlpi_send(ill, mp); 2179 2180 return (B_TRUE); 2181 } 2182 2183 2184 /* 2185 * Allocate an IPsec capability request which will be filled by our 2186 * caller to turn on support for one or more algorithms. 2187 */ 2188 static mblk_t * 2189 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2190 { 2191 mblk_t *nmp; 2192 dl_capability_req_t *ocap; 2193 dl_capab_ipsec_t *ocip; 2194 dl_capab_ipsec_t *icip; 2195 uint8_t *ptr; 2196 icip = (dl_capab_ipsec_t *)(isub + 1); 2197 2198 /* 2199 * The first time around, we send a DL_NOTIFY_REQ to enable 2200 * PROMISC_ON/OFF notification from the provider. We need to 2201 * do this before enabling the algorithms to avoid leakage of 2202 * cleartext packets. 2203 */ 2204 2205 if (!ill_enable_promisc_notify(ill)) 2206 return (NULL); 2207 2208 /* 2209 * Allocate new mblk which will contain a new capability 2210 * request to enable the capabilities. 2211 */ 2212 2213 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2214 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2215 if (nmp == NULL) 2216 return (NULL); 2217 2218 ptr = nmp->b_rptr; 2219 2220 /* initialize dl_capability_req_t */ 2221 ocap = (dl_capability_req_t *)ptr; 2222 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2223 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2224 ptr += sizeof (dl_capability_req_t); 2225 2226 /* initialize dl_capability_sub_t */ 2227 bcopy(isub, ptr, sizeof (*isub)); 2228 ptr += sizeof (*isub); 2229 2230 /* initialize dl_capab_ipsec_t */ 2231 ocip = (dl_capab_ipsec_t *)ptr; 2232 bcopy(icip, ocip, sizeof (*icip)); 2233 2234 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2235 return (nmp); 2236 } 2237 2238 /* 2239 * Process an IPsec capability negotiation ack received from a DLS Provider. 2240 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2241 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2242 */ 2243 static void 2244 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2245 { 2246 dl_capab_ipsec_t *icip; 2247 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2248 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2249 uint_t cipher, nciphers; 2250 mblk_t *nmp; 2251 uint_t alg_len; 2252 boolean_t need_sadb_dump; 2253 uint_t sub_dl_cap = isub->dl_cap; 2254 ill_ipsec_capab_t **ill_capab; 2255 uint64_t ill_capab_flag; 2256 uint8_t *capend, *ciphend; 2257 boolean_t sadb_resync; 2258 2259 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2260 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2261 2262 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2263 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2264 ill_capab_flag = ILL_CAPAB_AH; 2265 } else { 2266 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2267 ill_capab_flag = ILL_CAPAB_ESP; 2268 } 2269 2270 /* 2271 * If the ill capability structure exists, then this incoming 2272 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2273 * If this is so, then we'd need to resynchronize the SADB 2274 * after re-enabling the offloaded ciphers. 2275 */ 2276 sadb_resync = (*ill_capab != NULL); 2277 2278 /* 2279 * Note: range checks here are not absolutely sufficient to 2280 * make us robust against malformed messages sent by drivers; 2281 * this is in keeping with the rest of IP's dlpi handling. 2282 * (Remember, it's coming from something else in the kernel 2283 * address space) 2284 */ 2285 2286 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2287 if (capend > mp->b_wptr) { 2288 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2289 "malformed sub-capability too long for mblk"); 2290 return; 2291 } 2292 2293 /* 2294 * There are two types of acks we process here: 2295 * 1. acks in reply to a (first form) generic capability req 2296 * (no ENABLE flag set) 2297 * 2. acks in reply to a ENABLE capability req. 2298 * (ENABLE flag set) 2299 * 2300 * We process the subcapability passed as argument as follows: 2301 * 1 do initializations 2302 * 1.1 initialize nmp = NULL 2303 * 1.2 set need_sadb_dump to B_FALSE 2304 * 2 for each cipher in subcapability: 2305 * 2.1 if ENABLE flag is set: 2306 * 2.1.1 update per-ill ipsec capabilities info 2307 * 2.1.2 set need_sadb_dump to B_TRUE 2308 * 2.2 if ENABLE flag is not set: 2309 * 2.2.1 if nmp is NULL: 2310 * 2.2.1.1 allocate and initialize nmp 2311 * 2.2.1.2 init current pos in nmp 2312 * 2.2.2 copy current cipher to current pos in nmp 2313 * 2.2.3 set ENABLE flag in nmp 2314 * 2.2.4 update current pos 2315 * 3 if nmp is not equal to NULL, send enable request 2316 * 3.1 send capability request 2317 * 4 if need_sadb_dump is B_TRUE 2318 * 4.1 enable promiscuous on/off notifications 2319 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2320 * AH or ESP SA's to interface. 2321 */ 2322 2323 nmp = NULL; 2324 oalg = NULL; 2325 need_sadb_dump = B_FALSE; 2326 icip = (dl_capab_ipsec_t *)(isub + 1); 2327 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2328 2329 nciphers = icip->cip_nciphers; 2330 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2331 2332 if (ciphend > capend) { 2333 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2334 "too many ciphers for sub-capability len"); 2335 return; 2336 } 2337 2338 for (cipher = 0; cipher < nciphers; cipher++) { 2339 alg_len = sizeof (dl_capab_ipsec_alg_t); 2340 2341 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2342 /* 2343 * TBD: when we provide a way to disable capabilities 2344 * from above, need to manage the request-pending state 2345 * and fail if we were not expecting this ACK. 2346 */ 2347 IPSECHW_DEBUG(IPSECHW_CAPAB, 2348 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2349 2350 /* 2351 * Update IPsec capabilities for this ill 2352 */ 2353 2354 if (*ill_capab == NULL) { 2355 IPSECHW_DEBUG(IPSECHW_CAPAB, 2356 ("ill_capability_ipsec_ack: " 2357 "allocating ipsec_capab for ill\n")); 2358 *ill_capab = ill_ipsec_capab_alloc(); 2359 2360 if (*ill_capab == NULL) { 2361 cmn_err(CE_WARN, 2362 "ill_capability_ipsec_ack: " 2363 "could not enable IPsec Hardware " 2364 "acceleration for %s (ENOMEM)\n", 2365 ill->ill_name); 2366 return; 2367 } 2368 } 2369 2370 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2371 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2372 2373 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2374 cmn_err(CE_WARN, 2375 "ill_capability_ipsec_ack: " 2376 "malformed IPsec algorithm id %d", 2377 ialg->alg_prim); 2378 continue; 2379 } 2380 2381 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2382 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2383 ialg->alg_prim); 2384 } else { 2385 ipsec_capab_algparm_t *alp; 2386 2387 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2388 ialg->alg_prim); 2389 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2390 ialg->alg_prim)) { 2391 cmn_err(CE_WARN, 2392 "ill_capability_ipsec_ack: " 2393 "no space for IPsec alg id %d", 2394 ialg->alg_prim); 2395 continue; 2396 } 2397 alp = &((*ill_capab)->encr_algparm[ 2398 ialg->alg_prim]); 2399 alp->minkeylen = ialg->alg_minbits; 2400 alp->maxkeylen = ialg->alg_maxbits; 2401 } 2402 ill->ill_capabilities |= ill_capab_flag; 2403 /* 2404 * indicate that a capability was enabled, which 2405 * will be used below to kick off a SADB dump 2406 * to the ill. 2407 */ 2408 need_sadb_dump = B_TRUE; 2409 } else { 2410 IPSECHW_DEBUG(IPSECHW_CAPAB, 2411 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2412 ialg->alg_prim)); 2413 2414 if (nmp == NULL) { 2415 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2416 if (nmp == NULL) { 2417 /* 2418 * Sending the PROMISC_ON/OFF 2419 * notification request failed. 2420 * We cannot enable the algorithms 2421 * since the Provider will not 2422 * notify IP of promiscous mode 2423 * changes, which could lead 2424 * to leakage of packets. 2425 */ 2426 cmn_err(CE_WARN, 2427 "ill_capability_ipsec_ack: " 2428 "could not enable IPsec Hardware " 2429 "acceleration for %s (ENOMEM)\n", 2430 ill->ill_name); 2431 return; 2432 } 2433 /* ptr to current output alg specifier */ 2434 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2435 } 2436 2437 /* 2438 * Copy current alg specifier, set ENABLE 2439 * flag, and advance to next output alg. 2440 * For now we enable all IPsec capabilities. 2441 */ 2442 ASSERT(oalg != NULL); 2443 bcopy(ialg, oalg, alg_len); 2444 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2445 nmp->b_wptr += alg_len; 2446 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2447 } 2448 2449 /* move to next input algorithm specifier */ 2450 ialg = (dl_capab_ipsec_alg_t *) 2451 ((char *)ialg + alg_len); 2452 } 2453 2454 if (nmp != NULL) 2455 /* 2456 * nmp points to a DL_CAPABILITY_REQ message to enable 2457 * IPsec hardware acceleration. 2458 */ 2459 ill_dlpi_send(ill, nmp); 2460 2461 if (need_sadb_dump) 2462 /* 2463 * An acknowledgement corresponding to a request to 2464 * enable acceleration was received, notify SADB. 2465 */ 2466 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2467 } 2468 2469 /* 2470 * Given an mblk with enough space in it, create sub-capability entries for 2471 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2472 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2473 * in preparation for the reset the DL_CAPABILITY_REQ message. 2474 */ 2475 static void 2476 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2477 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2478 { 2479 dl_capab_ipsec_t *oipsec; 2480 dl_capab_ipsec_alg_t *oalg; 2481 dl_capability_sub_t *dl_subcap; 2482 int i, k; 2483 2484 ASSERT(nciphers > 0); 2485 ASSERT(ill_cap != NULL); 2486 ASSERT(mp != NULL); 2487 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2488 2489 /* dl_capability_sub_t for "stype" */ 2490 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2491 dl_subcap->dl_cap = stype; 2492 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2493 mp->b_wptr += sizeof (dl_capability_sub_t); 2494 2495 /* dl_capab_ipsec_t for "stype" */ 2496 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2497 oipsec->cip_version = 1; 2498 oipsec->cip_nciphers = nciphers; 2499 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2500 2501 /* create entries for "stype" AUTH ciphers */ 2502 for (i = 0; i < ill_cap->algs_size; i++) { 2503 for (k = 0; k < BITSPERBYTE; k++) { 2504 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2505 continue; 2506 2507 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2508 bzero((void *)oalg, sizeof (*oalg)); 2509 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2510 oalg->alg_prim = k + (BITSPERBYTE * i); 2511 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2512 } 2513 } 2514 /* create entries for "stype" ENCR ciphers */ 2515 for (i = 0; i < ill_cap->algs_size; i++) { 2516 for (k = 0; k < BITSPERBYTE; k++) { 2517 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2518 continue; 2519 2520 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2521 bzero((void *)oalg, sizeof (*oalg)); 2522 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2523 oalg->alg_prim = k + (BITSPERBYTE * i); 2524 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2525 } 2526 } 2527 } 2528 2529 /* 2530 * Macro to count number of 1s in a byte (8-bit word). The total count is 2531 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2532 * POPC instruction, but our macro is more flexible for an arbitrary length 2533 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2534 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2535 * stays that way, we can reduce the number of iterations required. 2536 */ 2537 #define COUNT_1S(val, sum) { \ 2538 uint8_t x = val & 0xff; \ 2539 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2540 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2541 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2542 } 2543 2544 /* ARGSUSED */ 2545 static void 2546 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2547 { 2548 mblk_t *mp; 2549 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2550 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2551 uint64_t ill_capabilities = ill->ill_capabilities; 2552 int ah_cnt = 0, esp_cnt = 0; 2553 int ah_len = 0, esp_len = 0; 2554 int i, size = 0; 2555 2556 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2557 return; 2558 2559 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2560 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2561 2562 /* Find out the number of ciphers for AH */ 2563 if (cap_ah != NULL) { 2564 for (i = 0; i < cap_ah->algs_size; i++) { 2565 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2566 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2567 } 2568 if (ah_cnt > 0) { 2569 size += sizeof (dl_capability_sub_t) + 2570 sizeof (dl_capab_ipsec_t); 2571 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2572 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2573 size += ah_len; 2574 } 2575 } 2576 2577 /* Find out the number of ciphers for ESP */ 2578 if (cap_esp != NULL) { 2579 for (i = 0; i < cap_esp->algs_size; i++) { 2580 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2581 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2582 } 2583 if (esp_cnt > 0) { 2584 size += sizeof (dl_capability_sub_t) + 2585 sizeof (dl_capab_ipsec_t); 2586 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2587 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2588 size += esp_len; 2589 } 2590 } 2591 2592 if (size == 0) { 2593 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2594 "there's nothing to reset\n")); 2595 return; 2596 } 2597 2598 mp = allocb(size, BPRI_HI); 2599 if (mp == NULL) { 2600 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2601 "request to disable IPSEC Hardware Acceleration\n")); 2602 return; 2603 } 2604 2605 /* 2606 * Clear the capability flags for IPSec HA but retain the ill 2607 * capability structures since it's possible that another thread 2608 * is still referring to them. The structures only get deallocated 2609 * when we destroy the ill. 2610 * 2611 * Various places check the flags to see if the ill is capable of 2612 * hardware acceleration, and by clearing them we ensure that new 2613 * outbound IPSec packets are sent down encrypted. 2614 */ 2615 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2616 2617 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2618 if (ah_cnt > 0) { 2619 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2620 cap_ah, mp); 2621 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2622 } 2623 2624 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2625 if (esp_cnt > 0) { 2626 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2627 cap_esp, mp); 2628 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2629 } 2630 2631 /* 2632 * At this point we've composed a bunch of sub-capabilities to be 2633 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2634 * by the caller. Upon receiving this reset message, the driver 2635 * must stop inbound decryption (by destroying all inbound SAs) 2636 * and let the corresponding packets come in encrypted. 2637 */ 2638 2639 if (*sc_mp != NULL) 2640 linkb(*sc_mp, mp); 2641 else 2642 *sc_mp = mp; 2643 } 2644 2645 static void 2646 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2647 boolean_t encapsulated) 2648 { 2649 boolean_t legacy = B_FALSE; 2650 2651 /* 2652 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2653 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2654 * instructed the driver to disable its advertised capabilities, 2655 * so there's no point in accepting any response at this moment. 2656 */ 2657 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2658 return; 2659 2660 /* 2661 * Note that only the following two sub-capabilities may be 2662 * considered as "legacy", since their original definitions 2663 * do not incorporate the dl_mid_t module ID token, and hence 2664 * may require the use of the wrapper sub-capability. 2665 */ 2666 switch (subp->dl_cap) { 2667 case DL_CAPAB_IPSEC_AH: 2668 case DL_CAPAB_IPSEC_ESP: 2669 legacy = B_TRUE; 2670 break; 2671 } 2672 2673 /* 2674 * For legacy sub-capabilities which don't incorporate a queue_t 2675 * pointer in their structures, discard them if we detect that 2676 * there are intermediate modules in between IP and the driver. 2677 */ 2678 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2679 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2680 "%d discarded; %d module(s) present below IP\n", 2681 subp->dl_cap, ill->ill_lmod_cnt)); 2682 return; 2683 } 2684 2685 switch (subp->dl_cap) { 2686 case DL_CAPAB_IPSEC_AH: 2687 case DL_CAPAB_IPSEC_ESP: 2688 ill_capability_ipsec_ack(ill, mp, subp); 2689 break; 2690 case DL_CAPAB_MDT: 2691 ill_capability_mdt_ack(ill, mp, subp); 2692 break; 2693 case DL_CAPAB_HCKSUM: 2694 ill_capability_hcksum_ack(ill, mp, subp); 2695 break; 2696 case DL_CAPAB_ZEROCOPY: 2697 ill_capability_zerocopy_ack(ill, mp, subp); 2698 break; 2699 case DL_CAPAB_POLL: 2700 if (!SOFT_RINGS_ENABLED()) 2701 ill_capability_dls_ack(ill, mp, subp); 2702 break; 2703 case DL_CAPAB_SOFT_RING: 2704 if (SOFT_RINGS_ENABLED()) 2705 ill_capability_dls_ack(ill, mp, subp); 2706 break; 2707 case DL_CAPAB_LSO: 2708 ill_capability_lso_ack(ill, mp, subp); 2709 break; 2710 default: 2711 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2712 subp->dl_cap)); 2713 } 2714 } 2715 2716 /* 2717 * As part of negotiating polling capability, the driver tells us 2718 * the default (or normal) blanking interval and packet threshold 2719 * (the receive timer fires if blanking interval is reached or 2720 * the packet threshold is reached). 2721 * 2722 * As part of manipulating the polling interval, we always use our 2723 * estimated interval (avg service time * number of packets queued 2724 * on the squeue) but we try to blank for a minimum of 2725 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2726 * packet threshold during this time. When we are not in polling mode 2727 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2728 * rr_min_blank_ratio but up the packet cnt by a ratio of 2729 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2730 * possible although for a shorter interval. 2731 */ 2732 #define RR_MAX_BLANK_RATIO 20 2733 #define RR_MIN_BLANK_RATIO 10 2734 #define RR_MAX_PKT_CNT_RATIO 3 2735 #define RR_MIN_PKT_CNT_RATIO 3 2736 2737 /* 2738 * These can be tuned via /etc/system. 2739 */ 2740 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2741 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2742 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2743 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2744 2745 static mac_resource_handle_t 2746 ill_ring_add(void *arg, mac_resource_t *mrp) 2747 { 2748 ill_t *ill = (ill_t *)arg; 2749 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2750 ill_rx_ring_t *rx_ring; 2751 int ip_rx_index; 2752 2753 ASSERT(mrp != NULL); 2754 if (mrp->mr_type != MAC_RX_FIFO) { 2755 return (NULL); 2756 } 2757 ASSERT(ill != NULL); 2758 ASSERT(ill->ill_dls_capab != NULL); 2759 2760 mutex_enter(&ill->ill_lock); 2761 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2762 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2763 ASSERT(rx_ring != NULL); 2764 2765 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2766 time_t normal_blank_time = 2767 mrfp->mrf_normal_blank_time; 2768 uint_t normal_pkt_cnt = 2769 mrfp->mrf_normal_pkt_count; 2770 2771 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2772 2773 rx_ring->rr_blank = mrfp->mrf_blank; 2774 rx_ring->rr_handle = mrfp->mrf_arg; 2775 rx_ring->rr_ill = ill; 2776 rx_ring->rr_normal_blank_time = normal_blank_time; 2777 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2778 2779 rx_ring->rr_max_blank_time = 2780 normal_blank_time * rr_max_blank_ratio; 2781 rx_ring->rr_min_blank_time = 2782 normal_blank_time * rr_min_blank_ratio; 2783 rx_ring->rr_max_pkt_cnt = 2784 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2785 rx_ring->rr_min_pkt_cnt = 2786 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2787 2788 rx_ring->rr_ring_state = ILL_RING_INUSE; 2789 mutex_exit(&ill->ill_lock); 2790 2791 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2792 (int), ip_rx_index); 2793 return ((mac_resource_handle_t)rx_ring); 2794 } 2795 } 2796 2797 /* 2798 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2799 * we have devices which can overwhelm this limit, ILL_MAX_RING 2800 * should be made configurable. Meanwhile it cause no panic because 2801 * driver will pass ip_input a NULL handle which will make 2802 * IP allocate the default squeue and Polling mode will not 2803 * be used for this ring. 2804 */ 2805 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2806 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2807 2808 mutex_exit(&ill->ill_lock); 2809 return (NULL); 2810 } 2811 2812 static boolean_t 2813 ill_capability_dls_init(ill_t *ill) 2814 { 2815 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2816 conn_t *connp; 2817 size_t sz; 2818 ip_stack_t *ipst = ill->ill_ipst; 2819 2820 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2821 if (ill_dls == NULL) { 2822 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2823 "soft_ring enabled for ill=%s (%p) but data " 2824 "structs uninitialized\n", ill->ill_name, 2825 (void *)ill); 2826 } 2827 return (B_TRUE); 2828 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2829 if (ill_dls == NULL) { 2830 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2831 "polling enabled for ill=%s (%p) but data " 2832 "structs uninitialized\n", ill->ill_name, 2833 (void *)ill); 2834 } 2835 return (B_TRUE); 2836 } 2837 2838 if (ill_dls != NULL) { 2839 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2840 /* Soft_Ring or polling is being re-enabled */ 2841 2842 connp = ill_dls->ill_unbind_conn; 2843 ASSERT(rx_ring != NULL); 2844 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2845 bzero((void *)rx_ring, 2846 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2847 ill_dls->ill_ring_tbl = rx_ring; 2848 ill_dls->ill_unbind_conn = connp; 2849 return (B_TRUE); 2850 } 2851 2852 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2853 ipst->ips_netstack)) == NULL) 2854 return (B_FALSE); 2855 2856 sz = sizeof (ill_dls_capab_t); 2857 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2858 2859 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2860 if (ill_dls == NULL) { 2861 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2862 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2863 (void *)ill); 2864 CONN_DEC_REF(connp); 2865 return (B_FALSE); 2866 } 2867 2868 /* Allocate space to hold ring table */ 2869 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2870 ill->ill_dls_capab = ill_dls; 2871 ill_dls->ill_unbind_conn = connp; 2872 return (B_TRUE); 2873 } 2874 2875 /* 2876 * ill_capability_dls_disable: disable soft_ring and/or polling 2877 * capability. Since any of the rings might already be in use, need 2878 * to call ipsq_clean_all() which gets behind the squeue to disable 2879 * direct calls if necessary. 2880 */ 2881 static void 2882 ill_capability_dls_disable(ill_t *ill) 2883 { 2884 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2885 2886 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2887 ipsq_clean_all(ill); 2888 ill_dls->ill_tx = NULL; 2889 ill_dls->ill_tx_handle = NULL; 2890 ill_dls->ill_dls_change_status = NULL; 2891 ill_dls->ill_dls_bind = NULL; 2892 ill_dls->ill_dls_unbind = NULL; 2893 } 2894 2895 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2896 } 2897 2898 static void 2899 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2900 dl_capability_sub_t *isub) 2901 { 2902 uint_t size; 2903 uchar_t *rptr; 2904 dl_capab_dls_t dls, *odls; 2905 ill_dls_capab_t *ill_dls; 2906 mblk_t *nmp = NULL; 2907 dl_capability_req_t *ocap; 2908 uint_t sub_dl_cap = isub->dl_cap; 2909 2910 if (!ill_capability_dls_init(ill)) 2911 return; 2912 ill_dls = ill->ill_dls_capab; 2913 2914 /* Copy locally to get the members aligned */ 2915 bcopy((void *)idls, (void *)&dls, 2916 sizeof (dl_capab_dls_t)); 2917 2918 /* Get the tx function and handle from dld */ 2919 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2920 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2921 2922 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2923 ill_dls->ill_dls_change_status = 2924 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2925 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2926 ill_dls->ill_dls_unbind = 2927 (ip_dls_unbind_t)dls.dls_ring_unbind; 2928 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2929 } 2930 2931 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2932 isub->dl_length; 2933 2934 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2935 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2936 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2937 ill->ill_name, (void *)ill); 2938 return; 2939 } 2940 2941 /* initialize dl_capability_req_t */ 2942 rptr = nmp->b_rptr; 2943 ocap = (dl_capability_req_t *)rptr; 2944 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2945 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2946 rptr += sizeof (dl_capability_req_t); 2947 2948 /* initialize dl_capability_sub_t */ 2949 bcopy(isub, rptr, sizeof (*isub)); 2950 rptr += sizeof (*isub); 2951 2952 odls = (dl_capab_dls_t *)rptr; 2953 rptr += sizeof (dl_capab_dls_t); 2954 2955 /* initialize dl_capab_dls_t to be sent down */ 2956 dls.dls_rx_handle = (uintptr_t)ill; 2957 dls.dls_rx = (uintptr_t)ip_input; 2958 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2959 2960 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2961 dls.dls_ring_cnt = ip_soft_rings_cnt; 2962 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2963 dls.dls_flags = SOFT_RING_ENABLE; 2964 } else { 2965 dls.dls_flags = POLL_ENABLE; 2966 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2967 "to enable polling\n", ill->ill_name)); 2968 } 2969 bcopy((void *)&dls, (void *)odls, 2970 sizeof (dl_capab_dls_t)); 2971 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2972 /* 2973 * nmp points to a DL_CAPABILITY_REQ message to 2974 * enable either soft_ring or polling 2975 */ 2976 ill_dlpi_send(ill, nmp); 2977 } 2978 2979 static void 2980 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2981 { 2982 mblk_t *mp; 2983 dl_capab_dls_t *idls; 2984 dl_capability_sub_t *dl_subcap; 2985 int size; 2986 2987 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2988 return; 2989 2990 ASSERT(ill->ill_dls_capab != NULL); 2991 2992 size = sizeof (*dl_subcap) + sizeof (*idls); 2993 2994 mp = allocb(size, BPRI_HI); 2995 if (mp == NULL) { 2996 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2997 "request to disable soft_ring\n")); 2998 return; 2999 } 3000 3001 mp->b_wptr = mp->b_rptr + size; 3002 3003 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3004 dl_subcap->dl_length = sizeof (*idls); 3005 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 3006 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 3007 else 3008 dl_subcap->dl_cap = DL_CAPAB_POLL; 3009 3010 idls = (dl_capab_dls_t *)(dl_subcap + 1); 3011 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 3012 idls->dls_flags = SOFT_RING_DISABLE; 3013 else 3014 idls->dls_flags = POLL_DISABLE; 3015 3016 if (*sc_mp != NULL) 3017 linkb(*sc_mp, mp); 3018 else 3019 *sc_mp = mp; 3020 } 3021 3022 /* 3023 * Process a soft_ring/poll capability negotiation ack received 3024 * from a DLS Provider.isub must point to the sub-capability 3025 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 3026 */ 3027 static void 3028 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3029 { 3030 dl_capab_dls_t *idls; 3031 uint_t sub_dl_cap = isub->dl_cap; 3032 uint8_t *capend; 3033 3034 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 3035 sub_dl_cap == DL_CAPAB_POLL); 3036 3037 if (ill->ill_isv6) 3038 return; 3039 3040 /* 3041 * Note: range checks here are not absolutely sufficient to 3042 * make us robust against malformed messages sent by drivers; 3043 * this is in keeping with the rest of IP's dlpi handling. 3044 * (Remember, it's coming from something else in the kernel 3045 * address space) 3046 */ 3047 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3048 if (capend > mp->b_wptr) { 3049 cmn_err(CE_WARN, "ill_capability_dls_ack: " 3050 "malformed sub-capability too long for mblk"); 3051 return; 3052 } 3053 3054 /* 3055 * There are two types of acks we process here: 3056 * 1. acks in reply to a (first form) generic capability req 3057 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 3058 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 3059 * capability req. 3060 */ 3061 idls = (dl_capab_dls_t *)(isub + 1); 3062 3063 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 3064 ip1dbg(("ill_capability_dls_ack: mid token for dls " 3065 "capability isn't as expected; pass-thru " 3066 "module(s) detected, discarding capability\n")); 3067 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3068 /* 3069 * This is a capability renegotitation case. 3070 * The interface better be unusable at this 3071 * point other wise bad things will happen 3072 * if we disable direct calls on a running 3073 * and up interface. 3074 */ 3075 ill_capability_dls_disable(ill); 3076 } 3077 return; 3078 } 3079 3080 switch (idls->dls_flags) { 3081 default: 3082 /* Disable if unknown flag */ 3083 case SOFT_RING_DISABLE: 3084 case POLL_DISABLE: 3085 ill_capability_dls_disable(ill); 3086 break; 3087 case SOFT_RING_CAPABLE: 3088 case POLL_CAPABLE: 3089 /* 3090 * If the capability was already enabled, its safe 3091 * to disable it first to get rid of stale information 3092 * and then start enabling it again. 3093 */ 3094 ill_capability_dls_disable(ill); 3095 ill_capability_dls_capable(ill, idls, isub); 3096 break; 3097 case SOFT_RING_ENABLE: 3098 case POLL_ENABLE: 3099 mutex_enter(&ill->ill_lock); 3100 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3101 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3102 ASSERT(ill->ill_dls_capab != NULL); 3103 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3104 } 3105 if (sub_dl_cap == DL_CAPAB_POLL && 3106 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3107 ASSERT(ill->ill_dls_capab != NULL); 3108 ill->ill_capabilities |= ILL_CAPAB_POLL; 3109 ip1dbg(("ill_capability_dls_ack: interface %s " 3110 "has enabled polling\n", ill->ill_name)); 3111 } 3112 mutex_exit(&ill->ill_lock); 3113 break; 3114 } 3115 } 3116 3117 /* 3118 * Process a hardware checksum offload capability negotiation ack received 3119 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3120 * of a DL_CAPABILITY_ACK message. 3121 */ 3122 static void 3123 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3124 { 3125 dl_capability_req_t *ocap; 3126 dl_capab_hcksum_t *ihck, *ohck; 3127 ill_hcksum_capab_t **ill_hcksum; 3128 mblk_t *nmp = NULL; 3129 uint_t sub_dl_cap = isub->dl_cap; 3130 uint8_t *capend; 3131 3132 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3133 3134 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3135 3136 /* 3137 * Note: range checks here are not absolutely sufficient to 3138 * make us robust against malformed messages sent by drivers; 3139 * this is in keeping with the rest of IP's dlpi handling. 3140 * (Remember, it's coming from something else in the kernel 3141 * address space) 3142 */ 3143 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3144 if (capend > mp->b_wptr) { 3145 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3146 "malformed sub-capability too long for mblk"); 3147 return; 3148 } 3149 3150 /* 3151 * There are two types of acks we process here: 3152 * 1. acks in reply to a (first form) generic capability req 3153 * (no ENABLE flag set) 3154 * 2. acks in reply to a ENABLE capability req. 3155 * (ENABLE flag set) 3156 */ 3157 ihck = (dl_capab_hcksum_t *)(isub + 1); 3158 3159 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3160 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3161 "unsupported hardware checksum " 3162 "sub-capability (version %d, expected %d)", 3163 ihck->hcksum_version, HCKSUM_VERSION_1); 3164 return; 3165 } 3166 3167 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3168 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3169 "checksum capability isn't as expected; pass-thru " 3170 "module(s) detected, discarding capability\n")); 3171 return; 3172 } 3173 3174 #define CURR_HCKSUM_CAPAB \ 3175 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3176 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3177 3178 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3179 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3180 /* do ENABLE processing */ 3181 if (*ill_hcksum == NULL) { 3182 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3183 KM_NOSLEEP); 3184 3185 if (*ill_hcksum == NULL) { 3186 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3187 "could not enable hcksum version %d " 3188 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3189 ill->ill_name); 3190 return; 3191 } 3192 } 3193 3194 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3195 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3196 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3197 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3198 "has enabled hardware checksumming\n ", 3199 ill->ill_name)); 3200 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3201 /* 3202 * Enabling hardware checksum offload 3203 * Currently IP supports {TCP,UDP}/IPv4 3204 * partial and full cksum offload and 3205 * IPv4 header checksum offload. 3206 * Allocate new mblk which will 3207 * contain a new capability request 3208 * to enable hardware checksum offload. 3209 */ 3210 uint_t size; 3211 uchar_t *rptr; 3212 3213 size = sizeof (dl_capability_req_t) + 3214 sizeof (dl_capability_sub_t) + isub->dl_length; 3215 3216 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3217 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3218 "could not enable hardware cksum for %s (ENOMEM)\n", 3219 ill->ill_name); 3220 return; 3221 } 3222 3223 rptr = nmp->b_rptr; 3224 /* initialize dl_capability_req_t */ 3225 ocap = (dl_capability_req_t *)nmp->b_rptr; 3226 ocap->dl_sub_offset = 3227 sizeof (dl_capability_req_t); 3228 ocap->dl_sub_length = 3229 sizeof (dl_capability_sub_t) + 3230 isub->dl_length; 3231 nmp->b_rptr += sizeof (dl_capability_req_t); 3232 3233 /* initialize dl_capability_sub_t */ 3234 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3235 nmp->b_rptr += sizeof (*isub); 3236 3237 /* initialize dl_capab_hcksum_t */ 3238 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3239 bcopy(ihck, ohck, sizeof (*ihck)); 3240 3241 nmp->b_rptr = rptr; 3242 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3243 3244 /* Set ENABLE flag */ 3245 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3246 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3247 3248 /* 3249 * nmp points to a DL_CAPABILITY_REQ message to enable 3250 * hardware checksum acceleration. 3251 */ 3252 ill_dlpi_send(ill, nmp); 3253 } else { 3254 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3255 "advertised %x hardware checksum capability flags\n", 3256 ill->ill_name, ihck->hcksum_txflags)); 3257 } 3258 } 3259 3260 static void 3261 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3262 { 3263 mblk_t *mp; 3264 dl_capab_hcksum_t *hck_subcap; 3265 dl_capability_sub_t *dl_subcap; 3266 int size; 3267 3268 if (!ILL_HCKSUM_CAPABLE(ill)) 3269 return; 3270 3271 ASSERT(ill->ill_hcksum_capab != NULL); 3272 /* 3273 * Clear the capability flag for hardware checksum offload but 3274 * retain the ill_hcksum_capab structure since it's possible that 3275 * another thread is still referring to it. The structure only 3276 * gets deallocated when we destroy the ill. 3277 */ 3278 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3279 3280 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3281 3282 mp = allocb(size, BPRI_HI); 3283 if (mp == NULL) { 3284 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3285 "request to disable hardware checksum offload\n")); 3286 return; 3287 } 3288 3289 mp->b_wptr = mp->b_rptr + size; 3290 3291 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3292 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3293 dl_subcap->dl_length = sizeof (*hck_subcap); 3294 3295 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3296 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3297 hck_subcap->hcksum_txflags = 0; 3298 3299 if (*sc_mp != NULL) 3300 linkb(*sc_mp, mp); 3301 else 3302 *sc_mp = mp; 3303 } 3304 3305 static void 3306 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3307 { 3308 mblk_t *nmp = NULL; 3309 dl_capability_req_t *oc; 3310 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3311 ill_zerocopy_capab_t **ill_zerocopy_capab; 3312 uint_t sub_dl_cap = isub->dl_cap; 3313 uint8_t *capend; 3314 3315 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3316 3317 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3318 3319 /* 3320 * Note: range checks here are not absolutely sufficient to 3321 * make us robust against malformed messages sent by drivers; 3322 * this is in keeping with the rest of IP's dlpi handling. 3323 * (Remember, it's coming from something else in the kernel 3324 * address space) 3325 */ 3326 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3327 if (capend > mp->b_wptr) { 3328 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3329 "malformed sub-capability too long for mblk"); 3330 return; 3331 } 3332 3333 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3334 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3335 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3336 "unsupported ZEROCOPY sub-capability (version %d, " 3337 "expected %d)", zc_ic->zerocopy_version, 3338 ZEROCOPY_VERSION_1); 3339 return; 3340 } 3341 3342 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3343 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3344 "capability isn't as expected; pass-thru module(s) " 3345 "detected, discarding capability\n")); 3346 return; 3347 } 3348 3349 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3350 if (*ill_zerocopy_capab == NULL) { 3351 *ill_zerocopy_capab = 3352 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3353 KM_NOSLEEP); 3354 3355 if (*ill_zerocopy_capab == NULL) { 3356 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3357 "could not enable Zero-copy version %d " 3358 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3359 ill->ill_name); 3360 return; 3361 } 3362 } 3363 3364 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3365 "supports Zero-copy version %d\n", ill->ill_name, 3366 ZEROCOPY_VERSION_1)); 3367 3368 (*ill_zerocopy_capab)->ill_zerocopy_version = 3369 zc_ic->zerocopy_version; 3370 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3371 zc_ic->zerocopy_flags; 3372 3373 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3374 } else { 3375 uint_t size; 3376 uchar_t *rptr; 3377 3378 size = sizeof (dl_capability_req_t) + 3379 sizeof (dl_capability_sub_t) + 3380 sizeof (dl_capab_zerocopy_t); 3381 3382 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3383 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3384 "could not enable zerocopy for %s (ENOMEM)\n", 3385 ill->ill_name); 3386 return; 3387 } 3388 3389 rptr = nmp->b_rptr; 3390 /* initialize dl_capability_req_t */ 3391 oc = (dl_capability_req_t *)rptr; 3392 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3393 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3394 sizeof (dl_capab_zerocopy_t); 3395 rptr += sizeof (dl_capability_req_t); 3396 3397 /* initialize dl_capability_sub_t */ 3398 bcopy(isub, rptr, sizeof (*isub)); 3399 rptr += sizeof (*isub); 3400 3401 /* initialize dl_capab_zerocopy_t */ 3402 zc_oc = (dl_capab_zerocopy_t *)rptr; 3403 *zc_oc = *zc_ic; 3404 3405 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3406 "to enable zero-copy version %d\n", ill->ill_name, 3407 ZEROCOPY_VERSION_1)); 3408 3409 /* set VMSAFE_MEM flag */ 3410 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3411 3412 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3413 ill_dlpi_send(ill, nmp); 3414 } 3415 } 3416 3417 static void 3418 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3419 { 3420 mblk_t *mp; 3421 dl_capab_zerocopy_t *zerocopy_subcap; 3422 dl_capability_sub_t *dl_subcap; 3423 int size; 3424 3425 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3426 return; 3427 3428 ASSERT(ill->ill_zerocopy_capab != NULL); 3429 /* 3430 * Clear the capability flag for Zero-copy but retain the 3431 * ill_zerocopy_capab structure since it's possible that another 3432 * thread is still referring to it. The structure only gets 3433 * deallocated when we destroy the ill. 3434 */ 3435 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3436 3437 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3438 3439 mp = allocb(size, BPRI_HI); 3440 if (mp == NULL) { 3441 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3442 "request to disable Zero-copy\n")); 3443 return; 3444 } 3445 3446 mp->b_wptr = mp->b_rptr + size; 3447 3448 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3449 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3450 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3451 3452 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3453 zerocopy_subcap->zerocopy_version = 3454 ill->ill_zerocopy_capab->ill_zerocopy_version; 3455 zerocopy_subcap->zerocopy_flags = 0; 3456 3457 if (*sc_mp != NULL) 3458 linkb(*sc_mp, mp); 3459 else 3460 *sc_mp = mp; 3461 } 3462 3463 /* 3464 * Process Large Segment Offload capability negotiation ack received from a 3465 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3466 * DL_CAPABILITY_ACK message. 3467 */ 3468 static void 3469 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3470 { 3471 mblk_t *nmp = NULL; 3472 dl_capability_req_t *oc; 3473 dl_capab_lso_t *lso_ic, *lso_oc; 3474 ill_lso_capab_t **ill_lso_capab; 3475 uint_t sub_dl_cap = isub->dl_cap; 3476 uint8_t *capend; 3477 3478 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3479 3480 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3481 3482 /* 3483 * Note: range checks here are not absolutely sufficient to 3484 * make us robust against malformed messages sent by drivers; 3485 * this is in keeping with the rest of IP's dlpi handling. 3486 * (Remember, it's coming from something else in the kernel 3487 * address space) 3488 */ 3489 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3490 if (capend > mp->b_wptr) { 3491 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3492 "malformed sub-capability too long for mblk"); 3493 return; 3494 } 3495 3496 lso_ic = (dl_capab_lso_t *)(isub + 1); 3497 3498 if (lso_ic->lso_version != LSO_VERSION_1) { 3499 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3500 "unsupported LSO sub-capability (version %d, expected %d)", 3501 lso_ic->lso_version, LSO_VERSION_1); 3502 return; 3503 } 3504 3505 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3506 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3507 "capability isn't as expected; pass-thru module(s) " 3508 "detected, discarding capability\n")); 3509 return; 3510 } 3511 3512 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3513 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3514 if (*ill_lso_capab == NULL) { 3515 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3516 KM_NOSLEEP); 3517 3518 if (*ill_lso_capab == NULL) { 3519 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3520 "could not enable LSO version %d " 3521 "for %s (ENOMEM)\n", LSO_VERSION_1, 3522 ill->ill_name); 3523 return; 3524 } 3525 } 3526 3527 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3528 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3529 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3530 ill->ill_capabilities |= ILL_CAPAB_LSO; 3531 3532 ip1dbg(("ill_capability_lso_ack: interface %s " 3533 "has enabled LSO\n ", ill->ill_name)); 3534 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3535 uint_t size; 3536 uchar_t *rptr; 3537 3538 size = sizeof (dl_capability_req_t) + 3539 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3540 3541 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3542 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3543 "could not enable LSO for %s (ENOMEM)\n", 3544 ill->ill_name); 3545 return; 3546 } 3547 3548 rptr = nmp->b_rptr; 3549 /* initialize dl_capability_req_t */ 3550 oc = (dl_capability_req_t *)nmp->b_rptr; 3551 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3552 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3553 sizeof (dl_capab_lso_t); 3554 nmp->b_rptr += sizeof (dl_capability_req_t); 3555 3556 /* initialize dl_capability_sub_t */ 3557 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3558 nmp->b_rptr += sizeof (*isub); 3559 3560 /* initialize dl_capab_lso_t */ 3561 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3562 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3563 3564 nmp->b_rptr = rptr; 3565 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3566 3567 /* set ENABLE flag */ 3568 lso_oc->lso_flags |= LSO_TX_ENABLE; 3569 3570 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3571 ill_dlpi_send(ill, nmp); 3572 } else { 3573 ip1dbg(("ill_capability_lso_ack: interface %s has " 3574 "advertised %x LSO capability flags\n", 3575 ill->ill_name, lso_ic->lso_flags)); 3576 } 3577 } 3578 3579 3580 static void 3581 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3582 { 3583 mblk_t *mp; 3584 dl_capab_lso_t *lso_subcap; 3585 dl_capability_sub_t *dl_subcap; 3586 int size; 3587 3588 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3589 return; 3590 3591 ASSERT(ill->ill_lso_capab != NULL); 3592 /* 3593 * Clear the capability flag for LSO but retain the 3594 * ill_lso_capab structure since it's possible that another 3595 * thread is still referring to it. The structure only gets 3596 * deallocated when we destroy the ill. 3597 */ 3598 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3599 3600 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3601 3602 mp = allocb(size, BPRI_HI); 3603 if (mp == NULL) { 3604 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3605 "request to disable LSO\n")); 3606 return; 3607 } 3608 3609 mp->b_wptr = mp->b_rptr + size; 3610 3611 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3612 dl_subcap->dl_cap = DL_CAPAB_LSO; 3613 dl_subcap->dl_length = sizeof (*lso_subcap); 3614 3615 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3616 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3617 lso_subcap->lso_flags = 0; 3618 3619 if (*sc_mp != NULL) 3620 linkb(*sc_mp, mp); 3621 else 3622 *sc_mp = mp; 3623 } 3624 3625 /* 3626 * Consume a new-style hardware capabilities negotiation ack. 3627 * Called from ip_rput_dlpi_writer(). 3628 */ 3629 void 3630 ill_capability_ack(ill_t *ill, mblk_t *mp) 3631 { 3632 dl_capability_ack_t *capp; 3633 dl_capability_sub_t *subp, *endp; 3634 3635 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3636 ill->ill_dlpi_capab_state = IDS_OK; 3637 3638 capp = (dl_capability_ack_t *)mp->b_rptr; 3639 3640 if (capp->dl_sub_length == 0) 3641 /* no new-style capabilities */ 3642 return; 3643 3644 /* make sure the driver supplied correct dl_sub_length */ 3645 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3646 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3647 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3648 return; 3649 } 3650 3651 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3652 /* 3653 * There are sub-capabilities. Process the ones we know about. 3654 * Loop until we don't have room for another sub-cap header.. 3655 */ 3656 for (subp = SC(capp, capp->dl_sub_offset), 3657 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3658 subp <= endp; 3659 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3660 3661 switch (subp->dl_cap) { 3662 case DL_CAPAB_ID_WRAPPER: 3663 ill_capability_id_ack(ill, mp, subp); 3664 break; 3665 default: 3666 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3667 break; 3668 } 3669 } 3670 #undef SC 3671 } 3672 3673 /* 3674 * This routine is called to scan the fragmentation reassembly table for 3675 * the specified ILL for any packets that are starting to smell. 3676 * dead_interval is the maximum time in seconds that will be tolerated. It 3677 * will either be the value specified in ip_g_frag_timeout, or zero if the 3678 * ILL is shutting down and it is time to blow everything off. 3679 * 3680 * It returns the number of seconds (as a time_t) that the next frag timer 3681 * should be scheduled for, 0 meaning that the timer doesn't need to be 3682 * re-started. Note that the method of calculating next_timeout isn't 3683 * entirely accurate since time will flow between the time we grab 3684 * current_time and the time we schedule the next timeout. This isn't a 3685 * big problem since this is the timer for sending an ICMP reassembly time 3686 * exceeded messages, and it doesn't have to be exactly accurate. 3687 * 3688 * This function is 3689 * sometimes called as writer, although this is not required. 3690 */ 3691 time_t 3692 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3693 { 3694 ipfb_t *ipfb; 3695 ipfb_t *endp; 3696 ipf_t *ipf; 3697 ipf_t *ipfnext; 3698 mblk_t *mp; 3699 time_t current_time = gethrestime_sec(); 3700 time_t next_timeout = 0; 3701 uint32_t hdr_length; 3702 mblk_t *send_icmp_head; 3703 mblk_t *send_icmp_head_v6; 3704 zoneid_t zoneid; 3705 ip_stack_t *ipst = ill->ill_ipst; 3706 3707 ipfb = ill->ill_frag_hash_tbl; 3708 if (ipfb == NULL) 3709 return (B_FALSE); 3710 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3711 /* Walk the frag hash table. */ 3712 for (; ipfb < endp; ipfb++) { 3713 send_icmp_head = NULL; 3714 send_icmp_head_v6 = NULL; 3715 mutex_enter(&ipfb->ipfb_lock); 3716 while ((ipf = ipfb->ipfb_ipf) != 0) { 3717 time_t frag_time = current_time - ipf->ipf_timestamp; 3718 time_t frag_timeout; 3719 3720 if (frag_time < dead_interval) { 3721 /* 3722 * There are some outstanding fragments 3723 * that will timeout later. Make note of 3724 * the time so that we can reschedule the 3725 * next timeout appropriately. 3726 */ 3727 frag_timeout = dead_interval - frag_time; 3728 if (next_timeout == 0 || 3729 frag_timeout < next_timeout) { 3730 next_timeout = frag_timeout; 3731 } 3732 break; 3733 } 3734 /* Time's up. Get it out of here. */ 3735 hdr_length = ipf->ipf_nf_hdr_len; 3736 ipfnext = ipf->ipf_hash_next; 3737 if (ipfnext) 3738 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3739 *ipf->ipf_ptphn = ipfnext; 3740 mp = ipf->ipf_mp->b_cont; 3741 for (; mp; mp = mp->b_cont) { 3742 /* Extra points for neatness. */ 3743 IP_REASS_SET_START(mp, 0); 3744 IP_REASS_SET_END(mp, 0); 3745 } 3746 mp = ipf->ipf_mp->b_cont; 3747 ill->ill_frag_count -= ipf->ipf_count; 3748 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3749 ipfb->ipfb_count -= ipf->ipf_count; 3750 ASSERT(ipfb->ipfb_frag_pkts > 0); 3751 ipfb->ipfb_frag_pkts--; 3752 /* 3753 * We do not send any icmp message from here because 3754 * we currently are holding the ipfb_lock for this 3755 * hash chain. If we try and send any icmp messages 3756 * from here we may end up via a put back into ip 3757 * trying to get the same lock, causing a recursive 3758 * mutex panic. Instead we build a list and send all 3759 * the icmp messages after we have dropped the lock. 3760 */ 3761 if (ill->ill_isv6) { 3762 if (hdr_length != 0) { 3763 mp->b_next = send_icmp_head_v6; 3764 send_icmp_head_v6 = mp; 3765 } else { 3766 freemsg(mp); 3767 } 3768 } else { 3769 if (hdr_length != 0) { 3770 mp->b_next = send_icmp_head; 3771 send_icmp_head = mp; 3772 } else { 3773 freemsg(mp); 3774 } 3775 } 3776 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3777 freeb(ipf->ipf_mp); 3778 } 3779 mutex_exit(&ipfb->ipfb_lock); 3780 /* 3781 * Now need to send any icmp messages that we delayed from 3782 * above. 3783 */ 3784 while (send_icmp_head_v6 != NULL) { 3785 ip6_t *ip6h; 3786 3787 mp = send_icmp_head_v6; 3788 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3789 mp->b_next = NULL; 3790 if (mp->b_datap->db_type == M_CTL) 3791 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3792 else 3793 ip6h = (ip6_t *)mp->b_rptr; 3794 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3795 ill, ipst); 3796 if (zoneid == ALL_ZONES) { 3797 freemsg(mp); 3798 } else { 3799 icmp_time_exceeded_v6(ill->ill_wq, mp, 3800 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3801 B_FALSE, zoneid, ipst); 3802 } 3803 } 3804 while (send_icmp_head != NULL) { 3805 ipaddr_t dst; 3806 3807 mp = send_icmp_head; 3808 send_icmp_head = send_icmp_head->b_next; 3809 mp->b_next = NULL; 3810 3811 if (mp->b_datap->db_type == M_CTL) 3812 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3813 else 3814 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3815 3816 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3817 if (zoneid == ALL_ZONES) { 3818 freemsg(mp); 3819 } else { 3820 icmp_time_exceeded(ill->ill_wq, mp, 3821 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3822 ipst); 3823 } 3824 } 3825 } 3826 /* 3827 * A non-dying ILL will use the return value to decide whether to 3828 * restart the frag timer, and for how long. 3829 */ 3830 return (next_timeout); 3831 } 3832 3833 /* 3834 * This routine is called when the approximate count of mblk memory used 3835 * for the specified ILL has exceeded max_count. 3836 */ 3837 void 3838 ill_frag_prune(ill_t *ill, uint_t max_count) 3839 { 3840 ipfb_t *ipfb; 3841 ipf_t *ipf; 3842 size_t count; 3843 3844 /* 3845 * If we are here within ip_min_frag_prune_time msecs remove 3846 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3847 * ill_frag_free_num_pkts. 3848 */ 3849 mutex_enter(&ill->ill_lock); 3850 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3851 (ip_min_frag_prune_time != 0 ? 3852 ip_min_frag_prune_time : msec_per_tick)) { 3853 3854 ill->ill_frag_free_num_pkts++; 3855 3856 } else { 3857 ill->ill_frag_free_num_pkts = 0; 3858 } 3859 ill->ill_last_frag_clean_time = lbolt; 3860 mutex_exit(&ill->ill_lock); 3861 3862 /* 3863 * free ill_frag_free_num_pkts oldest packets from each bucket. 3864 */ 3865 if (ill->ill_frag_free_num_pkts != 0) { 3866 int ix; 3867 3868 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3869 ipfb = &ill->ill_frag_hash_tbl[ix]; 3870 mutex_enter(&ipfb->ipfb_lock); 3871 if (ipfb->ipfb_ipf != NULL) { 3872 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3873 ill->ill_frag_free_num_pkts); 3874 } 3875 mutex_exit(&ipfb->ipfb_lock); 3876 } 3877 } 3878 /* 3879 * While the reassembly list for this ILL is too big, prune a fragment 3880 * queue by age, oldest first. Note that the per ILL count is 3881 * approximate, while the per frag hash bucket counts are accurate. 3882 */ 3883 while (ill->ill_frag_count > max_count) { 3884 int ix; 3885 ipfb_t *oipfb = NULL; 3886 uint_t oldest = UINT_MAX; 3887 3888 count = 0; 3889 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3890 ipfb = &ill->ill_frag_hash_tbl[ix]; 3891 mutex_enter(&ipfb->ipfb_lock); 3892 ipf = ipfb->ipfb_ipf; 3893 if (ipf != NULL && ipf->ipf_gen < oldest) { 3894 oldest = ipf->ipf_gen; 3895 oipfb = ipfb; 3896 } 3897 count += ipfb->ipfb_count; 3898 mutex_exit(&ipfb->ipfb_lock); 3899 } 3900 /* Refresh the per ILL count */ 3901 ill->ill_frag_count = count; 3902 if (oipfb == NULL) { 3903 ill->ill_frag_count = 0; 3904 break; 3905 } 3906 if (count <= max_count) 3907 return; /* Somebody beat us to it, nothing to do */ 3908 mutex_enter(&oipfb->ipfb_lock); 3909 ipf = oipfb->ipfb_ipf; 3910 if (ipf != NULL) { 3911 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3912 } 3913 mutex_exit(&oipfb->ipfb_lock); 3914 } 3915 } 3916 3917 /* 3918 * free 'free_cnt' fragmented packets starting at ipf. 3919 */ 3920 void 3921 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3922 { 3923 size_t count; 3924 mblk_t *mp; 3925 mblk_t *tmp; 3926 ipf_t **ipfp = ipf->ipf_ptphn; 3927 3928 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3929 ASSERT(ipfp != NULL); 3930 ASSERT(ipf != NULL); 3931 3932 while (ipf != NULL && free_cnt-- > 0) { 3933 count = ipf->ipf_count; 3934 mp = ipf->ipf_mp; 3935 ipf = ipf->ipf_hash_next; 3936 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3937 IP_REASS_SET_START(tmp, 0); 3938 IP_REASS_SET_END(tmp, 0); 3939 } 3940 ill->ill_frag_count -= count; 3941 ASSERT(ipfb->ipfb_count >= count); 3942 ipfb->ipfb_count -= count; 3943 ASSERT(ipfb->ipfb_frag_pkts > 0); 3944 ipfb->ipfb_frag_pkts--; 3945 freemsg(mp); 3946 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3947 } 3948 3949 if (ipf) 3950 ipf->ipf_ptphn = ipfp; 3951 ipfp[0] = ipf; 3952 } 3953 3954 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3955 "obsolete and may be removed in a future release of Solaris. Use " \ 3956 "ifconfig(1M) to manipulate the forwarding status of an interface." 3957 3958 /* 3959 * For obsolete per-interface forwarding configuration; 3960 * called in response to ND_GET. 3961 */ 3962 /* ARGSUSED */ 3963 static int 3964 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3965 { 3966 ill_t *ill = (ill_t *)cp; 3967 3968 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3969 3970 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3971 return (0); 3972 } 3973 3974 /* 3975 * For obsolete per-interface forwarding configuration; 3976 * called in response to ND_SET. 3977 */ 3978 /* ARGSUSED */ 3979 static int 3980 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3981 cred_t *ioc_cr) 3982 { 3983 long value; 3984 int retval; 3985 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3986 3987 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3988 3989 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3990 value < 0 || value > 1) { 3991 return (EINVAL); 3992 } 3993 3994 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3995 retval = ill_forward_set(q, mp, (value != 0), cp); 3996 rw_exit(&ipst->ips_ill_g_lock); 3997 return (retval); 3998 } 3999 4000 /* 4001 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 4002 * IPMP group, make sure all ill's in the group adopt the new policy. Send 4003 * up RTS_IFINFO routing socket messages for each interface whose flags we 4004 * change. 4005 */ 4006 /* ARGSUSED */ 4007 int 4008 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 4009 { 4010 ill_t *ill = (ill_t *)cp; 4011 ill_group_t *illgrp; 4012 ip_stack_t *ipst = ill->ill_ipst; 4013 4014 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 4015 4016 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 4017 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 4018 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 4019 return (EINVAL); 4020 4021 /* 4022 * If the ill is in an IPMP group, set the forwarding policy on all 4023 * members of the group to the same value. 4024 */ 4025 illgrp = ill->ill_group; 4026 if (illgrp != NULL) { 4027 ill_t *tmp_ill; 4028 4029 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 4030 tmp_ill = tmp_ill->ill_group_next) { 4031 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4032 (enable ? "Enabling" : "Disabling"), 4033 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 4034 tmp_ill->ill_name)); 4035 mutex_enter(&tmp_ill->ill_lock); 4036 if (enable) 4037 tmp_ill->ill_flags |= ILLF_ROUTER; 4038 else 4039 tmp_ill->ill_flags &= ~ILLF_ROUTER; 4040 mutex_exit(&tmp_ill->ill_lock); 4041 if (tmp_ill->ill_isv6) 4042 ill_set_nce_router_flags(tmp_ill, enable); 4043 /* Notify routing socket listeners of this change. */ 4044 ip_rts_ifmsg(tmp_ill->ill_ipif); 4045 } 4046 } else { 4047 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4048 (enable ? "Enabling" : "Disabling"), 4049 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 4050 mutex_enter(&ill->ill_lock); 4051 if (enable) 4052 ill->ill_flags |= ILLF_ROUTER; 4053 else 4054 ill->ill_flags &= ~ILLF_ROUTER; 4055 mutex_exit(&ill->ill_lock); 4056 if (ill->ill_isv6) 4057 ill_set_nce_router_flags(ill, enable); 4058 /* Notify routing socket listeners of this change. */ 4059 ip_rts_ifmsg(ill->ill_ipif); 4060 } 4061 4062 return (0); 4063 } 4064 4065 /* 4066 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 4067 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 4068 * set or clear. 4069 */ 4070 static void 4071 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 4072 { 4073 ipif_t *ipif; 4074 nce_t *nce; 4075 4076 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4077 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 4078 if (nce != NULL) { 4079 mutex_enter(&nce->nce_lock); 4080 if (enable) 4081 nce->nce_flags |= NCE_F_ISROUTER; 4082 else 4083 nce->nce_flags &= ~NCE_F_ISROUTER; 4084 mutex_exit(&nce->nce_lock); 4085 NCE_REFRELE(nce); 4086 } 4087 } 4088 } 4089 4090 /* 4091 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4092 * for this ill. Make sure the v6/v4 question has been answered about this 4093 * ill. The creation of this ndd variable is only for backwards compatibility. 4094 * The preferred way to control per-interface IP forwarding is through the 4095 * ILLF_ROUTER interface flag. 4096 */ 4097 static int 4098 ill_set_ndd_name(ill_t *ill) 4099 { 4100 char *suffix; 4101 ip_stack_t *ipst = ill->ill_ipst; 4102 4103 ASSERT(IAM_WRITER_ILL(ill)); 4104 4105 if (ill->ill_isv6) 4106 suffix = ipv6_forward_suffix; 4107 else 4108 suffix = ipv4_forward_suffix; 4109 4110 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4111 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4112 /* 4113 * Copies over the '\0'. 4114 * Note that strlen(suffix) is always bounded. 4115 */ 4116 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4117 strlen(suffix) + 1); 4118 4119 /* 4120 * Use of the nd table requires holding the reader lock. 4121 * Modifying the nd table thru nd_load/nd_unload requires 4122 * the writer lock. 4123 */ 4124 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4125 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4126 nd_ill_forward_set, (caddr_t)ill)) { 4127 /* 4128 * If the nd_load failed, it only meant that it could not 4129 * allocate a new bunch of room for further NDD expansion. 4130 * Because of that, the ill_ndd_name will be set to 0, and 4131 * this interface is at the mercy of the global ip_forwarding 4132 * variable. 4133 */ 4134 rw_exit(&ipst->ips_ip_g_nd_lock); 4135 ill->ill_ndd_name = NULL; 4136 return (ENOMEM); 4137 } 4138 rw_exit(&ipst->ips_ip_g_nd_lock); 4139 return (0); 4140 } 4141 4142 /* 4143 * Intializes the context structure and returns the first ill in the list 4144 * cuurently start_list and end_list can have values: 4145 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4146 * IP_V4_G_HEAD Traverse IPV4 list only. 4147 * IP_V6_G_HEAD Traverse IPV6 list only. 4148 */ 4149 4150 /* 4151 * We don't check for CONDEMNED ills here. Caller must do that if 4152 * necessary under the ill lock. 4153 */ 4154 ill_t * 4155 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4156 ip_stack_t *ipst) 4157 { 4158 ill_if_t *ifp; 4159 ill_t *ill; 4160 avl_tree_t *avl_tree; 4161 4162 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4163 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4164 4165 /* 4166 * setup the lists to search 4167 */ 4168 if (end_list != MAX_G_HEADS) { 4169 ctx->ctx_current_list = start_list; 4170 ctx->ctx_last_list = end_list; 4171 } else { 4172 ctx->ctx_last_list = MAX_G_HEADS - 1; 4173 ctx->ctx_current_list = 0; 4174 } 4175 4176 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4177 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4178 if (ifp != (ill_if_t *) 4179 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4180 avl_tree = &ifp->illif_avl_by_ppa; 4181 ill = avl_first(avl_tree); 4182 /* 4183 * ill is guaranteed to be non NULL or ifp should have 4184 * not existed. 4185 */ 4186 ASSERT(ill != NULL); 4187 return (ill); 4188 } 4189 ctx->ctx_current_list++; 4190 } 4191 4192 return (NULL); 4193 } 4194 4195 /* 4196 * returns the next ill in the list. ill_first() must have been called 4197 * before calling ill_next() or bad things will happen. 4198 */ 4199 4200 /* 4201 * We don't check for CONDEMNED ills here. Caller must do that if 4202 * necessary under the ill lock. 4203 */ 4204 ill_t * 4205 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4206 { 4207 ill_if_t *ifp; 4208 ill_t *ill; 4209 ip_stack_t *ipst = lastill->ill_ipst; 4210 4211 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4212 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4213 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4214 AVL_AFTER)) != NULL) { 4215 return (ill); 4216 } 4217 4218 /* goto next ill_ifp in the list. */ 4219 ifp = lastill->ill_ifptr->illif_next; 4220 4221 /* make sure not at end of circular list */ 4222 while (ifp == 4223 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4224 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4225 return (NULL); 4226 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4227 } 4228 4229 return (avl_first(&ifp->illif_avl_by_ppa)); 4230 } 4231 4232 /* 4233 * Check interface name for correct format which is name+ppa. 4234 * name can contain characters and digits, the right most digits 4235 * make up the ppa number. use of octal is not allowed, name must contain 4236 * a ppa, return pointer to the start of ppa. 4237 * In case of error return NULL. 4238 */ 4239 static char * 4240 ill_get_ppa_ptr(char *name) 4241 { 4242 int namelen = mi_strlen(name); 4243 4244 int len = namelen; 4245 4246 name += len; 4247 while (len > 0) { 4248 name--; 4249 if (*name < '0' || *name > '9') 4250 break; 4251 len--; 4252 } 4253 4254 /* empty string, all digits, or no trailing digits */ 4255 if (len == 0 || len == (int)namelen) 4256 return (NULL); 4257 4258 name++; 4259 /* check for attempted use of octal */ 4260 if (*name == '0' && len != (int)namelen - 1) 4261 return (NULL); 4262 return (name); 4263 } 4264 4265 /* 4266 * use avl tree to locate the ill. 4267 */ 4268 static ill_t * 4269 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4270 ipsq_func_t func, int *error, ip_stack_t *ipst) 4271 { 4272 char *ppa_ptr = NULL; 4273 int len; 4274 uint_t ppa; 4275 ill_t *ill = NULL; 4276 ill_if_t *ifp; 4277 int list; 4278 ipsq_t *ipsq; 4279 4280 if (error != NULL) 4281 *error = 0; 4282 4283 /* 4284 * get ppa ptr 4285 */ 4286 if (isv6) 4287 list = IP_V6_G_HEAD; 4288 else 4289 list = IP_V4_G_HEAD; 4290 4291 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4292 if (error != NULL) 4293 *error = ENXIO; 4294 return (NULL); 4295 } 4296 4297 len = ppa_ptr - name + 1; 4298 4299 ppa = stoi(&ppa_ptr); 4300 4301 ifp = IP_VX_ILL_G_LIST(list, ipst); 4302 4303 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4304 /* 4305 * match is done on len - 1 as the name is not null 4306 * terminated it contains ppa in addition to the interface 4307 * name. 4308 */ 4309 if ((ifp->illif_name_len == len) && 4310 bcmp(ifp->illif_name, name, len - 1) == 0) { 4311 break; 4312 } else { 4313 ifp = ifp->illif_next; 4314 } 4315 } 4316 4317 4318 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4319 /* 4320 * Even the interface type does not exist. 4321 */ 4322 if (error != NULL) 4323 *error = ENXIO; 4324 return (NULL); 4325 } 4326 4327 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4328 if (ill != NULL) { 4329 /* 4330 * The block comment at the start of ipif_down 4331 * explains the use of the macros used below 4332 */ 4333 GRAB_CONN_LOCK(q); 4334 mutex_enter(&ill->ill_lock); 4335 if (ILL_CAN_LOOKUP(ill)) { 4336 ill_refhold_locked(ill); 4337 mutex_exit(&ill->ill_lock); 4338 RELEASE_CONN_LOCK(q); 4339 return (ill); 4340 } else if (ILL_CAN_WAIT(ill, q)) { 4341 ipsq = ill->ill_phyint->phyint_ipsq; 4342 mutex_enter(&ipsq->ipsq_lock); 4343 mutex_exit(&ill->ill_lock); 4344 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4345 mutex_exit(&ipsq->ipsq_lock); 4346 RELEASE_CONN_LOCK(q); 4347 *error = EINPROGRESS; 4348 return (NULL); 4349 } 4350 mutex_exit(&ill->ill_lock); 4351 RELEASE_CONN_LOCK(q); 4352 } 4353 if (error != NULL) 4354 *error = ENXIO; 4355 return (NULL); 4356 } 4357 4358 /* 4359 * comparison function for use with avl. 4360 */ 4361 static int 4362 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4363 { 4364 uint_t ppa; 4365 uint_t ill_ppa; 4366 4367 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4368 4369 ppa = *((uint_t *)ppa_ptr); 4370 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4371 /* 4372 * We want the ill with the lowest ppa to be on the 4373 * top. 4374 */ 4375 if (ill_ppa < ppa) 4376 return (1); 4377 if (ill_ppa > ppa) 4378 return (-1); 4379 return (0); 4380 } 4381 4382 /* 4383 * remove an interface type from the global list. 4384 */ 4385 static void 4386 ill_delete_interface_type(ill_if_t *interface) 4387 { 4388 ASSERT(interface != NULL); 4389 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4390 4391 avl_destroy(&interface->illif_avl_by_ppa); 4392 if (interface->illif_ppa_arena != NULL) 4393 vmem_destroy(interface->illif_ppa_arena); 4394 4395 remque(interface); 4396 4397 mi_free(interface); 4398 } 4399 4400 /* Defined in ip_netinfo.c */ 4401 extern ddi_taskq_t *eventq_queue_nic; 4402 4403 /* 4404 * remove ill from the global list. 4405 */ 4406 static void 4407 ill_glist_delete(ill_t *ill) 4408 { 4409 char *nicname; 4410 size_t nicnamelen; 4411 hook_nic_event_t *info; 4412 ip_stack_t *ipst; 4413 4414 if (ill == NULL) 4415 return; 4416 ipst = ill->ill_ipst; 4417 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4418 4419 if (ill->ill_name != NULL) { 4420 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4421 if (nicname != NULL) { 4422 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4423 nicnamelen = ill->ill_name_length; 4424 } 4425 } else { 4426 nicname = NULL; 4427 nicnamelen = 0; 4428 } 4429 4430 /* 4431 * If the ill was never inserted into the AVL tree 4432 * we skip the if branch. 4433 */ 4434 if (ill->ill_ifptr != NULL) { 4435 /* 4436 * remove from AVL tree and free ppa number 4437 */ 4438 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4439 4440 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4441 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4442 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4443 } 4444 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4445 ill_delete_interface_type(ill->ill_ifptr); 4446 } 4447 4448 /* 4449 * Indicate ill is no longer in the list. 4450 */ 4451 ill->ill_ifptr = NULL; 4452 ill->ill_name_length = 0; 4453 ill->ill_name[0] = '\0'; 4454 ill->ill_ppa = UINT_MAX; 4455 } 4456 4457 /* 4458 * Run the unplumb hook after the NIC has disappeared from being 4459 * visible so that attempts to revalidate its existance will fail. 4460 * 4461 * This needs to be run inside the ill_g_lock perimeter to ensure 4462 * that the ordering of delivered events to listeners matches the 4463 * order of them in the kernel. 4464 */ 4465 if ((info = ill->ill_nic_event_info) != NULL) { 4466 if (info->hne_event != NE_DOWN) { 4467 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4468 "attached for %s\n", info->hne_event, 4469 ill->ill_name)); 4470 if (info->hne_data != NULL) 4471 kmem_free(info->hne_data, info->hne_datalen); 4472 kmem_free(info, sizeof (hook_nic_event_t)); 4473 } else { 4474 if (ddi_taskq_dispatch(eventq_queue_nic, 4475 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4476 == DDI_FAILURE) { 4477 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4478 "failed\n")); 4479 if (info->hne_data != NULL) 4480 kmem_free(info->hne_data, 4481 info->hne_datalen); 4482 kmem_free(info, sizeof (hook_nic_event_t)); 4483 } 4484 } 4485 } 4486 4487 /* Generate NE_UNPLUMB event for ill_name. */ 4488 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4489 if (info != NULL) { 4490 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4491 info->hne_lif = 0; 4492 info->hne_event = NE_UNPLUMB; 4493 info->hne_data = nicname; 4494 info->hne_datalen = nicnamelen; 4495 info->hne_family = ill->ill_isv6 ? 4496 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 4497 } else { 4498 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4499 "information for %s (ENOMEM)\n", ill->ill_name)); 4500 if (nicname != NULL) 4501 kmem_free(nicname, nicnamelen); 4502 } 4503 4504 ill->ill_nic_event_info = info; 4505 4506 ill_phyint_free(ill); 4507 rw_exit(&ipst->ips_ill_g_lock); 4508 } 4509 4510 /* 4511 * allocate a ppa, if the number of plumbed interfaces of this type are 4512 * less than ill_no_arena do a linear search to find a unused ppa. 4513 * When the number goes beyond ill_no_arena switch to using an arena. 4514 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4515 * is the return value for an error condition, so allocation starts at one 4516 * and is decremented by one. 4517 */ 4518 static int 4519 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4520 { 4521 ill_t *tmp_ill; 4522 uint_t start, end; 4523 int ppa; 4524 4525 if (ifp->illif_ppa_arena == NULL && 4526 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4527 /* 4528 * Create an arena. 4529 */ 4530 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4531 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4532 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4533 /* allocate what has already been assigned */ 4534 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4535 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4536 tmp_ill, AVL_AFTER)) { 4537 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4538 1, /* size */ 4539 1, /* align/quantum */ 4540 0, /* phase */ 4541 0, /* nocross */ 4542 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4543 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4544 VM_NOSLEEP|VM_FIRSTFIT); 4545 if (ppa == 0) { 4546 ip1dbg(("ill_alloc_ppa: ppa allocation" 4547 " failed while switching")); 4548 vmem_destroy(ifp->illif_ppa_arena); 4549 ifp->illif_ppa_arena = NULL; 4550 break; 4551 } 4552 } 4553 } 4554 4555 if (ifp->illif_ppa_arena != NULL) { 4556 if (ill->ill_ppa == UINT_MAX) { 4557 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4558 1, VM_NOSLEEP|VM_FIRSTFIT); 4559 if (ppa == 0) 4560 return (EAGAIN); 4561 ill->ill_ppa = --ppa; 4562 } else { 4563 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4564 1, /* size */ 4565 1, /* align/quantum */ 4566 0, /* phase */ 4567 0, /* nocross */ 4568 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4569 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4570 VM_NOSLEEP|VM_FIRSTFIT); 4571 /* 4572 * Most likely the allocation failed because 4573 * the requested ppa was in use. 4574 */ 4575 if (ppa == 0) 4576 return (EEXIST); 4577 } 4578 return (0); 4579 } 4580 4581 /* 4582 * No arena is in use and not enough (>ill_no_arena) interfaces have 4583 * been plumbed to create one. Do a linear search to get a unused ppa. 4584 */ 4585 if (ill->ill_ppa == UINT_MAX) { 4586 end = UINT_MAX - 1; 4587 start = 0; 4588 } else { 4589 end = start = ill->ill_ppa; 4590 } 4591 4592 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4593 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4594 if (start++ >= end) { 4595 if (ill->ill_ppa == UINT_MAX) 4596 return (EAGAIN); 4597 else 4598 return (EEXIST); 4599 } 4600 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4601 } 4602 ill->ill_ppa = start; 4603 return (0); 4604 } 4605 4606 /* 4607 * Insert ill into the list of configured ill's. Once this function completes, 4608 * the ill is globally visible and is available through lookups. More precisely 4609 * this happens after the caller drops the ill_g_lock. 4610 */ 4611 static int 4612 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4613 { 4614 ill_if_t *ill_interface; 4615 avl_index_t where = 0; 4616 int error; 4617 int name_length; 4618 int index; 4619 boolean_t check_length = B_FALSE; 4620 ip_stack_t *ipst = ill->ill_ipst; 4621 4622 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4623 4624 name_length = mi_strlen(name) + 1; 4625 4626 if (isv6) 4627 index = IP_V6_G_HEAD; 4628 else 4629 index = IP_V4_G_HEAD; 4630 4631 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4632 /* 4633 * Search for interface type based on name 4634 */ 4635 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4636 if ((ill_interface->illif_name_len == name_length) && 4637 (strcmp(ill_interface->illif_name, name) == 0)) { 4638 break; 4639 } 4640 ill_interface = ill_interface->illif_next; 4641 } 4642 4643 /* 4644 * Interface type not found, create one. 4645 */ 4646 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4647 4648 ill_g_head_t ghead; 4649 4650 /* 4651 * allocate ill_if_t structure 4652 */ 4653 4654 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4655 if (ill_interface == NULL) { 4656 return (ENOMEM); 4657 } 4658 4659 4660 4661 (void) strcpy(ill_interface->illif_name, name); 4662 ill_interface->illif_name_len = name_length; 4663 4664 avl_create(&ill_interface->illif_avl_by_ppa, 4665 ill_compare_ppa, sizeof (ill_t), 4666 offsetof(struct ill_s, ill_avl_byppa)); 4667 4668 /* 4669 * link the structure in the back to maintain order 4670 * of configuration for ifconfig output. 4671 */ 4672 ghead = ipst->ips_ill_g_heads[index]; 4673 insque(ill_interface, ghead.ill_g_list_tail); 4674 4675 } 4676 4677 if (ill->ill_ppa == UINT_MAX) 4678 check_length = B_TRUE; 4679 4680 error = ill_alloc_ppa(ill_interface, ill); 4681 if (error != 0) { 4682 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4683 ill_delete_interface_type(ill->ill_ifptr); 4684 return (error); 4685 } 4686 4687 /* 4688 * When the ppa is choosen by the system, check that there is 4689 * enough space to insert ppa. if a specific ppa was passed in this 4690 * check is not required as the interface name passed in will have 4691 * the right ppa in it. 4692 */ 4693 if (check_length) { 4694 /* 4695 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4696 */ 4697 char buf[sizeof (uint_t) * 3]; 4698 4699 /* 4700 * convert ppa to string to calculate the amount of space 4701 * required for it in the name. 4702 */ 4703 numtos(ill->ill_ppa, buf); 4704 4705 /* Do we have enough space to insert ppa ? */ 4706 4707 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4708 /* Free ppa and interface type struct */ 4709 if (ill_interface->illif_ppa_arena != NULL) { 4710 vmem_free(ill_interface->illif_ppa_arena, 4711 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4712 } 4713 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4714 0) { 4715 ill_delete_interface_type(ill->ill_ifptr); 4716 } 4717 4718 return (EINVAL); 4719 } 4720 } 4721 4722 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4723 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4724 4725 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4726 &where); 4727 ill->ill_ifptr = ill_interface; 4728 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4729 4730 ill_phyint_reinit(ill); 4731 return (0); 4732 } 4733 4734 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4735 static boolean_t 4736 ipsq_init(ill_t *ill) 4737 { 4738 ipsq_t *ipsq; 4739 4740 /* Init the ipsq and impicitly enter as writer */ 4741 ill->ill_phyint->phyint_ipsq = 4742 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4743 if (ill->ill_phyint->phyint_ipsq == NULL) 4744 return (B_FALSE); 4745 ipsq = ill->ill_phyint->phyint_ipsq; 4746 ipsq->ipsq_phyint_list = ill->ill_phyint; 4747 ill->ill_phyint->phyint_ipsq_next = NULL; 4748 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4749 ipsq->ipsq_refs = 1; 4750 ipsq->ipsq_writer = curthread; 4751 ipsq->ipsq_reentry_cnt = 1; 4752 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4753 #ifdef ILL_DEBUG 4754 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4755 #endif 4756 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4757 return (B_TRUE); 4758 } 4759 4760 /* 4761 * ill_init is called by ip_open when a device control stream is opened. 4762 * It does a few initializations, and shoots a DL_INFO_REQ message down 4763 * to the driver. The response is later picked up in ip_rput_dlpi and 4764 * used to set up default mechanisms for talking to the driver. (Always 4765 * called as writer.) 4766 * 4767 * If this function returns error, ip_open will call ip_close which in 4768 * turn will call ill_delete to clean up any memory allocated here that 4769 * is not yet freed. 4770 */ 4771 int 4772 ill_init(queue_t *q, ill_t *ill) 4773 { 4774 int count; 4775 dl_info_req_t *dlir; 4776 mblk_t *info_mp; 4777 uchar_t *frag_ptr; 4778 4779 /* 4780 * The ill is initialized to zero by mi_alloc*(). In addition 4781 * some fields already contain valid values, initialized in 4782 * ip_open(), before we reach here. 4783 */ 4784 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4785 4786 ill->ill_rq = q; 4787 ill->ill_wq = WR(q); 4788 4789 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4790 BPRI_HI); 4791 if (info_mp == NULL) 4792 return (ENOMEM); 4793 4794 /* 4795 * Allocate sufficient space to contain our fragment hash table and 4796 * the device name. 4797 */ 4798 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4799 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4800 if (frag_ptr == NULL) { 4801 freemsg(info_mp); 4802 return (ENOMEM); 4803 } 4804 ill->ill_frag_ptr = frag_ptr; 4805 ill->ill_frag_free_num_pkts = 0; 4806 ill->ill_last_frag_clean_time = 0; 4807 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4808 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4809 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4810 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4811 NULL, MUTEX_DEFAULT, NULL); 4812 } 4813 4814 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4815 if (ill->ill_phyint == NULL) { 4816 freemsg(info_mp); 4817 mi_free(frag_ptr); 4818 return (ENOMEM); 4819 } 4820 4821 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4822 /* 4823 * For now pretend this is a v4 ill. We need to set phyint_ill* 4824 * at this point because of the following reason. If we can't 4825 * enter the ipsq at some point and cv_wait, the writer that 4826 * wakes us up tries to locate us using the list of all phyints 4827 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4828 * If we don't set it now, we risk a missed wakeup. 4829 */ 4830 ill->ill_phyint->phyint_illv4 = ill; 4831 ill->ill_ppa = UINT_MAX; 4832 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4833 4834 if (!ipsq_init(ill)) { 4835 freemsg(info_mp); 4836 mi_free(frag_ptr); 4837 mi_free(ill->ill_phyint); 4838 return (ENOMEM); 4839 } 4840 4841 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4842 4843 4844 /* Frag queue limit stuff */ 4845 ill->ill_frag_count = 0; 4846 ill->ill_ipf_gen = 0; 4847 4848 ill->ill_global_timer = INFINITY; 4849 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4850 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4851 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4852 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4853 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4854 4855 /* 4856 * Initialize IPv6 configuration variables. The IP module is always 4857 * opened as an IPv4 module. Instead tracking down the cases where 4858 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4859 * here for convenience, this has no effect until the ill is set to do 4860 * IPv6. 4861 */ 4862 ill->ill_reachable_time = ND_REACHABLE_TIME; 4863 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4864 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4865 ill->ill_max_buf = ND_MAX_Q; 4866 ill->ill_refcnt = 0; 4867 4868 /* Send down the Info Request to the driver. */ 4869 info_mp->b_datap->db_type = M_PCPROTO; 4870 dlir = (dl_info_req_t *)info_mp->b_rptr; 4871 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4872 dlir->dl_primitive = DL_INFO_REQ; 4873 4874 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4875 4876 qprocson(q); 4877 ill_dlpi_send(ill, info_mp); 4878 4879 return (0); 4880 } 4881 4882 /* 4883 * ill_dls_info 4884 * creates datalink socket info from the device. 4885 */ 4886 int 4887 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4888 { 4889 size_t len; 4890 ill_t *ill = ipif->ipif_ill; 4891 4892 sdl->sdl_family = AF_LINK; 4893 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4894 sdl->sdl_type = ill->ill_type; 4895 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4896 len = strlen(sdl->sdl_data); 4897 ASSERT(len < 256); 4898 sdl->sdl_nlen = (uchar_t)len; 4899 sdl->sdl_alen = ill->ill_phys_addr_length; 4900 sdl->sdl_slen = 0; 4901 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4902 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4903 4904 return (sizeof (struct sockaddr_dl)); 4905 } 4906 4907 /* 4908 * ill_xarp_info 4909 * creates xarp info from the device. 4910 */ 4911 static int 4912 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4913 { 4914 sdl->sdl_family = AF_LINK; 4915 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4916 sdl->sdl_type = ill->ill_type; 4917 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4918 sizeof (sdl->sdl_data)); 4919 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4920 sdl->sdl_alen = ill->ill_phys_addr_length; 4921 sdl->sdl_slen = 0; 4922 return (sdl->sdl_nlen); 4923 } 4924 4925 static int 4926 loopback_kstat_update(kstat_t *ksp, int rw) 4927 { 4928 kstat_named_t *kn; 4929 netstackid_t stackid; 4930 netstack_t *ns; 4931 ip_stack_t *ipst; 4932 4933 if (ksp == NULL || ksp->ks_data == NULL) 4934 return (EIO); 4935 4936 if (rw == KSTAT_WRITE) 4937 return (EACCES); 4938 4939 kn = KSTAT_NAMED_PTR(ksp); 4940 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4941 4942 ns = netstack_find_by_stackid(stackid); 4943 if (ns == NULL) 4944 return (-1); 4945 4946 ipst = ns->netstack_ip; 4947 if (ipst == NULL) { 4948 netstack_rele(ns); 4949 return (-1); 4950 } 4951 kn[0].value.ui32 = ipst->ips_loopback_packets; 4952 kn[1].value.ui32 = ipst->ips_loopback_packets; 4953 netstack_rele(ns); 4954 return (0); 4955 } 4956 4957 4958 /* 4959 * Has ifindex been plumbed already. 4960 * Compares both phyint_ifindex and phyint_group_ifindex. 4961 */ 4962 static boolean_t 4963 phyint_exists(uint_t index, ip_stack_t *ipst) 4964 { 4965 phyint_t *phyi; 4966 4967 ASSERT(index != 0); 4968 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4969 /* 4970 * Indexes are stored in the phyint - a common structure 4971 * to both IPv4 and IPv6. 4972 */ 4973 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4974 for (; phyi != NULL; 4975 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4976 phyi, AVL_AFTER)) { 4977 if (phyi->phyint_ifindex == index || 4978 phyi->phyint_group_ifindex == index) 4979 return (B_TRUE); 4980 } 4981 return (B_FALSE); 4982 } 4983 4984 /* Pick a unique ifindex */ 4985 boolean_t 4986 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4987 { 4988 uint_t starting_index; 4989 4990 if (!ipst->ips_ill_index_wrap) { 4991 *indexp = ipst->ips_ill_index++; 4992 if (ipst->ips_ill_index == 0) { 4993 /* Reached the uint_t limit Next time wrap */ 4994 ipst->ips_ill_index_wrap = B_TRUE; 4995 } 4996 return (B_TRUE); 4997 } 4998 4999 /* 5000 * Start reusing unused indexes. Note that we hold the ill_g_lock 5001 * at this point and don't want to call any function that attempts 5002 * to get the lock again. 5003 */ 5004 starting_index = ipst->ips_ill_index++; 5005 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 5006 if (ipst->ips_ill_index != 0 && 5007 !phyint_exists(ipst->ips_ill_index, ipst)) { 5008 /* found unused index - use it */ 5009 *indexp = ipst->ips_ill_index; 5010 return (B_TRUE); 5011 } 5012 } 5013 5014 /* 5015 * all interface indicies are inuse. 5016 */ 5017 return (B_FALSE); 5018 } 5019 5020 /* 5021 * Assign a unique interface index for the phyint. 5022 */ 5023 static boolean_t 5024 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 5025 { 5026 ASSERT(phyi->phyint_ifindex == 0); 5027 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 5028 } 5029 5030 /* 5031 * Return a pointer to the ill which matches the supplied name. Note that 5032 * the ill name length includes the null termination character. (May be 5033 * called as writer.) 5034 * If do_alloc and the interface is "lo0" it will be automatically created. 5035 * Cannot bump up reference on condemned ills. So dup detect can't be done 5036 * using this func. 5037 */ 5038 ill_t * 5039 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 5040 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 5041 ip_stack_t *ipst) 5042 { 5043 ill_t *ill; 5044 ipif_t *ipif; 5045 kstat_named_t *kn; 5046 boolean_t isloopback; 5047 ipsq_t *old_ipsq; 5048 in6_addr_t ov6addr; 5049 5050 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 5051 5052 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5053 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 5054 rw_exit(&ipst->ips_ill_g_lock); 5055 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 5056 return (ill); 5057 5058 /* 5059 * Couldn't find it. Does this happen to be a lookup for the 5060 * loopback device and are we allowed to allocate it? 5061 */ 5062 if (!isloopback || !do_alloc) 5063 return (NULL); 5064 5065 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 5066 5067 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 5068 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 5069 rw_exit(&ipst->ips_ill_g_lock); 5070 return (ill); 5071 } 5072 5073 /* Create the loopback device on demand */ 5074 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 5075 sizeof (ipif_loopback_name), BPRI_MED)); 5076 if (ill == NULL) 5077 goto done; 5078 5079 *ill = ill_null; 5080 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 5081 ill->ill_ipst = ipst; 5082 netstack_hold(ipst->ips_netstack); 5083 /* 5084 * For exclusive stacks we set the zoneid to zero 5085 * to make IP operate as if in the global zone. 5086 */ 5087 ill->ill_zoneid = GLOBAL_ZONEID; 5088 5089 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 5090 if (ill->ill_phyint == NULL) 5091 goto done; 5092 5093 if (isv6) 5094 ill->ill_phyint->phyint_illv6 = ill; 5095 else 5096 ill->ill_phyint->phyint_illv4 = ill; 5097 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5098 ill->ill_max_frag = IP_LOOPBACK_MTU; 5099 /* Add room for tcp+ip headers */ 5100 if (isv6) { 5101 ill->ill_isv6 = B_TRUE; 5102 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5103 } else { 5104 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5105 } 5106 if (!ill_allocate_mibs(ill)) 5107 goto done; 5108 ill->ill_max_mtu = ill->ill_max_frag; 5109 /* 5110 * ipif_loopback_name can't be pointed at directly because its used 5111 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5112 * from the glist, ill_glist_delete() sets the first character of 5113 * ill_name to '\0'. 5114 */ 5115 ill->ill_name = (char *)ill + sizeof (*ill); 5116 (void) strcpy(ill->ill_name, ipif_loopback_name); 5117 ill->ill_name_length = sizeof (ipif_loopback_name); 5118 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5119 5120 ill->ill_global_timer = INFINITY; 5121 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 5122 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5123 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5124 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5125 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5126 5127 /* No resolver here. */ 5128 ill->ill_net_type = IRE_LOOPBACK; 5129 5130 /* Initialize the ipsq */ 5131 if (!ipsq_init(ill)) 5132 goto done; 5133 5134 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5135 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5136 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5137 #ifdef ILL_DEBUG 5138 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5139 #endif 5140 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5141 if (ipif == NULL) 5142 goto done; 5143 5144 ill->ill_flags = ILLF_MULTICAST; 5145 5146 ov6addr = ipif->ipif_v6lcl_addr; 5147 /* Set up default loopback address and mask. */ 5148 if (!isv6) { 5149 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5150 5151 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5152 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5153 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5154 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5155 ipif->ipif_v6subnet); 5156 ill->ill_flags |= ILLF_IPV4; 5157 } else { 5158 ipif->ipif_v6lcl_addr = ipv6_loopback; 5159 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5160 ipif->ipif_v6net_mask = ipv6_all_ones; 5161 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5162 ipif->ipif_v6subnet); 5163 ill->ill_flags |= ILLF_IPV6; 5164 } 5165 5166 /* 5167 * Chain us in at the end of the ill list. hold the ill 5168 * before we make it globally visible. 1 for the lookup. 5169 */ 5170 ill->ill_refcnt = 0; 5171 ill_refhold(ill); 5172 5173 ill->ill_frag_count = 0; 5174 ill->ill_frag_free_num_pkts = 0; 5175 ill->ill_last_frag_clean_time = 0; 5176 5177 old_ipsq = ill->ill_phyint->phyint_ipsq; 5178 5179 if (ill_glist_insert(ill, "lo", isv6) != 0) 5180 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5181 5182 /* Let SCTP know so that it can add this to its list */ 5183 sctp_update_ill(ill, SCTP_ILL_INSERT); 5184 5185 /* 5186 * We have already assigned ipif_v6lcl_addr above, but we need to 5187 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5188 * requires to be after ill_glist_insert() since we need the 5189 * ill_index set. Pass on ipv6_loopback as the old address. 5190 */ 5191 sctp_update_ipif_addr(ipif, ov6addr); 5192 5193 /* 5194 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5195 */ 5196 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5197 /* Loopback ills aren't in any IPMP group */ 5198 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5199 ipsq_delete(old_ipsq); 5200 } 5201 5202 /* 5203 * Delay this till the ipif is allocated as ipif_allocate 5204 * de-references ill_phyint for getting the ifindex. We 5205 * can't do this before ipif_allocate because ill_phyint_reinit 5206 * -> phyint_assign_ifindex expects ipif to be present. 5207 */ 5208 mutex_enter(&ill->ill_phyint->phyint_lock); 5209 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5210 mutex_exit(&ill->ill_phyint->phyint_lock); 5211 5212 if (ipst->ips_loopback_ksp == NULL) { 5213 /* Export loopback interface statistics */ 5214 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5215 ipif_loopback_name, "net", 5216 KSTAT_TYPE_NAMED, 2, 0, 5217 ipst->ips_netstack->netstack_stackid); 5218 if (ipst->ips_loopback_ksp != NULL) { 5219 ipst->ips_loopback_ksp->ks_update = 5220 loopback_kstat_update; 5221 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5222 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5223 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5224 ipst->ips_loopback_ksp->ks_private = 5225 (void *)(uintptr_t)ipst->ips_netstack-> 5226 netstack_stackid; 5227 kstat_install(ipst->ips_loopback_ksp); 5228 } 5229 } 5230 5231 if (error != NULL) 5232 *error = 0; 5233 *did_alloc = B_TRUE; 5234 rw_exit(&ipst->ips_ill_g_lock); 5235 return (ill); 5236 done: 5237 if (ill != NULL) { 5238 if (ill->ill_phyint != NULL) { 5239 ipsq_t *ipsq; 5240 5241 ipsq = ill->ill_phyint->phyint_ipsq; 5242 if (ipsq != NULL) { 5243 ipsq->ipsq_ipst = NULL; 5244 kmem_free(ipsq, sizeof (ipsq_t)); 5245 } 5246 mi_free(ill->ill_phyint); 5247 } 5248 ill_free_mib(ill); 5249 if (ill->ill_ipst != NULL) 5250 netstack_rele(ill->ill_ipst->ips_netstack); 5251 mi_free(ill); 5252 } 5253 rw_exit(&ipst->ips_ill_g_lock); 5254 if (error != NULL) 5255 *error = ENOMEM; 5256 return (NULL); 5257 } 5258 5259 /* 5260 * For IPP calls - use the ip_stack_t for global stack. 5261 */ 5262 ill_t * 5263 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5264 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5265 { 5266 ip_stack_t *ipst; 5267 ill_t *ill; 5268 5269 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5270 if (ipst == NULL) { 5271 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5272 return (NULL); 5273 } 5274 5275 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5276 netstack_rele(ipst->ips_netstack); 5277 return (ill); 5278 } 5279 5280 /* 5281 * Return a pointer to the ill which matches the index and IP version type. 5282 */ 5283 ill_t * 5284 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5285 ipsq_func_t func, int *err, ip_stack_t *ipst) 5286 { 5287 ill_t *ill; 5288 ipsq_t *ipsq; 5289 phyint_t *phyi; 5290 5291 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5292 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5293 5294 if (err != NULL) 5295 *err = 0; 5296 5297 /* 5298 * Indexes are stored in the phyint - a common structure 5299 * to both IPv4 and IPv6. 5300 */ 5301 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5302 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5303 (void *) &index, NULL); 5304 if (phyi != NULL) { 5305 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5306 if (ill != NULL) { 5307 /* 5308 * The block comment at the start of ipif_down 5309 * explains the use of the macros used below 5310 */ 5311 GRAB_CONN_LOCK(q); 5312 mutex_enter(&ill->ill_lock); 5313 if (ILL_CAN_LOOKUP(ill)) { 5314 ill_refhold_locked(ill); 5315 mutex_exit(&ill->ill_lock); 5316 RELEASE_CONN_LOCK(q); 5317 rw_exit(&ipst->ips_ill_g_lock); 5318 return (ill); 5319 } else if (ILL_CAN_WAIT(ill, q)) { 5320 ipsq = ill->ill_phyint->phyint_ipsq; 5321 mutex_enter(&ipsq->ipsq_lock); 5322 rw_exit(&ipst->ips_ill_g_lock); 5323 mutex_exit(&ill->ill_lock); 5324 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5325 mutex_exit(&ipsq->ipsq_lock); 5326 RELEASE_CONN_LOCK(q); 5327 *err = EINPROGRESS; 5328 return (NULL); 5329 } 5330 RELEASE_CONN_LOCK(q); 5331 mutex_exit(&ill->ill_lock); 5332 } 5333 } 5334 rw_exit(&ipst->ips_ill_g_lock); 5335 if (err != NULL) 5336 *err = ENXIO; 5337 return (NULL); 5338 } 5339 5340 /* 5341 * Return the ifindex next in sequence after the passed in ifindex. 5342 * If there is no next ifindex for the given protocol, return 0. 5343 */ 5344 uint_t 5345 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5346 { 5347 phyint_t *phyi; 5348 phyint_t *phyi_initial; 5349 uint_t ifindex; 5350 5351 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5352 5353 if (index == 0) { 5354 phyi = avl_first( 5355 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5356 } else { 5357 phyi = phyi_initial = avl_find( 5358 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5359 (void *) &index, NULL); 5360 } 5361 5362 for (; phyi != NULL; 5363 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5364 phyi, AVL_AFTER)) { 5365 /* 5366 * If we're not returning the first interface in the tree 5367 * and we still haven't moved past the phyint_t that 5368 * corresponds to index, avl_walk needs to be called again 5369 */ 5370 if (!((index != 0) && (phyi == phyi_initial))) { 5371 if (isv6) { 5372 if ((phyi->phyint_illv6) && 5373 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5374 (phyi->phyint_illv6->ill_isv6 == 1)) 5375 break; 5376 } else { 5377 if ((phyi->phyint_illv4) && 5378 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5379 (phyi->phyint_illv4->ill_isv6 == 0)) 5380 break; 5381 } 5382 } 5383 } 5384 5385 rw_exit(&ipst->ips_ill_g_lock); 5386 5387 if (phyi != NULL) 5388 ifindex = phyi->phyint_ifindex; 5389 else 5390 ifindex = 0; 5391 5392 return (ifindex); 5393 } 5394 5395 5396 /* 5397 * Return the ifindex for the named interface. 5398 * If there is no next ifindex for the interface, return 0. 5399 */ 5400 uint_t 5401 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5402 { 5403 phyint_t *phyi; 5404 avl_index_t where = 0; 5405 uint_t ifindex; 5406 5407 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5408 5409 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5410 name, &where)) == NULL) { 5411 rw_exit(&ipst->ips_ill_g_lock); 5412 return (0); 5413 } 5414 5415 ifindex = phyi->phyint_ifindex; 5416 5417 rw_exit(&ipst->ips_ill_g_lock); 5418 5419 return (ifindex); 5420 } 5421 5422 5423 /* 5424 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5425 * that gives a running thread a reference to the ill. This reference must be 5426 * released by the thread when it is done accessing the ill and related 5427 * objects. ill_refcnt can not be used to account for static references 5428 * such as other structures pointing to an ill. Callers must generally 5429 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5430 * or be sure that the ill is not being deleted or changing state before 5431 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5432 * ill won't change any of its critical state such as address, netmask etc. 5433 */ 5434 void 5435 ill_refhold(ill_t *ill) 5436 { 5437 mutex_enter(&ill->ill_lock); 5438 ill->ill_refcnt++; 5439 ILL_TRACE_REF(ill); 5440 mutex_exit(&ill->ill_lock); 5441 } 5442 5443 void 5444 ill_refhold_locked(ill_t *ill) 5445 { 5446 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5447 ill->ill_refcnt++; 5448 ILL_TRACE_REF(ill); 5449 } 5450 5451 int 5452 ill_check_and_refhold(ill_t *ill) 5453 { 5454 mutex_enter(&ill->ill_lock); 5455 if (ILL_CAN_LOOKUP(ill)) { 5456 ill_refhold_locked(ill); 5457 mutex_exit(&ill->ill_lock); 5458 return (0); 5459 } 5460 mutex_exit(&ill->ill_lock); 5461 return (ILL_LOOKUP_FAILED); 5462 } 5463 5464 /* 5465 * Must not be called while holding any locks. Otherwise if this is 5466 * the last reference to be released, there is a chance of recursive mutex 5467 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5468 * to restart an ioctl. 5469 */ 5470 void 5471 ill_refrele(ill_t *ill) 5472 { 5473 mutex_enter(&ill->ill_lock); 5474 ASSERT(ill->ill_refcnt != 0); 5475 ill->ill_refcnt--; 5476 ILL_UNTRACE_REF(ill); 5477 if (ill->ill_refcnt != 0) { 5478 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5479 mutex_exit(&ill->ill_lock); 5480 return; 5481 } 5482 5483 /* Drops the ill_lock */ 5484 ipif_ill_refrele_tail(ill); 5485 } 5486 5487 /* 5488 * Obtain a weak reference count on the ill. This reference ensures the 5489 * ill won't be freed, but the ill may change any of its critical state 5490 * such as netmask, address etc. Returns an error if the ill has started 5491 * closing. 5492 */ 5493 boolean_t 5494 ill_waiter_inc(ill_t *ill) 5495 { 5496 mutex_enter(&ill->ill_lock); 5497 if (ill->ill_state_flags & ILL_CONDEMNED) { 5498 mutex_exit(&ill->ill_lock); 5499 return (B_FALSE); 5500 } 5501 ill->ill_waiters++; 5502 mutex_exit(&ill->ill_lock); 5503 return (B_TRUE); 5504 } 5505 5506 void 5507 ill_waiter_dcr(ill_t *ill) 5508 { 5509 mutex_enter(&ill->ill_lock); 5510 ill->ill_waiters--; 5511 if (ill->ill_waiters == 0) 5512 cv_broadcast(&ill->ill_cv); 5513 mutex_exit(&ill->ill_lock); 5514 } 5515 5516 /* 5517 * Named Dispatch routine to produce a formatted report on all ILLs. 5518 * This report is accessed by using the ndd utility to "get" ND variable 5519 * "ip_ill_status". 5520 */ 5521 /* ARGSUSED */ 5522 int 5523 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5524 { 5525 ill_t *ill; 5526 ill_walk_context_t ctx; 5527 ip_stack_t *ipst; 5528 5529 ipst = CONNQ_TO_IPST(q); 5530 5531 (void) mi_mpprintf(mp, 5532 "ILL " MI_COL_HDRPAD_STR 5533 /* 01234567[89ABCDEF] */ 5534 "rq " MI_COL_HDRPAD_STR 5535 /* 01234567[89ABCDEF] */ 5536 "wq " MI_COL_HDRPAD_STR 5537 /* 01234567[89ABCDEF] */ 5538 "upcnt mxfrg err name"); 5539 /* 12345 12345 123 xxxxxxxx */ 5540 5541 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5542 ill = ILL_START_WALK_ALL(&ctx, ipst); 5543 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5544 (void) mi_mpprintf(mp, 5545 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5546 "%05u %05u %03d %s", 5547 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5548 ill->ill_ipif_up_count, 5549 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5550 } 5551 rw_exit(&ipst->ips_ill_g_lock); 5552 5553 return (0); 5554 } 5555 5556 /* 5557 * Named Dispatch routine to produce a formatted report on all IPIFs. 5558 * This report is accessed by using the ndd utility to "get" ND variable 5559 * "ip_ipif_status". 5560 */ 5561 /* ARGSUSED */ 5562 int 5563 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5564 { 5565 char buf1[INET6_ADDRSTRLEN]; 5566 char buf2[INET6_ADDRSTRLEN]; 5567 char buf3[INET6_ADDRSTRLEN]; 5568 char buf4[INET6_ADDRSTRLEN]; 5569 char buf5[INET6_ADDRSTRLEN]; 5570 char buf6[INET6_ADDRSTRLEN]; 5571 char buf[LIFNAMSIZ]; 5572 ill_t *ill; 5573 ipif_t *ipif; 5574 nv_t *nvp; 5575 uint64_t flags; 5576 zoneid_t zoneid; 5577 ill_walk_context_t ctx; 5578 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5579 5580 (void) mi_mpprintf(mp, 5581 "IPIF metric mtu in/out/forward name zone flags...\n" 5582 "\tlocal address\n" 5583 "\tsrc address\n" 5584 "\tsubnet\n" 5585 "\tmask\n" 5586 "\tbroadcast\n" 5587 "\tp-p-dst"); 5588 5589 ASSERT(q->q_next == NULL); 5590 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5591 5592 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5593 ill = ILL_START_WALK_ALL(&ctx, ipst); 5594 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5595 for (ipif = ill->ill_ipif; ipif != NULL; 5596 ipif = ipif->ipif_next) { 5597 if (zoneid != GLOBAL_ZONEID && 5598 zoneid != ipif->ipif_zoneid && 5599 ipif->ipif_zoneid != ALL_ZONES) 5600 continue; 5601 (void) mi_mpprintf(mp, 5602 MI_COL_PTRFMT_STR 5603 "%04u %05u %u/%u/%u %s %d", 5604 (void *)ipif, 5605 ipif->ipif_metric, ipif->ipif_mtu, 5606 ipif->ipif_ib_pkt_count, 5607 ipif->ipif_ob_pkt_count, 5608 ipif->ipif_fo_pkt_count, 5609 ipif_get_name(ipif, buf, sizeof (buf)), 5610 ipif->ipif_zoneid); 5611 5612 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5613 ipif->ipif_ill->ill_phyint->phyint_flags; 5614 5615 /* Tack on text strings for any flags. */ 5616 nvp = ipif_nv_tbl; 5617 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5618 if (nvp->nv_value & flags) 5619 (void) mi_mpprintf_nr(mp, " %s", 5620 nvp->nv_name); 5621 } 5622 (void) mi_mpprintf(mp, 5623 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5624 inet_ntop(AF_INET6, 5625 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5626 inet_ntop(AF_INET6, 5627 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5628 inet_ntop(AF_INET6, 5629 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5630 inet_ntop(AF_INET6, 5631 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5632 inet_ntop(AF_INET6, 5633 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5634 inet_ntop(AF_INET6, 5635 &ipif->ipif_v6pp_dst_addr, 5636 buf6, sizeof (buf6))); 5637 } 5638 } 5639 rw_exit(&ipst->ips_ill_g_lock); 5640 return (0); 5641 } 5642 5643 /* 5644 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5645 * driver. We construct best guess defaults for lower level information that 5646 * we need. If an interface is brought up without injection of any overriding 5647 * information from outside, we have to be ready to go with these defaults. 5648 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5649 * we primarely want the dl_provider_style. 5650 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5651 * at which point we assume the other part of the information is valid. 5652 */ 5653 void 5654 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5655 { 5656 uchar_t *brdcst_addr; 5657 uint_t brdcst_addr_length, phys_addr_length; 5658 t_scalar_t sap_length; 5659 dl_info_ack_t *dlia; 5660 ip_m_t *ipm; 5661 dl_qos_cl_sel1_t *sel1; 5662 5663 ASSERT(IAM_WRITER_ILL(ill)); 5664 5665 /* 5666 * Till the ill is fully up ILL_CHANGING will be set and 5667 * the ill is not globally visible. So no need for a lock. 5668 */ 5669 dlia = (dl_info_ack_t *)mp->b_rptr; 5670 ill->ill_mactype = dlia->dl_mac_type; 5671 5672 ipm = ip_m_lookup(dlia->dl_mac_type); 5673 if (ipm == NULL) { 5674 ipm = ip_m_lookup(DL_OTHER); 5675 ASSERT(ipm != NULL); 5676 } 5677 ill->ill_media = ipm; 5678 5679 /* 5680 * When the new DLPI stuff is ready we'll pull lengths 5681 * from dlia. 5682 */ 5683 if (dlia->dl_version == DL_VERSION_2) { 5684 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5685 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5686 brdcst_addr_length); 5687 if (brdcst_addr == NULL) { 5688 brdcst_addr_length = 0; 5689 } 5690 sap_length = dlia->dl_sap_length; 5691 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5692 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5693 brdcst_addr_length, sap_length, phys_addr_length)); 5694 } else { 5695 brdcst_addr_length = 6; 5696 brdcst_addr = ip_six_byte_all_ones; 5697 sap_length = -2; 5698 phys_addr_length = brdcst_addr_length; 5699 } 5700 5701 ill->ill_bcast_addr_length = brdcst_addr_length; 5702 ill->ill_phys_addr_length = phys_addr_length; 5703 ill->ill_sap_length = sap_length; 5704 ill->ill_max_frag = dlia->dl_max_sdu; 5705 ill->ill_max_mtu = ill->ill_max_frag; 5706 5707 ill->ill_type = ipm->ip_m_type; 5708 5709 if (!ill->ill_dlpi_style_set) { 5710 if (dlia->dl_provider_style == DL_STYLE2) 5711 ill->ill_needs_attach = 1; 5712 5713 /* 5714 * Allocate the first ipif on this ill. We don't delay it 5715 * further as ioctl handling assumes atleast one ipif to 5716 * be present. 5717 * 5718 * At this point we don't know whether the ill is v4 or v6. 5719 * We will know this whan the SIOCSLIFNAME happens and 5720 * the correct value for ill_isv6 will be assigned in 5721 * ipif_set_values(). We need to hold the ill lock and 5722 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5723 * the wakeup. 5724 */ 5725 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5726 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5727 mutex_enter(&ill->ill_lock); 5728 ASSERT(ill->ill_dlpi_style_set == 0); 5729 ill->ill_dlpi_style_set = 1; 5730 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5731 cv_broadcast(&ill->ill_cv); 5732 mutex_exit(&ill->ill_lock); 5733 freemsg(mp); 5734 return; 5735 } 5736 ASSERT(ill->ill_ipif != NULL); 5737 /* 5738 * We know whether it is IPv4 or IPv6 now, as this is the 5739 * second DL_INFO_ACK we are recieving in response to the 5740 * DL_INFO_REQ sent in ipif_set_values. 5741 */ 5742 if (ill->ill_isv6) 5743 ill->ill_sap = IP6_DL_SAP; 5744 else 5745 ill->ill_sap = IP_DL_SAP; 5746 /* 5747 * Set ipif_mtu which is used to set the IRE's 5748 * ire_max_frag value. The driver could have sent 5749 * a different mtu from what it sent last time. No 5750 * need to call ipif_mtu_change because IREs have 5751 * not yet been created. 5752 */ 5753 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5754 /* 5755 * Clear all the flags that were set based on ill_bcast_addr_length 5756 * and ill_phys_addr_length (in ipif_set_values) as these could have 5757 * changed now and we need to re-evaluate. 5758 */ 5759 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5760 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5761 5762 /* 5763 * Free ill_resolver_mp and ill_bcast_mp as things could have 5764 * changed now. 5765 */ 5766 if (ill->ill_bcast_addr_length == 0) { 5767 if (ill->ill_resolver_mp != NULL) 5768 freemsg(ill->ill_resolver_mp); 5769 if (ill->ill_bcast_mp != NULL) 5770 freemsg(ill->ill_bcast_mp); 5771 if (ill->ill_flags & ILLF_XRESOLV) 5772 ill->ill_net_type = IRE_IF_RESOLVER; 5773 else 5774 ill->ill_net_type = IRE_IF_NORESOLVER; 5775 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5776 ill->ill_phys_addr_length, 5777 ill->ill_sap, 5778 ill->ill_sap_length); 5779 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5780 5781 if (ill->ill_isv6) 5782 /* 5783 * Note: xresolv interfaces will eventually need NOARP 5784 * set here as well, but that will require those 5785 * external resolvers to have some knowledge of 5786 * that flag and act appropriately. Not to be changed 5787 * at present. 5788 */ 5789 ill->ill_flags |= ILLF_NONUD; 5790 else 5791 ill->ill_flags |= ILLF_NOARP; 5792 5793 if (ill->ill_phys_addr_length == 0) { 5794 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5795 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5796 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5797 } else { 5798 /* pt-pt supports multicast. */ 5799 ill->ill_flags |= ILLF_MULTICAST; 5800 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5801 } 5802 } 5803 } else { 5804 ill->ill_net_type = IRE_IF_RESOLVER; 5805 if (ill->ill_bcast_mp != NULL) 5806 freemsg(ill->ill_bcast_mp); 5807 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5808 ill->ill_bcast_addr_length, ill->ill_sap, 5809 ill->ill_sap_length); 5810 /* 5811 * Later detect lack of DLPI driver multicast 5812 * capability by catching DL_ENABMULTI errors in 5813 * ip_rput_dlpi. 5814 */ 5815 ill->ill_flags |= ILLF_MULTICAST; 5816 if (!ill->ill_isv6) 5817 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5818 } 5819 /* By default an interface does not support any CoS marking */ 5820 ill->ill_flags &= ~ILLF_COS_ENABLED; 5821 5822 /* 5823 * If we get QoS information in DL_INFO_ACK, the device supports 5824 * some form of CoS marking, set ILLF_COS_ENABLED. 5825 */ 5826 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5827 dlia->dl_qos_length); 5828 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5829 ill->ill_flags |= ILLF_COS_ENABLED; 5830 } 5831 5832 /* Clear any previous error indication. */ 5833 ill->ill_error = 0; 5834 freemsg(mp); 5835 } 5836 5837 /* 5838 * Perform various checks to verify that an address would make sense as a 5839 * local, remote, or subnet interface address. 5840 */ 5841 static boolean_t 5842 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5843 { 5844 ipaddr_t net_mask; 5845 5846 /* 5847 * Don't allow all zeroes, all ones or experimental address, but allow 5848 * all ones netmask. 5849 */ 5850 if ((net_mask = ip_net_mask(addr)) == 0) 5851 return (B_FALSE); 5852 /* A given netmask overrides the "guess" netmask */ 5853 if (subnet_mask != 0) 5854 net_mask = subnet_mask; 5855 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5856 (addr == (addr | ~net_mask)))) { 5857 return (B_FALSE); 5858 } 5859 if (CLASSD(addr)) 5860 return (B_FALSE); 5861 5862 return (B_TRUE); 5863 } 5864 5865 /* 5866 * ipif_lookup_group 5867 * Returns held ipif 5868 */ 5869 ipif_t * 5870 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5871 { 5872 ire_t *ire; 5873 ipif_t *ipif; 5874 5875 ire = ire_lookup_multi(group, zoneid, ipst); 5876 if (ire == NULL) 5877 return (NULL); 5878 ipif = ire->ire_ipif; 5879 ipif_refhold(ipif); 5880 ire_refrele(ire); 5881 return (ipif); 5882 } 5883 5884 /* 5885 * Look for an ipif with the specified interface address and destination. 5886 * The destination address is used only for matching point-to-point interfaces. 5887 */ 5888 ipif_t * 5889 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5890 ipsq_func_t func, int *error, ip_stack_t *ipst) 5891 { 5892 ipif_t *ipif; 5893 ill_t *ill; 5894 ill_walk_context_t ctx; 5895 ipsq_t *ipsq; 5896 5897 if (error != NULL) 5898 *error = 0; 5899 5900 /* 5901 * First match all the point-to-point interfaces 5902 * before looking at non-point-to-point interfaces. 5903 * This is done to avoid returning non-point-to-point 5904 * ipif instead of unnumbered point-to-point ipif. 5905 */ 5906 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5907 ill = ILL_START_WALK_V4(&ctx, ipst); 5908 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5909 GRAB_CONN_LOCK(q); 5910 mutex_enter(&ill->ill_lock); 5911 for (ipif = ill->ill_ipif; ipif != NULL; 5912 ipif = ipif->ipif_next) { 5913 /* Allow the ipif to be down */ 5914 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5915 (ipif->ipif_lcl_addr == if_addr) && 5916 (ipif->ipif_pp_dst_addr == dst)) { 5917 /* 5918 * The block comment at the start of ipif_down 5919 * explains the use of the macros used below 5920 */ 5921 if (IPIF_CAN_LOOKUP(ipif)) { 5922 ipif_refhold_locked(ipif); 5923 mutex_exit(&ill->ill_lock); 5924 RELEASE_CONN_LOCK(q); 5925 rw_exit(&ipst->ips_ill_g_lock); 5926 return (ipif); 5927 } else if (IPIF_CAN_WAIT(ipif, q)) { 5928 ipsq = ill->ill_phyint->phyint_ipsq; 5929 mutex_enter(&ipsq->ipsq_lock); 5930 mutex_exit(&ill->ill_lock); 5931 rw_exit(&ipst->ips_ill_g_lock); 5932 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5933 ill); 5934 mutex_exit(&ipsq->ipsq_lock); 5935 RELEASE_CONN_LOCK(q); 5936 *error = EINPROGRESS; 5937 return (NULL); 5938 } 5939 } 5940 } 5941 mutex_exit(&ill->ill_lock); 5942 RELEASE_CONN_LOCK(q); 5943 } 5944 rw_exit(&ipst->ips_ill_g_lock); 5945 5946 /* lookup the ipif based on interface address */ 5947 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5948 ipst); 5949 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5950 return (ipif); 5951 } 5952 5953 /* 5954 * Look for an ipif with the specified address. For point-point links 5955 * we look for matches on either the destination address and the local 5956 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5957 * is set. 5958 * Matches on a specific ill if match_ill is set. 5959 */ 5960 ipif_t * 5961 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5962 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5963 { 5964 ipif_t *ipif; 5965 ill_t *ill; 5966 boolean_t ptp = B_FALSE; 5967 ipsq_t *ipsq; 5968 ill_walk_context_t ctx; 5969 5970 if (error != NULL) 5971 *error = 0; 5972 5973 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5974 /* 5975 * Repeat twice, first based on local addresses and 5976 * next time for pointopoint. 5977 */ 5978 repeat: 5979 ill = ILL_START_WALK_V4(&ctx, ipst); 5980 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5981 if (match_ill != NULL && ill != match_ill) { 5982 continue; 5983 } 5984 GRAB_CONN_LOCK(q); 5985 mutex_enter(&ill->ill_lock); 5986 for (ipif = ill->ill_ipif; ipif != NULL; 5987 ipif = ipif->ipif_next) { 5988 if (zoneid != ALL_ZONES && 5989 zoneid != ipif->ipif_zoneid && 5990 ipif->ipif_zoneid != ALL_ZONES) 5991 continue; 5992 /* Allow the ipif to be down */ 5993 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5994 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5995 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5996 (ipif->ipif_pp_dst_addr == addr))) { 5997 /* 5998 * The block comment at the start of ipif_down 5999 * explains the use of the macros used below 6000 */ 6001 if (IPIF_CAN_LOOKUP(ipif)) { 6002 ipif_refhold_locked(ipif); 6003 mutex_exit(&ill->ill_lock); 6004 RELEASE_CONN_LOCK(q); 6005 rw_exit(&ipst->ips_ill_g_lock); 6006 return (ipif); 6007 } else if (IPIF_CAN_WAIT(ipif, q)) { 6008 ipsq = ill->ill_phyint->phyint_ipsq; 6009 mutex_enter(&ipsq->ipsq_lock); 6010 mutex_exit(&ill->ill_lock); 6011 rw_exit(&ipst->ips_ill_g_lock); 6012 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6013 ill); 6014 mutex_exit(&ipsq->ipsq_lock); 6015 RELEASE_CONN_LOCK(q); 6016 *error = EINPROGRESS; 6017 return (NULL); 6018 } 6019 } 6020 } 6021 mutex_exit(&ill->ill_lock); 6022 RELEASE_CONN_LOCK(q); 6023 } 6024 6025 /* If we already did the ptp case, then we are done */ 6026 if (ptp) { 6027 rw_exit(&ipst->ips_ill_g_lock); 6028 if (error != NULL) 6029 *error = ENXIO; 6030 return (NULL); 6031 } 6032 ptp = B_TRUE; 6033 goto repeat; 6034 } 6035 6036 /* 6037 * Look for an ipif with the specified address. For point-point links 6038 * we look for matches on either the destination address and the local 6039 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6040 * is set. 6041 * Matches on a specific ill if match_ill is set. 6042 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6043 */ 6044 zoneid_t 6045 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6046 { 6047 zoneid_t zoneid; 6048 ipif_t *ipif; 6049 ill_t *ill; 6050 boolean_t ptp = B_FALSE; 6051 ill_walk_context_t ctx; 6052 6053 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6054 /* 6055 * Repeat twice, first based on local addresses and 6056 * next time for pointopoint. 6057 */ 6058 repeat: 6059 ill = ILL_START_WALK_V4(&ctx, ipst); 6060 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6061 if (match_ill != NULL && ill != match_ill) { 6062 continue; 6063 } 6064 mutex_enter(&ill->ill_lock); 6065 for (ipif = ill->ill_ipif; ipif != NULL; 6066 ipif = ipif->ipif_next) { 6067 /* Allow the ipif to be down */ 6068 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6069 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6070 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6071 (ipif->ipif_pp_dst_addr == addr)) && 6072 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6073 zoneid = ipif->ipif_zoneid; 6074 mutex_exit(&ill->ill_lock); 6075 rw_exit(&ipst->ips_ill_g_lock); 6076 /* 6077 * If ipif_zoneid was ALL_ZONES then we have 6078 * a trusted extensions shared IP address. 6079 * In that case GLOBAL_ZONEID works to send. 6080 */ 6081 if (zoneid == ALL_ZONES) 6082 zoneid = GLOBAL_ZONEID; 6083 return (zoneid); 6084 } 6085 } 6086 mutex_exit(&ill->ill_lock); 6087 } 6088 6089 /* If we already did the ptp case, then we are done */ 6090 if (ptp) { 6091 rw_exit(&ipst->ips_ill_g_lock); 6092 return (ALL_ZONES); 6093 } 6094 ptp = B_TRUE; 6095 goto repeat; 6096 } 6097 6098 /* 6099 * Look for an ipif that matches the specified remote address i.e. the 6100 * ipif that would receive the specified packet. 6101 * First look for directly connected interfaces and then do a recursive 6102 * IRE lookup and pick the first ipif corresponding to the source address in the 6103 * ire. 6104 * Returns: held ipif 6105 */ 6106 ipif_t * 6107 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6108 { 6109 ipif_t *ipif; 6110 ire_t *ire; 6111 ip_stack_t *ipst = ill->ill_ipst; 6112 6113 ASSERT(!ill->ill_isv6); 6114 6115 /* 6116 * Someone could be changing this ipif currently or change it 6117 * after we return this. Thus a few packets could use the old 6118 * old values. However structure updates/creates (ire, ilg, ilm etc) 6119 * will atomically be updated or cleaned up with the new value 6120 * Thus we don't need a lock to check the flags or other attrs below. 6121 */ 6122 mutex_enter(&ill->ill_lock); 6123 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6124 if (!IPIF_CAN_LOOKUP(ipif)) 6125 continue; 6126 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6127 ipif->ipif_zoneid != ALL_ZONES) 6128 continue; 6129 /* Allow the ipif to be down */ 6130 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6131 if ((ipif->ipif_pp_dst_addr == addr) || 6132 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6133 ipif->ipif_lcl_addr == addr)) { 6134 ipif_refhold_locked(ipif); 6135 mutex_exit(&ill->ill_lock); 6136 return (ipif); 6137 } 6138 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6139 ipif_refhold_locked(ipif); 6140 mutex_exit(&ill->ill_lock); 6141 return (ipif); 6142 } 6143 } 6144 mutex_exit(&ill->ill_lock); 6145 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6146 NULL, MATCH_IRE_RECURSIVE, ipst); 6147 if (ire != NULL) { 6148 /* 6149 * The callers of this function wants to know the 6150 * interface on which they have to send the replies 6151 * back. For IRE_CACHES that have ire_stq and ire_ipif 6152 * derived from different ills, we really don't care 6153 * what we return here. 6154 */ 6155 ipif = ire->ire_ipif; 6156 if (ipif != NULL) { 6157 ipif_refhold(ipif); 6158 ire_refrele(ire); 6159 return (ipif); 6160 } 6161 ire_refrele(ire); 6162 } 6163 /* Pick the first interface */ 6164 ipif = ipif_get_next_ipif(NULL, ill); 6165 return (ipif); 6166 } 6167 6168 /* 6169 * This func does not prevent refcnt from increasing. But if 6170 * the caller has taken steps to that effect, then this func 6171 * can be used to determine whether the ill has become quiescent 6172 */ 6173 boolean_t 6174 ill_is_quiescent(ill_t *ill) 6175 { 6176 ipif_t *ipif; 6177 6178 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6179 6180 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6181 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6182 return (B_FALSE); 6183 } 6184 } 6185 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6186 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 6187 ill->ill_mrtun_refcnt != 0) { 6188 return (B_FALSE); 6189 } 6190 return (B_TRUE); 6191 } 6192 6193 /* 6194 * This func does not prevent refcnt from increasing. But if 6195 * the caller has taken steps to that effect, then this func 6196 * can be used to determine whether the ipif has become quiescent 6197 */ 6198 static boolean_t 6199 ipif_is_quiescent(ipif_t *ipif) 6200 { 6201 ill_t *ill; 6202 6203 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6204 6205 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6206 return (B_FALSE); 6207 } 6208 6209 ill = ipif->ipif_ill; 6210 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6211 ill->ill_logical_down) { 6212 return (B_TRUE); 6213 } 6214 6215 /* This is the last ipif going down or being deleted on this ill */ 6216 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6217 return (B_FALSE); 6218 } 6219 6220 return (B_TRUE); 6221 } 6222 6223 /* 6224 * This func does not prevent refcnt from increasing. But if 6225 * the caller has taken steps to that effect, then this func 6226 * can be used to determine whether the ipifs marked with IPIF_MOVING 6227 * have become quiescent and can be moved in a failover/failback. 6228 */ 6229 static ipif_t * 6230 ill_quiescent_to_move(ill_t *ill) 6231 { 6232 ipif_t *ipif; 6233 6234 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6235 6236 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6237 if (ipif->ipif_state_flags & IPIF_MOVING) { 6238 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6239 return (ipif); 6240 } 6241 } 6242 } 6243 return (NULL); 6244 } 6245 6246 /* 6247 * The ipif/ill/ire has been refreled. Do the tail processing. 6248 * Determine if the ipif or ill in question has become quiescent and if so 6249 * wakeup close and/or restart any queued pending ioctl that is waiting 6250 * for the ipif_down (or ill_down) 6251 */ 6252 void 6253 ipif_ill_refrele_tail(ill_t *ill) 6254 { 6255 mblk_t *mp; 6256 conn_t *connp; 6257 ipsq_t *ipsq; 6258 ipif_t *ipif; 6259 dl_notify_ind_t *dlindp; 6260 6261 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6262 6263 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6264 ill_is_quiescent(ill)) { 6265 /* ill_close may be waiting */ 6266 cv_broadcast(&ill->ill_cv); 6267 } 6268 6269 /* ipsq can't change because ill_lock is held */ 6270 ipsq = ill->ill_phyint->phyint_ipsq; 6271 if (ipsq->ipsq_waitfor == 0) { 6272 /* Not waiting for anything, just return. */ 6273 mutex_exit(&ill->ill_lock); 6274 return; 6275 } 6276 ASSERT(ipsq->ipsq_pending_mp != NULL && 6277 ipsq->ipsq_pending_ipif != NULL); 6278 /* 6279 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6280 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6281 * be zero for restarting an ioctl that ends up downing the ill. 6282 */ 6283 ipif = ipsq->ipsq_pending_ipif; 6284 if (ipif->ipif_ill != ill) { 6285 /* The ioctl is pending on some other ill. */ 6286 mutex_exit(&ill->ill_lock); 6287 return; 6288 } 6289 6290 switch (ipsq->ipsq_waitfor) { 6291 case IPIF_DOWN: 6292 case IPIF_FREE: 6293 if (!ipif_is_quiescent(ipif)) { 6294 mutex_exit(&ill->ill_lock); 6295 return; 6296 } 6297 break; 6298 6299 case ILL_DOWN: 6300 case ILL_FREE: 6301 /* 6302 * case ILL_FREE arises only for loopback. otherwise ill_delete 6303 * waits synchronously in ip_close, and no message is queued in 6304 * ipsq_pending_mp at all in this case 6305 */ 6306 if (!ill_is_quiescent(ill)) { 6307 mutex_exit(&ill->ill_lock); 6308 return; 6309 } 6310 6311 break; 6312 6313 case ILL_MOVE_OK: 6314 if (ill_quiescent_to_move(ill) != NULL) { 6315 mutex_exit(&ill->ill_lock); 6316 return; 6317 } 6318 6319 break; 6320 default: 6321 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6322 (void *)ipsq, ipsq->ipsq_waitfor); 6323 } 6324 6325 /* 6326 * Incr refcnt for the qwriter_ip call below which 6327 * does a refrele 6328 */ 6329 ill_refhold_locked(ill); 6330 mutex_exit(&ill->ill_lock); 6331 6332 mp = ipsq_pending_mp_get(ipsq, &connp); 6333 ASSERT(mp != NULL); 6334 6335 switch (mp->b_datap->db_type) { 6336 case M_PCPROTO: 6337 case M_PROTO: 6338 /* 6339 * For now, only DL_NOTIFY_IND messages can use this facility. 6340 */ 6341 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6342 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6343 6344 switch (dlindp->dl_notification) { 6345 case DL_NOTE_PHYS_ADDR: 6346 qwriter_ip(NULL, ill, ill->ill_rq, mp, 6347 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6348 return; 6349 default: 6350 ASSERT(0); 6351 } 6352 break; 6353 6354 case M_ERROR: 6355 case M_HANGUP: 6356 qwriter_ip(NULL, ill, ill->ill_rq, mp, ipif_all_down_tail, 6357 CUR_OP, B_TRUE); 6358 return; 6359 6360 case M_IOCTL: 6361 case M_IOCDATA: 6362 qwriter_ip(NULL, ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6363 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6364 return; 6365 6366 default: 6367 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6368 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6369 } 6370 } 6371 6372 #ifdef ILL_DEBUG 6373 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6374 void 6375 th_trace_rrecord(th_trace_t *th_trace) 6376 { 6377 tr_buf_t *tr_buf; 6378 uint_t lastref; 6379 6380 lastref = th_trace->th_trace_lastref; 6381 lastref++; 6382 if (lastref == TR_BUF_MAX) 6383 lastref = 0; 6384 th_trace->th_trace_lastref = lastref; 6385 tr_buf = &th_trace->th_trbuf[lastref]; 6386 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 6387 } 6388 6389 th_trace_t * 6390 th_trace_ipif_lookup(ipif_t *ipif) 6391 { 6392 int bucket_id; 6393 th_trace_t *th_trace; 6394 6395 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6396 6397 bucket_id = IP_TR_HASH(curthread); 6398 ASSERT(bucket_id < IP_TR_HASH_MAX); 6399 6400 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 6401 th_trace = th_trace->th_next) { 6402 if (th_trace->th_id == curthread) 6403 return (th_trace); 6404 } 6405 return (NULL); 6406 } 6407 6408 void 6409 ipif_trace_ref(ipif_t *ipif) 6410 { 6411 int bucket_id; 6412 th_trace_t *th_trace; 6413 6414 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6415 6416 if (ipif->ipif_trace_disable) 6417 return; 6418 6419 /* 6420 * Attempt to locate the trace buffer for the curthread. 6421 * If it does not exist, then allocate a new trace buffer 6422 * and link it in list of trace bufs for this ipif, at the head 6423 */ 6424 th_trace = th_trace_ipif_lookup(ipif); 6425 if (th_trace == NULL) { 6426 bucket_id = IP_TR_HASH(curthread); 6427 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6428 KM_NOSLEEP); 6429 if (th_trace == NULL) { 6430 ipif->ipif_trace_disable = B_TRUE; 6431 ipif_trace_cleanup(ipif); 6432 return; 6433 } 6434 th_trace->th_id = curthread; 6435 th_trace->th_next = ipif->ipif_trace[bucket_id]; 6436 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 6437 if (th_trace->th_next != NULL) 6438 th_trace->th_next->th_prev = &th_trace->th_next; 6439 ipif->ipif_trace[bucket_id] = th_trace; 6440 } 6441 ASSERT(th_trace->th_refcnt >= 0 && 6442 th_trace->th_refcnt < TR_BUF_MAX -1); 6443 th_trace->th_refcnt++; 6444 th_trace_rrecord(th_trace); 6445 } 6446 6447 void 6448 ipif_untrace_ref(ipif_t *ipif) 6449 { 6450 th_trace_t *th_trace; 6451 6452 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6453 6454 if (ipif->ipif_trace_disable) 6455 return; 6456 th_trace = th_trace_ipif_lookup(ipif); 6457 ASSERT(th_trace != NULL); 6458 ASSERT(th_trace->th_refcnt > 0); 6459 6460 th_trace->th_refcnt--; 6461 th_trace_rrecord(th_trace); 6462 } 6463 6464 th_trace_t * 6465 th_trace_ill_lookup(ill_t *ill) 6466 { 6467 th_trace_t *th_trace; 6468 int bucket_id; 6469 6470 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6471 6472 bucket_id = IP_TR_HASH(curthread); 6473 ASSERT(bucket_id < IP_TR_HASH_MAX); 6474 6475 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 6476 th_trace = th_trace->th_next) { 6477 if (th_trace->th_id == curthread) 6478 return (th_trace); 6479 } 6480 return (NULL); 6481 } 6482 6483 void 6484 ill_trace_ref(ill_t *ill) 6485 { 6486 int bucket_id; 6487 th_trace_t *th_trace; 6488 6489 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6490 if (ill->ill_trace_disable) 6491 return; 6492 /* 6493 * Attempt to locate the trace buffer for the curthread. 6494 * If it does not exist, then allocate a new trace buffer 6495 * and link it in list of trace bufs for this ill, at the head 6496 */ 6497 th_trace = th_trace_ill_lookup(ill); 6498 if (th_trace == NULL) { 6499 bucket_id = IP_TR_HASH(curthread); 6500 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6501 KM_NOSLEEP); 6502 if (th_trace == NULL) { 6503 ill->ill_trace_disable = B_TRUE; 6504 ill_trace_cleanup(ill); 6505 return; 6506 } 6507 th_trace->th_id = curthread; 6508 th_trace->th_next = ill->ill_trace[bucket_id]; 6509 th_trace->th_prev = &ill->ill_trace[bucket_id]; 6510 if (th_trace->th_next != NULL) 6511 th_trace->th_next->th_prev = &th_trace->th_next; 6512 ill->ill_trace[bucket_id] = th_trace; 6513 } 6514 ASSERT(th_trace->th_refcnt >= 0 && 6515 th_trace->th_refcnt < TR_BUF_MAX - 1); 6516 6517 th_trace->th_refcnt++; 6518 th_trace_rrecord(th_trace); 6519 } 6520 6521 void 6522 ill_untrace_ref(ill_t *ill) 6523 { 6524 th_trace_t *th_trace; 6525 6526 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6527 6528 if (ill->ill_trace_disable) 6529 return; 6530 th_trace = th_trace_ill_lookup(ill); 6531 ASSERT(th_trace != NULL); 6532 ASSERT(th_trace->th_refcnt > 0); 6533 6534 th_trace->th_refcnt--; 6535 th_trace_rrecord(th_trace); 6536 } 6537 6538 /* 6539 * Verify that this thread has no refs to the ipif and free 6540 * the trace buffers 6541 */ 6542 /* ARGSUSED */ 6543 void 6544 ipif_thread_exit(ipif_t *ipif, void *dummy) 6545 { 6546 th_trace_t *th_trace; 6547 6548 mutex_enter(&ipif->ipif_ill->ill_lock); 6549 6550 th_trace = th_trace_ipif_lookup(ipif); 6551 if (th_trace == NULL) { 6552 mutex_exit(&ipif->ipif_ill->ill_lock); 6553 return; 6554 } 6555 ASSERT(th_trace->th_refcnt == 0); 6556 /* unlink th_trace and free it */ 6557 *th_trace->th_prev = th_trace->th_next; 6558 if (th_trace->th_next != NULL) 6559 th_trace->th_next->th_prev = th_trace->th_prev; 6560 th_trace->th_next = NULL; 6561 th_trace->th_prev = NULL; 6562 kmem_free(th_trace, sizeof (th_trace_t)); 6563 6564 mutex_exit(&ipif->ipif_ill->ill_lock); 6565 } 6566 6567 /* 6568 * Verify that this thread has no refs to the ill and free 6569 * the trace buffers 6570 */ 6571 /* ARGSUSED */ 6572 void 6573 ill_thread_exit(ill_t *ill, void *dummy) 6574 { 6575 th_trace_t *th_trace; 6576 6577 mutex_enter(&ill->ill_lock); 6578 6579 th_trace = th_trace_ill_lookup(ill); 6580 if (th_trace == NULL) { 6581 mutex_exit(&ill->ill_lock); 6582 return; 6583 } 6584 ASSERT(th_trace->th_refcnt == 0); 6585 /* unlink th_trace and free it */ 6586 *th_trace->th_prev = th_trace->th_next; 6587 if (th_trace->th_next != NULL) 6588 th_trace->th_next->th_prev = th_trace->th_prev; 6589 th_trace->th_next = NULL; 6590 th_trace->th_prev = NULL; 6591 kmem_free(th_trace, sizeof (th_trace_t)); 6592 6593 mutex_exit(&ill->ill_lock); 6594 } 6595 #endif 6596 6597 #ifdef ILL_DEBUG 6598 void 6599 ip_thread_exit_stack(ip_stack_t *ipst) 6600 { 6601 ill_t *ill; 6602 ipif_t *ipif; 6603 ill_walk_context_t ctx; 6604 6605 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6606 ill = ILL_START_WALK_ALL(&ctx, ipst); 6607 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6608 for (ipif = ill->ill_ipif; ipif != NULL; 6609 ipif = ipif->ipif_next) { 6610 ipif_thread_exit(ipif, NULL); 6611 } 6612 ill_thread_exit(ill, NULL); 6613 } 6614 rw_exit(&ipst->ips_ill_g_lock); 6615 6616 ire_walk(ire_thread_exit, NULL, ipst); 6617 ndp_walk_common(ipst->ips_ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6618 ndp_walk_common(ipst->ips_ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6619 } 6620 6621 /* 6622 * This is a function which is called from thread_exit 6623 * that can be used to debug reference count issues in IP. See comment in 6624 * <inet/ip.h> on how it is used. 6625 */ 6626 void 6627 ip_thread_exit(void) 6628 { 6629 netstack_t *ns; 6630 6631 ns = netstack_get_current(); 6632 if (ns != NULL) { 6633 ip_thread_exit_stack(ns->netstack_ip); 6634 netstack_rele(ns); 6635 } 6636 } 6637 6638 /* 6639 * Called when ipif is unplumbed or when memory alloc fails 6640 */ 6641 void 6642 ipif_trace_cleanup(ipif_t *ipif) 6643 { 6644 int i; 6645 th_trace_t *th_trace; 6646 th_trace_t *th_trace_next; 6647 6648 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6649 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6650 th_trace = th_trace_next) { 6651 th_trace_next = th_trace->th_next; 6652 kmem_free(th_trace, sizeof (th_trace_t)); 6653 } 6654 ipif->ipif_trace[i] = NULL; 6655 } 6656 } 6657 6658 /* 6659 * Called when ill is unplumbed or when memory alloc fails 6660 */ 6661 void 6662 ill_trace_cleanup(ill_t *ill) 6663 { 6664 int i; 6665 th_trace_t *th_trace; 6666 th_trace_t *th_trace_next; 6667 6668 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6669 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6670 th_trace = th_trace_next) { 6671 th_trace_next = th_trace->th_next; 6672 kmem_free(th_trace, sizeof (th_trace_t)); 6673 } 6674 ill->ill_trace[i] = NULL; 6675 } 6676 } 6677 6678 #else 6679 void ip_thread_exit(void) {} 6680 #endif 6681 6682 void 6683 ipif_refhold_locked(ipif_t *ipif) 6684 { 6685 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6686 ipif->ipif_refcnt++; 6687 IPIF_TRACE_REF(ipif); 6688 } 6689 6690 void 6691 ipif_refhold(ipif_t *ipif) 6692 { 6693 ill_t *ill; 6694 6695 ill = ipif->ipif_ill; 6696 mutex_enter(&ill->ill_lock); 6697 ipif->ipif_refcnt++; 6698 IPIF_TRACE_REF(ipif); 6699 mutex_exit(&ill->ill_lock); 6700 } 6701 6702 /* 6703 * Must not be called while holding any locks. Otherwise if this is 6704 * the last reference to be released there is a chance of recursive mutex 6705 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6706 * to restart an ioctl. 6707 */ 6708 void 6709 ipif_refrele(ipif_t *ipif) 6710 { 6711 ill_t *ill; 6712 6713 ill = ipif->ipif_ill; 6714 6715 mutex_enter(&ill->ill_lock); 6716 ASSERT(ipif->ipif_refcnt != 0); 6717 ipif->ipif_refcnt--; 6718 IPIF_UNTRACE_REF(ipif); 6719 if (ipif->ipif_refcnt != 0) { 6720 mutex_exit(&ill->ill_lock); 6721 return; 6722 } 6723 6724 /* Drops the ill_lock */ 6725 ipif_ill_refrele_tail(ill); 6726 } 6727 6728 ipif_t * 6729 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6730 { 6731 ipif_t *ipif; 6732 6733 mutex_enter(&ill->ill_lock); 6734 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6735 ipif != NULL; ipif = ipif->ipif_next) { 6736 if (!IPIF_CAN_LOOKUP(ipif)) 6737 continue; 6738 ipif_refhold_locked(ipif); 6739 mutex_exit(&ill->ill_lock); 6740 return (ipif); 6741 } 6742 mutex_exit(&ill->ill_lock); 6743 return (NULL); 6744 } 6745 6746 /* 6747 * TODO: make this table extendible at run time 6748 * Return a pointer to the mac type info for 'mac_type' 6749 */ 6750 static ip_m_t * 6751 ip_m_lookup(t_uscalar_t mac_type) 6752 { 6753 ip_m_t *ipm; 6754 6755 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6756 if (ipm->ip_m_mac_type == mac_type) 6757 return (ipm); 6758 return (NULL); 6759 } 6760 6761 /* 6762 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6763 * ipif_arg is passed in to associate it with the correct interface. 6764 * We may need to restart this operation if the ipif cannot be looked up 6765 * due to an exclusive operation that is currently in progress. The restart 6766 * entry point is specified by 'func' 6767 */ 6768 int 6769 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6770 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6771 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6772 ipsq_func_t func, struct rtsa_s *sp, ip_stack_t *ipst) 6773 { 6774 ire_t *ire; 6775 ire_t *gw_ire = NULL; 6776 ipif_t *ipif = NULL; 6777 boolean_t ipif_refheld = B_FALSE; 6778 uint_t type; 6779 int match_flags = MATCH_IRE_TYPE; 6780 int error; 6781 tsol_gc_t *gc = NULL; 6782 tsol_gcgrp_t *gcgrp = NULL; 6783 boolean_t gcgrp_xtraref = B_FALSE; 6784 6785 ip1dbg(("ip_rt_add:")); 6786 6787 if (ire_arg != NULL) 6788 *ire_arg = NULL; 6789 6790 /* 6791 * If this is the case of RTF_HOST being set, then we set the netmask 6792 * to all ones (regardless if one was supplied). 6793 */ 6794 if (flags & RTF_HOST) 6795 mask = IP_HOST_MASK; 6796 6797 /* 6798 * Prevent routes with a zero gateway from being created (since 6799 * interfaces can currently be plumbed and brought up no assigned 6800 * address). 6801 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6802 */ 6803 if (gw_addr == 0 && src_ipif == NULL) 6804 return (ENETUNREACH); 6805 /* 6806 * Get the ipif, if any, corresponding to the gw_addr 6807 */ 6808 if (gw_addr != 0) { 6809 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6810 &error, ipst); 6811 if (ipif != NULL) { 6812 if (IS_VNI(ipif->ipif_ill)) { 6813 ipif_refrele(ipif); 6814 return (EINVAL); 6815 } 6816 ipif_refheld = B_TRUE; 6817 } else if (error == EINPROGRESS) { 6818 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6819 return (EINPROGRESS); 6820 } else { 6821 error = 0; 6822 } 6823 } 6824 6825 if (ipif != NULL) { 6826 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6827 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6828 } else { 6829 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6830 } 6831 6832 /* 6833 * GateD will attempt to create routes with a loopback interface 6834 * address as the gateway and with RTF_GATEWAY set. We allow 6835 * these routes to be added, but create them as interface routes 6836 * since the gateway is an interface address. 6837 */ 6838 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6839 flags &= ~RTF_GATEWAY; 6840 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6841 mask == IP_HOST_MASK) { 6842 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6843 ALL_ZONES, NULL, match_flags, ipst); 6844 if (ire != NULL) { 6845 ire_refrele(ire); 6846 if (ipif_refheld) 6847 ipif_refrele(ipif); 6848 return (EEXIST); 6849 } 6850 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6851 "for 0x%x\n", (void *)ipif, 6852 ipif->ipif_ire_type, 6853 ntohl(ipif->ipif_lcl_addr))); 6854 ire = ire_create( 6855 (uchar_t *)&dst_addr, /* dest address */ 6856 (uchar_t *)&mask, /* mask */ 6857 (uchar_t *)&ipif->ipif_src_addr, 6858 NULL, /* no gateway */ 6859 NULL, 6860 &ipif->ipif_mtu, 6861 NULL, 6862 ipif->ipif_rq, /* recv-from queue */ 6863 NULL, /* no send-to queue */ 6864 ipif->ipif_ire_type, /* LOOPBACK */ 6865 NULL, 6866 ipif, 6867 NULL, 6868 0, 6869 0, 6870 0, 6871 (ipif->ipif_flags & IPIF_PRIVATE) ? 6872 RTF_PRIVATE : 0, 6873 &ire_uinfo_null, 6874 NULL, 6875 NULL, 6876 ipst); 6877 6878 if (ire == NULL) { 6879 if (ipif_refheld) 6880 ipif_refrele(ipif); 6881 return (ENOMEM); 6882 } 6883 error = ire_add(&ire, q, mp, func, B_FALSE); 6884 if (error == 0) 6885 goto save_ire; 6886 if (ipif_refheld) 6887 ipif_refrele(ipif); 6888 return (error); 6889 6890 } 6891 } 6892 6893 /* 6894 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6895 * and the gateway address provided is one of the system's interface 6896 * addresses. By using the routing socket interface and supplying an 6897 * RTA_IFP sockaddr with an interface index, an alternate method of 6898 * specifying an interface route to be created is available which uses 6899 * the interface index that specifies the outgoing interface rather than 6900 * the address of an outgoing interface (which may not be able to 6901 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6902 * flag, routes can be specified which not only specify the next-hop to 6903 * be used when routing to a certain prefix, but also which outgoing 6904 * interface should be used. 6905 * 6906 * Previously, interfaces would have unique addresses assigned to them 6907 * and so the address assigned to a particular interface could be used 6908 * to identify a particular interface. One exception to this was the 6909 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6910 * 6911 * With the advent of IPv6 and its link-local addresses, this 6912 * restriction was relaxed and interfaces could share addresses between 6913 * themselves. In fact, typically all of the link-local interfaces on 6914 * an IPv6 node or router will have the same link-local address. In 6915 * order to differentiate between these interfaces, the use of an 6916 * interface index is necessary and this index can be carried inside a 6917 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6918 * of using the interface index, however, is that all of the ipif's that 6919 * are part of an ill have the same index and so the RTA_IFP sockaddr 6920 * cannot be used to differentiate between ipif's (or logical 6921 * interfaces) that belong to the same ill (physical interface). 6922 * 6923 * For example, in the following case involving IPv4 interfaces and 6924 * logical interfaces 6925 * 6926 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6927 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6928 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6929 * 6930 * the ipif's corresponding to each of these interface routes can be 6931 * uniquely identified by the "gateway" (actually interface address). 6932 * 6933 * In this case involving multiple IPv6 default routes to a particular 6934 * link-local gateway, the use of RTA_IFP is necessary to specify which 6935 * default route is of interest: 6936 * 6937 * default fe80::123:4567:89ab:cdef U if0 6938 * default fe80::123:4567:89ab:cdef U if1 6939 */ 6940 6941 /* RTF_GATEWAY not set */ 6942 if (!(flags & RTF_GATEWAY)) { 6943 queue_t *stq; 6944 queue_t *rfq = NULL; 6945 ill_t *in_ill = NULL; 6946 6947 if (sp != NULL) { 6948 ip2dbg(("ip_rt_add: gateway security attributes " 6949 "cannot be set with interface route\n")); 6950 if (ipif_refheld) 6951 ipif_refrele(ipif); 6952 return (EINVAL); 6953 } 6954 6955 /* 6956 * As the interface index specified with the RTA_IFP sockaddr is 6957 * the same for all ipif's off of an ill, the matching logic 6958 * below uses MATCH_IRE_ILL if such an index was specified. 6959 * This means that routes sharing the same prefix when added 6960 * using a RTA_IFP sockaddr must have distinct interface 6961 * indices (namely, they must be on distinct ill's). 6962 * 6963 * On the other hand, since the gateway address will usually be 6964 * different for each ipif on the system, the matching logic 6965 * uses MATCH_IRE_IPIF in the case of a traditional interface 6966 * route. This means that interface routes for the same prefix 6967 * can be created if they belong to distinct ipif's and if a 6968 * RTA_IFP sockaddr is not present. 6969 */ 6970 if (ipif_arg != NULL) { 6971 if (ipif_refheld) { 6972 ipif_refrele(ipif); 6973 ipif_refheld = B_FALSE; 6974 } 6975 ipif = ipif_arg; 6976 match_flags |= MATCH_IRE_ILL; 6977 } else { 6978 /* 6979 * Check the ipif corresponding to the gw_addr 6980 */ 6981 if (ipif == NULL) 6982 return (ENETUNREACH); 6983 match_flags |= MATCH_IRE_IPIF; 6984 } 6985 ASSERT(ipif != NULL); 6986 /* 6987 * If src_ipif is not NULL, we have to create 6988 * an ire with non-null ire_in_ill value 6989 */ 6990 if (src_ipif != NULL) { 6991 in_ill = src_ipif->ipif_ill; 6992 } 6993 6994 /* 6995 * We check for an existing entry at this point. 6996 * 6997 * Since a netmask isn't passed in via the ioctl interface 6998 * (SIOCADDRT), we don't check for a matching netmask in that 6999 * case. 7000 */ 7001 if (!ioctl_msg) 7002 match_flags |= MATCH_IRE_MASK; 7003 if (src_ipif != NULL) { 7004 /* Look up in the special table */ 7005 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7006 ipif, src_ipif->ipif_ill, match_flags); 7007 } else { 7008 ire = ire_ftable_lookup(dst_addr, mask, 0, 7009 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7010 NULL, match_flags, ipst); 7011 } 7012 if (ire != NULL) { 7013 ire_refrele(ire); 7014 if (ipif_refheld) 7015 ipif_refrele(ipif); 7016 return (EEXIST); 7017 } 7018 7019 if (src_ipif != NULL) { 7020 /* 7021 * Create the special ire for the IRE table 7022 * which hangs out of ire_in_ill. This ire 7023 * is in-between IRE_CACHE and IRE_INTERFACE. 7024 * Thus rfq is non-NULL. 7025 */ 7026 rfq = ipif->ipif_rq; 7027 } 7028 /* Create the usual interface ires */ 7029 7030 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7031 ? ipif->ipif_rq : ipif->ipif_wq; 7032 7033 /* 7034 * Create a copy of the IRE_LOOPBACK, 7035 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7036 * the modified address and netmask. 7037 */ 7038 ire = ire_create( 7039 (uchar_t *)&dst_addr, 7040 (uint8_t *)&mask, 7041 (uint8_t *)&ipif->ipif_src_addr, 7042 NULL, 7043 NULL, 7044 &ipif->ipif_mtu, 7045 NULL, 7046 rfq, 7047 stq, 7048 ipif->ipif_net_type, 7049 ipif->ipif_resolver_mp, 7050 ipif, 7051 in_ill, 7052 0, 7053 0, 7054 0, 7055 flags, 7056 &ire_uinfo_null, 7057 NULL, 7058 NULL, 7059 ipst); 7060 if (ire == NULL) { 7061 if (ipif_refheld) 7062 ipif_refrele(ipif); 7063 return (ENOMEM); 7064 } 7065 7066 /* 7067 * Some software (for example, GateD and Sun Cluster) attempts 7068 * to create (what amount to) IRE_PREFIX routes with the 7069 * loopback address as the gateway. This is primarily done to 7070 * set up prefixes with the RTF_REJECT flag set (for example, 7071 * when generating aggregate routes.) 7072 * 7073 * If the IRE type (as defined by ipif->ipif_net_type) is 7074 * IRE_LOOPBACK, then we map the request into a 7075 * IRE_IF_NORESOLVER. 7076 * 7077 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7078 * routine, but rather using ire_create() directly. 7079 * 7080 */ 7081 if (ipif->ipif_net_type == IRE_LOOPBACK) 7082 ire->ire_type = IRE_IF_NORESOLVER; 7083 7084 error = ire_add(&ire, q, mp, func, B_FALSE); 7085 if (error == 0) 7086 goto save_ire; 7087 7088 /* 7089 * In the result of failure, ire_add() will have already 7090 * deleted the ire in question, so there is no need to 7091 * do that here. 7092 */ 7093 if (ipif_refheld) 7094 ipif_refrele(ipif); 7095 return (error); 7096 } 7097 if (ipif_refheld) { 7098 ipif_refrele(ipif); 7099 ipif_refheld = B_FALSE; 7100 } 7101 7102 if (src_ipif != NULL) { 7103 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 7104 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 7105 return (EINVAL); 7106 } 7107 /* 7108 * Get an interface IRE for the specified gateway. 7109 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7110 * gateway, it is currently unreachable and we fail the request 7111 * accordingly. 7112 */ 7113 ipif = ipif_arg; 7114 if (ipif_arg != NULL) 7115 match_flags |= MATCH_IRE_ILL; 7116 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7117 ALL_ZONES, 0, NULL, match_flags, ipst); 7118 if (gw_ire == NULL) 7119 return (ENETUNREACH); 7120 7121 /* 7122 * We create one of three types of IREs as a result of this request 7123 * based on the netmask. A netmask of all ones (which is automatically 7124 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7125 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7126 * created. Otherwise, an IRE_PREFIX route is created for the 7127 * destination prefix. 7128 */ 7129 if (mask == IP_HOST_MASK) 7130 type = IRE_HOST; 7131 else if (mask == 0) 7132 type = IRE_DEFAULT; 7133 else 7134 type = IRE_PREFIX; 7135 7136 /* check for a duplicate entry */ 7137 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7138 NULL, ALL_ZONES, 0, NULL, 7139 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7140 if (ire != NULL) { 7141 ire_refrele(gw_ire); 7142 ire_refrele(ire); 7143 return (EEXIST); 7144 } 7145 7146 /* Security attribute exists */ 7147 if (sp != NULL) { 7148 tsol_gcgrp_addr_t ga; 7149 7150 /* find or create the gateway credentials group */ 7151 ga.ga_af = AF_INET; 7152 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7153 7154 /* we hold reference to it upon success */ 7155 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7156 if (gcgrp == NULL) { 7157 ire_refrele(gw_ire); 7158 return (ENOMEM); 7159 } 7160 7161 /* 7162 * Create and add the security attribute to the group; a 7163 * reference to the group is made upon allocating a new 7164 * entry successfully. If it finds an already-existing 7165 * entry for the security attribute in the group, it simply 7166 * returns it and no new reference is made to the group. 7167 */ 7168 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7169 if (gc == NULL) { 7170 /* release reference held by gcgrp_lookup */ 7171 GCGRP_REFRELE(gcgrp); 7172 ire_refrele(gw_ire); 7173 return (ENOMEM); 7174 } 7175 } 7176 7177 /* Create the IRE. */ 7178 ire = ire_create( 7179 (uchar_t *)&dst_addr, /* dest address */ 7180 (uchar_t *)&mask, /* mask */ 7181 /* src address assigned by the caller? */ 7182 (uchar_t *)(((src_addr != INADDR_ANY) && 7183 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7184 (uchar_t *)&gw_addr, /* gateway address */ 7185 NULL, /* no in-srcaddress */ 7186 &gw_ire->ire_max_frag, 7187 NULL, /* no Fast Path header */ 7188 NULL, /* no recv-from queue */ 7189 NULL, /* no send-to queue */ 7190 (ushort_t)type, /* IRE type */ 7191 NULL, 7192 ipif_arg, 7193 NULL, 7194 0, 7195 0, 7196 0, 7197 flags, 7198 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7199 gc, /* security attribute */ 7200 NULL, 7201 ipst); 7202 7203 /* 7204 * The ire holds a reference to the 'gc' and the 'gc' holds a 7205 * reference to the 'gcgrp'. We can now release the extra reference 7206 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7207 */ 7208 if (gcgrp_xtraref) 7209 GCGRP_REFRELE(gcgrp); 7210 if (ire == NULL) { 7211 if (gc != NULL) 7212 GC_REFRELE(gc); 7213 ire_refrele(gw_ire); 7214 return (ENOMEM); 7215 } 7216 7217 /* 7218 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7219 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7220 */ 7221 7222 /* Add the new IRE. */ 7223 error = ire_add(&ire, q, mp, func, B_FALSE); 7224 if (error != 0) { 7225 /* 7226 * In the result of failure, ire_add() will have already 7227 * deleted the ire in question, so there is no need to 7228 * do that here. 7229 */ 7230 ire_refrele(gw_ire); 7231 return (error); 7232 } 7233 7234 if (flags & RTF_MULTIRT) { 7235 /* 7236 * Invoke the CGTP (multirouting) filtering module 7237 * to add the dst address in the filtering database. 7238 * Replicated inbound packets coming from that address 7239 * will be filtered to discard the duplicates. 7240 * It is not necessary to call the CGTP filter hook 7241 * when the dst address is a broadcast or multicast, 7242 * because an IP source address cannot be a broadcast 7243 * or a multicast. 7244 */ 7245 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7246 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7247 if (ire_dst != NULL) { 7248 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7249 ire_refrele(ire_dst); 7250 goto save_ire; 7251 } 7252 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr) && 7253 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7254 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 7255 ire->ire_addr, 7256 ire->ire_gateway_addr, 7257 ire->ire_src_addr, 7258 gw_ire->ire_src_addr); 7259 if (res != 0) { 7260 ire_refrele(gw_ire); 7261 ire_delete(ire); 7262 return (res); 7263 } 7264 } 7265 } 7266 7267 /* 7268 * Now that the prefix IRE entry has been created, delete any 7269 * existing gateway IRE cache entries as well as any IRE caches 7270 * using the gateway, and force them to be created through 7271 * ip_newroute. 7272 */ 7273 if (gc != NULL) { 7274 ASSERT(gcgrp != NULL); 7275 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7276 } 7277 7278 save_ire: 7279 if (gw_ire != NULL) { 7280 ire_refrele(gw_ire); 7281 } 7282 /* 7283 * We do not do save_ire for the routes added with RTA_SRCIFP 7284 * flag. This route is only added and deleted by mipagent. 7285 * So, for simplicity of design, we refrain from saving 7286 * ires that are created with srcif value. This may change 7287 * in future if we find more usage of srcifp feature. 7288 */ 7289 if (ipif != NULL && src_ipif == NULL) { 7290 /* 7291 * Save enough information so that we can recreate the IRE if 7292 * the interface goes down and then up. The metrics associated 7293 * with the route will be saved as well when rts_setmetrics() is 7294 * called after the IRE has been created. In the case where 7295 * memory cannot be allocated, none of this information will be 7296 * saved. 7297 */ 7298 ipif_save_ire(ipif, ire); 7299 } 7300 if (ioctl_msg) 7301 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7302 if (ire_arg != NULL) { 7303 /* 7304 * Store the ire that was successfully added into where ire_arg 7305 * points to so that callers don't have to look it up 7306 * themselves (but they are responsible for ire_refrele()ing 7307 * the ire when they are finished with it). 7308 */ 7309 *ire_arg = ire; 7310 } else { 7311 ire_refrele(ire); /* Held in ire_add */ 7312 } 7313 if (ipif_refheld) 7314 ipif_refrele(ipif); 7315 return (0); 7316 } 7317 7318 /* 7319 * ip_rt_delete is called to delete an IPv4 route. 7320 * ipif_arg is passed in to associate it with the correct interface. 7321 * src_ipif is passed to associate the incoming interface of the packet. 7322 * We may need to restart this operation if the ipif cannot be looked up 7323 * due to an exclusive operation that is currently in progress. The restart 7324 * entry point is specified by 'func' 7325 */ 7326 /* ARGSUSED4 */ 7327 int 7328 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7329 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 7330 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 7331 ip_stack_t *ipst) 7332 { 7333 ire_t *ire = NULL; 7334 ipif_t *ipif; 7335 boolean_t ipif_refheld = B_FALSE; 7336 uint_t type; 7337 uint_t match_flags = MATCH_IRE_TYPE; 7338 int err = 0; 7339 7340 ip1dbg(("ip_rt_delete:")); 7341 /* 7342 * If this is the case of RTF_HOST being set, then we set the netmask 7343 * to all ones. Otherwise, we use the netmask if one was supplied. 7344 */ 7345 if (flags & RTF_HOST) { 7346 mask = IP_HOST_MASK; 7347 match_flags |= MATCH_IRE_MASK; 7348 } else if (rtm_addrs & RTA_NETMASK) { 7349 match_flags |= MATCH_IRE_MASK; 7350 } 7351 7352 /* 7353 * Note that RTF_GATEWAY is never set on a delete, therefore 7354 * we check if the gateway address is one of our interfaces first, 7355 * and fall back on RTF_GATEWAY routes. 7356 * 7357 * This makes it possible to delete an original 7358 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7359 * 7360 * As the interface index specified with the RTA_IFP sockaddr is the 7361 * same for all ipif's off of an ill, the matching logic below uses 7362 * MATCH_IRE_ILL if such an index was specified. This means a route 7363 * sharing the same prefix and interface index as the the route 7364 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7365 * is specified in the request. 7366 * 7367 * On the other hand, since the gateway address will usually be 7368 * different for each ipif on the system, the matching logic 7369 * uses MATCH_IRE_IPIF in the case of a traditional interface 7370 * route. This means that interface routes for the same prefix can be 7371 * uniquely identified if they belong to distinct ipif's and if a 7372 * RTA_IFP sockaddr is not present. 7373 * 7374 * For more detail on specifying routes by gateway address and by 7375 * interface index, see the comments in ip_rt_add(). 7376 * gw_addr could be zero in some cases when both RTA_SRCIFP and 7377 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 7378 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 7379 * succeed. 7380 */ 7381 if (src_ipif != NULL) { 7382 if (ipif_arg == NULL && gw_addr != 0) { 7383 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 7384 q, mp, func, &err, ipst); 7385 if (ipif_arg != NULL) 7386 ipif_refheld = B_TRUE; 7387 } 7388 if (ipif_arg == NULL) { 7389 err = (err == EINPROGRESS) ? err : ESRCH; 7390 return (err); 7391 } 7392 ipif = ipif_arg; 7393 } else { 7394 ipif = ipif_lookup_interface(gw_addr, dst_addr, 7395 q, mp, func, &err, ipst); 7396 if (ipif != NULL) 7397 ipif_refheld = B_TRUE; 7398 else if (err == EINPROGRESS) 7399 return (err); 7400 else 7401 err = 0; 7402 } 7403 if (ipif != NULL) { 7404 if (ipif_arg != NULL) { 7405 if (ipif_refheld) { 7406 ipif_refrele(ipif); 7407 ipif_refheld = B_FALSE; 7408 } 7409 ipif = ipif_arg; 7410 match_flags |= MATCH_IRE_ILL; 7411 } else { 7412 match_flags |= MATCH_IRE_IPIF; 7413 } 7414 if (src_ipif != NULL) { 7415 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7416 ipif, src_ipif->ipif_ill, match_flags); 7417 } else { 7418 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7419 ire = ire_ctable_lookup(dst_addr, 0, 7420 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 7421 match_flags, ipst); 7422 } 7423 if (ire == NULL) { 7424 ire = ire_ftable_lookup(dst_addr, mask, 0, 7425 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7426 NULL, match_flags, ipst); 7427 } 7428 } 7429 } 7430 7431 if (ire == NULL) { 7432 /* 7433 * At this point, the gateway address is not one of our own 7434 * addresses or a matching interface route was not found. We 7435 * set the IRE type to lookup based on whether 7436 * this is a host route, a default route or just a prefix. 7437 * 7438 * If an ipif_arg was passed in, then the lookup is based on an 7439 * interface index so MATCH_IRE_ILL is added to match_flags. 7440 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7441 * set as the route being looked up is not a traditional 7442 * interface route. 7443 * Since we do not add gateway route with srcipif, we don't 7444 * expect to find it either. 7445 */ 7446 if (src_ipif != NULL) { 7447 if (ipif_refheld) 7448 ipif_refrele(ipif); 7449 return (ESRCH); 7450 } else { 7451 match_flags &= ~MATCH_IRE_IPIF; 7452 match_flags |= MATCH_IRE_GW; 7453 if (ipif_arg != NULL) 7454 match_flags |= MATCH_IRE_ILL; 7455 if (mask == IP_HOST_MASK) 7456 type = IRE_HOST; 7457 else if (mask == 0) 7458 type = IRE_DEFAULT; 7459 else 7460 type = IRE_PREFIX; 7461 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 7462 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags, 7463 ipst); 7464 } 7465 } 7466 7467 if (ipif_refheld) 7468 ipif_refrele(ipif); 7469 7470 /* ipif is not refheld anymore */ 7471 if (ire == NULL) 7472 return (ESRCH); 7473 7474 if (ire->ire_flags & RTF_MULTIRT) { 7475 /* 7476 * Invoke the CGTP (multirouting) filtering module 7477 * to remove the dst address from the filtering database. 7478 * Packets coming from that address will no longer be 7479 * filtered to remove duplicates. 7480 */ 7481 if (ip_cgtp_filter_ops != NULL && 7482 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7483 err = ip_cgtp_filter_ops->cfo_del_dest_v4( 7484 ire->ire_addr, ire->ire_gateway_addr); 7485 } 7486 ip_cgtp_bcast_delete(ire, ipst); 7487 } 7488 7489 ipif = ire->ire_ipif; 7490 /* 7491 * Removing from ipif_saved_ire_mp is not necessary 7492 * when src_ipif being non-NULL. ip_rt_add does not 7493 * save the ires which src_ipif being non-NULL. 7494 */ 7495 if (ipif != NULL && src_ipif == NULL) { 7496 ipif_remove_ire(ipif, ire); 7497 } 7498 if (ioctl_msg) 7499 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7500 ire_delete(ire); 7501 ire_refrele(ire); 7502 return (err); 7503 } 7504 7505 /* 7506 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7507 */ 7508 /* ARGSUSED */ 7509 int 7510 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7511 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7512 { 7513 ipaddr_t dst_addr; 7514 ipaddr_t gw_addr; 7515 ipaddr_t mask; 7516 int error = 0; 7517 mblk_t *mp1; 7518 struct rtentry *rt; 7519 ipif_t *ipif = NULL; 7520 ip_stack_t *ipst; 7521 7522 ASSERT(q->q_next == NULL); 7523 ipst = CONNQ_TO_IPST(q); 7524 7525 ip1dbg(("ip_siocaddrt:")); 7526 /* Existence of mp1 verified in ip_wput_nondata */ 7527 mp1 = mp->b_cont->b_cont; 7528 rt = (struct rtentry *)mp1->b_rptr; 7529 7530 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7531 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7532 7533 /* 7534 * If the RTF_HOST flag is on, this is a request to assign a gateway 7535 * to a particular host address. In this case, we set the netmask to 7536 * all ones for the particular destination address. Otherwise, 7537 * determine the netmask to be used based on dst_addr and the interfaces 7538 * in use. 7539 */ 7540 if (rt->rt_flags & RTF_HOST) { 7541 mask = IP_HOST_MASK; 7542 } else { 7543 /* 7544 * Note that ip_subnet_mask returns a zero mask in the case of 7545 * default (an all-zeroes address). 7546 */ 7547 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7548 } 7549 7550 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7551 NULL, B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7552 if (ipif != NULL) 7553 ipif_refrele(ipif); 7554 return (error); 7555 } 7556 7557 /* 7558 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7559 */ 7560 /* ARGSUSED */ 7561 int 7562 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7563 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7564 { 7565 ipaddr_t dst_addr; 7566 ipaddr_t gw_addr; 7567 ipaddr_t mask; 7568 int error; 7569 mblk_t *mp1; 7570 struct rtentry *rt; 7571 ipif_t *ipif = NULL; 7572 ip_stack_t *ipst; 7573 7574 ASSERT(q->q_next == NULL); 7575 ipst = CONNQ_TO_IPST(q); 7576 7577 ip1dbg(("ip_siocdelrt:")); 7578 /* Existence of mp1 verified in ip_wput_nondata */ 7579 mp1 = mp->b_cont->b_cont; 7580 rt = (struct rtentry *)mp1->b_rptr; 7581 7582 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7583 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7584 7585 /* 7586 * If the RTF_HOST flag is on, this is a request to delete a gateway 7587 * to a particular host address. In this case, we set the netmask to 7588 * all ones for the particular destination address. Otherwise, 7589 * determine the netmask to be used based on dst_addr and the interfaces 7590 * in use. 7591 */ 7592 if (rt->rt_flags & RTF_HOST) { 7593 mask = IP_HOST_MASK; 7594 } else { 7595 /* 7596 * Note that ip_subnet_mask returns a zero mask in the case of 7597 * default (an all-zeroes address). 7598 */ 7599 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7600 } 7601 7602 error = ip_rt_delete(dst_addr, mask, gw_addr, 7603 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 7604 B_TRUE, q, mp, ip_process_ioctl, ipst); 7605 if (ipif != NULL) 7606 ipif_refrele(ipif); 7607 return (error); 7608 } 7609 7610 /* 7611 * Enqueue the mp onto the ipsq, chained by b_next. 7612 * b_prev stores the function to be executed later, and b_queue the queue 7613 * where this mp originated. 7614 */ 7615 void 7616 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7617 ill_t *pending_ill) 7618 { 7619 conn_t *connp = NULL; 7620 7621 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7622 ASSERT(func != NULL); 7623 7624 mp->b_queue = q; 7625 mp->b_prev = (void *)func; 7626 mp->b_next = NULL; 7627 7628 switch (type) { 7629 case CUR_OP: 7630 if (ipsq->ipsq_mptail != NULL) { 7631 ASSERT(ipsq->ipsq_mphead != NULL); 7632 ipsq->ipsq_mptail->b_next = mp; 7633 } else { 7634 ASSERT(ipsq->ipsq_mphead == NULL); 7635 ipsq->ipsq_mphead = mp; 7636 } 7637 ipsq->ipsq_mptail = mp; 7638 break; 7639 7640 case NEW_OP: 7641 if (ipsq->ipsq_xopq_mptail != NULL) { 7642 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7643 ipsq->ipsq_xopq_mptail->b_next = mp; 7644 } else { 7645 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7646 ipsq->ipsq_xopq_mphead = mp; 7647 } 7648 ipsq->ipsq_xopq_mptail = mp; 7649 break; 7650 default: 7651 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7652 } 7653 7654 if (CONN_Q(q) && pending_ill != NULL) { 7655 connp = Q_TO_CONN(q); 7656 7657 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7658 connp->conn_oper_pending_ill = pending_ill; 7659 } 7660 } 7661 7662 /* 7663 * Return the mp at the head of the ipsq. After emptying the ipsq 7664 * look at the next ioctl, if this ioctl is complete. Otherwise 7665 * return, we will resume when we complete the current ioctl. 7666 * The current ioctl will wait till it gets a response from the 7667 * driver below. 7668 */ 7669 static mblk_t * 7670 ipsq_dq(ipsq_t *ipsq) 7671 { 7672 mblk_t *mp; 7673 7674 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7675 7676 mp = ipsq->ipsq_mphead; 7677 if (mp != NULL) { 7678 ipsq->ipsq_mphead = mp->b_next; 7679 if (ipsq->ipsq_mphead == NULL) 7680 ipsq->ipsq_mptail = NULL; 7681 mp->b_next = NULL; 7682 return (mp); 7683 } 7684 if (ipsq->ipsq_current_ipif != NULL) 7685 return (NULL); 7686 mp = ipsq->ipsq_xopq_mphead; 7687 if (mp != NULL) { 7688 ipsq->ipsq_xopq_mphead = mp->b_next; 7689 if (ipsq->ipsq_xopq_mphead == NULL) 7690 ipsq->ipsq_xopq_mptail = NULL; 7691 mp->b_next = NULL; 7692 return (mp); 7693 } 7694 return (NULL); 7695 } 7696 7697 /* 7698 * Enter the ipsq corresponding to ill, by waiting synchronously till 7699 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7700 * will have to drain completely before ipsq_enter returns success. 7701 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7702 * and the ipsq_exit logic will start the next enqueued ioctl after 7703 * completion of the current ioctl. If 'force' is used, we don't wait 7704 * for the enqueued ioctls. This is needed when a conn_close wants to 7705 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7706 * of an ill can also use this option. But we dont' use it currently. 7707 */ 7708 #define ENTER_SQ_WAIT_TICKS 100 7709 boolean_t 7710 ipsq_enter(ill_t *ill, boolean_t force) 7711 { 7712 ipsq_t *ipsq; 7713 boolean_t waited_enough = B_FALSE; 7714 7715 /* 7716 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7717 * Since the <ill-ipsq> assocs could change while we wait for the 7718 * writer, it is easier to wait on a fixed global rather than try to 7719 * cv_wait on a changing ipsq. 7720 */ 7721 mutex_enter(&ill->ill_lock); 7722 for (;;) { 7723 if (ill->ill_state_flags & ILL_CONDEMNED) { 7724 mutex_exit(&ill->ill_lock); 7725 return (B_FALSE); 7726 } 7727 7728 ipsq = ill->ill_phyint->phyint_ipsq; 7729 mutex_enter(&ipsq->ipsq_lock); 7730 if (ipsq->ipsq_writer == NULL && 7731 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7732 break; 7733 } else if (ipsq->ipsq_writer != NULL) { 7734 mutex_exit(&ipsq->ipsq_lock); 7735 cv_wait(&ill->ill_cv, &ill->ill_lock); 7736 } else { 7737 mutex_exit(&ipsq->ipsq_lock); 7738 if (force) { 7739 (void) cv_timedwait(&ill->ill_cv, 7740 &ill->ill_lock, 7741 lbolt + ENTER_SQ_WAIT_TICKS); 7742 waited_enough = B_TRUE; 7743 continue; 7744 } else { 7745 cv_wait(&ill->ill_cv, &ill->ill_lock); 7746 } 7747 } 7748 } 7749 7750 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7751 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7752 ipsq->ipsq_writer = curthread; 7753 ipsq->ipsq_reentry_cnt++; 7754 #ifdef ILL_DEBUG 7755 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7756 #endif 7757 mutex_exit(&ipsq->ipsq_lock); 7758 mutex_exit(&ill->ill_lock); 7759 return (B_TRUE); 7760 } 7761 7762 /* 7763 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7764 * certain critical operations like plumbing (i.e. most set ioctls), 7765 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7766 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7767 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7768 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7769 * threads executing in the ipsq. Responses from the driver pertain to the 7770 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7771 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7772 * 7773 * If a thread does not want to reenter the ipsq when it is already writer, 7774 * it must make sure that the specified reentry point to be called later 7775 * when the ipsq is empty, nor any code path starting from the specified reentry 7776 * point must never ever try to enter the ipsq again. Otherwise it can lead 7777 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7778 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7779 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7780 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7781 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7782 * ioctl if the current ioctl has completed. If the current ioctl is still 7783 * in progress it simply returns. The current ioctl could be waiting for 7784 * a response from another module (arp_ or the driver or could be waiting for 7785 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7786 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7787 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7788 * ipsq_current_ipif is clear which happens only on ioctl completion. 7789 */ 7790 7791 /* 7792 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7793 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7794 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7795 * completion. 7796 */ 7797 ipsq_t * 7798 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7799 ipsq_func_t func, int type, boolean_t reentry_ok) 7800 { 7801 ipsq_t *ipsq; 7802 7803 /* Only 1 of ipif or ill can be specified */ 7804 ASSERT((ipif != NULL) ^ (ill != NULL)); 7805 if (ipif != NULL) 7806 ill = ipif->ipif_ill; 7807 7808 /* 7809 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7810 * ipsq of an ill can't change when ill_lock is held. 7811 */ 7812 GRAB_CONN_LOCK(q); 7813 mutex_enter(&ill->ill_lock); 7814 ipsq = ill->ill_phyint->phyint_ipsq; 7815 mutex_enter(&ipsq->ipsq_lock); 7816 7817 /* 7818 * 1. Enter the ipsq if we are already writer and reentry is ok. 7819 * (Note: If the caller does not specify reentry_ok then neither 7820 * 'func' nor any of its callees must ever attempt to enter the ipsq 7821 * again. Otherwise it can lead to an infinite loop 7822 * 2. Enter the ipsq if there is no current writer and this attempted 7823 * entry is part of the current ioctl or operation 7824 * 3. Enter the ipsq if there is no current writer and this is a new 7825 * ioctl (or operation) and the ioctl (or operation) queue is 7826 * empty and there is no ioctl (or operation) currently in progress 7827 */ 7828 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7829 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7830 ipsq->ipsq_current_ipif == NULL))) || 7831 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7832 /* Success. */ 7833 ipsq->ipsq_reentry_cnt++; 7834 ipsq->ipsq_writer = curthread; 7835 mutex_exit(&ipsq->ipsq_lock); 7836 mutex_exit(&ill->ill_lock); 7837 RELEASE_CONN_LOCK(q); 7838 #ifdef ILL_DEBUG 7839 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7840 #endif 7841 return (ipsq); 7842 } 7843 7844 ipsq_enq(ipsq, q, mp, func, type, ill); 7845 7846 mutex_exit(&ipsq->ipsq_lock); 7847 mutex_exit(&ill->ill_lock); 7848 RELEASE_CONN_LOCK(q); 7849 return (NULL); 7850 } 7851 7852 /* 7853 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7854 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7855 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7856 * completion. 7857 * 7858 * This function does a refrele on the ipif/ill. 7859 */ 7860 void 7861 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7862 ipsq_func_t func, int type, boolean_t reentry_ok) 7863 { 7864 ipsq_t *ipsq; 7865 7866 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7867 /* 7868 * Caller must have done a refhold on the ipif. ipif_refrele 7869 * happens on the passed ipif. We can do this since we are 7870 * already exclusive, or we won't access ipif henceforth, Both 7871 * this func and caller will just return if we ipsq_try_enter 7872 * fails above. This is needed because func needs to 7873 * see the correct refcount. Eg. removeif can work only then. 7874 */ 7875 if (ipif != NULL) 7876 ipif_refrele(ipif); 7877 else 7878 ill_refrele(ill); 7879 if (ipsq != NULL) { 7880 (*func)(ipsq, q, mp, NULL); 7881 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7882 } 7883 } 7884 7885 /* 7886 * If there are more than ILL_GRP_CNT ills in a group, 7887 * we use kmem alloc'd buffers, else use the stack 7888 */ 7889 #define ILL_GRP_CNT 14 7890 /* 7891 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7892 * Called by a thread that is currently exclusive on this ipsq. 7893 */ 7894 void 7895 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7896 { 7897 queue_t *q; 7898 mblk_t *mp; 7899 ipsq_func_t func; 7900 int next; 7901 ill_t **ill_list = NULL; 7902 size_t ill_list_size = 0; 7903 int cnt = 0; 7904 boolean_t need_ipsq_free = B_FALSE; 7905 ip_stack_t *ipst = ipsq->ipsq_ipst; 7906 7907 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7908 mutex_enter(&ipsq->ipsq_lock); 7909 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7910 if (ipsq->ipsq_reentry_cnt != 1) { 7911 ipsq->ipsq_reentry_cnt--; 7912 mutex_exit(&ipsq->ipsq_lock); 7913 return; 7914 } 7915 7916 mp = ipsq_dq(ipsq); 7917 while (mp != NULL) { 7918 again: 7919 mutex_exit(&ipsq->ipsq_lock); 7920 func = (ipsq_func_t)mp->b_prev; 7921 q = (queue_t *)mp->b_queue; 7922 mp->b_prev = NULL; 7923 mp->b_queue = NULL; 7924 7925 /* 7926 * If 'q' is an conn queue, it is valid, since we did a 7927 * a refhold on the connp, at the start of the ioctl. 7928 * If 'q' is an ill queue, it is valid, since close of an 7929 * ill will clean up the 'ipsq'. 7930 */ 7931 (*func)(ipsq, q, mp, NULL); 7932 7933 mutex_enter(&ipsq->ipsq_lock); 7934 mp = ipsq_dq(ipsq); 7935 } 7936 7937 mutex_exit(&ipsq->ipsq_lock); 7938 7939 /* 7940 * Need to grab the locks in the right order. Need to 7941 * atomically check (under ipsq_lock) that there are no 7942 * messages before relinquishing the ipsq. Also need to 7943 * atomically wakeup waiters on ill_cv while holding ill_lock. 7944 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7945 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7946 * to grab ill_g_lock as writer. 7947 */ 7948 rw_enter(&ipst->ips_ill_g_lock, 7949 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7950 7951 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7952 if (ipsq->ipsq_refs != 0) { 7953 /* At most 2 ills v4/v6 per phyint */ 7954 cnt = ipsq->ipsq_refs << 1; 7955 ill_list_size = cnt * sizeof (ill_t *); 7956 /* 7957 * If memory allocation fails, we will do the split 7958 * the next time ipsq_exit is called for whatever reason. 7959 * As long as the ipsq_split flag is set the need to 7960 * split is remembered. 7961 */ 7962 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7963 if (ill_list != NULL) 7964 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7965 } 7966 mutex_enter(&ipsq->ipsq_lock); 7967 mp = ipsq_dq(ipsq); 7968 if (mp != NULL) { 7969 /* oops, some message has landed up, we can't get out */ 7970 if (ill_list != NULL) 7971 ill_unlock_ills(ill_list, cnt); 7972 rw_exit(&ipst->ips_ill_g_lock); 7973 if (ill_list != NULL) 7974 kmem_free(ill_list, ill_list_size); 7975 ill_list = NULL; 7976 ill_list_size = 0; 7977 cnt = 0; 7978 goto again; 7979 } 7980 7981 /* 7982 * Split only if no ioctl is pending and if memory alloc succeeded 7983 * above. 7984 */ 7985 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7986 ill_list != NULL) { 7987 /* 7988 * No new ill can join this ipsq since we are holding the 7989 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7990 * ipsq. ill_split_ipsq may fail due to memory shortage. 7991 * If so we will retry on the next ipsq_exit. 7992 */ 7993 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7994 } 7995 7996 /* 7997 * We are holding the ipsq lock, hence no new messages can 7998 * land up on the ipsq, and there are no messages currently. 7999 * Now safe to get out. Wake up waiters and relinquish ipsq 8000 * atomically while holding ill locks. 8001 */ 8002 ipsq->ipsq_writer = NULL; 8003 ipsq->ipsq_reentry_cnt--; 8004 ASSERT(ipsq->ipsq_reentry_cnt == 0); 8005 #ifdef ILL_DEBUG 8006 ipsq->ipsq_depth = 0; 8007 #endif 8008 mutex_exit(&ipsq->ipsq_lock); 8009 /* 8010 * For IPMP this should wake up all ills in this ipsq. 8011 * We need to hold the ill_lock while waking up waiters to 8012 * avoid missed wakeups. But there is no need to acquire all 8013 * the ill locks and then wakeup. If we have not acquired all 8014 * the locks (due to memory failure above) ill_signal_ipsq_ills 8015 * wakes up ills one at a time after getting the right ill_lock 8016 */ 8017 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 8018 if (ill_list != NULL) 8019 ill_unlock_ills(ill_list, cnt); 8020 if (ipsq->ipsq_refs == 0) 8021 need_ipsq_free = B_TRUE; 8022 rw_exit(&ipst->ips_ill_g_lock); 8023 if (ill_list != 0) 8024 kmem_free(ill_list, ill_list_size); 8025 8026 if (need_ipsq_free) { 8027 /* 8028 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 8029 * looked up. ipsq can be looked up only thru ill or phyint 8030 * and there are no ills/phyint on this ipsq. 8031 */ 8032 ipsq_delete(ipsq); 8033 } 8034 /* 8035 * Now start any igmp or mld timers that could not be started 8036 * while inside the ipsq. The timers can't be started while inside 8037 * the ipsq, since igmp_start_timers may need to call untimeout() 8038 * which can't be done while holding a lock i.e. the ipsq. Otherwise 8039 * there could be a deadlock since the timeout handlers 8040 * mld_timeout_handler / igmp_timeout_handler also synchronously 8041 * wait in ipsq_enter() trying to get the ipsq. 8042 * 8043 * However there is one exception to the above. If this thread is 8044 * itself the igmp/mld timeout handler thread, then we don't want 8045 * to start any new timer until the current handler is done. The 8046 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 8047 * all others pass B_TRUE. 8048 */ 8049 if (start_igmp_timer) { 8050 mutex_enter(&ipst->ips_igmp_timer_lock); 8051 next = ipst->ips_igmp_deferred_next; 8052 ipst->ips_igmp_deferred_next = INFINITY; 8053 mutex_exit(&ipst->ips_igmp_timer_lock); 8054 8055 if (next != INFINITY) 8056 igmp_start_timers(next, ipst); 8057 } 8058 8059 if (start_mld_timer) { 8060 mutex_enter(&ipst->ips_mld_timer_lock); 8061 next = ipst->ips_mld_deferred_next; 8062 ipst->ips_mld_deferred_next = INFINITY; 8063 mutex_exit(&ipst->ips_mld_timer_lock); 8064 8065 if (next != INFINITY) 8066 mld_start_timers(next, ipst); 8067 } 8068 } 8069 8070 /* 8071 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8072 * and `ioccmd'. 8073 */ 8074 void 8075 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8076 { 8077 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8078 8079 mutex_enter(&ipsq->ipsq_lock); 8080 ASSERT(ipsq->ipsq_current_ipif == NULL); 8081 ASSERT(ipsq->ipsq_current_ioctl == 0); 8082 ipsq->ipsq_current_ipif = ipif; 8083 ipsq->ipsq_current_ioctl = ioccmd; 8084 mutex_exit(&ipsq->ipsq_lock); 8085 } 8086 8087 /* 8088 * Finish the current exclusive operation on `ipsq'. Note that other 8089 * operations will not be able to proceed until an ipsq_exit() is done. 8090 */ 8091 void 8092 ipsq_current_finish(ipsq_t *ipsq) 8093 { 8094 ipif_t *ipif = ipsq->ipsq_current_ipif; 8095 8096 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8097 8098 /* 8099 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8100 * (but we're careful to never set IPIF_CHANGING in that case). 8101 */ 8102 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8103 mutex_enter(&ipif->ipif_ill->ill_lock); 8104 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8105 8106 /* Send any queued event */ 8107 ill_nic_info_dispatch(ipif->ipif_ill); 8108 mutex_exit(&ipif->ipif_ill->ill_lock); 8109 } 8110 8111 mutex_enter(&ipsq->ipsq_lock); 8112 ASSERT(ipsq->ipsq_current_ipif != NULL); 8113 ipsq->ipsq_current_ipif = NULL; 8114 ipsq->ipsq_current_ioctl = 0; 8115 mutex_exit(&ipsq->ipsq_lock); 8116 } 8117 8118 /* 8119 * The ill is closing. Flush all messages on the ipsq that originated 8120 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8121 * for this ill since ipsq_enter could not have entered until then. 8122 * New messages can't be queued since the CONDEMNED flag is set. 8123 */ 8124 static void 8125 ipsq_flush(ill_t *ill) 8126 { 8127 queue_t *q; 8128 mblk_t *prev; 8129 mblk_t *mp; 8130 mblk_t *mp_next; 8131 ipsq_t *ipsq; 8132 8133 ASSERT(IAM_WRITER_ILL(ill)); 8134 ipsq = ill->ill_phyint->phyint_ipsq; 8135 /* 8136 * Flush any messages sent up by the driver. 8137 */ 8138 mutex_enter(&ipsq->ipsq_lock); 8139 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8140 mp_next = mp->b_next; 8141 q = mp->b_queue; 8142 if (q == ill->ill_rq || q == ill->ill_wq) { 8143 /* Remove the mp from the ipsq */ 8144 if (prev == NULL) 8145 ipsq->ipsq_mphead = mp->b_next; 8146 else 8147 prev->b_next = mp->b_next; 8148 if (ipsq->ipsq_mptail == mp) { 8149 ASSERT(mp_next == NULL); 8150 ipsq->ipsq_mptail = prev; 8151 } 8152 inet_freemsg(mp); 8153 } else { 8154 prev = mp; 8155 } 8156 } 8157 mutex_exit(&ipsq->ipsq_lock); 8158 (void) ipsq_pending_mp_cleanup(ill, NULL); 8159 ipsq_xopq_mp_cleanup(ill, NULL); 8160 ill_pending_mp_cleanup(ill); 8161 } 8162 8163 /* 8164 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 8165 * The real cleanup happens behind the squeue via ip_squeue_clean function but 8166 * we need to protect ourselfs from 2 threads trying to cleanup at the same 8167 * time (possible with one port going down for aggr and someone tearing down the 8168 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 8169 * to indicate when the cleanup has started (1 ref) and when the cleanup 8170 * is done (0 ref). When a new ring gets assigned to squeue, we start by 8171 * putting 2 ref on ill_inuse_ref. 8172 */ 8173 static void 8174 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 8175 { 8176 conn_t *connp; 8177 squeue_t *sqp; 8178 mblk_t *mp; 8179 8180 ASSERT(rx_ring != NULL); 8181 8182 /* Just clean one squeue */ 8183 mutex_enter(&ill->ill_lock); 8184 /* 8185 * Reset the ILL_SOFT_RING_ASSIGN bit so that 8186 * ip_squeue_soft_ring_affinty() will not go 8187 * ahead with assigning rings. 8188 */ 8189 ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN; 8190 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 8191 /* Some operations pending on the ring. Wait */ 8192 cv_wait(&ill->ill_cv, &ill->ill_lock); 8193 8194 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 8195 /* 8196 * Someone already trying to clean 8197 * this squeue or its already been cleaned. 8198 */ 8199 mutex_exit(&ill->ill_lock); 8200 return; 8201 } 8202 sqp = rx_ring->rr_sqp; 8203 8204 if (sqp == NULL) { 8205 /* 8206 * The rx_ring never had a squeue assigned to it. 8207 * We are under ill_lock so we can clean it up 8208 * here itself since no one can get to it. 8209 */ 8210 rx_ring->rr_blank = NULL; 8211 rx_ring->rr_handle = NULL; 8212 rx_ring->rr_sqp = NULL; 8213 rx_ring->rr_ring_state = ILL_RING_FREE; 8214 mutex_exit(&ill->ill_lock); 8215 return; 8216 } 8217 8218 /* Set the state that its being cleaned */ 8219 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 8220 ASSERT(sqp != NULL); 8221 mutex_exit(&ill->ill_lock); 8222 8223 /* 8224 * Use the preallocated ill_unbind_conn for this purpose 8225 */ 8226 connp = ill->ill_dls_capab->ill_unbind_conn; 8227 8228 ASSERT(!connp->conn_tcp->tcp_closemp.b_prev); 8229 TCP_DEBUG_GETPCSTACK(connp->conn_tcp->tcmp_stk, 15); 8230 if (connp->conn_tcp->tcp_closemp.b_prev == NULL) 8231 connp->conn_tcp->tcp_closemp_used = 1; 8232 else 8233 connp->conn_tcp->tcp_closemp_used++; 8234 mp = &connp->conn_tcp->tcp_closemp; 8235 CONN_INC_REF(connp); 8236 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 8237 8238 mutex_enter(&ill->ill_lock); 8239 while (rx_ring->rr_ring_state != ILL_RING_FREE) 8240 cv_wait(&ill->ill_cv, &ill->ill_lock); 8241 8242 mutex_exit(&ill->ill_lock); 8243 } 8244 8245 static void 8246 ipsq_clean_all(ill_t *ill) 8247 { 8248 int idx; 8249 8250 /* 8251 * No need to clean if poll_capab isn't set for this ill 8252 */ 8253 if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))) 8254 return; 8255 8256 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 8257 ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx]; 8258 ipsq_clean_ring(ill, ipr); 8259 } 8260 8261 ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING); 8262 } 8263 8264 /* ARGSUSED */ 8265 int 8266 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8267 ip_ioctl_cmd_t *ipip, void *ifreq) 8268 { 8269 ill_t *ill; 8270 struct lifreq *lifr = (struct lifreq *)ifreq; 8271 boolean_t isv6; 8272 conn_t *connp; 8273 ip_stack_t *ipst; 8274 8275 connp = Q_TO_CONN(q); 8276 ipst = connp->conn_netstack->netstack_ip; 8277 isv6 = connp->conn_af_isv6; 8278 /* 8279 * Set original index. 8280 * Failover and failback move logical interfaces 8281 * from one physical interface to another. The 8282 * original index indicates the parent of a logical 8283 * interface, in other words, the physical interface 8284 * the logical interface will be moved back to on 8285 * failback. 8286 */ 8287 8288 /* 8289 * Don't allow the original index to be changed 8290 * for non-failover addresses, autoconfigured 8291 * addresses, or IPv6 link local addresses. 8292 */ 8293 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8294 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8295 return (EINVAL); 8296 } 8297 /* 8298 * The new original index must be in use by some 8299 * physical interface. 8300 */ 8301 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8302 NULL, NULL, ipst); 8303 if (ill == NULL) 8304 return (ENXIO); 8305 ill_refrele(ill); 8306 8307 ipif->ipif_orig_ifindex = lifr->lifr_index; 8308 /* 8309 * When this ipif gets failed back, don't 8310 * preserve the original id, as it is no 8311 * longer applicable. 8312 */ 8313 ipif->ipif_orig_ipifid = 0; 8314 /* 8315 * For IPv4, change the original index of any 8316 * multicast addresses associated with the 8317 * ipif to the new value. 8318 */ 8319 if (!isv6) { 8320 ilm_t *ilm; 8321 8322 mutex_enter(&ipif->ipif_ill->ill_lock); 8323 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8324 ilm = ilm->ilm_next) { 8325 if (ilm->ilm_ipif == ipif) { 8326 ilm->ilm_orig_ifindex = lifr->lifr_index; 8327 } 8328 } 8329 mutex_exit(&ipif->ipif_ill->ill_lock); 8330 } 8331 return (0); 8332 } 8333 8334 /* ARGSUSED */ 8335 int 8336 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8337 ip_ioctl_cmd_t *ipip, void *ifreq) 8338 { 8339 struct lifreq *lifr = (struct lifreq *)ifreq; 8340 8341 /* 8342 * Get the original interface index i.e the one 8343 * before FAILOVER if it ever happened. 8344 */ 8345 lifr->lifr_index = ipif->ipif_orig_ifindex; 8346 return (0); 8347 } 8348 8349 /* 8350 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8351 * refhold and return the associated ipif 8352 */ 8353 int 8354 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 8355 { 8356 boolean_t exists; 8357 struct iftun_req *ta; 8358 ipif_t *ipif; 8359 ill_t *ill; 8360 boolean_t isv6; 8361 mblk_t *mp1; 8362 int error; 8363 conn_t *connp; 8364 ip_stack_t *ipst; 8365 8366 /* Existence verified in ip_wput_nondata */ 8367 mp1 = mp->b_cont->b_cont; 8368 ta = (struct iftun_req *)mp1->b_rptr; 8369 /* 8370 * Null terminate the string to protect against buffer 8371 * overrun. String was generated by user code and may not 8372 * be trusted. 8373 */ 8374 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8375 8376 connp = Q_TO_CONN(q); 8377 isv6 = connp->conn_af_isv6; 8378 ipst = connp->conn_netstack->netstack_ip; 8379 8380 /* Disallows implicit create */ 8381 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8382 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8383 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8384 if (ipif == NULL) 8385 return (error); 8386 8387 if (ipif->ipif_id != 0) { 8388 /* 8389 * We really don't want to set/get tunnel parameters 8390 * on virtual tunnel interfaces. Only allow the 8391 * base tunnel to do these. 8392 */ 8393 ipif_refrele(ipif); 8394 return (EINVAL); 8395 } 8396 8397 /* 8398 * Send down to tunnel mod for ioctl processing. 8399 * Will finish ioctl in ip_rput_other(). 8400 */ 8401 ill = ipif->ipif_ill; 8402 if (ill->ill_net_type == IRE_LOOPBACK) { 8403 ipif_refrele(ipif); 8404 return (EOPNOTSUPP); 8405 } 8406 8407 if (ill->ill_wq == NULL) { 8408 ipif_refrele(ipif); 8409 return (ENXIO); 8410 } 8411 /* 8412 * Mark the ioctl as coming from an IPv6 interface for 8413 * tun's convenience. 8414 */ 8415 if (ill->ill_isv6) 8416 ta->ifta_flags |= 0x80000000; 8417 *ipifp = ipif; 8418 return (0); 8419 } 8420 8421 /* 8422 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8423 * and return the associated ipif. 8424 * Return value: 8425 * Non zero: An error has occurred. ci may not be filled out. 8426 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8427 * a held ipif in ci.ci_ipif. 8428 */ 8429 int 8430 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 8431 cmd_info_t *ci, ipsq_func_t func) 8432 { 8433 sin_t *sin; 8434 sin6_t *sin6; 8435 char *name; 8436 struct ifreq *ifr; 8437 struct lifreq *lifr; 8438 ipif_t *ipif = NULL; 8439 ill_t *ill; 8440 conn_t *connp; 8441 boolean_t isv6; 8442 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8443 boolean_t exists; 8444 int err; 8445 mblk_t *mp1; 8446 zoneid_t zoneid; 8447 ip_stack_t *ipst; 8448 8449 if (q->q_next != NULL) { 8450 ill = (ill_t *)q->q_ptr; 8451 isv6 = ill->ill_isv6; 8452 connp = NULL; 8453 zoneid = ALL_ZONES; 8454 ipst = ill->ill_ipst; 8455 } else { 8456 ill = NULL; 8457 connp = Q_TO_CONN(q); 8458 isv6 = connp->conn_af_isv6; 8459 zoneid = connp->conn_zoneid; 8460 if (zoneid == GLOBAL_ZONEID) { 8461 /* global zone can access ipifs in all zones */ 8462 zoneid = ALL_ZONES; 8463 } 8464 ipst = connp->conn_netstack->netstack_ip; 8465 } 8466 8467 /* Has been checked in ip_wput_nondata */ 8468 mp1 = mp->b_cont->b_cont; 8469 8470 8471 if (cmd_type == IF_CMD) { 8472 /* This a old style SIOC[GS]IF* command */ 8473 ifr = (struct ifreq *)mp1->b_rptr; 8474 /* 8475 * Null terminate the string to protect against buffer 8476 * overrun. String was generated by user code and may not 8477 * be trusted. 8478 */ 8479 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8480 sin = (sin_t *)&ifr->ifr_addr; 8481 name = ifr->ifr_name; 8482 ci->ci_sin = sin; 8483 ci->ci_sin6 = NULL; 8484 ci->ci_lifr = (struct lifreq *)ifr; 8485 } else { 8486 /* This a new style SIOC[GS]LIF* command */ 8487 ASSERT(cmd_type == LIF_CMD); 8488 lifr = (struct lifreq *)mp1->b_rptr; 8489 /* 8490 * Null terminate the string to protect against buffer 8491 * overrun. String was generated by user code and may not 8492 * be trusted. 8493 */ 8494 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8495 name = lifr->lifr_name; 8496 sin = (sin_t *)&lifr->lifr_addr; 8497 sin6 = (sin6_t *)&lifr->lifr_addr; 8498 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 8499 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8500 LIFNAMSIZ); 8501 } 8502 ci->ci_sin = sin; 8503 ci->ci_sin6 = sin6; 8504 ci->ci_lifr = lifr; 8505 } 8506 8507 if (iocp->ioc_cmd == SIOCSLIFNAME) { 8508 /* 8509 * The ioctl will be failed if the ioctl comes down 8510 * an conn stream 8511 */ 8512 if (ill == NULL) { 8513 /* 8514 * Not an ill queue, return EINVAL same as the 8515 * old error code. 8516 */ 8517 return (ENXIO); 8518 } 8519 ipif = ill->ill_ipif; 8520 ipif_refhold(ipif); 8521 } else { 8522 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8523 &exists, isv6, zoneid, 8524 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8525 ipst); 8526 if (ipif == NULL) { 8527 if (err == EINPROGRESS) 8528 return (err); 8529 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 8530 iocp->ioc_cmd == SIOCLIFFAILBACK) { 8531 /* 8532 * Need to try both v4 and v6 since this 8533 * ioctl can come down either v4 or v6 8534 * socket. The lifreq.lifr_family passed 8535 * down by this ioctl is AF_UNSPEC. 8536 */ 8537 ipif = ipif_lookup_on_name(name, 8538 mi_strlen(name), B_FALSE, &exists, !isv6, 8539 zoneid, (connp == NULL) ? q : 8540 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8541 if (err == EINPROGRESS) 8542 return (err); 8543 } 8544 err = 0; /* Ensure we don't use it below */ 8545 } 8546 } 8547 8548 /* 8549 * Old style [GS]IFCMD does not admit IPv6 ipif 8550 */ 8551 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 8552 ipif_refrele(ipif); 8553 return (ENXIO); 8554 } 8555 8556 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8557 name[0] == '\0') { 8558 /* 8559 * Handle a or a SIOC?IF* with a null name 8560 * during plumb (on the ill queue before the I_PLINK). 8561 */ 8562 ipif = ill->ill_ipif; 8563 ipif_refhold(ipif); 8564 } 8565 8566 if (ipif == NULL) 8567 return (ENXIO); 8568 8569 /* 8570 * Allow only GET operations if this ipif has been created 8571 * temporarily due to a MOVE operation. 8572 */ 8573 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 8574 ipif_refrele(ipif); 8575 return (EINVAL); 8576 } 8577 8578 ci->ci_ipif = ipif; 8579 return (0); 8580 } 8581 8582 /* 8583 * Return the total number of ipifs. 8584 */ 8585 static uint_t 8586 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8587 { 8588 uint_t numifs = 0; 8589 ill_t *ill; 8590 ill_walk_context_t ctx; 8591 ipif_t *ipif; 8592 8593 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8594 ill = ILL_START_WALK_V4(&ctx, ipst); 8595 8596 while (ill != NULL) { 8597 for (ipif = ill->ill_ipif; ipif != NULL; 8598 ipif = ipif->ipif_next) { 8599 if (ipif->ipif_zoneid == zoneid || 8600 ipif->ipif_zoneid == ALL_ZONES) 8601 numifs++; 8602 } 8603 ill = ill_next(&ctx, ill); 8604 } 8605 rw_exit(&ipst->ips_ill_g_lock); 8606 return (numifs); 8607 } 8608 8609 /* 8610 * Return the total number of ipifs. 8611 */ 8612 static uint_t 8613 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8614 { 8615 uint_t numifs = 0; 8616 ill_t *ill; 8617 ipif_t *ipif; 8618 ill_walk_context_t ctx; 8619 8620 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8621 8622 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8623 if (family == AF_INET) 8624 ill = ILL_START_WALK_V4(&ctx, ipst); 8625 else if (family == AF_INET6) 8626 ill = ILL_START_WALK_V6(&ctx, ipst); 8627 else 8628 ill = ILL_START_WALK_ALL(&ctx, ipst); 8629 8630 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8631 for (ipif = ill->ill_ipif; ipif != NULL; 8632 ipif = ipif->ipif_next) { 8633 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8634 !(lifn_flags & LIFC_NOXMIT)) 8635 continue; 8636 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8637 !(lifn_flags & LIFC_TEMPORARY)) 8638 continue; 8639 if (((ipif->ipif_flags & 8640 (IPIF_NOXMIT|IPIF_NOLOCAL| 8641 IPIF_DEPRECATED)) || 8642 (ill->ill_phyint->phyint_flags & 8643 PHYI_LOOPBACK) || 8644 !(ipif->ipif_flags & IPIF_UP)) && 8645 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8646 continue; 8647 8648 if (zoneid != ipif->ipif_zoneid && 8649 ipif->ipif_zoneid != ALL_ZONES && 8650 (zoneid != GLOBAL_ZONEID || 8651 !(lifn_flags & LIFC_ALLZONES))) 8652 continue; 8653 8654 numifs++; 8655 } 8656 } 8657 rw_exit(&ipst->ips_ill_g_lock); 8658 return (numifs); 8659 } 8660 8661 uint_t 8662 ip_get_lifsrcofnum(ill_t *ill) 8663 { 8664 uint_t numifs = 0; 8665 ill_t *ill_head = ill; 8666 ip_stack_t *ipst = ill->ill_ipst; 8667 8668 /* 8669 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8670 * other thread may be trying to relink the ILLs in this usesrc group 8671 * and adjusting the ill_usesrc_grp_next pointers 8672 */ 8673 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8674 if ((ill->ill_usesrc_ifindex == 0) && 8675 (ill->ill_usesrc_grp_next != NULL)) { 8676 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8677 ill = ill->ill_usesrc_grp_next) 8678 numifs++; 8679 } 8680 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8681 8682 return (numifs); 8683 } 8684 8685 /* Null values are passed in for ipif, sin, and ifreq */ 8686 /* ARGSUSED */ 8687 int 8688 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8689 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8690 { 8691 int *nump; 8692 conn_t *connp = Q_TO_CONN(q); 8693 8694 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8695 8696 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8697 nump = (int *)mp->b_cont->b_cont->b_rptr; 8698 8699 *nump = ip_get_numifs(connp->conn_zoneid, 8700 connp->conn_netstack->netstack_ip); 8701 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8702 return (0); 8703 } 8704 8705 /* Null values are passed in for ipif, sin, and ifreq */ 8706 /* ARGSUSED */ 8707 int 8708 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8709 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8710 { 8711 struct lifnum *lifn; 8712 mblk_t *mp1; 8713 conn_t *connp = Q_TO_CONN(q); 8714 8715 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8716 8717 /* Existence checked in ip_wput_nondata */ 8718 mp1 = mp->b_cont->b_cont; 8719 8720 lifn = (struct lifnum *)mp1->b_rptr; 8721 switch (lifn->lifn_family) { 8722 case AF_UNSPEC: 8723 case AF_INET: 8724 case AF_INET6: 8725 break; 8726 default: 8727 return (EAFNOSUPPORT); 8728 } 8729 8730 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8731 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8732 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8733 return (0); 8734 } 8735 8736 /* ARGSUSED */ 8737 int 8738 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8739 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8740 { 8741 STRUCT_HANDLE(ifconf, ifc); 8742 mblk_t *mp1; 8743 struct iocblk *iocp; 8744 struct ifreq *ifr; 8745 ill_walk_context_t ctx; 8746 ill_t *ill; 8747 ipif_t *ipif; 8748 struct sockaddr_in *sin; 8749 int32_t ifclen; 8750 zoneid_t zoneid; 8751 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8752 8753 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8754 8755 ip1dbg(("ip_sioctl_get_ifconf")); 8756 /* Existence verified in ip_wput_nondata */ 8757 mp1 = mp->b_cont->b_cont; 8758 iocp = (struct iocblk *)mp->b_rptr; 8759 zoneid = Q_TO_CONN(q)->conn_zoneid; 8760 8761 /* 8762 * The original SIOCGIFCONF passed in a struct ifconf which specified 8763 * the user buffer address and length into which the list of struct 8764 * ifreqs was to be copied. Since AT&T Streams does not seem to 8765 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8766 * the SIOCGIFCONF operation was redefined to simply provide 8767 * a large output buffer into which we are supposed to jam the ifreq 8768 * array. The same ioctl command code was used, despite the fact that 8769 * both the applications and the kernel code had to change, thus making 8770 * it impossible to support both interfaces. 8771 * 8772 * For reasons not good enough to try to explain, the following 8773 * algorithm is used for deciding what to do with one of these: 8774 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8775 * form with the output buffer coming down as the continuation message. 8776 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8777 * and we have to copy in the ifconf structure to find out how big the 8778 * output buffer is and where to copy out to. Sure no problem... 8779 * 8780 */ 8781 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8782 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8783 int numifs = 0; 8784 size_t ifc_bufsize; 8785 8786 /* 8787 * Must be (better be!) continuation of a TRANSPARENT 8788 * IOCTL. We just copied in the ifconf structure. 8789 */ 8790 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8791 (struct ifconf *)mp1->b_rptr); 8792 8793 /* 8794 * Allocate a buffer to hold requested information. 8795 * 8796 * If ifc_len is larger than what is needed, we only 8797 * allocate what we will use. 8798 * 8799 * If ifc_len is smaller than what is needed, return 8800 * EINVAL. 8801 * 8802 * XXX: the ill_t structure can hava 2 counters, for 8803 * v4 and v6 (not just ill_ipif_up_count) to store the 8804 * number of interfaces for a device, so we don't need 8805 * to count them here... 8806 */ 8807 numifs = ip_get_numifs(zoneid, ipst); 8808 8809 ifclen = STRUCT_FGET(ifc, ifc_len); 8810 ifc_bufsize = numifs * sizeof (struct ifreq); 8811 if (ifc_bufsize > ifclen) { 8812 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8813 /* old behaviour */ 8814 return (EINVAL); 8815 } else { 8816 ifc_bufsize = ifclen; 8817 } 8818 } 8819 8820 mp1 = mi_copyout_alloc(q, mp, 8821 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8822 if (mp1 == NULL) 8823 return (ENOMEM); 8824 8825 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8826 } 8827 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8828 /* 8829 * the SIOCGIFCONF ioctl only knows about 8830 * IPv4 addresses, so don't try to tell 8831 * it about interfaces with IPv6-only 8832 * addresses. (Last parm 'isv6' is B_FALSE) 8833 */ 8834 8835 ifr = (struct ifreq *)mp1->b_rptr; 8836 8837 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8838 ill = ILL_START_WALK_V4(&ctx, ipst); 8839 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8840 for (ipif = ill->ill_ipif; ipif != NULL; 8841 ipif = ipif->ipif_next) { 8842 if (zoneid != ipif->ipif_zoneid && 8843 ipif->ipif_zoneid != ALL_ZONES) 8844 continue; 8845 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8846 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8847 /* old behaviour */ 8848 rw_exit(&ipst->ips_ill_g_lock); 8849 return (EINVAL); 8850 } else { 8851 goto if_copydone; 8852 } 8853 } 8854 (void) ipif_get_name(ipif, 8855 ifr->ifr_name, 8856 sizeof (ifr->ifr_name)); 8857 sin = (sin_t *)&ifr->ifr_addr; 8858 *sin = sin_null; 8859 sin->sin_family = AF_INET; 8860 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8861 ifr++; 8862 } 8863 } 8864 if_copydone: 8865 rw_exit(&ipst->ips_ill_g_lock); 8866 mp1->b_wptr = (uchar_t *)ifr; 8867 8868 if (STRUCT_BUF(ifc) != NULL) { 8869 STRUCT_FSET(ifc, ifc_len, 8870 (int)((uchar_t *)ifr - mp1->b_rptr)); 8871 } 8872 return (0); 8873 } 8874 8875 /* 8876 * Get the interfaces using the address hosted on the interface passed in, 8877 * as a source adddress 8878 */ 8879 /* ARGSUSED */ 8880 int 8881 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8882 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8883 { 8884 mblk_t *mp1; 8885 ill_t *ill, *ill_head; 8886 ipif_t *ipif, *orig_ipif; 8887 int numlifs = 0; 8888 size_t lifs_bufsize, lifsmaxlen; 8889 struct lifreq *lifr; 8890 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8891 uint_t ifindex; 8892 zoneid_t zoneid; 8893 int err = 0; 8894 boolean_t isv6 = B_FALSE; 8895 struct sockaddr_in *sin; 8896 struct sockaddr_in6 *sin6; 8897 STRUCT_HANDLE(lifsrcof, lifs); 8898 ip_stack_t *ipst; 8899 8900 ipst = CONNQ_TO_IPST(q); 8901 8902 ASSERT(q->q_next == NULL); 8903 8904 zoneid = Q_TO_CONN(q)->conn_zoneid; 8905 8906 /* Existence verified in ip_wput_nondata */ 8907 mp1 = mp->b_cont->b_cont; 8908 8909 /* 8910 * Must be (better be!) continuation of a TRANSPARENT 8911 * IOCTL. We just copied in the lifsrcof structure. 8912 */ 8913 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8914 (struct lifsrcof *)mp1->b_rptr); 8915 8916 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8917 return (EINVAL); 8918 8919 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8920 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8921 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8922 ip_process_ioctl, &err, ipst); 8923 if (ipif == NULL) { 8924 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8925 ifindex)); 8926 return (err); 8927 } 8928 8929 8930 /* Allocate a buffer to hold requested information */ 8931 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8932 lifs_bufsize = numlifs * sizeof (struct lifreq); 8933 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8934 /* The actual size needed is always returned in lifs_len */ 8935 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8936 8937 /* If the amount we need is more than what is passed in, abort */ 8938 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8939 ipif_refrele(ipif); 8940 return (0); 8941 } 8942 8943 mp1 = mi_copyout_alloc(q, mp, 8944 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8945 if (mp1 == NULL) { 8946 ipif_refrele(ipif); 8947 return (ENOMEM); 8948 } 8949 8950 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8951 bzero(mp1->b_rptr, lifs_bufsize); 8952 8953 lifr = (struct lifreq *)mp1->b_rptr; 8954 8955 ill = ill_head = ipif->ipif_ill; 8956 orig_ipif = ipif; 8957 8958 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8959 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8960 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8961 8962 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8963 for (; (ill != NULL) && (ill != ill_head); 8964 ill = ill->ill_usesrc_grp_next) { 8965 8966 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8967 break; 8968 8969 ipif = ill->ill_ipif; 8970 (void) ipif_get_name(ipif, 8971 lifr->lifr_name, sizeof (lifr->lifr_name)); 8972 if (ipif->ipif_isv6) { 8973 sin6 = (sin6_t *)&lifr->lifr_addr; 8974 *sin6 = sin6_null; 8975 sin6->sin6_family = AF_INET6; 8976 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8977 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8978 &ipif->ipif_v6net_mask); 8979 } else { 8980 sin = (sin_t *)&lifr->lifr_addr; 8981 *sin = sin_null; 8982 sin->sin_family = AF_INET; 8983 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8984 lifr->lifr_addrlen = ip_mask_to_plen( 8985 ipif->ipif_net_mask); 8986 } 8987 lifr++; 8988 } 8989 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8990 rw_exit(&ipst->ips_ill_g_lock); 8991 ipif_refrele(orig_ipif); 8992 mp1->b_wptr = (uchar_t *)lifr; 8993 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8994 8995 return (0); 8996 } 8997 8998 /* ARGSUSED */ 8999 int 9000 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 9001 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9002 { 9003 mblk_t *mp1; 9004 int list; 9005 ill_t *ill; 9006 ipif_t *ipif; 9007 int flags; 9008 int numlifs = 0; 9009 size_t lifc_bufsize; 9010 struct lifreq *lifr; 9011 sa_family_t family; 9012 struct sockaddr_in *sin; 9013 struct sockaddr_in6 *sin6; 9014 ill_walk_context_t ctx; 9015 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9016 int32_t lifclen; 9017 zoneid_t zoneid; 9018 STRUCT_HANDLE(lifconf, lifc); 9019 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9020 9021 ip1dbg(("ip_sioctl_get_lifconf")); 9022 9023 ASSERT(q->q_next == NULL); 9024 9025 zoneid = Q_TO_CONN(q)->conn_zoneid; 9026 9027 /* Existence verified in ip_wput_nondata */ 9028 mp1 = mp->b_cont->b_cont; 9029 9030 /* 9031 * An extended version of SIOCGIFCONF that takes an 9032 * additional address family and flags field. 9033 * AF_UNSPEC retrieve both IPv4 and IPv6. 9034 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 9035 * interfaces are omitted. 9036 * Similarly, IPIF_TEMPORARY interfaces are omitted 9037 * unless LIFC_TEMPORARY is specified. 9038 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 9039 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 9040 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 9041 * has priority over LIFC_NOXMIT. 9042 */ 9043 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 9044 9045 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 9046 return (EINVAL); 9047 9048 /* 9049 * Must be (better be!) continuation of a TRANSPARENT 9050 * IOCTL. We just copied in the lifconf structure. 9051 */ 9052 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 9053 9054 family = STRUCT_FGET(lifc, lifc_family); 9055 flags = STRUCT_FGET(lifc, lifc_flags); 9056 9057 switch (family) { 9058 case AF_UNSPEC: 9059 /* 9060 * walk all ILL's. 9061 */ 9062 list = MAX_G_HEADS; 9063 break; 9064 case AF_INET: 9065 /* 9066 * walk only IPV4 ILL's. 9067 */ 9068 list = IP_V4_G_HEAD; 9069 break; 9070 case AF_INET6: 9071 /* 9072 * walk only IPV6 ILL's. 9073 */ 9074 list = IP_V6_G_HEAD; 9075 break; 9076 default: 9077 return (EAFNOSUPPORT); 9078 } 9079 9080 /* 9081 * Allocate a buffer to hold requested information. 9082 * 9083 * If lifc_len is larger than what is needed, we only 9084 * allocate what we will use. 9085 * 9086 * If lifc_len is smaller than what is needed, return 9087 * EINVAL. 9088 */ 9089 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 9090 lifc_bufsize = numlifs * sizeof (struct lifreq); 9091 lifclen = STRUCT_FGET(lifc, lifc_len); 9092 if (lifc_bufsize > lifclen) { 9093 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 9094 return (EINVAL); 9095 else 9096 lifc_bufsize = lifclen; 9097 } 9098 9099 mp1 = mi_copyout_alloc(q, mp, 9100 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 9101 if (mp1 == NULL) 9102 return (ENOMEM); 9103 9104 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 9105 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 9106 9107 lifr = (struct lifreq *)mp1->b_rptr; 9108 9109 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9110 ill = ill_first(list, list, &ctx, ipst); 9111 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9112 for (ipif = ill->ill_ipif; ipif != NULL; 9113 ipif = ipif->ipif_next) { 9114 if ((ipif->ipif_flags & IPIF_NOXMIT) && 9115 !(flags & LIFC_NOXMIT)) 9116 continue; 9117 9118 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 9119 !(flags & LIFC_TEMPORARY)) 9120 continue; 9121 9122 if (((ipif->ipif_flags & 9123 (IPIF_NOXMIT|IPIF_NOLOCAL| 9124 IPIF_DEPRECATED)) || 9125 (ill->ill_phyint->phyint_flags & 9126 PHYI_LOOPBACK) || 9127 !(ipif->ipif_flags & IPIF_UP)) && 9128 (flags & LIFC_EXTERNAL_SOURCE)) 9129 continue; 9130 9131 if (zoneid != ipif->ipif_zoneid && 9132 ipif->ipif_zoneid != ALL_ZONES && 9133 (zoneid != GLOBAL_ZONEID || 9134 !(flags & LIFC_ALLZONES))) 9135 continue; 9136 9137 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 9138 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 9139 rw_exit(&ipst->ips_ill_g_lock); 9140 return (EINVAL); 9141 } else { 9142 goto lif_copydone; 9143 } 9144 } 9145 9146 (void) ipif_get_name(ipif, 9147 lifr->lifr_name, 9148 sizeof (lifr->lifr_name)); 9149 if (ipif->ipif_isv6) { 9150 sin6 = (sin6_t *)&lifr->lifr_addr; 9151 *sin6 = sin6_null; 9152 sin6->sin6_family = AF_INET6; 9153 sin6->sin6_addr = 9154 ipif->ipif_v6lcl_addr; 9155 lifr->lifr_addrlen = 9156 ip_mask_to_plen_v6( 9157 &ipif->ipif_v6net_mask); 9158 } else { 9159 sin = (sin_t *)&lifr->lifr_addr; 9160 *sin = sin_null; 9161 sin->sin_family = AF_INET; 9162 sin->sin_addr.s_addr = 9163 ipif->ipif_lcl_addr; 9164 lifr->lifr_addrlen = 9165 ip_mask_to_plen( 9166 ipif->ipif_net_mask); 9167 } 9168 lifr++; 9169 } 9170 } 9171 lif_copydone: 9172 rw_exit(&ipst->ips_ill_g_lock); 9173 9174 mp1->b_wptr = (uchar_t *)lifr; 9175 if (STRUCT_BUF(lifc) != NULL) { 9176 STRUCT_FSET(lifc, lifc_len, 9177 (int)((uchar_t *)lifr - mp1->b_rptr)); 9178 } 9179 return (0); 9180 } 9181 9182 /* ARGSUSED */ 9183 int 9184 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9185 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9186 { 9187 ip_stack_t *ipst; 9188 9189 if (q->q_next == NULL) 9190 ipst = CONNQ_TO_IPST(q); 9191 else 9192 ipst = ILLQ_TO_IPST(q); 9193 9194 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9195 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9196 return (0); 9197 } 9198 9199 static void 9200 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9201 { 9202 ip6_asp_t *table; 9203 size_t table_size; 9204 mblk_t *data_mp; 9205 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9206 ip_stack_t *ipst; 9207 9208 if (q->q_next == NULL) 9209 ipst = CONNQ_TO_IPST(q); 9210 else 9211 ipst = ILLQ_TO_IPST(q); 9212 9213 /* These two ioctls are I_STR only */ 9214 if (iocp->ioc_count == TRANSPARENT) { 9215 miocnak(q, mp, 0, EINVAL); 9216 return; 9217 } 9218 9219 data_mp = mp->b_cont; 9220 if (data_mp == NULL) { 9221 /* The user passed us a NULL argument */ 9222 table = NULL; 9223 table_size = iocp->ioc_count; 9224 } else { 9225 /* 9226 * The user provided a table. The stream head 9227 * may have copied in the user data in chunks, 9228 * so make sure everything is pulled up 9229 * properly. 9230 */ 9231 if (MBLKL(data_mp) < iocp->ioc_count) { 9232 mblk_t *new_data_mp; 9233 if ((new_data_mp = msgpullup(data_mp, -1)) == 9234 NULL) { 9235 miocnak(q, mp, 0, ENOMEM); 9236 return; 9237 } 9238 freemsg(data_mp); 9239 data_mp = new_data_mp; 9240 mp->b_cont = data_mp; 9241 } 9242 table = (ip6_asp_t *)data_mp->b_rptr; 9243 table_size = iocp->ioc_count; 9244 } 9245 9246 switch (iocp->ioc_cmd) { 9247 case SIOCGIP6ADDRPOLICY: 9248 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9249 if (iocp->ioc_rval == -1) 9250 iocp->ioc_error = EINVAL; 9251 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9252 else if (table != NULL && 9253 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9254 ip6_asp_t *src = table; 9255 ip6_asp32_t *dst = (void *)table; 9256 int count = table_size / sizeof (ip6_asp_t); 9257 int i; 9258 9259 /* 9260 * We need to do an in-place shrink of the array 9261 * to match the alignment attributes of the 9262 * 32-bit ABI looking at it. 9263 */ 9264 /* LINTED: logical expression always true: op "||" */ 9265 ASSERT(sizeof (*src) > sizeof (*dst)); 9266 for (i = 1; i < count; i++) 9267 bcopy(src + i, dst + i, sizeof (*dst)); 9268 } 9269 #endif 9270 break; 9271 9272 case SIOCSIP6ADDRPOLICY: 9273 ASSERT(mp->b_prev == NULL); 9274 mp->b_prev = (void *)q; 9275 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9276 /* 9277 * We pass in the datamodel here so that the ip6_asp_replace() 9278 * routine can handle converting from 32-bit to native formats 9279 * where necessary. 9280 * 9281 * A better way to handle this might be to convert the inbound 9282 * data structure here, and hang it off a new 'mp'; thus the 9283 * ip6_asp_replace() logic would always be dealing with native 9284 * format data structures.. 9285 * 9286 * (An even simpler way to handle these ioctls is to just 9287 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9288 * and just recompile everything that depends on it.) 9289 */ 9290 #endif 9291 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9292 iocp->ioc_flag & IOC_MODELS); 9293 return; 9294 } 9295 9296 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9297 qreply(q, mp); 9298 } 9299 9300 static void 9301 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9302 { 9303 mblk_t *data_mp; 9304 struct dstinforeq *dir; 9305 uint8_t *end, *cur; 9306 in6_addr_t *daddr, *saddr; 9307 ipaddr_t v4daddr; 9308 ire_t *ire; 9309 char *slabel, *dlabel; 9310 boolean_t isipv4; 9311 int match_ire; 9312 ill_t *dst_ill; 9313 ipif_t *src_ipif, *ire_ipif; 9314 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9315 zoneid_t zoneid; 9316 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9317 9318 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9319 zoneid = Q_TO_CONN(q)->conn_zoneid; 9320 9321 /* 9322 * This ioctl is I_STR only, and must have a 9323 * data mblk following the M_IOCTL mblk. 9324 */ 9325 data_mp = mp->b_cont; 9326 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9327 miocnak(q, mp, 0, EINVAL); 9328 return; 9329 } 9330 9331 if (MBLKL(data_mp) < iocp->ioc_count) { 9332 mblk_t *new_data_mp; 9333 9334 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9335 miocnak(q, mp, 0, ENOMEM); 9336 return; 9337 } 9338 freemsg(data_mp); 9339 data_mp = new_data_mp; 9340 mp->b_cont = data_mp; 9341 } 9342 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9343 9344 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9345 end - cur >= sizeof (struct dstinforeq); 9346 cur += sizeof (struct dstinforeq)) { 9347 dir = (struct dstinforeq *)cur; 9348 daddr = &dir->dir_daddr; 9349 saddr = &dir->dir_saddr; 9350 9351 /* 9352 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9353 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9354 * and ipif_select_source[_v6]() do not. 9355 */ 9356 dir->dir_dscope = ip_addr_scope_v6(daddr); 9357 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9358 9359 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9360 if (isipv4) { 9361 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9362 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9363 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9364 } else { 9365 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9366 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9367 } 9368 if (ire == NULL) { 9369 dir->dir_dreachable = 0; 9370 9371 /* move on to next dst addr */ 9372 continue; 9373 } 9374 dir->dir_dreachable = 1; 9375 9376 ire_ipif = ire->ire_ipif; 9377 if (ire_ipif == NULL) 9378 goto next_dst; 9379 9380 /* 9381 * We expect to get back an interface ire or a 9382 * gateway ire cache entry. For both types, the 9383 * output interface is ire_ipif->ipif_ill. 9384 */ 9385 dst_ill = ire_ipif->ipif_ill; 9386 dir->dir_dmactype = dst_ill->ill_mactype; 9387 9388 if (isipv4) { 9389 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9390 } else { 9391 src_ipif = ipif_select_source_v6(dst_ill, 9392 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9393 zoneid); 9394 } 9395 if (src_ipif == NULL) 9396 goto next_dst; 9397 9398 *saddr = src_ipif->ipif_v6lcl_addr; 9399 dir->dir_sscope = ip_addr_scope_v6(saddr); 9400 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9401 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9402 dir->dir_sdeprecated = 9403 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9404 ipif_refrele(src_ipif); 9405 next_dst: 9406 ire_refrele(ire); 9407 } 9408 miocack(q, mp, iocp->ioc_count, 0); 9409 } 9410 9411 9412 /* 9413 * Check if this is an address assigned to this machine. 9414 * Skips interfaces that are down by using ire checks. 9415 * Translates mapped addresses to v4 addresses and then 9416 * treats them as such, returning true if the v4 address 9417 * associated with this mapped address is configured. 9418 * Note: Applications will have to be careful what they do 9419 * with the response; use of mapped addresses limits 9420 * what can be done with the socket, especially with 9421 * respect to socket options and ioctls - neither IPv4 9422 * options nor IPv6 sticky options/ancillary data options 9423 * may be used. 9424 */ 9425 /* ARGSUSED */ 9426 int 9427 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9428 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9429 { 9430 struct sioc_addrreq *sia; 9431 sin_t *sin; 9432 ire_t *ire; 9433 mblk_t *mp1; 9434 zoneid_t zoneid; 9435 ip_stack_t *ipst; 9436 9437 ip1dbg(("ip_sioctl_tmyaddr")); 9438 9439 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9440 zoneid = Q_TO_CONN(q)->conn_zoneid; 9441 ipst = CONNQ_TO_IPST(q); 9442 9443 /* Existence verified in ip_wput_nondata */ 9444 mp1 = mp->b_cont->b_cont; 9445 sia = (struct sioc_addrreq *)mp1->b_rptr; 9446 sin = (sin_t *)&sia->sa_addr; 9447 switch (sin->sin_family) { 9448 case AF_INET6: { 9449 sin6_t *sin6 = (sin6_t *)sin; 9450 9451 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9452 ipaddr_t v4_addr; 9453 9454 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9455 v4_addr); 9456 ire = ire_ctable_lookup(v4_addr, 0, 9457 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9458 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9459 } else { 9460 in6_addr_t v6addr; 9461 9462 v6addr = sin6->sin6_addr; 9463 ire = ire_ctable_lookup_v6(&v6addr, 0, 9464 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9465 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9466 } 9467 break; 9468 } 9469 case AF_INET: { 9470 ipaddr_t v4addr; 9471 9472 v4addr = sin->sin_addr.s_addr; 9473 ire = ire_ctable_lookup(v4addr, 0, 9474 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9475 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9476 break; 9477 } 9478 default: 9479 return (EAFNOSUPPORT); 9480 } 9481 if (ire != NULL) { 9482 sia->sa_res = 1; 9483 ire_refrele(ire); 9484 } else { 9485 sia->sa_res = 0; 9486 } 9487 return (0); 9488 } 9489 9490 /* 9491 * Check if this is an address assigned on-link i.e. neighbor, 9492 * and makes sure it's reachable from the current zone. 9493 * Returns true for my addresses as well. 9494 * Translates mapped addresses to v4 addresses and then 9495 * treats them as such, returning true if the v4 address 9496 * associated with this mapped address is configured. 9497 * Note: Applications will have to be careful what they do 9498 * with the response; use of mapped addresses limits 9499 * what can be done with the socket, especially with 9500 * respect to socket options and ioctls - neither IPv4 9501 * options nor IPv6 sticky options/ancillary data options 9502 * may be used. 9503 */ 9504 /* ARGSUSED */ 9505 int 9506 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9507 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9508 { 9509 struct sioc_addrreq *sia; 9510 sin_t *sin; 9511 mblk_t *mp1; 9512 ire_t *ire = NULL; 9513 zoneid_t zoneid; 9514 ip_stack_t *ipst; 9515 9516 ip1dbg(("ip_sioctl_tonlink")); 9517 9518 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9519 zoneid = Q_TO_CONN(q)->conn_zoneid; 9520 ipst = CONNQ_TO_IPST(q); 9521 9522 /* Existence verified in ip_wput_nondata */ 9523 mp1 = mp->b_cont->b_cont; 9524 sia = (struct sioc_addrreq *)mp1->b_rptr; 9525 sin = (sin_t *)&sia->sa_addr; 9526 9527 /* 9528 * Match addresses with a zero gateway field to avoid 9529 * routes going through a router. 9530 * Exclude broadcast and multicast addresses. 9531 */ 9532 switch (sin->sin_family) { 9533 case AF_INET6: { 9534 sin6_t *sin6 = (sin6_t *)sin; 9535 9536 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9537 ipaddr_t v4_addr; 9538 9539 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9540 v4_addr); 9541 if (!CLASSD(v4_addr)) { 9542 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9543 NULL, NULL, zoneid, NULL, 9544 MATCH_IRE_GW, ipst); 9545 } 9546 } else { 9547 in6_addr_t v6addr; 9548 in6_addr_t v6gw; 9549 9550 v6addr = sin6->sin6_addr; 9551 v6gw = ipv6_all_zeros; 9552 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9553 ire = ire_route_lookup_v6(&v6addr, 0, 9554 &v6gw, 0, NULL, NULL, zoneid, 9555 NULL, MATCH_IRE_GW, ipst); 9556 } 9557 } 9558 break; 9559 } 9560 case AF_INET: { 9561 ipaddr_t v4addr; 9562 9563 v4addr = sin->sin_addr.s_addr; 9564 if (!CLASSD(v4addr)) { 9565 ire = ire_route_lookup(v4addr, 0, 0, 0, 9566 NULL, NULL, zoneid, NULL, 9567 MATCH_IRE_GW, ipst); 9568 } 9569 break; 9570 } 9571 default: 9572 return (EAFNOSUPPORT); 9573 } 9574 sia->sa_res = 0; 9575 if (ire != NULL) { 9576 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9577 IRE_LOCAL|IRE_LOOPBACK)) { 9578 sia->sa_res = 1; 9579 } 9580 ire_refrele(ire); 9581 } 9582 return (0); 9583 } 9584 9585 /* 9586 * TBD: implement when kernel maintaines a list of site prefixes. 9587 */ 9588 /* ARGSUSED */ 9589 int 9590 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9591 ip_ioctl_cmd_t *ipip, void *ifreq) 9592 { 9593 return (ENXIO); 9594 } 9595 9596 /* ARGSUSED */ 9597 int 9598 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9599 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9600 { 9601 ill_t *ill; 9602 mblk_t *mp1; 9603 conn_t *connp; 9604 boolean_t success; 9605 9606 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9607 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9608 /* ioctl comes down on an conn */ 9609 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9610 connp = Q_TO_CONN(q); 9611 9612 mp->b_datap->db_type = M_IOCTL; 9613 9614 /* 9615 * Send down a copy. (copymsg does not copy b_next/b_prev). 9616 * The original mp contains contaminated b_next values due to 'mi', 9617 * which is needed to do the mi_copy_done. Unfortunately if we 9618 * send down the original mblk itself and if we are popped due to an 9619 * an unplumb before the response comes back from tunnel, 9620 * the streamhead (which does a freemsg) will see this contaminated 9621 * message and the assertion in freemsg about non-null b_next/b_prev 9622 * will panic a DEBUG kernel. 9623 */ 9624 mp1 = copymsg(mp); 9625 if (mp1 == NULL) 9626 return (ENOMEM); 9627 9628 ill = ipif->ipif_ill; 9629 mutex_enter(&connp->conn_lock); 9630 mutex_enter(&ill->ill_lock); 9631 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9632 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9633 mp, 0); 9634 } else { 9635 success = ill_pending_mp_add(ill, connp, mp); 9636 } 9637 mutex_exit(&ill->ill_lock); 9638 mutex_exit(&connp->conn_lock); 9639 9640 if (success) { 9641 ip1dbg(("sending down tunparam request ")); 9642 putnext(ill->ill_wq, mp1); 9643 return (EINPROGRESS); 9644 } else { 9645 /* The conn has started closing */ 9646 freemsg(mp1); 9647 return (EINTR); 9648 } 9649 } 9650 9651 static int 9652 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 9653 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 9654 { 9655 mblk_t *mp1; 9656 mblk_t *mp2; 9657 mblk_t *pending_mp; 9658 ipaddr_t ipaddr; 9659 area_t *area; 9660 struct iocblk *iocp; 9661 conn_t *connp; 9662 struct arpreq *ar; 9663 struct xarpreq *xar; 9664 boolean_t success; 9665 int flags, alength; 9666 char *lladdr; 9667 ip_stack_t *ipst; 9668 9669 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9670 connp = Q_TO_CONN(q); 9671 ipst = connp->conn_netstack->netstack_ip; 9672 9673 iocp = (struct iocblk *)mp->b_rptr; 9674 /* 9675 * ill has already been set depending on whether 9676 * bsd style or interface style ioctl. 9677 */ 9678 ASSERT(ill != NULL); 9679 9680 /* 9681 * Is this one of the new SIOC*XARP ioctls? 9682 */ 9683 if (x_arp_ioctl) { 9684 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9685 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9686 ar = NULL; 9687 9688 flags = xar->xarp_flags; 9689 lladdr = LLADDR(&xar->xarp_ha); 9690 /* 9691 * Validate against user's link layer address length 9692 * input and name and addr length limits. 9693 */ 9694 alength = ill->ill_phys_addr_length; 9695 if (iocp->ioc_cmd == SIOCSXARP) { 9696 if (alength != xar->xarp_ha.sdl_alen || 9697 (alength + xar->xarp_ha.sdl_nlen > 9698 sizeof (xar->xarp_ha.sdl_data))) 9699 return (EINVAL); 9700 } 9701 } else { 9702 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9703 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9704 xar = NULL; 9705 9706 flags = ar->arp_flags; 9707 lladdr = ar->arp_ha.sa_data; 9708 /* 9709 * Theoretically, the sa_family could tell us what link 9710 * layer type this operation is trying to deal with. By 9711 * common usage AF_UNSPEC means ethernet. We'll assume 9712 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9713 * for now. Our new SIOC*XARP ioctls can be used more 9714 * generally. 9715 * 9716 * If the underlying media happens to have a non 6 byte 9717 * address, arp module will fail set/get, but the del 9718 * operation will succeed. 9719 */ 9720 alength = 6; 9721 if ((iocp->ioc_cmd != SIOCDARP) && 9722 (alength != ill->ill_phys_addr_length)) { 9723 return (EINVAL); 9724 } 9725 } 9726 9727 /* 9728 * We are going to pass up to ARP a packet chain that looks 9729 * like: 9730 * 9731 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9732 * 9733 * Get a copy of the original IOCTL mblk to head the chain, 9734 * to be sent up (in mp1). Also get another copy to store 9735 * in the ill_pending_mp list, for matching the response 9736 * when it comes back from ARP. 9737 */ 9738 mp1 = copyb(mp); 9739 pending_mp = copymsg(mp); 9740 if (mp1 == NULL || pending_mp == NULL) { 9741 if (mp1 != NULL) 9742 freeb(mp1); 9743 if (pending_mp != NULL) 9744 inet_freemsg(pending_mp); 9745 return (ENOMEM); 9746 } 9747 9748 ipaddr = sin->sin_addr.s_addr; 9749 9750 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9751 (caddr_t)&ipaddr); 9752 if (mp2 == NULL) { 9753 freeb(mp1); 9754 inet_freemsg(pending_mp); 9755 return (ENOMEM); 9756 } 9757 /* Put together the chain. */ 9758 mp1->b_cont = mp2; 9759 mp1->b_datap->db_type = M_IOCTL; 9760 mp2->b_cont = mp; 9761 mp2->b_datap->db_type = M_DATA; 9762 9763 iocp = (struct iocblk *)mp1->b_rptr; 9764 9765 /* 9766 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9767 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9768 * cp_private field (or cp_rval on 32-bit systems) in place of the 9769 * ioc_count field; set ioc_count to be correct. 9770 */ 9771 iocp->ioc_count = MBLKL(mp1->b_cont); 9772 9773 /* 9774 * Set the proper command in the ARP message. 9775 * Convert the SIOC{G|S|D}ARP calls into our 9776 * AR_ENTRY_xxx calls. 9777 */ 9778 area = (area_t *)mp2->b_rptr; 9779 switch (iocp->ioc_cmd) { 9780 case SIOCDARP: 9781 case SIOCDXARP: 9782 /* 9783 * We defer deleting the corresponding IRE until 9784 * we return from arp. 9785 */ 9786 area->area_cmd = AR_ENTRY_DELETE; 9787 area->area_proto_mask_offset = 0; 9788 break; 9789 case SIOCGARP: 9790 case SIOCGXARP: 9791 area->area_cmd = AR_ENTRY_SQUERY; 9792 area->area_proto_mask_offset = 0; 9793 break; 9794 case SIOCSARP: 9795 case SIOCSXARP: { 9796 /* 9797 * Delete the corresponding ire to make sure IP will 9798 * pick up any change from arp. 9799 */ 9800 if (!if_arp_ioctl) { 9801 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9802 break; 9803 } else { 9804 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9805 if (ipif != NULL) { 9806 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9807 ipst); 9808 ipif_refrele(ipif); 9809 } 9810 break; 9811 } 9812 } 9813 } 9814 iocp->ioc_cmd = area->area_cmd; 9815 9816 /* 9817 * Before sending 'mp' to ARP, we have to clear the b_next 9818 * and b_prev. Otherwise if STREAMS encounters such a message 9819 * in freemsg(), (because ARP can close any time) it can cause 9820 * a panic. But mi code needs the b_next and b_prev values of 9821 * mp->b_cont, to complete the ioctl. So we store it here 9822 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9823 * when the response comes down from ARP. 9824 */ 9825 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9826 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9827 mp->b_cont->b_next = NULL; 9828 mp->b_cont->b_prev = NULL; 9829 9830 mutex_enter(&connp->conn_lock); 9831 mutex_enter(&ill->ill_lock); 9832 /* conn has not yet started closing, hence this can't fail */ 9833 success = ill_pending_mp_add(ill, connp, pending_mp); 9834 ASSERT(success); 9835 mutex_exit(&ill->ill_lock); 9836 mutex_exit(&connp->conn_lock); 9837 9838 /* 9839 * Fill in the rest of the ARP operation fields. 9840 */ 9841 area->area_hw_addr_length = alength; 9842 bcopy(lladdr, 9843 (char *)area + area->area_hw_addr_offset, 9844 area->area_hw_addr_length); 9845 /* Translate the flags. */ 9846 if (flags & ATF_PERM) 9847 area->area_flags |= ACE_F_PERMANENT; 9848 if (flags & ATF_PUBL) 9849 area->area_flags |= ACE_F_PUBLISH; 9850 if (flags & ATF_AUTHORITY) 9851 area->area_flags |= ACE_F_AUTHORITY; 9852 9853 /* 9854 * Up to ARP it goes. The response will come 9855 * back in ip_wput as an M_IOCACK message, and 9856 * will be handed to ip_sioctl_iocack for 9857 * completion. 9858 */ 9859 putnext(ill->ill_rq, mp1); 9860 return (EINPROGRESS); 9861 } 9862 9863 /* ARGSUSED */ 9864 int 9865 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9866 ip_ioctl_cmd_t *ipip, void *ifreq) 9867 { 9868 struct xarpreq *xar; 9869 boolean_t isv6; 9870 mblk_t *mp1; 9871 int err; 9872 conn_t *connp; 9873 int ifnamelen; 9874 ire_t *ire = NULL; 9875 ill_t *ill = NULL; 9876 struct sockaddr_in *sin; 9877 boolean_t if_arp_ioctl = B_FALSE; 9878 ip_stack_t *ipst; 9879 9880 /* ioctl comes down on an conn */ 9881 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9882 connp = Q_TO_CONN(q); 9883 isv6 = connp->conn_af_isv6; 9884 ipst = connp->conn_netstack->netstack_ip; 9885 9886 /* Existance verified in ip_wput_nondata */ 9887 mp1 = mp->b_cont->b_cont; 9888 9889 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9890 xar = (struct xarpreq *)mp1->b_rptr; 9891 sin = (sin_t *)&xar->xarp_pa; 9892 9893 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9894 (xar->xarp_pa.ss_family != AF_INET)) 9895 return (ENXIO); 9896 9897 ifnamelen = xar->xarp_ha.sdl_nlen; 9898 if (ifnamelen != 0) { 9899 char *cptr, cval; 9900 9901 if (ifnamelen >= LIFNAMSIZ) 9902 return (EINVAL); 9903 9904 /* 9905 * Instead of bcopying a bunch of bytes, 9906 * null-terminate the string in-situ. 9907 */ 9908 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9909 cval = *cptr; 9910 *cptr = '\0'; 9911 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9912 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9913 &err, NULL, ipst); 9914 *cptr = cval; 9915 if (ill == NULL) 9916 return (err); 9917 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9918 ill_refrele(ill); 9919 return (ENXIO); 9920 } 9921 9922 if_arp_ioctl = B_TRUE; 9923 } else { 9924 /* 9925 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9926 * as an extended BSD ioctl. The kernel uses the IP address 9927 * to figure out the network interface. 9928 */ 9929 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9930 ipst); 9931 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9932 ((ill = ire_to_ill(ire)) == NULL) || 9933 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9934 if (ire != NULL) 9935 ire_refrele(ire); 9936 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9937 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9938 NULL, MATCH_IRE_TYPE, ipst); 9939 if ((ire == NULL) || 9940 ((ill = ire_to_ill(ire)) == NULL)) { 9941 if (ire != NULL) 9942 ire_refrele(ire); 9943 return (ENXIO); 9944 } 9945 } 9946 ASSERT(ire != NULL && ill != NULL); 9947 } 9948 9949 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9950 if (if_arp_ioctl) 9951 ill_refrele(ill); 9952 if (ire != NULL) 9953 ire_refrele(ire); 9954 9955 return (err); 9956 } 9957 9958 /* 9959 * ARP IOCTLs. 9960 * How does IP get in the business of fronting ARP configuration/queries? 9961 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9962 * are by tradition passed in through a datagram socket. That lands in IP. 9963 * As it happens, this is just as well since the interface is quite crude in 9964 * that it passes in no information about protocol or hardware types, or 9965 * interface association. After making the protocol assumption, IP is in 9966 * the position to look up the name of the ILL, which ARP will need, and 9967 * format a request that can be handled by ARP. The request is passed up 9968 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9969 * back a response. ARP supports its own set of more general IOCTLs, in 9970 * case anyone is interested. 9971 */ 9972 /* ARGSUSED */ 9973 int 9974 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9975 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9976 { 9977 struct arpreq *ar; 9978 struct sockaddr_in *sin; 9979 ire_t *ire; 9980 boolean_t isv6; 9981 mblk_t *mp1; 9982 int err; 9983 conn_t *connp; 9984 ill_t *ill; 9985 ip_stack_t *ipst; 9986 9987 /* ioctl comes down on an conn */ 9988 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9989 connp = Q_TO_CONN(q); 9990 ipst = CONNQ_TO_IPST(q); 9991 isv6 = connp->conn_af_isv6; 9992 if (isv6) 9993 return (ENXIO); 9994 9995 /* Existance verified in ip_wput_nondata */ 9996 mp1 = mp->b_cont->b_cont; 9997 9998 ar = (struct arpreq *)mp1->b_rptr; 9999 sin = (sin_t *)&ar->arp_pa; 10000 10001 /* 10002 * We need to let ARP know on which interface the IP 10003 * address has an ARP mapping. In the IPMP case, a 10004 * simple forwarding table lookup will return the 10005 * IRE_IF_RESOLVER for the first interface in the group, 10006 * which might not be the interface on which the 10007 * requested IP address was resolved due to the ill 10008 * selection algorithm (see ip_newroute_get_dst_ill()). 10009 * So we do a cache table lookup first: if the IRE cache 10010 * entry for the IP address is still there, it will 10011 * contain the ill pointer for the right interface, so 10012 * we use that. If the cache entry has been flushed, we 10013 * fall back to the forwarding table lookup. This should 10014 * be rare enough since IRE cache entries have a longer 10015 * life expectancy than ARP cache entries. 10016 */ 10017 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, ipst); 10018 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 10019 ((ill = ire_to_ill(ire)) == NULL)) { 10020 if (ire != NULL) 10021 ire_refrele(ire); 10022 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 10023 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 10024 NULL, MATCH_IRE_TYPE, ipst); 10025 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 10026 if (ire != NULL) 10027 ire_refrele(ire); 10028 return (ENXIO); 10029 } 10030 } 10031 ASSERT(ire != NULL && ill != NULL); 10032 10033 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 10034 ire_refrele(ire); 10035 return (err); 10036 } 10037 10038 /* 10039 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 10040 * atomically set/clear the muxids. Also complete the ioctl by acking or 10041 * naking it. Note that the code is structured such that the link type, 10042 * whether it's persistent or not, is treated equally. ifconfig(1M) and 10043 * its clones use the persistent link, while pppd(1M) and perhaps many 10044 * other daemons may use non-persistent link. When combined with some 10045 * ill_t states, linking and unlinking lower streams may be used as 10046 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 10047 */ 10048 /* ARGSUSED */ 10049 void 10050 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 10051 { 10052 mblk_t *mp1; 10053 mblk_t *mp2; 10054 struct linkblk *li; 10055 queue_t *ipwq; 10056 char *name; 10057 struct qinit *qinfo; 10058 struct ipmx_s *ipmxp; 10059 ill_t *ill = NULL; 10060 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10061 int err = 0; 10062 boolean_t entered_ipsq = B_FALSE; 10063 boolean_t islink; 10064 queue_t *dwq = NULL; 10065 ip_stack_t *ipst; 10066 10067 if (CONN_Q(q)) 10068 ipst = CONNQ_TO_IPST(q); 10069 else 10070 ipst = ILLQ_TO_IPST(q); 10071 10072 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 10073 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 10074 10075 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 10076 B_TRUE : B_FALSE; 10077 10078 mp1 = mp->b_cont; /* This is the linkblk info */ 10079 li = (struct linkblk *)mp1->b_rptr; 10080 10081 /* 10082 * ARP has added this special mblk, and the utility is asking us 10083 * to perform consistency checks, and also atomically set the 10084 * muxid. Ifconfig is an example. It achieves this by using 10085 * /dev/arp as the mux to plink the arp stream, and pushes arp on 10086 * to /dev/udp[6] stream for use as the mux when plinking the IP 10087 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 10088 * and other comments in this routine for more details. 10089 */ 10090 mp2 = mp1->b_cont; /* This is added by ARP */ 10091 10092 /* 10093 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 10094 * ifconfig which didn't push ARP on top of the dummy mux, we won't 10095 * get the special mblk above. For backward compatibility, we just 10096 * return success. The utility will use SIOCSLIFMUXID to store 10097 * the muxids. This is not atomic, and can leave the streams 10098 * unplumbable if the utility is interrrupted, before it does the 10099 * SIOCSLIFMUXID. 10100 */ 10101 if (mp2 == NULL) { 10102 /* 10103 * At this point we don't know whether or not this is the 10104 * IP module stream or the ARP device stream. We need to 10105 * walk the lower stream in order to find this out, since 10106 * the capability negotiation is done only on the IP module 10107 * stream. IP module instance is identified by the module 10108 * name IP, non-null q_next, and it's wput not being ip_lwput. 10109 * STREAMS ensures that the lower stream (l_qbot) will not 10110 * vanish until this ioctl completes. So we can safely walk 10111 * the stream or refer to the q_ptr. 10112 */ 10113 ipwq = li->l_qbot; 10114 while (ipwq != NULL) { 10115 qinfo = ipwq->q_qinfo; 10116 name = qinfo->qi_minfo->mi_idname; 10117 if (name != NULL && name[0] != NULL && 10118 (strcmp(name, ip_mod_info.mi_idname) == 0) && 10119 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 10120 (ipwq->q_next != NULL)) { 10121 break; 10122 } 10123 ipwq = ipwq->q_next; 10124 } 10125 /* 10126 * This looks like an IP module stream, so trigger 10127 * the capability reset or re-negotiation if necessary. 10128 */ 10129 if (ipwq != NULL) { 10130 ill = ipwq->q_ptr; 10131 ASSERT(ill != NULL); 10132 10133 if (ipsq == NULL) { 10134 ipsq = ipsq_try_enter(NULL, ill, q, mp, 10135 ip_sioctl_plink, NEW_OP, B_TRUE); 10136 if (ipsq == NULL) 10137 return; 10138 entered_ipsq = B_TRUE; 10139 } 10140 ASSERT(IAM_WRITER_ILL(ill)); 10141 /* 10142 * Store the upper read queue of the module 10143 * immediately below IP, and count the total 10144 * number of lower modules. Do this only 10145 * for I_PLINK or I_LINK event. 10146 */ 10147 ill->ill_lmod_rq = NULL; 10148 ill->ill_lmod_cnt = 0; 10149 if (islink && (dwq = ipwq->q_next) != NULL) { 10150 ill->ill_lmod_rq = RD(dwq); 10151 10152 while (dwq != NULL) { 10153 ill->ill_lmod_cnt++; 10154 dwq = dwq->q_next; 10155 } 10156 } 10157 /* 10158 * There's no point in resetting or re-negotiating if 10159 * we are not bound to the driver, so only do this if 10160 * the DLPI state is idle (up); we assume such state 10161 * since ill_ipif_up_count gets incremented in 10162 * ipif_up_done(), which is after we are bound to the 10163 * driver. Note that in the case of logical 10164 * interfaces, IP won't rebind to the driver unless 10165 * the ill_ipif_up_count is 0, meaning that all other 10166 * IP interfaces (including the main ipif) are in the 10167 * down state. Because of this, we use such counter 10168 * as an indicator, instead of relying on the IPIF_UP 10169 * flag, which is per ipif instance. 10170 */ 10171 if (ill->ill_ipif_up_count > 0) { 10172 if (islink) 10173 ill_capability_probe(ill); 10174 else 10175 ill_capability_reset(ill); 10176 } 10177 } 10178 goto done; 10179 } 10180 10181 /* 10182 * This is an I_{P}LINK sent down by ifconfig on 10183 * /dev/arp. ARP has appended this last (3rd) mblk, 10184 * giving more info. STREAMS ensures that the lower 10185 * stream (l_qbot) will not vanish until this ioctl 10186 * completes. So we can safely walk the stream or refer 10187 * to the q_ptr. 10188 */ 10189 ipmxp = (struct ipmx_s *)mp2->b_rptr; 10190 if (ipmxp->ipmx_arpdev_stream) { 10191 /* 10192 * The operation is occuring on the arp-device 10193 * stream. 10194 */ 10195 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 10196 q, mp, ip_sioctl_plink, &err, NULL, ipst); 10197 if (ill == NULL) { 10198 if (err == EINPROGRESS) { 10199 return; 10200 } else { 10201 err = EINVAL; 10202 goto done; 10203 } 10204 } 10205 10206 if (ipsq == NULL) { 10207 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10208 NEW_OP, B_TRUE); 10209 if (ipsq == NULL) { 10210 ill_refrele(ill); 10211 return; 10212 } 10213 entered_ipsq = B_TRUE; 10214 } 10215 ASSERT(IAM_WRITER_ILL(ill)); 10216 ill_refrele(ill); 10217 /* 10218 * To ensure consistency between IP and ARP, 10219 * the following LIFO scheme is used in 10220 * plink/punlink. (IP first, ARP last). 10221 * This is because the muxid's are stored 10222 * in the IP stream on the ill. 10223 * 10224 * I_{P}LINK: ifconfig plinks the IP stream before 10225 * plinking the ARP stream. On an arp-dev 10226 * stream, IP checks that it is not yet 10227 * plinked, and it also checks that the 10228 * corresponding IP stream is already plinked. 10229 * 10230 * I_{P}UNLINK: ifconfig punlinks the ARP stream 10231 * before punlinking the IP stream. IP does 10232 * not allow punlink of the IP stream unless 10233 * the arp stream has been punlinked. 10234 * 10235 */ 10236 if ((islink && 10237 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 10238 (!islink && 10239 ill->ill_arp_muxid != li->l_index)) { 10240 err = EINVAL; 10241 goto done; 10242 } 10243 if (islink) { 10244 ill->ill_arp_muxid = li->l_index; 10245 } else { 10246 ill->ill_arp_muxid = 0; 10247 } 10248 } else { 10249 /* 10250 * This must be the IP module stream with or 10251 * without arp. Walk the stream and locate the 10252 * IP module. An IP module instance is 10253 * identified by the module name IP, non-null 10254 * q_next, and it's wput not being ip_lwput. 10255 */ 10256 ipwq = li->l_qbot; 10257 while (ipwq != NULL) { 10258 qinfo = ipwq->q_qinfo; 10259 name = qinfo->qi_minfo->mi_idname; 10260 if (name != NULL && name[0] != NULL && 10261 (strcmp(name, ip_mod_info.mi_idname) == 0) && 10262 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 10263 (ipwq->q_next != NULL)) { 10264 break; 10265 } 10266 ipwq = ipwq->q_next; 10267 } 10268 if (ipwq != NULL) { 10269 ill = ipwq->q_ptr; 10270 ASSERT(ill != NULL); 10271 10272 if (ipsq == NULL) { 10273 ipsq = ipsq_try_enter(NULL, ill, q, mp, 10274 ip_sioctl_plink, NEW_OP, B_TRUE); 10275 if (ipsq == NULL) 10276 return; 10277 entered_ipsq = B_TRUE; 10278 } 10279 ASSERT(IAM_WRITER_ILL(ill)); 10280 /* 10281 * Return error if the ip_mux_id is 10282 * non-zero and command is I_{P}LINK. 10283 * If command is I_{P}UNLINK, return 10284 * error if the arp-devstr is not 10285 * yet punlinked. 10286 */ 10287 if ((islink && ill->ill_ip_muxid != 0) || 10288 (!islink && ill->ill_arp_muxid != 0)) { 10289 err = EINVAL; 10290 goto done; 10291 } 10292 ill->ill_lmod_rq = NULL; 10293 ill->ill_lmod_cnt = 0; 10294 if (islink) { 10295 /* 10296 * Store the upper read queue of the module 10297 * immediately below IP, and count the total 10298 * number of lower modules. 10299 */ 10300 if ((dwq = ipwq->q_next) != NULL) { 10301 ill->ill_lmod_rq = RD(dwq); 10302 10303 while (dwq != NULL) { 10304 ill->ill_lmod_cnt++; 10305 dwq = dwq->q_next; 10306 } 10307 } 10308 ill->ill_ip_muxid = li->l_index; 10309 } else { 10310 ill->ill_ip_muxid = 0; 10311 } 10312 10313 /* 10314 * See comments above about resetting/re- 10315 * negotiating driver sub-capabilities. 10316 */ 10317 if (ill->ill_ipif_up_count > 0) { 10318 if (islink) 10319 ill_capability_probe(ill); 10320 else 10321 ill_capability_reset(ill); 10322 } 10323 } 10324 } 10325 done: 10326 iocp->ioc_count = 0; 10327 iocp->ioc_error = err; 10328 if (err == 0) 10329 mp->b_datap->db_type = M_IOCACK; 10330 else 10331 mp->b_datap->db_type = M_IOCNAK; 10332 qreply(q, mp); 10333 10334 /* Conn was refheld in ip_sioctl_copyin_setup */ 10335 if (CONN_Q(q)) 10336 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 10337 if (entered_ipsq) 10338 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10339 } 10340 10341 /* 10342 * Search the ioctl command in the ioctl tables and return a pointer 10343 * to the ioctl command information. The ioctl command tables are 10344 * static and fully populated at compile time. 10345 */ 10346 ip_ioctl_cmd_t * 10347 ip_sioctl_lookup(int ioc_cmd) 10348 { 10349 int index; 10350 ip_ioctl_cmd_t *ipip; 10351 ip_ioctl_cmd_t *ipip_end; 10352 10353 if (ioc_cmd == IPI_DONTCARE) 10354 return (NULL); 10355 10356 /* 10357 * Do a 2 step search. First search the indexed table 10358 * based on the least significant byte of the ioctl cmd. 10359 * If we don't find a match, then search the misc table 10360 * serially. 10361 */ 10362 index = ioc_cmd & 0xFF; 10363 if (index < ip_ndx_ioctl_count) { 10364 ipip = &ip_ndx_ioctl_table[index]; 10365 if (ipip->ipi_cmd == ioc_cmd) { 10366 /* Found a match in the ndx table */ 10367 return (ipip); 10368 } 10369 } 10370 10371 /* Search the misc table */ 10372 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10373 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10374 if (ipip->ipi_cmd == ioc_cmd) 10375 /* Found a match in the misc table */ 10376 return (ipip); 10377 } 10378 10379 return (NULL); 10380 } 10381 10382 /* 10383 * Wrapper function for resuming deferred ioctl processing 10384 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10385 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10386 */ 10387 /* ARGSUSED */ 10388 void 10389 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10390 void *dummy_arg) 10391 { 10392 ip_sioctl_copyin_setup(q, mp); 10393 } 10394 10395 /* 10396 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10397 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10398 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10399 * We establish here the size of the block to be copied in. mi_copyin 10400 * arranges for this to happen, an processing continues in ip_wput with 10401 * an M_IOCDATA message. 10402 */ 10403 void 10404 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10405 { 10406 int copyin_size; 10407 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10408 ip_ioctl_cmd_t *ipip; 10409 cred_t *cr; 10410 ip_stack_t *ipst; 10411 10412 if (CONN_Q(q)) 10413 ipst = CONNQ_TO_IPST(q); 10414 else 10415 ipst = ILLQ_TO_IPST(q); 10416 10417 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10418 if (ipip == NULL) { 10419 /* 10420 * The ioctl is not one we understand or own. 10421 * Pass it along to be processed down stream, 10422 * if this is a module instance of IP, else nak 10423 * the ioctl. 10424 */ 10425 if (q->q_next == NULL) { 10426 goto nak; 10427 } else { 10428 putnext(q, mp); 10429 return; 10430 } 10431 } 10432 10433 /* 10434 * If this is deferred, then we will do all the checks when we 10435 * come back. 10436 */ 10437 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10438 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10439 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10440 return; 10441 } 10442 10443 /* 10444 * Only allow a very small subset of IP ioctls on this stream if 10445 * IP is a module and not a driver. Allowing ioctls to be processed 10446 * in this case may cause assert failures or data corruption. 10447 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10448 * ioctls allowed on an IP module stream, after which this stream 10449 * normally becomes a multiplexor (at which time the stream head 10450 * will fail all ioctls). 10451 */ 10452 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10453 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10454 /* 10455 * Pass common Streams ioctls which the IP 10456 * module does not own or consume along to 10457 * be processed down stream. 10458 */ 10459 putnext(q, mp); 10460 return; 10461 } else { 10462 goto nak; 10463 } 10464 } 10465 10466 /* Make sure we have ioctl data to process. */ 10467 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10468 goto nak; 10469 10470 /* 10471 * Prefer dblk credential over ioctl credential; some synthesized 10472 * ioctls have kcred set because there's no way to crhold() 10473 * a credential in some contexts. (ioc_cr is not crfree() by 10474 * the framework; the caller of ioctl needs to hold the reference 10475 * for the duration of the call). 10476 */ 10477 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10478 10479 /* Make sure normal users don't send down privileged ioctls */ 10480 if ((ipip->ipi_flags & IPI_PRIV) && 10481 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10482 /* We checked the privilege earlier but log it here */ 10483 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10484 return; 10485 } 10486 10487 /* 10488 * The ioctl command tables can only encode fixed length 10489 * ioctl data. If the length is variable, the table will 10490 * encode the length as zero. Such special cases are handled 10491 * below in the switch. 10492 */ 10493 if (ipip->ipi_copyin_size != 0) { 10494 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10495 return; 10496 } 10497 10498 switch (iocp->ioc_cmd) { 10499 case O_SIOCGIFCONF: 10500 case SIOCGIFCONF: 10501 /* 10502 * This IOCTL is hilarious. See comments in 10503 * ip_sioctl_get_ifconf for the story. 10504 */ 10505 if (iocp->ioc_count == TRANSPARENT) 10506 copyin_size = SIZEOF_STRUCT(ifconf, 10507 iocp->ioc_flag); 10508 else 10509 copyin_size = iocp->ioc_count; 10510 mi_copyin(q, mp, NULL, copyin_size); 10511 return; 10512 10513 case O_SIOCGLIFCONF: 10514 case SIOCGLIFCONF: 10515 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10516 mi_copyin(q, mp, NULL, copyin_size); 10517 return; 10518 10519 case SIOCGLIFSRCOF: 10520 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10521 mi_copyin(q, mp, NULL, copyin_size); 10522 return; 10523 case SIOCGIP6ADDRPOLICY: 10524 ip_sioctl_ip6addrpolicy(q, mp); 10525 ip6_asp_table_refrele(ipst); 10526 return; 10527 10528 case SIOCSIP6ADDRPOLICY: 10529 ip_sioctl_ip6addrpolicy(q, mp); 10530 return; 10531 10532 case SIOCGDSTINFO: 10533 ip_sioctl_dstinfo(q, mp); 10534 ip6_asp_table_refrele(ipst); 10535 return; 10536 10537 case I_PLINK: 10538 case I_PUNLINK: 10539 case I_LINK: 10540 case I_UNLINK: 10541 /* 10542 * We treat non-persistent link similarly as the persistent 10543 * link case, in terms of plumbing/unplumbing, as well as 10544 * dynamic re-plumbing events indicator. See comments 10545 * in ip_sioctl_plink() for more. 10546 * 10547 * Request can be enqueued in the 'ipsq' while waiting 10548 * to become exclusive. So bump up the conn ref. 10549 */ 10550 if (CONN_Q(q)) 10551 CONN_INC_REF(Q_TO_CONN(q)); 10552 ip_sioctl_plink(NULL, q, mp, NULL); 10553 return; 10554 10555 case ND_GET: 10556 case ND_SET: 10557 /* 10558 * Use of the nd table requires holding the reader lock. 10559 * Modifying the nd table thru nd_load/nd_unload requires 10560 * the writer lock. 10561 */ 10562 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10563 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10564 rw_exit(&ipst->ips_ip_g_nd_lock); 10565 10566 if (iocp->ioc_error) 10567 iocp->ioc_count = 0; 10568 mp->b_datap->db_type = M_IOCACK; 10569 qreply(q, mp); 10570 return; 10571 } 10572 rw_exit(&ipst->ips_ip_g_nd_lock); 10573 /* 10574 * We don't understand this subioctl of ND_GET / ND_SET. 10575 * Maybe intended for some driver / module below us 10576 */ 10577 if (q->q_next) { 10578 putnext(q, mp); 10579 } else { 10580 iocp->ioc_error = ENOENT; 10581 mp->b_datap->db_type = M_IOCNAK; 10582 iocp->ioc_count = 0; 10583 qreply(q, mp); 10584 } 10585 return; 10586 10587 case IP_IOCTL: 10588 ip_wput_ioctl(q, mp); 10589 return; 10590 default: 10591 cmn_err(CE_PANIC, "should not happen "); 10592 } 10593 nak: 10594 if (mp->b_cont != NULL) { 10595 freemsg(mp->b_cont); 10596 mp->b_cont = NULL; 10597 } 10598 iocp->ioc_error = EINVAL; 10599 mp->b_datap->db_type = M_IOCNAK; 10600 iocp->ioc_count = 0; 10601 qreply(q, mp); 10602 } 10603 10604 /* ip_wput hands off ARP IOCTL responses to us */ 10605 void 10606 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10607 { 10608 struct arpreq *ar; 10609 struct xarpreq *xar; 10610 area_t *area; 10611 mblk_t *area_mp; 10612 struct iocblk *iocp; 10613 mblk_t *orig_ioc_mp, *tmp; 10614 struct iocblk *orig_iocp; 10615 ill_t *ill; 10616 conn_t *connp = NULL; 10617 uint_t ioc_id; 10618 mblk_t *pending_mp; 10619 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10620 int *flagsp; 10621 char *storage = NULL; 10622 sin_t *sin; 10623 ipaddr_t addr; 10624 int err; 10625 ip_stack_t *ipst; 10626 10627 ill = q->q_ptr; 10628 ASSERT(ill != NULL); 10629 ipst = ill->ill_ipst; 10630 10631 /* 10632 * We should get back from ARP a packet chain that looks like: 10633 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10634 */ 10635 if (!(area_mp = mp->b_cont) || 10636 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10637 !(orig_ioc_mp = area_mp->b_cont) || 10638 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10639 freemsg(mp); 10640 return; 10641 } 10642 10643 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10644 10645 tmp = (orig_ioc_mp->b_cont)->b_cont; 10646 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10647 (orig_iocp->ioc_cmd == SIOCSXARP) || 10648 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10649 x_arp_ioctl = B_TRUE; 10650 xar = (struct xarpreq *)tmp->b_rptr; 10651 sin = (sin_t *)&xar->xarp_pa; 10652 flagsp = &xar->xarp_flags; 10653 storage = xar->xarp_ha.sdl_data; 10654 if (xar->xarp_ha.sdl_nlen != 0) 10655 ifx_arp_ioctl = B_TRUE; 10656 } else { 10657 ar = (struct arpreq *)tmp->b_rptr; 10658 sin = (sin_t *)&ar->arp_pa; 10659 flagsp = &ar->arp_flags; 10660 storage = ar->arp_ha.sa_data; 10661 } 10662 10663 iocp = (struct iocblk *)mp->b_rptr; 10664 10665 /* 10666 * Pick out the originating queue based on the ioc_id. 10667 */ 10668 ioc_id = iocp->ioc_id; 10669 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10670 if (pending_mp == NULL) { 10671 ASSERT(connp == NULL); 10672 inet_freemsg(mp); 10673 return; 10674 } 10675 ASSERT(connp != NULL); 10676 q = CONNP_TO_WQ(connp); 10677 10678 /* Uncouple the internally generated IOCTL from the original one */ 10679 area = (area_t *)area_mp->b_rptr; 10680 area_mp->b_cont = NULL; 10681 10682 /* 10683 * Restore the b_next and b_prev used by mi code. This is needed 10684 * to complete the ioctl using mi* functions. We stored them in 10685 * the pending mp prior to sending the request to ARP. 10686 */ 10687 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10688 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10689 inet_freemsg(pending_mp); 10690 10691 /* 10692 * We're done if there was an error or if this is not an SIOCG{X}ARP 10693 * Catch the case where there is an IRE_CACHE by no entry in the 10694 * arp table. 10695 */ 10696 addr = sin->sin_addr.s_addr; 10697 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10698 ire_t *ire; 10699 dl_unitdata_req_t *dlup; 10700 mblk_t *llmp; 10701 int addr_len; 10702 ill_t *ipsqill = NULL; 10703 10704 if (ifx_arp_ioctl) { 10705 /* 10706 * There's no need to lookup the ill, since 10707 * we've already done that when we started 10708 * processing the ioctl and sent the message 10709 * to ARP on that ill. So use the ill that 10710 * is stored in q->q_ptr. 10711 */ 10712 ipsqill = ill; 10713 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10714 ipsqill->ill_ipif, ALL_ZONES, 10715 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10716 } else { 10717 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10718 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10719 if (ire != NULL) 10720 ipsqill = ire_to_ill(ire); 10721 } 10722 10723 if ((x_arp_ioctl) && (ipsqill != NULL)) 10724 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10725 10726 if (ire != NULL) { 10727 /* 10728 * Since the ire obtained from cachetable is used for 10729 * mac addr copying below, treat an incomplete ire as if 10730 * as if we never found it. 10731 */ 10732 if (ire->ire_nce != NULL && 10733 ire->ire_nce->nce_state != ND_REACHABLE) { 10734 ire_refrele(ire); 10735 ire = NULL; 10736 ipsqill = NULL; 10737 goto errack; 10738 } 10739 *flagsp = ATF_INUSE; 10740 llmp = (ire->ire_nce != NULL ? 10741 ire->ire_nce->nce_res_mp : NULL); 10742 if (llmp != NULL && ipsqill != NULL) { 10743 uchar_t *macaddr; 10744 10745 addr_len = ipsqill->ill_phys_addr_length; 10746 if (x_arp_ioctl && ((addr_len + 10747 ipsqill->ill_name_length) > 10748 sizeof (xar->xarp_ha.sdl_data))) { 10749 ire_refrele(ire); 10750 freemsg(mp); 10751 ip_ioctl_finish(q, orig_ioc_mp, 10752 EINVAL, NO_COPYOUT, NULL); 10753 return; 10754 } 10755 *flagsp |= ATF_COM; 10756 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10757 if (ipsqill->ill_sap_length < 0) 10758 macaddr = llmp->b_rptr + 10759 dlup->dl_dest_addr_offset; 10760 else 10761 macaddr = llmp->b_rptr + 10762 dlup->dl_dest_addr_offset + 10763 ipsqill->ill_sap_length; 10764 /* 10765 * For SIOCGARP, MAC address length 10766 * validation has already been done 10767 * before the ioctl was issued to ARP to 10768 * allow it to progress only on 6 byte 10769 * addressable (ethernet like) media. Thus 10770 * the mac address copying can not overwrite 10771 * the sa_data area below. 10772 */ 10773 bcopy(macaddr, storage, addr_len); 10774 } 10775 /* Ditch the internal IOCTL. */ 10776 freemsg(mp); 10777 ire_refrele(ire); 10778 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10779 return; 10780 } 10781 } 10782 10783 /* 10784 * Delete the coresponding IRE_CACHE if any. 10785 * Reset the error if there was one (in case there was no entry 10786 * in arp.) 10787 */ 10788 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10789 ipif_t *ipintf = NULL; 10790 10791 if (ifx_arp_ioctl) { 10792 /* 10793 * There's no need to lookup the ill, since 10794 * we've already done that when we started 10795 * processing the ioctl and sent the message 10796 * to ARP on that ill. So use the ill that 10797 * is stored in q->q_ptr. 10798 */ 10799 ipintf = ill->ill_ipif; 10800 } 10801 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10802 /* 10803 * The address in "addr" may be an entry for a 10804 * router. If that's true, then any off-net 10805 * IRE_CACHE entries that go through the router 10806 * with address "addr" must be clobbered. Use 10807 * ire_walk to achieve this goal. 10808 */ 10809 if (ifx_arp_ioctl) 10810 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10811 ire_delete_cache_gw, (char *)&addr, ill); 10812 else 10813 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10814 ALL_ZONES, ipst); 10815 iocp->ioc_error = 0; 10816 } 10817 } 10818 errack: 10819 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10820 err = iocp->ioc_error; 10821 freemsg(mp); 10822 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10823 return; 10824 } 10825 10826 /* 10827 * Completion of an SIOCG{X}ARP. Translate the information from 10828 * the area_t into the struct {x}arpreq. 10829 */ 10830 if (x_arp_ioctl) { 10831 storage += ill_xarp_info(&xar->xarp_ha, ill); 10832 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10833 sizeof (xar->xarp_ha.sdl_data)) { 10834 freemsg(mp); 10835 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10836 NULL); 10837 return; 10838 } 10839 } 10840 *flagsp = ATF_INUSE; 10841 if (area->area_flags & ACE_F_PERMANENT) 10842 *flagsp |= ATF_PERM; 10843 if (area->area_flags & ACE_F_PUBLISH) 10844 *flagsp |= ATF_PUBL; 10845 if (area->area_flags & ACE_F_AUTHORITY) 10846 *flagsp |= ATF_AUTHORITY; 10847 if (area->area_hw_addr_length != 0) { 10848 *flagsp |= ATF_COM; 10849 /* 10850 * For SIOCGARP, MAC address length validation has 10851 * already been done before the ioctl was issued to ARP 10852 * to allow it to progress only on 6 byte addressable 10853 * (ethernet like) media. Thus the mac address copying 10854 * can not overwrite the sa_data area below. 10855 */ 10856 bcopy((char *)area + area->area_hw_addr_offset, 10857 storage, area->area_hw_addr_length); 10858 } 10859 10860 /* Ditch the internal IOCTL. */ 10861 freemsg(mp); 10862 /* Complete the original. */ 10863 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10864 } 10865 10866 /* 10867 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10868 * interface) create the next available logical interface for this 10869 * physical interface. 10870 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10871 * ipif with the specified name. 10872 * 10873 * If the address family is not AF_UNSPEC then set the address as well. 10874 * 10875 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10876 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10877 * 10878 * Executed as a writer on the ill or ill group. 10879 * So no lock is needed to traverse the ipif chain, or examine the 10880 * phyint flags. 10881 */ 10882 /* ARGSUSED */ 10883 int 10884 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10885 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10886 { 10887 mblk_t *mp1; 10888 struct lifreq *lifr; 10889 boolean_t isv6; 10890 boolean_t exists; 10891 char *name; 10892 char *endp; 10893 char *cp; 10894 int namelen; 10895 ipif_t *ipif; 10896 long id; 10897 ipsq_t *ipsq; 10898 ill_t *ill; 10899 sin_t *sin; 10900 int err = 0; 10901 boolean_t found_sep = B_FALSE; 10902 conn_t *connp; 10903 zoneid_t zoneid; 10904 int orig_ifindex = 0; 10905 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10906 10907 ASSERT(q->q_next == NULL); 10908 ip1dbg(("ip_sioctl_addif\n")); 10909 /* Existence of mp1 has been checked in ip_wput_nondata */ 10910 mp1 = mp->b_cont->b_cont; 10911 /* 10912 * Null terminate the string to protect against buffer 10913 * overrun. String was generated by user code and may not 10914 * be trusted. 10915 */ 10916 lifr = (struct lifreq *)mp1->b_rptr; 10917 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10918 name = lifr->lifr_name; 10919 ASSERT(CONN_Q(q)); 10920 connp = Q_TO_CONN(q); 10921 isv6 = connp->conn_af_isv6; 10922 zoneid = connp->conn_zoneid; 10923 namelen = mi_strlen(name); 10924 if (namelen == 0) 10925 return (EINVAL); 10926 10927 exists = B_FALSE; 10928 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10929 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10930 /* 10931 * Allow creating lo0 using SIOCLIFADDIF. 10932 * can't be any other writer thread. So can pass null below 10933 * for the last 4 args to ipif_lookup_name. 10934 */ 10935 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10936 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10937 /* Prevent any further action */ 10938 if (ipif == NULL) { 10939 return (ENOBUFS); 10940 } else if (!exists) { 10941 /* We created the ipif now and as writer */ 10942 ipif_refrele(ipif); 10943 return (0); 10944 } else { 10945 ill = ipif->ipif_ill; 10946 ill_refhold(ill); 10947 ipif_refrele(ipif); 10948 } 10949 } else { 10950 /* Look for a colon in the name. */ 10951 endp = &name[namelen]; 10952 for (cp = endp; --cp > name; ) { 10953 if (*cp == IPIF_SEPARATOR_CHAR) { 10954 found_sep = B_TRUE; 10955 /* 10956 * Reject any non-decimal aliases for plumbing 10957 * of logical interfaces. Aliases with leading 10958 * zeroes are also rejected as they introduce 10959 * ambiguity in the naming of the interfaces. 10960 * Comparing with "0" takes care of all such 10961 * cases. 10962 */ 10963 if ((strncmp("0", cp+1, 1)) == 0) 10964 return (EINVAL); 10965 10966 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10967 id <= 0 || *endp != '\0') { 10968 return (EINVAL); 10969 } 10970 *cp = '\0'; 10971 break; 10972 } 10973 } 10974 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10975 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10976 if (found_sep) 10977 *cp = IPIF_SEPARATOR_CHAR; 10978 if (ill == NULL) 10979 return (err); 10980 } 10981 10982 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10983 B_TRUE); 10984 10985 /* 10986 * Release the refhold due to the lookup, now that we are excl 10987 * or we are just returning 10988 */ 10989 ill_refrele(ill); 10990 10991 if (ipsq == NULL) 10992 return (EINPROGRESS); 10993 10994 /* 10995 * If the interface is failed, inactive or offlined, look for a working 10996 * interface in the ill group and create the ipif there. If we can't 10997 * find a good interface, create the ipif anyway so that in.mpathd can 10998 * move it to the first repaired interface. 10999 */ 11000 if ((ill->ill_phyint->phyint_flags & 11001 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 11002 ill->ill_phyint->phyint_groupname_len != 0) { 11003 phyint_t *phyi; 11004 char *groupname = ill->ill_phyint->phyint_groupname; 11005 11006 /* 11007 * We're looking for a working interface, but it doesn't matter 11008 * if it's up or down; so instead of following the group lists, 11009 * we look at each physical interface and compare the groupname. 11010 * We're only interested in interfaces with IPv4 (resp. IPv6) 11011 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 11012 * Otherwise we create the ipif on the failed interface. 11013 */ 11014 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11015 phyi = avl_first(&ipst->ips_phyint_g_list-> 11016 phyint_list_avl_by_index); 11017 for (; phyi != NULL; 11018 phyi = avl_walk(&ipst->ips_phyint_g_list-> 11019 phyint_list_avl_by_index, 11020 phyi, AVL_AFTER)) { 11021 if (phyi->phyint_groupname_len == 0) 11022 continue; 11023 ASSERT(phyi->phyint_groupname != NULL); 11024 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 11025 !(phyi->phyint_flags & 11026 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 11027 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 11028 (phyi->phyint_illv4 != NULL))) { 11029 break; 11030 } 11031 } 11032 rw_exit(&ipst->ips_ill_g_lock); 11033 11034 if (phyi != NULL) { 11035 orig_ifindex = ill->ill_phyint->phyint_ifindex; 11036 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 11037 phyi->phyint_illv4); 11038 } 11039 } 11040 11041 /* 11042 * We are now exclusive on the ipsq, so an ill move will be serialized 11043 * before or after us. 11044 */ 11045 ASSERT(IAM_WRITER_ILL(ill)); 11046 ASSERT(ill->ill_move_in_progress == B_FALSE); 11047 11048 if (found_sep && orig_ifindex == 0) { 11049 /* Now see if there is an IPIF with this unit number. */ 11050 for (ipif = ill->ill_ipif; ipif != NULL; 11051 ipif = ipif->ipif_next) { 11052 if (ipif->ipif_id == id) { 11053 err = EEXIST; 11054 goto done; 11055 } 11056 } 11057 } 11058 11059 /* 11060 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 11061 * of lo0. We never come here when we plumb lo0:0. It 11062 * happens in ipif_lookup_on_name. 11063 * The specified unit number is ignored when we create the ipif on a 11064 * different interface. However, we save it in ipif_orig_ipifid below so 11065 * that the ipif fails back to the right position. 11066 */ 11067 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 11068 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 11069 err = ENOBUFS; 11070 goto done; 11071 } 11072 11073 /* Return created name with ioctl */ 11074 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 11075 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 11076 ip1dbg(("created %s\n", lifr->lifr_name)); 11077 11078 /* Set address */ 11079 sin = (sin_t *)&lifr->lifr_addr; 11080 if (sin->sin_family != AF_UNSPEC) { 11081 err = ip_sioctl_addr(ipif, sin, q, mp, 11082 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 11083 } 11084 11085 /* Set ifindex and unit number for failback */ 11086 if (err == 0 && orig_ifindex != 0) { 11087 ipif->ipif_orig_ifindex = orig_ifindex; 11088 if (found_sep) { 11089 ipif->ipif_orig_ipifid = id; 11090 } 11091 } 11092 11093 done: 11094 ipsq_exit(ipsq, B_TRUE, B_TRUE); 11095 return (err); 11096 } 11097 11098 /* 11099 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 11100 * interface) delete it based on the IP address (on this physical interface). 11101 * Otherwise delete it based on the ipif_id. 11102 * Also, special handling to allow a removeif of lo0. 11103 */ 11104 /* ARGSUSED */ 11105 int 11106 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11107 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11108 { 11109 conn_t *connp; 11110 ill_t *ill = ipif->ipif_ill; 11111 boolean_t success; 11112 ip_stack_t *ipst; 11113 11114 ipst = CONNQ_TO_IPST(q); 11115 11116 ASSERT(q->q_next == NULL); 11117 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 11118 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11119 ASSERT(IAM_WRITER_IPIF(ipif)); 11120 11121 connp = Q_TO_CONN(q); 11122 /* 11123 * Special case for unplumbing lo0 (the loopback physical interface). 11124 * If unplumbing lo0, the incoming address structure has been 11125 * initialized to all zeros. When unplumbing lo0, all its logical 11126 * interfaces must be removed too. 11127 * 11128 * Note that this interface may be called to remove a specific 11129 * loopback logical interface (eg, lo0:1). But in that case 11130 * ipif->ipif_id != 0 so that the code path for that case is the 11131 * same as any other interface (meaning it skips the code directly 11132 * below). 11133 */ 11134 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11135 if (sin->sin_family == AF_UNSPEC && 11136 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 11137 /* 11138 * Mark it condemned. No new ref. will be made to ill. 11139 */ 11140 mutex_enter(&ill->ill_lock); 11141 ill->ill_state_flags |= ILL_CONDEMNED; 11142 for (ipif = ill->ill_ipif; ipif != NULL; 11143 ipif = ipif->ipif_next) { 11144 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11145 } 11146 mutex_exit(&ill->ill_lock); 11147 11148 ipif = ill->ill_ipif; 11149 /* unplumb the loopback interface */ 11150 ill_delete(ill); 11151 mutex_enter(&connp->conn_lock); 11152 mutex_enter(&ill->ill_lock); 11153 ASSERT(ill->ill_group == NULL); 11154 11155 /* Are any references to this ill active */ 11156 if (ill_is_quiescent(ill)) { 11157 mutex_exit(&ill->ill_lock); 11158 mutex_exit(&connp->conn_lock); 11159 ill_delete_tail(ill); 11160 mi_free(ill); 11161 return (0); 11162 } 11163 success = ipsq_pending_mp_add(connp, ipif, 11164 CONNP_TO_WQ(connp), mp, ILL_FREE); 11165 mutex_exit(&connp->conn_lock); 11166 mutex_exit(&ill->ill_lock); 11167 if (success) 11168 return (EINPROGRESS); 11169 else 11170 return (EINTR); 11171 } 11172 } 11173 11174 /* 11175 * We are exclusive on the ipsq, so an ill move will be serialized 11176 * before or after us. 11177 */ 11178 ASSERT(ill->ill_move_in_progress == B_FALSE); 11179 11180 if (ipif->ipif_id == 0) { 11181 /* Find based on address */ 11182 if (ipif->ipif_isv6) { 11183 sin6_t *sin6; 11184 11185 if (sin->sin_family != AF_INET6) 11186 return (EAFNOSUPPORT); 11187 11188 sin6 = (sin6_t *)sin; 11189 /* We are a writer, so we should be able to lookup */ 11190 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11191 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 11192 if (ipif == NULL) { 11193 /* 11194 * Maybe the address in on another interface in 11195 * the same IPMP group? We check this below. 11196 */ 11197 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11198 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 11199 ipst); 11200 } 11201 } else { 11202 ipaddr_t addr; 11203 11204 if (sin->sin_family != AF_INET) 11205 return (EAFNOSUPPORT); 11206 11207 addr = sin->sin_addr.s_addr; 11208 /* We are a writer, so we should be able to lookup */ 11209 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 11210 NULL, NULL, NULL, ipst); 11211 if (ipif == NULL) { 11212 /* 11213 * Maybe the address in on another interface in 11214 * the same IPMP group? We check this below. 11215 */ 11216 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 11217 NULL, NULL, NULL, NULL, ipst); 11218 } 11219 } 11220 if (ipif == NULL) { 11221 return (EADDRNOTAVAIL); 11222 } 11223 /* 11224 * When the address to be removed is hosted on a different 11225 * interface, we check if the interface is in the same IPMP 11226 * group as the specified one; if so we proceed with the 11227 * removal. 11228 * ill->ill_group is NULL when the ill is down, so we have to 11229 * compare the group names instead. 11230 */ 11231 if (ipif->ipif_ill != ill && 11232 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 11233 ill->ill_phyint->phyint_groupname_len == 0 || 11234 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 11235 ill->ill_phyint->phyint_groupname) != 0)) { 11236 ipif_refrele(ipif); 11237 return (EADDRNOTAVAIL); 11238 } 11239 11240 /* This is a writer */ 11241 ipif_refrele(ipif); 11242 } 11243 11244 /* 11245 * Can not delete instance zero since it is tied to the ill. 11246 */ 11247 if (ipif->ipif_id == 0) 11248 return (EBUSY); 11249 11250 mutex_enter(&ill->ill_lock); 11251 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11252 mutex_exit(&ill->ill_lock); 11253 11254 ipif_free(ipif); 11255 11256 mutex_enter(&connp->conn_lock); 11257 mutex_enter(&ill->ill_lock); 11258 11259 /* Are any references to this ipif active */ 11260 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 11261 mutex_exit(&ill->ill_lock); 11262 mutex_exit(&connp->conn_lock); 11263 ipif_non_duplicate(ipif); 11264 ipif_down_tail(ipif); 11265 ipif_free_tail(ipif); 11266 return (0); 11267 } 11268 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 11269 IPIF_FREE); 11270 mutex_exit(&ill->ill_lock); 11271 mutex_exit(&connp->conn_lock); 11272 if (success) 11273 return (EINPROGRESS); 11274 else 11275 return (EINTR); 11276 } 11277 11278 /* 11279 * Restart the removeif ioctl. The refcnt has gone down to 0. 11280 * The ipif is already condemned. So can't find it thru lookups. 11281 */ 11282 /* ARGSUSED */ 11283 int 11284 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11285 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11286 { 11287 ill_t *ill; 11288 11289 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11290 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11291 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11292 ill = ipif->ipif_ill; 11293 ASSERT(IAM_WRITER_ILL(ill)); 11294 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 11295 (ill->ill_state_flags & IPIF_CONDEMNED)); 11296 ill_delete_tail(ill); 11297 mi_free(ill); 11298 return (0); 11299 } 11300 11301 ill = ipif->ipif_ill; 11302 ASSERT(IAM_WRITER_IPIF(ipif)); 11303 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11304 11305 ipif_non_duplicate(ipif); 11306 ipif_down_tail(ipif); 11307 ipif_free_tail(ipif); 11308 11309 ILL_UNMARK_CHANGING(ill); 11310 return (0); 11311 } 11312 11313 /* 11314 * Set the local interface address. 11315 * Allow an address of all zero when the interface is down. 11316 */ 11317 /* ARGSUSED */ 11318 int 11319 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11320 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11321 { 11322 int err = 0; 11323 in6_addr_t v6addr; 11324 boolean_t need_up = B_FALSE; 11325 11326 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11327 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11328 11329 ASSERT(IAM_WRITER_IPIF(ipif)); 11330 11331 if (ipif->ipif_isv6) { 11332 sin6_t *sin6; 11333 ill_t *ill; 11334 phyint_t *phyi; 11335 11336 if (sin->sin_family != AF_INET6) 11337 return (EAFNOSUPPORT); 11338 11339 sin6 = (sin6_t *)sin; 11340 v6addr = sin6->sin6_addr; 11341 ill = ipif->ipif_ill; 11342 phyi = ill->ill_phyint; 11343 11344 /* 11345 * Enforce that true multicast interfaces have a link-local 11346 * address for logical unit 0. 11347 */ 11348 if (ipif->ipif_id == 0 && 11349 (ill->ill_flags & ILLF_MULTICAST) && 11350 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11351 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11352 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11353 return (EADDRNOTAVAIL); 11354 } 11355 11356 /* 11357 * up interfaces shouldn't have the unspecified address 11358 * unless they also have the IPIF_NOLOCAL flags set and 11359 * have a subnet assigned. 11360 */ 11361 if ((ipif->ipif_flags & IPIF_UP) && 11362 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11363 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11364 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11365 return (EADDRNOTAVAIL); 11366 } 11367 11368 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11369 return (EADDRNOTAVAIL); 11370 } else { 11371 ipaddr_t addr; 11372 11373 if (sin->sin_family != AF_INET) 11374 return (EAFNOSUPPORT); 11375 11376 addr = sin->sin_addr.s_addr; 11377 11378 /* Allow 0 as the local address. */ 11379 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11380 return (EADDRNOTAVAIL); 11381 11382 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11383 } 11384 11385 11386 /* 11387 * Even if there is no change we redo things just to rerun 11388 * ipif_set_default. 11389 */ 11390 if (ipif->ipif_flags & IPIF_UP) { 11391 /* 11392 * Setting a new local address, make sure 11393 * we have net and subnet bcast ire's for 11394 * the old address if we need them. 11395 */ 11396 if (!ipif->ipif_isv6) 11397 ipif_check_bcast_ires(ipif); 11398 /* 11399 * If the interface is already marked up, 11400 * we call ipif_down which will take care 11401 * of ditching any IREs that have been set 11402 * up based on the old interface address. 11403 */ 11404 err = ipif_logical_down(ipif, q, mp); 11405 if (err == EINPROGRESS) 11406 return (err); 11407 ipif_down_tail(ipif); 11408 need_up = 1; 11409 } 11410 11411 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11412 return (err); 11413 } 11414 11415 int 11416 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11417 boolean_t need_up) 11418 { 11419 in6_addr_t v6addr; 11420 in6_addr_t ov6addr; 11421 ipaddr_t addr; 11422 sin6_t *sin6; 11423 int sinlen; 11424 int err = 0; 11425 ill_t *ill = ipif->ipif_ill; 11426 boolean_t need_dl_down; 11427 boolean_t need_arp_down; 11428 struct iocblk *iocp; 11429 11430 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11431 11432 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11433 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11434 ASSERT(IAM_WRITER_IPIF(ipif)); 11435 11436 /* Must cancel any pending timer before taking the ill_lock */ 11437 if (ipif->ipif_recovery_id != 0) 11438 (void) untimeout(ipif->ipif_recovery_id); 11439 ipif->ipif_recovery_id = 0; 11440 11441 if (ipif->ipif_isv6) { 11442 sin6 = (sin6_t *)sin; 11443 v6addr = sin6->sin6_addr; 11444 sinlen = sizeof (struct sockaddr_in6); 11445 } else { 11446 addr = sin->sin_addr.s_addr; 11447 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11448 sinlen = sizeof (struct sockaddr_in); 11449 } 11450 mutex_enter(&ill->ill_lock); 11451 ov6addr = ipif->ipif_v6lcl_addr; 11452 ipif->ipif_v6lcl_addr = v6addr; 11453 sctp_update_ipif_addr(ipif, ov6addr); 11454 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11455 ipif->ipif_v6src_addr = ipv6_all_zeros; 11456 } else { 11457 ipif->ipif_v6src_addr = v6addr; 11458 } 11459 ipif->ipif_addr_ready = 0; 11460 11461 /* 11462 * If the interface was previously marked as a duplicate, then since 11463 * we've now got a "new" address, it should no longer be considered a 11464 * duplicate -- even if the "new" address is the same as the old one. 11465 * Note that if all ipifs are down, we may have a pending ARP down 11466 * event to handle. This is because we want to recover from duplicates 11467 * and thus delay tearing down ARP until the duplicates have been 11468 * removed or disabled. 11469 */ 11470 need_dl_down = need_arp_down = B_FALSE; 11471 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11472 need_arp_down = !need_up; 11473 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11474 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11475 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11476 need_dl_down = B_TRUE; 11477 } 11478 } 11479 11480 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11481 !ill->ill_is_6to4tun) { 11482 queue_t *wqp = ill->ill_wq; 11483 11484 /* 11485 * The local address of this interface is a 6to4 address, 11486 * check if this interface is in fact a 6to4 tunnel or just 11487 * an interface configured with a 6to4 address. We are only 11488 * interested in the former. 11489 */ 11490 if (wqp != NULL) { 11491 while ((wqp->q_next != NULL) && 11492 (wqp->q_next->q_qinfo != NULL) && 11493 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11494 11495 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11496 == TUN6TO4_MODID) { 11497 /* set for use in IP */ 11498 ill->ill_is_6to4tun = 1; 11499 break; 11500 } 11501 wqp = wqp->q_next; 11502 } 11503 } 11504 } 11505 11506 ipif_set_default(ipif); 11507 11508 /* 11509 * When publishing an interface address change event, we only notify 11510 * the event listeners of the new address. It is assumed that if they 11511 * actively care about the addresses assigned that they will have 11512 * already discovered the previous address assigned (if there was one.) 11513 * 11514 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11515 */ 11516 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11517 hook_nic_event_t *info; 11518 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11519 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11520 "attached for %s\n", info->hne_event, 11521 ill->ill_name)); 11522 if (info->hne_data != NULL) 11523 kmem_free(info->hne_data, info->hne_datalen); 11524 kmem_free(info, sizeof (hook_nic_event_t)); 11525 } 11526 11527 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11528 if (info != NULL) { 11529 ip_stack_t *ipst = ill->ill_ipst; 11530 11531 info->hne_nic = 11532 ipif->ipif_ill->ill_phyint->phyint_hook_ifindex; 11533 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11534 info->hne_event = NE_ADDRESS_CHANGE; 11535 info->hne_family = ipif->ipif_isv6 ? 11536 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 11537 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11538 if (info->hne_data != NULL) { 11539 info->hne_datalen = sinlen; 11540 bcopy(sin, info->hne_data, sinlen); 11541 } else { 11542 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11543 "address information for ADDRESS_CHANGE nic" 11544 " event of %s (ENOMEM)\n", 11545 ipif->ipif_ill->ill_name)); 11546 kmem_free(info, sizeof (hook_nic_event_t)); 11547 } 11548 } else 11549 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11550 "ADDRESS_CHANGE nic event information for %s " 11551 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11552 11553 ipif->ipif_ill->ill_nic_event_info = info; 11554 } 11555 11556 mutex_exit(&ill->ill_lock); 11557 11558 if (need_up) { 11559 /* 11560 * Now bring the interface back up. If this 11561 * is the only IPIF for the ILL, ipif_up 11562 * will have to re-bind to the device, so 11563 * we may get back EINPROGRESS, in which 11564 * case, this IOCTL will get completed in 11565 * ip_rput_dlpi when we see the DL_BIND_ACK. 11566 */ 11567 err = ipif_up(ipif, q, mp); 11568 } 11569 11570 if (need_dl_down) 11571 ill_dl_down(ill); 11572 if (need_arp_down) 11573 ipif_arp_down(ipif); 11574 11575 return (err); 11576 } 11577 11578 11579 /* 11580 * Restart entry point to restart the address set operation after the 11581 * refcounts have dropped to zero. 11582 */ 11583 /* ARGSUSED */ 11584 int 11585 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11586 ip_ioctl_cmd_t *ipip, void *ifreq) 11587 { 11588 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11589 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11590 ASSERT(IAM_WRITER_IPIF(ipif)); 11591 ipif_down_tail(ipif); 11592 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11593 } 11594 11595 /* ARGSUSED */ 11596 int 11597 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11598 ip_ioctl_cmd_t *ipip, void *if_req) 11599 { 11600 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11601 struct lifreq *lifr = (struct lifreq *)if_req; 11602 11603 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11604 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11605 /* 11606 * The net mask and address can't change since we have a 11607 * reference to the ipif. So no lock is necessary. 11608 */ 11609 if (ipif->ipif_isv6) { 11610 *sin6 = sin6_null; 11611 sin6->sin6_family = AF_INET6; 11612 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11613 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11614 lifr->lifr_addrlen = 11615 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11616 } else { 11617 *sin = sin_null; 11618 sin->sin_family = AF_INET; 11619 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11620 if (ipip->ipi_cmd_type == LIF_CMD) { 11621 lifr->lifr_addrlen = 11622 ip_mask_to_plen(ipif->ipif_net_mask); 11623 } 11624 } 11625 return (0); 11626 } 11627 11628 /* 11629 * Set the destination address for a pt-pt interface. 11630 */ 11631 /* ARGSUSED */ 11632 int 11633 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11634 ip_ioctl_cmd_t *ipip, void *if_req) 11635 { 11636 int err = 0; 11637 in6_addr_t v6addr; 11638 boolean_t need_up = B_FALSE; 11639 11640 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11641 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11642 ASSERT(IAM_WRITER_IPIF(ipif)); 11643 11644 if (ipif->ipif_isv6) { 11645 sin6_t *sin6; 11646 11647 if (sin->sin_family != AF_INET6) 11648 return (EAFNOSUPPORT); 11649 11650 sin6 = (sin6_t *)sin; 11651 v6addr = sin6->sin6_addr; 11652 11653 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11654 return (EADDRNOTAVAIL); 11655 } else { 11656 ipaddr_t addr; 11657 11658 if (sin->sin_family != AF_INET) 11659 return (EAFNOSUPPORT); 11660 11661 addr = sin->sin_addr.s_addr; 11662 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11663 return (EADDRNOTAVAIL); 11664 11665 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11666 } 11667 11668 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11669 return (0); /* No change */ 11670 11671 if (ipif->ipif_flags & IPIF_UP) { 11672 /* 11673 * If the interface is already marked up, 11674 * we call ipif_down which will take care 11675 * of ditching any IREs that have been set 11676 * up based on the old pp dst address. 11677 */ 11678 err = ipif_logical_down(ipif, q, mp); 11679 if (err == EINPROGRESS) 11680 return (err); 11681 ipif_down_tail(ipif); 11682 need_up = B_TRUE; 11683 } 11684 /* 11685 * could return EINPROGRESS. If so ioctl will complete in 11686 * ip_rput_dlpi_writer 11687 */ 11688 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11689 return (err); 11690 } 11691 11692 static int 11693 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11694 boolean_t need_up) 11695 { 11696 in6_addr_t v6addr; 11697 ill_t *ill = ipif->ipif_ill; 11698 int err = 0; 11699 boolean_t need_dl_down; 11700 boolean_t need_arp_down; 11701 11702 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11703 ipif->ipif_id, (void *)ipif)); 11704 11705 /* Must cancel any pending timer before taking the ill_lock */ 11706 if (ipif->ipif_recovery_id != 0) 11707 (void) untimeout(ipif->ipif_recovery_id); 11708 ipif->ipif_recovery_id = 0; 11709 11710 if (ipif->ipif_isv6) { 11711 sin6_t *sin6; 11712 11713 sin6 = (sin6_t *)sin; 11714 v6addr = sin6->sin6_addr; 11715 } else { 11716 ipaddr_t addr; 11717 11718 addr = sin->sin_addr.s_addr; 11719 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11720 } 11721 mutex_enter(&ill->ill_lock); 11722 /* Set point to point destination address. */ 11723 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11724 /* 11725 * Allow this as a means of creating logical 11726 * pt-pt interfaces on top of e.g. an Ethernet. 11727 * XXX Undocumented HACK for testing. 11728 * pt-pt interfaces are created with NUD disabled. 11729 */ 11730 ipif->ipif_flags |= IPIF_POINTOPOINT; 11731 ipif->ipif_flags &= ~IPIF_BROADCAST; 11732 if (ipif->ipif_isv6) 11733 ill->ill_flags |= ILLF_NONUD; 11734 } 11735 11736 /* 11737 * If the interface was previously marked as a duplicate, then since 11738 * we've now got a "new" address, it should no longer be considered a 11739 * duplicate -- even if the "new" address is the same as the old one. 11740 * Note that if all ipifs are down, we may have a pending ARP down 11741 * event to handle. 11742 */ 11743 need_dl_down = need_arp_down = B_FALSE; 11744 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11745 need_arp_down = !need_up; 11746 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11747 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11748 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11749 need_dl_down = B_TRUE; 11750 } 11751 } 11752 11753 /* Set the new address. */ 11754 ipif->ipif_v6pp_dst_addr = v6addr; 11755 /* Make sure subnet tracks pp_dst */ 11756 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11757 mutex_exit(&ill->ill_lock); 11758 11759 if (need_up) { 11760 /* 11761 * Now bring the interface back up. If this 11762 * is the only IPIF for the ILL, ipif_up 11763 * will have to re-bind to the device, so 11764 * we may get back EINPROGRESS, in which 11765 * case, this IOCTL will get completed in 11766 * ip_rput_dlpi when we see the DL_BIND_ACK. 11767 */ 11768 err = ipif_up(ipif, q, mp); 11769 } 11770 11771 if (need_dl_down) 11772 ill_dl_down(ill); 11773 11774 if (need_arp_down) 11775 ipif_arp_down(ipif); 11776 return (err); 11777 } 11778 11779 /* 11780 * Restart entry point to restart the dstaddress set operation after the 11781 * refcounts have dropped to zero. 11782 */ 11783 /* ARGSUSED */ 11784 int 11785 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11786 ip_ioctl_cmd_t *ipip, void *ifreq) 11787 { 11788 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11789 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11790 ipif_down_tail(ipif); 11791 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11792 } 11793 11794 /* ARGSUSED */ 11795 int 11796 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11797 ip_ioctl_cmd_t *ipip, void *if_req) 11798 { 11799 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11800 11801 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11802 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11803 /* 11804 * Get point to point destination address. The addresses can't 11805 * change since we hold a reference to the ipif. 11806 */ 11807 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11808 return (EADDRNOTAVAIL); 11809 11810 if (ipif->ipif_isv6) { 11811 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11812 *sin6 = sin6_null; 11813 sin6->sin6_family = AF_INET6; 11814 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11815 } else { 11816 *sin = sin_null; 11817 sin->sin_family = AF_INET; 11818 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11819 } 11820 return (0); 11821 } 11822 11823 /* 11824 * part of ipmp, make this func return the active/inactive state and 11825 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11826 */ 11827 /* 11828 * This function either sets or clears the IFF_INACTIVE flag. 11829 * 11830 * As long as there are some addresses or multicast memberships on the 11831 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11832 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11833 * will be used for outbound packets. 11834 * 11835 * Caller needs to verify the validity of setting IFF_INACTIVE. 11836 */ 11837 static void 11838 phyint_inactive(phyint_t *phyi) 11839 { 11840 ill_t *ill_v4; 11841 ill_t *ill_v6; 11842 ipif_t *ipif; 11843 ilm_t *ilm; 11844 11845 ill_v4 = phyi->phyint_illv4; 11846 ill_v6 = phyi->phyint_illv6; 11847 11848 /* 11849 * No need for a lock while traversing the list since iam 11850 * a writer 11851 */ 11852 if (ill_v4 != NULL) { 11853 ASSERT(IAM_WRITER_ILL(ill_v4)); 11854 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11855 ipif = ipif->ipif_next) { 11856 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11857 mutex_enter(&phyi->phyint_lock); 11858 phyi->phyint_flags &= ~PHYI_INACTIVE; 11859 mutex_exit(&phyi->phyint_lock); 11860 return; 11861 } 11862 } 11863 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11864 ilm = ilm->ilm_next) { 11865 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11866 mutex_enter(&phyi->phyint_lock); 11867 phyi->phyint_flags &= ~PHYI_INACTIVE; 11868 mutex_exit(&phyi->phyint_lock); 11869 return; 11870 } 11871 } 11872 } 11873 if (ill_v6 != NULL) { 11874 ill_v6 = phyi->phyint_illv6; 11875 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11876 ipif = ipif->ipif_next) { 11877 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11878 mutex_enter(&phyi->phyint_lock); 11879 phyi->phyint_flags &= ~PHYI_INACTIVE; 11880 mutex_exit(&phyi->phyint_lock); 11881 return; 11882 } 11883 } 11884 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11885 ilm = ilm->ilm_next) { 11886 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11887 mutex_enter(&phyi->phyint_lock); 11888 phyi->phyint_flags &= ~PHYI_INACTIVE; 11889 mutex_exit(&phyi->phyint_lock); 11890 return; 11891 } 11892 } 11893 } 11894 mutex_enter(&phyi->phyint_lock); 11895 phyi->phyint_flags |= PHYI_INACTIVE; 11896 mutex_exit(&phyi->phyint_lock); 11897 } 11898 11899 /* 11900 * This function is called only when the phyint flags change. Currently 11901 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11902 * that we can select a good ill. 11903 */ 11904 static void 11905 ip_redo_nomination(phyint_t *phyi) 11906 { 11907 ill_t *ill_v4; 11908 11909 ill_v4 = phyi->phyint_illv4; 11910 11911 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11912 ASSERT(IAM_WRITER_ILL(ill_v4)); 11913 if (ill_v4->ill_group->illgrp_ill_count > 1) 11914 ill_nominate_bcast_rcv(ill_v4->ill_group); 11915 } 11916 } 11917 11918 /* 11919 * Heuristic to check if ill is INACTIVE. 11920 * Checks if ill has an ipif with an usable ip address. 11921 * 11922 * Return values: 11923 * B_TRUE - ill is INACTIVE; has no usable ipif 11924 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11925 */ 11926 static boolean_t 11927 ill_is_inactive(ill_t *ill) 11928 { 11929 ipif_t *ipif; 11930 11931 /* Check whether it is in an IPMP group */ 11932 if (ill->ill_phyint->phyint_groupname == NULL) 11933 return (B_FALSE); 11934 11935 if (ill->ill_ipif_up_count == 0) 11936 return (B_TRUE); 11937 11938 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11939 uint64_t flags = ipif->ipif_flags; 11940 11941 /* 11942 * This ipif is usable if it is IPIF_UP and not a 11943 * dedicated test address. A dedicated test address 11944 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11945 * (note in particular that V6 test addresses are 11946 * link-local data addresses and thus are marked 11947 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11948 */ 11949 if ((flags & IPIF_UP) && 11950 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11951 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11952 return (B_FALSE); 11953 } 11954 return (B_TRUE); 11955 } 11956 11957 /* 11958 * Set interface flags. 11959 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11960 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11961 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11962 * 11963 * NOTE : We really don't enforce that ipif_id zero should be used 11964 * for setting any flags other than IFF_LOGINT_FLAGS. This 11965 * is because applications generally does SICGLIFFLAGS and 11966 * ORs in the new flags (that affects the logical) and does a 11967 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11968 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11969 * flags that will be turned on is correct with respect to 11970 * ipif_id 0. For backward compatibility reasons, it is not done. 11971 */ 11972 /* ARGSUSED */ 11973 int 11974 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11975 ip_ioctl_cmd_t *ipip, void *if_req) 11976 { 11977 uint64_t turn_on; 11978 uint64_t turn_off; 11979 int err; 11980 boolean_t need_up = B_FALSE; 11981 phyint_t *phyi; 11982 ill_t *ill; 11983 uint64_t intf_flags; 11984 boolean_t phyint_flags_modified = B_FALSE; 11985 uint64_t flags; 11986 struct ifreq *ifr; 11987 struct lifreq *lifr; 11988 boolean_t set_linklocal = B_FALSE; 11989 boolean_t zero_source = B_FALSE; 11990 ip_stack_t *ipst; 11991 11992 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11993 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11994 11995 ASSERT(IAM_WRITER_IPIF(ipif)); 11996 11997 ill = ipif->ipif_ill; 11998 phyi = ill->ill_phyint; 11999 ipst = ill->ill_ipst; 12000 12001 if (ipip->ipi_cmd_type == IF_CMD) { 12002 ifr = (struct ifreq *)if_req; 12003 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 12004 } else { 12005 lifr = (struct lifreq *)if_req; 12006 flags = lifr->lifr_flags; 12007 } 12008 12009 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12010 12011 /* 12012 * Has the flags been set correctly till now ? 12013 */ 12014 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12015 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12016 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12017 /* 12018 * Compare the new flags to the old, and partition 12019 * into those coming on and those going off. 12020 * For the 16 bit command keep the bits above bit 16 unchanged. 12021 */ 12022 if (ipip->ipi_cmd == SIOCSIFFLAGS) 12023 flags |= intf_flags & ~0xFFFF; 12024 12025 /* 12026 * First check which bits will change and then which will 12027 * go on and off 12028 */ 12029 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 12030 if (!turn_on) 12031 return (0); /* No change */ 12032 12033 turn_off = intf_flags & turn_on; 12034 turn_on ^= turn_off; 12035 err = 0; 12036 12037 /* 12038 * Don't allow any bits belonging to the logical interface 12039 * to be set or cleared on the replacement ipif that was 12040 * created temporarily during a MOVE. 12041 */ 12042 if (ipif->ipif_replace_zero && 12043 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 12044 return (EINVAL); 12045 } 12046 12047 /* 12048 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 12049 * IPv6 interfaces. 12050 */ 12051 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 12052 return (EINVAL); 12053 12054 /* 12055 * Don't allow the IFF_ROUTER flag to be turned on on loopback 12056 * interfaces. It makes no sense in that context. 12057 */ 12058 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 12059 return (EINVAL); 12060 12061 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 12062 zero_source = B_TRUE; 12063 12064 /* 12065 * For IPv6 ipif_id 0, don't allow the interface to be up without 12066 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 12067 * If the link local address isn't set, and can be set, it will get 12068 * set later on in this function. 12069 */ 12070 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 12071 (flags & IFF_UP) && !zero_source && 12072 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 12073 if (ipif_cant_setlinklocal(ipif)) 12074 return (EINVAL); 12075 set_linklocal = B_TRUE; 12076 } 12077 12078 /* 12079 * ILL cannot be part of a usesrc group and and IPMP group at the 12080 * same time. No need to grab ill_g_usesrc_lock here, see 12081 * synchronization notes in ip.c 12082 */ 12083 if (turn_on & PHYI_STANDBY && 12084 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 12085 return (EINVAL); 12086 } 12087 12088 /* 12089 * If we modify physical interface flags, we'll potentially need to 12090 * send up two routing socket messages for the changes (one for the 12091 * IPv4 ill, and another for the IPv6 ill). Note that here. 12092 */ 12093 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 12094 phyint_flags_modified = B_TRUE; 12095 12096 /* 12097 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 12098 * we need to flush the IRE_CACHES belonging to this ill. 12099 * We handle this case here without doing the DOWN/UP dance 12100 * like it is done for other flags. If some other flags are 12101 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 12102 * below will handle it by bringing it down and then 12103 * bringing it UP. 12104 */ 12105 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 12106 ill_t *ill_v4, *ill_v6; 12107 12108 ill_v4 = phyi->phyint_illv4; 12109 ill_v6 = phyi->phyint_illv6; 12110 12111 /* 12112 * First set the INACTIVE flag if needed. Then delete the ires. 12113 * ire_add will atomically prevent creating new IRE_CACHEs 12114 * unless hidden flag is set. 12115 * PHYI_FAILED and PHYI_INACTIVE are exclusive 12116 */ 12117 if ((turn_on & PHYI_FAILED) && 12118 ((intf_flags & PHYI_STANDBY) || 12119 !ipst->ips_ipmp_enable_failback)) { 12120 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 12121 phyi->phyint_flags &= ~PHYI_INACTIVE; 12122 } 12123 if ((turn_off & PHYI_FAILED) && 12124 ((intf_flags & PHYI_STANDBY) || 12125 (!ipst->ips_ipmp_enable_failback && 12126 ill_is_inactive(ill)))) { 12127 phyint_inactive(phyi); 12128 } 12129 12130 if (turn_on & PHYI_STANDBY) { 12131 /* 12132 * We implicitly set INACTIVE only when STANDBY is set. 12133 * INACTIVE is also set on non-STANDBY phyint when user 12134 * disables FAILBACK using configuration file. 12135 * Do not allow STANDBY to be set on such INACTIVE 12136 * phyint 12137 */ 12138 if (phyi->phyint_flags & PHYI_INACTIVE) 12139 return (EINVAL); 12140 if (!(phyi->phyint_flags & PHYI_FAILED)) 12141 phyint_inactive(phyi); 12142 } 12143 if (turn_off & PHYI_STANDBY) { 12144 if (ipst->ips_ipmp_enable_failback) { 12145 /* 12146 * Reset PHYI_INACTIVE. 12147 */ 12148 phyi->phyint_flags &= ~PHYI_INACTIVE; 12149 } else if (ill_is_inactive(ill) && 12150 !(phyi->phyint_flags & PHYI_FAILED)) { 12151 /* 12152 * Need to set INACTIVE, when user sets 12153 * STANDBY on a non-STANDBY phyint and 12154 * later resets STANDBY 12155 */ 12156 phyint_inactive(phyi); 12157 } 12158 } 12159 /* 12160 * We should always send up a message so that the 12161 * daemons come to know of it. Note that the zeroth 12162 * interface can be down and the check below for IPIF_UP 12163 * will not make sense as we are actually setting 12164 * a phyint flag here. We assume that the ipif used 12165 * is always the zeroth ipif. (ip_rts_ifmsg does not 12166 * send up any message for non-zero ipifs). 12167 */ 12168 phyint_flags_modified = B_TRUE; 12169 12170 if (ill_v4 != NULL) { 12171 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12172 IRE_CACHE, ill_stq_cache_delete, 12173 (char *)ill_v4, ill_v4); 12174 illgrp_reset_schednext(ill_v4); 12175 } 12176 if (ill_v6 != NULL) { 12177 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12178 IRE_CACHE, ill_stq_cache_delete, 12179 (char *)ill_v6, ill_v6); 12180 illgrp_reset_schednext(ill_v6); 12181 } 12182 } 12183 12184 /* 12185 * If ILLF_ROUTER changes, we need to change the ip forwarding 12186 * status of the interface and, if the interface is part of an IPMP 12187 * group, all other interfaces that are part of the same IPMP 12188 * group. 12189 */ 12190 if ((turn_on | turn_off) & ILLF_ROUTER) { 12191 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 12192 (caddr_t)ill); 12193 } 12194 12195 /* 12196 * If the interface is not UP and we are not going to 12197 * bring it UP, record the flags and return. When the 12198 * interface comes UP later, the right actions will be 12199 * taken. 12200 */ 12201 if (!(ipif->ipif_flags & IPIF_UP) && 12202 !(turn_on & IPIF_UP)) { 12203 /* Record new flags in their respective places. */ 12204 mutex_enter(&ill->ill_lock); 12205 mutex_enter(&ill->ill_phyint->phyint_lock); 12206 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12207 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12208 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12209 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12210 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12211 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12212 mutex_exit(&ill->ill_lock); 12213 mutex_exit(&ill->ill_phyint->phyint_lock); 12214 12215 /* 12216 * We do the broadcast and nomination here rather 12217 * than waiting for a FAILOVER/FAILBACK to happen. In 12218 * the case of FAILBACK from INACTIVE standby to the 12219 * interface that has been repaired, PHYI_FAILED has not 12220 * been cleared yet. If there are only two interfaces in 12221 * that group, all we have is a FAILED and INACTIVE 12222 * interface. If we do the nomination soon after a failback, 12223 * the broadcast nomination code would select the 12224 * INACTIVE interface for receiving broadcasts as FAILED is 12225 * not yet cleared. As we don't want STANDBY/INACTIVE to 12226 * receive broadcast packets, we need to redo nomination 12227 * when the FAILED is cleared here. Thus, in general we 12228 * always do the nomination here for FAILED, STANDBY 12229 * and OFFLINE. 12230 */ 12231 if (((turn_on | turn_off) & 12232 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 12233 ip_redo_nomination(phyi); 12234 } 12235 if (phyint_flags_modified) { 12236 if (phyi->phyint_illv4 != NULL) { 12237 ip_rts_ifmsg(phyi->phyint_illv4-> 12238 ill_ipif); 12239 } 12240 if (phyi->phyint_illv6 != NULL) { 12241 ip_rts_ifmsg(phyi->phyint_illv6-> 12242 ill_ipif); 12243 } 12244 } 12245 return (0); 12246 } else if (set_linklocal || zero_source) { 12247 mutex_enter(&ill->ill_lock); 12248 if (set_linklocal) 12249 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 12250 if (zero_source) 12251 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 12252 mutex_exit(&ill->ill_lock); 12253 } 12254 12255 /* 12256 * Disallow IPv6 interfaces coming up that have the unspecified address, 12257 * or point-to-point interfaces with an unspecified destination. We do 12258 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 12259 * have a subnet assigned, which is how in.ndpd currently manages its 12260 * onlink prefix list when no addresses are configured with those 12261 * prefixes. 12262 */ 12263 if (ipif->ipif_isv6 && 12264 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 12265 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 12266 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 12267 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12268 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 12269 return (EINVAL); 12270 } 12271 12272 /* 12273 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 12274 * from being brought up. 12275 */ 12276 if (!ipif->ipif_isv6 && 12277 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12278 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 12279 return (EINVAL); 12280 } 12281 12282 /* 12283 * The only flag changes that we currently take specific action on 12284 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 12285 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 12286 * IPIF_PREFERRED. This is done by bring the ipif down, changing 12287 * the flags and bringing it back up again. 12288 */ 12289 if ((turn_on|turn_off) & 12290 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 12291 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 12292 /* 12293 * Taking this ipif down, make sure we have 12294 * valid net and subnet bcast ire's for other 12295 * logical interfaces, if we need them. 12296 */ 12297 if (!ipif->ipif_isv6) 12298 ipif_check_bcast_ires(ipif); 12299 12300 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 12301 !(turn_off & IPIF_UP)) { 12302 need_up = B_TRUE; 12303 if (ipif->ipif_flags & IPIF_UP) 12304 ill->ill_logical_down = 1; 12305 turn_on &= ~IPIF_UP; 12306 } 12307 err = ipif_down(ipif, q, mp); 12308 ip1dbg(("ipif_down returns %d err ", err)); 12309 if (err == EINPROGRESS) 12310 return (err); 12311 ipif_down_tail(ipif); 12312 } 12313 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12314 } 12315 12316 static int 12317 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12318 boolean_t need_up) 12319 { 12320 ill_t *ill; 12321 phyint_t *phyi; 12322 uint64_t turn_on; 12323 uint64_t turn_off; 12324 uint64_t intf_flags; 12325 boolean_t phyint_flags_modified = B_FALSE; 12326 int err = 0; 12327 boolean_t set_linklocal = B_FALSE; 12328 boolean_t zero_source = B_FALSE; 12329 12330 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12331 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12332 12333 ASSERT(IAM_WRITER_IPIF(ipif)); 12334 12335 ill = ipif->ipif_ill; 12336 phyi = ill->ill_phyint; 12337 12338 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12339 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12340 12341 turn_off = intf_flags & turn_on; 12342 turn_on ^= turn_off; 12343 12344 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12345 phyint_flags_modified = B_TRUE; 12346 12347 /* 12348 * Now we change the flags. Track current value of 12349 * other flags in their respective places. 12350 */ 12351 mutex_enter(&ill->ill_lock); 12352 mutex_enter(&phyi->phyint_lock); 12353 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12354 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12355 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12356 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12357 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12358 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12359 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12360 set_linklocal = B_TRUE; 12361 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12362 } 12363 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12364 zero_source = B_TRUE; 12365 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12366 } 12367 mutex_exit(&ill->ill_lock); 12368 mutex_exit(&phyi->phyint_lock); 12369 12370 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12371 ip_redo_nomination(phyi); 12372 12373 if (set_linklocal) 12374 (void) ipif_setlinklocal(ipif); 12375 12376 if (zero_source) 12377 ipif->ipif_v6src_addr = ipv6_all_zeros; 12378 else 12379 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12380 12381 if (need_up) { 12382 /* 12383 * XXX ipif_up really does not know whether a phyint flags 12384 * was modified or not. So, it sends up information on 12385 * only one routing sockets message. As we don't bring up 12386 * the interface and also set STANDBY/FAILED simultaneously 12387 * it should be okay. 12388 */ 12389 err = ipif_up(ipif, q, mp); 12390 } else { 12391 /* 12392 * Make sure routing socket sees all changes to the flags. 12393 * ipif_up_done* handles this when we use ipif_up. 12394 */ 12395 if (phyint_flags_modified) { 12396 if (phyi->phyint_illv4 != NULL) { 12397 ip_rts_ifmsg(phyi->phyint_illv4-> 12398 ill_ipif); 12399 } 12400 if (phyi->phyint_illv6 != NULL) { 12401 ip_rts_ifmsg(phyi->phyint_illv6-> 12402 ill_ipif); 12403 } 12404 } else { 12405 ip_rts_ifmsg(ipif); 12406 } 12407 /* 12408 * Update the flags in SCTP's IPIF list, ipif_up() will do 12409 * this in need_up case. 12410 */ 12411 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12412 } 12413 return (err); 12414 } 12415 12416 /* 12417 * Restart entry point to restart the flags restart operation after the 12418 * refcounts have dropped to zero. 12419 */ 12420 /* ARGSUSED */ 12421 int 12422 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12423 ip_ioctl_cmd_t *ipip, void *if_req) 12424 { 12425 int err; 12426 struct ifreq *ifr = (struct ifreq *)if_req; 12427 struct lifreq *lifr = (struct lifreq *)if_req; 12428 12429 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12430 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12431 12432 ipif_down_tail(ipif); 12433 if (ipip->ipi_cmd_type == IF_CMD) { 12434 /* 12435 * Since ip_sioctl_flags expects an int and ifr_flags 12436 * is a short we need to cast ifr_flags into an int 12437 * to avoid having sign extension cause bits to get 12438 * set that should not be. 12439 */ 12440 err = ip_sioctl_flags_tail(ipif, 12441 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12442 q, mp, B_TRUE); 12443 } else { 12444 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12445 q, mp, B_TRUE); 12446 } 12447 return (err); 12448 } 12449 12450 /* 12451 * Can operate on either a module or a driver queue. 12452 */ 12453 /* ARGSUSED */ 12454 int 12455 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12456 ip_ioctl_cmd_t *ipip, void *if_req) 12457 { 12458 /* 12459 * Has the flags been set correctly till now ? 12460 */ 12461 ill_t *ill = ipif->ipif_ill; 12462 phyint_t *phyi = ill->ill_phyint; 12463 12464 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12465 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12466 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12467 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12468 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12469 12470 /* 12471 * Need a lock since some flags can be set even when there are 12472 * references to the ipif. 12473 */ 12474 mutex_enter(&ill->ill_lock); 12475 if (ipip->ipi_cmd_type == IF_CMD) { 12476 struct ifreq *ifr = (struct ifreq *)if_req; 12477 12478 /* Get interface flags (low 16 only). */ 12479 ifr->ifr_flags = ((ipif->ipif_flags | 12480 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12481 } else { 12482 struct lifreq *lifr = (struct lifreq *)if_req; 12483 12484 /* Get interface flags. */ 12485 lifr->lifr_flags = ipif->ipif_flags | 12486 ill->ill_flags | phyi->phyint_flags; 12487 } 12488 mutex_exit(&ill->ill_lock); 12489 return (0); 12490 } 12491 12492 /* ARGSUSED */ 12493 int 12494 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12495 ip_ioctl_cmd_t *ipip, void *if_req) 12496 { 12497 int mtu; 12498 int ip_min_mtu; 12499 struct ifreq *ifr; 12500 struct lifreq *lifr; 12501 ire_t *ire; 12502 ip_stack_t *ipst; 12503 12504 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12505 ipif->ipif_id, (void *)ipif)); 12506 if (ipip->ipi_cmd_type == IF_CMD) { 12507 ifr = (struct ifreq *)if_req; 12508 mtu = ifr->ifr_metric; 12509 } else { 12510 lifr = (struct lifreq *)if_req; 12511 mtu = lifr->lifr_mtu; 12512 } 12513 12514 if (ipif->ipif_isv6) 12515 ip_min_mtu = IPV6_MIN_MTU; 12516 else 12517 ip_min_mtu = IP_MIN_MTU; 12518 12519 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12520 return (EINVAL); 12521 12522 /* 12523 * Change the MTU size in all relevant ire's. 12524 * Mtu change Vs. new ire creation - protocol below. 12525 * First change ipif_mtu and the ire_max_frag of the 12526 * interface ire. Then do an ire walk and change the 12527 * ire_max_frag of all affected ires. During ire_add 12528 * under the bucket lock, set the ire_max_frag of the 12529 * new ire being created from the ipif/ire from which 12530 * it is being derived. If an mtu change happens after 12531 * the ire is added, the new ire will be cleaned up. 12532 * Conversely if the mtu change happens before the ire 12533 * is added, ire_add will see the new value of the mtu. 12534 */ 12535 ipif->ipif_mtu = mtu; 12536 ipif->ipif_flags |= IPIF_FIXEDMTU; 12537 12538 if (ipif->ipif_isv6) 12539 ire = ipif_to_ire_v6(ipif); 12540 else 12541 ire = ipif_to_ire(ipif); 12542 if (ire != NULL) { 12543 ire->ire_max_frag = ipif->ipif_mtu; 12544 ire_refrele(ire); 12545 } 12546 ipst = ipif->ipif_ill->ill_ipst; 12547 if (ipif->ipif_flags & IPIF_UP) { 12548 if (ipif->ipif_isv6) 12549 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12550 ipst); 12551 else 12552 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12553 ipst); 12554 } 12555 /* Update the MTU in SCTP's list */ 12556 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12557 return (0); 12558 } 12559 12560 /* Get interface MTU. */ 12561 /* ARGSUSED */ 12562 int 12563 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12564 ip_ioctl_cmd_t *ipip, void *if_req) 12565 { 12566 struct ifreq *ifr; 12567 struct lifreq *lifr; 12568 12569 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12570 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12571 if (ipip->ipi_cmd_type == IF_CMD) { 12572 ifr = (struct ifreq *)if_req; 12573 ifr->ifr_metric = ipif->ipif_mtu; 12574 } else { 12575 lifr = (struct lifreq *)if_req; 12576 lifr->lifr_mtu = ipif->ipif_mtu; 12577 } 12578 return (0); 12579 } 12580 12581 /* Set interface broadcast address. */ 12582 /* ARGSUSED2 */ 12583 int 12584 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12585 ip_ioctl_cmd_t *ipip, void *if_req) 12586 { 12587 ipaddr_t addr; 12588 ire_t *ire; 12589 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12590 12591 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12592 ipif->ipif_id)); 12593 12594 ASSERT(IAM_WRITER_IPIF(ipif)); 12595 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12596 return (EADDRNOTAVAIL); 12597 12598 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12599 12600 if (sin->sin_family != AF_INET) 12601 return (EAFNOSUPPORT); 12602 12603 addr = sin->sin_addr.s_addr; 12604 if (ipif->ipif_flags & IPIF_UP) { 12605 /* 12606 * If we are already up, make sure the new 12607 * broadcast address makes sense. If it does, 12608 * there should be an IRE for it already. 12609 * Don't match on ipif, only on the ill 12610 * since we are sharing these now. Don't use 12611 * MATCH_IRE_ILL_GROUP as we are looking for 12612 * the broadcast ire on this ill and each ill 12613 * in the group has its own broadcast ire. 12614 */ 12615 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12616 ipif, ALL_ZONES, NULL, 12617 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12618 if (ire == NULL) { 12619 return (EINVAL); 12620 } else { 12621 ire_refrele(ire); 12622 } 12623 } 12624 /* 12625 * Changing the broadcast addr for this ipif. 12626 * Make sure we have valid net and subnet bcast 12627 * ire's for other logical interfaces, if needed. 12628 */ 12629 if (addr != ipif->ipif_brd_addr) 12630 ipif_check_bcast_ires(ipif); 12631 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12632 return (0); 12633 } 12634 12635 /* Get interface broadcast address. */ 12636 /* ARGSUSED */ 12637 int 12638 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12639 ip_ioctl_cmd_t *ipip, void *if_req) 12640 { 12641 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12642 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12643 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12644 return (EADDRNOTAVAIL); 12645 12646 /* IPIF_BROADCAST not possible with IPv6 */ 12647 ASSERT(!ipif->ipif_isv6); 12648 *sin = sin_null; 12649 sin->sin_family = AF_INET; 12650 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12651 return (0); 12652 } 12653 12654 /* 12655 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12656 */ 12657 /* ARGSUSED */ 12658 int 12659 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12660 ip_ioctl_cmd_t *ipip, void *if_req) 12661 { 12662 int err = 0; 12663 in6_addr_t v6mask; 12664 12665 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12666 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12667 12668 ASSERT(IAM_WRITER_IPIF(ipif)); 12669 12670 if (ipif->ipif_isv6) { 12671 sin6_t *sin6; 12672 12673 if (sin->sin_family != AF_INET6) 12674 return (EAFNOSUPPORT); 12675 12676 sin6 = (sin6_t *)sin; 12677 v6mask = sin6->sin6_addr; 12678 } else { 12679 ipaddr_t mask; 12680 12681 if (sin->sin_family != AF_INET) 12682 return (EAFNOSUPPORT); 12683 12684 mask = sin->sin_addr.s_addr; 12685 V4MASK_TO_V6(mask, v6mask); 12686 } 12687 12688 /* 12689 * No big deal if the interface isn't already up, or the mask 12690 * isn't really changing, or this is pt-pt. 12691 */ 12692 if (!(ipif->ipif_flags & IPIF_UP) || 12693 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12694 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12695 ipif->ipif_v6net_mask = v6mask; 12696 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12697 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12698 ipif->ipif_v6net_mask, 12699 ipif->ipif_v6subnet); 12700 } 12701 return (0); 12702 } 12703 /* 12704 * Make sure we have valid net and subnet broadcast ire's 12705 * for the old netmask, if needed by other logical interfaces. 12706 */ 12707 if (!ipif->ipif_isv6) 12708 ipif_check_bcast_ires(ipif); 12709 12710 err = ipif_logical_down(ipif, q, mp); 12711 if (err == EINPROGRESS) 12712 return (err); 12713 ipif_down_tail(ipif); 12714 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12715 return (err); 12716 } 12717 12718 static int 12719 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12720 { 12721 in6_addr_t v6mask; 12722 int err = 0; 12723 12724 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12725 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12726 12727 if (ipif->ipif_isv6) { 12728 sin6_t *sin6; 12729 12730 sin6 = (sin6_t *)sin; 12731 v6mask = sin6->sin6_addr; 12732 } else { 12733 ipaddr_t mask; 12734 12735 mask = sin->sin_addr.s_addr; 12736 V4MASK_TO_V6(mask, v6mask); 12737 } 12738 12739 ipif->ipif_v6net_mask = v6mask; 12740 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12741 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12742 ipif->ipif_v6subnet); 12743 } 12744 err = ipif_up(ipif, q, mp); 12745 12746 if (err == 0 || err == EINPROGRESS) { 12747 /* 12748 * The interface must be DL_BOUND if this packet has to 12749 * go out on the wire. Since we only go through a logical 12750 * down and are bound with the driver during an internal 12751 * down/up that is satisfied. 12752 */ 12753 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12754 /* Potentially broadcast an address mask reply. */ 12755 ipif_mask_reply(ipif); 12756 } 12757 } 12758 return (err); 12759 } 12760 12761 /* ARGSUSED */ 12762 int 12763 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12764 ip_ioctl_cmd_t *ipip, void *if_req) 12765 { 12766 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12767 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12768 ipif_down_tail(ipif); 12769 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12770 } 12771 12772 /* Get interface net mask. */ 12773 /* ARGSUSED */ 12774 int 12775 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12776 ip_ioctl_cmd_t *ipip, void *if_req) 12777 { 12778 struct lifreq *lifr = (struct lifreq *)if_req; 12779 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12780 12781 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12782 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12783 12784 /* 12785 * net mask can't change since we have a reference to the ipif. 12786 */ 12787 if (ipif->ipif_isv6) { 12788 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12789 *sin6 = sin6_null; 12790 sin6->sin6_family = AF_INET6; 12791 sin6->sin6_addr = ipif->ipif_v6net_mask; 12792 lifr->lifr_addrlen = 12793 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12794 } else { 12795 *sin = sin_null; 12796 sin->sin_family = AF_INET; 12797 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12798 if (ipip->ipi_cmd_type == LIF_CMD) { 12799 lifr->lifr_addrlen = 12800 ip_mask_to_plen(ipif->ipif_net_mask); 12801 } 12802 } 12803 return (0); 12804 } 12805 12806 /* ARGSUSED */ 12807 int 12808 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12809 ip_ioctl_cmd_t *ipip, void *if_req) 12810 { 12811 12812 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12813 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12814 /* 12815 * Set interface metric. We don't use this for 12816 * anything but we keep track of it in case it is 12817 * important to routing applications or such. 12818 */ 12819 if (ipip->ipi_cmd_type == IF_CMD) { 12820 struct ifreq *ifr; 12821 12822 ifr = (struct ifreq *)if_req; 12823 ipif->ipif_metric = ifr->ifr_metric; 12824 } else { 12825 struct lifreq *lifr; 12826 12827 lifr = (struct lifreq *)if_req; 12828 ipif->ipif_metric = lifr->lifr_metric; 12829 } 12830 return (0); 12831 } 12832 12833 12834 /* ARGSUSED */ 12835 int 12836 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12837 ip_ioctl_cmd_t *ipip, void *if_req) 12838 { 12839 12840 /* Get interface metric. */ 12841 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12842 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12843 if (ipip->ipi_cmd_type == IF_CMD) { 12844 struct ifreq *ifr; 12845 12846 ifr = (struct ifreq *)if_req; 12847 ifr->ifr_metric = ipif->ipif_metric; 12848 } else { 12849 struct lifreq *lifr; 12850 12851 lifr = (struct lifreq *)if_req; 12852 lifr->lifr_metric = ipif->ipif_metric; 12853 } 12854 12855 return (0); 12856 } 12857 12858 /* ARGSUSED */ 12859 int 12860 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12861 ip_ioctl_cmd_t *ipip, void *if_req) 12862 { 12863 12864 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12865 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12866 /* 12867 * Set the muxid returned from I_PLINK. 12868 */ 12869 if (ipip->ipi_cmd_type == IF_CMD) { 12870 struct ifreq *ifr = (struct ifreq *)if_req; 12871 12872 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12873 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12874 } else { 12875 struct lifreq *lifr = (struct lifreq *)if_req; 12876 12877 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12878 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12879 } 12880 return (0); 12881 } 12882 12883 /* ARGSUSED */ 12884 int 12885 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12886 ip_ioctl_cmd_t *ipip, void *if_req) 12887 { 12888 12889 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12890 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12891 /* 12892 * Get the muxid saved in ill for I_PUNLINK. 12893 */ 12894 if (ipip->ipi_cmd_type == IF_CMD) { 12895 struct ifreq *ifr = (struct ifreq *)if_req; 12896 12897 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12898 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12899 } else { 12900 struct lifreq *lifr = (struct lifreq *)if_req; 12901 12902 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12903 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12904 } 12905 return (0); 12906 } 12907 12908 /* 12909 * Set the subnet prefix. Does not modify the broadcast address. 12910 */ 12911 /* ARGSUSED */ 12912 int 12913 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12914 ip_ioctl_cmd_t *ipip, void *if_req) 12915 { 12916 int err = 0; 12917 in6_addr_t v6addr; 12918 in6_addr_t v6mask; 12919 boolean_t need_up = B_FALSE; 12920 int addrlen; 12921 12922 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12923 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12924 12925 ASSERT(IAM_WRITER_IPIF(ipif)); 12926 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12927 12928 if (ipif->ipif_isv6) { 12929 sin6_t *sin6; 12930 12931 if (sin->sin_family != AF_INET6) 12932 return (EAFNOSUPPORT); 12933 12934 sin6 = (sin6_t *)sin; 12935 v6addr = sin6->sin6_addr; 12936 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12937 return (EADDRNOTAVAIL); 12938 } else { 12939 ipaddr_t addr; 12940 12941 if (sin->sin_family != AF_INET) 12942 return (EAFNOSUPPORT); 12943 12944 addr = sin->sin_addr.s_addr; 12945 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12946 return (EADDRNOTAVAIL); 12947 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12948 /* Add 96 bits */ 12949 addrlen += IPV6_ABITS - IP_ABITS; 12950 } 12951 12952 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12953 return (EINVAL); 12954 12955 /* Check if bits in the address is set past the mask */ 12956 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12957 return (EINVAL); 12958 12959 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12960 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12961 return (0); /* No change */ 12962 12963 if (ipif->ipif_flags & IPIF_UP) { 12964 /* 12965 * If the interface is already marked up, 12966 * we call ipif_down which will take care 12967 * of ditching any IREs that have been set 12968 * up based on the old interface address. 12969 */ 12970 err = ipif_logical_down(ipif, q, mp); 12971 if (err == EINPROGRESS) 12972 return (err); 12973 ipif_down_tail(ipif); 12974 need_up = B_TRUE; 12975 } 12976 12977 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12978 return (err); 12979 } 12980 12981 static int 12982 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12983 queue_t *q, mblk_t *mp, boolean_t need_up) 12984 { 12985 ill_t *ill = ipif->ipif_ill; 12986 int err = 0; 12987 12988 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12989 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12990 12991 /* Set the new address. */ 12992 mutex_enter(&ill->ill_lock); 12993 ipif->ipif_v6net_mask = v6mask; 12994 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12995 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12996 ipif->ipif_v6subnet); 12997 } 12998 mutex_exit(&ill->ill_lock); 12999 13000 if (need_up) { 13001 /* 13002 * Now bring the interface back up. If this 13003 * is the only IPIF for the ILL, ipif_up 13004 * will have to re-bind to the device, so 13005 * we may get back EINPROGRESS, in which 13006 * case, this IOCTL will get completed in 13007 * ip_rput_dlpi when we see the DL_BIND_ACK. 13008 */ 13009 err = ipif_up(ipif, q, mp); 13010 if (err == EINPROGRESS) 13011 return (err); 13012 } 13013 return (err); 13014 } 13015 13016 /* ARGSUSED */ 13017 int 13018 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13019 ip_ioctl_cmd_t *ipip, void *if_req) 13020 { 13021 int addrlen; 13022 in6_addr_t v6addr; 13023 in6_addr_t v6mask; 13024 struct lifreq *lifr = (struct lifreq *)if_req; 13025 13026 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 13027 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13028 ipif_down_tail(ipif); 13029 13030 addrlen = lifr->lifr_addrlen; 13031 if (ipif->ipif_isv6) { 13032 sin6_t *sin6; 13033 13034 sin6 = (sin6_t *)sin; 13035 v6addr = sin6->sin6_addr; 13036 } else { 13037 ipaddr_t addr; 13038 13039 addr = sin->sin_addr.s_addr; 13040 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 13041 addrlen += IPV6_ABITS - IP_ABITS; 13042 } 13043 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 13044 13045 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 13046 } 13047 13048 /* ARGSUSED */ 13049 int 13050 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13051 ip_ioctl_cmd_t *ipip, void *if_req) 13052 { 13053 struct lifreq *lifr = (struct lifreq *)if_req; 13054 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 13055 13056 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 13057 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13058 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 13059 13060 if (ipif->ipif_isv6) { 13061 *sin6 = sin6_null; 13062 sin6->sin6_family = AF_INET6; 13063 sin6->sin6_addr = ipif->ipif_v6subnet; 13064 lifr->lifr_addrlen = 13065 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 13066 } else { 13067 *sin = sin_null; 13068 sin->sin_family = AF_INET; 13069 sin->sin_addr.s_addr = ipif->ipif_subnet; 13070 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 13071 } 13072 return (0); 13073 } 13074 13075 /* 13076 * Set the IPv6 address token. 13077 */ 13078 /* ARGSUSED */ 13079 int 13080 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13081 ip_ioctl_cmd_t *ipi, void *if_req) 13082 { 13083 ill_t *ill = ipif->ipif_ill; 13084 int err; 13085 in6_addr_t v6addr; 13086 in6_addr_t v6mask; 13087 boolean_t need_up = B_FALSE; 13088 int i; 13089 sin6_t *sin6 = (sin6_t *)sin; 13090 struct lifreq *lifr = (struct lifreq *)if_req; 13091 int addrlen; 13092 13093 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 13094 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13095 ASSERT(IAM_WRITER_IPIF(ipif)); 13096 13097 addrlen = lifr->lifr_addrlen; 13098 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13099 if (ipif->ipif_id != 0) 13100 return (EINVAL); 13101 13102 if (!ipif->ipif_isv6) 13103 return (EINVAL); 13104 13105 if (addrlen > IPV6_ABITS) 13106 return (EINVAL); 13107 13108 v6addr = sin6->sin6_addr; 13109 13110 /* 13111 * The length of the token is the length from the end. To get 13112 * the proper mask for this, compute the mask of the bits not 13113 * in the token; ie. the prefix, and then xor to get the mask. 13114 */ 13115 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 13116 return (EINVAL); 13117 for (i = 0; i < 4; i++) { 13118 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 13119 } 13120 13121 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 13122 ill->ill_token_length == addrlen) 13123 return (0); /* No change */ 13124 13125 if (ipif->ipif_flags & IPIF_UP) { 13126 err = ipif_logical_down(ipif, q, mp); 13127 if (err == EINPROGRESS) 13128 return (err); 13129 ipif_down_tail(ipif); 13130 need_up = B_TRUE; 13131 } 13132 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 13133 return (err); 13134 } 13135 13136 static int 13137 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 13138 mblk_t *mp, boolean_t need_up) 13139 { 13140 in6_addr_t v6addr; 13141 in6_addr_t v6mask; 13142 ill_t *ill = ipif->ipif_ill; 13143 int i; 13144 int err = 0; 13145 13146 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 13147 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13148 v6addr = sin6->sin6_addr; 13149 /* 13150 * The length of the token is the length from the end. To get 13151 * the proper mask for this, compute the mask of the bits not 13152 * in the token; ie. the prefix, and then xor to get the mask. 13153 */ 13154 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 13155 for (i = 0; i < 4; i++) 13156 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 13157 13158 mutex_enter(&ill->ill_lock); 13159 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 13160 ill->ill_token_length = addrlen; 13161 mutex_exit(&ill->ill_lock); 13162 13163 if (need_up) { 13164 /* 13165 * Now bring the interface back up. If this 13166 * is the only IPIF for the ILL, ipif_up 13167 * will have to re-bind to the device, so 13168 * we may get back EINPROGRESS, in which 13169 * case, this IOCTL will get completed in 13170 * ip_rput_dlpi when we see the DL_BIND_ACK. 13171 */ 13172 err = ipif_up(ipif, q, mp); 13173 if (err == EINPROGRESS) 13174 return (err); 13175 } 13176 return (err); 13177 } 13178 13179 /* ARGSUSED */ 13180 int 13181 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13182 ip_ioctl_cmd_t *ipi, void *if_req) 13183 { 13184 ill_t *ill; 13185 sin6_t *sin6 = (sin6_t *)sin; 13186 struct lifreq *lifr = (struct lifreq *)if_req; 13187 13188 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 13189 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13190 if (ipif->ipif_id != 0) 13191 return (EINVAL); 13192 13193 ill = ipif->ipif_ill; 13194 if (!ill->ill_isv6) 13195 return (ENXIO); 13196 13197 *sin6 = sin6_null; 13198 sin6->sin6_family = AF_INET6; 13199 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 13200 sin6->sin6_addr = ill->ill_token; 13201 lifr->lifr_addrlen = ill->ill_token_length; 13202 return (0); 13203 } 13204 13205 /* 13206 * Set (hardware) link specific information that might override 13207 * what was acquired through the DL_INFO_ACK. 13208 * The logic is as follows. 13209 * 13210 * become exclusive 13211 * set CHANGING flag 13212 * change mtu on affected IREs 13213 * clear CHANGING flag 13214 * 13215 * An ire add that occurs before the CHANGING flag is set will have its mtu 13216 * changed by the ip_sioctl_lnkinfo. 13217 * 13218 * During the time the CHANGING flag is set, no new ires will be added to the 13219 * bucket, and ire add will fail (due the CHANGING flag). 13220 * 13221 * An ire add that occurs after the CHANGING flag is set will have the right mtu 13222 * before it is added to the bucket. 13223 * 13224 * Obviously only 1 thread can set the CHANGING flag and we need to become 13225 * exclusive to set the flag. 13226 */ 13227 /* ARGSUSED */ 13228 int 13229 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13230 ip_ioctl_cmd_t *ipi, void *if_req) 13231 { 13232 ill_t *ill = ipif->ipif_ill; 13233 ipif_t *nipif; 13234 int ip_min_mtu; 13235 boolean_t mtu_walk = B_FALSE; 13236 struct lifreq *lifr = (struct lifreq *)if_req; 13237 lif_ifinfo_req_t *lir; 13238 ire_t *ire; 13239 13240 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 13241 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13242 lir = &lifr->lifr_ifinfo; 13243 ASSERT(IAM_WRITER_IPIF(ipif)); 13244 13245 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13246 if (ipif->ipif_id != 0) 13247 return (EINVAL); 13248 13249 /* Set interface MTU. */ 13250 if (ipif->ipif_isv6) 13251 ip_min_mtu = IPV6_MIN_MTU; 13252 else 13253 ip_min_mtu = IP_MIN_MTU; 13254 13255 /* 13256 * Verify values before we set anything. Allow zero to 13257 * mean unspecified. 13258 */ 13259 if (lir->lir_maxmtu != 0 && 13260 (lir->lir_maxmtu > ill->ill_max_frag || 13261 lir->lir_maxmtu < ip_min_mtu)) 13262 return (EINVAL); 13263 if (lir->lir_reachtime != 0 && 13264 lir->lir_reachtime > ND_MAX_REACHTIME) 13265 return (EINVAL); 13266 if (lir->lir_reachretrans != 0 && 13267 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 13268 return (EINVAL); 13269 13270 mutex_enter(&ill->ill_lock); 13271 ill->ill_state_flags |= ILL_CHANGING; 13272 for (nipif = ill->ill_ipif; nipif != NULL; 13273 nipif = nipif->ipif_next) { 13274 nipif->ipif_state_flags |= IPIF_CHANGING; 13275 } 13276 13277 mutex_exit(&ill->ill_lock); 13278 13279 if (lir->lir_maxmtu != 0) { 13280 ill->ill_max_mtu = lir->lir_maxmtu; 13281 ill->ill_mtu_userspecified = 1; 13282 mtu_walk = B_TRUE; 13283 } 13284 13285 if (lir->lir_reachtime != 0) 13286 ill->ill_reachable_time = lir->lir_reachtime; 13287 13288 if (lir->lir_reachretrans != 0) 13289 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 13290 13291 ill->ill_max_hops = lir->lir_maxhops; 13292 13293 ill->ill_max_buf = ND_MAX_Q; 13294 13295 if (mtu_walk) { 13296 /* 13297 * Set the MTU on all ipifs associated with this ill except 13298 * for those whose MTU was fixed via SIOCSLIFMTU. 13299 */ 13300 for (nipif = ill->ill_ipif; nipif != NULL; 13301 nipif = nipif->ipif_next) { 13302 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13303 continue; 13304 13305 nipif->ipif_mtu = ill->ill_max_mtu; 13306 13307 if (!(nipif->ipif_flags & IPIF_UP)) 13308 continue; 13309 13310 if (nipif->ipif_isv6) 13311 ire = ipif_to_ire_v6(nipif); 13312 else 13313 ire = ipif_to_ire(nipif); 13314 if (ire != NULL) { 13315 ire->ire_max_frag = ipif->ipif_mtu; 13316 ire_refrele(ire); 13317 } 13318 if (ill->ill_isv6) { 13319 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13320 ipif_mtu_change, (char *)nipif, 13321 ill); 13322 } else { 13323 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13324 ipif_mtu_change, (char *)nipif, 13325 ill); 13326 } 13327 } 13328 } 13329 13330 mutex_enter(&ill->ill_lock); 13331 for (nipif = ill->ill_ipif; nipif != NULL; 13332 nipif = nipif->ipif_next) { 13333 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13334 } 13335 ILL_UNMARK_CHANGING(ill); 13336 mutex_exit(&ill->ill_lock); 13337 13338 return (0); 13339 } 13340 13341 /* ARGSUSED */ 13342 int 13343 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13344 ip_ioctl_cmd_t *ipi, void *if_req) 13345 { 13346 struct lif_ifinfo_req *lir; 13347 ill_t *ill = ipif->ipif_ill; 13348 13349 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13350 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13351 if (ipif->ipif_id != 0) 13352 return (EINVAL); 13353 13354 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13355 lir->lir_maxhops = ill->ill_max_hops; 13356 lir->lir_reachtime = ill->ill_reachable_time; 13357 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13358 lir->lir_maxmtu = ill->ill_max_mtu; 13359 13360 return (0); 13361 } 13362 13363 /* 13364 * Return best guess as to the subnet mask for the specified address. 13365 * Based on the subnet masks for all the configured interfaces. 13366 * 13367 * We end up returning a zero mask in the case of default, multicast or 13368 * experimental. 13369 */ 13370 static ipaddr_t 13371 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13372 { 13373 ipaddr_t net_mask; 13374 ill_t *ill; 13375 ipif_t *ipif; 13376 ill_walk_context_t ctx; 13377 ipif_t *fallback_ipif = NULL; 13378 13379 net_mask = ip_net_mask(addr); 13380 if (net_mask == 0) { 13381 *ipifp = NULL; 13382 return (0); 13383 } 13384 13385 /* Let's check to see if this is maybe a local subnet route. */ 13386 /* this function only applies to IPv4 interfaces */ 13387 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13388 ill = ILL_START_WALK_V4(&ctx, ipst); 13389 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13390 mutex_enter(&ill->ill_lock); 13391 for (ipif = ill->ill_ipif; ipif != NULL; 13392 ipif = ipif->ipif_next) { 13393 if (!IPIF_CAN_LOOKUP(ipif)) 13394 continue; 13395 if (!(ipif->ipif_flags & IPIF_UP)) 13396 continue; 13397 if ((ipif->ipif_subnet & net_mask) == 13398 (addr & net_mask)) { 13399 /* 13400 * Don't trust pt-pt interfaces if there are 13401 * other interfaces. 13402 */ 13403 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13404 if (fallback_ipif == NULL) { 13405 ipif_refhold_locked(ipif); 13406 fallback_ipif = ipif; 13407 } 13408 continue; 13409 } 13410 13411 /* 13412 * Fine. Just assume the same net mask as the 13413 * directly attached subnet interface is using. 13414 */ 13415 ipif_refhold_locked(ipif); 13416 mutex_exit(&ill->ill_lock); 13417 rw_exit(&ipst->ips_ill_g_lock); 13418 if (fallback_ipif != NULL) 13419 ipif_refrele(fallback_ipif); 13420 *ipifp = ipif; 13421 return (ipif->ipif_net_mask); 13422 } 13423 } 13424 mutex_exit(&ill->ill_lock); 13425 } 13426 rw_exit(&ipst->ips_ill_g_lock); 13427 13428 *ipifp = fallback_ipif; 13429 return ((fallback_ipif != NULL) ? 13430 fallback_ipif->ipif_net_mask : net_mask); 13431 } 13432 13433 /* 13434 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13435 */ 13436 static void 13437 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13438 { 13439 IOCP iocp; 13440 ipft_t *ipft; 13441 ipllc_t *ipllc; 13442 mblk_t *mp1; 13443 cred_t *cr; 13444 int error = 0; 13445 conn_t *connp; 13446 13447 ip1dbg(("ip_wput_ioctl")); 13448 iocp = (IOCP)mp->b_rptr; 13449 mp1 = mp->b_cont; 13450 if (mp1 == NULL) { 13451 iocp->ioc_error = EINVAL; 13452 mp->b_datap->db_type = M_IOCNAK; 13453 iocp->ioc_count = 0; 13454 qreply(q, mp); 13455 return; 13456 } 13457 13458 /* 13459 * These IOCTLs provide various control capabilities to 13460 * upstream agents such as ULPs and processes. There 13461 * are currently two such IOCTLs implemented. They 13462 * are used by TCP to provide update information for 13463 * existing IREs and to forcibly delete an IRE for a 13464 * host that is not responding, thereby forcing an 13465 * attempt at a new route. 13466 */ 13467 iocp->ioc_error = EINVAL; 13468 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13469 goto done; 13470 13471 ipllc = (ipllc_t *)mp1->b_rptr; 13472 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13473 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13474 break; 13475 } 13476 /* 13477 * prefer credential from mblk over ioctl; 13478 * see ip_sioctl_copyin_setup 13479 */ 13480 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13481 13482 /* 13483 * Refhold the conn in case the request gets queued up in some lookup 13484 */ 13485 ASSERT(CONN_Q(q)); 13486 connp = Q_TO_CONN(q); 13487 CONN_INC_REF(connp); 13488 if (ipft->ipft_pfi && 13489 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13490 pullupmsg(mp1, ipft->ipft_min_size))) { 13491 error = (*ipft->ipft_pfi)(q, 13492 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13493 } 13494 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13495 /* 13496 * CONN_OPER_PENDING_DONE happens in the function called 13497 * through ipft_pfi above. 13498 */ 13499 return; 13500 } 13501 13502 CONN_OPER_PENDING_DONE(connp); 13503 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13504 freemsg(mp); 13505 return; 13506 } 13507 iocp->ioc_error = error; 13508 13509 done: 13510 mp->b_datap->db_type = M_IOCACK; 13511 if (iocp->ioc_error) 13512 iocp->ioc_count = 0; 13513 qreply(q, mp); 13514 } 13515 13516 /* 13517 * Lookup an ipif using the sequence id (ipif_seqid) 13518 */ 13519 ipif_t * 13520 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13521 { 13522 ipif_t *ipif; 13523 13524 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13525 13526 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13527 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13528 return (ipif); 13529 } 13530 return (NULL); 13531 } 13532 13533 /* 13534 * Assign a unique id for the ipif. This is used later when we send 13535 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13536 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13537 * IRE is added, we verify that ipif has not disappeared. 13538 */ 13539 13540 static void 13541 ipif_assign_seqid(ipif_t *ipif) 13542 { 13543 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13544 13545 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13546 } 13547 13548 /* 13549 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13550 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13551 * be inserted into the first space available in the list. The value of 13552 * ipif_id will then be set to the appropriate value for its position. 13553 */ 13554 static int 13555 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13556 { 13557 ill_t *ill; 13558 ipif_t *tipif; 13559 ipif_t **tipifp; 13560 int id; 13561 ip_stack_t *ipst; 13562 13563 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13564 IAM_WRITER_IPIF(ipif)); 13565 13566 ill = ipif->ipif_ill; 13567 ASSERT(ill != NULL); 13568 ipst = ill->ill_ipst; 13569 13570 /* 13571 * In the case of lo0:0 we already hold the ill_g_lock. 13572 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13573 * ipif_insert. Another such caller is ipif_move. 13574 */ 13575 if (acquire_g_lock) 13576 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13577 if (acquire_ill_lock) 13578 mutex_enter(&ill->ill_lock); 13579 id = ipif->ipif_id; 13580 tipifp = &(ill->ill_ipif); 13581 if (id == -1) { /* need to find a real id */ 13582 id = 0; 13583 while ((tipif = *tipifp) != NULL) { 13584 ASSERT(tipif->ipif_id >= id); 13585 if (tipif->ipif_id != id) 13586 break; /* non-consecutive id */ 13587 id++; 13588 tipifp = &(tipif->ipif_next); 13589 } 13590 /* limit number of logical interfaces */ 13591 if (id >= ipst->ips_ip_addrs_per_if) { 13592 if (acquire_ill_lock) 13593 mutex_exit(&ill->ill_lock); 13594 if (acquire_g_lock) 13595 rw_exit(&ipst->ips_ill_g_lock); 13596 return (-1); 13597 } 13598 ipif->ipif_id = id; /* assign new id */ 13599 } else if (id < ipst->ips_ip_addrs_per_if) { 13600 /* we have a real id; insert ipif in the right place */ 13601 while ((tipif = *tipifp) != NULL) { 13602 ASSERT(tipif->ipif_id != id); 13603 if (tipif->ipif_id > id) 13604 break; /* found correct location */ 13605 tipifp = &(tipif->ipif_next); 13606 } 13607 } else { 13608 if (acquire_ill_lock) 13609 mutex_exit(&ill->ill_lock); 13610 if (acquire_g_lock) 13611 rw_exit(&ipst->ips_ill_g_lock); 13612 return (-1); 13613 } 13614 13615 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13616 13617 ipif->ipif_next = tipif; 13618 *tipifp = ipif; 13619 if (acquire_ill_lock) 13620 mutex_exit(&ill->ill_lock); 13621 if (acquire_g_lock) 13622 rw_exit(&ipst->ips_ill_g_lock); 13623 return (0); 13624 } 13625 13626 /* 13627 * Allocate and initialize a new interface control structure. (Always 13628 * called as writer.) 13629 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13630 * is not part of the global linked list of ills. ipif_seqid is unique 13631 * in the system and to preserve the uniqueness, it is assigned only 13632 * when ill becomes part of the global list. At that point ill will 13633 * have a name. If it doesn't get assigned here, it will get assigned 13634 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13635 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13636 * the interface flags or any other information from the DL_INFO_ACK for 13637 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13638 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13639 * second DL_INFO_ACK comes in from the driver. 13640 */ 13641 static ipif_t * 13642 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13643 { 13644 ipif_t *ipif; 13645 phyint_t *phyi; 13646 13647 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13648 ill->ill_name, id, (void *)ill)); 13649 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13650 13651 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13652 return (NULL); 13653 *ipif = ipif_zero; /* start clean */ 13654 13655 ipif->ipif_ill = ill; 13656 ipif->ipif_id = id; /* could be -1 */ 13657 /* 13658 * Inherit the zoneid from the ill; for the shared stack instance 13659 * this is always the global zone 13660 */ 13661 ipif->ipif_zoneid = ill->ill_zoneid; 13662 13663 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13664 13665 ipif->ipif_refcnt = 0; 13666 ipif->ipif_saved_ire_cnt = 0; 13667 13668 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13669 mi_free(ipif); 13670 return (NULL); 13671 } 13672 /* -1 id should have been replaced by real id */ 13673 id = ipif->ipif_id; 13674 ASSERT(id >= 0); 13675 13676 if (ill->ill_name[0] != '\0') 13677 ipif_assign_seqid(ipif); 13678 13679 /* 13680 * Keep a copy of original id in ipif_orig_ipifid. Failback 13681 * will attempt to restore the original id. The SIOCSLIFOINDEX 13682 * ioctl sets ipif_orig_ipifid to zero. 13683 */ 13684 ipif->ipif_orig_ipifid = id; 13685 13686 /* 13687 * We grab the ill_lock and phyint_lock to protect the flag changes. 13688 * The ipif is still not up and can't be looked up until the 13689 * ioctl completes and the IPIF_CHANGING flag is cleared. 13690 */ 13691 mutex_enter(&ill->ill_lock); 13692 mutex_enter(&ill->ill_phyint->phyint_lock); 13693 /* 13694 * Set the running flag when logical interface zero is created. 13695 * For subsequent logical interfaces, a DLPI link down 13696 * notification message may have cleared the running flag to 13697 * indicate the link is down, so we shouldn't just blindly set it. 13698 */ 13699 if (id == 0) 13700 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13701 ipif->ipif_ire_type = ire_type; 13702 phyi = ill->ill_phyint; 13703 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13704 13705 if (ipif->ipif_isv6) { 13706 ill->ill_flags |= ILLF_IPV6; 13707 } else { 13708 ipaddr_t inaddr_any = INADDR_ANY; 13709 13710 ill->ill_flags |= ILLF_IPV4; 13711 13712 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13713 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13714 &ipif->ipif_v6lcl_addr); 13715 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13716 &ipif->ipif_v6src_addr); 13717 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13718 &ipif->ipif_v6subnet); 13719 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13720 &ipif->ipif_v6net_mask); 13721 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13722 &ipif->ipif_v6brd_addr); 13723 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13724 &ipif->ipif_v6pp_dst_addr); 13725 } 13726 13727 /* 13728 * Don't set the interface flags etc. now, will do it in 13729 * ip_ll_subnet_defaults. 13730 */ 13731 if (!initialize) { 13732 mutex_exit(&ill->ill_lock); 13733 mutex_exit(&ill->ill_phyint->phyint_lock); 13734 return (ipif); 13735 } 13736 ipif->ipif_mtu = ill->ill_max_mtu; 13737 13738 if (ill->ill_bcast_addr_length != 0) { 13739 /* 13740 * Later detect lack of DLPI driver multicast 13741 * capability by catching DL_ENABMULTI errors in 13742 * ip_rput_dlpi. 13743 */ 13744 ill->ill_flags |= ILLF_MULTICAST; 13745 if (!ipif->ipif_isv6) 13746 ipif->ipif_flags |= IPIF_BROADCAST; 13747 } else { 13748 if (ill->ill_net_type != IRE_LOOPBACK) { 13749 if (ipif->ipif_isv6) 13750 /* 13751 * Note: xresolv interfaces will eventually need 13752 * NOARP set here as well, but that will require 13753 * those external resolvers to have some 13754 * knowledge of that flag and act appropriately. 13755 * Not to be changed at present. 13756 */ 13757 ill->ill_flags |= ILLF_NONUD; 13758 else 13759 ill->ill_flags |= ILLF_NOARP; 13760 } 13761 if (ill->ill_phys_addr_length == 0) { 13762 if (ill->ill_media && 13763 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13764 ipif->ipif_flags |= IPIF_NOXMIT; 13765 phyi->phyint_flags |= PHYI_VIRTUAL; 13766 } else { 13767 /* pt-pt supports multicast. */ 13768 ill->ill_flags |= ILLF_MULTICAST; 13769 if (ill->ill_net_type == IRE_LOOPBACK) { 13770 phyi->phyint_flags |= 13771 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13772 } else { 13773 ipif->ipif_flags |= IPIF_POINTOPOINT; 13774 } 13775 } 13776 } 13777 } 13778 mutex_exit(&ill->ill_lock); 13779 mutex_exit(&ill->ill_phyint->phyint_lock); 13780 return (ipif); 13781 } 13782 13783 /* 13784 * If appropriate, send a message up to the resolver delete the entry 13785 * for the address of this interface which is going out of business. 13786 * (Always called as writer). 13787 * 13788 * NOTE : We need to check for NULL mps as some of the fields are 13789 * initialized only for some interface types. See ipif_resolver_up() 13790 * for details. 13791 */ 13792 void 13793 ipif_arp_down(ipif_t *ipif) 13794 { 13795 mblk_t *mp; 13796 ill_t *ill = ipif->ipif_ill; 13797 13798 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13799 ASSERT(IAM_WRITER_IPIF(ipif)); 13800 13801 /* Delete the mapping for the local address */ 13802 mp = ipif->ipif_arp_del_mp; 13803 if (mp != NULL) { 13804 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13805 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13806 putnext(ill->ill_rq, mp); 13807 ipif->ipif_arp_del_mp = NULL; 13808 } 13809 13810 /* 13811 * If this is the last ipif that is going down and there are no 13812 * duplicate addresses we may yet attempt to re-probe, then we need to 13813 * clean up ARP completely. 13814 */ 13815 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13816 13817 /* Send up AR_INTERFACE_DOWN message */ 13818 mp = ill->ill_arp_down_mp; 13819 if (mp != NULL) { 13820 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13821 *(unsigned *)mp->b_rptr, ill->ill_name, 13822 ipif->ipif_id)); 13823 putnext(ill->ill_rq, mp); 13824 ill->ill_arp_down_mp = NULL; 13825 } 13826 13827 /* Tell ARP to delete the multicast mappings */ 13828 mp = ill->ill_arp_del_mapping_mp; 13829 if (mp != NULL) { 13830 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13831 *(unsigned *)mp->b_rptr, ill->ill_name, 13832 ipif->ipif_id)); 13833 putnext(ill->ill_rq, mp); 13834 ill->ill_arp_del_mapping_mp = NULL; 13835 } 13836 } 13837 } 13838 13839 /* 13840 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13841 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13842 * that it wants the add_mp allocated in this function to be returned 13843 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13844 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13845 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13846 * as it does a ipif_arp_down after calling this function - which will 13847 * remove what we add here. 13848 * 13849 * Returns -1 on failures and 0 on success. 13850 */ 13851 int 13852 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13853 { 13854 mblk_t *del_mp = NULL; 13855 mblk_t *add_mp = NULL; 13856 mblk_t *mp; 13857 ill_t *ill = ipif->ipif_ill; 13858 phyint_t *phyi = ill->ill_phyint; 13859 ipaddr_t addr, mask, extract_mask = 0; 13860 arma_t *arma; 13861 uint8_t *maddr, *bphys_addr; 13862 uint32_t hw_start; 13863 dl_unitdata_req_t *dlur; 13864 13865 ASSERT(IAM_WRITER_IPIF(ipif)); 13866 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13867 return (0); 13868 13869 /* 13870 * Delete the existing mapping from ARP. Normally ipif_down 13871 * -> ipif_arp_down should send this up to ARP. The only 13872 * reason we would find this when we are switching from 13873 * Multicast to Broadcast where we did not do a down. 13874 */ 13875 mp = ill->ill_arp_del_mapping_mp; 13876 if (mp != NULL) { 13877 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13878 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13879 putnext(ill->ill_rq, mp); 13880 ill->ill_arp_del_mapping_mp = NULL; 13881 } 13882 13883 if (arp_add_mapping_mp != NULL) 13884 *arp_add_mapping_mp = NULL; 13885 13886 /* 13887 * Check that the address is not to long for the constant 13888 * length reserved in the template arma_t. 13889 */ 13890 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13891 return (-1); 13892 13893 /* Add mapping mblk */ 13894 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13895 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13896 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13897 (caddr_t)&addr); 13898 if (add_mp == NULL) 13899 return (-1); 13900 arma = (arma_t *)add_mp->b_rptr; 13901 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13902 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13903 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13904 13905 /* 13906 * Determine the broadcast address. 13907 */ 13908 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13909 if (ill->ill_sap_length < 0) 13910 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13911 else 13912 bphys_addr = (uchar_t *)dlur + 13913 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13914 /* 13915 * Check PHYI_MULTI_BCAST and length of physical 13916 * address to determine if we use the mapping or the 13917 * broadcast address. 13918 */ 13919 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13920 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13921 bphys_addr, maddr, &hw_start, &extract_mask)) 13922 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13923 13924 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13925 (ill->ill_flags & ILLF_MULTICAST)) { 13926 /* Make sure this will not match the "exact" entry. */ 13927 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13928 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13929 (caddr_t)&addr); 13930 if (del_mp == NULL) { 13931 freemsg(add_mp); 13932 return (-1); 13933 } 13934 bcopy(&extract_mask, (char *)arma + 13935 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13936 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13937 /* Use link-layer broadcast address for MULTI_BCAST */ 13938 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13939 ip2dbg(("ipif_arp_setup_multicast: adding" 13940 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13941 } else { 13942 arma->arma_hw_mapping_start = hw_start; 13943 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13944 " ARP setup for %s\n", ill->ill_name)); 13945 } 13946 } else { 13947 freemsg(add_mp); 13948 ASSERT(del_mp == NULL); 13949 /* It is neither MULTICAST nor MULTI_BCAST */ 13950 return (0); 13951 } 13952 ASSERT(add_mp != NULL && del_mp != NULL); 13953 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13954 ill->ill_arp_del_mapping_mp = del_mp; 13955 if (arp_add_mapping_mp != NULL) { 13956 /* The caller just wants the mblks allocated */ 13957 *arp_add_mapping_mp = add_mp; 13958 } else { 13959 /* The caller wants us to send it to arp */ 13960 putnext(ill->ill_rq, add_mp); 13961 } 13962 return (0); 13963 } 13964 13965 /* 13966 * Get the resolver set up for a new interface address. 13967 * (Always called as writer.) 13968 * Called both for IPv4 and IPv6 interfaces, 13969 * though it only sets up the resolver for v6 13970 * if it's an xresolv interface (one using an external resolver). 13971 * Honors ILLF_NOARP. 13972 * The enumerated value res_act is used to tune the behavior. 13973 * If set to Res_act_initial, then we set up all the resolver 13974 * structures for a new interface. If set to Res_act_move, then 13975 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13976 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13977 * asynchronous hardware address change notification. If set to 13978 * Res_act_defend, then we tell ARP that it needs to send a single 13979 * gratuitous message in defense of the address. 13980 * Returns error on failure. 13981 */ 13982 int 13983 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13984 { 13985 caddr_t addr; 13986 mblk_t *arp_up_mp = NULL; 13987 mblk_t *arp_down_mp = NULL; 13988 mblk_t *arp_add_mp = NULL; 13989 mblk_t *arp_del_mp = NULL; 13990 mblk_t *arp_add_mapping_mp = NULL; 13991 mblk_t *arp_del_mapping_mp = NULL; 13992 ill_t *ill = ipif->ipif_ill; 13993 uchar_t *area_p = NULL; 13994 uchar_t *ared_p = NULL; 13995 int err = ENOMEM; 13996 boolean_t was_dup; 13997 13998 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13999 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 14000 ASSERT(IAM_WRITER_IPIF(ipif)); 14001 14002 was_dup = B_FALSE; 14003 if (res_act == Res_act_initial) { 14004 ipif->ipif_addr_ready = 0; 14005 /* 14006 * We're bringing an interface up here. There's no way that we 14007 * should need to shut down ARP now. 14008 */ 14009 mutex_enter(&ill->ill_lock); 14010 if (ipif->ipif_flags & IPIF_DUPLICATE) { 14011 ipif->ipif_flags &= ~IPIF_DUPLICATE; 14012 ill->ill_ipif_dup_count--; 14013 was_dup = B_TRUE; 14014 } 14015 mutex_exit(&ill->ill_lock); 14016 } 14017 if (ipif->ipif_recovery_id != 0) 14018 (void) untimeout(ipif->ipif_recovery_id); 14019 ipif->ipif_recovery_id = 0; 14020 if (ill->ill_net_type != IRE_IF_RESOLVER) { 14021 ipif->ipif_addr_ready = 1; 14022 return (0); 14023 } 14024 /* NDP will set the ipif_addr_ready flag when it's ready */ 14025 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 14026 return (0); 14027 14028 if (ill->ill_isv6) { 14029 /* 14030 * External resolver for IPv6 14031 */ 14032 ASSERT(res_act == Res_act_initial); 14033 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 14034 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 14035 area_p = (uchar_t *)&ip6_area_template; 14036 ared_p = (uchar_t *)&ip6_ared_template; 14037 } 14038 } else { 14039 /* 14040 * IPv4 arp case. If the ARP stream has already started 14041 * closing, fail this request for ARP bringup. Else 14042 * record the fact that an ARP bringup is pending. 14043 */ 14044 mutex_enter(&ill->ill_lock); 14045 if (ill->ill_arp_closing) { 14046 mutex_exit(&ill->ill_lock); 14047 err = EINVAL; 14048 goto failed; 14049 } else { 14050 if (ill->ill_ipif_up_count == 0 && 14051 ill->ill_ipif_dup_count == 0 && !was_dup) 14052 ill->ill_arp_bringup_pending = 1; 14053 mutex_exit(&ill->ill_lock); 14054 } 14055 if (ipif->ipif_lcl_addr != INADDR_ANY) { 14056 addr = (caddr_t)&ipif->ipif_lcl_addr; 14057 area_p = (uchar_t *)&ip_area_template; 14058 ared_p = (uchar_t *)&ip_ared_template; 14059 } 14060 } 14061 14062 /* 14063 * Add an entry for the local address in ARP only if it 14064 * is not UNNUMBERED and the address is not INADDR_ANY. 14065 */ 14066 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 14067 area_t *area; 14068 14069 /* Now ask ARP to publish our address. */ 14070 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 14071 if (arp_add_mp == NULL) 14072 goto failed; 14073 area = (area_t *)arp_add_mp->b_rptr; 14074 if (res_act != Res_act_initial) { 14075 /* 14076 * Copy the new hardware address and length into 14077 * arp_add_mp to be sent to ARP. 14078 */ 14079 area->area_hw_addr_length = ill->ill_phys_addr_length; 14080 bcopy(ill->ill_phys_addr, 14081 ((char *)area + area->area_hw_addr_offset), 14082 area->area_hw_addr_length); 14083 } 14084 14085 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 14086 ACE_F_MYADDR; 14087 14088 if (res_act == Res_act_defend) { 14089 area->area_flags |= ACE_F_DEFEND; 14090 /* 14091 * If we're just defending our address now, then 14092 * there's no need to set up ARP multicast mappings. 14093 * The publish command is enough. 14094 */ 14095 goto done; 14096 } 14097 14098 if (res_act != Res_act_initial) 14099 goto arp_setup_multicast; 14100 14101 /* 14102 * Allocate an ARP deletion message so we know we can tell ARP 14103 * when the interface goes down. 14104 */ 14105 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 14106 if (arp_del_mp == NULL) 14107 goto failed; 14108 14109 } else { 14110 if (res_act != Res_act_initial) 14111 goto done; 14112 } 14113 /* 14114 * Need to bring up ARP or setup multicast mapping only 14115 * when the first interface is coming UP. 14116 */ 14117 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 14118 was_dup) { 14119 goto done; 14120 } 14121 14122 /* 14123 * Allocate an ARP down message (to be saved) and an ARP up 14124 * message. 14125 */ 14126 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 14127 if (arp_down_mp == NULL) 14128 goto failed; 14129 14130 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 14131 if (arp_up_mp == NULL) 14132 goto failed; 14133 14134 if (ipif->ipif_flags & IPIF_POINTOPOINT) 14135 goto done; 14136 14137 arp_setup_multicast: 14138 /* 14139 * Setup the multicast mappings. This function initializes 14140 * ill_arp_del_mapping_mp also. This does not need to be done for 14141 * IPv6. 14142 */ 14143 if (!ill->ill_isv6) { 14144 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 14145 if (err != 0) 14146 goto failed; 14147 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 14148 ASSERT(arp_add_mapping_mp != NULL); 14149 } 14150 14151 done: 14152 if (arp_del_mp != NULL) { 14153 ASSERT(ipif->ipif_arp_del_mp == NULL); 14154 ipif->ipif_arp_del_mp = arp_del_mp; 14155 } 14156 if (arp_down_mp != NULL) { 14157 ASSERT(ill->ill_arp_down_mp == NULL); 14158 ill->ill_arp_down_mp = arp_down_mp; 14159 } 14160 if (arp_del_mapping_mp != NULL) { 14161 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 14162 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 14163 } 14164 if (arp_up_mp != NULL) { 14165 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 14166 ill->ill_name, ipif->ipif_id)); 14167 putnext(ill->ill_rq, arp_up_mp); 14168 } 14169 if (arp_add_mp != NULL) { 14170 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 14171 ill->ill_name, ipif->ipif_id)); 14172 /* 14173 * If it's an extended ARP implementation, then we'll wait to 14174 * hear that DAD has finished before using the interface. 14175 */ 14176 if (!ill->ill_arp_extend) 14177 ipif->ipif_addr_ready = 1; 14178 putnext(ill->ill_rq, arp_add_mp); 14179 } else { 14180 ipif->ipif_addr_ready = 1; 14181 } 14182 if (arp_add_mapping_mp != NULL) { 14183 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 14184 ill->ill_name, ipif->ipif_id)); 14185 putnext(ill->ill_rq, arp_add_mapping_mp); 14186 } 14187 if (res_act != Res_act_initial) 14188 return (0); 14189 14190 if (ill->ill_flags & ILLF_NOARP) 14191 err = ill_arp_off(ill); 14192 else 14193 err = ill_arp_on(ill); 14194 if (err != 0) { 14195 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 14196 freemsg(ipif->ipif_arp_del_mp); 14197 freemsg(ill->ill_arp_down_mp); 14198 freemsg(ill->ill_arp_del_mapping_mp); 14199 ipif->ipif_arp_del_mp = NULL; 14200 ill->ill_arp_down_mp = NULL; 14201 ill->ill_arp_del_mapping_mp = NULL; 14202 return (err); 14203 } 14204 return ((ill->ill_ipif_up_count != 0 || was_dup || 14205 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 14206 14207 failed: 14208 ip1dbg(("ipif_resolver_up: FAILED\n")); 14209 freemsg(arp_add_mp); 14210 freemsg(arp_del_mp); 14211 freemsg(arp_add_mapping_mp); 14212 freemsg(arp_up_mp); 14213 freemsg(arp_down_mp); 14214 ill->ill_arp_bringup_pending = 0; 14215 return (err); 14216 } 14217 14218 /* 14219 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 14220 * just gone back up. 14221 */ 14222 static void 14223 ipif_arp_start_dad(ipif_t *ipif) 14224 { 14225 ill_t *ill = ipif->ipif_ill; 14226 mblk_t *arp_add_mp; 14227 area_t *area; 14228 14229 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 14230 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14231 ipif->ipif_lcl_addr == INADDR_ANY || 14232 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 14233 (char *)&ipif->ipif_lcl_addr)) == NULL) { 14234 /* 14235 * If we can't contact ARP for some reason, that's not really a 14236 * problem. Just send out the routing socket notification that 14237 * DAD completion would have done, and continue. 14238 */ 14239 ipif_mask_reply(ipif); 14240 ip_rts_ifmsg(ipif); 14241 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14242 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14243 ipif->ipif_addr_ready = 1; 14244 return; 14245 } 14246 14247 /* Setting the 'unverified' flag restarts DAD */ 14248 area = (area_t *)arp_add_mp->b_rptr; 14249 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 14250 ACE_F_UNVERIFIED; 14251 putnext(ill->ill_rq, arp_add_mp); 14252 } 14253 14254 static void 14255 ipif_ndp_start_dad(ipif_t *ipif) 14256 { 14257 nce_t *nce; 14258 14259 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 14260 if (nce == NULL) 14261 return; 14262 14263 if (!ndp_restart_dad(nce)) { 14264 /* 14265 * If we can't restart DAD for some reason, that's not really a 14266 * problem. Just send out the routing socket notification that 14267 * DAD completion would have done, and continue. 14268 */ 14269 ip_rts_ifmsg(ipif); 14270 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14271 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14272 ipif->ipif_addr_ready = 1; 14273 } 14274 NCE_REFRELE(nce); 14275 } 14276 14277 /* 14278 * Restart duplicate address detection on all interfaces on the given ill. 14279 * 14280 * This is called when an interface transitions from down to up 14281 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 14282 * 14283 * Note that since the underlying physical link has transitioned, we must cause 14284 * at least one routing socket message to be sent here, either via DAD 14285 * completion or just by default on the first ipif. (If we don't do this, then 14286 * in.mpathd will see long delays when doing link-based failure recovery.) 14287 */ 14288 void 14289 ill_restart_dad(ill_t *ill, boolean_t went_up) 14290 { 14291 ipif_t *ipif; 14292 14293 if (ill == NULL) 14294 return; 14295 14296 /* 14297 * If layer two doesn't support duplicate address detection, then just 14298 * send the routing socket message now and be done with it. 14299 */ 14300 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14301 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14302 ip_rts_ifmsg(ill->ill_ipif); 14303 return; 14304 } 14305 14306 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14307 if (went_up) { 14308 if (ipif->ipif_flags & IPIF_UP) { 14309 if (ill->ill_isv6) 14310 ipif_ndp_start_dad(ipif); 14311 else 14312 ipif_arp_start_dad(ipif); 14313 } else if (ill->ill_isv6 && 14314 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14315 /* 14316 * For IPv4, the ARP module itself will 14317 * automatically start the DAD process when it 14318 * sees DL_NOTE_LINK_UP. We respond to the 14319 * AR_CN_READY at the completion of that task. 14320 * For IPv6, we must kick off the bring-up 14321 * process now. 14322 */ 14323 ndp_do_recovery(ipif); 14324 } else { 14325 /* 14326 * Unfortunately, the first ipif is "special" 14327 * and represents the underlying ill in the 14328 * routing socket messages. Thus, when this 14329 * one ipif is down, we must still notify so 14330 * that the user knows the IFF_RUNNING status 14331 * change. (If the first ipif is up, then 14332 * we'll handle eventual routing socket 14333 * notification via DAD completion.) 14334 */ 14335 if (ipif == ill->ill_ipif) 14336 ip_rts_ifmsg(ill->ill_ipif); 14337 } 14338 } else { 14339 /* 14340 * After link down, we'll need to send a new routing 14341 * message when the link comes back, so clear 14342 * ipif_addr_ready. 14343 */ 14344 ipif->ipif_addr_ready = 0; 14345 } 14346 } 14347 14348 /* 14349 * If we've torn down links, then notify the user right away. 14350 */ 14351 if (!went_up) 14352 ip_rts_ifmsg(ill->ill_ipif); 14353 } 14354 14355 /* 14356 * Wakeup all threads waiting to enter the ipsq, and sleeping 14357 * on any of the ills in this ipsq. The ill_lock of the ill 14358 * must be held so that waiters don't miss wakeups 14359 */ 14360 static void 14361 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14362 { 14363 phyint_t *phyint; 14364 14365 phyint = ipsq->ipsq_phyint_list; 14366 while (phyint != NULL) { 14367 if (phyint->phyint_illv4) { 14368 if (!caller_holds_lock) 14369 mutex_enter(&phyint->phyint_illv4->ill_lock); 14370 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14371 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14372 if (!caller_holds_lock) 14373 mutex_exit(&phyint->phyint_illv4->ill_lock); 14374 } 14375 if (phyint->phyint_illv6) { 14376 if (!caller_holds_lock) 14377 mutex_enter(&phyint->phyint_illv6->ill_lock); 14378 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14379 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14380 if (!caller_holds_lock) 14381 mutex_exit(&phyint->phyint_illv6->ill_lock); 14382 } 14383 phyint = phyint->phyint_ipsq_next; 14384 } 14385 } 14386 14387 static ipsq_t * 14388 ipsq_create(char *groupname, ip_stack_t *ipst) 14389 { 14390 ipsq_t *ipsq; 14391 14392 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14393 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14394 if (ipsq == NULL) { 14395 return (NULL); 14396 } 14397 14398 if (groupname != NULL) 14399 (void) strcpy(ipsq->ipsq_name, groupname); 14400 else 14401 ipsq->ipsq_name[0] = '\0'; 14402 14403 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14404 ipsq->ipsq_flags |= IPSQ_GROUP; 14405 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14406 ipst->ips_ipsq_g_head = ipsq; 14407 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14408 return (ipsq); 14409 } 14410 14411 /* 14412 * Return an ipsq correspoding to the groupname. If 'create' is true 14413 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14414 * uniquely with an IPMP group. However during IPMP groupname operations, 14415 * multiple IPMP groups may be associated with a single ipsq. But no 14416 * IPMP group can be associated with more than 1 ipsq at any time. 14417 * For example 14418 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14419 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14420 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14421 * 14422 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14423 * status shown below during the execution of the above command. 14424 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14425 * 14426 * After the completion of the above groupname command we return to the stable 14427 * state shown below. 14428 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14429 * hme4 mpk17-85 ipsq2 mpk17-85 1 14430 * 14431 * Because of the above, we don't search based on the ipsq_name since that 14432 * would miss the correct ipsq during certain windows as shown above. 14433 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14434 * natural state. 14435 */ 14436 static ipsq_t * 14437 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14438 ip_stack_t *ipst) 14439 { 14440 ipsq_t *ipsq; 14441 int group_len; 14442 phyint_t *phyint; 14443 14444 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14445 14446 group_len = strlen(groupname); 14447 ASSERT(group_len != 0); 14448 group_len++; 14449 14450 for (ipsq = ipst->ips_ipsq_g_head; 14451 ipsq != NULL; 14452 ipsq = ipsq->ipsq_next) { 14453 /* 14454 * When an ipsq is being split, and ill_split_ipsq 14455 * calls this function, we exclude it from being considered. 14456 */ 14457 if (ipsq == exclude_ipsq) 14458 continue; 14459 14460 /* 14461 * Compare against the ipsq_name. The groupname change happens 14462 * in 2 phases. The 1st phase merges the from group into 14463 * the to group's ipsq, by calling ill_merge_groups and restarts 14464 * the ioctl. The 2nd phase then locates the ipsq again thru 14465 * ipsq_name. At this point the phyint_groupname has not been 14466 * updated. 14467 */ 14468 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14469 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14470 /* 14471 * Verify that an ipmp groupname is exactly 14472 * part of 1 ipsq and is not found in any other 14473 * ipsq. 14474 */ 14475 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14476 NULL); 14477 return (ipsq); 14478 } 14479 14480 /* 14481 * Comparison against ipsq_name alone is not sufficient. 14482 * In the case when groups are currently being 14483 * merged, the ipsq could hold other IPMP groups temporarily. 14484 * so we walk the phyint list and compare against the 14485 * phyint_groupname as well. 14486 */ 14487 phyint = ipsq->ipsq_phyint_list; 14488 while (phyint != NULL) { 14489 if ((group_len == phyint->phyint_groupname_len) && 14490 (bcmp(phyint->phyint_groupname, groupname, 14491 group_len) == 0)) { 14492 /* 14493 * Verify that an ipmp groupname is exactly 14494 * part of 1 ipsq and is not found in any other 14495 * ipsq. 14496 */ 14497 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14498 ipst) == NULL); 14499 return (ipsq); 14500 } 14501 phyint = phyint->phyint_ipsq_next; 14502 } 14503 } 14504 if (create) 14505 ipsq = ipsq_create(groupname, ipst); 14506 return (ipsq); 14507 } 14508 14509 static void 14510 ipsq_delete(ipsq_t *ipsq) 14511 { 14512 ipsq_t *nipsq; 14513 ipsq_t *pipsq = NULL; 14514 ip_stack_t *ipst = ipsq->ipsq_ipst; 14515 14516 /* 14517 * We don't hold the ipsq lock, but we are sure no new 14518 * messages can land up, since the ipsq_refs is zero. 14519 * i.e. this ipsq is unnamed and no phyint or phyint group 14520 * is associated with this ipsq. (Lookups are based on ill_name 14521 * or phyint_groupname) 14522 */ 14523 ASSERT(ipsq->ipsq_refs == 0); 14524 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14525 ASSERT(ipsq->ipsq_pending_mp == NULL); 14526 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14527 /* 14528 * This is not the ipsq of an IPMP group. 14529 */ 14530 ipsq->ipsq_ipst = NULL; 14531 kmem_free(ipsq, sizeof (ipsq_t)); 14532 return; 14533 } 14534 14535 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14536 14537 /* 14538 * Locate the ipsq before we can remove it from 14539 * the singly linked list of ipsq's. 14540 */ 14541 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14542 nipsq = nipsq->ipsq_next) { 14543 if (nipsq == ipsq) { 14544 break; 14545 } 14546 pipsq = nipsq; 14547 } 14548 14549 ASSERT(nipsq == ipsq); 14550 14551 /* unlink ipsq from the list */ 14552 if (pipsq != NULL) 14553 pipsq->ipsq_next = ipsq->ipsq_next; 14554 else 14555 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14556 ipsq->ipsq_ipst = NULL; 14557 kmem_free(ipsq, sizeof (ipsq_t)); 14558 rw_exit(&ipst->ips_ill_g_lock); 14559 } 14560 14561 static void 14562 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14563 queue_t *q) 14564 { 14565 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14566 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14567 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14568 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14569 ASSERT(current_mp != NULL); 14570 14571 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14572 NEW_OP, NULL); 14573 14574 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14575 new_ipsq->ipsq_xopq_mphead != NULL); 14576 14577 /* 14578 * move from old ipsq to the new ipsq. 14579 */ 14580 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14581 if (old_ipsq->ipsq_xopq_mphead != NULL) 14582 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14583 14584 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14585 } 14586 14587 void 14588 ill_group_cleanup(ill_t *ill) 14589 { 14590 ill_t *ill_v4; 14591 ill_t *ill_v6; 14592 ipif_t *ipif; 14593 14594 ill_v4 = ill->ill_phyint->phyint_illv4; 14595 ill_v6 = ill->ill_phyint->phyint_illv6; 14596 14597 if (ill_v4 != NULL) { 14598 mutex_enter(&ill_v4->ill_lock); 14599 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14600 ipif = ipif->ipif_next) { 14601 IPIF_UNMARK_MOVING(ipif); 14602 } 14603 ill_v4->ill_up_ipifs = B_FALSE; 14604 mutex_exit(&ill_v4->ill_lock); 14605 } 14606 14607 if (ill_v6 != NULL) { 14608 mutex_enter(&ill_v6->ill_lock); 14609 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14610 ipif = ipif->ipif_next) { 14611 IPIF_UNMARK_MOVING(ipif); 14612 } 14613 ill_v6->ill_up_ipifs = B_FALSE; 14614 mutex_exit(&ill_v6->ill_lock); 14615 } 14616 } 14617 /* 14618 * This function is called when an ill has had a change in its group status 14619 * to bring up all the ipifs that were up before the change. 14620 */ 14621 int 14622 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14623 { 14624 ipif_t *ipif; 14625 ill_t *ill_v4; 14626 ill_t *ill_v6; 14627 ill_t *from_ill; 14628 int err = 0; 14629 14630 14631 ASSERT(IAM_WRITER_ILL(ill)); 14632 14633 /* 14634 * Except for ipif_state_flags and ill_state_flags the other 14635 * fields of the ipif/ill that are modified below are protected 14636 * implicitly since we are a writer. We would have tried to down 14637 * even an ipif that was already down, in ill_down_ipifs. So we 14638 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14639 */ 14640 ill_v4 = ill->ill_phyint->phyint_illv4; 14641 ill_v6 = ill->ill_phyint->phyint_illv6; 14642 if (ill_v4 != NULL) { 14643 ill_v4->ill_up_ipifs = B_TRUE; 14644 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14645 ipif = ipif->ipif_next) { 14646 mutex_enter(&ill_v4->ill_lock); 14647 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14648 IPIF_UNMARK_MOVING(ipif); 14649 mutex_exit(&ill_v4->ill_lock); 14650 if (ipif->ipif_was_up) { 14651 if (!(ipif->ipif_flags & IPIF_UP)) 14652 err = ipif_up(ipif, q, mp); 14653 ipif->ipif_was_up = B_FALSE; 14654 if (err != 0) { 14655 /* 14656 * Can there be any other error ? 14657 */ 14658 ASSERT(err == EINPROGRESS); 14659 return (err); 14660 } 14661 } 14662 } 14663 mutex_enter(&ill_v4->ill_lock); 14664 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14665 mutex_exit(&ill_v4->ill_lock); 14666 ill_v4->ill_up_ipifs = B_FALSE; 14667 if (ill_v4->ill_move_in_progress) { 14668 ASSERT(ill_v4->ill_move_peer != NULL); 14669 ill_v4->ill_move_in_progress = B_FALSE; 14670 from_ill = ill_v4->ill_move_peer; 14671 from_ill->ill_move_in_progress = B_FALSE; 14672 from_ill->ill_move_peer = NULL; 14673 mutex_enter(&from_ill->ill_lock); 14674 from_ill->ill_state_flags &= ~ILL_CHANGING; 14675 mutex_exit(&from_ill->ill_lock); 14676 if (ill_v6 == NULL) { 14677 if (from_ill->ill_phyint->phyint_flags & 14678 PHYI_STANDBY) { 14679 phyint_inactive(from_ill->ill_phyint); 14680 } 14681 if (ill_v4->ill_phyint->phyint_flags & 14682 PHYI_STANDBY) { 14683 phyint_inactive(ill_v4->ill_phyint); 14684 } 14685 } 14686 ill_v4->ill_move_peer = NULL; 14687 } 14688 } 14689 14690 if (ill_v6 != NULL) { 14691 ill_v6->ill_up_ipifs = B_TRUE; 14692 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14693 ipif = ipif->ipif_next) { 14694 mutex_enter(&ill_v6->ill_lock); 14695 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14696 IPIF_UNMARK_MOVING(ipif); 14697 mutex_exit(&ill_v6->ill_lock); 14698 if (ipif->ipif_was_up) { 14699 if (!(ipif->ipif_flags & IPIF_UP)) 14700 err = ipif_up(ipif, q, mp); 14701 ipif->ipif_was_up = B_FALSE; 14702 if (err != 0) { 14703 /* 14704 * Can there be any other error ? 14705 */ 14706 ASSERT(err == EINPROGRESS); 14707 return (err); 14708 } 14709 } 14710 } 14711 mutex_enter(&ill_v6->ill_lock); 14712 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14713 mutex_exit(&ill_v6->ill_lock); 14714 ill_v6->ill_up_ipifs = B_FALSE; 14715 if (ill_v6->ill_move_in_progress) { 14716 ASSERT(ill_v6->ill_move_peer != NULL); 14717 ill_v6->ill_move_in_progress = B_FALSE; 14718 from_ill = ill_v6->ill_move_peer; 14719 from_ill->ill_move_in_progress = B_FALSE; 14720 from_ill->ill_move_peer = NULL; 14721 mutex_enter(&from_ill->ill_lock); 14722 from_ill->ill_state_flags &= ~ILL_CHANGING; 14723 mutex_exit(&from_ill->ill_lock); 14724 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14725 phyint_inactive(from_ill->ill_phyint); 14726 } 14727 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14728 phyint_inactive(ill_v6->ill_phyint); 14729 } 14730 ill_v6->ill_move_peer = NULL; 14731 } 14732 } 14733 return (0); 14734 } 14735 14736 /* 14737 * bring down all the approriate ipifs. 14738 */ 14739 /* ARGSUSED */ 14740 static void 14741 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14742 { 14743 ipif_t *ipif; 14744 14745 ASSERT(IAM_WRITER_ILL(ill)); 14746 14747 /* 14748 * Except for ipif_state_flags the other fields of the ipif/ill that 14749 * are modified below are protected implicitly since we are a writer 14750 */ 14751 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14752 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14753 continue; 14754 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14755 /* 14756 * We go through the ipif_down logic even if the ipif 14757 * is already down, since routes can be added based 14758 * on down ipifs. Going through ipif_down once again 14759 * will delete any IREs created based on these routes. 14760 */ 14761 if (ipif->ipif_flags & IPIF_UP) 14762 ipif->ipif_was_up = B_TRUE; 14763 /* 14764 * If called with chk_nofailover true ipif is moving. 14765 */ 14766 mutex_enter(&ill->ill_lock); 14767 if (chk_nofailover) { 14768 ipif->ipif_state_flags |= 14769 IPIF_MOVING | IPIF_CHANGING; 14770 } else { 14771 ipif->ipif_state_flags |= IPIF_CHANGING; 14772 } 14773 mutex_exit(&ill->ill_lock); 14774 /* 14775 * Need to re-create net/subnet bcast ires if 14776 * they are dependent on ipif. 14777 */ 14778 if (!ipif->ipif_isv6) 14779 ipif_check_bcast_ires(ipif); 14780 (void) ipif_logical_down(ipif, NULL, NULL); 14781 ipif_non_duplicate(ipif); 14782 ipif_down_tail(ipif); 14783 /* 14784 * We don't do ipif_multicast_down for IPv4 in 14785 * ipif_down. We need to set this so that 14786 * ipif_multicast_up will join the 14787 * ALLHOSTS_GROUP on to_ill. 14788 */ 14789 ipif->ipif_multicast_up = B_FALSE; 14790 } 14791 } 14792 } 14793 14794 #define IPSQ_INC_REF(ipsq, ipst) { \ 14795 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14796 (ipsq)->ipsq_refs++; \ 14797 } 14798 14799 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14800 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14801 (ipsq)->ipsq_refs--; \ 14802 if ((ipsq)->ipsq_refs == 0) \ 14803 (ipsq)->ipsq_name[0] = '\0'; \ 14804 } 14805 14806 /* 14807 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14808 * new_ipsq. 14809 */ 14810 static void 14811 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14812 { 14813 phyint_t *phyint; 14814 phyint_t *next_phyint; 14815 14816 /* 14817 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14818 * writer and the ill_lock of the ill in question. Also the dest 14819 * ipsq can't vanish while we hold the ill_g_lock as writer. 14820 */ 14821 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14822 14823 phyint = cur_ipsq->ipsq_phyint_list; 14824 cur_ipsq->ipsq_phyint_list = NULL; 14825 while (phyint != NULL) { 14826 next_phyint = phyint->phyint_ipsq_next; 14827 IPSQ_DEC_REF(cur_ipsq, ipst); 14828 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14829 new_ipsq->ipsq_phyint_list = phyint; 14830 IPSQ_INC_REF(new_ipsq, ipst); 14831 phyint->phyint_ipsq = new_ipsq; 14832 phyint = next_phyint; 14833 } 14834 } 14835 14836 #define SPLIT_SUCCESS 0 14837 #define SPLIT_NOT_NEEDED 1 14838 #define SPLIT_FAILED 2 14839 14840 int 14841 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14842 ip_stack_t *ipst) 14843 { 14844 ipsq_t *newipsq = NULL; 14845 14846 /* 14847 * Assertions denote pre-requisites for changing the ipsq of 14848 * a phyint 14849 */ 14850 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14851 /* 14852 * <ill-phyint> assocs can't change while ill_g_lock 14853 * is held as writer. See ill_phyint_reinit() 14854 */ 14855 ASSERT(phyint->phyint_illv4 == NULL || 14856 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14857 ASSERT(phyint->phyint_illv6 == NULL || 14858 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14859 14860 if ((phyint->phyint_groupname_len != 14861 (strlen(cur_ipsq->ipsq_name) + 1) || 14862 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14863 phyint->phyint_groupname_len) != 0)) { 14864 /* 14865 * Once we fail in creating a new ipsq due to memory shortage, 14866 * don't attempt to create new ipsq again, based on another 14867 * phyint, since we want all phyints belonging to an IPMP group 14868 * to be in the same ipsq even in the event of mem alloc fails. 14869 */ 14870 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14871 cur_ipsq, ipst); 14872 if (newipsq == NULL) { 14873 /* Memory allocation failure */ 14874 return (SPLIT_FAILED); 14875 } else { 14876 /* ipsq_refs protected by ill_g_lock (writer) */ 14877 IPSQ_DEC_REF(cur_ipsq, ipst); 14878 phyint->phyint_ipsq = newipsq; 14879 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14880 newipsq->ipsq_phyint_list = phyint; 14881 IPSQ_INC_REF(newipsq, ipst); 14882 return (SPLIT_SUCCESS); 14883 } 14884 } 14885 return (SPLIT_NOT_NEEDED); 14886 } 14887 14888 /* 14889 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14890 * to do this split 14891 */ 14892 static int 14893 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14894 { 14895 ipsq_t *newipsq; 14896 14897 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14898 /* 14899 * <ill-phyint> assocs can't change while ill_g_lock 14900 * is held as writer. See ill_phyint_reinit() 14901 */ 14902 14903 ASSERT(phyint->phyint_illv4 == NULL || 14904 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14905 ASSERT(phyint->phyint_illv6 == NULL || 14906 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14907 14908 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14909 phyint->phyint_illv4: phyint->phyint_illv6)) { 14910 /* 14911 * ipsq_init failed due to no memory 14912 * caller will use the same ipsq 14913 */ 14914 return (SPLIT_FAILED); 14915 } 14916 14917 /* ipsq_ref is protected by ill_g_lock (writer) */ 14918 IPSQ_DEC_REF(cur_ipsq, ipst); 14919 14920 /* 14921 * This is a new ipsq that is unknown to the world. 14922 * So we don't need to hold ipsq_lock, 14923 */ 14924 newipsq = phyint->phyint_ipsq; 14925 newipsq->ipsq_writer = NULL; 14926 newipsq->ipsq_reentry_cnt--; 14927 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14928 #ifdef ILL_DEBUG 14929 newipsq->ipsq_depth = 0; 14930 #endif 14931 14932 return (SPLIT_SUCCESS); 14933 } 14934 14935 /* 14936 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14937 * ipsq's representing their individual groups or themselves. Return 14938 * whether split needs to be retried again later. 14939 */ 14940 static boolean_t 14941 ill_split_ipsq(ipsq_t *cur_ipsq) 14942 { 14943 phyint_t *phyint; 14944 phyint_t *next_phyint; 14945 int error; 14946 boolean_t need_retry = B_FALSE; 14947 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14948 14949 phyint = cur_ipsq->ipsq_phyint_list; 14950 cur_ipsq->ipsq_phyint_list = NULL; 14951 while (phyint != NULL) { 14952 next_phyint = phyint->phyint_ipsq_next; 14953 /* 14954 * 'created' will tell us whether the callee actually 14955 * created an ipsq. Lack of memory may force the callee 14956 * to return without creating an ipsq. 14957 */ 14958 if (phyint->phyint_groupname == NULL) { 14959 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14960 } else { 14961 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14962 need_retry, ipst); 14963 } 14964 14965 switch (error) { 14966 case SPLIT_FAILED: 14967 need_retry = B_TRUE; 14968 /* FALLTHRU */ 14969 case SPLIT_NOT_NEEDED: 14970 /* 14971 * Keep it on the list. 14972 */ 14973 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14974 cur_ipsq->ipsq_phyint_list = phyint; 14975 break; 14976 case SPLIT_SUCCESS: 14977 break; 14978 default: 14979 ASSERT(0); 14980 } 14981 14982 phyint = next_phyint; 14983 } 14984 return (need_retry); 14985 } 14986 14987 /* 14988 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14989 * and return the ills in the list. This list will be 14990 * needed to unlock all the ills later on by the caller. 14991 * The <ill-ipsq> associations could change between the 14992 * lock and unlock. Hence the unlock can't traverse the 14993 * ipsq to get the list of ills. 14994 */ 14995 static int 14996 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14997 { 14998 int cnt = 0; 14999 phyint_t *phyint; 15000 ip_stack_t *ipst = ipsq->ipsq_ipst; 15001 15002 /* 15003 * The caller holds ill_g_lock to ensure that the ill memberships 15004 * of the ipsq don't change 15005 */ 15006 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 15007 15008 phyint = ipsq->ipsq_phyint_list; 15009 while (phyint != NULL) { 15010 if (phyint->phyint_illv4 != NULL) { 15011 ASSERT(cnt < list_max); 15012 list[cnt++] = phyint->phyint_illv4; 15013 } 15014 if (phyint->phyint_illv6 != NULL) { 15015 ASSERT(cnt < list_max); 15016 list[cnt++] = phyint->phyint_illv6; 15017 } 15018 phyint = phyint->phyint_ipsq_next; 15019 } 15020 ill_lock_ills(list, cnt); 15021 return (cnt); 15022 } 15023 15024 void 15025 ill_lock_ills(ill_t **list, int cnt) 15026 { 15027 int i; 15028 15029 if (cnt > 1) { 15030 boolean_t try_again; 15031 do { 15032 try_again = B_FALSE; 15033 for (i = 0; i < cnt - 1; i++) { 15034 if (list[i] < list[i + 1]) { 15035 ill_t *tmp; 15036 15037 /* swap the elements */ 15038 tmp = list[i]; 15039 list[i] = list[i + 1]; 15040 list[i + 1] = tmp; 15041 try_again = B_TRUE; 15042 } 15043 } 15044 } while (try_again); 15045 } 15046 15047 for (i = 0; i < cnt; i++) { 15048 if (i == 0) { 15049 if (list[i] != NULL) 15050 mutex_enter(&list[i]->ill_lock); 15051 else 15052 return; 15053 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 15054 mutex_enter(&list[i]->ill_lock); 15055 } 15056 } 15057 } 15058 15059 void 15060 ill_unlock_ills(ill_t **list, int cnt) 15061 { 15062 int i; 15063 15064 for (i = 0; i < cnt; i++) { 15065 if ((i == 0) && (list[i] != NULL)) { 15066 mutex_exit(&list[i]->ill_lock); 15067 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 15068 mutex_exit(&list[i]->ill_lock); 15069 } 15070 } 15071 } 15072 15073 /* 15074 * Merge all the ills from 1 ipsq group into another ipsq group. 15075 * The source ipsq group is specified by the ipsq associated with 15076 * 'from_ill'. The destination ipsq group is specified by the ipsq 15077 * associated with 'to_ill' or 'groupname' respectively. 15078 * Note that ipsq itself does not have a reference count mechanism 15079 * and functions don't look up an ipsq and pass it around. Instead 15080 * functions pass around an ill or groupname, and the ipsq is looked 15081 * up from the ill or groupname and the required operation performed 15082 * atomically with the lookup on the ipsq. 15083 */ 15084 static int 15085 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 15086 queue_t *q) 15087 { 15088 ipsq_t *old_ipsq; 15089 ipsq_t *new_ipsq; 15090 ill_t **ill_list; 15091 int cnt; 15092 size_t ill_list_size; 15093 boolean_t became_writer_on_new_sq = B_FALSE; 15094 ip_stack_t *ipst = from_ill->ill_ipst; 15095 15096 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 15097 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 15098 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 15099 15100 /* 15101 * Need to hold ill_g_lock as writer and also the ill_lock to 15102 * change the <ill-ipsq> assoc of an ill. Need to hold the 15103 * ipsq_lock to prevent new messages from landing on an ipsq. 15104 */ 15105 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15106 15107 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 15108 if (groupname != NULL) 15109 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 15110 else { 15111 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 15112 } 15113 15114 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 15115 15116 /* 15117 * both groups are on the same ipsq. 15118 */ 15119 if (old_ipsq == new_ipsq) { 15120 rw_exit(&ipst->ips_ill_g_lock); 15121 return (0); 15122 } 15123 15124 cnt = old_ipsq->ipsq_refs << 1; 15125 ill_list_size = cnt * sizeof (ill_t *); 15126 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 15127 if (ill_list == NULL) { 15128 rw_exit(&ipst->ips_ill_g_lock); 15129 return (ENOMEM); 15130 } 15131 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 15132 15133 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 15134 mutex_enter(&new_ipsq->ipsq_lock); 15135 if ((new_ipsq->ipsq_writer == NULL && 15136 new_ipsq->ipsq_current_ipif == NULL) || 15137 (new_ipsq->ipsq_writer == curthread)) { 15138 new_ipsq->ipsq_writer = curthread; 15139 new_ipsq->ipsq_reentry_cnt++; 15140 became_writer_on_new_sq = B_TRUE; 15141 } 15142 15143 /* 15144 * We are holding ill_g_lock as writer and all the ill locks of 15145 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 15146 * message can land up on the old ipsq even though we don't hold the 15147 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 15148 */ 15149 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 15150 15151 /* 15152 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 15153 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 15154 * assocs. till we release the ill_g_lock, and hence it can't vanish. 15155 */ 15156 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 15157 15158 /* 15159 * Mark the new ipsq as needing a split since it is currently 15160 * being shared by more than 1 IPMP group. The split will 15161 * occur at the end of ipsq_exit 15162 */ 15163 new_ipsq->ipsq_split = B_TRUE; 15164 15165 /* Now release all the locks */ 15166 mutex_exit(&new_ipsq->ipsq_lock); 15167 ill_unlock_ills(ill_list, cnt); 15168 rw_exit(&ipst->ips_ill_g_lock); 15169 15170 kmem_free(ill_list, ill_list_size); 15171 15172 /* 15173 * If we succeeded in becoming writer on the new ipsq, then 15174 * drain the new ipsq and start processing all enqueued messages 15175 * including the current ioctl we are processing which is either 15176 * a set groupname or failover/failback. 15177 */ 15178 if (became_writer_on_new_sq) 15179 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 15180 15181 /* 15182 * syncq has been changed and all the messages have been moved. 15183 */ 15184 mutex_enter(&old_ipsq->ipsq_lock); 15185 old_ipsq->ipsq_current_ipif = NULL; 15186 old_ipsq->ipsq_current_ioctl = 0; 15187 mutex_exit(&old_ipsq->ipsq_lock); 15188 return (EINPROGRESS); 15189 } 15190 15191 /* 15192 * Delete and add the loopback copy and non-loopback copy of 15193 * the BROADCAST ire corresponding to ill and addr. Used to 15194 * group broadcast ires together when ill becomes part of 15195 * a group. 15196 * 15197 * This function is also called when ill is leaving the group 15198 * so that the ires belonging to the group gets re-grouped. 15199 */ 15200 static void 15201 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 15202 { 15203 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 15204 ire_t **ire_ptpn = &ire_head; 15205 ip_stack_t *ipst = ill->ill_ipst; 15206 15207 /* 15208 * The loopback and non-loopback IREs are inserted in the order in which 15209 * they're found, on the basis that they are correctly ordered (loopback 15210 * first). 15211 */ 15212 for (;;) { 15213 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15214 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15215 if (ire == NULL) 15216 break; 15217 15218 /* 15219 * we are passing in KM_SLEEP because it is not easy to 15220 * go back to a sane state in case of memory failure. 15221 */ 15222 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 15223 ASSERT(nire != NULL); 15224 bzero(nire, sizeof (ire_t)); 15225 /* 15226 * Don't use ire_max_frag directly since we don't 15227 * hold on to 'ire' until we add the new ire 'nire' and 15228 * we don't want the new ire to have a dangling reference 15229 * to 'ire'. The ire_max_frag of a broadcast ire must 15230 * be in sync with the ipif_mtu of the associate ipif. 15231 * For eg. this happens as a result of SIOCSLIFNAME, 15232 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 15233 * the driver. A change in ire_max_frag triggered as 15234 * as a result of path mtu discovery, or due to an 15235 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 15236 * route change -mtu command does not apply to broadcast ires. 15237 * 15238 * XXX We need a recovery strategy here if ire_init fails 15239 */ 15240 if (ire_init(nire, 15241 (uchar_t *)&ire->ire_addr, 15242 (uchar_t *)&ire->ire_mask, 15243 (uchar_t *)&ire->ire_src_addr, 15244 (uchar_t *)&ire->ire_gateway_addr, 15245 (uchar_t *)&ire->ire_in_src_addr, 15246 ire->ire_stq == NULL ? &ip_loopback_mtu : 15247 &ire->ire_ipif->ipif_mtu, 15248 (ire->ire_nce != NULL ? ire->ire_nce->nce_fp_mp : NULL), 15249 ire->ire_rfq, 15250 ire->ire_stq, 15251 ire->ire_type, 15252 (ire->ire_nce != NULL? ire->ire_nce->nce_res_mp : NULL), 15253 ire->ire_ipif, 15254 ire->ire_in_ill, 15255 ire->ire_cmask, 15256 ire->ire_phandle, 15257 ire->ire_ihandle, 15258 ire->ire_flags, 15259 &ire->ire_uinfo, 15260 NULL, 15261 NULL, 15262 ipst) == NULL) { 15263 cmn_err(CE_PANIC, "ire_init() failed"); 15264 } 15265 ire_delete(ire); 15266 ire_refrele(ire); 15267 15268 /* 15269 * The newly created IREs are inserted at the tail of the list 15270 * starting with ire_head. As we've just allocated them no one 15271 * knows about them so it's safe. 15272 */ 15273 *ire_ptpn = nire; 15274 ire_ptpn = &nire->ire_next; 15275 } 15276 15277 for (nire = ire_head; nire != NULL; nire = nire_next) { 15278 int error; 15279 ire_t *oire; 15280 /* unlink the IRE from our list before calling ire_add() */ 15281 nire_next = nire->ire_next; 15282 nire->ire_next = NULL; 15283 15284 /* ire_add adds the ire at the right place in the list */ 15285 oire = nire; 15286 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 15287 ASSERT(error == 0); 15288 ASSERT(oire == nire); 15289 ire_refrele(nire); /* Held in ire_add */ 15290 } 15291 } 15292 15293 /* 15294 * This function is usually called when an ill is inserted in 15295 * a group and all the ipifs are already UP. As all the ipifs 15296 * are already UP, the broadcast ires have already been created 15297 * and been inserted. But, ire_add_v4 would not have grouped properly. 15298 * We need to re-group for the benefit of ip_wput_ire which 15299 * expects BROADCAST ires to be grouped properly to avoid sending 15300 * more than one copy of the broadcast packet per group. 15301 * 15302 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15303 * because when ipif_up_done ends up calling this, ires have 15304 * already been added before illgrp_insert i.e before ill_group 15305 * has been initialized. 15306 */ 15307 static void 15308 ill_group_bcast_for_xmit(ill_t *ill) 15309 { 15310 ill_group_t *illgrp; 15311 ipif_t *ipif; 15312 ipaddr_t addr; 15313 ipaddr_t net_mask; 15314 ipaddr_t subnet_netmask; 15315 15316 illgrp = ill->ill_group; 15317 15318 /* 15319 * This function is called even when an ill is deleted from 15320 * the group. Hence, illgrp could be null. 15321 */ 15322 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15323 return; 15324 15325 /* 15326 * Delete all the BROADCAST ires matching this ill and add 15327 * them back. This time, ire_add_v4 should take care of 15328 * grouping them with others because ill is part of the 15329 * group. 15330 */ 15331 ill_bcast_delete_and_add(ill, 0); 15332 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15333 15334 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15335 15336 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15337 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15338 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15339 } else { 15340 net_mask = htonl(IN_CLASSA_NET); 15341 } 15342 addr = net_mask & ipif->ipif_subnet; 15343 ill_bcast_delete_and_add(ill, addr); 15344 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15345 15346 subnet_netmask = ipif->ipif_net_mask; 15347 addr = ipif->ipif_subnet; 15348 ill_bcast_delete_and_add(ill, addr); 15349 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15350 } 15351 } 15352 15353 /* 15354 * This function is called from illgrp_delete when ill is being deleted 15355 * from the group. 15356 * 15357 * As ill is not there in the group anymore, any address belonging 15358 * to this ill should be cleared of IRE_MARK_NORECV. 15359 */ 15360 static void 15361 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15362 { 15363 ire_t *ire; 15364 irb_t *irb; 15365 ip_stack_t *ipst = ill->ill_ipst; 15366 15367 ASSERT(ill->ill_group == NULL); 15368 15369 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15370 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15371 15372 if (ire != NULL) { 15373 /* 15374 * IPMP and plumbing operations are serialized on the ipsq, so 15375 * no one will insert or delete a broadcast ire under our feet. 15376 */ 15377 irb = ire->ire_bucket; 15378 rw_enter(&irb->irb_lock, RW_READER); 15379 ire_refrele(ire); 15380 15381 for (; ire != NULL; ire = ire->ire_next) { 15382 if (ire->ire_addr != addr) 15383 break; 15384 if (ire_to_ill(ire) != ill) 15385 continue; 15386 15387 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15388 ire->ire_marks &= ~IRE_MARK_NORECV; 15389 } 15390 rw_exit(&irb->irb_lock); 15391 } 15392 } 15393 15394 /* 15395 * This function must be called only after the broadcast ires 15396 * have been grouped together. For a given address addr, nominate 15397 * only one of the ires whose interface is not FAILED or OFFLINE. 15398 * 15399 * This is also called when an ipif goes down, so that we can nominate 15400 * a different ire with the same address for receiving. 15401 */ 15402 static void 15403 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15404 { 15405 irb_t *irb; 15406 ire_t *ire; 15407 ire_t *ire1; 15408 ire_t *save_ire; 15409 ire_t **irep = NULL; 15410 boolean_t first = B_TRUE; 15411 ire_t *clear_ire = NULL; 15412 ire_t *start_ire = NULL; 15413 ire_t *new_lb_ire; 15414 ire_t *new_nlb_ire; 15415 boolean_t new_lb_ire_used = B_FALSE; 15416 boolean_t new_nlb_ire_used = B_FALSE; 15417 uint64_t match_flags; 15418 uint64_t phyi_flags; 15419 boolean_t fallback = B_FALSE; 15420 uint_t max_frag; 15421 15422 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15423 NULL, MATCH_IRE_TYPE, ipst); 15424 /* 15425 * We may not be able to find some ires if a previous 15426 * ire_create failed. This happens when an ipif goes 15427 * down and we are unable to create BROADCAST ires due 15428 * to memory failure. Thus, we have to check for NULL 15429 * below. This should handle the case for LOOPBACK, 15430 * POINTOPOINT and interfaces with some POINTOPOINT 15431 * logicals for which there are no BROADCAST ires. 15432 */ 15433 if (ire == NULL) 15434 return; 15435 /* 15436 * Currently IRE_BROADCASTS are deleted when an ipif 15437 * goes down which runs exclusively. Thus, setting 15438 * IRE_MARK_RCVD should not race with ire_delete marking 15439 * IRE_MARK_CONDEMNED. We grab the lock below just to 15440 * be consistent with other parts of the code that walks 15441 * a given bucket. 15442 */ 15443 save_ire = ire; 15444 irb = ire->ire_bucket; 15445 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15446 if (new_lb_ire == NULL) { 15447 ire_refrele(ire); 15448 return; 15449 } 15450 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15451 if (new_nlb_ire == NULL) { 15452 ire_refrele(ire); 15453 kmem_cache_free(ire_cache, new_lb_ire); 15454 return; 15455 } 15456 IRB_REFHOLD(irb); 15457 rw_enter(&irb->irb_lock, RW_WRITER); 15458 /* 15459 * Get to the first ire matching the address and the 15460 * group. If the address does not match we are done 15461 * as we could not find the IRE. If the address matches 15462 * we should get to the first one matching the group. 15463 */ 15464 while (ire != NULL) { 15465 if (ire->ire_addr != addr || 15466 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15467 break; 15468 } 15469 ire = ire->ire_next; 15470 } 15471 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15472 start_ire = ire; 15473 redo: 15474 while (ire != NULL && ire->ire_addr == addr && 15475 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15476 /* 15477 * The first ire for any address within a group 15478 * should always be the one with IRE_MARK_NORECV cleared 15479 * so that ip_wput_ire can avoid searching for one. 15480 * Note down the insertion point which will be used 15481 * later. 15482 */ 15483 if (first && (irep == NULL)) 15484 irep = ire->ire_ptpn; 15485 /* 15486 * PHYI_FAILED is set when the interface fails. 15487 * This interface might have become good, but the 15488 * daemon has not yet detected. We should still 15489 * not receive on this. PHYI_OFFLINE should never 15490 * be picked as this has been offlined and soon 15491 * be removed. 15492 */ 15493 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15494 if (phyi_flags & PHYI_OFFLINE) { 15495 ire->ire_marks |= IRE_MARK_NORECV; 15496 ire = ire->ire_next; 15497 continue; 15498 } 15499 if (phyi_flags & match_flags) { 15500 ire->ire_marks |= IRE_MARK_NORECV; 15501 ire = ire->ire_next; 15502 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15503 PHYI_INACTIVE) { 15504 fallback = B_TRUE; 15505 } 15506 continue; 15507 } 15508 if (first) { 15509 /* 15510 * We will move this to the front of the list later 15511 * on. 15512 */ 15513 clear_ire = ire; 15514 ire->ire_marks &= ~IRE_MARK_NORECV; 15515 } else { 15516 ire->ire_marks |= IRE_MARK_NORECV; 15517 } 15518 first = B_FALSE; 15519 ire = ire->ire_next; 15520 } 15521 /* 15522 * If we never nominated anybody, try nominating at least 15523 * an INACTIVE, if we found one. Do it only once though. 15524 */ 15525 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15526 fallback) { 15527 match_flags = PHYI_FAILED; 15528 ire = start_ire; 15529 irep = NULL; 15530 goto redo; 15531 } 15532 ire_refrele(save_ire); 15533 15534 /* 15535 * irep non-NULL indicates that we entered the while loop 15536 * above. If clear_ire is at the insertion point, we don't 15537 * have to do anything. clear_ire will be NULL if all the 15538 * interfaces are failed. 15539 * 15540 * We cannot unlink and reinsert the ire at the right place 15541 * in the list since there can be other walkers of this bucket. 15542 * Instead we delete and recreate the ire 15543 */ 15544 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15545 ire_t *clear_ire_stq = NULL; 15546 mblk_t *fp_mp = NULL, *res_mp = NULL; 15547 15548 bzero(new_lb_ire, sizeof (ire_t)); 15549 if (clear_ire->ire_nce != NULL) { 15550 fp_mp = clear_ire->ire_nce->nce_fp_mp; 15551 res_mp = clear_ire->ire_nce->nce_res_mp; 15552 } 15553 /* XXX We need a recovery strategy here. */ 15554 if (ire_init(new_lb_ire, 15555 (uchar_t *)&clear_ire->ire_addr, 15556 (uchar_t *)&clear_ire->ire_mask, 15557 (uchar_t *)&clear_ire->ire_src_addr, 15558 (uchar_t *)&clear_ire->ire_gateway_addr, 15559 (uchar_t *)&clear_ire->ire_in_src_addr, 15560 &clear_ire->ire_max_frag, 15561 fp_mp, 15562 clear_ire->ire_rfq, 15563 clear_ire->ire_stq, 15564 clear_ire->ire_type, 15565 res_mp, 15566 clear_ire->ire_ipif, 15567 clear_ire->ire_in_ill, 15568 clear_ire->ire_cmask, 15569 clear_ire->ire_phandle, 15570 clear_ire->ire_ihandle, 15571 clear_ire->ire_flags, 15572 &clear_ire->ire_uinfo, 15573 NULL, 15574 NULL, 15575 ipst) == NULL) 15576 cmn_err(CE_PANIC, "ire_init() failed"); 15577 if (clear_ire->ire_stq == NULL) { 15578 ire_t *ire_next = clear_ire->ire_next; 15579 if (ire_next != NULL && 15580 ire_next->ire_stq != NULL && 15581 ire_next->ire_addr == clear_ire->ire_addr && 15582 ire_next->ire_ipif->ipif_ill == 15583 clear_ire->ire_ipif->ipif_ill) { 15584 clear_ire_stq = ire_next; 15585 15586 bzero(new_nlb_ire, sizeof (ire_t)); 15587 if (clear_ire_stq->ire_nce != NULL) { 15588 fp_mp = 15589 clear_ire_stq->ire_nce->nce_fp_mp; 15590 res_mp = 15591 clear_ire_stq->ire_nce->nce_res_mp; 15592 } else { 15593 fp_mp = res_mp = NULL; 15594 } 15595 /* XXX We need a recovery strategy here. */ 15596 if (ire_init(new_nlb_ire, 15597 (uchar_t *)&clear_ire_stq->ire_addr, 15598 (uchar_t *)&clear_ire_stq->ire_mask, 15599 (uchar_t *)&clear_ire_stq->ire_src_addr, 15600 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15601 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 15602 &clear_ire_stq->ire_max_frag, 15603 fp_mp, 15604 clear_ire_stq->ire_rfq, 15605 clear_ire_stq->ire_stq, 15606 clear_ire_stq->ire_type, 15607 res_mp, 15608 clear_ire_stq->ire_ipif, 15609 clear_ire_stq->ire_in_ill, 15610 clear_ire_stq->ire_cmask, 15611 clear_ire_stq->ire_phandle, 15612 clear_ire_stq->ire_ihandle, 15613 clear_ire_stq->ire_flags, 15614 &clear_ire_stq->ire_uinfo, 15615 NULL, 15616 NULL, 15617 ipst) == NULL) 15618 cmn_err(CE_PANIC, "ire_init() failed"); 15619 } 15620 } 15621 15622 /* 15623 * Delete the ire. We can't call ire_delete() since 15624 * we are holding the bucket lock. We can't release the 15625 * bucket lock since we can't allow irep to change. So just 15626 * mark it CONDEMNED. The IRB_REFRELE will delete the 15627 * ire from the list and do the refrele. 15628 */ 15629 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15630 irb->irb_marks |= IRB_MARK_CONDEMNED; 15631 15632 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15633 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15634 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15635 } 15636 15637 /* 15638 * Also take care of otherfields like ib/ob pkt count 15639 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15640 */ 15641 15642 /* Set the max_frag before adding the ire */ 15643 max_frag = *new_lb_ire->ire_max_fragp; 15644 new_lb_ire->ire_max_fragp = NULL; 15645 new_lb_ire->ire_max_frag = max_frag; 15646 15647 /* Add the new ire's. Insert at *irep */ 15648 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15649 ire1 = *irep; 15650 if (ire1 != NULL) 15651 ire1->ire_ptpn = &new_lb_ire->ire_next; 15652 new_lb_ire->ire_next = ire1; 15653 /* Link the new one in. */ 15654 new_lb_ire->ire_ptpn = irep; 15655 membar_producer(); 15656 *irep = new_lb_ire; 15657 new_lb_ire_used = B_TRUE; 15658 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15659 new_lb_ire->ire_bucket->irb_ire_cnt++; 15660 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15661 15662 if (clear_ire_stq != NULL) { 15663 /* Set the max_frag before adding the ire */ 15664 max_frag = *new_nlb_ire->ire_max_fragp; 15665 new_nlb_ire->ire_max_fragp = NULL; 15666 new_nlb_ire->ire_max_frag = max_frag; 15667 15668 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15669 irep = &new_lb_ire->ire_next; 15670 /* Add the new ire. Insert at *irep */ 15671 ire1 = *irep; 15672 if (ire1 != NULL) 15673 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15674 new_nlb_ire->ire_next = ire1; 15675 /* Link the new one in. */ 15676 new_nlb_ire->ire_ptpn = irep; 15677 membar_producer(); 15678 *irep = new_nlb_ire; 15679 new_nlb_ire_used = B_TRUE; 15680 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15681 ire_stats_inserted); 15682 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15683 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15684 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15685 } 15686 } 15687 rw_exit(&irb->irb_lock); 15688 if (!new_lb_ire_used) 15689 kmem_cache_free(ire_cache, new_lb_ire); 15690 if (!new_nlb_ire_used) 15691 kmem_cache_free(ire_cache, new_nlb_ire); 15692 IRB_REFRELE(irb); 15693 } 15694 15695 /* 15696 * Whenever an ipif goes down we have to renominate a different 15697 * broadcast ire to receive. Whenever an ipif comes up, we need 15698 * to make sure that we have only one nominated to receive. 15699 */ 15700 static void 15701 ipif_renominate_bcast(ipif_t *ipif) 15702 { 15703 ill_t *ill = ipif->ipif_ill; 15704 ipaddr_t subnet_addr; 15705 ipaddr_t net_addr; 15706 ipaddr_t net_mask = 0; 15707 ipaddr_t subnet_netmask; 15708 ipaddr_t addr; 15709 ill_group_t *illgrp; 15710 ip_stack_t *ipst = ill->ill_ipst; 15711 15712 illgrp = ill->ill_group; 15713 /* 15714 * If this is the last ipif going down, it might take 15715 * the ill out of the group. In that case ipif_down -> 15716 * illgrp_delete takes care of doing the nomination. 15717 * ipif_down does not call for this case. 15718 */ 15719 ASSERT(illgrp != NULL); 15720 15721 /* There could not have been any ires associated with this */ 15722 if (ipif->ipif_subnet == 0) 15723 return; 15724 15725 ill_mark_bcast(illgrp, 0, ipst); 15726 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15727 15728 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15729 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15730 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15731 } else { 15732 net_mask = htonl(IN_CLASSA_NET); 15733 } 15734 addr = net_mask & ipif->ipif_subnet; 15735 ill_mark_bcast(illgrp, addr, ipst); 15736 15737 net_addr = ~net_mask | addr; 15738 ill_mark_bcast(illgrp, net_addr, ipst); 15739 15740 subnet_netmask = ipif->ipif_net_mask; 15741 addr = ipif->ipif_subnet; 15742 ill_mark_bcast(illgrp, addr, ipst); 15743 15744 subnet_addr = ~subnet_netmask | addr; 15745 ill_mark_bcast(illgrp, subnet_addr, ipst); 15746 } 15747 15748 /* 15749 * Whenever we form or delete ill groups, we need to nominate one set of 15750 * BROADCAST ires for receiving in the group. 15751 * 15752 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15753 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15754 * for ill_ipif_up_count to be non-zero. This is the only case where 15755 * ill_ipif_up_count is zero and we would still find the ires. 15756 * 15757 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15758 * ipif is UP and we just have to do the nomination. 15759 * 15760 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15761 * from the group. So, we have to do the nomination. 15762 * 15763 * Because of (3), there could be just one ill in the group. But we have 15764 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15765 * Thus, this function does not optimize when there is only one ill as 15766 * it is not correct for (3). 15767 */ 15768 static void 15769 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15770 { 15771 ill_t *ill; 15772 ipif_t *ipif; 15773 ipaddr_t subnet_addr; 15774 ipaddr_t prev_subnet_addr = 0; 15775 ipaddr_t net_addr; 15776 ipaddr_t prev_net_addr = 0; 15777 ipaddr_t net_mask = 0; 15778 ipaddr_t subnet_netmask; 15779 ipaddr_t addr; 15780 ip_stack_t *ipst; 15781 15782 /* 15783 * When the last memeber is leaving, there is nothing to 15784 * nominate. 15785 */ 15786 if (illgrp->illgrp_ill_count == 0) { 15787 ASSERT(illgrp->illgrp_ill == NULL); 15788 return; 15789 } 15790 15791 ill = illgrp->illgrp_ill; 15792 ASSERT(!ill->ill_isv6); 15793 ipst = ill->ill_ipst; 15794 /* 15795 * We assume that ires with same address and belonging to the 15796 * same group, has been grouped together. Nominating a *single* 15797 * ill in the group for sending and receiving broadcast is done 15798 * by making sure that the first BROADCAST ire (which will be 15799 * the one returned by ire_ctable_lookup for ip_rput and the 15800 * one that will be used in ip_wput_ire) will be the one that 15801 * will not have IRE_MARK_NORECV set. 15802 * 15803 * 1) ip_rput checks and discards packets received on ires marked 15804 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15805 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15806 * first ire in the group for every broadcast address in the group. 15807 * ip_rput will accept packets only on the first ire i.e only 15808 * one copy of the ill. 15809 * 15810 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15811 * packet for the whole group. It needs to send out on the ill 15812 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15813 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15814 * the copy echoed back on other port where the ire is not marked 15815 * with IRE_MARK_NORECV. 15816 * 15817 * Note that we just need to have the first IRE either loopback or 15818 * non-loopback (either of them may not exist if ire_create failed 15819 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15820 * always hit the first one and hence will always accept one copy. 15821 * 15822 * We have a broadcast ire per ill for all the unique prefixes 15823 * hosted on that ill. As we don't have a way of knowing the 15824 * unique prefixes on a given ill and hence in the whole group, 15825 * we just call ill_mark_bcast on all the prefixes that exist 15826 * in the group. For the common case of one prefix, the code 15827 * below optimizes by remebering the last address used for 15828 * markng. In the case of multiple prefixes, this will still 15829 * optimize depending the order of prefixes. 15830 * 15831 * The only unique address across the whole group is 0.0.0.0 and 15832 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15833 * the first ire in the bucket for receiving and disables the 15834 * others. 15835 */ 15836 ill_mark_bcast(illgrp, 0, ipst); 15837 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15838 for (; ill != NULL; ill = ill->ill_group_next) { 15839 15840 for (ipif = ill->ill_ipif; ipif != NULL; 15841 ipif = ipif->ipif_next) { 15842 15843 if (!(ipif->ipif_flags & IPIF_UP) || 15844 ipif->ipif_subnet == 0) { 15845 continue; 15846 } 15847 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15848 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15849 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15850 } else { 15851 net_mask = htonl(IN_CLASSA_NET); 15852 } 15853 addr = net_mask & ipif->ipif_subnet; 15854 if (prev_net_addr == 0 || prev_net_addr != addr) { 15855 ill_mark_bcast(illgrp, addr, ipst); 15856 net_addr = ~net_mask | addr; 15857 ill_mark_bcast(illgrp, net_addr, ipst); 15858 } 15859 prev_net_addr = addr; 15860 15861 subnet_netmask = ipif->ipif_net_mask; 15862 addr = ipif->ipif_subnet; 15863 if (prev_subnet_addr == 0 || 15864 prev_subnet_addr != addr) { 15865 ill_mark_bcast(illgrp, addr, ipst); 15866 subnet_addr = ~subnet_netmask | addr; 15867 ill_mark_bcast(illgrp, subnet_addr, ipst); 15868 } 15869 prev_subnet_addr = addr; 15870 } 15871 } 15872 } 15873 15874 /* 15875 * This function is called while forming ill groups. 15876 * 15877 * Currently, we handle only allmulti groups. We want to join 15878 * allmulti on only one of the ills in the groups. In future, 15879 * when we have link aggregation, we may have to join normal 15880 * multicast groups on multiple ills as switch does inbound load 15881 * balancing. Following are the functions that calls this 15882 * function : 15883 * 15884 * 1) ill_recover_multicast : Interface is coming back UP. 15885 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15886 * will call ill_recover_multicast to recover all the multicast 15887 * groups. We need to make sure that only one member is joined 15888 * in the ill group. 15889 * 15890 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15891 * Somebody is joining allmulti. We need to make sure that only one 15892 * member is joined in the group. 15893 * 15894 * 3) illgrp_insert : If allmulti has already joined, we need to make 15895 * sure that only one member is joined in the group. 15896 * 15897 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15898 * allmulti who we have nominated. We need to pick someother ill. 15899 * 15900 * 5) illgrp_delete : The ill we nominated is leaving the group, 15901 * we need to pick a new ill to join the group. 15902 * 15903 * For (1), (2), (5) - we just have to check whether there is 15904 * a good ill joined in the group. If we could not find any ills 15905 * joined the group, we should join. 15906 * 15907 * For (4), the one that was nominated to receive, left the group. 15908 * There could be nobody joined in the group when this function is 15909 * called. 15910 * 15911 * For (3) - we need to explicitly check whether there are multiple 15912 * ills joined in the group. 15913 * 15914 * For simplicity, we don't differentiate any of the above cases. We 15915 * just leave the group if it is joined on any of them and join on 15916 * the first good ill. 15917 */ 15918 int 15919 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15920 { 15921 ilm_t *ilm; 15922 ill_t *ill; 15923 ill_t *fallback_inactive_ill = NULL; 15924 ill_t *fallback_failed_ill = NULL; 15925 int ret = 0; 15926 15927 /* 15928 * Leave the allmulti on all the ills and start fresh. 15929 */ 15930 for (ill = illgrp->illgrp_ill; ill != NULL; 15931 ill = ill->ill_group_next) { 15932 if (ill->ill_join_allmulti) 15933 (void) ip_leave_allmulti(ill->ill_ipif); 15934 } 15935 15936 /* 15937 * Choose a good ill. Fallback to inactive or failed if 15938 * none available. We need to fallback to FAILED in the 15939 * case where we have 2 interfaces in a group - where 15940 * one of them is failed and another is a good one and 15941 * the good one (not marked inactive) is leaving the group. 15942 */ 15943 ret = 0; 15944 for (ill = illgrp->illgrp_ill; ill != NULL; 15945 ill = ill->ill_group_next) { 15946 /* Never pick an offline interface */ 15947 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15948 continue; 15949 15950 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15951 fallback_failed_ill = ill; 15952 continue; 15953 } 15954 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15955 fallback_inactive_ill = ill; 15956 continue; 15957 } 15958 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15959 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15960 ret = ip_join_allmulti(ill->ill_ipif); 15961 /* 15962 * ip_join_allmulti can fail because of memory 15963 * failures. So, make sure we join at least 15964 * on one ill. 15965 */ 15966 if (ill->ill_join_allmulti) 15967 return (0); 15968 } 15969 } 15970 } 15971 if (ret != 0) { 15972 /* 15973 * If we tried nominating above and failed to do so, 15974 * return error. We might have tried multiple times. 15975 * But, return the latest error. 15976 */ 15977 return (ret); 15978 } 15979 if ((ill = fallback_inactive_ill) != NULL) { 15980 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15981 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15982 ret = ip_join_allmulti(ill->ill_ipif); 15983 return (ret); 15984 } 15985 } 15986 } else if ((ill = fallback_failed_ill) != NULL) { 15987 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15988 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15989 ret = ip_join_allmulti(ill->ill_ipif); 15990 return (ret); 15991 } 15992 } 15993 } 15994 return (0); 15995 } 15996 15997 /* 15998 * This function is called from illgrp_delete after it is 15999 * deleted from the group to reschedule responsibilities 16000 * to a different ill. 16001 */ 16002 static void 16003 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 16004 { 16005 ilm_t *ilm; 16006 ipif_t *ipif; 16007 ipaddr_t subnet_addr; 16008 ipaddr_t net_addr; 16009 ipaddr_t net_mask = 0; 16010 ipaddr_t subnet_netmask; 16011 ipaddr_t addr; 16012 ip_stack_t *ipst = ill->ill_ipst; 16013 16014 ASSERT(ill->ill_group == NULL); 16015 /* 16016 * Broadcast Responsibility: 16017 * 16018 * 1. If this ill has been nominated for receiving broadcast 16019 * packets, we need to find a new one. Before we find a new 16020 * one, we need to re-group the ires that are part of this new 16021 * group (assumed by ill_nominate_bcast_rcv). We do this by 16022 * calling ill_group_bcast_for_xmit(ill) which will do the right 16023 * thing for us. 16024 * 16025 * 2. If this ill was not nominated for receiving broadcast 16026 * packets, we need to clear the IRE_MARK_NORECV flag 16027 * so that we continue to send up broadcast packets. 16028 */ 16029 if (!ill->ill_isv6) { 16030 /* 16031 * Case 1 above : No optimization here. Just redo the 16032 * nomination. 16033 */ 16034 ill_group_bcast_for_xmit(ill); 16035 ill_nominate_bcast_rcv(illgrp); 16036 16037 /* 16038 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 16039 */ 16040 ill_clear_bcast_mark(ill, 0); 16041 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 16042 16043 for (ipif = ill->ill_ipif; ipif != NULL; 16044 ipif = ipif->ipif_next) { 16045 16046 if (!(ipif->ipif_flags & IPIF_UP) || 16047 ipif->ipif_subnet == 0) { 16048 continue; 16049 } 16050 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16051 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16052 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 16053 } else { 16054 net_mask = htonl(IN_CLASSA_NET); 16055 } 16056 addr = net_mask & ipif->ipif_subnet; 16057 ill_clear_bcast_mark(ill, addr); 16058 16059 net_addr = ~net_mask | addr; 16060 ill_clear_bcast_mark(ill, net_addr); 16061 16062 subnet_netmask = ipif->ipif_net_mask; 16063 addr = ipif->ipif_subnet; 16064 ill_clear_bcast_mark(ill, addr); 16065 16066 subnet_addr = ~subnet_netmask | addr; 16067 ill_clear_bcast_mark(ill, subnet_addr); 16068 } 16069 } 16070 16071 /* 16072 * Multicast Responsibility. 16073 * 16074 * If we have joined allmulti on this one, find a new member 16075 * in the group to join allmulti. As this ill is already part 16076 * of allmulti, we don't have to join on this one. 16077 * 16078 * If we have not joined allmulti on this one, there is no 16079 * responsibility to handoff. But we need to take new 16080 * responsibility i.e, join allmulti on this one if we need 16081 * to. 16082 */ 16083 if (ill->ill_join_allmulti) { 16084 (void) ill_nominate_mcast_rcv(illgrp); 16085 } else { 16086 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16087 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16088 (void) ip_join_allmulti(ill->ill_ipif); 16089 break; 16090 } 16091 } 16092 } 16093 16094 /* 16095 * We intentionally do the flushing of IRE_CACHES only matching 16096 * on the ill and not on groups. Note that we are already deleted 16097 * from the group. 16098 * 16099 * This will make sure that all IRE_CACHES whose stq is pointing 16100 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 16101 * deleted and IRE_CACHES that are not pointing at this ill will 16102 * be left alone. 16103 */ 16104 if (ill->ill_isv6) { 16105 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16106 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 16107 } else { 16108 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16109 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 16110 } 16111 16112 /* 16113 * Some conn may have cached one of the IREs deleted above. By removing 16114 * the ire reference, we clean up the extra reference to the ill held in 16115 * ire->ire_stq. 16116 */ 16117 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 16118 16119 /* 16120 * Re-do source address selection for all the members in the 16121 * group, if they borrowed source address from one of the ipifs 16122 * in this ill. 16123 */ 16124 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 16125 if (ill->ill_isv6) { 16126 ipif_update_other_ipifs_v6(ipif, illgrp); 16127 } else { 16128 ipif_update_other_ipifs(ipif, illgrp); 16129 } 16130 } 16131 } 16132 16133 /* 16134 * Delete the ill from the group. The caller makes sure that it is 16135 * in a group and it okay to delete from the group. So, we always 16136 * delete here. 16137 */ 16138 static void 16139 illgrp_delete(ill_t *ill) 16140 { 16141 ill_group_t *illgrp; 16142 ill_group_t *tmpg; 16143 ill_t *tmp_ill; 16144 ip_stack_t *ipst = ill->ill_ipst; 16145 16146 /* 16147 * Reset illgrp_ill_schednext if it was pointing at us. 16148 * We need to do this before we set ill_group to NULL. 16149 */ 16150 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16151 mutex_enter(&ill->ill_lock); 16152 16153 illgrp_reset_schednext(ill); 16154 16155 illgrp = ill->ill_group; 16156 16157 /* Delete the ill from illgrp. */ 16158 if (illgrp->illgrp_ill == ill) { 16159 illgrp->illgrp_ill = ill->ill_group_next; 16160 } else { 16161 tmp_ill = illgrp->illgrp_ill; 16162 while (tmp_ill->ill_group_next != ill) { 16163 tmp_ill = tmp_ill->ill_group_next; 16164 ASSERT(tmp_ill != NULL); 16165 } 16166 tmp_ill->ill_group_next = ill->ill_group_next; 16167 } 16168 ill->ill_group = NULL; 16169 ill->ill_group_next = NULL; 16170 16171 illgrp->illgrp_ill_count--; 16172 mutex_exit(&ill->ill_lock); 16173 rw_exit(&ipst->ips_ill_g_lock); 16174 16175 /* 16176 * As this ill is leaving the group, we need to hand off 16177 * the responsibilities to the other ills in the group, if 16178 * this ill had some responsibilities. 16179 */ 16180 16181 ill_handoff_responsibility(ill, illgrp); 16182 16183 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16184 16185 if (illgrp->illgrp_ill_count == 0) { 16186 16187 ASSERT(illgrp->illgrp_ill == NULL); 16188 if (ill->ill_isv6) { 16189 if (illgrp == ipst->ips_illgrp_head_v6) { 16190 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 16191 } else { 16192 tmpg = ipst->ips_illgrp_head_v6; 16193 while (tmpg->illgrp_next != illgrp) { 16194 tmpg = tmpg->illgrp_next; 16195 ASSERT(tmpg != NULL); 16196 } 16197 tmpg->illgrp_next = illgrp->illgrp_next; 16198 } 16199 } else { 16200 if (illgrp == ipst->ips_illgrp_head_v4) { 16201 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 16202 } else { 16203 tmpg = ipst->ips_illgrp_head_v4; 16204 while (tmpg->illgrp_next != illgrp) { 16205 tmpg = tmpg->illgrp_next; 16206 ASSERT(tmpg != NULL); 16207 } 16208 tmpg->illgrp_next = illgrp->illgrp_next; 16209 } 16210 } 16211 mutex_destroy(&illgrp->illgrp_lock); 16212 mi_free(illgrp); 16213 } 16214 rw_exit(&ipst->ips_ill_g_lock); 16215 16216 /* 16217 * Even though the ill is out of the group its not necessary 16218 * to set ipsq_split as TRUE as the ipifs could be down temporarily 16219 * We will split the ipsq when phyint_groupname is set to NULL. 16220 */ 16221 16222 /* 16223 * Send a routing sockets message if we are deleting from 16224 * groups with names. 16225 */ 16226 if (ill->ill_phyint->phyint_groupname_len != 0) 16227 ip_rts_ifmsg(ill->ill_ipif); 16228 } 16229 16230 /* 16231 * Re-do source address selection. This is normally called when 16232 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 16233 * ipif comes up. 16234 */ 16235 void 16236 ill_update_source_selection(ill_t *ill) 16237 { 16238 ipif_t *ipif; 16239 16240 ASSERT(IAM_WRITER_ILL(ill)); 16241 16242 if (ill->ill_group != NULL) 16243 ill = ill->ill_group->illgrp_ill; 16244 16245 for (; ill != NULL; ill = ill->ill_group_next) { 16246 for (ipif = ill->ill_ipif; ipif != NULL; 16247 ipif = ipif->ipif_next) { 16248 if (ill->ill_isv6) 16249 ipif_recreate_interface_routes_v6(NULL, ipif); 16250 else 16251 ipif_recreate_interface_routes(NULL, ipif); 16252 } 16253 } 16254 } 16255 16256 /* 16257 * Insert ill in a group headed by illgrp_head. The caller can either 16258 * pass a groupname in which case we search for a group with the 16259 * same name to insert in or pass a group to insert in. This function 16260 * would only search groups with names. 16261 * 16262 * NOTE : The caller should make sure that there is at least one ipif 16263 * UP on this ill so that illgrp_scheduler can pick this ill 16264 * for outbound packets. If ill_ipif_up_count is zero, we have 16265 * already sent a DL_UNBIND to the driver and we don't want to 16266 * send anymore packets. We don't assert for ipif_up_count 16267 * to be greater than zero, because ipif_up_done wants to call 16268 * this function before bumping up the ipif_up_count. See 16269 * ipif_up_done() for details. 16270 */ 16271 int 16272 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 16273 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 16274 { 16275 ill_group_t *illgrp; 16276 ill_t *prev_ill; 16277 phyint_t *phyi; 16278 ip_stack_t *ipst = ill->ill_ipst; 16279 16280 ASSERT(ill->ill_group == NULL); 16281 16282 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16283 mutex_enter(&ill->ill_lock); 16284 16285 if (groupname != NULL) { 16286 /* 16287 * Look for a group with a matching groupname to insert. 16288 */ 16289 for (illgrp = *illgrp_head; illgrp != NULL; 16290 illgrp = illgrp->illgrp_next) { 16291 16292 ill_t *tmp_ill; 16293 16294 /* 16295 * If we have an ill_group_t in the list which has 16296 * no ill_t assigned then we must be in the process of 16297 * removing this group. We skip this as illgrp_delete() 16298 * will remove it from the list. 16299 */ 16300 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 16301 ASSERT(illgrp->illgrp_ill_count == 0); 16302 continue; 16303 } 16304 16305 ASSERT(tmp_ill->ill_phyint != NULL); 16306 phyi = tmp_ill->ill_phyint; 16307 /* 16308 * Look at groups which has names only. 16309 */ 16310 if (phyi->phyint_groupname_len == 0) 16311 continue; 16312 /* 16313 * Names are stored in the phyint common to both 16314 * IPv4 and IPv6. 16315 */ 16316 if (mi_strcmp(phyi->phyint_groupname, 16317 groupname) == 0) { 16318 break; 16319 } 16320 } 16321 } else { 16322 /* 16323 * If the caller passes in a NULL "grp_to_insert", we 16324 * allocate one below and insert this singleton. 16325 */ 16326 illgrp = grp_to_insert; 16327 } 16328 16329 ill->ill_group_next = NULL; 16330 16331 if (illgrp == NULL) { 16332 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16333 if (illgrp == NULL) { 16334 return (ENOMEM); 16335 } 16336 illgrp->illgrp_next = *illgrp_head; 16337 *illgrp_head = illgrp; 16338 illgrp->illgrp_ill = ill; 16339 illgrp->illgrp_ill_count = 1; 16340 ill->ill_group = illgrp; 16341 /* 16342 * Used in illgrp_scheduler to protect multiple threads 16343 * from traversing the list. 16344 */ 16345 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16346 } else { 16347 ASSERT(ill->ill_net_type == 16348 illgrp->illgrp_ill->ill_net_type); 16349 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16350 16351 /* Insert ill at tail of this group */ 16352 prev_ill = illgrp->illgrp_ill; 16353 while (prev_ill->ill_group_next != NULL) 16354 prev_ill = prev_ill->ill_group_next; 16355 prev_ill->ill_group_next = ill; 16356 ill->ill_group = illgrp; 16357 illgrp->illgrp_ill_count++; 16358 /* 16359 * Inherit group properties. Currently only forwarding 16360 * is the property we try to keep the same with all the 16361 * ills. When there are more, we will abstract this into 16362 * a function. 16363 */ 16364 ill->ill_flags &= ~ILLF_ROUTER; 16365 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16366 } 16367 mutex_exit(&ill->ill_lock); 16368 rw_exit(&ipst->ips_ill_g_lock); 16369 16370 /* 16371 * 1) When ipif_up_done() calls this function, ipif_up_count 16372 * may be zero as it has not yet been bumped. But the ires 16373 * have already been added. So, we do the nomination here 16374 * itself. But, when ip_sioctl_groupname calls this, it checks 16375 * for ill_ipif_up_count != 0. Thus we don't check for 16376 * ill_ipif_up_count here while nominating broadcast ires for 16377 * receive. 16378 * 16379 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16380 * to group them properly as ire_add() has already happened 16381 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16382 * case, we need to do it here anyway. 16383 */ 16384 if (!ill->ill_isv6) { 16385 ill_group_bcast_for_xmit(ill); 16386 ill_nominate_bcast_rcv(illgrp); 16387 } 16388 16389 if (!ipif_is_coming_up) { 16390 /* 16391 * When ipif_up_done() calls this function, the multicast 16392 * groups have not been joined yet. So, there is no point in 16393 * nomination. ip_join_allmulti will handle groups when 16394 * ill_recover_multicast is called from ipif_up_done() later. 16395 */ 16396 (void) ill_nominate_mcast_rcv(illgrp); 16397 /* 16398 * ipif_up_done calls ill_update_source_selection 16399 * anyway. Moreover, we don't want to re-create 16400 * interface routes while ipif_up_done() still has reference 16401 * to them. Refer to ipif_up_done() for more details. 16402 */ 16403 ill_update_source_selection(ill); 16404 } 16405 16406 /* 16407 * Send a routing sockets message if we are inserting into 16408 * groups with names. 16409 */ 16410 if (groupname != NULL) 16411 ip_rts_ifmsg(ill->ill_ipif); 16412 return (0); 16413 } 16414 16415 /* 16416 * Return the first phyint matching the groupname. There could 16417 * be more than one when there are ill groups. 16418 * 16419 * If 'usable' is set, then we exclude ones that are marked with any of 16420 * (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE). 16421 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16422 * emulation of ipmp. 16423 */ 16424 phyint_t * 16425 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16426 { 16427 phyint_t *phyi; 16428 16429 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16430 /* 16431 * Group names are stored in the phyint - a common structure 16432 * to both IPv4 and IPv6. 16433 */ 16434 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16435 for (; phyi != NULL; 16436 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16437 phyi, AVL_AFTER)) { 16438 if (phyi->phyint_groupname_len == 0) 16439 continue; 16440 /* 16441 * Skip the ones that should not be used since the callers 16442 * sometime use this for sending packets. 16443 */ 16444 if (usable && (phyi->phyint_flags & 16445 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE))) 16446 continue; 16447 16448 ASSERT(phyi->phyint_groupname != NULL); 16449 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16450 return (phyi); 16451 } 16452 return (NULL); 16453 } 16454 16455 16456 /* 16457 * Return the first usable phyint matching the group index. By 'usable' 16458 * we exclude ones that are marked ununsable with any of 16459 * (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE). 16460 * 16461 * Used only for the ipmp/netinfo emulation of ipmp. 16462 */ 16463 phyint_t * 16464 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16465 { 16466 phyint_t *phyi; 16467 16468 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16469 16470 if (!ipst->ips_ipmp_hook_emulation) 16471 return (NULL); 16472 16473 /* 16474 * Group indicies are stored in the phyint - a common structure 16475 * to both IPv4 and IPv6. 16476 */ 16477 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16478 for (; phyi != NULL; 16479 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16480 phyi, AVL_AFTER)) { 16481 /* Ignore the ones that do not have a group */ 16482 if (phyi->phyint_groupname_len == 0) 16483 continue; 16484 16485 ASSERT(phyi->phyint_group_ifindex != 0); 16486 /* 16487 * Skip the ones that should not be used since the callers 16488 * sometime use this for sending packets. 16489 */ 16490 if (phyi->phyint_flags & 16491 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE)) 16492 continue; 16493 if (phyi->phyint_group_ifindex == group_ifindex) 16494 return (phyi); 16495 } 16496 return (NULL); 16497 } 16498 16499 16500 /* 16501 * MT notes on creation and deletion of IPMP groups 16502 * 16503 * Creation and deletion of IPMP groups introduce the need to merge or 16504 * split the associated serialization objects i.e the ipsq's. Normally all 16505 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16506 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16507 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16508 * is a need to change the <ill-ipsq> association and we have to operate on both 16509 * the source and destination IPMP groups. For eg. attempting to set the 16510 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16511 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16512 * source or destination IPMP group are mapped to a single ipsq for executing 16513 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16514 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16515 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16516 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16517 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16518 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16519 * 16520 * In the above example the ioctl handling code locates the current ipsq of hme0 16521 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16522 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16523 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16524 * the destination ipsq. If the destination ipsq is not busy, it also enters 16525 * the destination ipsq exclusively. Now the actual groupname setting operation 16526 * can proceed. If the destination ipsq is busy, the operation is enqueued 16527 * on the destination (merged) ipsq and will be handled in the unwind from 16528 * ipsq_exit. 16529 * 16530 * To prevent other threads accessing the ill while the group name change is 16531 * in progres, we bring down the ipifs which also removes the ill from the 16532 * group. The group is changed in phyint and when the first ipif on the ill 16533 * is brought up, the ill is inserted into the right IPMP group by 16534 * illgrp_insert. 16535 */ 16536 /* ARGSUSED */ 16537 int 16538 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16539 ip_ioctl_cmd_t *ipip, void *ifreq) 16540 { 16541 int i; 16542 char *tmp; 16543 int namelen; 16544 ill_t *ill = ipif->ipif_ill; 16545 ill_t *ill_v4, *ill_v6; 16546 int err = 0; 16547 phyint_t *phyi; 16548 phyint_t *phyi_tmp; 16549 struct lifreq *lifr; 16550 mblk_t *mp1; 16551 char *groupname; 16552 ipsq_t *ipsq; 16553 ip_stack_t *ipst = ill->ill_ipst; 16554 16555 ASSERT(IAM_WRITER_IPIF(ipif)); 16556 16557 /* Existance verified in ip_wput_nondata */ 16558 mp1 = mp->b_cont->b_cont; 16559 lifr = (struct lifreq *)mp1->b_rptr; 16560 groupname = lifr->lifr_groupname; 16561 16562 if (ipif->ipif_id != 0) 16563 return (EINVAL); 16564 16565 phyi = ill->ill_phyint; 16566 ASSERT(phyi != NULL); 16567 16568 if (phyi->phyint_flags & PHYI_VIRTUAL) 16569 return (EINVAL); 16570 16571 tmp = groupname; 16572 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16573 ; 16574 16575 if (i == LIFNAMSIZ) { 16576 /* no null termination */ 16577 return (EINVAL); 16578 } 16579 16580 /* 16581 * Calculate the namelen exclusive of the null 16582 * termination character. 16583 */ 16584 namelen = tmp - groupname; 16585 16586 ill_v4 = phyi->phyint_illv4; 16587 ill_v6 = phyi->phyint_illv6; 16588 16589 /* 16590 * ILL cannot be part of a usesrc group and and IPMP group at the 16591 * same time. No need to grab the ill_g_usesrc_lock here, see 16592 * synchronization notes in ip.c 16593 */ 16594 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16595 return (EINVAL); 16596 } 16597 16598 /* 16599 * mark the ill as changing. 16600 * this should queue all new requests on the syncq. 16601 */ 16602 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16603 16604 if (ill_v4 != NULL) 16605 ill_v4->ill_state_flags |= ILL_CHANGING; 16606 if (ill_v6 != NULL) 16607 ill_v6->ill_state_flags |= ILL_CHANGING; 16608 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16609 16610 if (namelen == 0) { 16611 /* 16612 * Null string means remove this interface from the 16613 * existing group. 16614 */ 16615 if (phyi->phyint_groupname_len == 0) { 16616 /* 16617 * Never was in a group. 16618 */ 16619 err = 0; 16620 goto done; 16621 } 16622 16623 /* 16624 * IPv4 or IPv6 may be temporarily out of the group when all 16625 * the ipifs are down. Thus, we need to check for ill_group to 16626 * be non-NULL. 16627 */ 16628 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16629 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16630 mutex_enter(&ill_v4->ill_lock); 16631 if (!ill_is_quiescent(ill_v4)) { 16632 /* 16633 * ipsq_pending_mp_add will not fail since 16634 * connp is NULL 16635 */ 16636 (void) ipsq_pending_mp_add(NULL, 16637 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16638 mutex_exit(&ill_v4->ill_lock); 16639 err = EINPROGRESS; 16640 goto done; 16641 } 16642 mutex_exit(&ill_v4->ill_lock); 16643 } 16644 16645 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16646 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16647 mutex_enter(&ill_v6->ill_lock); 16648 if (!ill_is_quiescent(ill_v6)) { 16649 (void) ipsq_pending_mp_add(NULL, 16650 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16651 mutex_exit(&ill_v6->ill_lock); 16652 err = EINPROGRESS; 16653 goto done; 16654 } 16655 mutex_exit(&ill_v6->ill_lock); 16656 } 16657 16658 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16659 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16660 mutex_enter(&phyi->phyint_lock); 16661 ASSERT(phyi->phyint_groupname != NULL); 16662 mi_free(phyi->phyint_groupname); 16663 phyi->phyint_groupname = NULL; 16664 phyi->phyint_groupname_len = 0; 16665 16666 /* Restore the ifindex used to be the per interface one */ 16667 phyi->phyint_group_ifindex = 0; 16668 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16669 mutex_exit(&phyi->phyint_lock); 16670 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16671 rw_exit(&ipst->ips_ill_g_lock); 16672 err = ill_up_ipifs(ill, q, mp); 16673 16674 /* 16675 * set the split flag so that the ipsq can be split 16676 */ 16677 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16678 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16679 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16680 16681 } else { 16682 if (phyi->phyint_groupname_len != 0) { 16683 ASSERT(phyi->phyint_groupname != NULL); 16684 /* Are we inserting in the same group ? */ 16685 if (mi_strcmp(groupname, 16686 phyi->phyint_groupname) == 0) { 16687 err = 0; 16688 goto done; 16689 } 16690 } 16691 16692 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16693 /* 16694 * Merge ipsq for the group's. 16695 * This check is here as multiple groups/ills might be 16696 * sharing the same ipsq. 16697 * If we have to merege than the operation is restarted 16698 * on the new ipsq. 16699 */ 16700 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16701 if (phyi->phyint_ipsq != ipsq) { 16702 rw_exit(&ipst->ips_ill_g_lock); 16703 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16704 goto done; 16705 } 16706 /* 16707 * Running exclusive on new ipsq. 16708 */ 16709 16710 ASSERT(ipsq != NULL); 16711 ASSERT(ipsq->ipsq_writer == curthread); 16712 16713 /* 16714 * Check whether the ill_type and ill_net_type matches before 16715 * we allocate any memory so that the cleanup is easier. 16716 * 16717 * We can't group dissimilar ones as we can't load spread 16718 * packets across the group because of potential link-level 16719 * header differences. 16720 */ 16721 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16722 if (phyi_tmp != NULL) { 16723 if ((ill_v4 != NULL && 16724 phyi_tmp->phyint_illv4 != NULL) && 16725 ((ill_v4->ill_net_type != 16726 phyi_tmp->phyint_illv4->ill_net_type) || 16727 (ill_v4->ill_type != 16728 phyi_tmp->phyint_illv4->ill_type))) { 16729 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16730 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16731 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16732 rw_exit(&ipst->ips_ill_g_lock); 16733 return (EINVAL); 16734 } 16735 if ((ill_v6 != NULL && 16736 phyi_tmp->phyint_illv6 != NULL) && 16737 ((ill_v6->ill_net_type != 16738 phyi_tmp->phyint_illv6->ill_net_type) || 16739 (ill_v6->ill_type != 16740 phyi_tmp->phyint_illv6->ill_type))) { 16741 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16742 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16743 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16744 rw_exit(&ipst->ips_ill_g_lock); 16745 return (EINVAL); 16746 } 16747 } 16748 16749 rw_exit(&ipst->ips_ill_g_lock); 16750 16751 /* 16752 * bring down all v4 ipifs. 16753 */ 16754 if (ill_v4 != NULL) { 16755 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16756 } 16757 16758 /* 16759 * bring down all v6 ipifs. 16760 */ 16761 if (ill_v6 != NULL) { 16762 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16763 } 16764 16765 /* 16766 * make sure all ipifs are down and there are no active 16767 * references. Call to ipsq_pending_mp_add will not fail 16768 * since connp is NULL. 16769 */ 16770 if (ill_v4 != NULL) { 16771 mutex_enter(&ill_v4->ill_lock); 16772 if (!ill_is_quiescent(ill_v4)) { 16773 (void) ipsq_pending_mp_add(NULL, 16774 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16775 mutex_exit(&ill_v4->ill_lock); 16776 err = EINPROGRESS; 16777 goto done; 16778 } 16779 mutex_exit(&ill_v4->ill_lock); 16780 } 16781 16782 if (ill_v6 != NULL) { 16783 mutex_enter(&ill_v6->ill_lock); 16784 if (!ill_is_quiescent(ill_v6)) { 16785 (void) ipsq_pending_mp_add(NULL, 16786 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16787 mutex_exit(&ill_v6->ill_lock); 16788 err = EINPROGRESS; 16789 goto done; 16790 } 16791 mutex_exit(&ill_v6->ill_lock); 16792 } 16793 16794 /* 16795 * allocate including space for null terminator 16796 * before we insert. 16797 */ 16798 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16799 if (tmp == NULL) 16800 return (ENOMEM); 16801 16802 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16803 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16804 mutex_enter(&phyi->phyint_lock); 16805 if (phyi->phyint_groupname_len != 0) { 16806 ASSERT(phyi->phyint_groupname != NULL); 16807 mi_free(phyi->phyint_groupname); 16808 } 16809 16810 /* 16811 * setup the new group name. 16812 */ 16813 phyi->phyint_groupname = tmp; 16814 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16815 phyi->phyint_groupname_len = namelen + 1; 16816 16817 if (ipst->ips_ipmp_hook_emulation) { 16818 /* 16819 * If the group already exists we use the existing 16820 * group_ifindex, otherwise we pick a new index here. 16821 */ 16822 if (phyi_tmp != NULL) { 16823 phyi->phyint_group_ifindex = 16824 phyi_tmp->phyint_group_ifindex; 16825 } else { 16826 /* XXX We need a recovery strategy here. */ 16827 if (!ip_assign_ifindex( 16828 &phyi->phyint_group_ifindex, ipst)) 16829 cmn_err(CE_PANIC, 16830 "ip_assign_ifindex() failed"); 16831 } 16832 } 16833 /* 16834 * Select whether the netinfo and hook use the per-interface 16835 * or per-group ifindex. 16836 */ 16837 if (ipst->ips_ipmp_hook_emulation) 16838 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16839 else 16840 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16841 16842 if (ipst->ips_ipmp_hook_emulation && 16843 phyi_tmp != NULL) { 16844 /* First phyint in group - group PLUMB event */ 16845 ill_nic_info_plumb(ill, B_TRUE); 16846 } 16847 mutex_exit(&phyi->phyint_lock); 16848 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16849 rw_exit(&ipst->ips_ill_g_lock); 16850 16851 err = ill_up_ipifs(ill, q, mp); 16852 } 16853 16854 done: 16855 /* 16856 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16857 */ 16858 if (err != EINPROGRESS) { 16859 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16860 if (ill_v4 != NULL) 16861 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16862 if (ill_v6 != NULL) 16863 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16864 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16865 } 16866 return (err); 16867 } 16868 16869 /* ARGSUSED */ 16870 int 16871 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16872 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16873 { 16874 ill_t *ill; 16875 phyint_t *phyi; 16876 struct lifreq *lifr; 16877 mblk_t *mp1; 16878 16879 /* Existence verified in ip_wput_nondata */ 16880 mp1 = mp->b_cont->b_cont; 16881 lifr = (struct lifreq *)mp1->b_rptr; 16882 ill = ipif->ipif_ill; 16883 phyi = ill->ill_phyint; 16884 16885 lifr->lifr_groupname[0] = '\0'; 16886 /* 16887 * ill_group may be null if all the interfaces 16888 * are down. But still, the phyint should always 16889 * hold the name. 16890 */ 16891 if (phyi->phyint_groupname_len != 0) { 16892 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16893 phyi->phyint_groupname_len); 16894 } 16895 16896 return (0); 16897 } 16898 16899 16900 typedef struct conn_move_s { 16901 ill_t *cm_from_ill; 16902 ill_t *cm_to_ill; 16903 int cm_ifindex; 16904 } conn_move_t; 16905 16906 /* 16907 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16908 */ 16909 static void 16910 conn_move(conn_t *connp, caddr_t arg) 16911 { 16912 conn_move_t *connm; 16913 int ifindex; 16914 int i; 16915 ill_t *from_ill; 16916 ill_t *to_ill; 16917 ilg_t *ilg; 16918 ilm_t *ret_ilm; 16919 16920 connm = (conn_move_t *)arg; 16921 ifindex = connm->cm_ifindex; 16922 from_ill = connm->cm_from_ill; 16923 to_ill = connm->cm_to_ill; 16924 16925 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16926 16927 /* All multicast fields protected by conn_lock */ 16928 mutex_enter(&connp->conn_lock); 16929 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16930 if ((connp->conn_outgoing_ill == from_ill) && 16931 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16932 connp->conn_outgoing_ill = to_ill; 16933 connp->conn_incoming_ill = to_ill; 16934 } 16935 16936 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16937 16938 if ((connp->conn_multicast_ill == from_ill) && 16939 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16940 connp->conn_multicast_ill = connm->cm_to_ill; 16941 } 16942 16943 /* Change IP_XMIT_IF associations */ 16944 if ((connp->conn_xmit_if_ill == from_ill) && 16945 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16946 connp->conn_xmit_if_ill = to_ill; 16947 } 16948 /* 16949 * Change the ilg_ill to point to the new one. This assumes 16950 * ilm_move_v6 has moved the ilms to new_ill and the driver 16951 * has been told to receive packets on this interface. 16952 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16953 * But when doing a FAILOVER, it might fail with ENOMEM and so 16954 * some ilms may not have moved. We check to see whether 16955 * the ilms have moved to to_ill. We can't check on from_ill 16956 * as in the process of moving, we could have split an ilm 16957 * in to two - which has the same orig_ifindex and v6group. 16958 * 16959 * For IPv4, ilg_ipif moves implicitly. The code below really 16960 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16961 */ 16962 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16963 ilg = &connp->conn_ilg[i]; 16964 if ((ilg->ilg_ill == from_ill) && 16965 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16966 /* ifindex != 0 indicates failback */ 16967 if (ifindex != 0) { 16968 connp->conn_ilg[i].ilg_ill = to_ill; 16969 continue; 16970 } 16971 16972 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16973 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16974 connp->conn_zoneid); 16975 16976 if (ret_ilm != NULL) 16977 connp->conn_ilg[i].ilg_ill = to_ill; 16978 } 16979 } 16980 mutex_exit(&connp->conn_lock); 16981 } 16982 16983 static void 16984 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16985 { 16986 conn_move_t connm; 16987 ip_stack_t *ipst = from_ill->ill_ipst; 16988 16989 connm.cm_from_ill = from_ill; 16990 connm.cm_to_ill = to_ill; 16991 connm.cm_ifindex = ifindex; 16992 16993 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16994 } 16995 16996 /* 16997 * ilm has been moved from from_ill to to_ill. 16998 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16999 * appropriately. 17000 * 17001 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 17002 * the code there de-references ipif_ill to get the ill to 17003 * send multicast requests. It does not work as ipif is on its 17004 * move and already moved when this function is called. 17005 * Thus, we need to use from_ill and to_ill send down multicast 17006 * requests. 17007 */ 17008 static void 17009 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 17010 { 17011 ipif_t *ipif; 17012 ilm_t *ilm; 17013 17014 /* 17015 * See whether we need to send down DL_ENABMULTI_REQ on 17016 * to_ill as ilm has just been added. 17017 */ 17018 ASSERT(IAM_WRITER_ILL(to_ill)); 17019 ASSERT(IAM_WRITER_ILL(from_ill)); 17020 17021 ILM_WALKER_HOLD(to_ill); 17022 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 17023 17024 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 17025 continue; 17026 /* 17027 * no locks held, ill/ipif cannot dissappear as long 17028 * as we are writer. 17029 */ 17030 ipif = to_ill->ill_ipif; 17031 /* 17032 * No need to hold any lock as we are the writer and this 17033 * can only be changed by a writer. 17034 */ 17035 ilm->ilm_is_new = B_FALSE; 17036 17037 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 17038 ipif->ipif_flags & IPIF_POINTOPOINT) { 17039 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 17040 "resolver\n")); 17041 continue; /* Must be IRE_IF_NORESOLVER */ 17042 } 17043 17044 17045 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 17046 ip1dbg(("ilm_send_multicast_reqs: " 17047 "to_ill MULTI_BCAST\n")); 17048 goto from; 17049 } 17050 17051 if (to_ill->ill_isv6) 17052 mld_joingroup(ilm); 17053 else 17054 igmp_joingroup(ilm); 17055 17056 if (to_ill->ill_ipif_up_count == 0) { 17057 /* 17058 * Nobody there. All multicast addresses will be 17059 * re-joined when we get the DL_BIND_ACK bringing the 17060 * interface up. 17061 */ 17062 ilm->ilm_notify_driver = B_FALSE; 17063 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 17064 goto from; 17065 } 17066 17067 /* 17068 * For allmulti address, we want to join on only one interface. 17069 * Checking for ilm_numentries_v6 is not correct as you may 17070 * find an ilm with zero address on to_ill, but we may not 17071 * have nominated to_ill for receiving. Thus, if we have 17072 * nominated from_ill (ill_join_allmulti is set), nominate 17073 * only if to_ill is not already nominated (to_ill normally 17074 * should not have been nominated if "from_ill" has already 17075 * been nominated. As we don't prevent failovers from happening 17076 * across groups, we don't assert). 17077 */ 17078 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 17079 /* 17080 * There is no need to hold ill locks as we are 17081 * writer on both ills and when ill_join_allmulti 17082 * is changed the thread is always a writer. 17083 */ 17084 if (from_ill->ill_join_allmulti && 17085 !to_ill->ill_join_allmulti) { 17086 (void) ip_join_allmulti(to_ill->ill_ipif); 17087 } 17088 } else if (ilm->ilm_notify_driver) { 17089 17090 /* 17091 * This is a newly moved ilm so we need to tell the 17092 * driver about the new group. There can be more than 17093 * one ilm's for the same group in the list each with a 17094 * different orig_ifindex. We have to inform the driver 17095 * once. In ilm_move_v[4,6] we only set the flag 17096 * ilm_notify_driver for the first ilm. 17097 */ 17098 17099 (void) ip_ll_send_enabmulti_req(to_ill, 17100 &ilm->ilm_v6addr); 17101 } 17102 17103 ilm->ilm_notify_driver = B_FALSE; 17104 17105 /* 17106 * See whether we need to send down DL_DISABMULTI_REQ on 17107 * from_ill as ilm has just been removed. 17108 */ 17109 from: 17110 ipif = from_ill->ill_ipif; 17111 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 17112 ipif->ipif_flags & IPIF_POINTOPOINT) { 17113 ip1dbg(("ilm_send_multicast_reqs: " 17114 "from_ill not resolver\n")); 17115 continue; /* Must be IRE_IF_NORESOLVER */ 17116 } 17117 17118 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 17119 ip1dbg(("ilm_send_multicast_reqs: " 17120 "from_ill MULTI_BCAST\n")); 17121 continue; 17122 } 17123 17124 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 17125 if (from_ill->ill_join_allmulti) 17126 (void) ip_leave_allmulti(from_ill->ill_ipif); 17127 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 17128 (void) ip_ll_send_disabmulti_req(from_ill, 17129 &ilm->ilm_v6addr); 17130 } 17131 } 17132 ILM_WALKER_RELE(to_ill); 17133 } 17134 17135 /* 17136 * This function is called when all multicast memberships needs 17137 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 17138 * called only once unlike the IPv4 counterpart where it is called after 17139 * every logical interface is moved. The reason is due to multicast 17140 * memberships are joined using an interface address in IPv4 while in 17141 * IPv6, interface index is used. 17142 */ 17143 static void 17144 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 17145 { 17146 ilm_t *ilm; 17147 ilm_t *ilm_next; 17148 ilm_t *new_ilm; 17149 ilm_t **ilmp; 17150 int count; 17151 char buf[INET6_ADDRSTRLEN]; 17152 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 17153 ip_stack_t *ipst = from_ill->ill_ipst; 17154 17155 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17156 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17157 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17158 17159 if (ifindex == 0) { 17160 /* 17161 * Form the solicited node mcast address which is used later. 17162 */ 17163 ipif_t *ipif; 17164 17165 ipif = from_ill->ill_ipif; 17166 ASSERT(ipif->ipif_id == 0); 17167 17168 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 17169 } 17170 17171 ilmp = &from_ill->ill_ilm; 17172 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17173 ilm_next = ilm->ilm_next; 17174 17175 if (ilm->ilm_flags & ILM_DELETED) { 17176 ilmp = &ilm->ilm_next; 17177 continue; 17178 } 17179 17180 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 17181 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 17182 ASSERT(ilm->ilm_orig_ifindex != 0); 17183 if (ilm->ilm_orig_ifindex == ifindex) { 17184 /* 17185 * We are failing back multicast memberships. 17186 * If the same ilm exists in to_ill, it means somebody 17187 * has joined the same group there e.g. ff02::1 17188 * is joined within the kernel when the interfaces 17189 * came UP. 17190 */ 17191 ASSERT(ilm->ilm_ipif == NULL); 17192 if (new_ilm != NULL) { 17193 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17194 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17195 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17196 new_ilm->ilm_is_new = B_TRUE; 17197 } 17198 } else { 17199 /* 17200 * check if we can just move the ilm 17201 */ 17202 if (from_ill->ill_ilm_walker_cnt != 0) { 17203 /* 17204 * We have walkers we cannot move 17205 * the ilm, so allocate a new ilm, 17206 * this (old) ilm will be marked 17207 * ILM_DELETED at the end of the loop 17208 * and will be freed when the 17209 * last walker exits. 17210 */ 17211 new_ilm = (ilm_t *)mi_zalloc 17212 (sizeof (ilm_t)); 17213 if (new_ilm == NULL) { 17214 ip0dbg(("ilm_move_v6: " 17215 "FAILBACK of IPv6" 17216 " multicast address %s : " 17217 "from %s to" 17218 " %s failed : ENOMEM \n", 17219 inet_ntop(AF_INET6, 17220 &ilm->ilm_v6addr, buf, 17221 sizeof (buf)), 17222 from_ill->ill_name, 17223 to_ill->ill_name)); 17224 17225 ilmp = &ilm->ilm_next; 17226 continue; 17227 } 17228 *new_ilm = *ilm; 17229 /* 17230 * we don't want new_ilm linked to 17231 * ilm's filter list. 17232 */ 17233 new_ilm->ilm_filter = NULL; 17234 } else { 17235 /* 17236 * No walkers we can move the ilm. 17237 * lets take it out of the list. 17238 */ 17239 *ilmp = ilm->ilm_next; 17240 ilm->ilm_next = NULL; 17241 new_ilm = ilm; 17242 } 17243 17244 /* 17245 * if this is the first ilm for the group 17246 * set ilm_notify_driver so that we notify the 17247 * driver in ilm_send_multicast_reqs. 17248 */ 17249 if (ilm_lookup_ill_v6(to_ill, 17250 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17251 new_ilm->ilm_notify_driver = B_TRUE; 17252 17253 new_ilm->ilm_ill = to_ill; 17254 /* Add to the to_ill's list */ 17255 new_ilm->ilm_next = to_ill->ill_ilm; 17256 to_ill->ill_ilm = new_ilm; 17257 /* 17258 * set the flag so that mld_joingroup is 17259 * called in ilm_send_multicast_reqs(). 17260 */ 17261 new_ilm->ilm_is_new = B_TRUE; 17262 } 17263 goto bottom; 17264 } else if (ifindex != 0) { 17265 /* 17266 * If this is FAILBACK (ifindex != 0) and the ifindex 17267 * has not matched above, look at the next ilm. 17268 */ 17269 ilmp = &ilm->ilm_next; 17270 continue; 17271 } 17272 /* 17273 * If we are here, it means ifindex is 0. Failover 17274 * everything. 17275 * 17276 * We need to handle solicited node mcast address 17277 * and all_nodes mcast address differently as they 17278 * are joined witin the kenrel (ipif_multicast_up) 17279 * and potentially from the userland. We are called 17280 * after the ipifs of from_ill has been moved. 17281 * If we still find ilms on ill with solicited node 17282 * mcast address or all_nodes mcast address, it must 17283 * belong to the UP interface that has not moved e.g. 17284 * ipif_id 0 with the link local prefix does not move. 17285 * We join this on the new ill accounting for all the 17286 * userland memberships so that applications don't 17287 * see any failure. 17288 * 17289 * We need to make sure that we account only for the 17290 * solicited node and all node multicast addresses 17291 * that was brought UP on these. In the case of 17292 * a failover from A to B, we might have ilms belonging 17293 * to A (ilm_orig_ifindex pointing at A) on B accounting 17294 * for the membership from the userland. If we are failing 17295 * over from B to C now, we will find the ones belonging 17296 * to A on B. These don't account for the ill_ipif_up_count. 17297 * They just move from B to C. The check below on 17298 * ilm_orig_ifindex ensures that. 17299 */ 17300 if ((ilm->ilm_orig_ifindex == 17301 from_ill->ill_phyint->phyint_ifindex) && 17302 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 17303 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 17304 &ilm->ilm_v6addr))) { 17305 ASSERT(ilm->ilm_refcnt > 0); 17306 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 17307 /* 17308 * For indentation reasons, we are not using a 17309 * "else" here. 17310 */ 17311 if (count == 0) { 17312 ilmp = &ilm->ilm_next; 17313 continue; 17314 } 17315 ilm->ilm_refcnt -= count; 17316 if (new_ilm != NULL) { 17317 /* 17318 * Can find one with the same 17319 * ilm_orig_ifindex, if we are failing 17320 * over to a STANDBY. This happens 17321 * when somebody wants to join a group 17322 * on a STANDBY interface and we 17323 * internally join on a different one. 17324 * If we had joined on from_ill then, a 17325 * failover now will find a new ilm 17326 * with this index. 17327 */ 17328 ip1dbg(("ilm_move_v6: FAILOVER, found" 17329 " new ilm on %s, group address %s\n", 17330 to_ill->ill_name, 17331 inet_ntop(AF_INET6, 17332 &ilm->ilm_v6addr, buf, 17333 sizeof (buf)))); 17334 new_ilm->ilm_refcnt += count; 17335 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17336 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17337 new_ilm->ilm_is_new = B_TRUE; 17338 } 17339 } else { 17340 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17341 if (new_ilm == NULL) { 17342 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17343 " multicast address %s : from %s to" 17344 " %s failed : ENOMEM \n", 17345 inet_ntop(AF_INET6, 17346 &ilm->ilm_v6addr, buf, 17347 sizeof (buf)), from_ill->ill_name, 17348 to_ill->ill_name)); 17349 ilmp = &ilm->ilm_next; 17350 continue; 17351 } 17352 *new_ilm = *ilm; 17353 new_ilm->ilm_filter = NULL; 17354 new_ilm->ilm_refcnt = count; 17355 new_ilm->ilm_timer = INFINITY; 17356 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17357 new_ilm->ilm_is_new = B_TRUE; 17358 /* 17359 * If the to_ill has not joined this 17360 * group we need to tell the driver in 17361 * ill_send_multicast_reqs. 17362 */ 17363 if (ilm_lookup_ill_v6(to_ill, 17364 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17365 new_ilm->ilm_notify_driver = B_TRUE; 17366 17367 new_ilm->ilm_ill = to_ill; 17368 /* Add to the to_ill's list */ 17369 new_ilm->ilm_next = to_ill->ill_ilm; 17370 to_ill->ill_ilm = new_ilm; 17371 ASSERT(new_ilm->ilm_ipif == NULL); 17372 } 17373 if (ilm->ilm_refcnt == 0) { 17374 goto bottom; 17375 } else { 17376 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17377 CLEAR_SLIST(new_ilm->ilm_filter); 17378 ilmp = &ilm->ilm_next; 17379 } 17380 continue; 17381 } else { 17382 /* 17383 * ifindex = 0 means, move everything pointing at 17384 * from_ill. We are doing this becuase ill has 17385 * either FAILED or became INACTIVE. 17386 * 17387 * As we would like to move things later back to 17388 * from_ill, we want to retain the identity of this 17389 * ilm. Thus, we don't blindly increment the reference 17390 * count on the ilms matching the address alone. We 17391 * need to match on the ilm_orig_index also. new_ilm 17392 * was obtained by matching ilm_orig_index also. 17393 */ 17394 if (new_ilm != NULL) { 17395 /* 17396 * This is possible only if a previous restore 17397 * was incomplete i.e restore to 17398 * ilm_orig_ifindex left some ilms because 17399 * of some failures. Thus when we are failing 17400 * again, we might find our old friends there. 17401 */ 17402 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17403 " on %s, group address %s\n", 17404 to_ill->ill_name, 17405 inet_ntop(AF_INET6, 17406 &ilm->ilm_v6addr, buf, 17407 sizeof (buf)))); 17408 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17409 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17410 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17411 new_ilm->ilm_is_new = B_TRUE; 17412 } 17413 } else { 17414 if (from_ill->ill_ilm_walker_cnt != 0) { 17415 new_ilm = (ilm_t *) 17416 mi_zalloc(sizeof (ilm_t)); 17417 if (new_ilm == NULL) { 17418 ip0dbg(("ilm_move_v6: " 17419 "FAILOVER of IPv6" 17420 " multicast address %s : " 17421 "from %s to" 17422 " %s failed : ENOMEM \n", 17423 inet_ntop(AF_INET6, 17424 &ilm->ilm_v6addr, buf, 17425 sizeof (buf)), 17426 from_ill->ill_name, 17427 to_ill->ill_name)); 17428 17429 ilmp = &ilm->ilm_next; 17430 continue; 17431 } 17432 *new_ilm = *ilm; 17433 new_ilm->ilm_filter = NULL; 17434 } else { 17435 *ilmp = ilm->ilm_next; 17436 new_ilm = ilm; 17437 } 17438 /* 17439 * If the to_ill has not joined this 17440 * group we need to tell the driver in 17441 * ill_send_multicast_reqs. 17442 */ 17443 if (ilm_lookup_ill_v6(to_ill, 17444 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17445 new_ilm->ilm_notify_driver = B_TRUE; 17446 17447 /* Add to the to_ill's list */ 17448 new_ilm->ilm_next = to_ill->ill_ilm; 17449 to_ill->ill_ilm = new_ilm; 17450 ASSERT(ilm->ilm_ipif == NULL); 17451 new_ilm->ilm_ill = to_ill; 17452 new_ilm->ilm_is_new = B_TRUE; 17453 } 17454 17455 } 17456 17457 bottom: 17458 /* 17459 * Revert multicast filter state to (EXCLUDE, NULL). 17460 * new_ilm->ilm_is_new should already be set if needed. 17461 */ 17462 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17463 CLEAR_SLIST(new_ilm->ilm_filter); 17464 /* 17465 * We allocated/got a new ilm, free the old one. 17466 */ 17467 if (new_ilm != ilm) { 17468 if (from_ill->ill_ilm_walker_cnt == 0) { 17469 *ilmp = ilm->ilm_next; 17470 ilm->ilm_next = NULL; 17471 FREE_SLIST(ilm->ilm_filter); 17472 FREE_SLIST(ilm->ilm_pendsrcs); 17473 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17474 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17475 mi_free((char *)ilm); 17476 } else { 17477 ilm->ilm_flags |= ILM_DELETED; 17478 from_ill->ill_ilm_cleanup_reqd = 1; 17479 ilmp = &ilm->ilm_next; 17480 } 17481 } 17482 } 17483 } 17484 17485 /* 17486 * Move all the multicast memberships to to_ill. Called when 17487 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17488 * different from IPv6 counterpart as multicast memberships are associated 17489 * with ills in IPv6. This function is called after every ipif is moved 17490 * unlike IPv6, where it is moved only once. 17491 */ 17492 static void 17493 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17494 { 17495 ilm_t *ilm; 17496 ilm_t *ilm_next; 17497 ilm_t *new_ilm; 17498 ilm_t **ilmp; 17499 ip_stack_t *ipst = from_ill->ill_ipst; 17500 17501 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17502 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17503 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17504 17505 ilmp = &from_ill->ill_ilm; 17506 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17507 ilm_next = ilm->ilm_next; 17508 17509 if (ilm->ilm_flags & ILM_DELETED) { 17510 ilmp = &ilm->ilm_next; 17511 continue; 17512 } 17513 17514 ASSERT(ilm->ilm_ipif != NULL); 17515 17516 if (ilm->ilm_ipif != ipif) { 17517 ilmp = &ilm->ilm_next; 17518 continue; 17519 } 17520 17521 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17522 htonl(INADDR_ALLHOSTS_GROUP)) { 17523 /* 17524 * We joined this in ipif_multicast_up 17525 * and we never did an ipif_multicast_down 17526 * for IPv4. If nobody else from the userland 17527 * has reference, we free the ilm, and later 17528 * when this ipif comes up on the new ill, 17529 * we will join this again. 17530 */ 17531 if (--ilm->ilm_refcnt == 0) 17532 goto delete_ilm; 17533 17534 new_ilm = ilm_lookup_ipif(ipif, 17535 V4_PART_OF_V6(ilm->ilm_v6addr)); 17536 if (new_ilm != NULL) { 17537 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17538 /* 17539 * We still need to deal with the from_ill. 17540 */ 17541 new_ilm->ilm_is_new = B_TRUE; 17542 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17543 CLEAR_SLIST(new_ilm->ilm_filter); 17544 goto delete_ilm; 17545 } 17546 /* 17547 * If we could not find one e.g. ipif is 17548 * still down on to_ill, we add this ilm 17549 * on ill_new to preserve the reference 17550 * count. 17551 */ 17552 } 17553 /* 17554 * When ipifs move, ilms always move with it 17555 * to the NEW ill. Thus we should never be 17556 * able to find ilm till we really move it here. 17557 */ 17558 ASSERT(ilm_lookup_ipif(ipif, 17559 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17560 17561 if (from_ill->ill_ilm_walker_cnt != 0) { 17562 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17563 if (new_ilm == NULL) { 17564 char buf[INET6_ADDRSTRLEN]; 17565 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17566 " multicast address %s : " 17567 "from %s to" 17568 " %s failed : ENOMEM \n", 17569 inet_ntop(AF_INET, 17570 &ilm->ilm_v6addr, buf, 17571 sizeof (buf)), 17572 from_ill->ill_name, 17573 to_ill->ill_name)); 17574 17575 ilmp = &ilm->ilm_next; 17576 continue; 17577 } 17578 *new_ilm = *ilm; 17579 /* We don't want new_ilm linked to ilm's filter list */ 17580 new_ilm->ilm_filter = NULL; 17581 } else { 17582 /* Remove from the list */ 17583 *ilmp = ilm->ilm_next; 17584 new_ilm = ilm; 17585 } 17586 17587 /* 17588 * If we have never joined this group on the to_ill 17589 * make sure we tell the driver. 17590 */ 17591 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17592 ALL_ZONES) == NULL) 17593 new_ilm->ilm_notify_driver = B_TRUE; 17594 17595 /* Add to the to_ill's list */ 17596 new_ilm->ilm_next = to_ill->ill_ilm; 17597 to_ill->ill_ilm = new_ilm; 17598 new_ilm->ilm_is_new = B_TRUE; 17599 17600 /* 17601 * Revert multicast filter state to (EXCLUDE, NULL) 17602 */ 17603 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17604 CLEAR_SLIST(new_ilm->ilm_filter); 17605 17606 /* 17607 * Delete only if we have allocated a new ilm. 17608 */ 17609 if (new_ilm != ilm) { 17610 delete_ilm: 17611 if (from_ill->ill_ilm_walker_cnt == 0) { 17612 /* Remove from the list */ 17613 *ilmp = ilm->ilm_next; 17614 ilm->ilm_next = NULL; 17615 FREE_SLIST(ilm->ilm_filter); 17616 FREE_SLIST(ilm->ilm_pendsrcs); 17617 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17618 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17619 mi_free((char *)ilm); 17620 } else { 17621 ilm->ilm_flags |= ILM_DELETED; 17622 from_ill->ill_ilm_cleanup_reqd = 1; 17623 ilmp = &ilm->ilm_next; 17624 } 17625 } 17626 } 17627 } 17628 17629 static uint_t 17630 ipif_get_id(ill_t *ill, uint_t id) 17631 { 17632 uint_t unit; 17633 ipif_t *tipif; 17634 boolean_t found = B_FALSE; 17635 ip_stack_t *ipst = ill->ill_ipst; 17636 17637 /* 17638 * During failback, we want to go back to the same id 17639 * instead of the smallest id so that the original 17640 * configuration is maintained. id is non-zero in that 17641 * case. 17642 */ 17643 if (id != 0) { 17644 /* 17645 * While failing back, if we still have an ipif with 17646 * MAX_ADDRS_PER_IF, it means this will be replaced 17647 * as soon as we return from this function. It was 17648 * to set to MAX_ADDRS_PER_IF by the caller so that 17649 * we can choose the smallest id. Thus we return zero 17650 * in that case ignoring the hint. 17651 */ 17652 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17653 return (0); 17654 for (tipif = ill->ill_ipif; tipif != NULL; 17655 tipif = tipif->ipif_next) { 17656 if (tipif->ipif_id == id) { 17657 found = B_TRUE; 17658 break; 17659 } 17660 } 17661 /* 17662 * If somebody already plumbed another logical 17663 * with the same id, we won't be able to find it. 17664 */ 17665 if (!found) 17666 return (id); 17667 } 17668 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17669 found = B_FALSE; 17670 for (tipif = ill->ill_ipif; tipif != NULL; 17671 tipif = tipif->ipif_next) { 17672 if (tipif->ipif_id == unit) { 17673 found = B_TRUE; 17674 break; 17675 } 17676 } 17677 if (!found) 17678 break; 17679 } 17680 return (unit); 17681 } 17682 17683 /* ARGSUSED */ 17684 static int 17685 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17686 ipif_t **rep_ipif_ptr) 17687 { 17688 ill_t *from_ill; 17689 ipif_t *rep_ipif; 17690 ipif_t **ipifp; 17691 uint_t unit; 17692 int err = 0; 17693 ipif_t *to_ipif; 17694 struct iocblk *iocp; 17695 boolean_t failback_cmd; 17696 boolean_t remove_ipif; 17697 int rc; 17698 ip_stack_t *ipst; 17699 17700 ASSERT(IAM_WRITER_ILL(to_ill)); 17701 ASSERT(IAM_WRITER_IPIF(ipif)); 17702 17703 iocp = (struct iocblk *)mp->b_rptr; 17704 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17705 remove_ipif = B_FALSE; 17706 17707 from_ill = ipif->ipif_ill; 17708 ipst = from_ill->ill_ipst; 17709 17710 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17711 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17712 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17713 17714 /* 17715 * Don't move LINK LOCAL addresses as they are tied to 17716 * physical interface. 17717 */ 17718 if (from_ill->ill_isv6 && 17719 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17720 ipif->ipif_was_up = B_FALSE; 17721 IPIF_UNMARK_MOVING(ipif); 17722 return (0); 17723 } 17724 17725 /* 17726 * We set the ipif_id to maximum so that the search for 17727 * ipif_id will pick the lowest number i.e 0 in the 17728 * following 2 cases : 17729 * 17730 * 1) We have a replacement ipif at the head of to_ill. 17731 * We can't remove it yet as we can exceed ip_addrs_per_if 17732 * on to_ill and hence the MOVE might fail. We want to 17733 * remove it only if we could move the ipif. Thus, by 17734 * setting it to the MAX value, we make the search in 17735 * ipif_get_id return the zeroth id. 17736 * 17737 * 2) When DR pulls out the NIC and re-plumbs the interface, 17738 * we might just have a zero address plumbed on the ipif 17739 * with zero id in the case of IPv4. We remove that while 17740 * doing the failback. We want to remove it only if we 17741 * could move the ipif. Thus, by setting it to the MAX 17742 * value, we make the search in ipif_get_id return the 17743 * zeroth id. 17744 * 17745 * Both (1) and (2) are done only when when we are moving 17746 * an ipif (either due to failover/failback) which originally 17747 * belonged to this interface i.e the ipif_orig_ifindex is 17748 * the same as to_ill's ifindex. This is needed so that 17749 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17750 * from B -> A (B is being removed from the group) and 17751 * FAILBACK from A -> B restores the original configuration. 17752 * Without the check for orig_ifindex, the second FAILOVER 17753 * could make the ipif belonging to B replace the A's zeroth 17754 * ipif and the subsequent failback re-creating the replacement 17755 * ipif again. 17756 * 17757 * NOTE : We created the replacement ipif when we did a 17758 * FAILOVER (See below). We could check for FAILBACK and 17759 * then look for replacement ipif to be removed. But we don't 17760 * want to do that because we wan't to allow the possibility 17761 * of a FAILOVER from A -> B (which creates the replacement ipif), 17762 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17763 * from B -> A. 17764 */ 17765 to_ipif = to_ill->ill_ipif; 17766 if ((to_ill->ill_phyint->phyint_ifindex == 17767 ipif->ipif_orig_ifindex) && 17768 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17769 ASSERT(to_ipif->ipif_id == 0); 17770 remove_ipif = B_TRUE; 17771 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17772 } 17773 /* 17774 * Find the lowest logical unit number on the to_ill. 17775 * If we are failing back, try to get the original id 17776 * rather than the lowest one so that the original 17777 * configuration is maintained. 17778 * 17779 * XXX need a better scheme for this. 17780 */ 17781 if (failback_cmd) { 17782 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17783 } else { 17784 unit = ipif_get_id(to_ill, 0); 17785 } 17786 17787 /* Reset back to zero in case we fail below */ 17788 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17789 to_ipif->ipif_id = 0; 17790 17791 if (unit == ipst->ips_ip_addrs_per_if) { 17792 ipif->ipif_was_up = B_FALSE; 17793 IPIF_UNMARK_MOVING(ipif); 17794 return (EINVAL); 17795 } 17796 17797 /* 17798 * ipif is ready to move from "from_ill" to "to_ill". 17799 * 17800 * 1) If we are moving ipif with id zero, create a 17801 * replacement ipif for this ipif on from_ill. If this fails 17802 * fail the MOVE operation. 17803 * 17804 * 2) Remove the replacement ipif on to_ill if any. 17805 * We could remove the replacement ipif when we are moving 17806 * the ipif with id zero. But what if somebody already 17807 * unplumbed it ? Thus we always remove it if it is present. 17808 * We want to do it only if we are sure we are going to 17809 * move the ipif to to_ill which is why there are no 17810 * returns due to error till ipif is linked to to_ill. 17811 * Note that the first ipif that we failback will always 17812 * be zero if it is present. 17813 */ 17814 if (ipif->ipif_id == 0) { 17815 ipaddr_t inaddr_any = INADDR_ANY; 17816 17817 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17818 if (rep_ipif == NULL) { 17819 ipif->ipif_was_up = B_FALSE; 17820 IPIF_UNMARK_MOVING(ipif); 17821 return (ENOMEM); 17822 } 17823 *rep_ipif = ipif_zero; 17824 /* 17825 * Before we put the ipif on the list, store the addresses 17826 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17827 * assumes so. This logic is not any different from what 17828 * ipif_allocate does. 17829 */ 17830 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17831 &rep_ipif->ipif_v6lcl_addr); 17832 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17833 &rep_ipif->ipif_v6src_addr); 17834 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17835 &rep_ipif->ipif_v6subnet); 17836 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17837 &rep_ipif->ipif_v6net_mask); 17838 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17839 &rep_ipif->ipif_v6brd_addr); 17840 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17841 &rep_ipif->ipif_v6pp_dst_addr); 17842 /* 17843 * We mark IPIF_NOFAILOVER so that this can never 17844 * move. 17845 */ 17846 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17847 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17848 rep_ipif->ipif_replace_zero = B_TRUE; 17849 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17850 MUTEX_DEFAULT, NULL); 17851 rep_ipif->ipif_id = 0; 17852 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17853 rep_ipif->ipif_ill = from_ill; 17854 rep_ipif->ipif_orig_ifindex = 17855 from_ill->ill_phyint->phyint_ifindex; 17856 /* Insert at head */ 17857 rep_ipif->ipif_next = from_ill->ill_ipif; 17858 from_ill->ill_ipif = rep_ipif; 17859 /* 17860 * We don't really care to let apps know about 17861 * this interface. 17862 */ 17863 } 17864 17865 if (remove_ipif) { 17866 /* 17867 * We set to a max value above for this case to get 17868 * id zero. ASSERT that we did get one. 17869 */ 17870 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17871 rep_ipif = to_ipif; 17872 to_ill->ill_ipif = rep_ipif->ipif_next; 17873 rep_ipif->ipif_next = NULL; 17874 /* 17875 * If some apps scanned and find this interface, 17876 * it is time to let them know, so that they can 17877 * delete it. 17878 */ 17879 17880 *rep_ipif_ptr = rep_ipif; 17881 } 17882 17883 /* Get it out of the ILL interface list. */ 17884 ipifp = &ipif->ipif_ill->ill_ipif; 17885 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 17886 if (*ipifp == ipif) { 17887 *ipifp = ipif->ipif_next; 17888 break; 17889 } 17890 } 17891 17892 /* Assign the new ill */ 17893 ipif->ipif_ill = to_ill; 17894 ipif->ipif_id = unit; 17895 /* id has already been checked */ 17896 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17897 ASSERT(rc == 0); 17898 /* Let SCTP update its list */ 17899 sctp_move_ipif(ipif, from_ill, to_ill); 17900 /* 17901 * Handle the failover and failback of ipif_t between 17902 * ill_t that have differing maximum mtu values. 17903 */ 17904 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17905 if (ipif->ipif_saved_mtu == 0) { 17906 /* 17907 * As this ipif_t is moving to an ill_t 17908 * that has a lower ill_max_mtu, its 17909 * ipif_mtu needs to be saved so it can 17910 * be restored during failback or during 17911 * failover to an ill_t which has a 17912 * higher ill_max_mtu. 17913 */ 17914 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17915 ipif->ipif_mtu = to_ill->ill_max_mtu; 17916 } else { 17917 /* 17918 * The ipif_t is, once again, moving to 17919 * an ill_t that has a lower maximum mtu 17920 * value. 17921 */ 17922 ipif->ipif_mtu = to_ill->ill_max_mtu; 17923 } 17924 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17925 ipif->ipif_saved_mtu != 0) { 17926 /* 17927 * The mtu of this ipif_t had to be reduced 17928 * during an earlier failover; this is an 17929 * opportunity for it to be increased (either as 17930 * part of another failover or a failback). 17931 */ 17932 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17933 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17934 ipif->ipif_saved_mtu = 0; 17935 } else { 17936 ipif->ipif_mtu = to_ill->ill_max_mtu; 17937 } 17938 } 17939 17940 /* 17941 * We preserve all the other fields of the ipif including 17942 * ipif_saved_ire_mp. The routes that are saved here will 17943 * be recreated on the new interface and back on the old 17944 * interface when we move back. 17945 */ 17946 ASSERT(ipif->ipif_arp_del_mp == NULL); 17947 17948 return (err); 17949 } 17950 17951 static int 17952 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17953 int ifindex, ipif_t **rep_ipif_ptr) 17954 { 17955 ipif_t *mipif; 17956 ipif_t *ipif_next; 17957 int err; 17958 17959 /* 17960 * We don't really try to MOVE back things if some of the 17961 * operations fail. The daemon will take care of moving again 17962 * later on. 17963 */ 17964 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17965 ipif_next = mipif->ipif_next; 17966 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17967 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17968 17969 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17970 17971 /* 17972 * When the MOVE fails, it is the job of the 17973 * application to take care of this properly 17974 * i.e try again if it is ENOMEM. 17975 */ 17976 if (mipif->ipif_ill != from_ill) { 17977 /* 17978 * ipif has moved. 17979 * 17980 * Move the multicast memberships associated 17981 * with this ipif to the new ill. For IPv6, we 17982 * do it once after all the ipifs are moved 17983 * (in ill_move) as they are not associated 17984 * with ipifs. 17985 * 17986 * We need to move the ilms as the ipif has 17987 * already been moved to a new ill even 17988 * in the case of errors. Neither 17989 * ilm_free(ipif) will find the ilm 17990 * when somebody unplumbs this ipif nor 17991 * ilm_delete(ilm) will be able to find the 17992 * ilm, if we don't move now. 17993 */ 17994 if (!from_ill->ill_isv6) 17995 ilm_move_v4(from_ill, to_ill, mipif); 17996 } 17997 17998 if (err != 0) 17999 return (err); 18000 } 18001 } 18002 return (0); 18003 } 18004 18005 static int 18006 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 18007 { 18008 int ifindex; 18009 int err; 18010 struct iocblk *iocp; 18011 ipif_t *ipif; 18012 ipif_t *rep_ipif_ptr = NULL; 18013 ipif_t *from_ipif = NULL; 18014 boolean_t check_rep_if = B_FALSE; 18015 ip_stack_t *ipst = from_ill->ill_ipst; 18016 18017 iocp = (struct iocblk *)mp->b_rptr; 18018 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 18019 /* 18020 * Move everything pointing at from_ill to to_ill. 18021 * We acheive this by passing in 0 as ifindex. 18022 */ 18023 ifindex = 0; 18024 } else { 18025 /* 18026 * Move everything pointing at from_ill whose original 18027 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 18028 * We acheive this by passing in ifindex rather than 0. 18029 * Multicast vifs, ilgs move implicitly because ipifs move. 18030 */ 18031 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 18032 ifindex = to_ill->ill_phyint->phyint_ifindex; 18033 } 18034 18035 /* 18036 * Determine if there is at least one ipif that would move from 18037 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 18038 * ipif (if it exists) on the to_ill would be consumed as a result of 18039 * the move, in which case we need to quiesce the replacement ipif also. 18040 */ 18041 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 18042 from_ipif = from_ipif->ipif_next) { 18043 if (((ifindex == 0) || 18044 (ifindex == from_ipif->ipif_orig_ifindex)) && 18045 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 18046 check_rep_if = B_TRUE; 18047 break; 18048 } 18049 } 18050 18051 18052 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 18053 18054 GRAB_ILL_LOCKS(from_ill, to_ill); 18055 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 18056 (void) ipsq_pending_mp_add(NULL, ipif, q, 18057 mp, ILL_MOVE_OK); 18058 RELEASE_ILL_LOCKS(from_ill, to_ill); 18059 return (EINPROGRESS); 18060 } 18061 18062 /* Check if the replacement ipif is quiescent to delete */ 18063 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 18064 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 18065 to_ill->ill_ipif->ipif_state_flags |= 18066 IPIF_MOVING | IPIF_CHANGING; 18067 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 18068 (void) ipsq_pending_mp_add(NULL, ipif, q, 18069 mp, ILL_MOVE_OK); 18070 RELEASE_ILL_LOCKS(from_ill, to_ill); 18071 return (EINPROGRESS); 18072 } 18073 } 18074 RELEASE_ILL_LOCKS(from_ill, to_ill); 18075 18076 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 18077 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18078 GRAB_ILL_LOCKS(from_ill, to_ill); 18079 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 18080 18081 /* ilm_move is done inside ipif_move for IPv4 */ 18082 if (err == 0 && from_ill->ill_isv6) 18083 ilm_move_v6(from_ill, to_ill, ifindex); 18084 18085 RELEASE_ILL_LOCKS(from_ill, to_ill); 18086 rw_exit(&ipst->ips_ill_g_lock); 18087 18088 /* 18089 * send rts messages and multicast messages. 18090 */ 18091 if (rep_ipif_ptr != NULL) { 18092 if (rep_ipif_ptr->ipif_recovery_id != 0) { 18093 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 18094 rep_ipif_ptr->ipif_recovery_id = 0; 18095 } 18096 ip_rts_ifmsg(rep_ipif_ptr); 18097 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 18098 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 18099 mi_free(rep_ipif_ptr); 18100 } 18101 18102 conn_move_ill(from_ill, to_ill, ifindex); 18103 18104 return (err); 18105 } 18106 18107 /* 18108 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 18109 * Also checks for the validity of the arguments. 18110 * Note: We are already exclusive inside the from group. 18111 * It is upto the caller to release refcnt on the to_ill's. 18112 */ 18113 static int 18114 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 18115 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 18116 { 18117 int dst_index; 18118 ipif_t *ipif_v4, *ipif_v6; 18119 struct lifreq *lifr; 18120 mblk_t *mp1; 18121 boolean_t exists; 18122 sin_t *sin; 18123 int err = 0; 18124 ip_stack_t *ipst; 18125 18126 if (CONN_Q(q)) 18127 ipst = CONNQ_TO_IPST(q); 18128 else 18129 ipst = ILLQ_TO_IPST(q); 18130 18131 18132 if ((mp1 = mp->b_cont) == NULL) 18133 return (EPROTO); 18134 18135 if ((mp1 = mp1->b_cont) == NULL) 18136 return (EPROTO); 18137 18138 lifr = (struct lifreq *)mp1->b_rptr; 18139 sin = (sin_t *)&lifr->lifr_addr; 18140 18141 /* 18142 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 18143 * specific operations. 18144 */ 18145 if (sin->sin_family != AF_UNSPEC) 18146 return (EINVAL); 18147 18148 /* 18149 * Get ipif with id 0. We are writer on the from ill. So we can pass 18150 * NULLs for the last 4 args and we know the lookup won't fail 18151 * with EINPROGRESS. 18152 */ 18153 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 18154 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 18155 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 18156 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 18157 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 18158 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 18159 18160 if (ipif_v4 == NULL && ipif_v6 == NULL) 18161 return (ENXIO); 18162 18163 if (ipif_v4 != NULL) { 18164 ASSERT(ipif_v4->ipif_refcnt != 0); 18165 if (ipif_v4->ipif_id != 0) { 18166 err = EINVAL; 18167 goto done; 18168 } 18169 18170 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 18171 *ill_from_v4 = ipif_v4->ipif_ill; 18172 } 18173 18174 if (ipif_v6 != NULL) { 18175 ASSERT(ipif_v6->ipif_refcnt != 0); 18176 if (ipif_v6->ipif_id != 0) { 18177 err = EINVAL; 18178 goto done; 18179 } 18180 18181 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 18182 *ill_from_v6 = ipif_v6->ipif_ill; 18183 } 18184 18185 err = 0; 18186 dst_index = lifr->lifr_movetoindex; 18187 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 18188 q, mp, ip_process_ioctl, &err, ipst); 18189 if (err != 0) { 18190 /* 18191 * There could be only v6. 18192 */ 18193 if (err != ENXIO) 18194 goto done; 18195 err = 0; 18196 } 18197 18198 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 18199 q, mp, ip_process_ioctl, &err, ipst); 18200 if (err != 0) { 18201 if (err != ENXIO) 18202 goto done; 18203 if (*ill_to_v4 == NULL) { 18204 err = ENXIO; 18205 goto done; 18206 } 18207 err = 0; 18208 } 18209 18210 /* 18211 * If we have something to MOVE i.e "from" not NULL, 18212 * "to" should be non-NULL. 18213 */ 18214 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 18215 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 18216 err = EINVAL; 18217 } 18218 18219 done: 18220 if (ipif_v4 != NULL) 18221 ipif_refrele(ipif_v4); 18222 if (ipif_v6 != NULL) 18223 ipif_refrele(ipif_v6); 18224 return (err); 18225 } 18226 18227 /* 18228 * FAILOVER and FAILBACK are modelled as MOVE operations. 18229 * 18230 * We don't check whether the MOVE is within the same group or 18231 * not, because this ioctl can be used as a generic mechanism 18232 * to failover from interface A to B, though things will function 18233 * only if they are really part of the same group. Moreover, 18234 * all ipifs may be down and hence temporarily out of the group. 18235 * 18236 * ipif's that need to be moved are first brought down; V4 ipifs are brought 18237 * down first and then V6. For each we wait for the ipif's to become quiescent. 18238 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 18239 * have been deleted and there are no active references. Once quiescent the 18240 * ipif's are moved and brought up on the new ill. 18241 * 18242 * Normally the source ill and destination ill belong to the same IPMP group 18243 * and hence the same ipsq_t. In the event they don't belong to the same 18244 * same group the two ipsq's are first merged into one ipsq - that of the 18245 * to_ill. The multicast memberships on the source and destination ill cannot 18246 * change during the move operation since multicast joins/leaves also have to 18247 * execute on the same ipsq and are hence serialized. 18248 */ 18249 /* ARGSUSED */ 18250 int 18251 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18252 ip_ioctl_cmd_t *ipip, void *ifreq) 18253 { 18254 ill_t *ill_to_v4 = NULL; 18255 ill_t *ill_to_v6 = NULL; 18256 ill_t *ill_from_v4 = NULL; 18257 ill_t *ill_from_v6 = NULL; 18258 int err = 0; 18259 18260 /* 18261 * setup from and to ill's, we can get EINPROGRESS only for 18262 * to_ill's. 18263 */ 18264 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 18265 &ill_to_v4, &ill_to_v6); 18266 18267 if (err != 0) { 18268 ip0dbg(("ip_sioctl_move: extract args failed\n")); 18269 goto done; 18270 } 18271 18272 /* 18273 * nothing to do. 18274 */ 18275 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 18276 goto done; 18277 } 18278 18279 /* 18280 * nothing to do. 18281 */ 18282 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 18283 goto done; 18284 } 18285 18286 /* 18287 * Mark the ill as changing. 18288 * ILL_CHANGING flag is cleared when the ipif's are brought up 18289 * in ill_up_ipifs in case of error they are cleared below. 18290 */ 18291 18292 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18293 if (ill_from_v4 != NULL) 18294 ill_from_v4->ill_state_flags |= ILL_CHANGING; 18295 if (ill_from_v6 != NULL) 18296 ill_from_v6->ill_state_flags |= ILL_CHANGING; 18297 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18298 18299 /* 18300 * Make sure that both src and dst are 18301 * in the same syncq group. If not make it happen. 18302 * We are not holding any locks because we are the writer 18303 * on the from_ipsq and we will hold locks in ill_merge_groups 18304 * to protect to_ipsq against changing. 18305 */ 18306 if (ill_from_v4 != NULL) { 18307 if (ill_from_v4->ill_phyint->phyint_ipsq != 18308 ill_to_v4->ill_phyint->phyint_ipsq) { 18309 err = ill_merge_groups(ill_from_v4, ill_to_v4, 18310 NULL, mp, q); 18311 goto err_ret; 18312 18313 } 18314 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18315 } else { 18316 18317 if (ill_from_v6->ill_phyint->phyint_ipsq != 18318 ill_to_v6->ill_phyint->phyint_ipsq) { 18319 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18320 NULL, mp, q); 18321 goto err_ret; 18322 18323 } 18324 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18325 } 18326 18327 /* 18328 * Now that the ipsq's have been merged and we are the writer 18329 * lets mark to_ill as changing as well. 18330 */ 18331 18332 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18333 if (ill_to_v4 != NULL) 18334 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18335 if (ill_to_v6 != NULL) 18336 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18337 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18338 18339 /* 18340 * Its ok for us to proceed with the move even if 18341 * ill_pending_mp is non null on one of the from ill's as the reply 18342 * should not be looking at the ipif, it should only care about the 18343 * ill itself. 18344 */ 18345 18346 /* 18347 * lets move ipv4 first. 18348 */ 18349 if (ill_from_v4 != NULL) { 18350 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18351 ill_from_v4->ill_move_in_progress = B_TRUE; 18352 ill_to_v4->ill_move_in_progress = B_TRUE; 18353 ill_to_v4->ill_move_peer = ill_from_v4; 18354 ill_from_v4->ill_move_peer = ill_to_v4; 18355 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18356 } 18357 18358 /* 18359 * Now lets move ipv6. 18360 */ 18361 if (err == 0 && ill_from_v6 != NULL) { 18362 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18363 ill_from_v6->ill_move_in_progress = B_TRUE; 18364 ill_to_v6->ill_move_in_progress = B_TRUE; 18365 ill_to_v6->ill_move_peer = ill_from_v6; 18366 ill_from_v6->ill_move_peer = ill_to_v6; 18367 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18368 } 18369 18370 err_ret: 18371 /* 18372 * EINPROGRESS means we are waiting for the ipif's that need to be 18373 * moved to become quiescent. 18374 */ 18375 if (err == EINPROGRESS) { 18376 goto done; 18377 } 18378 18379 /* 18380 * if err is set ill_up_ipifs will not be called 18381 * lets clear the flags. 18382 */ 18383 18384 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18385 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18386 /* 18387 * Some of the clearing may be redundant. But it is simple 18388 * not making any extra checks. 18389 */ 18390 if (ill_from_v6 != NULL) { 18391 ill_from_v6->ill_move_in_progress = B_FALSE; 18392 ill_from_v6->ill_move_peer = NULL; 18393 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18394 } 18395 if (ill_from_v4 != NULL) { 18396 ill_from_v4->ill_move_in_progress = B_FALSE; 18397 ill_from_v4->ill_move_peer = NULL; 18398 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18399 } 18400 if (ill_to_v6 != NULL) { 18401 ill_to_v6->ill_move_in_progress = B_FALSE; 18402 ill_to_v6->ill_move_peer = NULL; 18403 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18404 } 18405 if (ill_to_v4 != NULL) { 18406 ill_to_v4->ill_move_in_progress = B_FALSE; 18407 ill_to_v4->ill_move_peer = NULL; 18408 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18409 } 18410 18411 /* 18412 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18413 * Do this always to maintain proper state i.e even in case of errors. 18414 * As phyint_inactive looks at both v4 and v6 interfaces, 18415 * we need not call on both v4 and v6 interfaces. 18416 */ 18417 if (ill_from_v4 != NULL) { 18418 if ((ill_from_v4->ill_phyint->phyint_flags & 18419 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18420 phyint_inactive(ill_from_v4->ill_phyint); 18421 } 18422 } else if (ill_from_v6 != NULL) { 18423 if ((ill_from_v6->ill_phyint->phyint_flags & 18424 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18425 phyint_inactive(ill_from_v6->ill_phyint); 18426 } 18427 } 18428 18429 if (ill_to_v4 != NULL) { 18430 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18431 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18432 } 18433 } else if (ill_to_v6 != NULL) { 18434 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18435 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18436 } 18437 } 18438 18439 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18440 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18441 18442 no_err: 18443 /* 18444 * lets bring the interfaces up on the to_ill. 18445 */ 18446 if (err == 0) { 18447 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18448 q, mp); 18449 } 18450 18451 if (err == 0) { 18452 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18453 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18454 18455 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18456 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18457 } 18458 done: 18459 18460 if (ill_to_v4 != NULL) { 18461 ill_refrele(ill_to_v4); 18462 } 18463 if (ill_to_v6 != NULL) { 18464 ill_refrele(ill_to_v6); 18465 } 18466 18467 return (err); 18468 } 18469 18470 static void 18471 ill_dl_down(ill_t *ill) 18472 { 18473 /* 18474 * The ill is down; unbind but stay attached since we're still 18475 * associated with a PPA. If we have negotiated DLPI capabilites 18476 * with the data link service provider (IDS_OK) then reset them. 18477 * The interval between unbinding and rebinding is potentially 18478 * unbounded hence we cannot assume things will be the same. 18479 * The DLPI capabilities will be probed again when the data link 18480 * is brought up. 18481 */ 18482 mblk_t *mp = ill->ill_unbind_mp; 18483 hook_nic_event_t *info; 18484 18485 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18486 18487 ill->ill_unbind_mp = NULL; 18488 if (mp != NULL) { 18489 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18490 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18491 ill->ill_name)); 18492 mutex_enter(&ill->ill_lock); 18493 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18494 mutex_exit(&ill->ill_lock); 18495 if (ill->ill_dlpi_capab_state == IDS_OK) 18496 ill_capability_reset(ill); 18497 ill_dlpi_send(ill, mp); 18498 } 18499 18500 /* 18501 * Toss all of our multicast memberships. We could keep them, but 18502 * then we'd have to do bookkeeping of any joins and leaves performed 18503 * by the application while the the interface is down (we can't just 18504 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18505 * on a downed interface). 18506 */ 18507 ill_leave_multicast(ill); 18508 18509 mutex_enter(&ill->ill_lock); 18510 18511 ill->ill_dl_up = 0; 18512 18513 if ((info = ill->ill_nic_event_info) != NULL) { 18514 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18515 info->hne_event, ill->ill_name)); 18516 if (info->hne_data != NULL) 18517 kmem_free(info->hne_data, info->hne_datalen); 18518 kmem_free(info, sizeof (hook_nic_event_t)); 18519 } 18520 18521 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18522 if (info != NULL) { 18523 ip_stack_t *ipst = ill->ill_ipst; 18524 18525 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 18526 info->hne_lif = 0; 18527 info->hne_event = NE_DOWN; 18528 info->hne_data = NULL; 18529 info->hne_datalen = 0; 18530 info->hne_family = ill->ill_isv6 ? 18531 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18532 } else 18533 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18534 "information for %s (ENOMEM)\n", ill->ill_name)); 18535 18536 ill->ill_nic_event_info = info; 18537 18538 mutex_exit(&ill->ill_lock); 18539 } 18540 18541 void 18542 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18543 { 18544 union DL_primitives *dlp; 18545 t_uscalar_t prim; 18546 18547 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18548 18549 dlp = (union DL_primitives *)mp->b_rptr; 18550 prim = dlp->dl_primitive; 18551 18552 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18553 dlpi_prim_str(prim), prim, ill->ill_name)); 18554 18555 switch (prim) { 18556 case DL_PHYS_ADDR_REQ: 18557 { 18558 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18559 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18560 break; 18561 } 18562 case DL_BIND_REQ: 18563 mutex_enter(&ill->ill_lock); 18564 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18565 mutex_exit(&ill->ill_lock); 18566 break; 18567 } 18568 18569 /* 18570 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18571 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18572 * we only wait for the ACK of the DL_UNBIND_REQ. 18573 */ 18574 mutex_enter(&ill->ill_lock); 18575 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18576 (prim == DL_UNBIND_REQ)) { 18577 ill->ill_dlpi_pending = prim; 18578 } 18579 mutex_exit(&ill->ill_lock); 18580 18581 /* 18582 * Some drivers send M_FLUSH up to IP as part of unbind 18583 * request. When this M_FLUSH is sent back to the driver, 18584 * this can go after we send the detach request if the 18585 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 18586 * to the M_FLUSH in ip_rput and locally generate another 18587 * M_FLUSH for the correctness. This will get freed in 18588 * ip_wput_nondata. 18589 */ 18590 if (prim == DL_UNBIND_REQ) 18591 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 18592 18593 putnext(ill->ill_wq, mp); 18594 } 18595 18596 /* 18597 * Send a DLPI control message to the driver but make sure there 18598 * is only one outstanding message. Uses ill_dlpi_pending to tell 18599 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18600 * when an ACK or a NAK is received to process the next queued message. 18601 * 18602 * We don't protect ill_dlpi_pending with any lock. This is okay as 18603 * every place where its accessed, ip is exclusive while accessing 18604 * ill_dlpi_pending except when this function is called from ill_init() 18605 */ 18606 void 18607 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18608 { 18609 mblk_t **mpp; 18610 18611 ASSERT(IAM_WRITER_ILL(ill)); 18612 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18613 18614 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18615 /* Must queue message. Tail insertion */ 18616 mpp = &ill->ill_dlpi_deferred; 18617 while (*mpp != NULL) 18618 mpp = &((*mpp)->b_next); 18619 18620 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18621 ill->ill_name)); 18622 18623 *mpp = mp; 18624 return; 18625 } 18626 18627 ill_dlpi_dispatch(ill, mp); 18628 } 18629 18630 /* 18631 * Called when an DLPI control message has been acked or nacked to 18632 * send down the next queued message (if any). 18633 */ 18634 void 18635 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18636 { 18637 mblk_t *mp; 18638 18639 ASSERT(IAM_WRITER_ILL(ill)); 18640 18641 ASSERT(prim != DL_PRIM_INVAL); 18642 if (ill->ill_dlpi_pending != prim) { 18643 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 18644 (void) mi_strlog(ill->ill_rq, 1, 18645 SL_CONSOLE|SL_ERROR|SL_TRACE, 18646 "ill_dlpi_done: unsolicited ack for %s from %s\n", 18647 dlpi_prim_str(prim), ill->ill_name); 18648 } else { 18649 (void) mi_strlog(ill->ill_rq, 1, 18650 SL_CONSOLE|SL_ERROR|SL_TRACE, 18651 "ill_dlpi_done: unexpected ack for %s from %s " 18652 "(expecting ack for %s)\n", 18653 dlpi_prim_str(prim), ill->ill_name, 18654 dlpi_prim_str(ill->ill_dlpi_pending)); 18655 } 18656 return; 18657 } 18658 18659 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18660 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18661 18662 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18663 mutex_enter(&ill->ill_lock); 18664 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18665 cv_signal(&ill->ill_cv); 18666 mutex_exit(&ill->ill_lock); 18667 return; 18668 } 18669 18670 ill->ill_dlpi_deferred = mp->b_next; 18671 mp->b_next = NULL; 18672 18673 ill_dlpi_dispatch(ill, mp); 18674 } 18675 18676 void 18677 conn_delete_ire(conn_t *connp, caddr_t arg) 18678 { 18679 ipif_t *ipif = (ipif_t *)arg; 18680 ire_t *ire; 18681 18682 /* 18683 * Look at the cached ires on conns which has pointers to ipifs. 18684 * We just call ire_refrele which clears up the reference 18685 * to ire. Called when a conn closes. Also called from ipif_free 18686 * to cleanup indirect references to the stale ipif via the cached ire. 18687 */ 18688 mutex_enter(&connp->conn_lock); 18689 ire = connp->conn_ire_cache; 18690 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18691 connp->conn_ire_cache = NULL; 18692 mutex_exit(&connp->conn_lock); 18693 IRE_REFRELE_NOTR(ire); 18694 return; 18695 } 18696 mutex_exit(&connp->conn_lock); 18697 18698 } 18699 18700 /* 18701 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18702 * of IREs. Those IREs may have been previously cached in the conn structure. 18703 * This ipcl_walk() walker function releases all references to such IREs based 18704 * on the condemned flag. 18705 */ 18706 /* ARGSUSED */ 18707 void 18708 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18709 { 18710 ire_t *ire; 18711 18712 mutex_enter(&connp->conn_lock); 18713 ire = connp->conn_ire_cache; 18714 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18715 connp->conn_ire_cache = NULL; 18716 mutex_exit(&connp->conn_lock); 18717 IRE_REFRELE_NOTR(ire); 18718 return; 18719 } 18720 mutex_exit(&connp->conn_lock); 18721 } 18722 18723 /* 18724 * Take down a specific interface, but don't lose any information about it. 18725 * Also delete interface from its interface group (ifgrp). 18726 * (Always called as writer.) 18727 * This function goes through the down sequence even if the interface is 18728 * already down. There are 2 reasons. 18729 * a. Currently we permit interface routes that depend on down interfaces 18730 * to be added. This behaviour itself is questionable. However it appears 18731 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18732 * time. We go thru the cleanup in order to remove these routes. 18733 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18734 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18735 * down, but we need to cleanup i.e. do ill_dl_down and 18736 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18737 * 18738 * IP-MT notes: 18739 * 18740 * Model of reference to interfaces. 18741 * 18742 * The following members in ipif_t track references to the ipif. 18743 * int ipif_refcnt; Active reference count 18744 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18745 * The following members in ill_t track references to the ill. 18746 * int ill_refcnt; active refcnt 18747 * uint_t ill_ire_cnt; Number of ires referencing ill 18748 * uint_t ill_nce_cnt; Number of nces referencing ill 18749 * 18750 * Reference to an ipif or ill can be obtained in any of the following ways. 18751 * 18752 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18753 * Pointers to ipif / ill from other data structures viz ire and conn. 18754 * Implicit reference to the ipif / ill by holding a reference to the ire. 18755 * 18756 * The ipif/ill lookup functions return a reference held ipif / ill. 18757 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18758 * This is a purely dynamic reference count associated with threads holding 18759 * references to the ipif / ill. Pointers from other structures do not 18760 * count towards this reference count. 18761 * 18762 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18763 * ipif/ill. This is incremented whenever a new ire is created referencing the 18764 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18765 * actually added to the ire hash table. The count is decremented in 18766 * ire_inactive where the ire is destroyed. 18767 * 18768 * nce's reference ill's thru nce_ill and the count of nce's associated with 18769 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18770 * ndp_add() where the nce is actually added to the table. Similarly it is 18771 * decremented in ndp_inactive where the nce is destroyed. 18772 * 18773 * Flow of ioctls involving interface down/up 18774 * 18775 * The following is the sequence of an attempt to set some critical flags on an 18776 * up interface. 18777 * ip_sioctl_flags 18778 * ipif_down 18779 * wait for ipif to be quiescent 18780 * ipif_down_tail 18781 * ip_sioctl_flags_tail 18782 * 18783 * All set ioctls that involve down/up sequence would have a skeleton similar 18784 * to the above. All the *tail functions are called after the refcounts have 18785 * dropped to the appropriate values. 18786 * 18787 * The mechanism to quiesce an ipif is as follows. 18788 * 18789 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18790 * on the ipif. Callers either pass a flag requesting wait or the lookup 18791 * functions will return NULL. 18792 * 18793 * Delete all ires referencing this ipif 18794 * 18795 * Any thread attempting to do an ipif_refhold on an ipif that has been 18796 * obtained thru a cached pointer will first make sure that 18797 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18798 * increment the refcount. 18799 * 18800 * The above guarantees that the ipif refcount will eventually come down to 18801 * zero and the ipif will quiesce, once all threads that currently hold a 18802 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18803 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18804 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18805 * drop to zero. 18806 * 18807 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18808 * 18809 * Threads trying to lookup an ipif or ill can pass a flag requesting 18810 * wait and restart if the ipif / ill cannot be looked up currently. 18811 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18812 * failure if the ipif is currently undergoing an exclusive operation, and 18813 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18814 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18815 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18816 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18817 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18818 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18819 * until we release the ipsq_lock, even though the the ill/ipif state flags 18820 * can change after we drop the ill_lock. 18821 * 18822 * An attempt to send out a packet using an ipif that is currently 18823 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18824 * operation and restart it later when the exclusive condition on the ipif ends. 18825 * This is an example of not passing the wait flag to the lookup functions. For 18826 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18827 * out a multicast packet on that ipif will fail while the ipif is 18828 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18829 * currently IPIF_CHANGING will also fail. 18830 */ 18831 int 18832 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18833 { 18834 ill_t *ill = ipif->ipif_ill; 18835 phyint_t *phyi; 18836 conn_t *connp; 18837 boolean_t success; 18838 boolean_t ipif_was_up = B_FALSE; 18839 ip_stack_t *ipst = ill->ill_ipst; 18840 18841 ASSERT(IAM_WRITER_IPIF(ipif)); 18842 18843 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18844 18845 if (ipif->ipif_flags & IPIF_UP) { 18846 mutex_enter(&ill->ill_lock); 18847 ipif->ipif_flags &= ~IPIF_UP; 18848 ASSERT(ill->ill_ipif_up_count > 0); 18849 --ill->ill_ipif_up_count; 18850 mutex_exit(&ill->ill_lock); 18851 ipif_was_up = B_TRUE; 18852 /* Update status in SCTP's list */ 18853 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18854 } 18855 18856 /* 18857 * Blow away v6 memberships we established in ipif_multicast_up(); the 18858 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 18859 * know not to rejoin when the interface is brought back up). 18860 */ 18861 if (ipif->ipif_isv6) 18862 ipif_multicast_down(ipif); 18863 /* 18864 * Remove from the mapping for __sin6_src_id. We insert only 18865 * when the address is not INADDR_ANY. As IPv4 addresses are 18866 * stored as mapped addresses, we need to check for mapped 18867 * INADDR_ANY also. 18868 */ 18869 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18870 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18871 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18872 int err; 18873 18874 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18875 ipif->ipif_zoneid, ipst); 18876 if (err != 0) { 18877 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18878 } 18879 } 18880 18881 /* 18882 * Before we delete the ill from the group (if any), we need 18883 * to make sure that we delete all the routes dependent on 18884 * this and also any ipifs dependent on this ipif for 18885 * source address. We need to do before we delete from 18886 * the group because 18887 * 18888 * 1) ipif_down_delete_ire de-references ill->ill_group. 18889 * 18890 * 2) ipif_update_other_ipifs needs to walk the whole group 18891 * for re-doing source address selection. Note that 18892 * ipif_select_source[_v6] called from 18893 * ipif_update_other_ipifs[_v6] will not pick this ipif 18894 * because we have already marked down here i.e cleared 18895 * IPIF_UP. 18896 */ 18897 if (ipif->ipif_isv6) { 18898 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18899 ipst); 18900 } else { 18901 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18902 ipst); 18903 } 18904 18905 /* 18906 * Need to add these also to be saved and restored when the 18907 * ipif is brought down and up 18908 */ 18909 mutex_enter(&ipst->ips_ire_mrtun_lock); 18910 if (ipst->ips_ire_mrtun_count != 0) { 18911 mutex_exit(&ipst->ips_ire_mrtun_lock); 18912 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 18913 (char *)ipif, NULL, ipst); 18914 } else { 18915 mutex_exit(&ipst->ips_ire_mrtun_lock); 18916 } 18917 18918 mutex_enter(&ipst->ips_ire_srcif_table_lock); 18919 if (ipst->ips_ire_srcif_table_count > 0) { 18920 mutex_exit(&ipst->ips_ire_srcif_table_lock); 18921 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif, 18922 ipst); 18923 } else { 18924 mutex_exit(&ipst->ips_ire_srcif_table_lock); 18925 } 18926 18927 /* 18928 * Cleaning up the conn_ire_cache or conns must be done only after the 18929 * ires have been deleted above. Otherwise a thread could end up 18930 * caching an ire in a conn after we have finished the cleanup of the 18931 * conn. The caching is done after making sure that the ire is not yet 18932 * condemned. Also documented in the block comment above ip_output 18933 */ 18934 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18935 /* Also, delete the ires cached in SCTP */ 18936 sctp_ire_cache_flush(ipif); 18937 18938 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 18939 nattymod_clean_ipif(ipif); 18940 18941 /* 18942 * Update any other ipifs which have used "our" local address as 18943 * a source address. This entails removing and recreating IRE_INTERFACE 18944 * entries for such ipifs. 18945 */ 18946 if (ipif->ipif_isv6) 18947 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18948 else 18949 ipif_update_other_ipifs(ipif, ill->ill_group); 18950 18951 if (ipif_was_up) { 18952 /* 18953 * Check whether it is last ipif to leave this group. 18954 * If this is the last ipif to leave, we should remove 18955 * this ill from the group as ipif_select_source will not 18956 * be able to find any useful ipifs if this ill is selected 18957 * for load balancing. 18958 * 18959 * For nameless groups, we should call ifgrp_delete if this 18960 * belongs to some group. As this ipif is going down, we may 18961 * need to reconstruct groups. 18962 */ 18963 phyi = ill->ill_phyint; 18964 /* 18965 * If the phyint_groupname_len is 0, it may or may not 18966 * be in the nameless group. If the phyint_groupname_len is 18967 * not 0, then this ill should be part of some group. 18968 * As we always insert this ill in the group if 18969 * phyint_groupname_len is not zero when the first ipif 18970 * comes up (in ipif_up_done), it should be in a group 18971 * when the namelen is not 0. 18972 * 18973 * NOTE : When we delete the ill from the group,it will 18974 * blow away all the IRE_CACHES pointing either at this ipif or 18975 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18976 * should be pointing at this ill. 18977 */ 18978 ASSERT(phyi->phyint_groupname_len == 0 || 18979 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18980 18981 if (phyi->phyint_groupname_len != 0) { 18982 if (ill->ill_ipif_up_count == 0) 18983 illgrp_delete(ill); 18984 } 18985 18986 /* 18987 * If we have deleted some of the broadcast ires associated 18988 * with this ipif, we need to re-nominate somebody else if 18989 * the ires that we deleted were the nominated ones. 18990 */ 18991 if (ill->ill_group != NULL && !ill->ill_isv6) 18992 ipif_renominate_bcast(ipif); 18993 } 18994 18995 /* 18996 * neighbor-discovery or arp entries for this interface. 18997 */ 18998 ipif_ndp_down(ipif); 18999 19000 /* 19001 * If mp is NULL the caller will wait for the appropriate refcnt. 19002 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 19003 * and ill_delete -> ipif_free -> ipif_down 19004 */ 19005 if (mp == NULL) { 19006 ASSERT(q == NULL); 19007 return (0); 19008 } 19009 19010 if (CONN_Q(q)) { 19011 connp = Q_TO_CONN(q); 19012 mutex_enter(&connp->conn_lock); 19013 } else { 19014 connp = NULL; 19015 } 19016 mutex_enter(&ill->ill_lock); 19017 /* 19018 * Are there any ire's pointing to this ipif that are still active ? 19019 * If this is the last ipif going down, are there any ire's pointing 19020 * to this ill that are still active ? 19021 */ 19022 if (ipif_is_quiescent(ipif)) { 19023 mutex_exit(&ill->ill_lock); 19024 if (connp != NULL) 19025 mutex_exit(&connp->conn_lock); 19026 return (0); 19027 } 19028 19029 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 19030 ill->ill_name, (void *)ill)); 19031 /* 19032 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 19033 * drops down, the operation will be restarted by ipif_ill_refrele_tail 19034 * which in turn is called by the last refrele on the ipif/ill/ire. 19035 */ 19036 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 19037 if (!success) { 19038 /* The conn is closing. So just return */ 19039 ASSERT(connp != NULL); 19040 mutex_exit(&ill->ill_lock); 19041 mutex_exit(&connp->conn_lock); 19042 return (EINTR); 19043 } 19044 19045 mutex_exit(&ill->ill_lock); 19046 if (connp != NULL) 19047 mutex_exit(&connp->conn_lock); 19048 return (EINPROGRESS); 19049 } 19050 19051 void 19052 ipif_down_tail(ipif_t *ipif) 19053 { 19054 ill_t *ill = ipif->ipif_ill; 19055 19056 /* 19057 * Skip any loopback interface (null wq). 19058 * If this is the last logical interface on the ill 19059 * have ill_dl_down tell the driver we are gone (unbind) 19060 * Note that lun 0 can ipif_down even though 19061 * there are other logical units that are up. 19062 * This occurs e.g. when we change a "significant" IFF_ flag. 19063 */ 19064 if (ill->ill_wq != NULL && !ill->ill_logical_down && 19065 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 19066 ill->ill_dl_up) { 19067 ill_dl_down(ill); 19068 } 19069 ill->ill_logical_down = 0; 19070 19071 /* 19072 * Have to be after removing the routes in ipif_down_delete_ire. 19073 */ 19074 if (ipif->ipif_isv6) { 19075 if (ill->ill_flags & ILLF_XRESOLV) 19076 ipif_arp_down(ipif); 19077 } else { 19078 ipif_arp_down(ipif); 19079 } 19080 19081 ip_rts_ifmsg(ipif); 19082 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 19083 } 19084 19085 /* 19086 * Bring interface logically down without bringing the physical interface 19087 * down e.g. when the netmask is changed. This avoids long lasting link 19088 * negotiations between an ethernet interface and a certain switches. 19089 */ 19090 static int 19091 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 19092 { 19093 /* 19094 * The ill_logical_down flag is a transient flag. It is set here 19095 * and is cleared once the down has completed in ipif_down_tail. 19096 * This flag does not indicate whether the ill stream is in the 19097 * DL_BOUND state with the driver. Instead this flag is used by 19098 * ipif_down_tail to determine whether to DL_UNBIND the stream with 19099 * the driver. The state of the ill stream i.e. whether it is 19100 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 19101 */ 19102 ipif->ipif_ill->ill_logical_down = 1; 19103 return (ipif_down(ipif, q, mp)); 19104 } 19105 19106 /* 19107 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 19108 * If the usesrc client ILL is already part of a usesrc group or not, 19109 * in either case a ire_stq with the matching usesrc client ILL will 19110 * locate the IRE's that need to be deleted. We want IREs to be created 19111 * with the new source address. 19112 */ 19113 static void 19114 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 19115 { 19116 ill_t *ucill = (ill_t *)ill_arg; 19117 19118 ASSERT(IAM_WRITER_ILL(ucill)); 19119 19120 if (ire->ire_stq == NULL) 19121 return; 19122 19123 if ((ire->ire_type == IRE_CACHE) && 19124 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 19125 ire_delete(ire); 19126 } 19127 19128 /* 19129 * ire_walk routine to delete every IRE dependent on the interface 19130 * address that is going down. (Always called as writer.) 19131 * Works for both v4 and v6. 19132 * In addition for checking for ire_ipif matches it also checks for 19133 * IRE_CACHE entries which have the same source address as the 19134 * disappearing ipif since ipif_select_source might have picked 19135 * that source. Note that ipif_down/ipif_update_other_ipifs takes 19136 * care of any IRE_INTERFACE with the disappearing source address. 19137 */ 19138 static void 19139 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 19140 { 19141 ipif_t *ipif = (ipif_t *)ipif_arg; 19142 ill_t *ire_ill; 19143 ill_t *ipif_ill; 19144 19145 ASSERT(IAM_WRITER_IPIF(ipif)); 19146 if (ire->ire_ipif == NULL) 19147 return; 19148 19149 /* 19150 * For IPv4, we derive source addresses for an IRE from ipif's 19151 * belonging to the same IPMP group as the IRE's outgoing 19152 * interface. If an IRE's outgoing interface isn't in the 19153 * same IPMP group as a particular ipif, then that ipif 19154 * couldn't have been used as a source address for this IRE. 19155 * 19156 * For IPv6, source addresses are only restricted to the IPMP group 19157 * if the IRE is for a link-local address or a multicast address. 19158 * Otherwise, source addresses for an IRE can be chosen from 19159 * interfaces other than the the outgoing interface for that IRE. 19160 * 19161 * For source address selection details, see ipif_select_source() 19162 * and ipif_select_source_v6(). 19163 */ 19164 if (ire->ire_ipversion == IPV4_VERSION || 19165 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 19166 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 19167 ire_ill = ire->ire_ipif->ipif_ill; 19168 ipif_ill = ipif->ipif_ill; 19169 19170 if (ire_ill->ill_group != ipif_ill->ill_group) { 19171 return; 19172 } 19173 } 19174 19175 19176 if (ire->ire_ipif != ipif) { 19177 /* 19178 * Look for a matching source address. 19179 */ 19180 if (ire->ire_type != IRE_CACHE) 19181 return; 19182 if (ipif->ipif_flags & IPIF_NOLOCAL) 19183 return; 19184 19185 if (ire->ire_ipversion == IPV4_VERSION) { 19186 if (ire->ire_src_addr != ipif->ipif_src_addr) 19187 return; 19188 } else { 19189 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 19190 &ipif->ipif_v6lcl_addr)) 19191 return; 19192 } 19193 ire_delete(ire); 19194 return; 19195 } 19196 /* 19197 * ire_delete() will do an ire_flush_cache which will delete 19198 * all ire_ipif matches 19199 */ 19200 ire_delete(ire); 19201 } 19202 19203 /* 19204 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 19205 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 19206 * 2) when an interface is brought up or down (on that ill). 19207 * This ensures that the IRE_CACHE entries don't retain stale source 19208 * address selection results. 19209 */ 19210 void 19211 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 19212 { 19213 ill_t *ill = (ill_t *)ill_arg; 19214 ill_t *ipif_ill; 19215 19216 ASSERT(IAM_WRITER_ILL(ill)); 19217 /* 19218 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19219 * Hence this should be IRE_CACHE. 19220 */ 19221 ASSERT(ire->ire_type == IRE_CACHE); 19222 19223 /* 19224 * We are called for IRE_CACHES whose ire_ipif matches ill. 19225 * We are only interested in IRE_CACHES that has borrowed 19226 * the source address from ill_arg e.g. ipif_up_done[_v6] 19227 * for which we need to look at ire_ipif->ipif_ill match 19228 * with ill. 19229 */ 19230 ASSERT(ire->ire_ipif != NULL); 19231 ipif_ill = ire->ire_ipif->ipif_ill; 19232 if (ipif_ill == ill || (ill->ill_group != NULL && 19233 ipif_ill->ill_group == ill->ill_group)) { 19234 ire_delete(ire); 19235 } 19236 } 19237 19238 /* 19239 * Delete all the ire whose stq references ill_arg. 19240 */ 19241 static void 19242 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 19243 { 19244 ill_t *ill = (ill_t *)ill_arg; 19245 ill_t *ire_ill; 19246 19247 ASSERT(IAM_WRITER_ILL(ill)); 19248 /* 19249 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19250 * Hence this should be IRE_CACHE. 19251 */ 19252 ASSERT(ire->ire_type == IRE_CACHE); 19253 19254 /* 19255 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19256 * matches ill. We are only interested in IRE_CACHES that 19257 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 19258 * filtering here. 19259 */ 19260 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 19261 19262 if (ire_ill == ill) 19263 ire_delete(ire); 19264 } 19265 19266 /* 19267 * This is called when an ill leaves the group. We want to delete 19268 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 19269 * pointing at ill. 19270 */ 19271 static void 19272 illgrp_cache_delete(ire_t *ire, char *ill_arg) 19273 { 19274 ill_t *ill = (ill_t *)ill_arg; 19275 19276 ASSERT(IAM_WRITER_ILL(ill)); 19277 ASSERT(ill->ill_group == NULL); 19278 /* 19279 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19280 * Hence this should be IRE_CACHE. 19281 */ 19282 ASSERT(ire->ire_type == IRE_CACHE); 19283 /* 19284 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19285 * matches ill. We are interested in both. 19286 */ 19287 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19288 (ire->ire_ipif->ipif_ill == ill)); 19289 19290 ire_delete(ire); 19291 } 19292 19293 /* 19294 * Initiate deallocate of an IPIF. Always called as writer. Called by 19295 * ill_delete or ip_sioctl_removeif. 19296 */ 19297 static void 19298 ipif_free(ipif_t *ipif) 19299 { 19300 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19301 19302 ASSERT(IAM_WRITER_IPIF(ipif)); 19303 19304 if (ipif->ipif_recovery_id != 0) 19305 (void) untimeout(ipif->ipif_recovery_id); 19306 ipif->ipif_recovery_id = 0; 19307 19308 /* Remove conn references */ 19309 reset_conn_ipif(ipif); 19310 19311 /* 19312 * Make sure we have valid net and subnet broadcast ire's for the 19313 * other ipif's which share them with this ipif. 19314 */ 19315 if (!ipif->ipif_isv6) 19316 ipif_check_bcast_ires(ipif); 19317 19318 /* 19319 * Take down the interface. We can be called either from ill_delete 19320 * or from ip_sioctl_removeif. 19321 */ 19322 (void) ipif_down(ipif, NULL, NULL); 19323 19324 /* 19325 * Now that the interface is down, there's no chance it can still 19326 * become a duplicate. Cancel any timer that may have been set while 19327 * tearing down. 19328 */ 19329 if (ipif->ipif_recovery_id != 0) 19330 (void) untimeout(ipif->ipif_recovery_id); 19331 ipif->ipif_recovery_id = 0; 19332 19333 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19334 /* Remove pointers to this ill in the multicast routing tables */ 19335 reset_mrt_vif_ipif(ipif); 19336 rw_exit(&ipst->ips_ill_g_lock); 19337 } 19338 19339 /* 19340 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19341 * also ill_move(). 19342 */ 19343 static void 19344 ipif_free_tail(ipif_t *ipif) 19345 { 19346 mblk_t *mp; 19347 ipif_t **ipifp; 19348 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19349 19350 /* 19351 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19352 */ 19353 mutex_enter(&ipif->ipif_saved_ire_lock); 19354 mp = ipif->ipif_saved_ire_mp; 19355 ipif->ipif_saved_ire_mp = NULL; 19356 mutex_exit(&ipif->ipif_saved_ire_lock); 19357 freemsg(mp); 19358 19359 /* 19360 * Need to hold both ill_g_lock and ill_lock while 19361 * inserting or removing an ipif from the linked list 19362 * of ipifs hanging off the ill. 19363 */ 19364 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19365 /* 19366 * Remove all multicast memberships on the interface now. 19367 * This removes IPv4 multicast memberships joined within 19368 * the kernel as ipif_down does not do ipif_multicast_down 19369 * for IPv4. IPv6 is not handled here as the multicast memberships 19370 * are based on ill and not on ipif. 19371 */ 19372 ilm_free(ipif); 19373 19374 /* 19375 * Since we held the ill_g_lock while doing the ilm_free above, 19376 * we can assert the ilms were really deleted and not just marked 19377 * ILM_DELETED. 19378 */ 19379 ASSERT(ilm_walk_ipif(ipif) == 0); 19380 19381 19382 IPIF_TRACE_CLEANUP(ipif); 19383 19384 /* Ask SCTP to take it out of it list */ 19385 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19386 19387 mutex_enter(&ipif->ipif_ill->ill_lock); 19388 /* Get it out of the ILL interface list. */ 19389 ipifp = &ipif->ipif_ill->ill_ipif; 19390 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 19391 if (*ipifp == ipif) { 19392 *ipifp = ipif->ipif_next; 19393 break; 19394 } 19395 } 19396 19397 mutex_exit(&ipif->ipif_ill->ill_lock); 19398 rw_exit(&ipst->ips_ill_g_lock); 19399 19400 mutex_destroy(&ipif->ipif_saved_ire_lock); 19401 19402 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19403 ASSERT(ipif->ipif_recovery_id == 0); 19404 19405 /* Free the memory. */ 19406 mi_free((char *)ipif); 19407 } 19408 19409 /* 19410 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 19411 * "ill_name" otherwise. 19412 */ 19413 char * 19414 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19415 { 19416 char lbuf[32]; 19417 char *name; 19418 size_t name_len; 19419 19420 buf[0] = '\0'; 19421 if (!ipif) 19422 return (buf); 19423 name = ipif->ipif_ill->ill_name; 19424 name_len = ipif->ipif_ill->ill_name_length; 19425 if (ipif->ipif_id != 0) { 19426 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19427 ipif->ipif_id); 19428 name = lbuf; 19429 name_len = mi_strlen(name) + 1; 19430 } 19431 len -= 1; 19432 buf[len] = '\0'; 19433 len = MIN(len, name_len); 19434 bcopy(name, buf, len); 19435 return (buf); 19436 } 19437 19438 /* 19439 * Find an IPIF based on the name passed in. Names can be of the 19440 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19441 * The <phys> string can have forms like <dev><#> (e.g., le0), 19442 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19443 * When there is no colon, the implied unit id is zero. <phys> must 19444 * correspond to the name of an ILL. (May be called as writer.) 19445 */ 19446 static ipif_t * 19447 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19448 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19449 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19450 { 19451 char *cp; 19452 char *endp; 19453 long id; 19454 ill_t *ill; 19455 ipif_t *ipif; 19456 uint_t ire_type; 19457 boolean_t did_alloc = B_FALSE; 19458 ipsq_t *ipsq; 19459 19460 if (error != NULL) 19461 *error = 0; 19462 19463 /* 19464 * If the caller wants to us to create the ipif, make sure we have a 19465 * valid zoneid 19466 */ 19467 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19468 19469 if (namelen == 0) { 19470 if (error != NULL) 19471 *error = ENXIO; 19472 return (NULL); 19473 } 19474 19475 *exists = B_FALSE; 19476 /* Look for a colon in the name. */ 19477 endp = &name[namelen]; 19478 for (cp = endp; --cp > name; ) { 19479 if (*cp == IPIF_SEPARATOR_CHAR) 19480 break; 19481 } 19482 19483 if (*cp == IPIF_SEPARATOR_CHAR) { 19484 /* 19485 * Reject any non-decimal aliases for logical 19486 * interfaces. Aliases with leading zeroes 19487 * are also rejected as they introduce ambiguity 19488 * in the naming of the interfaces. 19489 * In order to confirm with existing semantics, 19490 * and to not break any programs/script relying 19491 * on that behaviour, if<0>:0 is considered to be 19492 * a valid interface. 19493 * 19494 * If alias has two or more digits and the first 19495 * is zero, fail. 19496 */ 19497 if (&cp[2] < endp && cp[1] == '0') 19498 return (NULL); 19499 } 19500 19501 if (cp <= name) { 19502 cp = endp; 19503 } else { 19504 *cp = '\0'; 19505 } 19506 19507 /* 19508 * Look up the ILL, based on the portion of the name 19509 * before the slash. ill_lookup_on_name returns a held ill. 19510 * Temporary to check whether ill exists already. If so 19511 * ill_lookup_on_name will clear it. 19512 */ 19513 ill = ill_lookup_on_name(name, do_alloc, isv6, 19514 q, mp, func, error, &did_alloc, ipst); 19515 if (cp != endp) 19516 *cp = IPIF_SEPARATOR_CHAR; 19517 if (ill == NULL) 19518 return (NULL); 19519 19520 /* Establish the unit number in the name. */ 19521 id = 0; 19522 if (cp < endp && *endp == '\0') { 19523 /* If there was a colon, the unit number follows. */ 19524 cp++; 19525 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19526 ill_refrele(ill); 19527 if (error != NULL) 19528 *error = ENXIO; 19529 return (NULL); 19530 } 19531 } 19532 19533 GRAB_CONN_LOCK(q); 19534 mutex_enter(&ill->ill_lock); 19535 /* Now see if there is an IPIF with this unit number. */ 19536 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19537 if (ipif->ipif_id == id) { 19538 if (zoneid != ALL_ZONES && 19539 zoneid != ipif->ipif_zoneid && 19540 ipif->ipif_zoneid != ALL_ZONES) { 19541 mutex_exit(&ill->ill_lock); 19542 RELEASE_CONN_LOCK(q); 19543 ill_refrele(ill); 19544 if (error != NULL) 19545 *error = ENXIO; 19546 return (NULL); 19547 } 19548 /* 19549 * The block comment at the start of ipif_down 19550 * explains the use of the macros used below 19551 */ 19552 if (IPIF_CAN_LOOKUP(ipif)) { 19553 ipif_refhold_locked(ipif); 19554 mutex_exit(&ill->ill_lock); 19555 if (!did_alloc) 19556 *exists = B_TRUE; 19557 /* 19558 * Drop locks before calling ill_refrele 19559 * since it can potentially call into 19560 * ipif_ill_refrele_tail which can end up 19561 * in trying to acquire any lock. 19562 */ 19563 RELEASE_CONN_LOCK(q); 19564 ill_refrele(ill); 19565 return (ipif); 19566 } else if (IPIF_CAN_WAIT(ipif, q)) { 19567 ipsq = ill->ill_phyint->phyint_ipsq; 19568 mutex_enter(&ipsq->ipsq_lock); 19569 mutex_exit(&ill->ill_lock); 19570 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19571 mutex_exit(&ipsq->ipsq_lock); 19572 RELEASE_CONN_LOCK(q); 19573 ill_refrele(ill); 19574 *error = EINPROGRESS; 19575 return (NULL); 19576 } 19577 } 19578 } 19579 RELEASE_CONN_LOCK(q); 19580 19581 if (!do_alloc) { 19582 mutex_exit(&ill->ill_lock); 19583 ill_refrele(ill); 19584 if (error != NULL) 19585 *error = ENXIO; 19586 return (NULL); 19587 } 19588 19589 /* 19590 * If none found, atomically allocate and return a new one. 19591 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19592 * to support "receive only" use of lo0:1 etc. as is still done 19593 * below as an initial guess. 19594 * However, this is now likely to be overriden later in ipif_up_done() 19595 * when we know for sure what address has been configured on the 19596 * interface, since we might have more than one loopback interface 19597 * with a loopback address, e.g. in the case of zones, and all the 19598 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19599 */ 19600 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19601 ire_type = IRE_LOOPBACK; 19602 else 19603 ire_type = IRE_LOCAL; 19604 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19605 if (ipif != NULL) 19606 ipif_refhold_locked(ipif); 19607 else if (error != NULL) 19608 *error = ENOMEM; 19609 mutex_exit(&ill->ill_lock); 19610 ill_refrele(ill); 19611 return (ipif); 19612 } 19613 19614 /* 19615 * This routine is called whenever a new address comes up on an ipif. If 19616 * we are configured to respond to address mask requests, then we are supposed 19617 * to broadcast an address mask reply at this time. This routine is also 19618 * called if we are already up, but a netmask change is made. This is legal 19619 * but might not make the system manager very popular. (May be called 19620 * as writer.) 19621 */ 19622 void 19623 ipif_mask_reply(ipif_t *ipif) 19624 { 19625 icmph_t *icmph; 19626 ipha_t *ipha; 19627 mblk_t *mp; 19628 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19629 19630 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19631 19632 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19633 return; 19634 19635 /* ICMP mask reply is IPv4 only */ 19636 ASSERT(!ipif->ipif_isv6); 19637 /* ICMP mask reply is not for a loopback interface */ 19638 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19639 19640 mp = allocb(REPLY_LEN, BPRI_HI); 19641 if (mp == NULL) 19642 return; 19643 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19644 19645 ipha = (ipha_t *)mp->b_rptr; 19646 bzero(ipha, REPLY_LEN); 19647 *ipha = icmp_ipha; 19648 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19649 ipha->ipha_src = ipif->ipif_src_addr; 19650 ipha->ipha_dst = ipif->ipif_brd_addr; 19651 ipha->ipha_length = htons(REPLY_LEN); 19652 ipha->ipha_ident = 0; 19653 19654 icmph = (icmph_t *)&ipha[1]; 19655 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19656 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19657 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19658 19659 put(ipif->ipif_wq, mp); 19660 19661 #undef REPLY_LEN 19662 } 19663 19664 /* 19665 * When the mtu in the ipif changes, we call this routine through ire_walk 19666 * to update all the relevant IREs. 19667 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19668 */ 19669 static void 19670 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19671 { 19672 ipif_t *ipif = (ipif_t *)ipif_arg; 19673 19674 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19675 return; 19676 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19677 } 19678 19679 /* 19680 * When the mtu in the ill changes, we call this routine through ire_walk 19681 * to update all the relevant IREs. 19682 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19683 */ 19684 void 19685 ill_mtu_change(ire_t *ire, char *ill_arg) 19686 { 19687 ill_t *ill = (ill_t *)ill_arg; 19688 19689 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19690 return; 19691 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19692 } 19693 19694 /* 19695 * Join the ipif specific multicast groups. 19696 * Must be called after a mapping has been set up in the resolver. (Always 19697 * called as writer.) 19698 */ 19699 void 19700 ipif_multicast_up(ipif_t *ipif) 19701 { 19702 int err, index; 19703 ill_t *ill; 19704 19705 ASSERT(IAM_WRITER_IPIF(ipif)); 19706 19707 ill = ipif->ipif_ill; 19708 index = ill->ill_phyint->phyint_ifindex; 19709 19710 ip1dbg(("ipif_multicast_up\n")); 19711 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19712 return; 19713 19714 if (ipif->ipif_isv6) { 19715 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19716 return; 19717 19718 /* Join the all hosts multicast address */ 19719 ip1dbg(("ipif_multicast_up - addmulti\n")); 19720 /* 19721 * Passing B_TRUE means we have to join the multicast 19722 * membership on this interface even though this is 19723 * FAILED. If we join on a different one in the group, 19724 * we will not be able to delete the membership later 19725 * as we currently don't track where we join when we 19726 * join within the kernel unlike applications where 19727 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19728 * for more on this. 19729 */ 19730 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19731 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19732 if (err != 0) { 19733 ip0dbg(("ipif_multicast_up: " 19734 "all_hosts_mcast failed %d\n", 19735 err)); 19736 return; 19737 } 19738 /* 19739 * Enable multicast for the solicited node multicast address 19740 */ 19741 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19742 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19743 19744 ipv6_multi.s6_addr32[3] |= 19745 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19746 19747 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19748 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19749 NULL); 19750 if (err != 0) { 19751 ip0dbg(("ipif_multicast_up: solicited MC" 19752 " failed %d\n", err)); 19753 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19754 ill, ill->ill_phyint->phyint_ifindex, 19755 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19756 return; 19757 } 19758 } 19759 } else { 19760 if (ipif->ipif_lcl_addr == INADDR_ANY) 19761 return; 19762 19763 /* Join the all hosts multicast address */ 19764 ip1dbg(("ipif_multicast_up - addmulti\n")); 19765 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19766 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19767 if (err) { 19768 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19769 return; 19770 } 19771 } 19772 ipif->ipif_multicast_up = 1; 19773 } 19774 19775 /* 19776 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 19777 * any explicit memberships are blown away in ill_leave_multicast() when the 19778 * ill is brought down. 19779 */ 19780 static void 19781 ipif_multicast_down(ipif_t *ipif) 19782 { 19783 int err; 19784 19785 ASSERT(IAM_WRITER_IPIF(ipif)); 19786 19787 ip1dbg(("ipif_multicast_down\n")); 19788 if (!ipif->ipif_multicast_up) 19789 return; 19790 19791 ASSERT(ipif->ipif_isv6); 19792 19793 ip1dbg(("ipif_multicast_down - delmulti\n")); 19794 19795 /* 19796 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19797 * we should look for ilms on this ill rather than the ones that have 19798 * been failed over here. They are here temporarily. As 19799 * ipif_multicast_up has joined on this ill, we should delete only 19800 * from this ill. 19801 */ 19802 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19803 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19804 B_TRUE, B_TRUE); 19805 if (err != 0) { 19806 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19807 err)); 19808 } 19809 /* 19810 * Disable multicast for the solicited node multicast address 19811 */ 19812 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19813 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19814 19815 ipv6_multi.s6_addr32[3] |= 19816 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19817 19818 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19819 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19820 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19821 19822 if (err != 0) { 19823 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19824 err)); 19825 } 19826 } 19827 19828 ipif->ipif_multicast_up = 0; 19829 } 19830 19831 /* 19832 * Used when an interface comes up to recreate any extra routes on this 19833 * interface. 19834 */ 19835 static ire_t ** 19836 ipif_recover_ire(ipif_t *ipif) 19837 { 19838 mblk_t *mp; 19839 ire_t **ipif_saved_irep; 19840 ire_t **irep; 19841 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19842 19843 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19844 ipif->ipif_id)); 19845 19846 mutex_enter(&ipif->ipif_saved_ire_lock); 19847 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19848 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19849 if (ipif_saved_irep == NULL) { 19850 mutex_exit(&ipif->ipif_saved_ire_lock); 19851 return (NULL); 19852 } 19853 19854 irep = ipif_saved_irep; 19855 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19856 ire_t *ire; 19857 queue_t *rfq; 19858 queue_t *stq; 19859 ifrt_t *ifrt; 19860 uchar_t *src_addr; 19861 uchar_t *gateway_addr; 19862 mblk_t *resolver_mp; 19863 ushort_t type; 19864 19865 /* 19866 * When the ire was initially created and then added in 19867 * ip_rt_add(), it was created either using ipif->ipif_net_type 19868 * in the case of a traditional interface route, or as one of 19869 * the IRE_OFFSUBNET types (with the exception of 19870 * IRE_HOST types ire which is created by icmp_redirect() and 19871 * which we don't need to save or recover). In the case where 19872 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19873 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19874 * to satisfy software like GateD and Sun Cluster which creates 19875 * routes using the the loopback interface's address as a 19876 * gateway. 19877 * 19878 * As ifrt->ifrt_type reflects the already updated ire_type and 19879 * since ire_create() expects that IRE_IF_NORESOLVER will have 19880 * a valid nce_res_mp field (which doesn't make sense for a 19881 * IRE_LOOPBACK), ire_create() will be called in the same way 19882 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 19883 * the route looks like a traditional interface route (where 19884 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19885 * the saved ifrt->ifrt_type. This means that in the case where 19886 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19887 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19888 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19889 */ 19890 ifrt = (ifrt_t *)mp->b_rptr; 19891 if (ifrt->ifrt_type & IRE_INTERFACE) { 19892 rfq = NULL; 19893 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19894 ? ipif->ipif_rq : ipif->ipif_wq; 19895 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19896 ? (uint8_t *)&ifrt->ifrt_src_addr 19897 : (uint8_t *)&ipif->ipif_src_addr; 19898 gateway_addr = NULL; 19899 resolver_mp = ipif->ipif_resolver_mp; 19900 type = ipif->ipif_net_type; 19901 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19902 /* Recover multiroute broadcast IRE. */ 19903 rfq = ipif->ipif_rq; 19904 stq = ipif->ipif_wq; 19905 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19906 ? (uint8_t *)&ifrt->ifrt_src_addr 19907 : (uint8_t *)&ipif->ipif_src_addr; 19908 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19909 resolver_mp = ipif->ipif_bcast_mp; 19910 type = ifrt->ifrt_type; 19911 } else { 19912 rfq = NULL; 19913 stq = NULL; 19914 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19915 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19916 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19917 resolver_mp = NULL; 19918 type = ifrt->ifrt_type; 19919 } 19920 19921 /* 19922 * Create a copy of the IRE with the saved address and netmask. 19923 */ 19924 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19925 "0x%x/0x%x\n", 19926 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19927 ntohl(ifrt->ifrt_addr), 19928 ntohl(ifrt->ifrt_mask))); 19929 ire = ire_create( 19930 (uint8_t *)&ifrt->ifrt_addr, 19931 (uint8_t *)&ifrt->ifrt_mask, 19932 src_addr, 19933 gateway_addr, 19934 NULL, 19935 &ifrt->ifrt_max_frag, 19936 NULL, 19937 rfq, 19938 stq, 19939 type, 19940 resolver_mp, 19941 ipif, 19942 NULL, 19943 0, 19944 0, 19945 0, 19946 ifrt->ifrt_flags, 19947 &ifrt->ifrt_iulp_info, 19948 NULL, 19949 NULL, 19950 ipst); 19951 19952 if (ire == NULL) { 19953 mutex_exit(&ipif->ipif_saved_ire_lock); 19954 kmem_free(ipif_saved_irep, 19955 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19956 return (NULL); 19957 } 19958 19959 /* 19960 * Some software (for example, GateD and Sun Cluster) attempts 19961 * to create (what amount to) IRE_PREFIX routes with the 19962 * loopback address as the gateway. This is primarily done to 19963 * set up prefixes with the RTF_REJECT flag set (for example, 19964 * when generating aggregate routes.) 19965 * 19966 * If the IRE type (as defined by ipif->ipif_net_type) is 19967 * IRE_LOOPBACK, then we map the request into a 19968 * IRE_IF_NORESOLVER. 19969 */ 19970 if (ipif->ipif_net_type == IRE_LOOPBACK) 19971 ire->ire_type = IRE_IF_NORESOLVER; 19972 /* 19973 * ire held by ire_add, will be refreled' towards the 19974 * the end of ipif_up_done 19975 */ 19976 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19977 *irep = ire; 19978 irep++; 19979 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19980 } 19981 mutex_exit(&ipif->ipif_saved_ire_lock); 19982 return (ipif_saved_irep); 19983 } 19984 19985 /* 19986 * Used to set the netmask and broadcast address to default values when the 19987 * interface is brought up. (Always called as writer.) 19988 */ 19989 static void 19990 ipif_set_default(ipif_t *ipif) 19991 { 19992 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19993 19994 if (!ipif->ipif_isv6) { 19995 /* 19996 * Interface holds an IPv4 address. Default 19997 * mask is the natural netmask. 19998 */ 19999 if (!ipif->ipif_net_mask) { 20000 ipaddr_t v4mask; 20001 20002 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 20003 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 20004 } 20005 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20006 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20007 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 20008 } else { 20009 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 20010 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 20011 } 20012 /* 20013 * NOTE: SunOS 4.X does this even if the broadcast address 20014 * has been already set thus we do the same here. 20015 */ 20016 if (ipif->ipif_flags & IPIF_BROADCAST) { 20017 ipaddr_t v4addr; 20018 20019 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 20020 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 20021 } 20022 } else { 20023 /* 20024 * Interface holds an IPv6-only address. Default 20025 * mask is all-ones. 20026 */ 20027 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 20028 ipif->ipif_v6net_mask = ipv6_all_ones; 20029 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20030 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20031 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 20032 } else { 20033 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 20034 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 20035 } 20036 } 20037 } 20038 20039 /* 20040 * Return 0 if this address can be used as local address without causing 20041 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 20042 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 20043 * Special checks are needed to allow the same IPv6 link-local address 20044 * on different ills. 20045 * TODO: allowing the same site-local address on different ill's. 20046 */ 20047 int 20048 ip_addr_availability_check(ipif_t *new_ipif) 20049 { 20050 in6_addr_t our_v6addr; 20051 ill_t *ill; 20052 ipif_t *ipif; 20053 ill_walk_context_t ctx; 20054 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 20055 20056 ASSERT(IAM_WRITER_IPIF(new_ipif)); 20057 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 20058 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 20059 20060 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 20061 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 20062 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 20063 return (0); 20064 20065 our_v6addr = new_ipif->ipif_v6lcl_addr; 20066 20067 if (new_ipif->ipif_isv6) 20068 ill = ILL_START_WALK_V6(&ctx, ipst); 20069 else 20070 ill = ILL_START_WALK_V4(&ctx, ipst); 20071 20072 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 20073 for (ipif = ill->ill_ipif; ipif != NULL; 20074 ipif = ipif->ipif_next) { 20075 if ((ipif == new_ipif) || 20076 !(ipif->ipif_flags & IPIF_UP) || 20077 (ipif->ipif_flags & IPIF_UNNUMBERED)) 20078 continue; 20079 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 20080 &our_v6addr)) { 20081 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 20082 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 20083 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 20084 ipif->ipif_flags |= IPIF_UNNUMBERED; 20085 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 20086 new_ipif->ipif_ill != ill) 20087 continue; 20088 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 20089 new_ipif->ipif_ill != ill) 20090 continue; 20091 else if (new_ipif->ipif_zoneid != 20092 ipif->ipif_zoneid && 20093 ipif->ipif_zoneid != ALL_ZONES && 20094 (ill->ill_phyint->phyint_flags & 20095 PHYI_LOOPBACK)) 20096 continue; 20097 else if (new_ipif->ipif_ill == ill) 20098 return (EADDRINUSE); 20099 else 20100 return (EADDRNOTAVAIL); 20101 } 20102 } 20103 } 20104 20105 return (0); 20106 } 20107 20108 /* 20109 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 20110 * IREs for the ipif. 20111 * When the routine returns EINPROGRESS then mp has been consumed and 20112 * the ioctl will be acked from ip_rput_dlpi. 20113 */ 20114 static int 20115 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 20116 { 20117 ill_t *ill = ipif->ipif_ill; 20118 boolean_t isv6 = ipif->ipif_isv6; 20119 int err = 0; 20120 boolean_t success; 20121 20122 ASSERT(IAM_WRITER_IPIF(ipif)); 20123 20124 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 20125 20126 /* Shouldn't get here if it is already up. */ 20127 if (ipif->ipif_flags & IPIF_UP) 20128 return (EALREADY); 20129 20130 /* Skip arp/ndp for any loopback interface. */ 20131 if (ill->ill_wq != NULL) { 20132 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 20133 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 20134 20135 if (!ill->ill_dl_up) { 20136 /* 20137 * ill_dl_up is not yet set. i.e. we are yet to 20138 * DL_BIND with the driver and this is the first 20139 * logical interface on the ill to become "up". 20140 * Tell the driver to get going (via DL_BIND_REQ). 20141 * Note that changing "significant" IFF_ flags 20142 * address/netmask etc cause a down/up dance, but 20143 * does not cause an unbind (DL_UNBIND) with the driver 20144 */ 20145 return (ill_dl_up(ill, ipif, mp, q)); 20146 } 20147 20148 /* 20149 * ipif_resolver_up may end up sending an 20150 * AR_INTERFACE_UP message to ARP, which would, in 20151 * turn send a DLPI message to the driver. ioctls are 20152 * serialized and so we cannot send more than one 20153 * interface up message at a time. If ipif_resolver_up 20154 * does send an interface up message to ARP, we get 20155 * EINPROGRESS and we will complete in ip_arp_done. 20156 */ 20157 20158 ASSERT(connp != NULL || !CONN_Q(q)); 20159 ASSERT(ipsq->ipsq_pending_mp == NULL); 20160 if (connp != NULL) 20161 mutex_enter(&connp->conn_lock); 20162 mutex_enter(&ill->ill_lock); 20163 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20164 mutex_exit(&ill->ill_lock); 20165 if (connp != NULL) 20166 mutex_exit(&connp->conn_lock); 20167 if (!success) 20168 return (EINTR); 20169 20170 /* 20171 * Crank up IPv6 neighbor discovery 20172 * Unlike ARP, this should complete when 20173 * ipif_ndp_up returns. However, for 20174 * ILLF_XRESOLV interfaces we also send a 20175 * AR_INTERFACE_UP to the external resolver. 20176 * That ioctl will complete in ip_rput. 20177 */ 20178 if (isv6) { 20179 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 20180 if (err != 0) { 20181 if (err != EINPROGRESS) 20182 mp = ipsq_pending_mp_get(ipsq, &connp); 20183 return (err); 20184 } 20185 } 20186 /* Now, ARP */ 20187 err = ipif_resolver_up(ipif, Res_act_initial); 20188 if (err == EINPROGRESS) { 20189 /* We will complete it in ip_arp_done */ 20190 return (err); 20191 } 20192 mp = ipsq_pending_mp_get(ipsq, &connp); 20193 ASSERT(mp != NULL); 20194 if (err != 0) 20195 return (err); 20196 } else { 20197 /* 20198 * Interfaces without underlying hardware don't do duplicate 20199 * address detection. 20200 */ 20201 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 20202 ipif->ipif_addr_ready = 1; 20203 } 20204 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 20205 } 20206 20207 /* 20208 * Perform a bind for the physical device. 20209 * When the routine returns EINPROGRESS then mp has been consumed and 20210 * the ioctl will be acked from ip_rput_dlpi. 20211 * Allocate an unbind message and save it until ipif_down. 20212 */ 20213 static int 20214 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 20215 { 20216 mblk_t *areq_mp = NULL; 20217 mblk_t *bind_mp = NULL; 20218 mblk_t *unbind_mp = NULL; 20219 conn_t *connp; 20220 boolean_t success; 20221 20222 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 20223 ASSERT(IAM_WRITER_ILL(ill)); 20224 20225 ASSERT(mp != NULL); 20226 20227 /* Create a resolver cookie for ARP */ 20228 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 20229 areq_t *areq; 20230 uint16_t sap_addr; 20231 20232 areq_mp = ill_arp_alloc(ill, 20233 (uchar_t *)&ip_areq_template, 0); 20234 if (areq_mp == NULL) { 20235 return (ENOMEM); 20236 } 20237 freemsg(ill->ill_resolver_mp); 20238 ill->ill_resolver_mp = areq_mp; 20239 areq = (areq_t *)areq_mp->b_rptr; 20240 sap_addr = ill->ill_sap; 20241 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 20242 /* 20243 * Wait till we call ill_pending_mp_add to determine 20244 * the success before we free the ill_resolver_mp and 20245 * attach areq_mp in it's place. 20246 */ 20247 } 20248 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 20249 DL_BIND_REQ); 20250 if (bind_mp == NULL) 20251 goto bad; 20252 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 20253 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 20254 20255 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 20256 if (unbind_mp == NULL) 20257 goto bad; 20258 20259 /* 20260 * Record state needed to complete this operation when the 20261 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 20262 */ 20263 ASSERT(WR(q)->q_next == NULL); 20264 connp = Q_TO_CONN(q); 20265 20266 mutex_enter(&connp->conn_lock); 20267 mutex_enter(&ipif->ipif_ill->ill_lock); 20268 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20269 mutex_exit(&ipif->ipif_ill->ill_lock); 20270 mutex_exit(&connp->conn_lock); 20271 if (!success) 20272 goto bad; 20273 20274 /* 20275 * Save the unbind message for ill_dl_down(); it will be consumed when 20276 * the interface goes down. 20277 */ 20278 ASSERT(ill->ill_unbind_mp == NULL); 20279 ill->ill_unbind_mp = unbind_mp; 20280 20281 ill_dlpi_send(ill, bind_mp); 20282 /* Send down link-layer capabilities probe if not already done. */ 20283 ill_capability_probe(ill); 20284 20285 /* 20286 * Sysid used to rely on the fact that netboots set domainname 20287 * and the like. Now that miniroot boots aren't strictly netboots 20288 * and miniroot network configuration is driven from userland 20289 * these things still need to be set. This situation can be detected 20290 * by comparing the interface being configured here to the one 20291 * dhcack was set to reference by the boot loader. Once sysid is 20292 * converted to use dhcp_ipc_getinfo() this call can go away. 20293 */ 20294 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 20295 (strcmp(ill->ill_name, dhcack) == 0) && 20296 (strlen(srpc_domain) == 0)) { 20297 if (dhcpinit() != 0) 20298 cmn_err(CE_WARN, "no cached dhcp response"); 20299 } 20300 20301 /* 20302 * This operation will complete in ip_rput_dlpi with either 20303 * a DL_BIND_ACK or DL_ERROR_ACK. 20304 */ 20305 return (EINPROGRESS); 20306 bad: 20307 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 20308 /* 20309 * We don't have to check for possible removal from illgrp 20310 * as we have not yet inserted in illgrp. For groups 20311 * without names, this ipif is still not UP and hence 20312 * this could not have possibly had any influence in forming 20313 * groups. 20314 */ 20315 20316 freemsg(bind_mp); 20317 freemsg(unbind_mp); 20318 return (ENOMEM); 20319 } 20320 20321 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20322 20323 /* 20324 * DLPI and ARP is up. 20325 * Create all the IREs associated with an interface bring up multicast. 20326 * Set the interface flag and finish other initialization 20327 * that potentially had to be differed to after DL_BIND_ACK. 20328 */ 20329 int 20330 ipif_up_done(ipif_t *ipif) 20331 { 20332 ire_t *ire_array[20]; 20333 ire_t **irep = ire_array; 20334 ire_t **irep1; 20335 ipaddr_t net_mask = 0; 20336 ipaddr_t subnet_mask, route_mask; 20337 ill_t *ill = ipif->ipif_ill; 20338 queue_t *stq; 20339 ipif_t *src_ipif; 20340 ipif_t *tmp_ipif; 20341 boolean_t flush_ire_cache = B_TRUE; 20342 int err = 0; 20343 phyint_t *phyi; 20344 ire_t **ipif_saved_irep = NULL; 20345 int ipif_saved_ire_cnt; 20346 int cnt; 20347 boolean_t src_ipif_held = B_FALSE; 20348 boolean_t ire_added = B_FALSE; 20349 boolean_t loopback = B_FALSE; 20350 ip_stack_t *ipst = ill->ill_ipst; 20351 20352 ip1dbg(("ipif_up_done(%s:%u)\n", 20353 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20354 /* Check if this is a loopback interface */ 20355 if (ipif->ipif_ill->ill_wq == NULL) 20356 loopback = B_TRUE; 20357 20358 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20359 /* 20360 * If all other interfaces for this ill are down or DEPRECATED, 20361 * or otherwise unsuitable for source address selection, remove 20362 * any IRE_CACHE entries for this ill to make sure source 20363 * address selection gets to take this new ipif into account. 20364 * No need to hold ill_lock while traversing the ipif list since 20365 * we are writer 20366 */ 20367 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20368 tmp_ipif = tmp_ipif->ipif_next) { 20369 if (((tmp_ipif->ipif_flags & 20370 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20371 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20372 (tmp_ipif == ipif)) 20373 continue; 20374 /* first useable pre-existing interface */ 20375 flush_ire_cache = B_FALSE; 20376 break; 20377 } 20378 if (flush_ire_cache) 20379 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20380 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20381 20382 /* 20383 * Figure out which way the send-to queue should go. Only 20384 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20385 * should show up here. 20386 */ 20387 switch (ill->ill_net_type) { 20388 case IRE_IF_RESOLVER: 20389 stq = ill->ill_rq; 20390 break; 20391 case IRE_IF_NORESOLVER: 20392 case IRE_LOOPBACK: 20393 stq = ill->ill_wq; 20394 break; 20395 default: 20396 return (EINVAL); 20397 } 20398 20399 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 20400 /* 20401 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20402 * ipif_lookup_on_name(), but in the case of zones we can have 20403 * several loopback addresses on lo0. So all the interfaces with 20404 * loopback addresses need to be marked IRE_LOOPBACK. 20405 */ 20406 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20407 htonl(INADDR_LOOPBACK)) 20408 ipif->ipif_ire_type = IRE_LOOPBACK; 20409 else 20410 ipif->ipif_ire_type = IRE_LOCAL; 20411 } 20412 20413 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20414 /* 20415 * Can't use our source address. Select a different 20416 * source address for the IRE_INTERFACE and IRE_LOCAL 20417 */ 20418 src_ipif = ipif_select_source(ipif->ipif_ill, 20419 ipif->ipif_subnet, ipif->ipif_zoneid); 20420 if (src_ipif == NULL) 20421 src_ipif = ipif; /* Last resort */ 20422 else 20423 src_ipif_held = B_TRUE; 20424 } else { 20425 src_ipif = ipif; 20426 } 20427 20428 /* Create all the IREs associated with this interface */ 20429 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20430 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20431 20432 /* 20433 * If we're on a labeled system then make sure that zone- 20434 * private addresses have proper remote host database entries. 20435 */ 20436 if (is_system_labeled() && 20437 ipif->ipif_ire_type != IRE_LOOPBACK && 20438 !tsol_check_interface_address(ipif)) 20439 return (EINVAL); 20440 20441 /* Register the source address for __sin6_src_id */ 20442 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20443 ipif->ipif_zoneid, ipst); 20444 if (err != 0) { 20445 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20446 return (err); 20447 } 20448 20449 /* If the interface address is set, create the local IRE. */ 20450 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20451 (void *)ipif, 20452 ipif->ipif_ire_type, 20453 ntohl(ipif->ipif_lcl_addr))); 20454 *irep++ = ire_create( 20455 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20456 (uchar_t *)&ip_g_all_ones, /* mask */ 20457 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20458 NULL, /* no gateway */ 20459 NULL, 20460 &ip_loopback_mtuplus, /* max frag size */ 20461 NULL, 20462 ipif->ipif_rq, /* recv-from queue */ 20463 NULL, /* no send-to queue */ 20464 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20465 NULL, 20466 ipif, 20467 NULL, 20468 0, 20469 0, 20470 0, 20471 (ipif->ipif_flags & IPIF_PRIVATE) ? 20472 RTF_PRIVATE : 0, 20473 &ire_uinfo_null, 20474 NULL, 20475 NULL, 20476 ipst); 20477 } else { 20478 ip1dbg(( 20479 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20480 ipif->ipif_ire_type, 20481 ntohl(ipif->ipif_lcl_addr), 20482 (uint_t)ipif->ipif_flags)); 20483 } 20484 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20485 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20486 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20487 } else { 20488 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20489 } 20490 20491 subnet_mask = ipif->ipif_net_mask; 20492 20493 /* 20494 * If mask was not specified, use natural netmask of 20495 * interface address. Also, store this mask back into the 20496 * ipif struct. 20497 */ 20498 if (subnet_mask == 0) { 20499 subnet_mask = net_mask; 20500 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20501 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20502 ipif->ipif_v6subnet); 20503 } 20504 20505 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20506 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20507 ipif->ipif_subnet != INADDR_ANY) { 20508 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20509 20510 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20511 route_mask = IP_HOST_MASK; 20512 } else { 20513 route_mask = subnet_mask; 20514 } 20515 20516 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20517 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20518 (void *)ipif, (void *)ill, 20519 ill->ill_net_type, 20520 ntohl(ipif->ipif_subnet))); 20521 *irep++ = ire_create( 20522 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20523 (uchar_t *)&route_mask, /* mask */ 20524 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20525 NULL, /* no gateway */ 20526 NULL, 20527 &ipif->ipif_mtu, /* max frag */ 20528 NULL, 20529 NULL, /* no recv queue */ 20530 stq, /* send-to queue */ 20531 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20532 ill->ill_resolver_mp, /* xmit header */ 20533 ipif, 20534 NULL, 20535 0, 20536 0, 20537 0, 20538 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20539 &ire_uinfo_null, 20540 NULL, 20541 NULL, 20542 ipst); 20543 } 20544 20545 /* 20546 * If the interface address is set, create the broadcast IREs. 20547 * 20548 * ire_create_bcast checks if the proposed new IRE matches 20549 * any existing IRE's with the same physical interface (ILL). 20550 * This should get rid of duplicates. 20551 * ire_create_bcast also check IPIF_NOXMIT and does not create 20552 * any broadcast ires. 20553 */ 20554 if ((ipif->ipif_subnet != INADDR_ANY) && 20555 (ipif->ipif_flags & IPIF_BROADCAST)) { 20556 ipaddr_t addr; 20557 20558 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 20559 irep = ire_check_and_create_bcast(ipif, 0, irep, 20560 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20561 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 20562 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20563 20564 /* 20565 * For backward compatibility, we need to create net 20566 * broadcast ire's based on the old "IP address class 20567 * system." The reason is that some old machines only 20568 * respond to these class derived net broadcast. 20569 * 20570 * But we should not create these net broadcast ire's if 20571 * the subnet_mask is shorter than the IP address class based 20572 * derived netmask. Otherwise, we may create a net 20573 * broadcast address which is the same as an IP address 20574 * on the subnet. Then TCP will refuse to talk to that 20575 * address. 20576 * 20577 * Nor do we need IRE_BROADCAST ire's for the interface 20578 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 20579 * interface is already created. Creating these broadcast 20580 * ire's will only create confusion as the "addr" is going 20581 * to be same as that of the IP address of the interface. 20582 */ 20583 if (net_mask < subnet_mask) { 20584 addr = net_mask & ipif->ipif_subnet; 20585 irep = ire_check_and_create_bcast(ipif, addr, irep, 20586 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20587 irep = ire_check_and_create_bcast(ipif, 20588 ~net_mask | addr, irep, 20589 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20590 } 20591 20592 if (subnet_mask != 0xFFFFFFFF) { 20593 addr = ipif->ipif_subnet; 20594 irep = ire_check_and_create_bcast(ipif, addr, irep, 20595 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20596 irep = ire_check_and_create_bcast(ipif, 20597 ~subnet_mask|addr, irep, 20598 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20599 } 20600 } 20601 20602 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20603 20604 /* If an earlier ire_create failed, get out now */ 20605 for (irep1 = irep; irep1 > ire_array; ) { 20606 irep1--; 20607 if (*irep1 == NULL) { 20608 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20609 err = ENOMEM; 20610 goto bad; 20611 } 20612 } 20613 20614 /* 20615 * Need to atomically check for ip_addr_availablity_check 20616 * under ip_addr_avail_lock, and if it fails got bad, and remove 20617 * from group also.The ill_g_lock is grabbed as reader 20618 * just to make sure no new ills or new ipifs are being added 20619 * to the system while we are checking the uniqueness of addresses. 20620 */ 20621 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20622 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20623 /* Mark it up, and increment counters. */ 20624 ipif->ipif_flags |= IPIF_UP; 20625 ill->ill_ipif_up_count++; 20626 err = ip_addr_availability_check(ipif); 20627 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20628 rw_exit(&ipst->ips_ill_g_lock); 20629 20630 if (err != 0) { 20631 /* 20632 * Our address may already be up on the same ill. In this case, 20633 * the ARP entry for our ipif replaced the one for the other 20634 * ipif. So we don't want to delete it (otherwise the other ipif 20635 * would be unable to send packets). 20636 * ip_addr_availability_check() identifies this case for us and 20637 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20638 * which is the expected error code. 20639 */ 20640 if (err == EADDRINUSE) { 20641 freemsg(ipif->ipif_arp_del_mp); 20642 ipif->ipif_arp_del_mp = NULL; 20643 err = EADDRNOTAVAIL; 20644 } 20645 ill->ill_ipif_up_count--; 20646 ipif->ipif_flags &= ~IPIF_UP; 20647 goto bad; 20648 } 20649 20650 /* 20651 * Add in all newly created IREs. ire_create_bcast() has 20652 * already checked for duplicates of the IRE_BROADCAST type. 20653 * We want to add before we call ifgrp_insert which wants 20654 * to know whether IRE_IF_RESOLVER exists or not. 20655 * 20656 * NOTE : We refrele the ire though we may branch to "bad" 20657 * later on where we do ire_delete. This is okay 20658 * because nobody can delete it as we are running 20659 * exclusively. 20660 */ 20661 for (irep1 = irep; irep1 > ire_array; ) { 20662 irep1--; 20663 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20664 /* 20665 * refheld by ire_add. refele towards the end of the func 20666 */ 20667 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20668 } 20669 ire_added = B_TRUE; 20670 /* 20671 * Form groups if possible. 20672 * 20673 * If we are supposed to be in a ill_group with a name, insert it 20674 * now as we know that at least one ipif is UP. Otherwise form 20675 * nameless groups. 20676 * 20677 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20678 * this ipif into the appropriate interface group, or create a 20679 * new one. If this is already in a nameless group, we try to form 20680 * a bigger group looking at other ills potentially sharing this 20681 * ipif's prefix. 20682 */ 20683 phyi = ill->ill_phyint; 20684 if (phyi->phyint_groupname_len != 0) { 20685 ASSERT(phyi->phyint_groupname != NULL); 20686 if (ill->ill_ipif_up_count == 1) { 20687 ASSERT(ill->ill_group == NULL); 20688 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20689 phyi->phyint_groupname, NULL, B_TRUE); 20690 if (err != 0) { 20691 ip1dbg(("ipif_up_done: illgrp allocation " 20692 "failed, error %d\n", err)); 20693 goto bad; 20694 } 20695 } 20696 ASSERT(ill->ill_group != NULL); 20697 } 20698 20699 /* 20700 * When this is part of group, we need to make sure that 20701 * any broadcast ires created because of this ipif coming 20702 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20703 * so that we don't receive duplicate broadcast packets. 20704 */ 20705 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20706 ipif_renominate_bcast(ipif); 20707 20708 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20709 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20710 ipif_saved_irep = ipif_recover_ire(ipif); 20711 20712 if (!loopback) { 20713 /* 20714 * If the broadcast address has been set, make sure it makes 20715 * sense based on the interface address. 20716 * Only match on ill since we are sharing broadcast addresses. 20717 */ 20718 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20719 (ipif->ipif_flags & IPIF_BROADCAST)) { 20720 ire_t *ire; 20721 20722 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20723 IRE_BROADCAST, ipif, ALL_ZONES, 20724 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20725 20726 if (ire == NULL) { 20727 /* 20728 * If there isn't a matching broadcast IRE, 20729 * revert to the default for this netmask. 20730 */ 20731 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20732 mutex_enter(&ipif->ipif_ill->ill_lock); 20733 ipif_set_default(ipif); 20734 mutex_exit(&ipif->ipif_ill->ill_lock); 20735 } else { 20736 ire_refrele(ire); 20737 } 20738 } 20739 20740 } 20741 20742 /* This is the first interface on this ill */ 20743 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20744 /* 20745 * Need to recover all multicast memberships in the driver. 20746 * This had to be deferred until we had attached. 20747 */ 20748 ill_recover_multicast(ill); 20749 } 20750 /* Join the allhosts multicast address */ 20751 ipif_multicast_up(ipif); 20752 20753 if (!loopback) { 20754 /* 20755 * See whether anybody else would benefit from the 20756 * new ipif that we added. We call this always rather 20757 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20758 * ipif is for the benefit of illgrp_insert (done above) 20759 * which does not do source address selection as it does 20760 * not want to re-create interface routes that we are 20761 * having reference to it here. 20762 */ 20763 ill_update_source_selection(ill); 20764 } 20765 20766 for (irep1 = irep; irep1 > ire_array; ) { 20767 irep1--; 20768 if (*irep1 != NULL) { 20769 /* was held in ire_add */ 20770 ire_refrele(*irep1); 20771 } 20772 } 20773 20774 cnt = ipif_saved_ire_cnt; 20775 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20776 if (*irep1 != NULL) { 20777 /* was held in ire_add */ 20778 ire_refrele(*irep1); 20779 } 20780 } 20781 20782 if (!loopback && ipif->ipif_addr_ready) { 20783 /* Broadcast an address mask reply. */ 20784 ipif_mask_reply(ipif); 20785 } 20786 if (ipif_saved_irep != NULL) { 20787 kmem_free(ipif_saved_irep, 20788 ipif_saved_ire_cnt * sizeof (ire_t *)); 20789 } 20790 if (src_ipif_held) 20791 ipif_refrele(src_ipif); 20792 20793 /* 20794 * This had to be deferred until we had bound. Tell routing sockets and 20795 * others that this interface is up if it looks like the address has 20796 * been validated. Otherwise, if it isn't ready yet, wait for 20797 * duplicate address detection to do its thing. 20798 */ 20799 if (ipif->ipif_addr_ready) { 20800 ip_rts_ifmsg(ipif); 20801 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20802 /* Let SCTP update the status for this ipif */ 20803 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20804 } 20805 return (0); 20806 20807 bad: 20808 ip1dbg(("ipif_up_done: FAILED \n")); 20809 /* 20810 * We don't have to bother removing from ill groups because 20811 * 20812 * 1) For groups with names, we insert only when the first ipif 20813 * comes up. In that case if it fails, it will not be in any 20814 * group. So, we need not try to remove for that case. 20815 * 20816 * 2) For groups without names, either we tried to insert ipif_ill 20817 * in a group as singleton or found some other group to become 20818 * a bigger group. For the former, if it fails we don't have 20819 * anything to do as ipif_ill is not in the group and for the 20820 * latter, there are no failures in illgrp_insert/illgrp_delete 20821 * (ENOMEM can't occur for this. Check ifgrp_insert). 20822 */ 20823 while (irep > ire_array) { 20824 irep--; 20825 if (*irep != NULL) { 20826 ire_delete(*irep); 20827 if (ire_added) 20828 ire_refrele(*irep); 20829 } 20830 } 20831 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20832 20833 if (ipif_saved_irep != NULL) { 20834 kmem_free(ipif_saved_irep, 20835 ipif_saved_ire_cnt * sizeof (ire_t *)); 20836 } 20837 if (src_ipif_held) 20838 ipif_refrele(src_ipif); 20839 20840 ipif_arp_down(ipif); 20841 return (err); 20842 } 20843 20844 /* 20845 * Turn off the ARP with the ILLF_NOARP flag. 20846 */ 20847 static int 20848 ill_arp_off(ill_t *ill) 20849 { 20850 mblk_t *arp_off_mp = NULL; 20851 mblk_t *arp_on_mp = NULL; 20852 20853 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20854 20855 ASSERT(IAM_WRITER_ILL(ill)); 20856 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20857 20858 /* 20859 * If the on message is still around we've already done 20860 * an arp_off without doing an arp_on thus there is no 20861 * work needed. 20862 */ 20863 if (ill->ill_arp_on_mp != NULL) 20864 return (0); 20865 20866 /* 20867 * Allocate an ARP on message (to be saved) and an ARP off message 20868 */ 20869 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20870 if (!arp_off_mp) 20871 return (ENOMEM); 20872 20873 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20874 if (!arp_on_mp) 20875 goto failed; 20876 20877 ASSERT(ill->ill_arp_on_mp == NULL); 20878 ill->ill_arp_on_mp = arp_on_mp; 20879 20880 /* Send an AR_INTERFACE_OFF request */ 20881 putnext(ill->ill_rq, arp_off_mp); 20882 return (0); 20883 failed: 20884 20885 if (arp_off_mp) 20886 freemsg(arp_off_mp); 20887 return (ENOMEM); 20888 } 20889 20890 /* 20891 * Turn on ARP by turning off the ILLF_NOARP flag. 20892 */ 20893 static int 20894 ill_arp_on(ill_t *ill) 20895 { 20896 mblk_t *mp; 20897 20898 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20899 20900 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20901 20902 ASSERT(IAM_WRITER_ILL(ill)); 20903 /* 20904 * Send an AR_INTERFACE_ON request if we have already done 20905 * an arp_off (which allocated the message). 20906 */ 20907 if (ill->ill_arp_on_mp != NULL) { 20908 mp = ill->ill_arp_on_mp; 20909 ill->ill_arp_on_mp = NULL; 20910 putnext(ill->ill_rq, mp); 20911 } 20912 return (0); 20913 } 20914 20915 /* 20916 * Called after either deleting ill from the group or when setting 20917 * FAILED or STANDBY on the interface. 20918 */ 20919 static void 20920 illgrp_reset_schednext(ill_t *ill) 20921 { 20922 ill_group_t *illgrp; 20923 ill_t *save_ill; 20924 20925 ASSERT(IAM_WRITER_ILL(ill)); 20926 /* 20927 * When called from illgrp_delete, ill_group will be non-NULL. 20928 * But when called from ip_sioctl_flags, it could be NULL if 20929 * somebody is setting FAILED/INACTIVE on some interface which 20930 * is not part of a group. 20931 */ 20932 illgrp = ill->ill_group; 20933 if (illgrp == NULL) 20934 return; 20935 if (illgrp->illgrp_ill_schednext != ill) 20936 return; 20937 20938 illgrp->illgrp_ill_schednext = NULL; 20939 save_ill = ill; 20940 /* 20941 * Choose a good ill to be the next one for 20942 * outbound traffic. As the flags FAILED/STANDBY is 20943 * not yet marked when called from ip_sioctl_flags, 20944 * we check for ill separately. 20945 */ 20946 for (ill = illgrp->illgrp_ill; ill != NULL; 20947 ill = ill->ill_group_next) { 20948 if ((ill != save_ill) && 20949 !(ill->ill_phyint->phyint_flags & 20950 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20951 illgrp->illgrp_ill_schednext = ill; 20952 return; 20953 } 20954 } 20955 } 20956 20957 /* 20958 * Given an ill, find the next ill in the group to be scheduled. 20959 * (This should be called by ip_newroute() before ire_create().) 20960 * The passed in ill may be pulled out of the group, after we have picked 20961 * up a different outgoing ill from the same group. However ire add will 20962 * atomically check this. 20963 */ 20964 ill_t * 20965 illgrp_scheduler(ill_t *ill) 20966 { 20967 ill_t *retill; 20968 ill_group_t *illgrp; 20969 int illcnt; 20970 int i; 20971 uint64_t flags; 20972 ip_stack_t *ipst = ill->ill_ipst; 20973 20974 /* 20975 * We don't use a lock to check for the ill_group. If this ill 20976 * is currently being inserted we may end up just returning this 20977 * ill itself. That is ok. 20978 */ 20979 if (ill->ill_group == NULL) { 20980 ill_refhold(ill); 20981 return (ill); 20982 } 20983 20984 /* 20985 * Grab the ill_g_lock as reader to make sure we are dealing with 20986 * a set of stable ills. No ill can be added or deleted or change 20987 * group while we hold the reader lock. 20988 */ 20989 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20990 if ((illgrp = ill->ill_group) == NULL) { 20991 rw_exit(&ipst->ips_ill_g_lock); 20992 ill_refhold(ill); 20993 return (ill); 20994 } 20995 20996 illcnt = illgrp->illgrp_ill_count; 20997 mutex_enter(&illgrp->illgrp_lock); 20998 retill = illgrp->illgrp_ill_schednext; 20999 21000 if (retill == NULL) 21001 retill = illgrp->illgrp_ill; 21002 21003 /* 21004 * We do a circular search beginning at illgrp_ill_schednext 21005 * or illgrp_ill. We don't check the flags against the ill lock 21006 * since it can change anytime. The ire creation will be atomic 21007 * and will fail if the ill is FAILED or OFFLINE. 21008 */ 21009 for (i = 0; i < illcnt; i++) { 21010 flags = retill->ill_phyint->phyint_flags; 21011 21012 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 21013 ILL_CAN_LOOKUP(retill)) { 21014 illgrp->illgrp_ill_schednext = retill->ill_group_next; 21015 ill_refhold(retill); 21016 break; 21017 } 21018 retill = retill->ill_group_next; 21019 if (retill == NULL) 21020 retill = illgrp->illgrp_ill; 21021 } 21022 mutex_exit(&illgrp->illgrp_lock); 21023 rw_exit(&ipst->ips_ill_g_lock); 21024 21025 return (i == illcnt ? NULL : retill); 21026 } 21027 21028 /* 21029 * Checks for availbility of a usable source address (if there is one) when the 21030 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 21031 * this selection is done regardless of the destination. 21032 */ 21033 boolean_t 21034 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 21035 { 21036 uint_t ifindex; 21037 ipif_t *ipif = NULL; 21038 ill_t *uill; 21039 boolean_t isv6; 21040 ip_stack_t *ipst = ill->ill_ipst; 21041 21042 ASSERT(ill != NULL); 21043 21044 isv6 = ill->ill_isv6; 21045 ifindex = ill->ill_usesrc_ifindex; 21046 if (ifindex != 0) { 21047 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 21048 NULL, ipst); 21049 if (uill == NULL) 21050 return (NULL); 21051 mutex_enter(&uill->ill_lock); 21052 for (ipif = uill->ill_ipif; ipif != NULL; 21053 ipif = ipif->ipif_next) { 21054 if (!IPIF_CAN_LOOKUP(ipif)) 21055 continue; 21056 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 21057 continue; 21058 if (!(ipif->ipif_flags & IPIF_UP)) 21059 continue; 21060 if (ipif->ipif_zoneid != zoneid) 21061 continue; 21062 if ((isv6 && 21063 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 21064 (ipif->ipif_lcl_addr == INADDR_ANY)) 21065 continue; 21066 mutex_exit(&uill->ill_lock); 21067 ill_refrele(uill); 21068 return (B_TRUE); 21069 } 21070 mutex_exit(&uill->ill_lock); 21071 ill_refrele(uill); 21072 } 21073 return (B_FALSE); 21074 } 21075 21076 /* 21077 * Determine the best source address given a destination address and an ill. 21078 * Prefers non-deprecated over deprecated but will return a deprecated 21079 * address if there is no other choice. If there is a usable source address 21080 * on the interface pointed to by ill_usesrc_ifindex then that is given 21081 * first preference. 21082 * 21083 * Returns NULL if there is no suitable source address for the ill. 21084 * This only occurs when there is no valid source address for the ill. 21085 */ 21086 ipif_t * 21087 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 21088 { 21089 ipif_t *ipif; 21090 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 21091 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 21092 int index = 0; 21093 boolean_t wrapped = B_FALSE; 21094 boolean_t same_subnet_only = B_FALSE; 21095 boolean_t ipif_same_found, ipif_other_found; 21096 boolean_t specific_found; 21097 ill_t *till, *usill = NULL; 21098 tsol_tpc_t *src_rhtp, *dst_rhtp; 21099 ip_stack_t *ipst = ill->ill_ipst; 21100 21101 if (ill->ill_usesrc_ifindex != 0) { 21102 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 21103 B_FALSE, NULL, NULL, NULL, NULL, ipst); 21104 if (usill != NULL) 21105 ill = usill; /* Select source from usesrc ILL */ 21106 else 21107 return (NULL); 21108 } 21109 21110 /* 21111 * If we're dealing with an unlabeled destination on a labeled system, 21112 * make sure that we ignore source addresses that are incompatible with 21113 * the destination's default label. That destination's default label 21114 * must dominate the minimum label on the source address. 21115 */ 21116 dst_rhtp = NULL; 21117 if (is_system_labeled()) { 21118 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 21119 if (dst_rhtp == NULL) 21120 return (NULL); 21121 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 21122 TPC_RELE(dst_rhtp); 21123 dst_rhtp = NULL; 21124 } 21125 } 21126 21127 /* 21128 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 21129 * can be deleted. But an ipif/ill can get CONDEMNED any time. 21130 * After selecting the right ipif, under ill_lock make sure ipif is 21131 * not condemned, and increment refcnt. If ipif is CONDEMNED, 21132 * we retry. Inside the loop we still need to check for CONDEMNED, 21133 * but not under a lock. 21134 */ 21135 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21136 21137 retry: 21138 till = ill; 21139 ipif_arr[0] = NULL; 21140 21141 if (till->ill_group != NULL) 21142 till = till->ill_group->illgrp_ill; 21143 21144 /* 21145 * Choose one good source address from each ill across the group. 21146 * If possible choose a source address in the same subnet as 21147 * the destination address. 21148 * 21149 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 21150 * This is okay because of the following. 21151 * 21152 * If PHYI_FAILED is set and we still have non-deprecated 21153 * addresses, it means the addresses have not yet been 21154 * failed over to a different interface. We potentially 21155 * select them to create IRE_CACHES, which will be later 21156 * flushed when the addresses move over. 21157 * 21158 * If PHYI_INACTIVE is set and we still have non-deprecated 21159 * addresses, it means either the user has configured them 21160 * or PHYI_INACTIVE has not been cleared after the addresses 21161 * been moved over. For the former, in.mpathd does a failover 21162 * when the interface becomes INACTIVE and hence we should 21163 * not find them. Once INACTIVE is set, we don't allow them 21164 * to create logical interfaces anymore. For the latter, a 21165 * flush will happen when INACTIVE is cleared which will 21166 * flush the IRE_CACHES. 21167 * 21168 * If PHYI_OFFLINE is set, all the addresses will be failed 21169 * over soon. We potentially select them to create IRE_CACHEs, 21170 * which will be later flushed when the addresses move over. 21171 * 21172 * NOTE : As ipif_select_source is called to borrow source address 21173 * for an ipif that is part of a group, source address selection 21174 * will be re-done whenever the group changes i.e either an 21175 * insertion/deletion in the group. 21176 * 21177 * Fill ipif_arr[] with source addresses, using these rules: 21178 * 21179 * 1. At most one source address from a given ill ends up 21180 * in ipif_arr[] -- that is, at most one of the ipif's 21181 * associated with a given ill ends up in ipif_arr[]. 21182 * 21183 * 2. If there is at least one non-deprecated ipif in the 21184 * IPMP group with a source address on the same subnet as 21185 * our destination, then fill ipif_arr[] only with 21186 * source addresses on the same subnet as our destination. 21187 * Note that because of (1), only the first 21188 * non-deprecated ipif found with a source address 21189 * matching the destination ends up in ipif_arr[]. 21190 * 21191 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 21192 * addresses not in the same subnet as our destination. 21193 * Again, because of (1), only the first off-subnet source 21194 * address will be chosen. 21195 * 21196 * 4. If there are no non-deprecated ipifs, then just use 21197 * the source address associated with the last deprecated 21198 * one we find that happens to be on the same subnet, 21199 * otherwise the first one not in the same subnet. 21200 */ 21201 specific_found = B_FALSE; 21202 for (; till != NULL; till = till->ill_group_next) { 21203 ipif_same_found = B_FALSE; 21204 ipif_other_found = B_FALSE; 21205 for (ipif = till->ill_ipif; ipif != NULL; 21206 ipif = ipif->ipif_next) { 21207 if (!IPIF_CAN_LOOKUP(ipif)) 21208 continue; 21209 /* Always skip NOLOCAL and ANYCAST interfaces */ 21210 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 21211 continue; 21212 if (!(ipif->ipif_flags & IPIF_UP) || 21213 !ipif->ipif_addr_ready) 21214 continue; 21215 if (ipif->ipif_zoneid != zoneid && 21216 ipif->ipif_zoneid != ALL_ZONES) 21217 continue; 21218 /* 21219 * Interfaces with 0.0.0.0 address are allowed to be UP, 21220 * but are not valid as source addresses. 21221 */ 21222 if (ipif->ipif_lcl_addr == INADDR_ANY) 21223 continue; 21224 21225 /* 21226 * Check compatibility of local address for 21227 * destination's default label if we're on a labeled 21228 * system. Incompatible addresses can't be used at 21229 * all. 21230 */ 21231 if (dst_rhtp != NULL) { 21232 boolean_t incompat; 21233 21234 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 21235 IPV4_VERSION, B_FALSE); 21236 if (src_rhtp == NULL) 21237 continue; 21238 incompat = 21239 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 21240 src_rhtp->tpc_tp.tp_doi != 21241 dst_rhtp->tpc_tp.tp_doi || 21242 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 21243 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 21244 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 21245 src_rhtp->tpc_tp.tp_sl_set_cipso)); 21246 TPC_RELE(src_rhtp); 21247 if (incompat) 21248 continue; 21249 } 21250 21251 /* 21252 * We prefer not to use all all-zones addresses, if we 21253 * can avoid it, as they pose problems with unlabeled 21254 * destinations. 21255 */ 21256 if (ipif->ipif_zoneid != ALL_ZONES) { 21257 if (!specific_found && 21258 (!same_subnet_only || 21259 (ipif->ipif_net_mask & dst) == 21260 ipif->ipif_subnet)) { 21261 index = 0; 21262 specific_found = B_TRUE; 21263 ipif_other_found = B_FALSE; 21264 } 21265 } else { 21266 if (specific_found) 21267 continue; 21268 } 21269 if (ipif->ipif_flags & IPIF_DEPRECATED) { 21270 if (ipif_dep == NULL || 21271 (ipif->ipif_net_mask & dst) == 21272 ipif->ipif_subnet) 21273 ipif_dep = ipif; 21274 continue; 21275 } 21276 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 21277 /* found a source address in the same subnet */ 21278 if (!same_subnet_only) { 21279 same_subnet_only = B_TRUE; 21280 index = 0; 21281 } 21282 ipif_same_found = B_TRUE; 21283 } else { 21284 if (same_subnet_only || ipif_other_found) 21285 continue; 21286 ipif_other_found = B_TRUE; 21287 } 21288 ipif_arr[index++] = ipif; 21289 if (index == MAX_IPIF_SELECT_SOURCE) { 21290 wrapped = B_TRUE; 21291 index = 0; 21292 } 21293 if (ipif_same_found) 21294 break; 21295 } 21296 } 21297 21298 if (ipif_arr[0] == NULL) { 21299 ipif = ipif_dep; 21300 } else { 21301 if (wrapped) 21302 index = MAX_IPIF_SELECT_SOURCE; 21303 ipif = ipif_arr[ipif_rand(ipst) % index]; 21304 ASSERT(ipif != NULL); 21305 } 21306 21307 if (ipif != NULL) { 21308 mutex_enter(&ipif->ipif_ill->ill_lock); 21309 if (!IPIF_CAN_LOOKUP(ipif)) { 21310 mutex_exit(&ipif->ipif_ill->ill_lock); 21311 goto retry; 21312 } 21313 ipif_refhold_locked(ipif); 21314 mutex_exit(&ipif->ipif_ill->ill_lock); 21315 } 21316 21317 rw_exit(&ipst->ips_ill_g_lock); 21318 if (usill != NULL) 21319 ill_refrele(usill); 21320 if (dst_rhtp != NULL) 21321 TPC_RELE(dst_rhtp); 21322 21323 #ifdef DEBUG 21324 if (ipif == NULL) { 21325 char buf1[INET6_ADDRSTRLEN]; 21326 21327 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 21328 ill->ill_name, 21329 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 21330 } else { 21331 char buf1[INET6_ADDRSTRLEN]; 21332 char buf2[INET6_ADDRSTRLEN]; 21333 21334 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 21335 ipif->ipif_ill->ill_name, 21336 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21337 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21338 buf2, sizeof (buf2)))); 21339 } 21340 #endif /* DEBUG */ 21341 return (ipif); 21342 } 21343 21344 21345 /* 21346 * If old_ipif is not NULL, see if ipif was derived from old 21347 * ipif and if so, recreate the interface route by re-doing 21348 * source address selection. This happens when ipif_down -> 21349 * ipif_update_other_ipifs calls us. 21350 * 21351 * If old_ipif is NULL, just redo the source address selection 21352 * if needed. This happens when illgrp_insert or ipif_up_done 21353 * calls us. 21354 */ 21355 static void 21356 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21357 { 21358 ire_t *ire; 21359 ire_t *ipif_ire; 21360 queue_t *stq; 21361 ipif_t *nipif; 21362 ill_t *ill; 21363 boolean_t need_rele = B_FALSE; 21364 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21365 21366 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21367 ASSERT(IAM_WRITER_IPIF(ipif)); 21368 21369 ill = ipif->ipif_ill; 21370 if (!(ipif->ipif_flags & 21371 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21372 /* 21373 * Can't possibly have borrowed the source 21374 * from old_ipif. 21375 */ 21376 return; 21377 } 21378 21379 /* 21380 * Is there any work to be done? No work if the address 21381 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21382 * ipif_select_source() does not borrow addresses from 21383 * NOLOCAL and ANYCAST interfaces). 21384 */ 21385 if ((old_ipif != NULL) && 21386 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21387 (old_ipif->ipif_ill->ill_wq == NULL) || 21388 (old_ipif->ipif_flags & 21389 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21390 return; 21391 } 21392 21393 /* 21394 * Perform the same checks as when creating the 21395 * IRE_INTERFACE in ipif_up_done. 21396 */ 21397 if (!(ipif->ipif_flags & IPIF_UP)) 21398 return; 21399 21400 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21401 (ipif->ipif_subnet == INADDR_ANY)) 21402 return; 21403 21404 ipif_ire = ipif_to_ire(ipif); 21405 if (ipif_ire == NULL) 21406 return; 21407 21408 /* 21409 * We know that ipif uses some other source for its 21410 * IRE_INTERFACE. Is it using the source of this 21411 * old_ipif? 21412 */ 21413 if (old_ipif != NULL && 21414 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21415 ire_refrele(ipif_ire); 21416 return; 21417 } 21418 if (ip_debug > 2) { 21419 /* ip1dbg */ 21420 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21421 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21422 } 21423 21424 stq = ipif_ire->ire_stq; 21425 21426 /* 21427 * Can't use our source address. Select a different 21428 * source address for the IRE_INTERFACE. 21429 */ 21430 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21431 if (nipif == NULL) { 21432 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21433 nipif = ipif; 21434 } else { 21435 need_rele = B_TRUE; 21436 } 21437 21438 ire = ire_create( 21439 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21440 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21441 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21442 NULL, /* no gateway */ 21443 NULL, 21444 &ipif->ipif_mtu, /* max frag */ 21445 NULL, /* fast path header */ 21446 NULL, /* no recv from queue */ 21447 stq, /* send-to queue */ 21448 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21449 ill->ill_resolver_mp, /* xmit header */ 21450 ipif, 21451 NULL, 21452 0, 21453 0, 21454 0, 21455 0, 21456 &ire_uinfo_null, 21457 NULL, 21458 NULL, 21459 ipst); 21460 21461 if (ire != NULL) { 21462 ire_t *ret_ire; 21463 int error; 21464 21465 /* 21466 * We don't need ipif_ire anymore. We need to delete 21467 * before we add so that ire_add does not detect 21468 * duplicates. 21469 */ 21470 ire_delete(ipif_ire); 21471 ret_ire = ire; 21472 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21473 ASSERT(error == 0); 21474 ASSERT(ire == ret_ire); 21475 /* Held in ire_add */ 21476 ire_refrele(ret_ire); 21477 } 21478 /* 21479 * Either we are falling through from above or could not 21480 * allocate a replacement. 21481 */ 21482 ire_refrele(ipif_ire); 21483 if (need_rele) 21484 ipif_refrele(nipif); 21485 } 21486 21487 /* 21488 * This old_ipif is going away. 21489 * 21490 * Determine if any other ipif's is using our address as 21491 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21492 * IPIF_DEPRECATED). 21493 * Find the IRE_INTERFACE for such ipifs and recreate them 21494 * to use an different source address following the rules in 21495 * ipif_up_done. 21496 * 21497 * This function takes an illgrp as an argument so that illgrp_delete 21498 * can call this to update source address even after deleting the 21499 * old_ipif->ipif_ill from the ill group. 21500 */ 21501 static void 21502 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21503 { 21504 ipif_t *ipif; 21505 ill_t *ill; 21506 char buf[INET6_ADDRSTRLEN]; 21507 21508 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21509 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21510 21511 ill = old_ipif->ipif_ill; 21512 21513 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21514 ill->ill_name, 21515 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21516 buf, sizeof (buf)))); 21517 /* 21518 * If this part of a group, look at all ills as ipif_select_source 21519 * borrows source address across all the ills in the group. 21520 */ 21521 if (illgrp != NULL) 21522 ill = illgrp->illgrp_ill; 21523 21524 for (; ill != NULL; ill = ill->ill_group_next) { 21525 for (ipif = ill->ill_ipif; ipif != NULL; 21526 ipif = ipif->ipif_next) { 21527 21528 if (ipif == old_ipif) 21529 continue; 21530 21531 ipif_recreate_interface_routes(old_ipif, ipif); 21532 } 21533 } 21534 } 21535 21536 /* ARGSUSED */ 21537 int 21538 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21539 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21540 { 21541 /* 21542 * ill_phyint_reinit merged the v4 and v6 into a single 21543 * ipsq. Could also have become part of a ipmp group in the 21544 * process, and we might not have been able to complete the 21545 * operation in ipif_set_values, if we could not become 21546 * exclusive. If so restart it here. 21547 */ 21548 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21549 } 21550 21551 21552 /* 21553 * Can operate on either a module or a driver queue. 21554 * Returns an error if not a module queue. 21555 */ 21556 /* ARGSUSED */ 21557 int 21558 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21559 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21560 { 21561 queue_t *q1 = q; 21562 char *cp; 21563 char interf_name[LIFNAMSIZ]; 21564 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21565 21566 if (q->q_next == NULL) { 21567 ip1dbg(( 21568 "if_unitsel: IF_UNITSEL: no q_next\n")); 21569 return (EINVAL); 21570 } 21571 21572 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21573 return (EALREADY); 21574 21575 do { 21576 q1 = q1->q_next; 21577 } while (q1->q_next); 21578 cp = q1->q_qinfo->qi_minfo->mi_idname; 21579 (void) sprintf(interf_name, "%s%d", cp, ppa); 21580 21581 /* 21582 * Here we are not going to delay the ioack until after 21583 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21584 * original ioctl message before sending the requests. 21585 */ 21586 return (ipif_set_values(q, mp, interf_name, &ppa)); 21587 } 21588 21589 /* ARGSUSED */ 21590 int 21591 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21592 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21593 { 21594 return (ENXIO); 21595 } 21596 21597 /* 21598 * Net and subnet broadcast ire's are now specific to the particular 21599 * physical interface (ill) and not to any one locigal interface (ipif). 21600 * However, if a particular logical interface is being taken down, it's 21601 * associated ire's will be taken down as well. Hence, when we go to 21602 * take down or change the local address, broadcast address or netmask 21603 * of a specific logical interface, we must check to make sure that we 21604 * have valid net and subnet broadcast ire's for the other logical 21605 * interfaces which may have been shared with the logical interface 21606 * being brought down or changed. 21607 * 21608 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 21609 * is tied to the first interface coming UP. If that ipif is going down, 21610 * we need to recreate them on the next valid ipif. 21611 * 21612 * Note: assume that the ipif passed in is still up so that it's IRE 21613 * entries are still valid. 21614 */ 21615 static void 21616 ipif_check_bcast_ires(ipif_t *test_ipif) 21617 { 21618 ipif_t *ipif; 21619 ire_t *test_subnet_ire, *test_net_ire; 21620 ire_t *test_allzero_ire, *test_allone_ire; 21621 ire_t *ire_array[12]; 21622 ire_t **irep = &ire_array[0]; 21623 ire_t **irep1; 21624 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 21625 ipaddr_t test_net_addr, test_subnet_addr; 21626 ipaddr_t test_net_mask, test_subnet_mask; 21627 boolean_t need_net_bcast_ire = B_FALSE; 21628 boolean_t need_subnet_bcast_ire = B_FALSE; 21629 boolean_t allzero_bcast_ire_created = B_FALSE; 21630 boolean_t allone_bcast_ire_created = B_FALSE; 21631 boolean_t net_bcast_ire_created = B_FALSE; 21632 boolean_t subnet_bcast_ire_created = B_FALSE; 21633 21634 ipif_t *backup_ipif_net = (ipif_t *)NULL; 21635 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 21636 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 21637 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 21638 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 21639 ip_stack_t *ipst = test_ipif->ipif_ill->ill_ipst; 21640 21641 ASSERT(!test_ipif->ipif_isv6); 21642 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21643 21644 /* 21645 * No broadcast IREs for the LOOPBACK interface 21646 * or others such as point to point and IPIF_NOXMIT. 21647 */ 21648 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21649 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21650 return; 21651 21652 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 21653 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21654 ipst); 21655 21656 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 21657 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21658 ipst); 21659 21660 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 21661 test_subnet_mask = test_ipif->ipif_net_mask; 21662 21663 /* 21664 * If no net mask set, assume the default based on net class. 21665 */ 21666 if (test_subnet_mask == 0) 21667 test_subnet_mask = test_net_mask; 21668 21669 /* 21670 * Check if there is a network broadcast ire associated with this ipif 21671 */ 21672 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 21673 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 21674 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21675 ipst); 21676 21677 /* 21678 * Check if there is a subnet broadcast IRE associated with this ipif 21679 */ 21680 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 21681 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 21682 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21683 ipst); 21684 21685 /* 21686 * No broadcast ire's associated with this ipif. 21687 */ 21688 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 21689 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 21690 return; 21691 } 21692 21693 /* 21694 * We have established which bcast ires have to be replaced. 21695 * Next we try to locate ipifs that match there ires. 21696 * The rules are simple: If we find an ipif that matches on the subnet 21697 * address it will also match on the net address, the allzeros and 21698 * allones address. Any ipif that matches only on the net address will 21699 * also match the allzeros and allones addresses. 21700 * The other criterion is the ipif_flags. We look for non-deprecated 21701 * (and non-anycast and non-nolocal) ipifs as the best choice. 21702 * ipifs with check_flags matching (deprecated, etc) are used only 21703 * if good ipifs are not available. While looping, we save existing 21704 * deprecated ipifs as backup_ipif. 21705 * We loop through all the ipifs for this ill looking for ipifs 21706 * whose broadcast addr match the ipif passed in, but do not have 21707 * their own broadcast ires. For creating 0.0.0.0 and 21708 * 255.255.255.255 we just need an ipif on this ill to create. 21709 */ 21710 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 21711 ipif = ipif->ipif_next) { 21712 21713 ASSERT(!ipif->ipif_isv6); 21714 /* 21715 * Already checked the ipif passed in. 21716 */ 21717 if (ipif == test_ipif) { 21718 continue; 21719 } 21720 21721 /* 21722 * We only need to recreate broadcast ires if another ipif in 21723 * the same zone uses them. The new ires must be created in the 21724 * same zone. 21725 */ 21726 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 21727 continue; 21728 } 21729 21730 /* 21731 * Only interested in logical interfaces with valid local 21732 * addresses or with the ability to broadcast. 21733 */ 21734 if ((ipif->ipif_subnet == 0) || 21735 !(ipif->ipif_flags & IPIF_BROADCAST) || 21736 (ipif->ipif_flags & IPIF_NOXMIT) || 21737 !(ipif->ipif_flags & IPIF_UP)) { 21738 continue; 21739 } 21740 /* 21741 * Check if there is a net broadcast ire for this 21742 * net address. If it turns out that the ipif we are 21743 * about to take down owns this ire, we must make a 21744 * new one because it is potentially going away. 21745 */ 21746 if (test_net_ire && (!net_bcast_ire_created)) { 21747 net_mask = ip_net_mask(ipif->ipif_subnet); 21748 net_addr = net_mask & ipif->ipif_subnet; 21749 if (net_addr == test_net_addr) { 21750 need_net_bcast_ire = B_TRUE; 21751 /* 21752 * Use DEPRECATED ipif only if no good 21753 * ires are available. subnet_addr is 21754 * a better match than net_addr. 21755 */ 21756 if ((ipif->ipif_flags & check_flags) && 21757 (backup_ipif_net == NULL)) { 21758 backup_ipif_net = ipif; 21759 } 21760 } 21761 } 21762 /* 21763 * Check if there is a subnet broadcast ire for this 21764 * net address. If it turns out that the ipif we are 21765 * about to take down owns this ire, we must make a 21766 * new one because it is potentially going away. 21767 */ 21768 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 21769 subnet_mask = ipif->ipif_net_mask; 21770 subnet_addr = ipif->ipif_subnet; 21771 if (subnet_addr == test_subnet_addr) { 21772 need_subnet_bcast_ire = B_TRUE; 21773 if ((ipif->ipif_flags & check_flags) && 21774 (backup_ipif_subnet == NULL)) { 21775 backup_ipif_subnet = ipif; 21776 } 21777 } 21778 } 21779 21780 21781 /* Short circuit here if this ipif is deprecated */ 21782 if (ipif->ipif_flags & check_flags) { 21783 if ((test_allzero_ire != NULL) && 21784 (!allzero_bcast_ire_created) && 21785 (backup_ipif_allzeros == NULL)) { 21786 backup_ipif_allzeros = ipif; 21787 } 21788 if ((test_allone_ire != NULL) && 21789 (!allone_bcast_ire_created) && 21790 (backup_ipif_allones == NULL)) { 21791 backup_ipif_allones = ipif; 21792 } 21793 continue; 21794 } 21795 21796 /* 21797 * Found an ipif which has the same broadcast ire as the 21798 * ipif passed in and the ipif passed in "owns" the ire. 21799 * Create new broadcast ire's for this broadcast addr. 21800 */ 21801 if (need_net_bcast_ire && !net_bcast_ire_created) { 21802 irep = ire_create_bcast(ipif, net_addr, irep); 21803 irep = ire_create_bcast(ipif, 21804 ~net_mask | net_addr, irep); 21805 net_bcast_ire_created = B_TRUE; 21806 } 21807 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 21808 irep = ire_create_bcast(ipif, subnet_addr, irep); 21809 irep = ire_create_bcast(ipif, 21810 ~subnet_mask | subnet_addr, irep); 21811 subnet_bcast_ire_created = B_TRUE; 21812 } 21813 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 21814 irep = ire_create_bcast(ipif, 0, irep); 21815 allzero_bcast_ire_created = B_TRUE; 21816 } 21817 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 21818 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 21819 allone_bcast_ire_created = B_TRUE; 21820 } 21821 /* 21822 * Once we have created all the appropriate ires, we 21823 * just break out of this loop to add what we have created. 21824 * This has been indented similar to ire_match_args for 21825 * readability. 21826 */ 21827 if (((test_net_ire == NULL) || 21828 (net_bcast_ire_created)) && 21829 ((test_subnet_ire == NULL) || 21830 (subnet_bcast_ire_created)) && 21831 ((test_allzero_ire == NULL) || 21832 (allzero_bcast_ire_created)) && 21833 ((test_allone_ire == NULL) || 21834 (allone_bcast_ire_created))) { 21835 break; 21836 } 21837 } 21838 21839 /* 21840 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 21841 * exist. 6 pairs of bcast ires are needed. 21842 * Note - the old ires are deleted in ipif_down. 21843 */ 21844 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 21845 ipif = backup_ipif_net; 21846 irep = ire_create_bcast(ipif, net_addr, irep); 21847 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 21848 net_bcast_ire_created = B_TRUE; 21849 } 21850 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 21851 backup_ipif_subnet) { 21852 ipif = backup_ipif_subnet; 21853 irep = ire_create_bcast(ipif, subnet_addr, irep); 21854 irep = ire_create_bcast(ipif, 21855 ~subnet_mask | subnet_addr, irep); 21856 subnet_bcast_ire_created = B_TRUE; 21857 } 21858 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 21859 backup_ipif_allzeros) { 21860 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 21861 allzero_bcast_ire_created = B_TRUE; 21862 } 21863 if (test_allone_ire != NULL && !allone_bcast_ire_created && 21864 backup_ipif_allones) { 21865 irep = ire_create_bcast(backup_ipif_allones, 21866 INADDR_BROADCAST, irep); 21867 allone_bcast_ire_created = B_TRUE; 21868 } 21869 21870 /* 21871 * If we can't create all of them, don't add any of them. 21872 * Code in ip_wput_ire and ire_to_ill assumes that we 21873 * always have a non-loopback copy and loopback copy 21874 * for a given address. 21875 */ 21876 for (irep1 = irep; irep1 > ire_array; ) { 21877 irep1--; 21878 if (*irep1 == NULL) { 21879 ip0dbg(("ipif_check_bcast_ires: can't create " 21880 "IRE_BROADCAST, memory allocation failure\n")); 21881 while (irep > ire_array) { 21882 irep--; 21883 if (*irep != NULL) 21884 ire_delete(*irep); 21885 } 21886 goto bad; 21887 } 21888 } 21889 for (irep1 = irep; irep1 > ire_array; ) { 21890 int error; 21891 21892 irep1--; 21893 error = ire_add(irep1, NULL, NULL, NULL, B_FALSE); 21894 if (error == 0) { 21895 ire_refrele(*irep1); /* Held in ire_add */ 21896 } 21897 } 21898 bad: 21899 if (test_allzero_ire != NULL) 21900 ire_refrele(test_allzero_ire); 21901 if (test_allone_ire != NULL) 21902 ire_refrele(test_allone_ire); 21903 if (test_net_ire != NULL) 21904 ire_refrele(test_net_ire); 21905 if (test_subnet_ire != NULL) 21906 ire_refrele(test_subnet_ire); 21907 } 21908 21909 /* 21910 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21911 * from lifr_flags and the name from lifr_name. 21912 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21913 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21914 * Returns EINPROGRESS when mp has been consumed by queueing it on 21915 * ill_pending_mp and the ioctl will complete in ip_rput. 21916 * 21917 * Can operate on either a module or a driver queue. 21918 * Returns an error if not a module queue. 21919 */ 21920 /* ARGSUSED */ 21921 int 21922 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21923 ip_ioctl_cmd_t *ipip, void *if_req) 21924 { 21925 int err; 21926 ill_t *ill; 21927 struct lifreq *lifr = (struct lifreq *)if_req; 21928 21929 ASSERT(ipif != NULL); 21930 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21931 21932 if (q->q_next == NULL) { 21933 ip1dbg(( 21934 "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21935 return (EINVAL); 21936 } 21937 21938 ill = (ill_t *)q->q_ptr; 21939 /* 21940 * If we are not writer on 'q' then this interface exists already 21941 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 21942 * So return EALREADY 21943 */ 21944 if (ill != ipif->ipif_ill) 21945 return (EALREADY); 21946 21947 if (ill->ill_name[0] != '\0') 21948 return (EALREADY); 21949 21950 /* 21951 * Set all the flags. Allows all kinds of override. Provide some 21952 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21953 * unless there is either multicast/broadcast support in the driver 21954 * or it is a pt-pt link. 21955 */ 21956 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21957 /* Meaningless to IP thus don't allow them to be set. */ 21958 ip1dbg(("ip_setname: EINVAL 1\n")); 21959 return (EINVAL); 21960 } 21961 /* 21962 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21963 * ill_bcast_addr_length info. 21964 */ 21965 if (!ill->ill_needs_attach && 21966 ((lifr->lifr_flags & IFF_MULTICAST) && 21967 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21968 ill->ill_bcast_addr_length == 0)) { 21969 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21970 ip1dbg(("ip_setname: EINVAL 2\n")); 21971 return (EINVAL); 21972 } 21973 if ((lifr->lifr_flags & IFF_BROADCAST) && 21974 ((lifr->lifr_flags & IFF_IPV6) || 21975 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21976 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21977 ip1dbg(("ip_setname: EINVAL 3\n")); 21978 return (EINVAL); 21979 } 21980 if (lifr->lifr_flags & IFF_UP) { 21981 /* Can only be set with SIOCSLIFFLAGS */ 21982 ip1dbg(("ip_setname: EINVAL 4\n")); 21983 return (EINVAL); 21984 } 21985 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21986 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21987 ip1dbg(("ip_setname: EINVAL 5\n")); 21988 return (EINVAL); 21989 } 21990 /* 21991 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21992 */ 21993 if ((lifr->lifr_flags & IFF_XRESOLV) && 21994 !(lifr->lifr_flags & IFF_IPV6) && 21995 !(ipif->ipif_isv6)) { 21996 ip1dbg(("ip_setname: EINVAL 6\n")); 21997 return (EINVAL); 21998 } 21999 22000 /* 22001 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 22002 * we have all the flags here. So, we assign rather than we OR. 22003 * We can't OR the flags here because we don't want to set 22004 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 22005 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 22006 * on lifr_flags value here. 22007 */ 22008 /* 22009 * This ill has not been inserted into the global list. 22010 * So we are still single threaded and don't need any lock 22011 */ 22012 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 22013 ~IFF_DUPLICATE; 22014 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 22015 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 22016 22017 /* We started off as V4. */ 22018 if (ill->ill_flags & ILLF_IPV6) { 22019 ill->ill_phyint->phyint_illv6 = ill; 22020 ill->ill_phyint->phyint_illv4 = NULL; 22021 } 22022 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 22023 return (err); 22024 } 22025 22026 /* ARGSUSED */ 22027 int 22028 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22029 ip_ioctl_cmd_t *ipip, void *if_req) 22030 { 22031 /* 22032 * ill_phyint_reinit merged the v4 and v6 into a single 22033 * ipsq. Could also have become part of a ipmp group in the 22034 * process, and we might not have been able to complete the 22035 * slifname in ipif_set_values, if we could not become 22036 * exclusive. If so restart it here 22037 */ 22038 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 22039 } 22040 22041 /* 22042 * Return a pointer to the ipif which matches the index, IP version type and 22043 * zoneid. 22044 */ 22045 ipif_t * 22046 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 22047 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 22048 { 22049 ill_t *ill; 22050 ipsq_t *ipsq; 22051 phyint_t *phyi; 22052 ipif_t *ipif; 22053 22054 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 22055 (q != NULL && mp != NULL && func != NULL && err != NULL)); 22056 22057 if (err != NULL) 22058 *err = 0; 22059 22060 /* 22061 * Indexes are stored in the phyint - a common structure 22062 * to both IPv4 and IPv6. 22063 */ 22064 22065 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 22066 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22067 (void *) &index, NULL); 22068 if (phyi != NULL) { 22069 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 22070 if (ill == NULL) { 22071 rw_exit(&ipst->ips_ill_g_lock); 22072 if (err != NULL) 22073 *err = ENXIO; 22074 return (NULL); 22075 } 22076 GRAB_CONN_LOCK(q); 22077 mutex_enter(&ill->ill_lock); 22078 if (ILL_CAN_LOOKUP(ill)) { 22079 for (ipif = ill->ill_ipif; ipif != NULL; 22080 ipif = ipif->ipif_next) { 22081 if (IPIF_CAN_LOOKUP(ipif) && 22082 (zoneid == ALL_ZONES || 22083 zoneid == ipif->ipif_zoneid || 22084 ipif->ipif_zoneid == ALL_ZONES)) { 22085 ipif_refhold_locked(ipif); 22086 mutex_exit(&ill->ill_lock); 22087 RELEASE_CONN_LOCK(q); 22088 rw_exit(&ipst->ips_ill_g_lock); 22089 return (ipif); 22090 } 22091 } 22092 } else if (ILL_CAN_WAIT(ill, q)) { 22093 ipsq = ill->ill_phyint->phyint_ipsq; 22094 mutex_enter(&ipsq->ipsq_lock); 22095 rw_exit(&ipst->ips_ill_g_lock); 22096 mutex_exit(&ill->ill_lock); 22097 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 22098 mutex_exit(&ipsq->ipsq_lock); 22099 RELEASE_CONN_LOCK(q); 22100 *err = EINPROGRESS; 22101 return (NULL); 22102 } 22103 mutex_exit(&ill->ill_lock); 22104 RELEASE_CONN_LOCK(q); 22105 } 22106 rw_exit(&ipst->ips_ill_g_lock); 22107 if (err != NULL) 22108 *err = ENXIO; 22109 return (NULL); 22110 } 22111 22112 typedef struct conn_change_s { 22113 uint_t cc_old_ifindex; 22114 uint_t cc_new_ifindex; 22115 } conn_change_t; 22116 22117 /* 22118 * ipcl_walk function for changing interface index. 22119 */ 22120 static void 22121 conn_change_ifindex(conn_t *connp, caddr_t arg) 22122 { 22123 conn_change_t *connc; 22124 uint_t old_ifindex; 22125 uint_t new_ifindex; 22126 int i; 22127 ilg_t *ilg; 22128 22129 connc = (conn_change_t *)arg; 22130 old_ifindex = connc->cc_old_ifindex; 22131 new_ifindex = connc->cc_new_ifindex; 22132 22133 if (connp->conn_orig_bound_ifindex == old_ifindex) 22134 connp->conn_orig_bound_ifindex = new_ifindex; 22135 22136 if (connp->conn_orig_multicast_ifindex == old_ifindex) 22137 connp->conn_orig_multicast_ifindex = new_ifindex; 22138 22139 if (connp->conn_orig_xmit_ifindex == old_ifindex) 22140 connp->conn_orig_xmit_ifindex = new_ifindex; 22141 22142 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 22143 ilg = &connp->conn_ilg[i]; 22144 if (ilg->ilg_orig_ifindex == old_ifindex) 22145 ilg->ilg_orig_ifindex = new_ifindex; 22146 } 22147 } 22148 22149 /* 22150 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 22151 * to new_index if it matches the old_index. 22152 * 22153 * Failovers typically happen within a group of ills. But somebody 22154 * can remove an ill from the group after a failover happened. If 22155 * we are setting the ifindex after this, we potentially need to 22156 * look at all the ills rather than just the ones in the group. 22157 * We cut down the work by looking at matching ill_net_types 22158 * and ill_types as we could not possibly grouped them together. 22159 */ 22160 static void 22161 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 22162 { 22163 ill_t *ill; 22164 ipif_t *ipif; 22165 uint_t old_ifindex; 22166 uint_t new_ifindex; 22167 ilm_t *ilm; 22168 ill_walk_context_t ctx; 22169 ip_stack_t *ipst = ill_orig->ill_ipst; 22170 22171 old_ifindex = connc->cc_old_ifindex; 22172 new_ifindex = connc->cc_new_ifindex; 22173 22174 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 22175 ill = ILL_START_WALK_ALL(&ctx, ipst); 22176 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 22177 if ((ill_orig->ill_net_type != ill->ill_net_type) || 22178 (ill_orig->ill_type != ill->ill_type)) { 22179 continue; 22180 } 22181 for (ipif = ill->ill_ipif; ipif != NULL; 22182 ipif = ipif->ipif_next) { 22183 if (ipif->ipif_orig_ifindex == old_ifindex) 22184 ipif->ipif_orig_ifindex = new_ifindex; 22185 } 22186 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 22187 if (ilm->ilm_orig_ifindex == old_ifindex) 22188 ilm->ilm_orig_ifindex = new_ifindex; 22189 } 22190 } 22191 rw_exit(&ipst->ips_ill_g_lock); 22192 } 22193 22194 /* 22195 * We first need to ensure that the new index is unique, and 22196 * then carry the change across both v4 and v6 ill representation 22197 * of the physical interface. 22198 */ 22199 /* ARGSUSED */ 22200 int 22201 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22202 ip_ioctl_cmd_t *ipip, void *ifreq) 22203 { 22204 ill_t *ill; 22205 ill_t *ill_other; 22206 phyint_t *phyi; 22207 int old_index; 22208 conn_change_t connc; 22209 struct ifreq *ifr = (struct ifreq *)ifreq; 22210 struct lifreq *lifr = (struct lifreq *)ifreq; 22211 uint_t index; 22212 ill_t *ill_v4; 22213 ill_t *ill_v6; 22214 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22215 22216 if (ipip->ipi_cmd_type == IF_CMD) 22217 index = ifr->ifr_index; 22218 else 22219 index = lifr->lifr_index; 22220 22221 /* 22222 * Only allow on physical interface. Also, index zero is illegal. 22223 * 22224 * Need to check for PHYI_FAILED and PHYI_INACTIVE 22225 * 22226 * 1) If PHYI_FAILED is set, a failover could have happened which 22227 * implies a possible failback might have to happen. As failback 22228 * depends on the old index, we should fail setting the index. 22229 * 22230 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 22231 * any addresses or multicast memberships are failed over to 22232 * a non-STANDBY interface. As failback depends on the old 22233 * index, we should fail setting the index for this case also. 22234 * 22235 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 22236 * Be consistent with PHYI_FAILED and fail the ioctl. 22237 */ 22238 ill = ipif->ipif_ill; 22239 phyi = ill->ill_phyint; 22240 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 22241 ipif->ipif_id != 0 || index == 0) { 22242 return (EINVAL); 22243 } 22244 old_index = phyi->phyint_ifindex; 22245 22246 /* If the index is not changing, no work to do */ 22247 if (old_index == index) 22248 return (0); 22249 22250 /* 22251 * Use ill_lookup_on_ifindex to determine if the 22252 * new index is unused and if so allow the change. 22253 */ 22254 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 22255 ipst); 22256 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 22257 ipst); 22258 if (ill_v6 != NULL || ill_v4 != NULL) { 22259 if (ill_v4 != NULL) 22260 ill_refrele(ill_v4); 22261 if (ill_v6 != NULL) 22262 ill_refrele(ill_v6); 22263 return (EBUSY); 22264 } 22265 22266 /* 22267 * The new index is unused. Set it in the phyint. 22268 * Locate the other ill so that we can send a routing 22269 * sockets message. 22270 */ 22271 if (ill->ill_isv6) { 22272 ill_other = phyi->phyint_illv4; 22273 } else { 22274 ill_other = phyi->phyint_illv6; 22275 } 22276 22277 phyi->phyint_ifindex = index; 22278 22279 connc.cc_old_ifindex = old_index; 22280 connc.cc_new_ifindex = index; 22281 ip_change_ifindex(ill, &connc); 22282 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 22283 22284 /* Send the routing sockets message */ 22285 ip_rts_ifmsg(ipif); 22286 if (ill_other != NULL) 22287 ip_rts_ifmsg(ill_other->ill_ipif); 22288 22289 return (0); 22290 } 22291 22292 /* ARGSUSED */ 22293 int 22294 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22295 ip_ioctl_cmd_t *ipip, void *ifreq) 22296 { 22297 struct ifreq *ifr = (struct ifreq *)ifreq; 22298 struct lifreq *lifr = (struct lifreq *)ifreq; 22299 22300 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 22301 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22302 /* Get the interface index */ 22303 if (ipip->ipi_cmd_type == IF_CMD) { 22304 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22305 } else { 22306 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22307 } 22308 return (0); 22309 } 22310 22311 /* ARGSUSED */ 22312 int 22313 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22314 ip_ioctl_cmd_t *ipip, void *ifreq) 22315 { 22316 struct lifreq *lifr = (struct lifreq *)ifreq; 22317 22318 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 22319 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22320 /* Get the interface zone */ 22321 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22322 lifr->lifr_zoneid = ipif->ipif_zoneid; 22323 return (0); 22324 } 22325 22326 /* 22327 * Set the zoneid of an interface. 22328 */ 22329 /* ARGSUSED */ 22330 int 22331 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22332 ip_ioctl_cmd_t *ipip, void *ifreq) 22333 { 22334 struct lifreq *lifr = (struct lifreq *)ifreq; 22335 int err = 0; 22336 boolean_t need_up = B_FALSE; 22337 zone_t *zptr; 22338 zone_status_t status; 22339 zoneid_t zoneid; 22340 22341 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22342 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 22343 if (!is_system_labeled()) 22344 return (ENOTSUP); 22345 zoneid = GLOBAL_ZONEID; 22346 } 22347 22348 /* cannot assign instance zero to a non-global zone */ 22349 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 22350 return (ENOTSUP); 22351 22352 /* 22353 * Cannot assign to a zone that doesn't exist or is shutting down. In 22354 * the event of a race with the zone shutdown processing, since IP 22355 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22356 * interface will be cleaned up even if the zone is shut down 22357 * immediately after the status check. If the interface can't be brought 22358 * down right away, and the zone is shut down before the restart 22359 * function is called, we resolve the possible races by rechecking the 22360 * zone status in the restart function. 22361 */ 22362 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22363 return (EINVAL); 22364 status = zone_status_get(zptr); 22365 zone_rele(zptr); 22366 22367 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22368 return (EINVAL); 22369 22370 if (ipif->ipif_flags & IPIF_UP) { 22371 /* 22372 * If the interface is already marked up, 22373 * we call ipif_down which will take care 22374 * of ditching any IREs that have been set 22375 * up based on the old interface address. 22376 */ 22377 err = ipif_logical_down(ipif, q, mp); 22378 if (err == EINPROGRESS) 22379 return (err); 22380 ipif_down_tail(ipif); 22381 need_up = B_TRUE; 22382 } 22383 22384 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22385 return (err); 22386 } 22387 22388 static int 22389 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22390 queue_t *q, mblk_t *mp, boolean_t need_up) 22391 { 22392 int err = 0; 22393 ip_stack_t *ipst; 22394 22395 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22396 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22397 22398 if (CONN_Q(q)) 22399 ipst = CONNQ_TO_IPST(q); 22400 else 22401 ipst = ILLQ_TO_IPST(q); 22402 22403 /* 22404 * For exclusive stacks we don't allow a different zoneid than 22405 * global. 22406 */ 22407 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22408 zoneid != GLOBAL_ZONEID) 22409 return (EINVAL); 22410 22411 /* Set the new zone id. */ 22412 ipif->ipif_zoneid = zoneid; 22413 22414 /* Update sctp list */ 22415 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22416 22417 if (need_up) { 22418 /* 22419 * Now bring the interface back up. If this 22420 * is the only IPIF for the ILL, ipif_up 22421 * will have to re-bind to the device, so 22422 * we may get back EINPROGRESS, in which 22423 * case, this IOCTL will get completed in 22424 * ip_rput_dlpi when we see the DL_BIND_ACK. 22425 */ 22426 err = ipif_up(ipif, q, mp); 22427 } 22428 return (err); 22429 } 22430 22431 /* ARGSUSED */ 22432 int 22433 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22434 ip_ioctl_cmd_t *ipip, void *if_req) 22435 { 22436 struct lifreq *lifr = (struct lifreq *)if_req; 22437 zoneid_t zoneid; 22438 zone_t *zptr; 22439 zone_status_t status; 22440 22441 ASSERT(ipif->ipif_id != 0); 22442 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22443 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22444 zoneid = GLOBAL_ZONEID; 22445 22446 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22447 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22448 22449 /* 22450 * We recheck the zone status to resolve the following race condition: 22451 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22452 * 2) hme0:1 is up and can't be brought down right away; 22453 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22454 * 3) zone "myzone" is halted; the zone status switches to 22455 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22456 * the interfaces to remove - hme0:1 is not returned because it's not 22457 * yet in "myzone", so it won't be removed; 22458 * 4) the restart function for SIOCSLIFZONE is called; without the 22459 * status check here, we would have hme0:1 in "myzone" after it's been 22460 * destroyed. 22461 * Note that if the status check fails, we need to bring the interface 22462 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22463 * ipif_up_done[_v6](). 22464 */ 22465 status = ZONE_IS_UNINITIALIZED; 22466 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22467 status = zone_status_get(zptr); 22468 zone_rele(zptr); 22469 } 22470 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22471 if (ipif->ipif_isv6) { 22472 (void) ipif_up_done_v6(ipif); 22473 } else { 22474 (void) ipif_up_done(ipif); 22475 } 22476 return (EINVAL); 22477 } 22478 22479 ipif_down_tail(ipif); 22480 22481 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22482 B_TRUE)); 22483 } 22484 22485 /* ARGSUSED */ 22486 int 22487 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22488 ip_ioctl_cmd_t *ipip, void *ifreq) 22489 { 22490 struct lifreq *lifr = ifreq; 22491 22492 ASSERT(q->q_next == NULL); 22493 ASSERT(CONN_Q(q)); 22494 22495 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22496 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22497 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22498 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22499 22500 return (0); 22501 } 22502 22503 22504 /* Find the previous ILL in this usesrc group */ 22505 static ill_t * 22506 ill_prev_usesrc(ill_t *uill) 22507 { 22508 ill_t *ill; 22509 22510 for (ill = uill->ill_usesrc_grp_next; 22511 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22512 ill = ill->ill_usesrc_grp_next) 22513 /* do nothing */; 22514 return (ill); 22515 } 22516 22517 /* 22518 * Release all members of the usesrc group. This routine is called 22519 * from ill_delete when the interface being unplumbed is the 22520 * group head. 22521 */ 22522 static void 22523 ill_disband_usesrc_group(ill_t *uill) 22524 { 22525 ill_t *next_ill, *tmp_ill; 22526 ip_stack_t *ipst = uill->ill_ipst; 22527 22528 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22529 next_ill = uill->ill_usesrc_grp_next; 22530 22531 do { 22532 ASSERT(next_ill != NULL); 22533 tmp_ill = next_ill->ill_usesrc_grp_next; 22534 ASSERT(tmp_ill != NULL); 22535 next_ill->ill_usesrc_grp_next = NULL; 22536 next_ill->ill_usesrc_ifindex = 0; 22537 next_ill = tmp_ill; 22538 } while (next_ill->ill_usesrc_ifindex != 0); 22539 uill->ill_usesrc_grp_next = NULL; 22540 } 22541 22542 /* 22543 * Remove the client usesrc ILL from the list and relink to a new list 22544 */ 22545 int 22546 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22547 { 22548 ill_t *ill, *tmp_ill; 22549 ip_stack_t *ipst = ucill->ill_ipst; 22550 22551 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22552 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22553 22554 /* 22555 * Check if the usesrc client ILL passed in is not already 22556 * in use as a usesrc ILL i.e one whose source address is 22557 * in use OR a usesrc ILL is not already in use as a usesrc 22558 * client ILL 22559 */ 22560 if ((ucill->ill_usesrc_ifindex == 0) || 22561 (uill->ill_usesrc_ifindex != 0)) { 22562 return (-1); 22563 } 22564 22565 ill = ill_prev_usesrc(ucill); 22566 ASSERT(ill->ill_usesrc_grp_next != NULL); 22567 22568 /* Remove from the current list */ 22569 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22570 /* Only two elements in the list */ 22571 ASSERT(ill->ill_usesrc_ifindex == 0); 22572 ill->ill_usesrc_grp_next = NULL; 22573 } else { 22574 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22575 } 22576 22577 if (ifindex == 0) { 22578 ucill->ill_usesrc_ifindex = 0; 22579 ucill->ill_usesrc_grp_next = NULL; 22580 return (0); 22581 } 22582 22583 ucill->ill_usesrc_ifindex = ifindex; 22584 tmp_ill = uill->ill_usesrc_grp_next; 22585 uill->ill_usesrc_grp_next = ucill; 22586 ucill->ill_usesrc_grp_next = 22587 (tmp_ill != NULL) ? tmp_ill : uill; 22588 return (0); 22589 } 22590 22591 /* 22592 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22593 * ip.c for locking details. 22594 */ 22595 /* ARGSUSED */ 22596 int 22597 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22598 ip_ioctl_cmd_t *ipip, void *ifreq) 22599 { 22600 struct lifreq *lifr = (struct lifreq *)ifreq; 22601 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22602 ill_flag_changed = B_FALSE; 22603 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22604 int err = 0, ret; 22605 uint_t ifindex; 22606 phyint_t *us_phyint, *us_cli_phyint; 22607 ipsq_t *ipsq = NULL; 22608 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22609 22610 ASSERT(IAM_WRITER_IPIF(ipif)); 22611 ASSERT(q->q_next == NULL); 22612 ASSERT(CONN_Q(q)); 22613 22614 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22615 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22616 22617 ASSERT(us_cli_phyint != NULL); 22618 22619 /* 22620 * If the client ILL is being used for IPMP, abort. 22621 * Note, this can be done before ipsq_try_enter since we are already 22622 * exclusive on this ILL 22623 */ 22624 if ((us_cli_phyint->phyint_groupname != NULL) || 22625 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22626 return (EINVAL); 22627 } 22628 22629 ifindex = lifr->lifr_index; 22630 if (ifindex == 0) { 22631 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22632 /* non usesrc group interface, nothing to reset */ 22633 return (0); 22634 } 22635 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22636 /* valid reset request */ 22637 reset_flg = B_TRUE; 22638 } 22639 22640 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22641 ip_process_ioctl, &err, ipst); 22642 22643 if (usesrc_ill == NULL) { 22644 return (err); 22645 } 22646 22647 /* 22648 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22649 * group nor can either of the interfaces be used for standy. So 22650 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22651 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22652 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22653 * We are already exlusive on this ipsq i.e ipsq corresponding to 22654 * the usesrc_cli_ill 22655 */ 22656 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22657 NEW_OP, B_TRUE); 22658 if (ipsq == NULL) { 22659 err = EINPROGRESS; 22660 /* Operation enqueued on the ipsq of the usesrc ILL */ 22661 goto done; 22662 } 22663 22664 /* Check if the usesrc_ill is used for IPMP */ 22665 us_phyint = usesrc_ill->ill_phyint; 22666 if ((us_phyint->phyint_groupname != NULL) || 22667 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22668 err = EINVAL; 22669 goto done; 22670 } 22671 22672 /* 22673 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22674 * already a client then return EINVAL 22675 */ 22676 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22677 err = EINVAL; 22678 goto done; 22679 } 22680 22681 /* 22682 * If the ill_usesrc_ifindex field is already set to what it needs to 22683 * be then this is a duplicate operation. 22684 */ 22685 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22686 err = 0; 22687 goto done; 22688 } 22689 22690 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22691 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22692 usesrc_ill->ill_isv6)); 22693 22694 /* 22695 * The next step ensures that no new ires will be created referencing 22696 * the client ill, until the ILL_CHANGING flag is cleared. Then 22697 * we go through an ire walk deleting all ire caches that reference 22698 * the client ill. New ires referencing the client ill that are added 22699 * to the ire table before the ILL_CHANGING flag is set, will be 22700 * cleaned up by the ire walk below. Attempt to add new ires referencing 22701 * the client ill while the ILL_CHANGING flag is set will be failed 22702 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22703 * checks (under the ill_g_usesrc_lock) that the ire being added 22704 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22705 * belong to the same usesrc group. 22706 */ 22707 mutex_enter(&usesrc_cli_ill->ill_lock); 22708 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22709 mutex_exit(&usesrc_cli_ill->ill_lock); 22710 ill_flag_changed = B_TRUE; 22711 22712 if (ipif->ipif_isv6) 22713 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22714 ALL_ZONES, ipst); 22715 else 22716 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22717 ALL_ZONES, ipst); 22718 22719 /* 22720 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22721 * and the ill_usesrc_ifindex fields 22722 */ 22723 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22724 22725 if (reset_flg) { 22726 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22727 if (ret != 0) { 22728 err = EINVAL; 22729 } 22730 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22731 goto done; 22732 } 22733 22734 /* 22735 * Four possibilities to consider: 22736 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22737 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22738 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22739 * 4. Both are part of their respective usesrc groups 22740 */ 22741 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22742 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22743 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22744 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22745 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22746 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22747 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22748 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22749 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22750 /* Insert at head of list */ 22751 usesrc_cli_ill->ill_usesrc_grp_next = 22752 usesrc_ill->ill_usesrc_grp_next; 22753 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22754 } else { 22755 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22756 ifindex); 22757 if (ret != 0) 22758 err = EINVAL; 22759 } 22760 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22761 22762 done: 22763 if (ill_flag_changed) { 22764 mutex_enter(&usesrc_cli_ill->ill_lock); 22765 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22766 mutex_exit(&usesrc_cli_ill->ill_lock); 22767 } 22768 if (ipsq != NULL) 22769 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22770 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22771 ill_refrele(usesrc_ill); 22772 return (err); 22773 } 22774 22775 /* 22776 * comparison function used by avl. 22777 */ 22778 static int 22779 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22780 { 22781 22782 uint_t index; 22783 22784 ASSERT(phyip != NULL && index_ptr != NULL); 22785 22786 index = *((uint_t *)index_ptr); 22787 /* 22788 * let the phyint with the lowest index be on top. 22789 */ 22790 if (((phyint_t *)phyip)->phyint_ifindex < index) 22791 return (1); 22792 if (((phyint_t *)phyip)->phyint_ifindex > index) 22793 return (-1); 22794 return (0); 22795 } 22796 22797 /* 22798 * comparison function used by avl. 22799 */ 22800 static int 22801 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22802 { 22803 ill_t *ill; 22804 int res = 0; 22805 22806 ASSERT(phyip != NULL && name_ptr != NULL); 22807 22808 if (((phyint_t *)phyip)->phyint_illv4) 22809 ill = ((phyint_t *)phyip)->phyint_illv4; 22810 else 22811 ill = ((phyint_t *)phyip)->phyint_illv6; 22812 ASSERT(ill != NULL); 22813 22814 res = strcmp(ill->ill_name, (char *)name_ptr); 22815 if (res > 0) 22816 return (1); 22817 else if (res < 0) 22818 return (-1); 22819 return (0); 22820 } 22821 /* 22822 * This function is called from ill_delete when the ill is being 22823 * unplumbed. We remove the reference from the phyint and we also 22824 * free the phyint when there are no more references to it. 22825 */ 22826 static void 22827 ill_phyint_free(ill_t *ill) 22828 { 22829 phyint_t *phyi; 22830 phyint_t *next_phyint; 22831 ipsq_t *cur_ipsq; 22832 ip_stack_t *ipst = ill->ill_ipst; 22833 22834 ASSERT(ill->ill_phyint != NULL); 22835 22836 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22837 phyi = ill->ill_phyint; 22838 ill->ill_phyint = NULL; 22839 /* 22840 * ill_init allocates a phyint always to store the copy 22841 * of flags relevant to phyint. At that point in time, we could 22842 * not assign the name and hence phyint_illv4/v6 could not be 22843 * initialized. Later in ipif_set_values, we assign the name to 22844 * the ill, at which point in time we assign phyint_illv4/v6. 22845 * Thus we don't rely on phyint_illv6 to be initialized always. 22846 */ 22847 if (ill->ill_flags & ILLF_IPV6) { 22848 phyi->phyint_illv6 = NULL; 22849 } else { 22850 phyi->phyint_illv4 = NULL; 22851 } 22852 /* 22853 * ipif_down removes it from the group when the last ipif goes 22854 * down. 22855 */ 22856 ASSERT(ill->ill_group == NULL); 22857 22858 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22859 return; 22860 22861 /* 22862 * Make sure this phyint was put in the list. 22863 */ 22864 if (phyi->phyint_ifindex > 0) { 22865 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22866 phyi); 22867 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22868 phyi); 22869 } 22870 /* 22871 * remove phyint from the ipsq list. 22872 */ 22873 cur_ipsq = phyi->phyint_ipsq; 22874 if (phyi == cur_ipsq->ipsq_phyint_list) { 22875 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22876 } else { 22877 next_phyint = cur_ipsq->ipsq_phyint_list; 22878 while (next_phyint != NULL) { 22879 if (next_phyint->phyint_ipsq_next == phyi) { 22880 next_phyint->phyint_ipsq_next = 22881 phyi->phyint_ipsq_next; 22882 break; 22883 } 22884 next_phyint = next_phyint->phyint_ipsq_next; 22885 } 22886 ASSERT(next_phyint != NULL); 22887 } 22888 IPSQ_DEC_REF(cur_ipsq, ipst); 22889 22890 if (phyi->phyint_groupname_len != 0) { 22891 ASSERT(phyi->phyint_groupname != NULL); 22892 mi_free(phyi->phyint_groupname); 22893 } 22894 mi_free(phyi); 22895 } 22896 22897 /* 22898 * Attach the ill to the phyint structure which can be shared by both 22899 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22900 * function is called from ipif_set_values and ill_lookup_on_name (for 22901 * loopback) where we know the name of the ill. We lookup the ill and if 22902 * there is one present already with the name use that phyint. Otherwise 22903 * reuse the one allocated by ill_init. 22904 */ 22905 static void 22906 ill_phyint_reinit(ill_t *ill) 22907 { 22908 boolean_t isv6 = ill->ill_isv6; 22909 phyint_t *phyi_old; 22910 phyint_t *phyi; 22911 avl_index_t where = 0; 22912 ill_t *ill_other = NULL; 22913 ipsq_t *ipsq; 22914 ip_stack_t *ipst = ill->ill_ipst; 22915 22916 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22917 22918 phyi_old = ill->ill_phyint; 22919 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22920 phyi_old->phyint_illv6 == NULL)); 22921 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22922 phyi_old->phyint_illv4 == NULL)); 22923 ASSERT(phyi_old->phyint_ifindex == 0); 22924 22925 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22926 ill->ill_name, &where); 22927 22928 /* 22929 * 1. We grabbed the ill_g_lock before inserting this ill into 22930 * the global list of ills. So no other thread could have located 22931 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22932 * 2. Now locate the other protocol instance of this ill. 22933 * 3. Now grab both ill locks in the right order, and the phyint lock of 22934 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22935 * of neither ill can change. 22936 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22937 * other ill. 22938 * 5. Release all locks. 22939 */ 22940 22941 /* 22942 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22943 * we are initializing IPv4. 22944 */ 22945 if (phyi != NULL) { 22946 ill_other = (isv6) ? phyi->phyint_illv4 : 22947 phyi->phyint_illv6; 22948 ASSERT(ill_other->ill_phyint != NULL); 22949 ASSERT((isv6 && !ill_other->ill_isv6) || 22950 (!isv6 && ill_other->ill_isv6)); 22951 GRAB_ILL_LOCKS(ill, ill_other); 22952 /* 22953 * We are potentially throwing away phyint_flags which 22954 * could be different from the one that we obtain from 22955 * ill_other->ill_phyint. But it is okay as we are assuming 22956 * that the state maintained within IP is correct. 22957 */ 22958 mutex_enter(&phyi->phyint_lock); 22959 if (isv6) { 22960 ASSERT(phyi->phyint_illv6 == NULL); 22961 phyi->phyint_illv6 = ill; 22962 } else { 22963 ASSERT(phyi->phyint_illv4 == NULL); 22964 phyi->phyint_illv4 = ill; 22965 } 22966 /* 22967 * This is a new ill, currently undergoing SLIFNAME 22968 * So we could not have joined an IPMP group until now. 22969 */ 22970 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22971 phyi_old->phyint_groupname == NULL); 22972 22973 /* 22974 * This phyi_old is going away. Decref ipsq_refs and 22975 * assert it is zero. The ipsq itself will be freed in 22976 * ipsq_exit 22977 */ 22978 ipsq = phyi_old->phyint_ipsq; 22979 IPSQ_DEC_REF(ipsq, ipst); 22980 ASSERT(ipsq->ipsq_refs == 0); 22981 /* Get the singleton phyint out of the ipsq list */ 22982 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22983 ipsq->ipsq_phyint_list = NULL; 22984 phyi_old->phyint_illv4 = NULL; 22985 phyi_old->phyint_illv6 = NULL; 22986 mi_free(phyi_old); 22987 } else { 22988 mutex_enter(&ill->ill_lock); 22989 /* 22990 * We don't need to acquire any lock, since 22991 * the ill is not yet visible globally and we 22992 * have not yet released the ill_g_lock. 22993 */ 22994 phyi = phyi_old; 22995 mutex_enter(&phyi->phyint_lock); 22996 /* XXX We need a recovery strategy here. */ 22997 if (!phyint_assign_ifindex(phyi, ipst)) 22998 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22999 23000 /* No IPMP group yet, thus the hook uses the ifindex */ 23001 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 23002 23003 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23004 (void *)phyi, where); 23005 23006 (void) avl_find(&ipst->ips_phyint_g_list-> 23007 phyint_list_avl_by_index, 23008 &phyi->phyint_ifindex, &where); 23009 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23010 (void *)phyi, where); 23011 } 23012 23013 /* 23014 * Reassigning ill_phyint automatically reassigns the ipsq also. 23015 * pending mp is not affected because that is per ill basis. 23016 */ 23017 ill->ill_phyint = phyi; 23018 23019 /* 23020 * Keep the index on ipif_orig_index to be used by FAILOVER. 23021 * We do this here as when the first ipif was allocated, 23022 * ipif_allocate does not know the right interface index. 23023 */ 23024 23025 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 23026 /* 23027 * Now that the phyint's ifindex has been assigned, complete the 23028 * remaining 23029 */ 23030 23031 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 23032 if (ill->ill_isv6) { 23033 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 23034 ill->ill_phyint->phyint_ifindex; 23035 } 23036 23037 /* 23038 * Generate an event within the hooks framework to indicate that 23039 * a new interface has just been added to IP. For this event to 23040 * be generated, the network interface must, at least, have an 23041 * ifindex assigned to it. 23042 * 23043 * This needs to be run inside the ill_g_lock perimeter to ensure 23044 * that the ordering of delivered events to listeners matches the 23045 * order of them in the kernel. 23046 * 23047 * This function could be called from ill_lookup_on_name. In that case 23048 * the interface is loopback "lo", which will not generate a NIC event. 23049 */ 23050 if (ill->ill_name_length <= 2 || 23051 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 23052 /* 23053 * Generate nic plumb event for ill_name even if 23054 * ipmp_hook_emulation is set. That avoids generating events 23055 * for the ill_names should ipmp_hook_emulation be turned on 23056 * later. 23057 */ 23058 ill_nic_info_plumb(ill, B_FALSE); 23059 } 23060 RELEASE_ILL_LOCKS(ill, ill_other); 23061 mutex_exit(&phyi->phyint_lock); 23062 } 23063 23064 /* 23065 * Allocate a NE_PLUMB nic info event and store in the ill. 23066 * If 'group' is set we do it for the group name, otherwise the ill name. 23067 * It will be sent when we leave the ipsq. 23068 */ 23069 void 23070 ill_nic_info_plumb(ill_t *ill, boolean_t group) 23071 { 23072 phyint_t *phyi = ill->ill_phyint; 23073 ip_stack_t *ipst = ill->ill_ipst; 23074 hook_nic_event_t *info; 23075 char *name; 23076 int namelen; 23077 23078 ASSERT(MUTEX_HELD(&ill->ill_lock)); 23079 23080 if ((info = ill->ill_nic_event_info) != NULL) { 23081 ip2dbg(("ill_nic_info_plumb: unexpected nic event %d " 23082 "attached for %s\n", info->hne_event, 23083 ill->ill_name)); 23084 if (info->hne_data != NULL) 23085 kmem_free(info->hne_data, info->hne_datalen); 23086 kmem_free(info, sizeof (hook_nic_event_t)); 23087 ill->ill_nic_event_info = NULL; 23088 } 23089 23090 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 23091 if (info == NULL) { 23092 ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic " 23093 "event information for %s (ENOMEM)\n", 23094 ill->ill_name)); 23095 return; 23096 } 23097 23098 if (group) { 23099 ASSERT(phyi->phyint_groupname_len != 0); 23100 namelen = phyi->phyint_groupname_len; 23101 name = phyi->phyint_groupname; 23102 } else { 23103 namelen = ill->ill_name_length; 23104 name = ill->ill_name; 23105 } 23106 23107 info->hne_nic = phyi->phyint_hook_ifindex; 23108 info->hne_lif = 0; 23109 info->hne_event = NE_PLUMB; 23110 info->hne_family = ill->ill_isv6 ? 23111 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 23112 23113 info->hne_data = kmem_alloc(namelen, KM_NOSLEEP); 23114 if (info->hne_data != NULL) { 23115 info->hne_datalen = namelen; 23116 bcopy(name, info->hne_data, info->hne_datalen); 23117 } else { 23118 ip2dbg(("ill_nic_info_plumb: could not attach " 23119 "name information for PLUMB nic event " 23120 "of %s (ENOMEM)\n", name)); 23121 kmem_free(info, sizeof (hook_nic_event_t)); 23122 info = NULL; 23123 } 23124 ill->ill_nic_event_info = info; 23125 } 23126 23127 /* 23128 * Unhook the nic event message from the ill and enqueue it 23129 * into the nic event taskq. 23130 */ 23131 void 23132 ill_nic_info_dispatch(ill_t *ill) 23133 { 23134 hook_nic_event_t *info; 23135 23136 ASSERT(MUTEX_HELD(&ill->ill_lock)); 23137 23138 if ((info = ill->ill_nic_event_info) != NULL) { 23139 if (ddi_taskq_dispatch(eventq_queue_nic, 23140 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 23141 ip2dbg(("ill_nic_info_dispatch: " 23142 "ddi_taskq_dispatch failed\n")); 23143 if (info->hne_data != NULL) 23144 kmem_free(info->hne_data, info->hne_datalen); 23145 kmem_free(info, sizeof (hook_nic_event_t)); 23146 } 23147 ill->ill_nic_event_info = NULL; 23148 } 23149 } 23150 23151 /* 23152 * Notify any downstream modules of the name of this interface. 23153 * An M_IOCTL is used even though we don't expect a successful reply. 23154 * Any reply message from the driver (presumably an M_IOCNAK) will 23155 * eventually get discarded somewhere upstream. The message format is 23156 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 23157 * to IP. 23158 */ 23159 static void 23160 ip_ifname_notify(ill_t *ill, queue_t *q) 23161 { 23162 mblk_t *mp1, *mp2; 23163 struct iocblk *iocp; 23164 struct lifreq *lifr; 23165 23166 mp1 = mkiocb(SIOCSLIFNAME); 23167 if (mp1 == NULL) 23168 return; 23169 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 23170 if (mp2 == NULL) { 23171 freeb(mp1); 23172 return; 23173 } 23174 23175 mp1->b_cont = mp2; 23176 iocp = (struct iocblk *)mp1->b_rptr; 23177 iocp->ioc_count = sizeof (struct lifreq); 23178 23179 lifr = (struct lifreq *)mp2->b_rptr; 23180 mp2->b_wptr += sizeof (struct lifreq); 23181 bzero(lifr, sizeof (struct lifreq)); 23182 23183 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 23184 lifr->lifr_ppa = ill->ill_ppa; 23185 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 23186 23187 putnext(q, mp1); 23188 } 23189 23190 static int 23191 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 23192 { 23193 int err; 23194 ip_stack_t *ipst = ill->ill_ipst; 23195 23196 /* Set the obsolete NDD per-interface forwarding name. */ 23197 err = ill_set_ndd_name(ill); 23198 if (err != 0) { 23199 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 23200 err); 23201 } 23202 23203 /* Tell downstream modules where they are. */ 23204 ip_ifname_notify(ill, q); 23205 23206 /* 23207 * ill_dl_phys returns EINPROGRESS in the usual case. 23208 * Error cases are ENOMEM ... 23209 */ 23210 err = ill_dl_phys(ill, ipif, mp, q); 23211 23212 /* 23213 * If there is no IRE expiration timer running, get one started. 23214 * igmp and mld timers will be triggered by the first multicast 23215 */ 23216 if (ipst->ips_ip_ire_expire_id == 0) { 23217 /* 23218 * acquire the lock and check again. 23219 */ 23220 mutex_enter(&ipst->ips_ip_trash_timer_lock); 23221 if (ipst->ips_ip_ire_expire_id == 0) { 23222 ipst->ips_ip_ire_expire_id = timeout( 23223 ip_trash_timer_expire, ipst, 23224 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 23225 } 23226 mutex_exit(&ipst->ips_ip_trash_timer_lock); 23227 } 23228 23229 if (ill->ill_isv6) { 23230 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 23231 if (ipst->ips_mld_slowtimeout_id == 0) { 23232 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 23233 (void *)ipst, 23234 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 23235 } 23236 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 23237 } else { 23238 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 23239 if (ipst->ips_igmp_slowtimeout_id == 0) { 23240 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 23241 (void *)ipst, 23242 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 23243 } 23244 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 23245 } 23246 23247 return (err); 23248 } 23249 23250 /* 23251 * Common routine for ppa and ifname setting. Should be called exclusive. 23252 * 23253 * Returns EINPROGRESS when mp has been consumed by queueing it on 23254 * ill_pending_mp and the ioctl will complete in ip_rput. 23255 * 23256 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 23257 * the new name and new ppa in lifr_name and lifr_ppa respectively. 23258 * For SLIFNAME, we pass these values back to the userland. 23259 */ 23260 static int 23261 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 23262 { 23263 ill_t *ill; 23264 ipif_t *ipif; 23265 ipsq_t *ipsq; 23266 char *ppa_ptr; 23267 char *old_ptr; 23268 char old_char; 23269 int error; 23270 ip_stack_t *ipst; 23271 23272 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 23273 ASSERT(q->q_next != NULL); 23274 ASSERT(interf_name != NULL); 23275 23276 ill = (ill_t *)q->q_ptr; 23277 ipst = ill->ill_ipst; 23278 23279 ASSERT(ill->ill_ipst != NULL); 23280 ASSERT(ill->ill_name[0] == '\0'); 23281 ASSERT(IAM_WRITER_ILL(ill)); 23282 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 23283 ASSERT(ill->ill_ppa == UINT_MAX); 23284 23285 /* The ppa is sent down by ifconfig or is chosen */ 23286 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 23287 return (EINVAL); 23288 } 23289 23290 /* 23291 * make sure ppa passed in is same as ppa in the name. 23292 * This check is not made when ppa == UINT_MAX in that case ppa 23293 * in the name could be anything. System will choose a ppa and 23294 * update new_ppa_ptr and inter_name to contain the choosen ppa. 23295 */ 23296 if (*new_ppa_ptr != UINT_MAX) { 23297 /* stoi changes the pointer */ 23298 old_ptr = ppa_ptr; 23299 /* 23300 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 23301 * (they don't have an externally visible ppa). We assign one 23302 * here so that we can manage the interface. Note that in 23303 * the past this value was always 0 for DLPI 1 drivers. 23304 */ 23305 if (*new_ppa_ptr == 0) 23306 *new_ppa_ptr = stoi(&old_ptr); 23307 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 23308 return (EINVAL); 23309 } 23310 /* 23311 * terminate string before ppa 23312 * save char at that location. 23313 */ 23314 old_char = ppa_ptr[0]; 23315 ppa_ptr[0] = '\0'; 23316 23317 ill->ill_ppa = *new_ppa_ptr; 23318 /* 23319 * Finish as much work now as possible before calling ill_glist_insert 23320 * which makes the ill globally visible and also merges it with the 23321 * other protocol instance of this phyint. The remaining work is 23322 * done after entering the ipsq which may happen sometime later. 23323 * ill_set_ndd_name occurs after the ill has been made globally visible. 23324 */ 23325 ipif = ill->ill_ipif; 23326 23327 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 23328 ipif_assign_seqid(ipif); 23329 23330 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 23331 ill->ill_flags |= ILLF_IPV4; 23332 23333 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 23334 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 23335 23336 if (ill->ill_flags & ILLF_IPV6) { 23337 23338 ill->ill_isv6 = B_TRUE; 23339 if (ill->ill_rq != NULL) { 23340 ill->ill_rq->q_qinfo = &rinit_ipv6; 23341 ill->ill_wq->q_qinfo = &winit_ipv6; 23342 } 23343 23344 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 23345 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 23346 ipif->ipif_v6src_addr = ipv6_all_zeros; 23347 ipif->ipif_v6subnet = ipv6_all_zeros; 23348 ipif->ipif_v6net_mask = ipv6_all_zeros; 23349 ipif->ipif_v6brd_addr = ipv6_all_zeros; 23350 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 23351 /* 23352 * point-to-point or Non-mulicast capable 23353 * interfaces won't do NUD unless explicitly 23354 * configured to do so. 23355 */ 23356 if (ipif->ipif_flags & IPIF_POINTOPOINT || 23357 !(ill->ill_flags & ILLF_MULTICAST)) { 23358 ill->ill_flags |= ILLF_NONUD; 23359 } 23360 /* Make sure IPv4 specific flag is not set on IPv6 if */ 23361 if (ill->ill_flags & ILLF_NOARP) { 23362 /* 23363 * Note: xresolv interfaces will eventually need 23364 * NOARP set here as well, but that will require 23365 * those external resolvers to have some 23366 * knowledge of that flag and act appropriately. 23367 * Not to be changed at present. 23368 */ 23369 ill->ill_flags &= ~ILLF_NOARP; 23370 } 23371 /* 23372 * Set the ILLF_ROUTER flag according to the global 23373 * IPv6 forwarding policy. 23374 */ 23375 if (ipst->ips_ipv6_forward != 0) 23376 ill->ill_flags |= ILLF_ROUTER; 23377 } else if (ill->ill_flags & ILLF_IPV4) { 23378 ill->ill_isv6 = B_FALSE; 23379 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 23380 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 23381 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 23382 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 23383 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 23384 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 23385 /* 23386 * Set the ILLF_ROUTER flag according to the global 23387 * IPv4 forwarding policy. 23388 */ 23389 if (ipst->ips_ip_g_forward != 0) 23390 ill->ill_flags |= ILLF_ROUTER; 23391 } 23392 23393 ASSERT(ill->ill_phyint != NULL); 23394 23395 /* 23396 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 23397 * be completed in ill_glist_insert -> ill_phyint_reinit 23398 */ 23399 if (!ill_allocate_mibs(ill)) 23400 return (ENOMEM); 23401 23402 /* 23403 * Pick a default sap until we get the DL_INFO_ACK back from 23404 * the driver. 23405 */ 23406 if (ill->ill_sap == 0) { 23407 if (ill->ill_isv6) 23408 ill->ill_sap = IP6_DL_SAP; 23409 else 23410 ill->ill_sap = IP_DL_SAP; 23411 } 23412 23413 ill->ill_ifname_pending = 1; 23414 ill->ill_ifname_pending_err = 0; 23415 23416 ill_refhold(ill); 23417 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23418 if ((error = ill_glist_insert(ill, interf_name, 23419 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23420 ill->ill_ppa = UINT_MAX; 23421 ill->ill_name[0] = '\0'; 23422 /* 23423 * undo null termination done above. 23424 */ 23425 ppa_ptr[0] = old_char; 23426 rw_exit(&ipst->ips_ill_g_lock); 23427 ill_refrele(ill); 23428 return (error); 23429 } 23430 23431 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23432 23433 /* 23434 * When we return the buffer pointed to by interf_name should contain 23435 * the same name as in ill_name. 23436 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23437 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23438 * so copy full name and update the ppa ptr. 23439 * When ppa passed in != UINT_MAX all values are correct just undo 23440 * null termination, this saves a bcopy. 23441 */ 23442 if (*new_ppa_ptr == UINT_MAX) { 23443 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23444 *new_ppa_ptr = ill->ill_ppa; 23445 } else { 23446 /* 23447 * undo null termination done above. 23448 */ 23449 ppa_ptr[0] = old_char; 23450 } 23451 23452 /* Let SCTP know about this ILL */ 23453 sctp_update_ill(ill, SCTP_ILL_INSERT); 23454 23455 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23456 B_TRUE); 23457 23458 rw_exit(&ipst->ips_ill_g_lock); 23459 ill_refrele(ill); 23460 if (ipsq == NULL) 23461 return (EINPROGRESS); 23462 23463 /* 23464 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23465 */ 23466 if (ipsq->ipsq_current_ipif == NULL) 23467 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23468 else 23469 ASSERT(ipsq->ipsq_current_ipif == ipif); 23470 23471 error = ipif_set_values_tail(ill, ipif, mp, q); 23472 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23473 if (error != 0 && error != EINPROGRESS) { 23474 /* 23475 * restore previous values 23476 */ 23477 ill->ill_isv6 = B_FALSE; 23478 } 23479 return (error); 23480 } 23481 23482 23483 void 23484 ipif_init(ip_stack_t *ipst) 23485 { 23486 hrtime_t hrt; 23487 int i; 23488 23489 /* 23490 * Can't call drv_getparm here as it is too early in the boot. 23491 * As we use ipif_src_random just for picking a different 23492 * source address everytime, this need not be really random. 23493 */ 23494 hrt = gethrtime(); 23495 ipst->ips_ipif_src_random = 23496 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23497 23498 for (i = 0; i < MAX_G_HEADS; i++) { 23499 ipst->ips_ill_g_heads[i].ill_g_list_head = 23500 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23501 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23502 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23503 } 23504 23505 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23506 ill_phyint_compare_index, 23507 sizeof (phyint_t), 23508 offsetof(struct phyint, phyint_avl_by_index)); 23509 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23510 ill_phyint_compare_name, 23511 sizeof (phyint_t), 23512 offsetof(struct phyint, phyint_avl_by_name)); 23513 } 23514 23515 /* 23516 * This is called by ip_rt_add when src_addr value is other than zero. 23517 * src_addr signifies the source address of the incoming packet. For 23518 * reverse tunnel route we need to create a source addr based routing 23519 * table. This routine creates ip_mrtun_table if it's empty and then 23520 * it adds the route entry hashed by source address. It verifies that 23521 * the outgoing interface is always a non-resolver interface (tunnel). 23522 */ 23523 int 23524 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 23525 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func, 23526 ip_stack_t *ipst) 23527 { 23528 ire_t *ire; 23529 ire_t *save_ire; 23530 ipif_t *ipif; 23531 ill_t *in_ill = NULL; 23532 ill_t *out_ill; 23533 queue_t *stq; 23534 mblk_t *dlureq_mp; 23535 int error; 23536 23537 if (ire_arg != NULL) 23538 *ire_arg = NULL; 23539 ASSERT(in_src_addr != INADDR_ANY); 23540 23541 ipif = ipif_arg; 23542 if (ipif != NULL) { 23543 out_ill = ipif->ipif_ill; 23544 } else { 23545 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 23546 return (EINVAL); 23547 } 23548 23549 if (src_ipif == NULL) { 23550 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 23551 return (EINVAL); 23552 } 23553 in_ill = src_ipif->ipif_ill; 23554 23555 /* 23556 * Check for duplicates. We don't need to 23557 * match out_ill, because the uniqueness of 23558 * a route is only dependent on src_addr and 23559 * in_ill. 23560 */ 23561 ire = ire_mrtun_lookup(in_src_addr, in_ill); 23562 if (ire != NULL) { 23563 ire_refrele(ire); 23564 return (EEXIST); 23565 } 23566 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 23567 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 23568 ipif->ipif_net_type)); 23569 return (EINVAL); 23570 } 23571 23572 stq = ipif->ipif_wq; 23573 ASSERT(stq != NULL); 23574 23575 /* 23576 * The outgoing interface must be non-resolver 23577 * interface. 23578 */ 23579 dlureq_mp = ill_dlur_gen(NULL, 23580 out_ill->ill_phys_addr_length, out_ill->ill_sap, 23581 out_ill->ill_sap_length); 23582 23583 if (dlureq_mp == NULL) { 23584 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 23585 return (ENOMEM); 23586 } 23587 23588 /* Create the IRE. */ 23589 23590 ire = ire_create( 23591 NULL, /* Zero dst addr */ 23592 NULL, /* Zero mask */ 23593 NULL, /* Zero gateway addr */ 23594 NULL, /* Zero ipif_src addr */ 23595 (uint8_t *)&in_src_addr, /* in_src-addr */ 23596 &ipif->ipif_mtu, 23597 NULL, 23598 NULL, /* rfq */ 23599 stq, 23600 IRE_MIPRTUN, 23601 dlureq_mp, 23602 ipif, 23603 in_ill, 23604 0, 23605 0, 23606 0, 23607 flags, 23608 &ire_uinfo_null, 23609 NULL, 23610 NULL, 23611 ipst); 23612 23613 if (ire == NULL) { 23614 freeb(dlureq_mp); 23615 return (ENOMEM); 23616 } 23617 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 23618 ire->ire_type)); 23619 save_ire = ire; 23620 ASSERT(save_ire != NULL); 23621 error = ire_add_mrtun(&ire, q, mp, func); 23622 /* 23623 * If ire_add_mrtun() failed, the ire passed in was freed 23624 * so there is no need to do so here. 23625 */ 23626 if (error != 0) { 23627 return (error); 23628 } 23629 23630 /* Duplicate check */ 23631 if (ire != save_ire) { 23632 /* route already exists by now */ 23633 ire_refrele(ire); 23634 return (EEXIST); 23635 } 23636 23637 if (ire_arg != NULL) { 23638 /* 23639 * Store the ire that was just added. the caller 23640 * ip_rts_request responsible for doing ire_refrele() 23641 * on it. 23642 */ 23643 *ire_arg = ire; 23644 } else { 23645 ire_refrele(ire); /* held in ire_add_mrtun */ 23646 } 23647 23648 return (0); 23649 } 23650 23651 /* 23652 * It is called by ip_rt_delete() only when mipagent requests to delete 23653 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 23654 */ 23655 23656 int 23657 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 23658 { 23659 ire_t *ire = NULL; 23660 23661 if (in_src_addr == INADDR_ANY) 23662 return (EINVAL); 23663 if (src_ipif == NULL) 23664 return (EINVAL); 23665 23666 /* search if this route exists in the ip_mrtun_table */ 23667 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 23668 if (ire == NULL) { 23669 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 23670 return (ESRCH); 23671 } 23672 ire_delete(ire); 23673 ire_refrele(ire); 23674 return (0); 23675 } 23676 23677 /* 23678 * Lookup the ipif corresponding to the onlink destination address. For 23679 * point-to-point interfaces, it matches with remote endpoint destination 23680 * address. For point-to-multipoint interfaces it only tries to match the 23681 * destination with the interface's subnet address. The longest, most specific 23682 * match is found to take care of such rare network configurations like - 23683 * le0: 129.146.1.1/16 23684 * le1: 129.146.2.2/24 23685 * It is used only by SO_DONTROUTE at the moment. 23686 */ 23687 ipif_t * 23688 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23689 { 23690 ipif_t *ipif, *best_ipif; 23691 ill_t *ill; 23692 ill_walk_context_t ctx; 23693 23694 ASSERT(zoneid != ALL_ZONES); 23695 best_ipif = NULL; 23696 23697 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23698 ill = ILL_START_WALK_V4(&ctx, ipst); 23699 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23700 mutex_enter(&ill->ill_lock); 23701 for (ipif = ill->ill_ipif; ipif != NULL; 23702 ipif = ipif->ipif_next) { 23703 if (!IPIF_CAN_LOOKUP(ipif)) 23704 continue; 23705 if (ipif->ipif_zoneid != zoneid && 23706 ipif->ipif_zoneid != ALL_ZONES) 23707 continue; 23708 /* 23709 * Point-to-point case. Look for exact match with 23710 * destination address. 23711 */ 23712 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23713 if (ipif->ipif_pp_dst_addr == addr) { 23714 ipif_refhold_locked(ipif); 23715 mutex_exit(&ill->ill_lock); 23716 rw_exit(&ipst->ips_ill_g_lock); 23717 if (best_ipif != NULL) 23718 ipif_refrele(best_ipif); 23719 return (ipif); 23720 } 23721 } else if (ipif->ipif_subnet == (addr & 23722 ipif->ipif_net_mask)) { 23723 /* 23724 * Point-to-multipoint case. Looping through to 23725 * find the most specific match. If there are 23726 * multiple best match ipif's then prefer ipif's 23727 * that are UP. If there is only one best match 23728 * ipif and it is DOWN we must still return it. 23729 */ 23730 if ((best_ipif == NULL) || 23731 (ipif->ipif_net_mask > 23732 best_ipif->ipif_net_mask) || 23733 ((ipif->ipif_net_mask == 23734 best_ipif->ipif_net_mask) && 23735 ((ipif->ipif_flags & IPIF_UP) && 23736 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23737 ipif_refhold_locked(ipif); 23738 mutex_exit(&ill->ill_lock); 23739 rw_exit(&ipst->ips_ill_g_lock); 23740 if (best_ipif != NULL) 23741 ipif_refrele(best_ipif); 23742 best_ipif = ipif; 23743 rw_enter(&ipst->ips_ill_g_lock, 23744 RW_READER); 23745 mutex_enter(&ill->ill_lock); 23746 } 23747 } 23748 } 23749 mutex_exit(&ill->ill_lock); 23750 } 23751 rw_exit(&ipst->ips_ill_g_lock); 23752 return (best_ipif); 23753 } 23754 23755 23756 /* 23757 * Save enough information so that we can recreate the IRE if 23758 * the interface goes down and then up. 23759 */ 23760 static void 23761 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23762 { 23763 mblk_t *save_mp; 23764 23765 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23766 if (save_mp != NULL) { 23767 ifrt_t *ifrt; 23768 23769 save_mp->b_wptr += sizeof (ifrt_t); 23770 ifrt = (ifrt_t *)save_mp->b_rptr; 23771 bzero(ifrt, sizeof (ifrt_t)); 23772 ifrt->ifrt_type = ire->ire_type; 23773 ifrt->ifrt_addr = ire->ire_addr; 23774 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23775 ifrt->ifrt_src_addr = ire->ire_src_addr; 23776 ifrt->ifrt_mask = ire->ire_mask; 23777 ifrt->ifrt_flags = ire->ire_flags; 23778 ifrt->ifrt_max_frag = ire->ire_max_frag; 23779 mutex_enter(&ipif->ipif_saved_ire_lock); 23780 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23781 ipif->ipif_saved_ire_mp = save_mp; 23782 ipif->ipif_saved_ire_cnt++; 23783 mutex_exit(&ipif->ipif_saved_ire_lock); 23784 } 23785 } 23786 23787 23788 static void 23789 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23790 { 23791 mblk_t **mpp; 23792 mblk_t *mp; 23793 ifrt_t *ifrt; 23794 23795 /* Remove from ipif_saved_ire_mp list if it is there */ 23796 mutex_enter(&ipif->ipif_saved_ire_lock); 23797 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23798 mpp = &(*mpp)->b_cont) { 23799 /* 23800 * On a given ipif, the triple of address, gateway and 23801 * mask is unique for each saved IRE (in the case of 23802 * ordinary interface routes, the gateway address is 23803 * all-zeroes). 23804 */ 23805 mp = *mpp; 23806 ifrt = (ifrt_t *)mp->b_rptr; 23807 if (ifrt->ifrt_addr == ire->ire_addr && 23808 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23809 ifrt->ifrt_mask == ire->ire_mask) { 23810 *mpp = mp->b_cont; 23811 ipif->ipif_saved_ire_cnt--; 23812 freeb(mp); 23813 break; 23814 } 23815 } 23816 mutex_exit(&ipif->ipif_saved_ire_lock); 23817 } 23818 23819 23820 /* 23821 * IP multirouting broadcast routes handling 23822 * Append CGTP broadcast IREs to regular ones created 23823 * at ifconfig time. 23824 */ 23825 static void 23826 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23827 { 23828 ire_t *ire_prim; 23829 23830 ASSERT(ire != NULL); 23831 ASSERT(ire_dst != NULL); 23832 23833 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23834 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23835 if (ire_prim != NULL) { 23836 /* 23837 * We are in the special case of broadcasts for 23838 * CGTP. We add an IRE_BROADCAST that holds 23839 * the RTF_MULTIRT flag, the destination 23840 * address of ire_dst and the low level 23841 * info of ire_prim. In other words, CGTP 23842 * broadcast is added to the redundant ipif. 23843 */ 23844 ipif_t *ipif_prim; 23845 ire_t *bcast_ire; 23846 23847 ipif_prim = ire_prim->ire_ipif; 23848 23849 ip2dbg(("ip_cgtp_filter_bcast_add: " 23850 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23851 (void *)ire_dst, (void *)ire_prim, 23852 (void *)ipif_prim)); 23853 23854 bcast_ire = ire_create( 23855 (uchar_t *)&ire->ire_addr, 23856 (uchar_t *)&ip_g_all_ones, 23857 (uchar_t *)&ire_dst->ire_src_addr, 23858 (uchar_t *)&ire->ire_gateway_addr, 23859 NULL, 23860 &ipif_prim->ipif_mtu, 23861 NULL, 23862 ipif_prim->ipif_rq, 23863 ipif_prim->ipif_wq, 23864 IRE_BROADCAST, 23865 ipif_prim->ipif_bcast_mp, 23866 ipif_prim, 23867 NULL, 23868 0, 23869 0, 23870 0, 23871 ire->ire_flags, 23872 &ire_uinfo_null, 23873 NULL, 23874 NULL, 23875 ipst); 23876 23877 if (bcast_ire != NULL) { 23878 23879 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23880 B_FALSE) == 0) { 23881 ip2dbg(("ip_cgtp_filter_bcast_add: " 23882 "added bcast_ire %p\n", 23883 (void *)bcast_ire)); 23884 23885 ipif_save_ire(bcast_ire->ire_ipif, 23886 bcast_ire); 23887 ire_refrele(bcast_ire); 23888 } 23889 } 23890 ire_refrele(ire_prim); 23891 } 23892 } 23893 23894 23895 /* 23896 * IP multirouting broadcast routes handling 23897 * Remove the broadcast ire 23898 */ 23899 static void 23900 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23901 { 23902 ire_t *ire_dst; 23903 23904 ASSERT(ire != NULL); 23905 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23906 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23907 if (ire_dst != NULL) { 23908 ire_t *ire_prim; 23909 23910 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23911 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23912 if (ire_prim != NULL) { 23913 ipif_t *ipif_prim; 23914 ire_t *bcast_ire; 23915 23916 ipif_prim = ire_prim->ire_ipif; 23917 23918 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23919 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23920 (void *)ire_dst, (void *)ire_prim, 23921 (void *)ipif_prim)); 23922 23923 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23924 ire->ire_gateway_addr, 23925 IRE_BROADCAST, 23926 ipif_prim, ALL_ZONES, 23927 NULL, 23928 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23929 MATCH_IRE_MASK, ipst); 23930 23931 if (bcast_ire != NULL) { 23932 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23933 "looked up bcast_ire %p\n", 23934 (void *)bcast_ire)); 23935 ipif_remove_ire(bcast_ire->ire_ipif, 23936 bcast_ire); 23937 ire_delete(bcast_ire); 23938 } 23939 ire_refrele(ire_prim); 23940 } 23941 ire_refrele(ire_dst); 23942 } 23943 } 23944 23945 /* 23946 * IPsec hardware acceleration capabilities related functions. 23947 */ 23948 23949 /* 23950 * Free a per-ill IPsec capabilities structure. 23951 */ 23952 static void 23953 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23954 { 23955 if (capab->auth_hw_algs != NULL) 23956 kmem_free(capab->auth_hw_algs, capab->algs_size); 23957 if (capab->encr_hw_algs != NULL) 23958 kmem_free(capab->encr_hw_algs, capab->algs_size); 23959 if (capab->encr_algparm != NULL) 23960 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23961 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23962 } 23963 23964 /* 23965 * Allocate a new per-ill IPsec capabilities structure. This structure 23966 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23967 * an array which specifies, for each algorithm, whether this algorithm 23968 * is supported by the ill or not. 23969 */ 23970 static ill_ipsec_capab_t * 23971 ill_ipsec_capab_alloc(void) 23972 { 23973 ill_ipsec_capab_t *capab; 23974 uint_t nelems; 23975 23976 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23977 if (capab == NULL) 23978 return (NULL); 23979 23980 /* we need one bit per algorithm */ 23981 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23982 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23983 23984 /* allocate memory to store algorithm flags */ 23985 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23986 if (capab->encr_hw_algs == NULL) 23987 goto nomem; 23988 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23989 if (capab->auth_hw_algs == NULL) 23990 goto nomem; 23991 /* 23992 * Leave encr_algparm NULL for now since we won't need it half 23993 * the time 23994 */ 23995 return (capab); 23996 23997 nomem: 23998 ill_ipsec_capab_free(capab); 23999 return (NULL); 24000 } 24001 24002 /* 24003 * Resize capability array. Since we're exclusive, this is OK. 24004 */ 24005 static boolean_t 24006 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 24007 { 24008 ipsec_capab_algparm_t *nalp, *oalp; 24009 uint32_t olen, nlen; 24010 24011 oalp = capab->encr_algparm; 24012 olen = capab->encr_algparm_size; 24013 24014 if (oalp != NULL) { 24015 if (algid < capab->encr_algparm_end) 24016 return (B_TRUE); 24017 } 24018 24019 nlen = (algid + 1) * sizeof (*nalp); 24020 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 24021 if (nalp == NULL) 24022 return (B_FALSE); 24023 24024 if (oalp != NULL) { 24025 bcopy(oalp, nalp, olen); 24026 kmem_free(oalp, olen); 24027 } 24028 capab->encr_algparm = nalp; 24029 capab->encr_algparm_size = nlen; 24030 capab->encr_algparm_end = algid + 1; 24031 24032 return (B_TRUE); 24033 } 24034 24035 /* 24036 * Compare the capabilities of the specified ill with the protocol 24037 * and algorithms specified by the SA passed as argument. 24038 * If they match, returns B_TRUE, B_FALSE if they do not match. 24039 * 24040 * The ill can be passed as a pointer to it, or by specifying its index 24041 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 24042 * 24043 * Called by ipsec_out_is_accelerated() do decide whether an outbound 24044 * packet is eligible for hardware acceleration, and by 24045 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 24046 * to a particular ill. 24047 */ 24048 boolean_t 24049 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 24050 ipsa_t *sa, netstack_t *ns) 24051 { 24052 boolean_t sa_isv6; 24053 uint_t algid; 24054 struct ill_ipsec_capab_s *cpp; 24055 boolean_t need_refrele = B_FALSE; 24056 ip_stack_t *ipst = ns->netstack_ip; 24057 24058 if (ill == NULL) { 24059 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 24060 NULL, NULL, NULL, ipst); 24061 if (ill == NULL) { 24062 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 24063 return (B_FALSE); 24064 } 24065 need_refrele = B_TRUE; 24066 } 24067 24068 /* 24069 * Use the address length specified by the SA to determine 24070 * if it corresponds to a IPv6 address, and fail the matching 24071 * if the isv6 flag passed as argument does not match. 24072 * Note: this check is used for SADB capability checking before 24073 * sending SA information to an ill. 24074 */ 24075 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 24076 if (sa_isv6 != ill_isv6) 24077 /* protocol mismatch */ 24078 goto done; 24079 24080 /* 24081 * Check if the ill supports the protocol, algorithm(s) and 24082 * key size(s) specified by the SA, and get the pointers to 24083 * the algorithms supported by the ill. 24084 */ 24085 switch (sa->ipsa_type) { 24086 24087 case SADB_SATYPE_ESP: 24088 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 24089 /* ill does not support ESP acceleration */ 24090 goto done; 24091 cpp = ill->ill_ipsec_capab_esp; 24092 algid = sa->ipsa_auth_alg; 24093 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 24094 goto done; 24095 algid = sa->ipsa_encr_alg; 24096 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 24097 goto done; 24098 if (algid < cpp->encr_algparm_end) { 24099 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 24100 if (sa->ipsa_encrkeybits < alp->minkeylen) 24101 goto done; 24102 if (sa->ipsa_encrkeybits > alp->maxkeylen) 24103 goto done; 24104 } 24105 break; 24106 24107 case SADB_SATYPE_AH: 24108 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 24109 /* ill does not support AH acceleration */ 24110 goto done; 24111 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 24112 ill->ill_ipsec_capab_ah->auth_hw_algs)) 24113 goto done; 24114 break; 24115 } 24116 24117 if (need_refrele) 24118 ill_refrele(ill); 24119 return (B_TRUE); 24120 done: 24121 if (need_refrele) 24122 ill_refrele(ill); 24123 return (B_FALSE); 24124 } 24125 24126 24127 /* 24128 * Add a new ill to the list of IPsec capable ills. 24129 * Called from ill_capability_ipsec_ack() when an ACK was received 24130 * indicating that IPsec hardware processing was enabled for an ill. 24131 * 24132 * ill must point to the ill for which acceleration was enabled. 24133 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 24134 */ 24135 static void 24136 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 24137 { 24138 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 24139 uint_t sa_type; 24140 uint_t ipproto; 24141 ip_stack_t *ipst = ill->ill_ipst; 24142 24143 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 24144 (dl_cap == DL_CAPAB_IPSEC_ESP)); 24145 24146 switch (dl_cap) { 24147 case DL_CAPAB_IPSEC_AH: 24148 sa_type = SADB_SATYPE_AH; 24149 ills = &ipst->ips_ipsec_capab_ills_ah; 24150 ipproto = IPPROTO_AH; 24151 break; 24152 case DL_CAPAB_IPSEC_ESP: 24153 sa_type = SADB_SATYPE_ESP; 24154 ills = &ipst->ips_ipsec_capab_ills_esp; 24155 ipproto = IPPROTO_ESP; 24156 break; 24157 } 24158 24159 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 24160 24161 /* 24162 * Add ill index to list of hardware accelerators. If 24163 * already in list, do nothing. 24164 */ 24165 for (cur_ill = *ills; cur_ill != NULL && 24166 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 24167 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 24168 ; 24169 24170 if (cur_ill == NULL) { 24171 /* if this is a new entry for this ill */ 24172 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 24173 if (new_ill == NULL) { 24174 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24175 return; 24176 } 24177 24178 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 24179 new_ill->ill_isv6 = ill->ill_isv6; 24180 new_ill->next = *ills; 24181 *ills = new_ill; 24182 } else if (!sadb_resync) { 24183 /* not resync'ing SADB and an entry exists for this ill */ 24184 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24185 return; 24186 } 24187 24188 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24189 24190 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 24191 /* 24192 * IPsec module for protocol loaded, initiate dump 24193 * of the SADB to this ill. 24194 */ 24195 sadb_ill_download(ill, sa_type); 24196 } 24197 24198 /* 24199 * Remove an ill from the list of IPsec capable ills. 24200 */ 24201 static void 24202 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 24203 { 24204 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 24205 ip_stack_t *ipst = ill->ill_ipst; 24206 24207 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 24208 dl_cap == DL_CAPAB_IPSEC_ESP); 24209 24210 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 24211 &ipst->ips_ipsec_capab_ills_esp; 24212 24213 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 24214 24215 prev_ill = NULL; 24216 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 24217 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 24218 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 24219 ; 24220 if (cur_ill == NULL) { 24221 /* entry not found */ 24222 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24223 return; 24224 } 24225 if (prev_ill == NULL) { 24226 /* entry at front of list */ 24227 *ills = NULL; 24228 } else { 24229 prev_ill->next = cur_ill->next; 24230 } 24231 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 24232 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24233 } 24234 24235 24236 /* 24237 * Handling of DL_CONTROL_REQ messages that must be sent down to 24238 * an ill while having exclusive access. 24239 */ 24240 /* ARGSUSED */ 24241 static void 24242 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 24243 { 24244 ill_t *ill = (ill_t *)q->q_ptr; 24245 24246 ill_dlpi_send(ill, mp); 24247 } 24248 24249 24250 /* 24251 * Called by SADB to send a DL_CONTROL_REQ message to every ill 24252 * supporting the specified IPsec protocol acceleration. 24253 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 24254 * We free the mblk and, if sa is non-null, release the held referece. 24255 */ 24256 void 24257 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 24258 netstack_t *ns) 24259 { 24260 ipsec_capab_ill_t *ici, *cur_ici; 24261 ill_t *ill; 24262 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 24263 ip_stack_t *ipst = ns->netstack_ip; 24264 24265 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 24266 ipst->ips_ipsec_capab_ills_esp; 24267 24268 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 24269 24270 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 24271 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 24272 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 24273 24274 /* 24275 * Handle the case where the ill goes away while the SADB is 24276 * attempting to send messages. If it's going away, it's 24277 * nuking its shadow SADB, so we don't care.. 24278 */ 24279 24280 if (ill == NULL) 24281 continue; 24282 24283 if (sa != NULL) { 24284 /* 24285 * Make sure capabilities match before 24286 * sending SA to ill. 24287 */ 24288 if (!ipsec_capab_match(ill, cur_ici->ill_index, 24289 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 24290 ill_refrele(ill); 24291 continue; 24292 } 24293 24294 mutex_enter(&sa->ipsa_lock); 24295 sa->ipsa_flags |= IPSA_F_HW; 24296 mutex_exit(&sa->ipsa_lock); 24297 } 24298 24299 /* 24300 * Copy template message, and add it to the front 24301 * of the mblk ship list. We want to avoid holding 24302 * the ipsec_capab_ills_lock while sending the 24303 * message to the ills. 24304 * 24305 * The b_next and b_prev are temporarily used 24306 * to build a list of mblks to be sent down, and to 24307 * save the ill to which they must be sent. 24308 */ 24309 nmp = copymsg(mp); 24310 if (nmp == NULL) { 24311 ill_refrele(ill); 24312 continue; 24313 } 24314 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 24315 nmp->b_next = mp_ship_list; 24316 mp_ship_list = nmp; 24317 nmp->b_prev = (mblk_t *)ill; 24318 } 24319 24320 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24321 24322 nmp = mp_ship_list; 24323 while (nmp != NULL) { 24324 /* restore the mblk to a sane state */ 24325 next_mp = nmp->b_next; 24326 nmp->b_next = NULL; 24327 ill = (ill_t *)nmp->b_prev; 24328 nmp->b_prev = NULL; 24329 24330 /* 24331 * Ship the mblk to the ill, must be exclusive. Keep the 24332 * reference to the ill as qwriter_ip() does a ill_referele(). 24333 */ 24334 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 24335 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 24336 24337 nmp = next_mp; 24338 } 24339 24340 if (sa != NULL) 24341 IPSA_REFRELE(sa); 24342 freemsg(mp); 24343 } 24344 24345 24346 /* 24347 * Derive an interface id from the link layer address. 24348 * Knows about IEEE 802 and IEEE EUI-64 mappings. 24349 */ 24350 static boolean_t 24351 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24352 { 24353 char *addr; 24354 24355 if (phys_length != ETHERADDRL) 24356 return (B_FALSE); 24357 24358 /* Form EUI-64 like address */ 24359 addr = (char *)&v6addr->s6_addr32[2]; 24360 bcopy((char *)phys_addr, addr, 3); 24361 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 24362 addr[3] = (char)0xff; 24363 addr[4] = (char)0xfe; 24364 bcopy((char *)phys_addr + 3, addr + 5, 3); 24365 return (B_TRUE); 24366 } 24367 24368 /* ARGSUSED */ 24369 static boolean_t 24370 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24371 { 24372 return (B_FALSE); 24373 } 24374 24375 /* ARGSUSED */ 24376 static boolean_t 24377 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24378 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24379 { 24380 /* 24381 * Multicast address mappings used over Ethernet/802.X. 24382 * This address is used as a base for mappings. 24383 */ 24384 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 24385 0x00, 0x00, 0x00}; 24386 24387 /* 24388 * Extract low order 32 bits from IPv6 multicast address. 24389 * Or that into the link layer address, starting from the 24390 * second byte. 24391 */ 24392 *hw_start = 2; 24393 v6_extract_mask->s6_addr32[0] = 0; 24394 v6_extract_mask->s6_addr32[1] = 0; 24395 v6_extract_mask->s6_addr32[2] = 0; 24396 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24397 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 24398 return (B_TRUE); 24399 } 24400 24401 /* 24402 * Indicate by return value whether multicast is supported. If not, 24403 * this code should not touch/change any parameters. 24404 */ 24405 /* ARGSUSED */ 24406 static boolean_t 24407 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24408 uint32_t *hw_start, ipaddr_t *extract_mask) 24409 { 24410 /* 24411 * Multicast address mappings used over Ethernet/802.X. 24412 * This address is used as a base for mappings. 24413 */ 24414 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 24415 0x00, 0x00, 0x00 }; 24416 24417 if (phys_length != ETHERADDRL) 24418 return (B_FALSE); 24419 24420 *extract_mask = htonl(0x007fffff); 24421 *hw_start = 2; 24422 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 24423 return (B_TRUE); 24424 } 24425 24426 /* 24427 * Derive IPoIB interface id from the link layer address. 24428 */ 24429 static boolean_t 24430 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24431 { 24432 char *addr; 24433 24434 if (phys_length != 20) 24435 return (B_FALSE); 24436 addr = (char *)&v6addr->s6_addr32[2]; 24437 bcopy(phys_addr + 12, addr, 8); 24438 /* 24439 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 24440 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 24441 * rules. In these cases, the IBA considers these GUIDs to be in 24442 * "Modified EUI-64" format, and thus toggling the u/l bit is not 24443 * required; vendors are required not to assign global EUI-64's 24444 * that differ only in u/l bit values, thus guaranteeing uniqueness 24445 * of the interface identifier. Whether the GUID is in modified 24446 * or proper EUI-64 format, the ipv6 identifier must have the u/l 24447 * bit set to 1. 24448 */ 24449 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 24450 return (B_TRUE); 24451 } 24452 24453 /* 24454 * Note on mapping from multicast IP addresses to IPoIB multicast link 24455 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 24456 * The format of an IPoIB multicast address is: 24457 * 24458 * 4 byte QPN Scope Sign. Pkey 24459 * +--------------------------------------------+ 24460 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 24461 * +--------------------------------------------+ 24462 * 24463 * The Scope and Pkey components are properties of the IBA port and 24464 * network interface. They can be ascertained from the broadcast address. 24465 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 24466 */ 24467 24468 static boolean_t 24469 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24470 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24471 { 24472 /* 24473 * Base IPoIB IPv6 multicast address used for mappings. 24474 * Does not contain the IBA scope/Pkey values. 24475 */ 24476 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24477 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 24478 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24479 24480 /* 24481 * Extract low order 80 bits from IPv6 multicast address. 24482 * Or that into the link layer address, starting from the 24483 * sixth byte. 24484 */ 24485 *hw_start = 6; 24486 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 24487 24488 /* 24489 * Now fill in the IBA scope/Pkey values from the broadcast address. 24490 */ 24491 *(maddr + 5) = *(bphys_addr + 5); 24492 *(maddr + 8) = *(bphys_addr + 8); 24493 *(maddr + 9) = *(bphys_addr + 9); 24494 24495 v6_extract_mask->s6_addr32[0] = 0; 24496 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 24497 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 24498 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24499 return (B_TRUE); 24500 } 24501 24502 static boolean_t 24503 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24504 uint32_t *hw_start, ipaddr_t *extract_mask) 24505 { 24506 /* 24507 * Base IPoIB IPv4 multicast address used for mappings. 24508 * Does not contain the IBA scope/Pkey values. 24509 */ 24510 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24511 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 24512 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24513 24514 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 24515 return (B_FALSE); 24516 24517 /* 24518 * Extract low order 28 bits from IPv4 multicast address. 24519 * Or that into the link layer address, starting from the 24520 * sixteenth byte. 24521 */ 24522 *extract_mask = htonl(0x0fffffff); 24523 *hw_start = 16; 24524 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 24525 24526 /* 24527 * Now fill in the IBA scope/Pkey values from the broadcast address. 24528 */ 24529 *(maddr + 5) = *(bphys_addr + 5); 24530 *(maddr + 8) = *(bphys_addr + 8); 24531 *(maddr + 9) = *(bphys_addr + 9); 24532 return (B_TRUE); 24533 } 24534 24535 /* 24536 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 24537 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 24538 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 24539 * the link-local address is preferred. 24540 */ 24541 boolean_t 24542 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24543 { 24544 ipif_t *ipif; 24545 ipif_t *maybe_ipif = NULL; 24546 24547 mutex_enter(&ill->ill_lock); 24548 if (ill->ill_state_flags & ILL_CONDEMNED) { 24549 mutex_exit(&ill->ill_lock); 24550 if (ipifp != NULL) 24551 *ipifp = NULL; 24552 return (B_FALSE); 24553 } 24554 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24555 if (!IPIF_CAN_LOOKUP(ipif)) 24556 continue; 24557 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 24558 ipif->ipif_zoneid != ALL_ZONES) 24559 continue; 24560 if ((ipif->ipif_flags & flags) != flags) 24561 continue; 24562 24563 if (ipifp == NULL) { 24564 mutex_exit(&ill->ill_lock); 24565 ASSERT(maybe_ipif == NULL); 24566 return (B_TRUE); 24567 } 24568 if (!ill->ill_isv6 || 24569 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 24570 ipif_refhold_locked(ipif); 24571 mutex_exit(&ill->ill_lock); 24572 *ipifp = ipif; 24573 return (B_TRUE); 24574 } 24575 if (maybe_ipif == NULL) 24576 maybe_ipif = ipif; 24577 } 24578 if (ipifp != NULL) { 24579 if (maybe_ipif != NULL) 24580 ipif_refhold_locked(maybe_ipif); 24581 *ipifp = maybe_ipif; 24582 } 24583 mutex_exit(&ill->ill_lock); 24584 return (maybe_ipif != NULL); 24585 } 24586 24587 /* 24588 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24589 */ 24590 boolean_t 24591 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24592 { 24593 ill_t *illg; 24594 ip_stack_t *ipst = ill->ill_ipst; 24595 24596 /* 24597 * We look at the passed-in ill first without grabbing ill_g_lock. 24598 */ 24599 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24600 return (B_TRUE); 24601 } 24602 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24603 if (ill->ill_group == NULL) { 24604 /* ill not in a group */ 24605 rw_exit(&ipst->ips_ill_g_lock); 24606 return (B_FALSE); 24607 } 24608 24609 /* 24610 * There's no ipif in the zone on ill, however ill is part of an IPMP 24611 * group. We need to look for an ipif in the zone on all the ills in the 24612 * group. 24613 */ 24614 illg = ill->ill_group->illgrp_ill; 24615 do { 24616 /* 24617 * We don't call ipif_lookup_zoneid() on ill as we already know 24618 * that it's not there. 24619 */ 24620 if (illg != ill && 24621 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24622 break; 24623 } 24624 } while ((illg = illg->ill_group_next) != NULL); 24625 rw_exit(&ipst->ips_ill_g_lock); 24626 return (illg != NULL); 24627 } 24628 24629 /* 24630 * Check if this ill is only being used to send ICMP probes for IPMP 24631 */ 24632 boolean_t 24633 ill_is_probeonly(ill_t *ill) 24634 { 24635 /* 24636 * Check if the interface is FAILED, or INACTIVE 24637 */ 24638 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24639 return (B_TRUE); 24640 24641 return (B_FALSE); 24642 } 24643 24644 /* 24645 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24646 * If a pointer to an ipif_t is returned then the caller will need to do 24647 * an ill_refrele(). 24648 * 24649 * If there is no real interface which matches the ifindex, then it looks 24650 * for a group that has a matching index. In the case of a group match the 24651 * lifidx must be zero. We don't need emulate the logical interfaces 24652 * since IP Filter's use of netinfo doesn't use that. 24653 */ 24654 ipif_t * 24655 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24656 ip_stack_t *ipst) 24657 { 24658 ipif_t *ipif; 24659 ill_t *ill; 24660 24661 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24662 ipst); 24663 24664 if (ill == NULL) { 24665 /* Fallback to group names only if hook_emulation set */ 24666 if (!ipst->ips_ipmp_hook_emulation) 24667 return (NULL); 24668 24669 if (lifidx != 0) 24670 return (NULL); 24671 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24672 if (ill == NULL) 24673 return (NULL); 24674 } 24675 24676 mutex_enter(&ill->ill_lock); 24677 if (ill->ill_state_flags & ILL_CONDEMNED) { 24678 mutex_exit(&ill->ill_lock); 24679 ill_refrele(ill); 24680 return (NULL); 24681 } 24682 24683 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24684 if (!IPIF_CAN_LOOKUP(ipif)) 24685 continue; 24686 if (lifidx == ipif->ipif_id) { 24687 ipif_refhold_locked(ipif); 24688 break; 24689 } 24690 } 24691 24692 mutex_exit(&ill->ill_lock); 24693 ill_refrele(ill); 24694 return (ipif); 24695 } 24696 24697 /* 24698 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24699 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24700 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24701 * for details. 24702 */ 24703 void 24704 ill_fastpath_flush(ill_t *ill) 24705 { 24706 ip_stack_t *ipst = ill->ill_ipst; 24707 24708 nce_fastpath_list_dispatch(ill, NULL, NULL); 24709 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24710 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24711 } 24712 24713 /* 24714 * Set the physical address information for `ill' to the contents of the 24715 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24716 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24717 * EINPROGRESS will be returned. 24718 */ 24719 int 24720 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24721 { 24722 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24723 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24724 24725 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24726 24727 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24728 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24729 /* Changing DL_IPV6_TOKEN is not yet supported */ 24730 return (0); 24731 } 24732 24733 /* 24734 * We need to store up to two copies of `mp' in `ill'. Due to the 24735 * design of ipsq_pending_mp_add(), we can't pass them as separate 24736 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24737 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24738 */ 24739 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24740 freemsg(mp); 24741 return (ENOMEM); 24742 } 24743 24744 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24745 24746 /* 24747 * If we can quiesce the ill, then set the address. If not, then 24748 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24749 */ 24750 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24751 mutex_enter(&ill->ill_lock); 24752 if (!ill_is_quiescent(ill)) { 24753 /* call cannot fail since `conn_t *' argument is NULL */ 24754 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24755 mp, ILL_DOWN); 24756 mutex_exit(&ill->ill_lock); 24757 return (EINPROGRESS); 24758 } 24759 mutex_exit(&ill->ill_lock); 24760 24761 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24762 return (0); 24763 } 24764 24765 /* 24766 * Once the ill associated with `q' has quiesced, set its physical address 24767 * information to the values in `addrmp'. Note that two copies of `addrmp' 24768 * are passed (linked by b_cont), since we sometimes need to save two distinct 24769 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24770 * failure (we'll free the other copy if it's not needed). Since the ill_t 24771 * is quiesced, we know any stale IREs with the old address information have 24772 * already been removed, so we don't need to call ill_fastpath_flush(). 24773 */ 24774 /* ARGSUSED */ 24775 static void 24776 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24777 { 24778 ill_t *ill = q->q_ptr; 24779 mblk_t *addrmp2 = unlinkb(addrmp); 24780 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24781 uint_t addrlen, addroff; 24782 24783 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24784 24785 addroff = dlindp->dl_addr_offset; 24786 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24787 24788 switch (dlindp->dl_data) { 24789 case DL_IPV6_LINK_LAYER_ADDR: 24790 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24791 freemsg(addrmp2); 24792 break; 24793 24794 case DL_CURR_PHYS_ADDR: 24795 freemsg(ill->ill_phys_addr_mp); 24796 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24797 ill->ill_phys_addr_mp = addrmp; 24798 ill->ill_phys_addr_length = addrlen; 24799 24800 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24801 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24802 else 24803 freemsg(addrmp2); 24804 break; 24805 default: 24806 ASSERT(0); 24807 } 24808 24809 /* 24810 * If there are ipifs to bring up, ill_up_ipifs() will return nonzero, 24811 * and ipsq_current_finish() will be called by ip_rput_dlpi_writer() 24812 * or ip_arp_done() when the last ipif is brought up. 24813 */ 24814 if (ill_up_ipifs(ill, q, addrmp) == 0) 24815 ipsq_current_finish(ipsq); 24816 } 24817 24818 /* 24819 * Helper routine for setting the ill_nd_lla fields. 24820 */ 24821 void 24822 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24823 { 24824 freemsg(ill->ill_nd_lla_mp); 24825 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24826 ill->ill_nd_lla_mp = ndmp; 24827 ill->ill_nd_lla_len = addrlen; 24828 } 24829 24830 24831 24832 major_t IP_MAJ; 24833 #define IP "ip" 24834 24835 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24836 #define UDPDEV "/devices/pseudo/udp@0:udp" 24837 24838 /* 24839 * Issue REMOVEIF ioctls to have the loopback interfaces 24840 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24841 * the former going away when the user-level processes in the zone 24842 * are killed * and the latter are cleaned up by the stream head 24843 * str_stack_shutdown callback that undoes all I_PLINKs. 24844 */ 24845 void 24846 ip_loopback_cleanup(ip_stack_t *ipst) 24847 { 24848 int error; 24849 ldi_handle_t lh = NULL; 24850 ldi_ident_t li = NULL; 24851 int rval; 24852 cred_t *cr; 24853 struct strioctl iocb; 24854 struct lifreq lifreq; 24855 24856 IP_MAJ = ddi_name_to_major(IP); 24857 24858 #ifdef NS_DEBUG 24859 (void) printf("ip_loopback_cleanup() stackid %d\n", 24860 ipst->ips_netstack->netstack_stackid); 24861 #endif 24862 24863 bzero(&lifreq, sizeof (lifreq)); 24864 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24865 24866 error = ldi_ident_from_major(IP_MAJ, &li); 24867 if (error) { 24868 #ifdef DEBUG 24869 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24870 error); 24871 #endif 24872 return; 24873 } 24874 24875 cr = zone_get_kcred(netstackid_to_zoneid( 24876 ipst->ips_netstack->netstack_stackid)); 24877 ASSERT(cr != NULL); 24878 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24879 if (error) { 24880 #ifdef DEBUG 24881 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24882 error); 24883 #endif 24884 goto out; 24885 } 24886 iocb.ic_cmd = SIOCLIFREMOVEIF; 24887 iocb.ic_timout = 15; 24888 iocb.ic_len = sizeof (lifreq); 24889 iocb.ic_dp = (char *)&lifreq; 24890 24891 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24892 /* LINTED - statement has no consequent */ 24893 if (error) { 24894 #ifdef NS_DEBUG 24895 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24896 "UDP6 error %d\n", error); 24897 #endif 24898 } 24899 (void) ldi_close(lh, FREAD|FWRITE, cr); 24900 lh = NULL; 24901 24902 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24903 if (error) { 24904 #ifdef NS_DEBUG 24905 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24906 error); 24907 #endif 24908 goto out; 24909 } 24910 24911 iocb.ic_cmd = SIOCLIFREMOVEIF; 24912 iocb.ic_timout = 15; 24913 iocb.ic_len = sizeof (lifreq); 24914 iocb.ic_dp = (char *)&lifreq; 24915 24916 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24917 /* LINTED - statement has no consequent */ 24918 if (error) { 24919 #ifdef NS_DEBUG 24920 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24921 "UDP error %d\n", error); 24922 #endif 24923 } 24924 (void) ldi_close(lh, FREAD|FWRITE, cr); 24925 lh = NULL; 24926 24927 out: 24928 /* Close layered handles */ 24929 if (lh) 24930 (void) ldi_close(lh, FREAD|FWRITE, cr); 24931 if (li) 24932 ldi_ident_release(li); 24933 24934 crfree(cr); 24935 } 24936