1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strlog.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/cmn_err.h> 41 #include <sys/kstat.h> 42 #include <sys/debug.h> 43 #include <sys/zone.h> 44 #include <sys/sunldi.h> 45 #include <sys/file.h> 46 #include <sys/bitmap.h> 47 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/param.h> 51 #include <sys/socket.h> 52 #include <sys/isa_defs.h> 53 #include <net/if.h> 54 #include <net/if_arp.h> 55 #include <net/if_types.h> 56 #include <net/if_dl.h> 57 #include <net/route.h> 58 #include <sys/sockio.h> 59 #include <netinet/in.h> 60 #include <netinet/ip6.h> 61 #include <netinet/icmp6.h> 62 #include <netinet/igmp_var.h> 63 #include <sys/strsun.h> 64 #include <sys/policy.h> 65 #include <sys/ethernet.h> 66 67 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 68 #include <inet/mi.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/mib2.h> 72 #include <inet/ip.h> 73 #include <inet/ip6.h> 74 #include <inet/ip6_asp.h> 75 #include <inet/tcp.h> 76 #include <inet/ip_multi.h> 77 #include <inet/ip_ire.h> 78 #include <inet/ip_ftable.h> 79 #include <inet/ip_rts.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/ip_if.h> 82 #include <inet/ip_impl.h> 83 #include <inet/tun.h> 84 #include <inet/sctp_ip.h> 85 #include <inet/ip_netinfo.h> 86 #include <inet/mib2.h> 87 88 #include <net/pfkeyv2.h> 89 #include <inet/ipsec_info.h> 90 #include <inet/sadb.h> 91 #include <inet/ipsec_impl.h> 92 #include <sys/iphada.h> 93 94 95 #include <netinet/igmp.h> 96 #include <inet/ip_listutils.h> 97 #include <inet/ipclassifier.h> 98 #include <sys/mac.h> 99 100 #include <sys/systeminfo.h> 101 #include <sys/bootconf.h> 102 103 #include <sys/tsol/tndb.h> 104 #include <sys/tsol/tnet.h> 105 106 /* The character which tells where the ill_name ends */ 107 #define IPIF_SEPARATOR_CHAR ':' 108 109 /* IP ioctl function table entry */ 110 typedef struct ipft_s { 111 int ipft_cmd; 112 pfi_t ipft_pfi; 113 int ipft_min_size; 114 int ipft_flags; 115 } ipft_t; 116 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 117 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 118 119 typedef struct ip_sock_ar_s { 120 union { 121 area_t ip_sock_area; 122 ared_t ip_sock_ared; 123 areq_t ip_sock_areq; 124 } ip_sock_ar_u; 125 queue_t *ip_sock_ar_q; 126 } ip_sock_ar_t; 127 128 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 129 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 130 char *value, caddr_t cp, cred_t *ioc_cr); 131 132 static boolean_t ill_is_quiescent(ill_t *); 133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 134 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 135 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 140 queue_t *q, mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 142 mblk_t *mp); 143 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 146 queue_t *q, mblk_t *mp, boolean_t need_up); 147 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 148 int ioccmd, struct linkblk *li, boolean_t doconsist); 149 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 150 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 151 static void ipsq_flush(ill_t *ill); 152 153 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 154 queue_t *q, mblk_t *mp, boolean_t need_up); 155 static void ipsq_delete(ipsq_t *); 156 157 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 158 boolean_t initialize); 159 static void ipif_check_bcast_ires(ipif_t *test_ipif); 160 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 161 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 162 boolean_t isv6); 163 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 164 static void ipif_delete_cache_ire(ire_t *, char *); 165 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 166 static void ipif_free(ipif_t *ipif); 167 static void ipif_free_tail(ipif_t *ipif); 168 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 169 static void ipif_multicast_down(ipif_t *ipif); 170 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 171 static void ipif_set_default(ipif_t *ipif); 172 static int ipif_set_values(queue_t *q, mblk_t *mp, 173 char *interf_name, uint_t *ppa); 174 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 175 queue_t *q); 176 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 177 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 178 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 179 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 180 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 181 182 static int ill_alloc_ppa(ill_if_t *, ill_t *); 183 static int ill_arp_off(ill_t *ill); 184 static int ill_arp_on(ill_t *ill); 185 static void ill_delete_interface_type(ill_if_t *); 186 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 187 static void ill_dl_down(ill_t *ill); 188 static void ill_down(ill_t *ill); 189 static void ill_downi(ire_t *ire, char *ill_arg); 190 static void ill_free_mib(ill_t *ill); 191 static void ill_glist_delete(ill_t *); 192 static boolean_t ill_has_usable_ipif(ill_t *); 193 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 194 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 195 static void ill_phyint_free(ill_t *ill); 196 static void ill_phyint_reinit(ill_t *ill); 197 static void ill_set_nce_router_flags(ill_t *, boolean_t); 198 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 199 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 200 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 201 static void ill_stq_cache_delete(ire_t *, char *); 202 203 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 204 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 in6_addr_t *); 207 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 ipaddr_t *); 209 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 210 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 211 in6_addr_t *); 212 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 213 ipaddr_t *); 214 215 static void ipif_save_ire(ipif_t *, ire_t *); 216 static void ipif_remove_ire(ipif_t *, ire_t *); 217 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 218 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 219 220 /* 221 * Per-ill IPsec capabilities management. 222 */ 223 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 224 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 225 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 226 static void ill_ipsec_capab_delete(ill_t *, uint_t); 227 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 228 static void ill_capability_proto(ill_t *, int, mblk_t *); 229 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 230 boolean_t); 231 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 234 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 236 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 238 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 239 dl_capability_sub_t *); 240 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 241 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 242 static void ill_capability_lso_reset(ill_t *, mblk_t **); 243 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 244 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 245 static void ill_capability_dls_reset(ill_t *, mblk_t **); 246 static void ill_capability_dls_disable(ill_t *); 247 248 static void illgrp_cache_delete(ire_t *, char *); 249 static void illgrp_delete(ill_t *ill); 250 static void illgrp_reset_schednext(ill_t *ill); 251 252 static ill_t *ill_prev_usesrc(ill_t *); 253 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 254 static void ill_disband_usesrc_group(ill_t *); 255 256 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 257 258 #ifdef DEBUG 259 static void ill_trace_cleanup(const ill_t *); 260 static void ipif_trace_cleanup(const ipif_t *); 261 #endif 262 263 /* 264 * if we go over the memory footprint limit more than once in this msec 265 * interval, we'll start pruning aggressively. 266 */ 267 int ip_min_frag_prune_time = 0; 268 269 /* 270 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 271 * and the IPsec DOI 272 */ 273 #define MAX_IPSEC_ALGS 256 274 275 #define BITSPERBYTE 8 276 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 277 278 #define IPSEC_ALG_ENABLE(algs, algid) \ 279 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 280 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 281 282 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 283 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 284 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 285 286 typedef uint8_t ipsec_capab_elem_t; 287 288 /* 289 * Per-algorithm parameters. Note that at present, only encryption 290 * algorithms have variable keysize (IKE does not provide a way to negotiate 291 * auth algorithm keysize). 292 * 293 * All sizes here are in bits. 294 */ 295 typedef struct 296 { 297 uint16_t minkeylen; 298 uint16_t maxkeylen; 299 } ipsec_capab_algparm_t; 300 301 /* 302 * Per-ill capabilities. 303 */ 304 struct ill_ipsec_capab_s { 305 ipsec_capab_elem_t *encr_hw_algs; 306 ipsec_capab_elem_t *auth_hw_algs; 307 uint32_t algs_size; /* size of _hw_algs in bytes */ 308 /* algorithm key lengths */ 309 ipsec_capab_algparm_t *encr_algparm; 310 uint32_t encr_algparm_size; 311 uint32_t encr_algparm_end; 312 }; 313 314 /* 315 * The field values are larger than strictly necessary for simple 316 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 317 */ 318 static area_t ip_area_template = { 319 AR_ENTRY_ADD, /* area_cmd */ 320 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 321 /* area_name_offset */ 322 /* area_name_length temporarily holds this structure length */ 323 sizeof (area_t), /* area_name_length */ 324 IP_ARP_PROTO_TYPE, /* area_proto */ 325 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 326 IP_ADDR_LEN, /* area_proto_addr_length */ 327 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 328 /* area_proto_mask_offset */ 329 0, /* area_flags */ 330 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 331 /* area_hw_addr_offset */ 332 /* Zero length hw_addr_length means 'use your idea of the address' */ 333 0 /* area_hw_addr_length */ 334 }; 335 336 /* 337 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 338 * support 339 */ 340 static area_t ip6_area_template = { 341 AR_ENTRY_ADD, /* area_cmd */ 342 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 343 /* area_name_offset */ 344 /* area_name_length temporarily holds this structure length */ 345 sizeof (area_t), /* area_name_length */ 346 IP_ARP_PROTO_TYPE, /* area_proto */ 347 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 348 IPV6_ADDR_LEN, /* area_proto_addr_length */ 349 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 350 /* area_proto_mask_offset */ 351 0, /* area_flags */ 352 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 353 /* area_hw_addr_offset */ 354 /* Zero length hw_addr_length means 'use your idea of the address' */ 355 0 /* area_hw_addr_length */ 356 }; 357 358 static ared_t ip_ared_template = { 359 AR_ENTRY_DELETE, 360 sizeof (ared_t) + IP_ADDR_LEN, 361 sizeof (ared_t), 362 IP_ARP_PROTO_TYPE, 363 sizeof (ared_t), 364 IP_ADDR_LEN 365 }; 366 367 static ared_t ip6_ared_template = { 368 AR_ENTRY_DELETE, 369 sizeof (ared_t) + IPV6_ADDR_LEN, 370 sizeof (ared_t), 371 IP_ARP_PROTO_TYPE, 372 sizeof (ared_t), 373 IPV6_ADDR_LEN 374 }; 375 376 /* 377 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 378 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 379 * areq is used). 380 */ 381 static areq_t ip_areq_template = { 382 AR_ENTRY_QUERY, /* cmd */ 383 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 384 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 385 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 386 sizeof (areq_t), /* target addr offset */ 387 IP_ADDR_LEN, /* target addr_length */ 388 0, /* flags */ 389 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 390 IP_ADDR_LEN, /* sender addr length */ 391 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 392 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 393 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 394 /* anything else filled in by the code */ 395 }; 396 397 static arc_t ip_aru_template = { 398 AR_INTERFACE_UP, 399 sizeof (arc_t), /* Name offset */ 400 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 401 }; 402 403 static arc_t ip_ard_template = { 404 AR_INTERFACE_DOWN, 405 sizeof (arc_t), /* Name offset */ 406 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 407 }; 408 409 static arc_t ip_aron_template = { 410 AR_INTERFACE_ON, 411 sizeof (arc_t), /* Name offset */ 412 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 413 }; 414 415 static arc_t ip_aroff_template = { 416 AR_INTERFACE_OFF, 417 sizeof (arc_t), /* Name offset */ 418 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 419 }; 420 421 static arma_t ip_arma_multi_template = { 422 AR_MAPPING_ADD, 423 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 424 /* Name offset */ 425 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 426 IP_ARP_PROTO_TYPE, 427 sizeof (arma_t), /* proto_addr_offset */ 428 IP_ADDR_LEN, /* proto_addr_length */ 429 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 430 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 431 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 432 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 433 IP_MAX_HW_LEN, /* hw_addr_length */ 434 0, /* hw_mapping_start */ 435 }; 436 437 static ipft_t ip_ioctl_ftbl[] = { 438 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 439 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 440 IPFT_F_NO_REPLY }, 441 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 442 IPFT_F_NO_REPLY }, 443 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 444 { 0 } 445 }; 446 447 /* Simple ICMP IP Header Template */ 448 static ipha_t icmp_ipha = { 449 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 450 }; 451 452 /* Flag descriptors for ip_ipif_report */ 453 static nv_t ipif_nv_tbl[] = { 454 { IPIF_UP, "UP" }, 455 { IPIF_BROADCAST, "BROADCAST" }, 456 { ILLF_DEBUG, "DEBUG" }, 457 { PHYI_LOOPBACK, "LOOPBACK" }, 458 { IPIF_POINTOPOINT, "POINTOPOINT" }, 459 { ILLF_NOTRAILERS, "NOTRAILERS" }, 460 { PHYI_RUNNING, "RUNNING" }, 461 { ILLF_NOARP, "NOARP" }, 462 { PHYI_PROMISC, "PROMISC" }, 463 { PHYI_ALLMULTI, "ALLMULTI" }, 464 { PHYI_INTELLIGENT, "INTELLIGENT" }, 465 { ILLF_MULTICAST, "MULTICAST" }, 466 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 467 { IPIF_UNNUMBERED, "UNNUMBERED" }, 468 { IPIF_DHCPRUNNING, "DHCP" }, 469 { IPIF_PRIVATE, "PRIVATE" }, 470 { IPIF_NOXMIT, "NOXMIT" }, 471 { IPIF_NOLOCAL, "NOLOCAL" }, 472 { IPIF_DEPRECATED, "DEPRECATED" }, 473 { IPIF_PREFERRED, "PREFERRED" }, 474 { IPIF_TEMPORARY, "TEMPORARY" }, 475 { IPIF_ADDRCONF, "ADDRCONF" }, 476 { PHYI_VIRTUAL, "VIRTUAL" }, 477 { ILLF_ROUTER, "ROUTER" }, 478 { ILLF_NONUD, "NONUD" }, 479 { IPIF_ANYCAST, "ANYCAST" }, 480 { ILLF_NORTEXCH, "NORTEXCH" }, 481 { ILLF_IPV4, "IPV4" }, 482 { ILLF_IPV6, "IPV6" }, 483 { IPIF_NOFAILOVER, "NOFAILOVER" }, 484 { PHYI_FAILED, "FAILED" }, 485 { PHYI_STANDBY, "STANDBY" }, 486 { PHYI_INACTIVE, "INACTIVE" }, 487 { PHYI_OFFLINE, "OFFLINE" }, 488 }; 489 490 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 491 492 static ip_m_t ip_m_tbl[] = { 493 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 494 ip_ether_v6intfid }, 495 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 496 ip_nodef_v6intfid }, 497 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_nodef_v6intfid }, 499 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_nodef_v6intfid }, 501 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_ether_v6intfid }, 503 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 504 ip_ib_v6intfid }, 505 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 506 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 507 ip_nodef_v6intfid } 508 }; 509 510 static ill_t ill_null; /* Empty ILL for init. */ 511 char ipif_loopback_name[] = "lo0"; 512 static char *ipv4_forward_suffix = ":ip_forwarding"; 513 static char *ipv6_forward_suffix = ":ip6_forwarding"; 514 static sin6_t sin6_null; /* Zero address for quick clears */ 515 static sin_t sin_null; /* Zero address for quick clears */ 516 517 /* When set search for unused ipif_seqid */ 518 static ipif_t ipif_zero; 519 520 /* 521 * ppa arena is created after these many 522 * interfaces have been plumbed. 523 */ 524 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 525 526 /* 527 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 528 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 529 * set through platform specific code (Niagara/Ontario). 530 */ 531 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 532 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 533 534 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 535 536 static uint_t 537 ipif_rand(ip_stack_t *ipst) 538 { 539 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 540 12345; 541 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 542 } 543 544 /* 545 * Allocate per-interface mibs. 546 * Returns true if ok. False otherwise. 547 * ipsq may not yet be allocated (loopback case ). 548 */ 549 static boolean_t 550 ill_allocate_mibs(ill_t *ill) 551 { 552 /* Already allocated? */ 553 if (ill->ill_ip_mib != NULL) { 554 if (ill->ill_isv6) 555 ASSERT(ill->ill_icmp6_mib != NULL); 556 return (B_TRUE); 557 } 558 559 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 560 KM_NOSLEEP); 561 if (ill->ill_ip_mib == NULL) { 562 return (B_FALSE); 563 } 564 565 /* Setup static information */ 566 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 567 sizeof (mib2_ipIfStatsEntry_t)); 568 if (ill->ill_isv6) { 569 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 570 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 571 sizeof (mib2_ipv6AddrEntry_t)); 572 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 573 sizeof (mib2_ipv6RouteEntry_t)); 574 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 575 sizeof (mib2_ipv6NetToMediaEntry_t)); 576 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 577 sizeof (ipv6_member_t)); 578 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 579 sizeof (ipv6_grpsrc_t)); 580 } else { 581 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 582 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 583 sizeof (mib2_ipAddrEntry_t)); 584 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 585 sizeof (mib2_ipRouteEntry_t)); 586 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 587 sizeof (mib2_ipNetToMediaEntry_t)); 588 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 589 sizeof (ip_member_t)); 590 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 591 sizeof (ip_grpsrc_t)); 592 593 /* 594 * For a v4 ill, we are done at this point, because per ill 595 * icmp mibs are only used for v6. 596 */ 597 return (B_TRUE); 598 } 599 600 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 601 KM_NOSLEEP); 602 if (ill->ill_icmp6_mib == NULL) { 603 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 604 ill->ill_ip_mib = NULL; 605 return (B_FALSE); 606 } 607 /* static icmp info */ 608 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 609 sizeof (mib2_ipv6IfIcmpEntry_t); 610 /* 611 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 612 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 613 * -> ill_phyint_reinit 614 */ 615 return (B_TRUE); 616 } 617 618 /* 619 * Common code for preparation of ARP commands. Two points to remember: 620 * 1) The ill_name is tacked on at the end of the allocated space so 621 * the templates name_offset field must contain the total space 622 * to allocate less the name length. 623 * 624 * 2) The templates name_length field should contain the *template* 625 * length. We use it as a parameter to bcopy() and then write 626 * the real ill_name_length into the name_length field of the copy. 627 * (Always called as writer.) 628 */ 629 mblk_t * 630 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 631 { 632 arc_t *arc = (arc_t *)template; 633 char *cp; 634 int len; 635 mblk_t *mp; 636 uint_t name_length = ill->ill_name_length; 637 uint_t template_len = arc->arc_name_length; 638 639 len = arc->arc_name_offset + name_length; 640 mp = allocb(len, BPRI_HI); 641 if (mp == NULL) 642 return (NULL); 643 cp = (char *)mp->b_rptr; 644 mp->b_wptr = (uchar_t *)&cp[len]; 645 if (template_len) 646 bcopy(template, cp, template_len); 647 if (len > template_len) 648 bzero(&cp[template_len], len - template_len); 649 mp->b_datap->db_type = M_PROTO; 650 651 arc = (arc_t *)cp; 652 arc->arc_name_length = name_length; 653 cp = (char *)arc + arc->arc_name_offset; 654 bcopy(ill->ill_name, cp, name_length); 655 656 if (addr) { 657 area_t *area = (area_t *)mp->b_rptr; 658 659 cp = (char *)area + area->area_proto_addr_offset; 660 bcopy(addr, cp, area->area_proto_addr_length); 661 if (area->area_cmd == AR_ENTRY_ADD) { 662 cp = (char *)area; 663 len = area->area_proto_addr_length; 664 if (area->area_proto_mask_offset) 665 cp += area->area_proto_mask_offset; 666 else 667 cp += area->area_proto_addr_offset + len; 668 while (len-- > 0) 669 *cp++ = (char)~0; 670 } 671 } 672 return (mp); 673 } 674 675 mblk_t * 676 ipif_area_alloc(ipif_t *ipif) 677 { 678 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 679 (char *)&ipif->ipif_lcl_addr)); 680 } 681 682 mblk_t * 683 ipif_ared_alloc(ipif_t *ipif) 684 { 685 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 686 (char *)&ipif->ipif_lcl_addr)); 687 } 688 689 mblk_t * 690 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 691 { 692 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 693 (char *)&addr)); 694 } 695 696 /* 697 * Completely vaporize a lower level tap and all associated interfaces. 698 * ill_delete is called only out of ip_close when the device control 699 * stream is being closed. 700 */ 701 void 702 ill_delete(ill_t *ill) 703 { 704 ipif_t *ipif; 705 ill_t *prev_ill; 706 ip_stack_t *ipst = ill->ill_ipst; 707 708 /* 709 * ill_delete may be forcibly entering the ipsq. The previous 710 * ioctl may not have completed and may need to be aborted. 711 * ipsq_flush takes care of it. If we don't need to enter the 712 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 713 * ill_delete_tail is sufficient. 714 */ 715 ipsq_flush(ill); 716 717 /* 718 * Nuke all interfaces. ipif_free will take down the interface, 719 * remove it from the list, and free the data structure. 720 * Walk down the ipif list and remove the logical interfaces 721 * first before removing the main ipif. We can't unplumb 722 * zeroth interface first in the case of IPv6 as reset_conn_ill 723 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 724 * POINTOPOINT. 725 * 726 * If ill_ipif was not properly initialized (i.e low on memory), 727 * then no interfaces to clean up. In this case just clean up the 728 * ill. 729 */ 730 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 731 ipif_free(ipif); 732 733 /* 734 * Used only by ill_arp_on and ill_arp_off, which are writers. 735 * So nobody can be using this mp now. Free the mp allocated for 736 * honoring ILLF_NOARP 737 */ 738 freemsg(ill->ill_arp_on_mp); 739 ill->ill_arp_on_mp = NULL; 740 741 /* Clean up msgs on pending upcalls for mrouted */ 742 reset_mrt_ill(ill); 743 744 /* 745 * ipif_free -> reset_conn_ipif will remove all multicast 746 * references for IPv4. For IPv6, we need to do it here as 747 * it points only at ills. 748 */ 749 reset_conn_ill(ill); 750 751 /* 752 * ill_down will arrange to blow off any IRE's dependent on this 753 * ILL, and shut down fragmentation reassembly. 754 */ 755 ill_down(ill); 756 757 /* Let SCTP know, so that it can remove this from its list. */ 758 sctp_update_ill(ill, SCTP_ILL_REMOVE); 759 760 /* 761 * If an address on this ILL is being used as a source address then 762 * clear out the pointers in other ILLs that point to this ILL. 763 */ 764 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 765 if (ill->ill_usesrc_grp_next != NULL) { 766 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 767 ill_disband_usesrc_group(ill); 768 } else { /* consumer of the usesrc ILL */ 769 prev_ill = ill_prev_usesrc(ill); 770 prev_ill->ill_usesrc_grp_next = 771 ill->ill_usesrc_grp_next; 772 } 773 } 774 rw_exit(&ipst->ips_ill_g_usesrc_lock); 775 } 776 777 static void 778 ipif_non_duplicate(ipif_t *ipif) 779 { 780 ill_t *ill = ipif->ipif_ill; 781 mutex_enter(&ill->ill_lock); 782 if (ipif->ipif_flags & IPIF_DUPLICATE) { 783 ipif->ipif_flags &= ~IPIF_DUPLICATE; 784 ASSERT(ill->ill_ipif_dup_count > 0); 785 ill->ill_ipif_dup_count--; 786 } 787 mutex_exit(&ill->ill_lock); 788 } 789 790 /* 791 * ill_delete_tail is called from ip_modclose after all references 792 * to the closing ill are gone. The wait is done in ip_modclose 793 */ 794 void 795 ill_delete_tail(ill_t *ill) 796 { 797 mblk_t **mpp; 798 ipif_t *ipif; 799 ip_stack_t *ipst = ill->ill_ipst; 800 801 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 802 ipif_non_duplicate(ipif); 803 ipif_down_tail(ipif); 804 } 805 806 ASSERT(ill->ill_ipif_dup_count == 0 && 807 ill->ill_arp_down_mp == NULL && 808 ill->ill_arp_del_mapping_mp == NULL); 809 810 /* 811 * If polling capability is enabled (which signifies direct 812 * upcall into IP and driver has ill saved as a handle), 813 * we need to make sure that unbind has completed before we 814 * let the ill disappear and driver no longer has any reference 815 * to this ill. 816 */ 817 mutex_enter(&ill->ill_lock); 818 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 819 cv_wait(&ill->ill_cv, &ill->ill_lock); 820 mutex_exit(&ill->ill_lock); 821 822 /* 823 * Clean up polling and soft ring capabilities 824 */ 825 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 826 ill_capability_dls_disable(ill); 827 828 if (ill->ill_net_type != IRE_LOOPBACK) 829 qprocsoff(ill->ill_rq); 830 831 /* 832 * We do an ipsq_flush once again now. New messages could have 833 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 834 * could also have landed up if an ioctl thread had looked up 835 * the ill before we set the ILL_CONDEMNED flag, but not yet 836 * enqueued the ioctl when we did the ipsq_flush last time. 837 */ 838 ipsq_flush(ill); 839 840 /* 841 * Free capabilities. 842 */ 843 if (ill->ill_ipsec_capab_ah != NULL) { 844 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 845 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 846 ill->ill_ipsec_capab_ah = NULL; 847 } 848 849 if (ill->ill_ipsec_capab_esp != NULL) { 850 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 851 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 852 ill->ill_ipsec_capab_esp = NULL; 853 } 854 855 if (ill->ill_mdt_capab != NULL) { 856 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 857 ill->ill_mdt_capab = NULL; 858 } 859 860 if (ill->ill_hcksum_capab != NULL) { 861 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 862 ill->ill_hcksum_capab = NULL; 863 } 864 865 if (ill->ill_zerocopy_capab != NULL) { 866 kmem_free(ill->ill_zerocopy_capab, 867 sizeof (ill_zerocopy_capab_t)); 868 ill->ill_zerocopy_capab = NULL; 869 } 870 871 if (ill->ill_lso_capab != NULL) { 872 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 873 ill->ill_lso_capab = NULL; 874 } 875 876 if (ill->ill_dls_capab != NULL) { 877 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 878 ill->ill_dls_capab->ill_unbind_conn = NULL; 879 kmem_free(ill->ill_dls_capab, 880 sizeof (ill_dls_capab_t) + 881 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 882 ill->ill_dls_capab = NULL; 883 } 884 885 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 886 887 while (ill->ill_ipif != NULL) 888 ipif_free_tail(ill->ill_ipif); 889 890 /* 891 * We have removed all references to ilm from conn and the ones joined 892 * within the kernel. 893 * 894 * We don't walk conns, mrts and ires because 895 * 896 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 897 * 2) ill_down ->ill_downi walks all the ires and cleans up 898 * ill references. 899 */ 900 ASSERT(ilm_walk_ill(ill) == 0); 901 /* 902 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 903 * could free the phyint. No more reference to the phyint after this 904 * point. 905 */ 906 (void) ill_glist_delete(ill); 907 908 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 909 if (ill->ill_ndd_name != NULL) 910 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 911 rw_exit(&ipst->ips_ip_g_nd_lock); 912 913 if (ill->ill_frag_ptr != NULL) { 914 uint_t count; 915 916 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 917 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 918 } 919 mi_free(ill->ill_frag_ptr); 920 ill->ill_frag_ptr = NULL; 921 ill->ill_frag_hash_tbl = NULL; 922 } 923 924 freemsg(ill->ill_nd_lla_mp); 925 /* Free all retained control messages. */ 926 mpp = &ill->ill_first_mp_to_free; 927 do { 928 while (mpp[0]) { 929 mblk_t *mp; 930 mblk_t *mp1; 931 932 mp = mpp[0]; 933 mpp[0] = mp->b_next; 934 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 935 mp1->b_next = NULL; 936 mp1->b_prev = NULL; 937 } 938 freemsg(mp); 939 } 940 } while (mpp++ != &ill->ill_last_mp_to_free); 941 942 ill_free_mib(ill); 943 944 #ifdef DEBUG 945 ill_trace_cleanup(ill); 946 #endif 947 948 /* Drop refcnt here */ 949 netstack_rele(ill->ill_ipst->ips_netstack); 950 ill->ill_ipst = NULL; 951 } 952 953 static void 954 ill_free_mib(ill_t *ill) 955 { 956 ip_stack_t *ipst = ill->ill_ipst; 957 958 /* 959 * MIB statistics must not be lost, so when an interface 960 * goes away the counter values will be added to the global 961 * MIBs. 962 */ 963 if (ill->ill_ip_mib != NULL) { 964 if (ill->ill_isv6) { 965 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 966 ill->ill_ip_mib); 967 } else { 968 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 969 ill->ill_ip_mib); 970 } 971 972 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 973 ill->ill_ip_mib = NULL; 974 } 975 if (ill->ill_icmp6_mib != NULL) { 976 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 977 ill->ill_icmp6_mib); 978 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 979 ill->ill_icmp6_mib = NULL; 980 } 981 } 982 983 /* 984 * Concatenate together a physical address and a sap. 985 * 986 * Sap_lengths are interpreted as follows: 987 * sap_length == 0 ==> no sap 988 * sap_length > 0 ==> sap is at the head of the dlpi address 989 * sap_length < 0 ==> sap is at the tail of the dlpi address 990 */ 991 static void 992 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 993 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 994 { 995 uint16_t sap_addr = (uint16_t)sap_src; 996 997 if (sap_length == 0) { 998 if (phys_src == NULL) 999 bzero(dst, phys_length); 1000 else 1001 bcopy(phys_src, dst, phys_length); 1002 } else if (sap_length < 0) { 1003 if (phys_src == NULL) 1004 bzero(dst, phys_length); 1005 else 1006 bcopy(phys_src, dst, phys_length); 1007 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1008 } else { 1009 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1010 if (phys_src == NULL) 1011 bzero((char *)dst + sap_length, phys_length); 1012 else 1013 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1014 } 1015 } 1016 1017 /* 1018 * Generate a dl_unitdata_req mblk for the device and address given. 1019 * addr_length is the length of the physical portion of the address. 1020 * If addr is NULL include an all zero address of the specified length. 1021 * TRUE? In any case, addr_length is taken to be the entire length of the 1022 * dlpi address, including the absolute value of sap_length. 1023 */ 1024 mblk_t * 1025 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1026 t_scalar_t sap_length) 1027 { 1028 dl_unitdata_req_t *dlur; 1029 mblk_t *mp; 1030 t_scalar_t abs_sap_length; /* absolute value */ 1031 1032 abs_sap_length = ABS(sap_length); 1033 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1034 DL_UNITDATA_REQ); 1035 if (mp == NULL) 1036 return (NULL); 1037 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1038 /* HACK: accomodate incompatible DLPI drivers */ 1039 if (addr_length == 8) 1040 addr_length = 6; 1041 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1042 dlur->dl_dest_addr_offset = sizeof (*dlur); 1043 dlur->dl_priority.dl_min = 0; 1044 dlur->dl_priority.dl_max = 0; 1045 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1046 (uchar_t *)&dlur[1]); 1047 return (mp); 1048 } 1049 1050 /* 1051 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1052 * Return an error if we already have 1 or more ioctls in progress. 1053 * This is used only for non-exclusive ioctls. Currently this is used 1054 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1055 * and thus need to use ipsq_pending_mp_add. 1056 */ 1057 boolean_t 1058 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1059 { 1060 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1061 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1062 /* 1063 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1064 */ 1065 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1066 (add_mp->b_datap->db_type == M_IOCTL)); 1067 1068 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1069 /* 1070 * Return error if the conn has started closing. The conn 1071 * could have finished cleaning up the pending mp list, 1072 * If so we should not add another mp to the list negating 1073 * the cleanup. 1074 */ 1075 if (connp->conn_state_flags & CONN_CLOSING) 1076 return (B_FALSE); 1077 /* 1078 * Add the pending mp to the head of the list, chained by b_next. 1079 * Note down the conn on which the ioctl request came, in b_prev. 1080 * This will be used to later get the conn, when we get a response 1081 * on the ill queue, from some other module (typically arp) 1082 */ 1083 add_mp->b_next = (void *)ill->ill_pending_mp; 1084 add_mp->b_queue = CONNP_TO_WQ(connp); 1085 ill->ill_pending_mp = add_mp; 1086 if (connp != NULL) 1087 connp->conn_oper_pending_ill = ill; 1088 return (B_TRUE); 1089 } 1090 1091 /* 1092 * Retrieve the ill_pending_mp and return it. We have to walk the list 1093 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1094 */ 1095 mblk_t * 1096 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1097 { 1098 mblk_t *prev = NULL; 1099 mblk_t *curr = NULL; 1100 uint_t id; 1101 conn_t *connp; 1102 1103 /* 1104 * When the conn closes, conn_ioctl_cleanup needs to clean 1105 * up the pending mp, but it does not know the ioc_id and 1106 * passes in a zero for it. 1107 */ 1108 mutex_enter(&ill->ill_lock); 1109 if (ioc_id != 0) 1110 *connpp = NULL; 1111 1112 /* Search the list for the appropriate ioctl based on ioc_id */ 1113 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1114 prev = curr, curr = curr->b_next) { 1115 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1116 connp = Q_TO_CONN(curr->b_queue); 1117 /* Match based on the ioc_id or based on the conn */ 1118 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1119 break; 1120 } 1121 1122 if (curr != NULL) { 1123 /* Unlink the mblk from the pending mp list */ 1124 if (prev != NULL) { 1125 prev->b_next = curr->b_next; 1126 } else { 1127 ASSERT(ill->ill_pending_mp == curr); 1128 ill->ill_pending_mp = curr->b_next; 1129 } 1130 1131 /* 1132 * conn refcnt must have been bumped up at the start of 1133 * the ioctl. So we can safely access the conn. 1134 */ 1135 ASSERT(CONN_Q(curr->b_queue)); 1136 *connpp = Q_TO_CONN(curr->b_queue); 1137 curr->b_next = NULL; 1138 curr->b_queue = NULL; 1139 } 1140 1141 mutex_exit(&ill->ill_lock); 1142 1143 return (curr); 1144 } 1145 1146 /* 1147 * Add the pending mp to the list. There can be only 1 pending mp 1148 * in the list. Any exclusive ioctl that needs to wait for a response 1149 * from another module or driver needs to use this function to set 1150 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1151 * the other module/driver. This is also used while waiting for the 1152 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1153 */ 1154 boolean_t 1155 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1156 int waitfor) 1157 { 1158 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1159 1160 ASSERT(IAM_WRITER_IPIF(ipif)); 1161 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1162 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1163 ASSERT(ipsq->ipsq_pending_mp == NULL); 1164 /* 1165 * The caller may be using a different ipif than the one passed into 1166 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1167 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1168 * that `ipsq_current_ipif == ipif'. 1169 */ 1170 ASSERT(ipsq->ipsq_current_ipif != NULL); 1171 1172 /* 1173 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1174 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1175 */ 1176 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1177 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1178 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1179 1180 if (connp != NULL) { 1181 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1182 /* 1183 * Return error if the conn has started closing. The conn 1184 * could have finished cleaning up the pending mp list, 1185 * If so we should not add another mp to the list negating 1186 * the cleanup. 1187 */ 1188 if (connp->conn_state_flags & CONN_CLOSING) 1189 return (B_FALSE); 1190 } 1191 mutex_enter(&ipsq->ipsq_lock); 1192 ipsq->ipsq_pending_ipif = ipif; 1193 /* 1194 * Note down the queue in b_queue. This will be returned by 1195 * ipsq_pending_mp_get. Caller will then use these values to restart 1196 * the processing 1197 */ 1198 add_mp->b_next = NULL; 1199 add_mp->b_queue = q; 1200 ipsq->ipsq_pending_mp = add_mp; 1201 ipsq->ipsq_waitfor = waitfor; 1202 1203 if (connp != NULL) 1204 connp->conn_oper_pending_ill = ipif->ipif_ill; 1205 mutex_exit(&ipsq->ipsq_lock); 1206 return (B_TRUE); 1207 } 1208 1209 /* 1210 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1211 * queued in the list. 1212 */ 1213 mblk_t * 1214 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1215 { 1216 mblk_t *curr = NULL; 1217 1218 mutex_enter(&ipsq->ipsq_lock); 1219 *connpp = NULL; 1220 if (ipsq->ipsq_pending_mp == NULL) { 1221 mutex_exit(&ipsq->ipsq_lock); 1222 return (NULL); 1223 } 1224 1225 /* There can be only 1 such excl message */ 1226 curr = ipsq->ipsq_pending_mp; 1227 ASSERT(curr != NULL && curr->b_next == NULL); 1228 ipsq->ipsq_pending_ipif = NULL; 1229 ipsq->ipsq_pending_mp = NULL; 1230 ipsq->ipsq_waitfor = 0; 1231 mutex_exit(&ipsq->ipsq_lock); 1232 1233 if (CONN_Q(curr->b_queue)) { 1234 /* 1235 * This mp did a refhold on the conn, at the start of the ioctl. 1236 * So we can safely return a pointer to the conn to the caller. 1237 */ 1238 *connpp = Q_TO_CONN(curr->b_queue); 1239 } else { 1240 *connpp = NULL; 1241 } 1242 curr->b_next = NULL; 1243 curr->b_prev = NULL; 1244 return (curr); 1245 } 1246 1247 /* 1248 * Cleanup the ioctl mp queued in ipsq_pending_mp 1249 * - Called in the ill_delete path 1250 * - Called in the M_ERROR or M_HANGUP path on the ill. 1251 * - Called in the conn close path. 1252 */ 1253 boolean_t 1254 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1255 { 1256 mblk_t *mp; 1257 ipsq_t *ipsq; 1258 queue_t *q; 1259 ipif_t *ipif; 1260 1261 ASSERT(IAM_WRITER_ILL(ill)); 1262 ipsq = ill->ill_phyint->phyint_ipsq; 1263 mutex_enter(&ipsq->ipsq_lock); 1264 /* 1265 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1266 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1267 * even if it is meant for another ill, since we have to enqueue 1268 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1269 * If connp is non-null we are called from the conn close path. 1270 */ 1271 mp = ipsq->ipsq_pending_mp; 1272 if (mp == NULL || (connp != NULL && 1273 mp->b_queue != CONNP_TO_WQ(connp))) { 1274 mutex_exit(&ipsq->ipsq_lock); 1275 return (B_FALSE); 1276 } 1277 /* Now remove from the ipsq_pending_mp */ 1278 ipsq->ipsq_pending_mp = NULL; 1279 q = mp->b_queue; 1280 mp->b_next = NULL; 1281 mp->b_prev = NULL; 1282 mp->b_queue = NULL; 1283 1284 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1285 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1286 if (ill->ill_move_in_progress) { 1287 ILL_CLEAR_MOVE(ill); 1288 } else if (ill->ill_up_ipifs) { 1289 ill_group_cleanup(ill); 1290 } 1291 1292 ipif = ipsq->ipsq_pending_ipif; 1293 ipsq->ipsq_pending_ipif = NULL; 1294 ipsq->ipsq_waitfor = 0; 1295 ipsq->ipsq_current_ipif = NULL; 1296 ipsq->ipsq_current_ioctl = 0; 1297 ipsq->ipsq_current_done = B_TRUE; 1298 mutex_exit(&ipsq->ipsq_lock); 1299 1300 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1301 if (connp == NULL) { 1302 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1303 } else { 1304 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1305 mutex_enter(&ipif->ipif_ill->ill_lock); 1306 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1307 mutex_exit(&ipif->ipif_ill->ill_lock); 1308 } 1309 } else { 1310 /* 1311 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1312 * be just inet_freemsg. we have to restart it 1313 * otherwise the thread will be stuck. 1314 */ 1315 inet_freemsg(mp); 1316 } 1317 return (B_TRUE); 1318 } 1319 1320 /* 1321 * The ill is closing. Cleanup all the pending mps. Called exclusively 1322 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1323 * knows this ill, and hence nobody can add an mp to this list 1324 */ 1325 static void 1326 ill_pending_mp_cleanup(ill_t *ill) 1327 { 1328 mblk_t *mp; 1329 queue_t *q; 1330 1331 ASSERT(IAM_WRITER_ILL(ill)); 1332 1333 mutex_enter(&ill->ill_lock); 1334 /* 1335 * Every mp on the pending mp list originating from an ioctl 1336 * added 1 to the conn refcnt, at the start of the ioctl. 1337 * So bump it down now. See comments in ip_wput_nondata() 1338 */ 1339 while (ill->ill_pending_mp != NULL) { 1340 mp = ill->ill_pending_mp; 1341 ill->ill_pending_mp = mp->b_next; 1342 mutex_exit(&ill->ill_lock); 1343 1344 q = mp->b_queue; 1345 ASSERT(CONN_Q(q)); 1346 mp->b_next = NULL; 1347 mp->b_prev = NULL; 1348 mp->b_queue = NULL; 1349 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1350 mutex_enter(&ill->ill_lock); 1351 } 1352 ill->ill_pending_ipif = NULL; 1353 1354 mutex_exit(&ill->ill_lock); 1355 } 1356 1357 /* 1358 * Called in the conn close path and ill delete path 1359 */ 1360 static void 1361 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1362 { 1363 ipsq_t *ipsq; 1364 mblk_t *prev; 1365 mblk_t *curr; 1366 mblk_t *next; 1367 queue_t *q; 1368 mblk_t *tmp_list = NULL; 1369 1370 ASSERT(IAM_WRITER_ILL(ill)); 1371 if (connp != NULL) 1372 q = CONNP_TO_WQ(connp); 1373 else 1374 q = ill->ill_wq; 1375 1376 ipsq = ill->ill_phyint->phyint_ipsq; 1377 /* 1378 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1379 * In the case of ioctl from a conn, there can be only 1 mp 1380 * queued on the ipsq. If an ill is being unplumbed, only messages 1381 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1382 * ioctls meant for this ill form conn's are not flushed. They will 1383 * be processed during ipsq_exit and will not find the ill and will 1384 * return error. 1385 */ 1386 mutex_enter(&ipsq->ipsq_lock); 1387 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1388 curr = next) { 1389 next = curr->b_next; 1390 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1391 /* Unlink the mblk from the pending mp list */ 1392 if (prev != NULL) { 1393 prev->b_next = curr->b_next; 1394 } else { 1395 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1396 ipsq->ipsq_xopq_mphead = curr->b_next; 1397 } 1398 if (ipsq->ipsq_xopq_mptail == curr) 1399 ipsq->ipsq_xopq_mptail = prev; 1400 /* 1401 * Create a temporary list and release the ipsq lock 1402 * New elements are added to the head of the tmp_list 1403 */ 1404 curr->b_next = tmp_list; 1405 tmp_list = curr; 1406 } else { 1407 prev = curr; 1408 } 1409 } 1410 mutex_exit(&ipsq->ipsq_lock); 1411 1412 while (tmp_list != NULL) { 1413 curr = tmp_list; 1414 tmp_list = curr->b_next; 1415 curr->b_next = NULL; 1416 curr->b_prev = NULL; 1417 curr->b_queue = NULL; 1418 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1419 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1420 CONN_CLOSE : NO_COPYOUT, NULL); 1421 } else { 1422 /* 1423 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1424 * this can't be just inet_freemsg. we have to 1425 * restart it otherwise the thread will be stuck. 1426 */ 1427 inet_freemsg(curr); 1428 } 1429 } 1430 } 1431 1432 /* 1433 * This conn has started closing. Cleanup any pending ioctl from this conn. 1434 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1435 */ 1436 void 1437 conn_ioctl_cleanup(conn_t *connp) 1438 { 1439 mblk_t *curr; 1440 ipsq_t *ipsq; 1441 ill_t *ill; 1442 boolean_t refheld; 1443 1444 /* 1445 * Is any exclusive ioctl pending ? If so clean it up. If the 1446 * ioctl has not yet started, the mp is pending in the list headed by 1447 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1448 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1449 * is currently executing now the mp is not queued anywhere but 1450 * conn_oper_pending_ill is null. The conn close will wait 1451 * till the conn_ref drops to zero. 1452 */ 1453 mutex_enter(&connp->conn_lock); 1454 ill = connp->conn_oper_pending_ill; 1455 if (ill == NULL) { 1456 mutex_exit(&connp->conn_lock); 1457 return; 1458 } 1459 1460 curr = ill_pending_mp_get(ill, &connp, 0); 1461 if (curr != NULL) { 1462 mutex_exit(&connp->conn_lock); 1463 CONN_DEC_REF(connp); 1464 inet_freemsg(curr); 1465 return; 1466 } 1467 /* 1468 * We may not be able to refhold the ill if the ill/ipif 1469 * is changing. But we need to make sure that the ill will 1470 * not vanish. So we just bump up the ill_waiter count. 1471 */ 1472 refheld = ill_waiter_inc(ill); 1473 mutex_exit(&connp->conn_lock); 1474 if (refheld) { 1475 if (ipsq_enter(ill, B_TRUE)) { 1476 ill_waiter_dcr(ill); 1477 /* 1478 * Check whether this ioctl has started and is 1479 * pending now in ipsq_pending_mp. If it is not 1480 * found there then check whether this ioctl has 1481 * not even started and is in the ipsq_xopq list. 1482 */ 1483 if (!ipsq_pending_mp_cleanup(ill, connp)) 1484 ipsq_xopq_mp_cleanup(ill, connp); 1485 ipsq = ill->ill_phyint->phyint_ipsq; 1486 ipsq_exit(ipsq); 1487 return; 1488 } 1489 } 1490 1491 /* 1492 * The ill is also closing and we could not bump up the 1493 * ill_waiter_count or we could not enter the ipsq. Leave 1494 * the cleanup to ill_delete 1495 */ 1496 mutex_enter(&connp->conn_lock); 1497 while (connp->conn_oper_pending_ill != NULL) 1498 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1499 mutex_exit(&connp->conn_lock); 1500 if (refheld) 1501 ill_waiter_dcr(ill); 1502 } 1503 1504 /* 1505 * ipcl_walk function for cleaning up conn_*_ill fields. 1506 */ 1507 static void 1508 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1509 { 1510 ill_t *ill = (ill_t *)arg; 1511 ire_t *ire; 1512 1513 mutex_enter(&connp->conn_lock); 1514 if (connp->conn_multicast_ill == ill) { 1515 /* Revert to late binding */ 1516 connp->conn_multicast_ill = NULL; 1517 connp->conn_orig_multicast_ifindex = 0; 1518 } 1519 if (connp->conn_incoming_ill == ill) 1520 connp->conn_incoming_ill = NULL; 1521 if (connp->conn_outgoing_ill == ill) 1522 connp->conn_outgoing_ill = NULL; 1523 if (connp->conn_outgoing_pill == ill) 1524 connp->conn_outgoing_pill = NULL; 1525 if (connp->conn_nofailover_ill == ill) 1526 connp->conn_nofailover_ill = NULL; 1527 if (connp->conn_dhcpinit_ill == ill) { 1528 connp->conn_dhcpinit_ill = NULL; 1529 ASSERT(ill->ill_dhcpinit != 0); 1530 atomic_dec_32(&ill->ill_dhcpinit); 1531 } 1532 if (connp->conn_ire_cache != NULL) { 1533 ire = connp->conn_ire_cache; 1534 /* 1535 * ip_newroute creates IRE_CACHE with ire_stq coming from 1536 * interface X and ipif coming from interface Y, if interface 1537 * X and Y are part of the same IPMPgroup. Thus whenever 1538 * interface X goes down, remove all references to it by 1539 * checking both on ire_ipif and ire_stq. 1540 */ 1541 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1542 (ire->ire_type == IRE_CACHE && 1543 ire->ire_stq == ill->ill_wq)) { 1544 connp->conn_ire_cache = NULL; 1545 mutex_exit(&connp->conn_lock); 1546 ire_refrele_notr(ire); 1547 return; 1548 } 1549 } 1550 mutex_exit(&connp->conn_lock); 1551 } 1552 1553 /* ARGSUSED */ 1554 void 1555 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1556 { 1557 ill_t *ill = q->q_ptr; 1558 ipif_t *ipif; 1559 1560 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1561 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1562 ipif_non_duplicate(ipif); 1563 ipif_down_tail(ipif); 1564 } 1565 freemsg(mp); 1566 ipsq_current_finish(ipsq); 1567 } 1568 1569 /* 1570 * ill_down_start is called when we want to down this ill and bring it up again 1571 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1572 * all interfaces, but don't tear down any plumbing. 1573 */ 1574 boolean_t 1575 ill_down_start(queue_t *q, mblk_t *mp) 1576 { 1577 ill_t *ill = q->q_ptr; 1578 ipif_t *ipif; 1579 1580 ASSERT(IAM_WRITER_ILL(ill)); 1581 1582 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1583 (void) ipif_down(ipif, NULL, NULL); 1584 1585 ill_down(ill); 1586 1587 (void) ipsq_pending_mp_cleanup(ill, NULL); 1588 1589 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1590 1591 /* 1592 * Atomically test and add the pending mp if references are active. 1593 */ 1594 mutex_enter(&ill->ill_lock); 1595 if (!ill_is_quiescent(ill)) { 1596 /* call cannot fail since `conn_t *' argument is NULL */ 1597 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1598 mp, ILL_DOWN); 1599 mutex_exit(&ill->ill_lock); 1600 return (B_FALSE); 1601 } 1602 mutex_exit(&ill->ill_lock); 1603 return (B_TRUE); 1604 } 1605 1606 static void 1607 ill_down(ill_t *ill) 1608 { 1609 ip_stack_t *ipst = ill->ill_ipst; 1610 1611 /* Blow off any IREs dependent on this ILL. */ 1612 ire_walk(ill_downi, (char *)ill, ipst); 1613 1614 /* Remove any conn_*_ill depending on this ill */ 1615 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1616 1617 if (ill->ill_group != NULL) { 1618 illgrp_delete(ill); 1619 } 1620 } 1621 1622 /* 1623 * ire_walk routine used to delete every IRE that depends on queues 1624 * associated with 'ill'. (Always called as writer.) 1625 */ 1626 static void 1627 ill_downi(ire_t *ire, char *ill_arg) 1628 { 1629 ill_t *ill = (ill_t *)ill_arg; 1630 1631 /* 1632 * ip_newroute creates IRE_CACHE with ire_stq coming from 1633 * interface X and ipif coming from interface Y, if interface 1634 * X and Y are part of the same IPMP group. Thus whenever interface 1635 * X goes down, remove all references to it by checking both 1636 * on ire_ipif and ire_stq. 1637 */ 1638 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1639 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1640 ire_delete(ire); 1641 } 1642 } 1643 1644 /* 1645 * Remove ire/nce from the fastpath list. 1646 */ 1647 void 1648 ill_fastpath_nack(ill_t *ill) 1649 { 1650 nce_fastpath_list_dispatch(ill, NULL, NULL); 1651 } 1652 1653 /* Consume an M_IOCACK of the fastpath probe. */ 1654 void 1655 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1656 { 1657 mblk_t *mp1 = mp; 1658 1659 /* 1660 * If this was the first attempt turn on the fastpath probing. 1661 */ 1662 mutex_enter(&ill->ill_lock); 1663 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1664 ill->ill_dlpi_fastpath_state = IDS_OK; 1665 mutex_exit(&ill->ill_lock); 1666 1667 /* Free the M_IOCACK mblk, hold on to the data */ 1668 mp = mp->b_cont; 1669 freeb(mp1); 1670 if (mp == NULL) 1671 return; 1672 if (mp->b_cont != NULL) { 1673 /* 1674 * Update all IRE's or NCE's that are waiting for 1675 * fastpath update. 1676 */ 1677 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1678 mp1 = mp->b_cont; 1679 freeb(mp); 1680 mp = mp1; 1681 } else { 1682 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1683 } 1684 1685 freeb(mp); 1686 } 1687 1688 /* 1689 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1690 * The data portion of the request is a dl_unitdata_req_t template for 1691 * what we would send downstream in the absence of a fastpath confirmation. 1692 */ 1693 int 1694 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1695 { 1696 struct iocblk *ioc; 1697 mblk_t *mp; 1698 1699 if (dlur_mp == NULL) 1700 return (EINVAL); 1701 1702 mutex_enter(&ill->ill_lock); 1703 switch (ill->ill_dlpi_fastpath_state) { 1704 case IDS_FAILED: 1705 /* 1706 * Driver NAKed the first fastpath ioctl - assume it doesn't 1707 * support it. 1708 */ 1709 mutex_exit(&ill->ill_lock); 1710 return (ENOTSUP); 1711 case IDS_UNKNOWN: 1712 /* This is the first probe */ 1713 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1714 break; 1715 default: 1716 break; 1717 } 1718 mutex_exit(&ill->ill_lock); 1719 1720 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1721 return (EAGAIN); 1722 1723 mp->b_cont = copyb(dlur_mp); 1724 if (mp->b_cont == NULL) { 1725 freeb(mp); 1726 return (EAGAIN); 1727 } 1728 1729 ioc = (struct iocblk *)mp->b_rptr; 1730 ioc->ioc_count = msgdsize(mp->b_cont); 1731 1732 putnext(ill->ill_wq, mp); 1733 return (0); 1734 } 1735 1736 void 1737 ill_capability_probe(ill_t *ill) 1738 { 1739 /* 1740 * Do so only if capabilities are still unknown. 1741 */ 1742 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 1743 return; 1744 1745 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1746 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1747 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1748 } 1749 1750 void 1751 ill_capability_reset(ill_t *ill) 1752 { 1753 mblk_t *sc_mp = NULL; 1754 mblk_t *tmp; 1755 1756 /* 1757 * Note here that we reset the state to UNKNOWN, and later send 1758 * down the DL_CAPABILITY_REQ without first setting the state to 1759 * INPROGRESS. We do this in order to distinguish the 1760 * DL_CAPABILITY_ACK response which may come back in response to 1761 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1762 * also handle the case where the driver doesn't send us back 1763 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1764 * requires the state to be in UNKNOWN anyway. In any case, all 1765 * features are turned off until the state reaches IDS_OK. 1766 */ 1767 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1768 ill->ill_capab_reneg = B_FALSE; 1769 1770 /* 1771 * Disable sub-capabilities and request a list of sub-capability 1772 * messages which will be sent down to the driver. Each handler 1773 * allocates the corresponding dl_capability_sub_t inside an 1774 * mblk, and links it to the existing sc_mp mblk, or return it 1775 * as sc_mp if it's the first sub-capability (the passed in 1776 * sc_mp is NULL). Upon returning from all capability handlers, 1777 * sc_mp will be pulled-up, before passing it downstream. 1778 */ 1779 ill_capability_mdt_reset(ill, &sc_mp); 1780 ill_capability_hcksum_reset(ill, &sc_mp); 1781 ill_capability_zerocopy_reset(ill, &sc_mp); 1782 ill_capability_ipsec_reset(ill, &sc_mp); 1783 ill_capability_dls_reset(ill, &sc_mp); 1784 ill_capability_lso_reset(ill, &sc_mp); 1785 1786 /* Nothing to send down in order to disable the capabilities? */ 1787 if (sc_mp == NULL) 1788 return; 1789 1790 tmp = msgpullup(sc_mp, -1); 1791 freemsg(sc_mp); 1792 if ((sc_mp = tmp) == NULL) { 1793 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1794 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1795 return; 1796 } 1797 1798 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1799 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1800 } 1801 1802 /* 1803 * Request or set new-style hardware capabilities supported by DLS provider. 1804 */ 1805 static void 1806 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1807 { 1808 mblk_t *mp; 1809 dl_capability_req_t *capb; 1810 size_t size = 0; 1811 uint8_t *ptr; 1812 1813 if (reqp != NULL) 1814 size = MBLKL(reqp); 1815 1816 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1817 if (mp == NULL) { 1818 freemsg(reqp); 1819 return; 1820 } 1821 ptr = mp->b_rptr; 1822 1823 capb = (dl_capability_req_t *)ptr; 1824 ptr += sizeof (dl_capability_req_t); 1825 1826 if (reqp != NULL) { 1827 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1828 capb->dl_sub_length = size; 1829 bcopy(reqp->b_rptr, ptr, size); 1830 ptr += size; 1831 mp->b_cont = reqp->b_cont; 1832 freeb(reqp); 1833 } 1834 ASSERT(ptr == mp->b_wptr); 1835 1836 ill_dlpi_send(ill, mp); 1837 } 1838 1839 static void 1840 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1841 { 1842 dl_capab_id_t *id_ic; 1843 uint_t sub_dl_cap = outers->dl_cap; 1844 dl_capability_sub_t *inners; 1845 uint8_t *capend; 1846 1847 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1848 1849 /* 1850 * Note: range checks here are not absolutely sufficient to 1851 * make us robust against malformed messages sent by drivers; 1852 * this is in keeping with the rest of IP's dlpi handling. 1853 * (Remember, it's coming from something else in the kernel 1854 * address space) 1855 */ 1856 1857 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1858 if (capend > mp->b_wptr) { 1859 cmn_err(CE_WARN, "ill_capability_id_ack: " 1860 "malformed sub-capability too long for mblk"); 1861 return; 1862 } 1863 1864 id_ic = (dl_capab_id_t *)(outers + 1); 1865 1866 if (outers->dl_length < sizeof (*id_ic) || 1867 (inners = &id_ic->id_subcap, 1868 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1869 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1870 "encapsulated capab type %d too long for mblk", 1871 inners->dl_cap); 1872 return; 1873 } 1874 1875 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1876 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1877 "isn't as expected; pass-thru module(s) detected, " 1878 "discarding capability\n", inners->dl_cap)); 1879 return; 1880 } 1881 1882 /* Process the encapsulated sub-capability */ 1883 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1884 } 1885 1886 /* 1887 * Process Multidata Transmit capability negotiation ack received from a 1888 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1889 * DL_CAPABILITY_ACK message. 1890 */ 1891 static void 1892 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1893 { 1894 mblk_t *nmp = NULL; 1895 dl_capability_req_t *oc; 1896 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1897 ill_mdt_capab_t **ill_mdt_capab; 1898 uint_t sub_dl_cap = isub->dl_cap; 1899 uint8_t *capend; 1900 1901 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1902 1903 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1904 1905 /* 1906 * Note: range checks here are not absolutely sufficient to 1907 * make us robust against malformed messages sent by drivers; 1908 * this is in keeping with the rest of IP's dlpi handling. 1909 * (Remember, it's coming from something else in the kernel 1910 * address space) 1911 */ 1912 1913 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1914 if (capend > mp->b_wptr) { 1915 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1916 "malformed sub-capability too long for mblk"); 1917 return; 1918 } 1919 1920 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1921 1922 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1923 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1924 "unsupported MDT sub-capability (version %d, expected %d)", 1925 mdt_ic->mdt_version, MDT_VERSION_2); 1926 return; 1927 } 1928 1929 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1930 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1931 "capability isn't as expected; pass-thru module(s) " 1932 "detected, discarding capability\n")); 1933 return; 1934 } 1935 1936 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1937 1938 if (*ill_mdt_capab == NULL) { 1939 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1940 KM_NOSLEEP); 1941 1942 if (*ill_mdt_capab == NULL) { 1943 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1944 "could not enable MDT version %d " 1945 "for %s (ENOMEM)\n", MDT_VERSION_2, 1946 ill->ill_name); 1947 return; 1948 } 1949 } 1950 1951 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1952 "MDT version %d (%d bytes leading, %d bytes trailing " 1953 "header spaces, %d max pld bufs, %d span limit)\n", 1954 ill->ill_name, MDT_VERSION_2, 1955 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1956 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1957 1958 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1959 (*ill_mdt_capab)->ill_mdt_on = 1; 1960 /* 1961 * Round the following values to the nearest 32-bit; ULP 1962 * may further adjust them to accomodate for additional 1963 * protocol headers. We pass these values to ULP during 1964 * bind time. 1965 */ 1966 (*ill_mdt_capab)->ill_mdt_hdr_head = 1967 roundup(mdt_ic->mdt_hdr_head, 4); 1968 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1969 roundup(mdt_ic->mdt_hdr_tail, 4); 1970 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1971 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1972 1973 ill->ill_capabilities |= ILL_CAPAB_MDT; 1974 } else { 1975 uint_t size; 1976 uchar_t *rptr; 1977 1978 size = sizeof (dl_capability_req_t) + 1979 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1980 1981 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1982 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1983 "could not enable MDT for %s (ENOMEM)\n", 1984 ill->ill_name); 1985 return; 1986 } 1987 1988 rptr = nmp->b_rptr; 1989 /* initialize dl_capability_req_t */ 1990 oc = (dl_capability_req_t *)nmp->b_rptr; 1991 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1992 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1993 sizeof (dl_capab_mdt_t); 1994 nmp->b_rptr += sizeof (dl_capability_req_t); 1995 1996 /* initialize dl_capability_sub_t */ 1997 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1998 nmp->b_rptr += sizeof (*isub); 1999 2000 /* initialize dl_capab_mdt_t */ 2001 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2002 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2003 2004 nmp->b_rptr = rptr; 2005 2006 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2007 "to enable MDT version %d\n", ill->ill_name, 2008 MDT_VERSION_2)); 2009 2010 /* set ENABLE flag */ 2011 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2012 2013 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2014 ill_dlpi_send(ill, nmp); 2015 } 2016 } 2017 2018 static void 2019 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2020 { 2021 mblk_t *mp; 2022 dl_capab_mdt_t *mdt_subcap; 2023 dl_capability_sub_t *dl_subcap; 2024 int size; 2025 2026 if (!ILL_MDT_CAPABLE(ill)) 2027 return; 2028 2029 ASSERT(ill->ill_mdt_capab != NULL); 2030 /* 2031 * Clear the capability flag for MDT but retain the ill_mdt_capab 2032 * structure since it's possible that another thread is still 2033 * referring to it. The structure only gets deallocated when 2034 * we destroy the ill. 2035 */ 2036 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2037 2038 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2039 2040 mp = allocb(size, BPRI_HI); 2041 if (mp == NULL) { 2042 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2043 "request to disable MDT\n")); 2044 return; 2045 } 2046 2047 mp->b_wptr = mp->b_rptr + size; 2048 2049 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2050 dl_subcap->dl_cap = DL_CAPAB_MDT; 2051 dl_subcap->dl_length = sizeof (*mdt_subcap); 2052 2053 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2054 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2055 mdt_subcap->mdt_flags = 0; 2056 mdt_subcap->mdt_hdr_head = 0; 2057 mdt_subcap->mdt_hdr_tail = 0; 2058 2059 if (*sc_mp != NULL) 2060 linkb(*sc_mp, mp); 2061 else 2062 *sc_mp = mp; 2063 } 2064 2065 /* 2066 * Send a DL_NOTIFY_REQ to the specified ill to enable 2067 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2068 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2069 * acceleration. 2070 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2071 */ 2072 static boolean_t 2073 ill_enable_promisc_notify(ill_t *ill) 2074 { 2075 mblk_t *mp; 2076 dl_notify_req_t *req; 2077 2078 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2079 2080 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2081 if (mp == NULL) 2082 return (B_FALSE); 2083 2084 req = (dl_notify_req_t *)mp->b_rptr; 2085 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2086 DL_NOTE_PROMISC_OFF_PHYS; 2087 2088 ill_dlpi_send(ill, mp); 2089 2090 return (B_TRUE); 2091 } 2092 2093 /* 2094 * Allocate an IPsec capability request which will be filled by our 2095 * caller to turn on support for one or more algorithms. 2096 */ 2097 static mblk_t * 2098 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2099 { 2100 mblk_t *nmp; 2101 dl_capability_req_t *ocap; 2102 dl_capab_ipsec_t *ocip; 2103 dl_capab_ipsec_t *icip; 2104 uint8_t *ptr; 2105 icip = (dl_capab_ipsec_t *)(isub + 1); 2106 2107 /* 2108 * The first time around, we send a DL_NOTIFY_REQ to enable 2109 * PROMISC_ON/OFF notification from the provider. We need to 2110 * do this before enabling the algorithms to avoid leakage of 2111 * cleartext packets. 2112 */ 2113 2114 if (!ill_enable_promisc_notify(ill)) 2115 return (NULL); 2116 2117 /* 2118 * Allocate new mblk which will contain a new capability 2119 * request to enable the capabilities. 2120 */ 2121 2122 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2123 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2124 if (nmp == NULL) 2125 return (NULL); 2126 2127 ptr = nmp->b_rptr; 2128 2129 /* initialize dl_capability_req_t */ 2130 ocap = (dl_capability_req_t *)ptr; 2131 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2132 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2133 ptr += sizeof (dl_capability_req_t); 2134 2135 /* initialize dl_capability_sub_t */ 2136 bcopy(isub, ptr, sizeof (*isub)); 2137 ptr += sizeof (*isub); 2138 2139 /* initialize dl_capab_ipsec_t */ 2140 ocip = (dl_capab_ipsec_t *)ptr; 2141 bcopy(icip, ocip, sizeof (*icip)); 2142 2143 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2144 return (nmp); 2145 } 2146 2147 /* 2148 * Process an IPsec capability negotiation ack received from a DLS Provider. 2149 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2150 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2151 */ 2152 static void 2153 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2154 { 2155 dl_capab_ipsec_t *icip; 2156 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2157 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2158 uint_t cipher, nciphers; 2159 mblk_t *nmp; 2160 uint_t alg_len; 2161 boolean_t need_sadb_dump; 2162 uint_t sub_dl_cap = isub->dl_cap; 2163 ill_ipsec_capab_t **ill_capab; 2164 uint64_t ill_capab_flag; 2165 uint8_t *capend, *ciphend; 2166 boolean_t sadb_resync; 2167 2168 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2169 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2170 2171 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2172 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2173 ill_capab_flag = ILL_CAPAB_AH; 2174 } else { 2175 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2176 ill_capab_flag = ILL_CAPAB_ESP; 2177 } 2178 2179 /* 2180 * If the ill capability structure exists, then this incoming 2181 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2182 * If this is so, then we'd need to resynchronize the SADB 2183 * after re-enabling the offloaded ciphers. 2184 */ 2185 sadb_resync = (*ill_capab != NULL); 2186 2187 /* 2188 * Note: range checks here are not absolutely sufficient to 2189 * make us robust against malformed messages sent by drivers; 2190 * this is in keeping with the rest of IP's dlpi handling. 2191 * (Remember, it's coming from something else in the kernel 2192 * address space) 2193 */ 2194 2195 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2196 if (capend > mp->b_wptr) { 2197 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2198 "malformed sub-capability too long for mblk"); 2199 return; 2200 } 2201 2202 /* 2203 * There are two types of acks we process here: 2204 * 1. acks in reply to a (first form) generic capability req 2205 * (no ENABLE flag set) 2206 * 2. acks in reply to a ENABLE capability req. 2207 * (ENABLE flag set) 2208 * 2209 * We process the subcapability passed as argument as follows: 2210 * 1 do initializations 2211 * 1.1 initialize nmp = NULL 2212 * 1.2 set need_sadb_dump to B_FALSE 2213 * 2 for each cipher in subcapability: 2214 * 2.1 if ENABLE flag is set: 2215 * 2.1.1 update per-ill ipsec capabilities info 2216 * 2.1.2 set need_sadb_dump to B_TRUE 2217 * 2.2 if ENABLE flag is not set: 2218 * 2.2.1 if nmp is NULL: 2219 * 2.2.1.1 allocate and initialize nmp 2220 * 2.2.1.2 init current pos in nmp 2221 * 2.2.2 copy current cipher to current pos in nmp 2222 * 2.2.3 set ENABLE flag in nmp 2223 * 2.2.4 update current pos 2224 * 3 if nmp is not equal to NULL, send enable request 2225 * 3.1 send capability request 2226 * 4 if need_sadb_dump is B_TRUE 2227 * 4.1 enable promiscuous on/off notifications 2228 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2229 * AH or ESP SA's to interface. 2230 */ 2231 2232 nmp = NULL; 2233 oalg = NULL; 2234 need_sadb_dump = B_FALSE; 2235 icip = (dl_capab_ipsec_t *)(isub + 1); 2236 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2237 2238 nciphers = icip->cip_nciphers; 2239 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2240 2241 if (ciphend > capend) { 2242 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2243 "too many ciphers for sub-capability len"); 2244 return; 2245 } 2246 2247 for (cipher = 0; cipher < nciphers; cipher++) { 2248 alg_len = sizeof (dl_capab_ipsec_alg_t); 2249 2250 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2251 /* 2252 * TBD: when we provide a way to disable capabilities 2253 * from above, need to manage the request-pending state 2254 * and fail if we were not expecting this ACK. 2255 */ 2256 IPSECHW_DEBUG(IPSECHW_CAPAB, 2257 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2258 2259 /* 2260 * Update IPsec capabilities for this ill 2261 */ 2262 2263 if (*ill_capab == NULL) { 2264 IPSECHW_DEBUG(IPSECHW_CAPAB, 2265 ("ill_capability_ipsec_ack: " 2266 "allocating ipsec_capab for ill\n")); 2267 *ill_capab = ill_ipsec_capab_alloc(); 2268 2269 if (*ill_capab == NULL) { 2270 cmn_err(CE_WARN, 2271 "ill_capability_ipsec_ack: " 2272 "could not enable IPsec Hardware " 2273 "acceleration for %s (ENOMEM)\n", 2274 ill->ill_name); 2275 return; 2276 } 2277 } 2278 2279 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2280 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2281 2282 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2283 cmn_err(CE_WARN, 2284 "ill_capability_ipsec_ack: " 2285 "malformed IPsec algorithm id %d", 2286 ialg->alg_prim); 2287 continue; 2288 } 2289 2290 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2291 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2292 ialg->alg_prim); 2293 } else { 2294 ipsec_capab_algparm_t *alp; 2295 2296 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2297 ialg->alg_prim); 2298 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2299 ialg->alg_prim)) { 2300 cmn_err(CE_WARN, 2301 "ill_capability_ipsec_ack: " 2302 "no space for IPsec alg id %d", 2303 ialg->alg_prim); 2304 continue; 2305 } 2306 alp = &((*ill_capab)->encr_algparm[ 2307 ialg->alg_prim]); 2308 alp->minkeylen = ialg->alg_minbits; 2309 alp->maxkeylen = ialg->alg_maxbits; 2310 } 2311 ill->ill_capabilities |= ill_capab_flag; 2312 /* 2313 * indicate that a capability was enabled, which 2314 * will be used below to kick off a SADB dump 2315 * to the ill. 2316 */ 2317 need_sadb_dump = B_TRUE; 2318 } else { 2319 IPSECHW_DEBUG(IPSECHW_CAPAB, 2320 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2321 ialg->alg_prim)); 2322 2323 if (nmp == NULL) { 2324 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2325 if (nmp == NULL) { 2326 /* 2327 * Sending the PROMISC_ON/OFF 2328 * notification request failed. 2329 * We cannot enable the algorithms 2330 * since the Provider will not 2331 * notify IP of promiscous mode 2332 * changes, which could lead 2333 * to leakage of packets. 2334 */ 2335 cmn_err(CE_WARN, 2336 "ill_capability_ipsec_ack: " 2337 "could not enable IPsec Hardware " 2338 "acceleration for %s (ENOMEM)\n", 2339 ill->ill_name); 2340 return; 2341 } 2342 /* ptr to current output alg specifier */ 2343 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2344 } 2345 2346 /* 2347 * Copy current alg specifier, set ENABLE 2348 * flag, and advance to next output alg. 2349 * For now we enable all IPsec capabilities. 2350 */ 2351 ASSERT(oalg != NULL); 2352 bcopy(ialg, oalg, alg_len); 2353 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2354 nmp->b_wptr += alg_len; 2355 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2356 } 2357 2358 /* move to next input algorithm specifier */ 2359 ialg = (dl_capab_ipsec_alg_t *) 2360 ((char *)ialg + alg_len); 2361 } 2362 2363 if (nmp != NULL) 2364 /* 2365 * nmp points to a DL_CAPABILITY_REQ message to enable 2366 * IPsec hardware acceleration. 2367 */ 2368 ill_dlpi_send(ill, nmp); 2369 2370 if (need_sadb_dump) 2371 /* 2372 * An acknowledgement corresponding to a request to 2373 * enable acceleration was received, notify SADB. 2374 */ 2375 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2376 } 2377 2378 /* 2379 * Given an mblk with enough space in it, create sub-capability entries for 2380 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2381 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2382 * in preparation for the reset the DL_CAPABILITY_REQ message. 2383 */ 2384 static void 2385 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2386 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2387 { 2388 dl_capab_ipsec_t *oipsec; 2389 dl_capab_ipsec_alg_t *oalg; 2390 dl_capability_sub_t *dl_subcap; 2391 int i, k; 2392 2393 ASSERT(nciphers > 0); 2394 ASSERT(ill_cap != NULL); 2395 ASSERT(mp != NULL); 2396 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2397 2398 /* dl_capability_sub_t for "stype" */ 2399 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2400 dl_subcap->dl_cap = stype; 2401 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2402 mp->b_wptr += sizeof (dl_capability_sub_t); 2403 2404 /* dl_capab_ipsec_t for "stype" */ 2405 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2406 oipsec->cip_version = 1; 2407 oipsec->cip_nciphers = nciphers; 2408 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2409 2410 /* create entries for "stype" AUTH ciphers */ 2411 for (i = 0; i < ill_cap->algs_size; i++) { 2412 for (k = 0; k < BITSPERBYTE; k++) { 2413 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2414 continue; 2415 2416 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2417 bzero((void *)oalg, sizeof (*oalg)); 2418 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2419 oalg->alg_prim = k + (BITSPERBYTE * i); 2420 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2421 } 2422 } 2423 /* create entries for "stype" ENCR ciphers */ 2424 for (i = 0; i < ill_cap->algs_size; i++) { 2425 for (k = 0; k < BITSPERBYTE; k++) { 2426 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2427 continue; 2428 2429 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2430 bzero((void *)oalg, sizeof (*oalg)); 2431 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2432 oalg->alg_prim = k + (BITSPERBYTE * i); 2433 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2434 } 2435 } 2436 } 2437 2438 /* 2439 * Macro to count number of 1s in a byte (8-bit word). The total count is 2440 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2441 * POPC instruction, but our macro is more flexible for an arbitrary length 2442 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2443 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2444 * stays that way, we can reduce the number of iterations required. 2445 */ 2446 #define COUNT_1S(val, sum) { \ 2447 uint8_t x = val & 0xff; \ 2448 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2449 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2450 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2451 } 2452 2453 /* ARGSUSED */ 2454 static void 2455 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2456 { 2457 mblk_t *mp; 2458 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2459 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2460 uint64_t ill_capabilities = ill->ill_capabilities; 2461 int ah_cnt = 0, esp_cnt = 0; 2462 int ah_len = 0, esp_len = 0; 2463 int i, size = 0; 2464 2465 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2466 return; 2467 2468 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2469 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2470 2471 /* Find out the number of ciphers for AH */ 2472 if (cap_ah != NULL) { 2473 for (i = 0; i < cap_ah->algs_size; i++) { 2474 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2475 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2476 } 2477 if (ah_cnt > 0) { 2478 size += sizeof (dl_capability_sub_t) + 2479 sizeof (dl_capab_ipsec_t); 2480 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2481 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2482 size += ah_len; 2483 } 2484 } 2485 2486 /* Find out the number of ciphers for ESP */ 2487 if (cap_esp != NULL) { 2488 for (i = 0; i < cap_esp->algs_size; i++) { 2489 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2490 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2491 } 2492 if (esp_cnt > 0) { 2493 size += sizeof (dl_capability_sub_t) + 2494 sizeof (dl_capab_ipsec_t); 2495 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2496 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2497 size += esp_len; 2498 } 2499 } 2500 2501 if (size == 0) { 2502 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2503 "there's nothing to reset\n")); 2504 return; 2505 } 2506 2507 mp = allocb(size, BPRI_HI); 2508 if (mp == NULL) { 2509 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2510 "request to disable IPSEC Hardware Acceleration\n")); 2511 return; 2512 } 2513 2514 /* 2515 * Clear the capability flags for IPsec HA but retain the ill 2516 * capability structures since it's possible that another thread 2517 * is still referring to them. The structures only get deallocated 2518 * when we destroy the ill. 2519 * 2520 * Various places check the flags to see if the ill is capable of 2521 * hardware acceleration, and by clearing them we ensure that new 2522 * outbound IPsec packets are sent down encrypted. 2523 */ 2524 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2525 2526 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2527 if (ah_cnt > 0) { 2528 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2529 cap_ah, mp); 2530 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2531 } 2532 2533 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2534 if (esp_cnt > 0) { 2535 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2536 cap_esp, mp); 2537 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2538 } 2539 2540 /* 2541 * At this point we've composed a bunch of sub-capabilities to be 2542 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2543 * by the caller. Upon receiving this reset message, the driver 2544 * must stop inbound decryption (by destroying all inbound SAs) 2545 * and let the corresponding packets come in encrypted. 2546 */ 2547 2548 if (*sc_mp != NULL) 2549 linkb(*sc_mp, mp); 2550 else 2551 *sc_mp = mp; 2552 } 2553 2554 static void 2555 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2556 boolean_t encapsulated) 2557 { 2558 boolean_t legacy = B_FALSE; 2559 2560 /* 2561 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2562 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2563 * instructed the driver to disable its advertised capabilities, 2564 * so there's no point in accepting any response at this moment. 2565 */ 2566 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2567 return; 2568 2569 /* 2570 * Note that only the following two sub-capabilities may be 2571 * considered as "legacy", since their original definitions 2572 * do not incorporate the dl_mid_t module ID token, and hence 2573 * may require the use of the wrapper sub-capability. 2574 */ 2575 switch (subp->dl_cap) { 2576 case DL_CAPAB_IPSEC_AH: 2577 case DL_CAPAB_IPSEC_ESP: 2578 legacy = B_TRUE; 2579 break; 2580 } 2581 2582 /* 2583 * For legacy sub-capabilities which don't incorporate a queue_t 2584 * pointer in their structures, discard them if we detect that 2585 * there are intermediate modules in between IP and the driver. 2586 */ 2587 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2588 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2589 "%d discarded; %d module(s) present below IP\n", 2590 subp->dl_cap, ill->ill_lmod_cnt)); 2591 return; 2592 } 2593 2594 switch (subp->dl_cap) { 2595 case DL_CAPAB_IPSEC_AH: 2596 case DL_CAPAB_IPSEC_ESP: 2597 ill_capability_ipsec_ack(ill, mp, subp); 2598 break; 2599 case DL_CAPAB_MDT: 2600 ill_capability_mdt_ack(ill, mp, subp); 2601 break; 2602 case DL_CAPAB_HCKSUM: 2603 ill_capability_hcksum_ack(ill, mp, subp); 2604 break; 2605 case DL_CAPAB_ZEROCOPY: 2606 ill_capability_zerocopy_ack(ill, mp, subp); 2607 break; 2608 case DL_CAPAB_POLL: 2609 if (!SOFT_RINGS_ENABLED()) 2610 ill_capability_dls_ack(ill, mp, subp); 2611 break; 2612 case DL_CAPAB_SOFT_RING: 2613 if (SOFT_RINGS_ENABLED()) 2614 ill_capability_dls_ack(ill, mp, subp); 2615 break; 2616 case DL_CAPAB_LSO: 2617 ill_capability_lso_ack(ill, mp, subp); 2618 break; 2619 default: 2620 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2621 subp->dl_cap)); 2622 } 2623 } 2624 2625 /* 2626 * As part of negotiating polling capability, the driver tells us 2627 * the default (or normal) blanking interval and packet threshold 2628 * (the receive timer fires if blanking interval is reached or 2629 * the packet threshold is reached). 2630 * 2631 * As part of manipulating the polling interval, we always use our 2632 * estimated interval (avg service time * number of packets queued 2633 * on the squeue) but we try to blank for a minimum of 2634 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2635 * packet threshold during this time. When we are not in polling mode 2636 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2637 * rr_min_blank_ratio but up the packet cnt by a ratio of 2638 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2639 * possible although for a shorter interval. 2640 */ 2641 #define RR_MAX_BLANK_RATIO 20 2642 #define RR_MIN_BLANK_RATIO 10 2643 #define RR_MAX_PKT_CNT_RATIO 3 2644 #define RR_MIN_PKT_CNT_RATIO 3 2645 2646 /* 2647 * These can be tuned via /etc/system. 2648 */ 2649 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2650 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2651 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2652 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2653 2654 static mac_resource_handle_t 2655 ill_ring_add(void *arg, mac_resource_t *mrp) 2656 { 2657 ill_t *ill = (ill_t *)arg; 2658 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2659 ill_rx_ring_t *rx_ring; 2660 int ip_rx_index; 2661 2662 ASSERT(mrp != NULL); 2663 if (mrp->mr_type != MAC_RX_FIFO) { 2664 return (NULL); 2665 } 2666 ASSERT(ill != NULL); 2667 ASSERT(ill->ill_dls_capab != NULL); 2668 2669 mutex_enter(&ill->ill_lock); 2670 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2671 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2672 ASSERT(rx_ring != NULL); 2673 2674 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2675 time_t normal_blank_time = 2676 mrfp->mrf_normal_blank_time; 2677 uint_t normal_pkt_cnt = 2678 mrfp->mrf_normal_pkt_count; 2679 2680 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2681 2682 rx_ring->rr_blank = mrfp->mrf_blank; 2683 rx_ring->rr_handle = mrfp->mrf_arg; 2684 rx_ring->rr_ill = ill; 2685 rx_ring->rr_normal_blank_time = normal_blank_time; 2686 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2687 2688 rx_ring->rr_max_blank_time = 2689 normal_blank_time * rr_max_blank_ratio; 2690 rx_ring->rr_min_blank_time = 2691 normal_blank_time * rr_min_blank_ratio; 2692 rx_ring->rr_max_pkt_cnt = 2693 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2694 rx_ring->rr_min_pkt_cnt = 2695 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2696 2697 rx_ring->rr_ring_state = ILL_RING_INUSE; 2698 mutex_exit(&ill->ill_lock); 2699 2700 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2701 (int), ip_rx_index); 2702 return ((mac_resource_handle_t)rx_ring); 2703 } 2704 } 2705 2706 /* 2707 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2708 * we have devices which can overwhelm this limit, ILL_MAX_RING 2709 * should be made configurable. Meanwhile it cause no panic because 2710 * driver will pass ip_input a NULL handle which will make 2711 * IP allocate the default squeue and Polling mode will not 2712 * be used for this ring. 2713 */ 2714 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2715 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2716 2717 mutex_exit(&ill->ill_lock); 2718 return (NULL); 2719 } 2720 2721 static boolean_t 2722 ill_capability_dls_init(ill_t *ill) 2723 { 2724 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2725 conn_t *connp; 2726 size_t sz; 2727 ip_stack_t *ipst = ill->ill_ipst; 2728 2729 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2730 if (ill_dls == NULL) { 2731 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2732 "soft_ring enabled for ill=%s (%p) but data " 2733 "structs uninitialized\n", ill->ill_name, 2734 (void *)ill); 2735 } 2736 return (B_TRUE); 2737 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2738 if (ill_dls == NULL) { 2739 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2740 "polling enabled for ill=%s (%p) but data " 2741 "structs uninitialized\n", ill->ill_name, 2742 (void *)ill); 2743 } 2744 return (B_TRUE); 2745 } 2746 2747 if (ill_dls != NULL) { 2748 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2749 /* Soft_Ring or polling is being re-enabled */ 2750 2751 connp = ill_dls->ill_unbind_conn; 2752 ASSERT(rx_ring != NULL); 2753 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2754 bzero((void *)rx_ring, 2755 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2756 ill_dls->ill_ring_tbl = rx_ring; 2757 ill_dls->ill_unbind_conn = connp; 2758 return (B_TRUE); 2759 } 2760 2761 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2762 ipst->ips_netstack)) == NULL) 2763 return (B_FALSE); 2764 2765 sz = sizeof (ill_dls_capab_t); 2766 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2767 2768 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2769 if (ill_dls == NULL) { 2770 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2771 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2772 (void *)ill); 2773 CONN_DEC_REF(connp); 2774 return (B_FALSE); 2775 } 2776 2777 /* Allocate space to hold ring table */ 2778 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2779 ill->ill_dls_capab = ill_dls; 2780 ill_dls->ill_unbind_conn = connp; 2781 return (B_TRUE); 2782 } 2783 2784 /* 2785 * ill_capability_dls_disable: disable soft_ring and/or polling 2786 * capability. Since any of the rings might already be in use, need 2787 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2788 * direct calls if necessary. 2789 */ 2790 static void 2791 ill_capability_dls_disable(ill_t *ill) 2792 { 2793 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2794 2795 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2796 ip_squeue_clean_all(ill); 2797 ill_dls->ill_tx = NULL; 2798 ill_dls->ill_tx_handle = NULL; 2799 ill_dls->ill_dls_change_status = NULL; 2800 ill_dls->ill_dls_bind = NULL; 2801 ill_dls->ill_dls_unbind = NULL; 2802 } 2803 2804 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2805 } 2806 2807 static void 2808 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2809 dl_capability_sub_t *isub) 2810 { 2811 uint_t size; 2812 uchar_t *rptr; 2813 dl_capab_dls_t dls, *odls; 2814 ill_dls_capab_t *ill_dls; 2815 mblk_t *nmp = NULL; 2816 dl_capability_req_t *ocap; 2817 uint_t sub_dl_cap = isub->dl_cap; 2818 2819 if (!ill_capability_dls_init(ill)) 2820 return; 2821 ill_dls = ill->ill_dls_capab; 2822 2823 /* Copy locally to get the members aligned */ 2824 bcopy((void *)idls, (void *)&dls, 2825 sizeof (dl_capab_dls_t)); 2826 2827 /* Get the tx function and handle from dld */ 2828 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2829 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2830 2831 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2832 ill_dls->ill_dls_change_status = 2833 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2834 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2835 ill_dls->ill_dls_unbind = 2836 (ip_dls_unbind_t)dls.dls_ring_unbind; 2837 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2838 } 2839 2840 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2841 isub->dl_length; 2842 2843 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2844 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2845 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2846 ill->ill_name, (void *)ill); 2847 return; 2848 } 2849 2850 /* initialize dl_capability_req_t */ 2851 rptr = nmp->b_rptr; 2852 ocap = (dl_capability_req_t *)rptr; 2853 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2854 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2855 rptr += sizeof (dl_capability_req_t); 2856 2857 /* initialize dl_capability_sub_t */ 2858 bcopy(isub, rptr, sizeof (*isub)); 2859 rptr += sizeof (*isub); 2860 2861 odls = (dl_capab_dls_t *)rptr; 2862 rptr += sizeof (dl_capab_dls_t); 2863 2864 /* initialize dl_capab_dls_t to be sent down */ 2865 dls.dls_rx_handle = (uintptr_t)ill; 2866 dls.dls_rx = (uintptr_t)ip_input; 2867 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2868 2869 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2870 dls.dls_ring_cnt = ip_soft_rings_cnt; 2871 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2872 dls.dls_flags = SOFT_RING_ENABLE; 2873 } else { 2874 dls.dls_flags = POLL_ENABLE; 2875 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2876 "to enable polling\n", ill->ill_name)); 2877 } 2878 bcopy((void *)&dls, (void *)odls, 2879 sizeof (dl_capab_dls_t)); 2880 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2881 /* 2882 * nmp points to a DL_CAPABILITY_REQ message to 2883 * enable either soft_ring or polling 2884 */ 2885 ill_dlpi_send(ill, nmp); 2886 } 2887 2888 static void 2889 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2890 { 2891 mblk_t *mp; 2892 dl_capab_dls_t *idls; 2893 dl_capability_sub_t *dl_subcap; 2894 int size; 2895 2896 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2897 return; 2898 2899 ASSERT(ill->ill_dls_capab != NULL); 2900 2901 size = sizeof (*dl_subcap) + sizeof (*idls); 2902 2903 mp = allocb(size, BPRI_HI); 2904 if (mp == NULL) { 2905 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2906 "request to disable soft_ring\n")); 2907 return; 2908 } 2909 2910 mp->b_wptr = mp->b_rptr + size; 2911 2912 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2913 dl_subcap->dl_length = sizeof (*idls); 2914 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2915 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2916 else 2917 dl_subcap->dl_cap = DL_CAPAB_POLL; 2918 2919 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2920 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2921 idls->dls_flags = SOFT_RING_DISABLE; 2922 else 2923 idls->dls_flags = POLL_DISABLE; 2924 2925 if (*sc_mp != NULL) 2926 linkb(*sc_mp, mp); 2927 else 2928 *sc_mp = mp; 2929 } 2930 2931 /* 2932 * Process a soft_ring/poll capability negotiation ack received 2933 * from a DLS Provider.isub must point to the sub-capability 2934 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2935 */ 2936 static void 2937 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2938 { 2939 dl_capab_dls_t *idls; 2940 uint_t sub_dl_cap = isub->dl_cap; 2941 uint8_t *capend; 2942 2943 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2944 sub_dl_cap == DL_CAPAB_POLL); 2945 2946 if (ill->ill_isv6) 2947 return; 2948 2949 /* 2950 * Note: range checks here are not absolutely sufficient to 2951 * make us robust against malformed messages sent by drivers; 2952 * this is in keeping with the rest of IP's dlpi handling. 2953 * (Remember, it's coming from something else in the kernel 2954 * address space) 2955 */ 2956 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2957 if (capend > mp->b_wptr) { 2958 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2959 "malformed sub-capability too long for mblk"); 2960 return; 2961 } 2962 2963 /* 2964 * There are two types of acks we process here: 2965 * 1. acks in reply to a (first form) generic capability req 2966 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2967 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2968 * capability req. 2969 */ 2970 idls = (dl_capab_dls_t *)(isub + 1); 2971 2972 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2973 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2974 "capability isn't as expected; pass-thru " 2975 "module(s) detected, discarding capability\n")); 2976 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2977 /* 2978 * This is a capability renegotitation case. 2979 * The interface better be unusable at this 2980 * point other wise bad things will happen 2981 * if we disable direct calls on a running 2982 * and up interface. 2983 */ 2984 ill_capability_dls_disable(ill); 2985 } 2986 return; 2987 } 2988 2989 switch (idls->dls_flags) { 2990 default: 2991 /* Disable if unknown flag */ 2992 case SOFT_RING_DISABLE: 2993 case POLL_DISABLE: 2994 ill_capability_dls_disable(ill); 2995 break; 2996 case SOFT_RING_CAPABLE: 2997 case POLL_CAPABLE: 2998 /* 2999 * If the capability was already enabled, its safe 3000 * to disable it first to get rid of stale information 3001 * and then start enabling it again. 3002 */ 3003 ill_capability_dls_disable(ill); 3004 ill_capability_dls_capable(ill, idls, isub); 3005 break; 3006 case SOFT_RING_ENABLE: 3007 case POLL_ENABLE: 3008 mutex_enter(&ill->ill_lock); 3009 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3010 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3011 ASSERT(ill->ill_dls_capab != NULL); 3012 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3013 } 3014 if (sub_dl_cap == DL_CAPAB_POLL && 3015 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3016 ASSERT(ill->ill_dls_capab != NULL); 3017 ill->ill_capabilities |= ILL_CAPAB_POLL; 3018 ip1dbg(("ill_capability_dls_ack: interface %s " 3019 "has enabled polling\n", ill->ill_name)); 3020 } 3021 mutex_exit(&ill->ill_lock); 3022 break; 3023 } 3024 } 3025 3026 /* 3027 * Process a hardware checksum offload capability negotiation ack received 3028 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3029 * of a DL_CAPABILITY_ACK message. 3030 */ 3031 static void 3032 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3033 { 3034 dl_capability_req_t *ocap; 3035 dl_capab_hcksum_t *ihck, *ohck; 3036 ill_hcksum_capab_t **ill_hcksum; 3037 mblk_t *nmp = NULL; 3038 uint_t sub_dl_cap = isub->dl_cap; 3039 uint8_t *capend; 3040 3041 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3042 3043 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3044 3045 /* 3046 * Note: range checks here are not absolutely sufficient to 3047 * make us robust against malformed messages sent by drivers; 3048 * this is in keeping with the rest of IP's dlpi handling. 3049 * (Remember, it's coming from something else in the kernel 3050 * address space) 3051 */ 3052 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3053 if (capend > mp->b_wptr) { 3054 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3055 "malformed sub-capability too long for mblk"); 3056 return; 3057 } 3058 3059 /* 3060 * There are two types of acks we process here: 3061 * 1. acks in reply to a (first form) generic capability req 3062 * (no ENABLE flag set) 3063 * 2. acks in reply to a ENABLE capability req. 3064 * (ENABLE flag set) 3065 */ 3066 ihck = (dl_capab_hcksum_t *)(isub + 1); 3067 3068 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3069 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3070 "unsupported hardware checksum " 3071 "sub-capability (version %d, expected %d)", 3072 ihck->hcksum_version, HCKSUM_VERSION_1); 3073 return; 3074 } 3075 3076 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3077 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3078 "checksum capability isn't as expected; pass-thru " 3079 "module(s) detected, discarding capability\n")); 3080 return; 3081 } 3082 3083 #define CURR_HCKSUM_CAPAB \ 3084 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3085 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3086 3087 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3088 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3089 /* do ENABLE processing */ 3090 if (*ill_hcksum == NULL) { 3091 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3092 KM_NOSLEEP); 3093 3094 if (*ill_hcksum == NULL) { 3095 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3096 "could not enable hcksum version %d " 3097 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3098 ill->ill_name); 3099 return; 3100 } 3101 } 3102 3103 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3104 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3105 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3106 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3107 "has enabled hardware checksumming\n ", 3108 ill->ill_name)); 3109 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3110 /* 3111 * Enabling hardware checksum offload 3112 * Currently IP supports {TCP,UDP}/IPv4 3113 * partial and full cksum offload and 3114 * IPv4 header checksum offload. 3115 * Allocate new mblk which will 3116 * contain a new capability request 3117 * to enable hardware checksum offload. 3118 */ 3119 uint_t size; 3120 uchar_t *rptr; 3121 3122 size = sizeof (dl_capability_req_t) + 3123 sizeof (dl_capability_sub_t) + isub->dl_length; 3124 3125 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3126 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3127 "could not enable hardware cksum for %s (ENOMEM)\n", 3128 ill->ill_name); 3129 return; 3130 } 3131 3132 rptr = nmp->b_rptr; 3133 /* initialize dl_capability_req_t */ 3134 ocap = (dl_capability_req_t *)nmp->b_rptr; 3135 ocap->dl_sub_offset = 3136 sizeof (dl_capability_req_t); 3137 ocap->dl_sub_length = 3138 sizeof (dl_capability_sub_t) + 3139 isub->dl_length; 3140 nmp->b_rptr += sizeof (dl_capability_req_t); 3141 3142 /* initialize dl_capability_sub_t */ 3143 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3144 nmp->b_rptr += sizeof (*isub); 3145 3146 /* initialize dl_capab_hcksum_t */ 3147 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3148 bcopy(ihck, ohck, sizeof (*ihck)); 3149 3150 nmp->b_rptr = rptr; 3151 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3152 3153 /* Set ENABLE flag */ 3154 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3155 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3156 3157 /* 3158 * nmp points to a DL_CAPABILITY_REQ message to enable 3159 * hardware checksum acceleration. 3160 */ 3161 ill_dlpi_send(ill, nmp); 3162 } else { 3163 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3164 "advertised %x hardware checksum capability flags\n", 3165 ill->ill_name, ihck->hcksum_txflags)); 3166 } 3167 } 3168 3169 static void 3170 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3171 { 3172 mblk_t *mp; 3173 dl_capab_hcksum_t *hck_subcap; 3174 dl_capability_sub_t *dl_subcap; 3175 int size; 3176 3177 if (!ILL_HCKSUM_CAPABLE(ill)) 3178 return; 3179 3180 ASSERT(ill->ill_hcksum_capab != NULL); 3181 /* 3182 * Clear the capability flag for hardware checksum offload but 3183 * retain the ill_hcksum_capab structure since it's possible that 3184 * another thread is still referring to it. The structure only 3185 * gets deallocated when we destroy the ill. 3186 */ 3187 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3188 3189 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3190 3191 mp = allocb(size, BPRI_HI); 3192 if (mp == NULL) { 3193 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3194 "request to disable hardware checksum offload\n")); 3195 return; 3196 } 3197 3198 mp->b_wptr = mp->b_rptr + size; 3199 3200 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3201 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3202 dl_subcap->dl_length = sizeof (*hck_subcap); 3203 3204 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3205 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3206 hck_subcap->hcksum_txflags = 0; 3207 3208 if (*sc_mp != NULL) 3209 linkb(*sc_mp, mp); 3210 else 3211 *sc_mp = mp; 3212 } 3213 3214 static void 3215 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3216 { 3217 mblk_t *nmp = NULL; 3218 dl_capability_req_t *oc; 3219 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3220 ill_zerocopy_capab_t **ill_zerocopy_capab; 3221 uint_t sub_dl_cap = isub->dl_cap; 3222 uint8_t *capend; 3223 3224 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3225 3226 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3227 3228 /* 3229 * Note: range checks here are not absolutely sufficient to 3230 * make us robust against malformed messages sent by drivers; 3231 * this is in keeping with the rest of IP's dlpi handling. 3232 * (Remember, it's coming from something else in the kernel 3233 * address space) 3234 */ 3235 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3236 if (capend > mp->b_wptr) { 3237 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3238 "malformed sub-capability too long for mblk"); 3239 return; 3240 } 3241 3242 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3243 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3244 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3245 "unsupported ZEROCOPY sub-capability (version %d, " 3246 "expected %d)", zc_ic->zerocopy_version, 3247 ZEROCOPY_VERSION_1); 3248 return; 3249 } 3250 3251 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3252 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3253 "capability isn't as expected; pass-thru module(s) " 3254 "detected, discarding capability\n")); 3255 return; 3256 } 3257 3258 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3259 if (*ill_zerocopy_capab == NULL) { 3260 *ill_zerocopy_capab = 3261 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3262 KM_NOSLEEP); 3263 3264 if (*ill_zerocopy_capab == NULL) { 3265 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3266 "could not enable Zero-copy version %d " 3267 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3268 ill->ill_name); 3269 return; 3270 } 3271 } 3272 3273 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3274 "supports Zero-copy version %d\n", ill->ill_name, 3275 ZEROCOPY_VERSION_1)); 3276 3277 (*ill_zerocopy_capab)->ill_zerocopy_version = 3278 zc_ic->zerocopy_version; 3279 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3280 zc_ic->zerocopy_flags; 3281 3282 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3283 } else { 3284 uint_t size; 3285 uchar_t *rptr; 3286 3287 size = sizeof (dl_capability_req_t) + 3288 sizeof (dl_capability_sub_t) + 3289 sizeof (dl_capab_zerocopy_t); 3290 3291 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3292 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3293 "could not enable zerocopy for %s (ENOMEM)\n", 3294 ill->ill_name); 3295 return; 3296 } 3297 3298 rptr = nmp->b_rptr; 3299 /* initialize dl_capability_req_t */ 3300 oc = (dl_capability_req_t *)rptr; 3301 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3302 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3303 sizeof (dl_capab_zerocopy_t); 3304 rptr += sizeof (dl_capability_req_t); 3305 3306 /* initialize dl_capability_sub_t */ 3307 bcopy(isub, rptr, sizeof (*isub)); 3308 rptr += sizeof (*isub); 3309 3310 /* initialize dl_capab_zerocopy_t */ 3311 zc_oc = (dl_capab_zerocopy_t *)rptr; 3312 *zc_oc = *zc_ic; 3313 3314 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3315 "to enable zero-copy version %d\n", ill->ill_name, 3316 ZEROCOPY_VERSION_1)); 3317 3318 /* set VMSAFE_MEM flag */ 3319 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3320 3321 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3322 ill_dlpi_send(ill, nmp); 3323 } 3324 } 3325 3326 static void 3327 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3328 { 3329 mblk_t *mp; 3330 dl_capab_zerocopy_t *zerocopy_subcap; 3331 dl_capability_sub_t *dl_subcap; 3332 int size; 3333 3334 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3335 return; 3336 3337 ASSERT(ill->ill_zerocopy_capab != NULL); 3338 /* 3339 * Clear the capability flag for Zero-copy but retain the 3340 * ill_zerocopy_capab structure since it's possible that another 3341 * thread is still referring to it. The structure only gets 3342 * deallocated when we destroy the ill. 3343 */ 3344 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3345 3346 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3347 3348 mp = allocb(size, BPRI_HI); 3349 if (mp == NULL) { 3350 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3351 "request to disable Zero-copy\n")); 3352 return; 3353 } 3354 3355 mp->b_wptr = mp->b_rptr + size; 3356 3357 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3358 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3359 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3360 3361 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3362 zerocopy_subcap->zerocopy_version = 3363 ill->ill_zerocopy_capab->ill_zerocopy_version; 3364 zerocopy_subcap->zerocopy_flags = 0; 3365 3366 if (*sc_mp != NULL) 3367 linkb(*sc_mp, mp); 3368 else 3369 *sc_mp = mp; 3370 } 3371 3372 /* 3373 * Process Large Segment Offload capability negotiation ack received from a 3374 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3375 * DL_CAPABILITY_ACK message. 3376 */ 3377 static void 3378 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3379 { 3380 mblk_t *nmp = NULL; 3381 dl_capability_req_t *oc; 3382 dl_capab_lso_t *lso_ic, *lso_oc; 3383 ill_lso_capab_t **ill_lso_capab; 3384 uint_t sub_dl_cap = isub->dl_cap; 3385 uint8_t *capend; 3386 3387 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3388 3389 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3390 3391 /* 3392 * Note: range checks here are not absolutely sufficient to 3393 * make us robust against malformed messages sent by drivers; 3394 * this is in keeping with the rest of IP's dlpi handling. 3395 * (Remember, it's coming from something else in the kernel 3396 * address space) 3397 */ 3398 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3399 if (capend > mp->b_wptr) { 3400 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3401 "malformed sub-capability too long for mblk"); 3402 return; 3403 } 3404 3405 lso_ic = (dl_capab_lso_t *)(isub + 1); 3406 3407 if (lso_ic->lso_version != LSO_VERSION_1) { 3408 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3409 "unsupported LSO sub-capability (version %d, expected %d)", 3410 lso_ic->lso_version, LSO_VERSION_1); 3411 return; 3412 } 3413 3414 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3415 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3416 "capability isn't as expected; pass-thru module(s) " 3417 "detected, discarding capability\n")); 3418 return; 3419 } 3420 3421 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3422 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3423 if (*ill_lso_capab == NULL) { 3424 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3425 KM_NOSLEEP); 3426 3427 if (*ill_lso_capab == NULL) { 3428 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3429 "could not enable LSO version %d " 3430 "for %s (ENOMEM)\n", LSO_VERSION_1, 3431 ill->ill_name); 3432 return; 3433 } 3434 } 3435 3436 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3437 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3438 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3439 ill->ill_capabilities |= ILL_CAPAB_LSO; 3440 3441 ip1dbg(("ill_capability_lso_ack: interface %s " 3442 "has enabled LSO\n ", ill->ill_name)); 3443 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3444 uint_t size; 3445 uchar_t *rptr; 3446 3447 size = sizeof (dl_capability_req_t) + 3448 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3449 3450 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3451 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3452 "could not enable LSO for %s (ENOMEM)\n", 3453 ill->ill_name); 3454 return; 3455 } 3456 3457 rptr = nmp->b_rptr; 3458 /* initialize dl_capability_req_t */ 3459 oc = (dl_capability_req_t *)nmp->b_rptr; 3460 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3461 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3462 sizeof (dl_capab_lso_t); 3463 nmp->b_rptr += sizeof (dl_capability_req_t); 3464 3465 /* initialize dl_capability_sub_t */ 3466 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3467 nmp->b_rptr += sizeof (*isub); 3468 3469 /* initialize dl_capab_lso_t */ 3470 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3471 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3472 3473 nmp->b_rptr = rptr; 3474 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3475 3476 /* set ENABLE flag */ 3477 lso_oc->lso_flags |= LSO_TX_ENABLE; 3478 3479 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3480 ill_dlpi_send(ill, nmp); 3481 } else { 3482 ip1dbg(("ill_capability_lso_ack: interface %s has " 3483 "advertised %x LSO capability flags\n", 3484 ill->ill_name, lso_ic->lso_flags)); 3485 } 3486 } 3487 3488 static void 3489 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3490 { 3491 mblk_t *mp; 3492 dl_capab_lso_t *lso_subcap; 3493 dl_capability_sub_t *dl_subcap; 3494 int size; 3495 3496 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3497 return; 3498 3499 ASSERT(ill->ill_lso_capab != NULL); 3500 /* 3501 * Clear the capability flag for LSO but retain the 3502 * ill_lso_capab structure since it's possible that another 3503 * thread is still referring to it. The structure only gets 3504 * deallocated when we destroy the ill. 3505 */ 3506 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3507 3508 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3509 3510 mp = allocb(size, BPRI_HI); 3511 if (mp == NULL) { 3512 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3513 "request to disable LSO\n")); 3514 return; 3515 } 3516 3517 mp->b_wptr = mp->b_rptr + size; 3518 3519 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3520 dl_subcap->dl_cap = DL_CAPAB_LSO; 3521 dl_subcap->dl_length = sizeof (*lso_subcap); 3522 3523 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3524 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3525 lso_subcap->lso_flags = 0; 3526 3527 if (*sc_mp != NULL) 3528 linkb(*sc_mp, mp); 3529 else 3530 *sc_mp = mp; 3531 } 3532 3533 /* 3534 * Consume a new-style hardware capabilities negotiation ack. 3535 * Called from ip_rput_dlpi_writer(). 3536 */ 3537 void 3538 ill_capability_ack(ill_t *ill, mblk_t *mp) 3539 { 3540 dl_capability_ack_t *capp; 3541 dl_capability_sub_t *subp, *endp; 3542 3543 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3544 ill->ill_dlpi_capab_state = IDS_OK; 3545 3546 capp = (dl_capability_ack_t *)mp->b_rptr; 3547 3548 if (capp->dl_sub_length == 0) 3549 /* no new-style capabilities */ 3550 return; 3551 3552 /* make sure the driver supplied correct dl_sub_length */ 3553 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3554 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3555 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3556 return; 3557 } 3558 3559 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3560 /* 3561 * There are sub-capabilities. Process the ones we know about. 3562 * Loop until we don't have room for another sub-cap header.. 3563 */ 3564 for (subp = SC(capp, capp->dl_sub_offset), 3565 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3566 subp <= endp; 3567 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3568 3569 switch (subp->dl_cap) { 3570 case DL_CAPAB_ID_WRAPPER: 3571 ill_capability_id_ack(ill, mp, subp); 3572 break; 3573 default: 3574 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3575 break; 3576 } 3577 } 3578 #undef SC 3579 } 3580 3581 /* 3582 * This routine is called to scan the fragmentation reassembly table for 3583 * the specified ILL for any packets that are starting to smell. 3584 * dead_interval is the maximum time in seconds that will be tolerated. It 3585 * will either be the value specified in ip_g_frag_timeout, or zero if the 3586 * ILL is shutting down and it is time to blow everything off. 3587 * 3588 * It returns the number of seconds (as a time_t) that the next frag timer 3589 * should be scheduled for, 0 meaning that the timer doesn't need to be 3590 * re-started. Note that the method of calculating next_timeout isn't 3591 * entirely accurate since time will flow between the time we grab 3592 * current_time and the time we schedule the next timeout. This isn't a 3593 * big problem since this is the timer for sending an ICMP reassembly time 3594 * exceeded messages, and it doesn't have to be exactly accurate. 3595 * 3596 * This function is 3597 * sometimes called as writer, although this is not required. 3598 */ 3599 time_t 3600 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3601 { 3602 ipfb_t *ipfb; 3603 ipfb_t *endp; 3604 ipf_t *ipf; 3605 ipf_t *ipfnext; 3606 mblk_t *mp; 3607 time_t current_time = gethrestime_sec(); 3608 time_t next_timeout = 0; 3609 uint32_t hdr_length; 3610 mblk_t *send_icmp_head; 3611 mblk_t *send_icmp_head_v6; 3612 zoneid_t zoneid; 3613 ip_stack_t *ipst = ill->ill_ipst; 3614 3615 ipfb = ill->ill_frag_hash_tbl; 3616 if (ipfb == NULL) 3617 return (B_FALSE); 3618 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3619 /* Walk the frag hash table. */ 3620 for (; ipfb < endp; ipfb++) { 3621 send_icmp_head = NULL; 3622 send_icmp_head_v6 = NULL; 3623 mutex_enter(&ipfb->ipfb_lock); 3624 while ((ipf = ipfb->ipfb_ipf) != 0) { 3625 time_t frag_time = current_time - ipf->ipf_timestamp; 3626 time_t frag_timeout; 3627 3628 if (frag_time < dead_interval) { 3629 /* 3630 * There are some outstanding fragments 3631 * that will timeout later. Make note of 3632 * the time so that we can reschedule the 3633 * next timeout appropriately. 3634 */ 3635 frag_timeout = dead_interval - frag_time; 3636 if (next_timeout == 0 || 3637 frag_timeout < next_timeout) { 3638 next_timeout = frag_timeout; 3639 } 3640 break; 3641 } 3642 /* Time's up. Get it out of here. */ 3643 hdr_length = ipf->ipf_nf_hdr_len; 3644 ipfnext = ipf->ipf_hash_next; 3645 if (ipfnext) 3646 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3647 *ipf->ipf_ptphn = ipfnext; 3648 mp = ipf->ipf_mp->b_cont; 3649 for (; mp; mp = mp->b_cont) { 3650 /* Extra points for neatness. */ 3651 IP_REASS_SET_START(mp, 0); 3652 IP_REASS_SET_END(mp, 0); 3653 } 3654 mp = ipf->ipf_mp->b_cont; 3655 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3656 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3657 ipfb->ipfb_count -= ipf->ipf_count; 3658 ASSERT(ipfb->ipfb_frag_pkts > 0); 3659 ipfb->ipfb_frag_pkts--; 3660 /* 3661 * We do not send any icmp message from here because 3662 * we currently are holding the ipfb_lock for this 3663 * hash chain. If we try and send any icmp messages 3664 * from here we may end up via a put back into ip 3665 * trying to get the same lock, causing a recursive 3666 * mutex panic. Instead we build a list and send all 3667 * the icmp messages after we have dropped the lock. 3668 */ 3669 if (ill->ill_isv6) { 3670 if (hdr_length != 0) { 3671 mp->b_next = send_icmp_head_v6; 3672 send_icmp_head_v6 = mp; 3673 } else { 3674 freemsg(mp); 3675 } 3676 } else { 3677 if (hdr_length != 0) { 3678 mp->b_next = send_icmp_head; 3679 send_icmp_head = mp; 3680 } else { 3681 freemsg(mp); 3682 } 3683 } 3684 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3685 freeb(ipf->ipf_mp); 3686 } 3687 mutex_exit(&ipfb->ipfb_lock); 3688 /* 3689 * Now need to send any icmp messages that we delayed from 3690 * above. 3691 */ 3692 while (send_icmp_head_v6 != NULL) { 3693 ip6_t *ip6h; 3694 3695 mp = send_icmp_head_v6; 3696 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3697 mp->b_next = NULL; 3698 if (mp->b_datap->db_type == M_CTL) 3699 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3700 else 3701 ip6h = (ip6_t *)mp->b_rptr; 3702 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3703 ill, ipst); 3704 if (zoneid == ALL_ZONES) { 3705 freemsg(mp); 3706 } else { 3707 icmp_time_exceeded_v6(ill->ill_wq, mp, 3708 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3709 B_FALSE, zoneid, ipst); 3710 } 3711 } 3712 while (send_icmp_head != NULL) { 3713 ipaddr_t dst; 3714 3715 mp = send_icmp_head; 3716 send_icmp_head = send_icmp_head->b_next; 3717 mp->b_next = NULL; 3718 3719 if (mp->b_datap->db_type == M_CTL) 3720 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3721 else 3722 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3723 3724 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3725 if (zoneid == ALL_ZONES) { 3726 freemsg(mp); 3727 } else { 3728 icmp_time_exceeded(ill->ill_wq, mp, 3729 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3730 ipst); 3731 } 3732 } 3733 } 3734 /* 3735 * A non-dying ILL will use the return value to decide whether to 3736 * restart the frag timer, and for how long. 3737 */ 3738 return (next_timeout); 3739 } 3740 3741 /* 3742 * This routine is called when the approximate count of mblk memory used 3743 * for the specified ILL has exceeded max_count. 3744 */ 3745 void 3746 ill_frag_prune(ill_t *ill, uint_t max_count) 3747 { 3748 ipfb_t *ipfb; 3749 ipf_t *ipf; 3750 size_t count; 3751 3752 /* 3753 * If we are here within ip_min_frag_prune_time msecs remove 3754 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3755 * ill_frag_free_num_pkts. 3756 */ 3757 mutex_enter(&ill->ill_lock); 3758 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3759 (ip_min_frag_prune_time != 0 ? 3760 ip_min_frag_prune_time : msec_per_tick)) { 3761 3762 ill->ill_frag_free_num_pkts++; 3763 3764 } else { 3765 ill->ill_frag_free_num_pkts = 0; 3766 } 3767 ill->ill_last_frag_clean_time = lbolt; 3768 mutex_exit(&ill->ill_lock); 3769 3770 /* 3771 * free ill_frag_free_num_pkts oldest packets from each bucket. 3772 */ 3773 if (ill->ill_frag_free_num_pkts != 0) { 3774 int ix; 3775 3776 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3777 ipfb = &ill->ill_frag_hash_tbl[ix]; 3778 mutex_enter(&ipfb->ipfb_lock); 3779 if (ipfb->ipfb_ipf != NULL) { 3780 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3781 ill->ill_frag_free_num_pkts); 3782 } 3783 mutex_exit(&ipfb->ipfb_lock); 3784 } 3785 } 3786 /* 3787 * While the reassembly list for this ILL is too big, prune a fragment 3788 * queue by age, oldest first. 3789 */ 3790 while (ill->ill_frag_count > max_count) { 3791 int ix; 3792 ipfb_t *oipfb = NULL; 3793 uint_t oldest = UINT_MAX; 3794 3795 count = 0; 3796 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3797 ipfb = &ill->ill_frag_hash_tbl[ix]; 3798 mutex_enter(&ipfb->ipfb_lock); 3799 ipf = ipfb->ipfb_ipf; 3800 if (ipf != NULL && ipf->ipf_gen < oldest) { 3801 oldest = ipf->ipf_gen; 3802 oipfb = ipfb; 3803 } 3804 count += ipfb->ipfb_count; 3805 mutex_exit(&ipfb->ipfb_lock); 3806 } 3807 if (oipfb == NULL) 3808 break; 3809 3810 if (count <= max_count) 3811 return; /* Somebody beat us to it, nothing to do */ 3812 mutex_enter(&oipfb->ipfb_lock); 3813 ipf = oipfb->ipfb_ipf; 3814 if (ipf != NULL) { 3815 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3816 } 3817 mutex_exit(&oipfb->ipfb_lock); 3818 } 3819 } 3820 3821 /* 3822 * free 'free_cnt' fragmented packets starting at ipf. 3823 */ 3824 void 3825 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3826 { 3827 size_t count; 3828 mblk_t *mp; 3829 mblk_t *tmp; 3830 ipf_t **ipfp = ipf->ipf_ptphn; 3831 3832 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3833 ASSERT(ipfp != NULL); 3834 ASSERT(ipf != NULL); 3835 3836 while (ipf != NULL && free_cnt-- > 0) { 3837 count = ipf->ipf_count; 3838 mp = ipf->ipf_mp; 3839 ipf = ipf->ipf_hash_next; 3840 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3841 IP_REASS_SET_START(tmp, 0); 3842 IP_REASS_SET_END(tmp, 0); 3843 } 3844 atomic_add_32(&ill->ill_frag_count, -count); 3845 ASSERT(ipfb->ipfb_count >= count); 3846 ipfb->ipfb_count -= count; 3847 ASSERT(ipfb->ipfb_frag_pkts > 0); 3848 ipfb->ipfb_frag_pkts--; 3849 freemsg(mp); 3850 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3851 } 3852 3853 if (ipf) 3854 ipf->ipf_ptphn = ipfp; 3855 ipfp[0] = ipf; 3856 } 3857 3858 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3859 "obsolete and may be removed in a future release of Solaris. Use " \ 3860 "ifconfig(1M) to manipulate the forwarding status of an interface." 3861 3862 /* 3863 * For obsolete per-interface forwarding configuration; 3864 * called in response to ND_GET. 3865 */ 3866 /* ARGSUSED */ 3867 static int 3868 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3869 { 3870 ill_t *ill = (ill_t *)cp; 3871 3872 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3873 3874 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3875 return (0); 3876 } 3877 3878 /* 3879 * For obsolete per-interface forwarding configuration; 3880 * called in response to ND_SET. 3881 */ 3882 /* ARGSUSED */ 3883 static int 3884 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3885 cred_t *ioc_cr) 3886 { 3887 long value; 3888 int retval; 3889 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3890 3891 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3892 3893 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3894 value < 0 || value > 1) { 3895 return (EINVAL); 3896 } 3897 3898 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3899 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3900 rw_exit(&ipst->ips_ill_g_lock); 3901 return (retval); 3902 } 3903 3904 /* 3905 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3906 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3907 * up RTS_IFINFO routing socket messages for each interface whose flags we 3908 * change. 3909 */ 3910 int 3911 ill_forward_set(ill_t *ill, boolean_t enable) 3912 { 3913 ill_group_t *illgrp; 3914 ip_stack_t *ipst = ill->ill_ipst; 3915 3916 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3917 3918 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3919 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3920 return (0); 3921 3922 if (IS_LOOPBACK(ill)) 3923 return (EINVAL); 3924 3925 /* 3926 * If the ill is in an IPMP group, set the forwarding policy on all 3927 * members of the group to the same value. 3928 */ 3929 illgrp = ill->ill_group; 3930 if (illgrp != NULL) { 3931 ill_t *tmp_ill; 3932 3933 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3934 tmp_ill = tmp_ill->ill_group_next) { 3935 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3936 (enable ? "Enabling" : "Disabling"), 3937 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3938 tmp_ill->ill_name)); 3939 mutex_enter(&tmp_ill->ill_lock); 3940 if (enable) 3941 tmp_ill->ill_flags |= ILLF_ROUTER; 3942 else 3943 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3944 mutex_exit(&tmp_ill->ill_lock); 3945 if (tmp_ill->ill_isv6) 3946 ill_set_nce_router_flags(tmp_ill, enable); 3947 /* Notify routing socket listeners of this change. */ 3948 ip_rts_ifmsg(tmp_ill->ill_ipif); 3949 } 3950 } else { 3951 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3952 (enable ? "Enabling" : "Disabling"), 3953 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3954 mutex_enter(&ill->ill_lock); 3955 if (enable) 3956 ill->ill_flags |= ILLF_ROUTER; 3957 else 3958 ill->ill_flags &= ~ILLF_ROUTER; 3959 mutex_exit(&ill->ill_lock); 3960 if (ill->ill_isv6) 3961 ill_set_nce_router_flags(ill, enable); 3962 /* Notify routing socket listeners of this change. */ 3963 ip_rts_ifmsg(ill->ill_ipif); 3964 } 3965 3966 return (0); 3967 } 3968 3969 /* 3970 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3971 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3972 * set or clear. 3973 */ 3974 static void 3975 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3976 { 3977 ipif_t *ipif; 3978 nce_t *nce; 3979 3980 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3981 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3982 if (nce != NULL) { 3983 mutex_enter(&nce->nce_lock); 3984 if (enable) 3985 nce->nce_flags |= NCE_F_ISROUTER; 3986 else 3987 nce->nce_flags &= ~NCE_F_ISROUTER; 3988 mutex_exit(&nce->nce_lock); 3989 NCE_REFRELE(nce); 3990 } 3991 } 3992 } 3993 3994 /* 3995 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3996 * for this ill. Make sure the v6/v4 question has been answered about this 3997 * ill. The creation of this ndd variable is only for backwards compatibility. 3998 * The preferred way to control per-interface IP forwarding is through the 3999 * ILLF_ROUTER interface flag. 4000 */ 4001 static int 4002 ill_set_ndd_name(ill_t *ill) 4003 { 4004 char *suffix; 4005 ip_stack_t *ipst = ill->ill_ipst; 4006 4007 ASSERT(IAM_WRITER_ILL(ill)); 4008 4009 if (ill->ill_isv6) 4010 suffix = ipv6_forward_suffix; 4011 else 4012 suffix = ipv4_forward_suffix; 4013 4014 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4015 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4016 /* 4017 * Copies over the '\0'. 4018 * Note that strlen(suffix) is always bounded. 4019 */ 4020 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4021 strlen(suffix) + 1); 4022 4023 /* 4024 * Use of the nd table requires holding the reader lock. 4025 * Modifying the nd table thru nd_load/nd_unload requires 4026 * the writer lock. 4027 */ 4028 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4029 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4030 nd_ill_forward_set, (caddr_t)ill)) { 4031 /* 4032 * If the nd_load failed, it only meant that it could not 4033 * allocate a new bunch of room for further NDD expansion. 4034 * Because of that, the ill_ndd_name will be set to 0, and 4035 * this interface is at the mercy of the global ip_forwarding 4036 * variable. 4037 */ 4038 rw_exit(&ipst->ips_ip_g_nd_lock); 4039 ill->ill_ndd_name = NULL; 4040 return (ENOMEM); 4041 } 4042 rw_exit(&ipst->ips_ip_g_nd_lock); 4043 return (0); 4044 } 4045 4046 /* 4047 * Intializes the context structure and returns the first ill in the list 4048 * cuurently start_list and end_list can have values: 4049 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4050 * IP_V4_G_HEAD Traverse IPV4 list only. 4051 * IP_V6_G_HEAD Traverse IPV6 list only. 4052 */ 4053 4054 /* 4055 * We don't check for CONDEMNED ills here. Caller must do that if 4056 * necessary under the ill lock. 4057 */ 4058 ill_t * 4059 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4060 ip_stack_t *ipst) 4061 { 4062 ill_if_t *ifp; 4063 ill_t *ill; 4064 avl_tree_t *avl_tree; 4065 4066 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4067 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4068 4069 /* 4070 * setup the lists to search 4071 */ 4072 if (end_list != MAX_G_HEADS) { 4073 ctx->ctx_current_list = start_list; 4074 ctx->ctx_last_list = end_list; 4075 } else { 4076 ctx->ctx_last_list = MAX_G_HEADS - 1; 4077 ctx->ctx_current_list = 0; 4078 } 4079 4080 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4081 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4082 if (ifp != (ill_if_t *) 4083 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4084 avl_tree = &ifp->illif_avl_by_ppa; 4085 ill = avl_first(avl_tree); 4086 /* 4087 * ill is guaranteed to be non NULL or ifp should have 4088 * not existed. 4089 */ 4090 ASSERT(ill != NULL); 4091 return (ill); 4092 } 4093 ctx->ctx_current_list++; 4094 } 4095 4096 return (NULL); 4097 } 4098 4099 /* 4100 * returns the next ill in the list. ill_first() must have been called 4101 * before calling ill_next() or bad things will happen. 4102 */ 4103 4104 /* 4105 * We don't check for CONDEMNED ills here. Caller must do that if 4106 * necessary under the ill lock. 4107 */ 4108 ill_t * 4109 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4110 { 4111 ill_if_t *ifp; 4112 ill_t *ill; 4113 ip_stack_t *ipst = lastill->ill_ipst; 4114 4115 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4116 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4117 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4118 AVL_AFTER)) != NULL) { 4119 return (ill); 4120 } 4121 4122 /* goto next ill_ifp in the list. */ 4123 ifp = lastill->ill_ifptr->illif_next; 4124 4125 /* make sure not at end of circular list */ 4126 while (ifp == 4127 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4128 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4129 return (NULL); 4130 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4131 } 4132 4133 return (avl_first(&ifp->illif_avl_by_ppa)); 4134 } 4135 4136 /* 4137 * Check interface name for correct format which is name+ppa. 4138 * name can contain characters and digits, the right most digits 4139 * make up the ppa number. use of octal is not allowed, name must contain 4140 * a ppa, return pointer to the start of ppa. 4141 * In case of error return NULL. 4142 */ 4143 static char * 4144 ill_get_ppa_ptr(char *name) 4145 { 4146 int namelen = mi_strlen(name); 4147 4148 int len = namelen; 4149 4150 name += len; 4151 while (len > 0) { 4152 name--; 4153 if (*name < '0' || *name > '9') 4154 break; 4155 len--; 4156 } 4157 4158 /* empty string, all digits, or no trailing digits */ 4159 if (len == 0 || len == (int)namelen) 4160 return (NULL); 4161 4162 name++; 4163 /* check for attempted use of octal */ 4164 if (*name == '0' && len != (int)namelen - 1) 4165 return (NULL); 4166 return (name); 4167 } 4168 4169 /* 4170 * use avl tree to locate the ill. 4171 */ 4172 static ill_t * 4173 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4174 ipsq_func_t func, int *error, ip_stack_t *ipst) 4175 { 4176 char *ppa_ptr = NULL; 4177 int len; 4178 uint_t ppa; 4179 ill_t *ill = NULL; 4180 ill_if_t *ifp; 4181 int list; 4182 ipsq_t *ipsq; 4183 4184 if (error != NULL) 4185 *error = 0; 4186 4187 /* 4188 * get ppa ptr 4189 */ 4190 if (isv6) 4191 list = IP_V6_G_HEAD; 4192 else 4193 list = IP_V4_G_HEAD; 4194 4195 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4196 if (error != NULL) 4197 *error = ENXIO; 4198 return (NULL); 4199 } 4200 4201 len = ppa_ptr - name + 1; 4202 4203 ppa = stoi(&ppa_ptr); 4204 4205 ifp = IP_VX_ILL_G_LIST(list, ipst); 4206 4207 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4208 /* 4209 * match is done on len - 1 as the name is not null 4210 * terminated it contains ppa in addition to the interface 4211 * name. 4212 */ 4213 if ((ifp->illif_name_len == len) && 4214 bcmp(ifp->illif_name, name, len - 1) == 0) { 4215 break; 4216 } else { 4217 ifp = ifp->illif_next; 4218 } 4219 } 4220 4221 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4222 /* 4223 * Even the interface type does not exist. 4224 */ 4225 if (error != NULL) 4226 *error = ENXIO; 4227 return (NULL); 4228 } 4229 4230 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4231 if (ill != NULL) { 4232 /* 4233 * The block comment at the start of ipif_down 4234 * explains the use of the macros used below 4235 */ 4236 GRAB_CONN_LOCK(q); 4237 mutex_enter(&ill->ill_lock); 4238 if (ILL_CAN_LOOKUP(ill)) { 4239 ill_refhold_locked(ill); 4240 mutex_exit(&ill->ill_lock); 4241 RELEASE_CONN_LOCK(q); 4242 return (ill); 4243 } else if (ILL_CAN_WAIT(ill, q)) { 4244 ipsq = ill->ill_phyint->phyint_ipsq; 4245 mutex_enter(&ipsq->ipsq_lock); 4246 mutex_exit(&ill->ill_lock); 4247 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4248 mutex_exit(&ipsq->ipsq_lock); 4249 RELEASE_CONN_LOCK(q); 4250 if (error != NULL) 4251 *error = EINPROGRESS; 4252 return (NULL); 4253 } 4254 mutex_exit(&ill->ill_lock); 4255 RELEASE_CONN_LOCK(q); 4256 } 4257 if (error != NULL) 4258 *error = ENXIO; 4259 return (NULL); 4260 } 4261 4262 /* 4263 * comparison function for use with avl. 4264 */ 4265 static int 4266 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4267 { 4268 uint_t ppa; 4269 uint_t ill_ppa; 4270 4271 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4272 4273 ppa = *((uint_t *)ppa_ptr); 4274 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4275 /* 4276 * We want the ill with the lowest ppa to be on the 4277 * top. 4278 */ 4279 if (ill_ppa < ppa) 4280 return (1); 4281 if (ill_ppa > ppa) 4282 return (-1); 4283 return (0); 4284 } 4285 4286 /* 4287 * remove an interface type from the global list. 4288 */ 4289 static void 4290 ill_delete_interface_type(ill_if_t *interface) 4291 { 4292 ASSERT(interface != NULL); 4293 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4294 4295 avl_destroy(&interface->illif_avl_by_ppa); 4296 if (interface->illif_ppa_arena != NULL) 4297 vmem_destroy(interface->illif_ppa_arena); 4298 4299 remque(interface); 4300 4301 mi_free(interface); 4302 } 4303 4304 /* 4305 * remove ill from the global list. 4306 */ 4307 static void 4308 ill_glist_delete(ill_t *ill) 4309 { 4310 hook_nic_event_t *info; 4311 ip_stack_t *ipst; 4312 4313 if (ill == NULL) 4314 return; 4315 ipst = ill->ill_ipst; 4316 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4317 4318 /* 4319 * If the ill was never inserted into the AVL tree 4320 * we skip the if branch. 4321 */ 4322 if (ill->ill_ifptr != NULL) { 4323 /* 4324 * remove from AVL tree and free ppa number 4325 */ 4326 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4327 4328 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4329 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4330 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4331 } 4332 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4333 ill_delete_interface_type(ill->ill_ifptr); 4334 } 4335 4336 /* 4337 * Indicate ill is no longer in the list. 4338 */ 4339 ill->ill_ifptr = NULL; 4340 ill->ill_name_length = 0; 4341 ill->ill_name[0] = '\0'; 4342 ill->ill_ppa = UINT_MAX; 4343 } 4344 4345 /* 4346 * Run the unplumb hook after the NIC has disappeared from being 4347 * visible so that attempts to revalidate its existance will fail. 4348 * 4349 * This needs to be run inside the ill_g_lock perimeter to ensure 4350 * that the ordering of delivered events to listeners matches the 4351 * order of them in the kernel. 4352 */ 4353 info = ill->ill_nic_event_info; 4354 if (info != NULL && info->hne_event == NE_DOWN) { 4355 mutex_enter(&ill->ill_lock); 4356 ill_nic_info_dispatch(ill); 4357 mutex_exit(&ill->ill_lock); 4358 } 4359 4360 /* Generate NE_UNPLUMB event for ill_name. */ 4361 (void) ill_hook_event_create(ill, 0, NE_UNPLUMB, ill->ill_name, 4362 ill->ill_name_length); 4363 4364 ill_phyint_free(ill); 4365 rw_exit(&ipst->ips_ill_g_lock); 4366 } 4367 4368 /* 4369 * allocate a ppa, if the number of plumbed interfaces of this type are 4370 * less than ill_no_arena do a linear search to find a unused ppa. 4371 * When the number goes beyond ill_no_arena switch to using an arena. 4372 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4373 * is the return value for an error condition, so allocation starts at one 4374 * and is decremented by one. 4375 */ 4376 static int 4377 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4378 { 4379 ill_t *tmp_ill; 4380 uint_t start, end; 4381 int ppa; 4382 4383 if (ifp->illif_ppa_arena == NULL && 4384 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4385 /* 4386 * Create an arena. 4387 */ 4388 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4389 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4390 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4391 /* allocate what has already been assigned */ 4392 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4393 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4394 tmp_ill, AVL_AFTER)) { 4395 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4396 1, /* size */ 4397 1, /* align/quantum */ 4398 0, /* phase */ 4399 0, /* nocross */ 4400 /* minaddr */ 4401 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4402 /* maxaddr */ 4403 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4404 VM_NOSLEEP|VM_FIRSTFIT); 4405 if (ppa == 0) { 4406 ip1dbg(("ill_alloc_ppa: ppa allocation" 4407 " failed while switching")); 4408 vmem_destroy(ifp->illif_ppa_arena); 4409 ifp->illif_ppa_arena = NULL; 4410 break; 4411 } 4412 } 4413 } 4414 4415 if (ifp->illif_ppa_arena != NULL) { 4416 if (ill->ill_ppa == UINT_MAX) { 4417 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4418 1, VM_NOSLEEP|VM_FIRSTFIT); 4419 if (ppa == 0) 4420 return (EAGAIN); 4421 ill->ill_ppa = --ppa; 4422 } else { 4423 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4424 1, /* size */ 4425 1, /* align/quantum */ 4426 0, /* phase */ 4427 0, /* nocross */ 4428 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4429 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4430 VM_NOSLEEP|VM_FIRSTFIT); 4431 /* 4432 * Most likely the allocation failed because 4433 * the requested ppa was in use. 4434 */ 4435 if (ppa == 0) 4436 return (EEXIST); 4437 } 4438 return (0); 4439 } 4440 4441 /* 4442 * No arena is in use and not enough (>ill_no_arena) interfaces have 4443 * been plumbed to create one. Do a linear search to get a unused ppa. 4444 */ 4445 if (ill->ill_ppa == UINT_MAX) { 4446 end = UINT_MAX - 1; 4447 start = 0; 4448 } else { 4449 end = start = ill->ill_ppa; 4450 } 4451 4452 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4453 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4454 if (start++ >= end) { 4455 if (ill->ill_ppa == UINT_MAX) 4456 return (EAGAIN); 4457 else 4458 return (EEXIST); 4459 } 4460 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4461 } 4462 ill->ill_ppa = start; 4463 return (0); 4464 } 4465 4466 /* 4467 * Insert ill into the list of configured ill's. Once this function completes, 4468 * the ill is globally visible and is available through lookups. More precisely 4469 * this happens after the caller drops the ill_g_lock. 4470 */ 4471 static int 4472 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4473 { 4474 ill_if_t *ill_interface; 4475 avl_index_t where = 0; 4476 int error; 4477 int name_length; 4478 int index; 4479 boolean_t check_length = B_FALSE; 4480 ip_stack_t *ipst = ill->ill_ipst; 4481 4482 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4483 4484 name_length = mi_strlen(name) + 1; 4485 4486 if (isv6) 4487 index = IP_V6_G_HEAD; 4488 else 4489 index = IP_V4_G_HEAD; 4490 4491 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4492 /* 4493 * Search for interface type based on name 4494 */ 4495 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4496 if ((ill_interface->illif_name_len == name_length) && 4497 (strcmp(ill_interface->illif_name, name) == 0)) { 4498 break; 4499 } 4500 ill_interface = ill_interface->illif_next; 4501 } 4502 4503 /* 4504 * Interface type not found, create one. 4505 */ 4506 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4507 4508 ill_g_head_t ghead; 4509 4510 /* 4511 * allocate ill_if_t structure 4512 */ 4513 4514 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4515 if (ill_interface == NULL) { 4516 return (ENOMEM); 4517 } 4518 4519 4520 4521 (void) strcpy(ill_interface->illif_name, name); 4522 ill_interface->illif_name_len = name_length; 4523 4524 avl_create(&ill_interface->illif_avl_by_ppa, 4525 ill_compare_ppa, sizeof (ill_t), 4526 offsetof(struct ill_s, ill_avl_byppa)); 4527 4528 /* 4529 * link the structure in the back to maintain order 4530 * of configuration for ifconfig output. 4531 */ 4532 ghead = ipst->ips_ill_g_heads[index]; 4533 insque(ill_interface, ghead.ill_g_list_tail); 4534 4535 } 4536 4537 if (ill->ill_ppa == UINT_MAX) 4538 check_length = B_TRUE; 4539 4540 error = ill_alloc_ppa(ill_interface, ill); 4541 if (error != 0) { 4542 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4543 ill_delete_interface_type(ill->ill_ifptr); 4544 return (error); 4545 } 4546 4547 /* 4548 * When the ppa is choosen by the system, check that there is 4549 * enough space to insert ppa. if a specific ppa was passed in this 4550 * check is not required as the interface name passed in will have 4551 * the right ppa in it. 4552 */ 4553 if (check_length) { 4554 /* 4555 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4556 */ 4557 char buf[sizeof (uint_t) * 3]; 4558 4559 /* 4560 * convert ppa to string to calculate the amount of space 4561 * required for it in the name. 4562 */ 4563 numtos(ill->ill_ppa, buf); 4564 4565 /* Do we have enough space to insert ppa ? */ 4566 4567 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4568 /* Free ppa and interface type struct */ 4569 if (ill_interface->illif_ppa_arena != NULL) { 4570 vmem_free(ill_interface->illif_ppa_arena, 4571 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4572 } 4573 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4574 ill_delete_interface_type(ill->ill_ifptr); 4575 4576 return (EINVAL); 4577 } 4578 } 4579 4580 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4581 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4582 4583 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4584 &where); 4585 ill->ill_ifptr = ill_interface; 4586 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4587 4588 ill_phyint_reinit(ill); 4589 return (0); 4590 } 4591 4592 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4593 static boolean_t 4594 ipsq_init(ill_t *ill) 4595 { 4596 ipsq_t *ipsq; 4597 4598 /* Init the ipsq and impicitly enter as writer */ 4599 ill->ill_phyint->phyint_ipsq = 4600 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4601 if (ill->ill_phyint->phyint_ipsq == NULL) 4602 return (B_FALSE); 4603 ipsq = ill->ill_phyint->phyint_ipsq; 4604 ipsq->ipsq_phyint_list = ill->ill_phyint; 4605 ill->ill_phyint->phyint_ipsq_next = NULL; 4606 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4607 ipsq->ipsq_refs = 1; 4608 ipsq->ipsq_writer = curthread; 4609 ipsq->ipsq_reentry_cnt = 1; 4610 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4611 #ifdef DEBUG 4612 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4613 IPSQ_STACK_DEPTH); 4614 #endif 4615 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4616 return (B_TRUE); 4617 } 4618 4619 /* 4620 * ill_init is called by ip_open when a device control stream is opened. 4621 * It does a few initializations, and shoots a DL_INFO_REQ message down 4622 * to the driver. The response is later picked up in ip_rput_dlpi and 4623 * used to set up default mechanisms for talking to the driver. (Always 4624 * called as writer.) 4625 * 4626 * If this function returns error, ip_open will call ip_close which in 4627 * turn will call ill_delete to clean up any memory allocated here that 4628 * is not yet freed. 4629 */ 4630 int 4631 ill_init(queue_t *q, ill_t *ill) 4632 { 4633 int count; 4634 dl_info_req_t *dlir; 4635 mblk_t *info_mp; 4636 uchar_t *frag_ptr; 4637 4638 /* 4639 * The ill is initialized to zero by mi_alloc*(). In addition 4640 * some fields already contain valid values, initialized in 4641 * ip_open(), before we reach here. 4642 */ 4643 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4644 4645 ill->ill_rq = q; 4646 ill->ill_wq = WR(q); 4647 4648 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4649 BPRI_HI); 4650 if (info_mp == NULL) 4651 return (ENOMEM); 4652 4653 /* 4654 * Allocate sufficient space to contain our fragment hash table and 4655 * the device name. 4656 */ 4657 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4658 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4659 if (frag_ptr == NULL) { 4660 freemsg(info_mp); 4661 return (ENOMEM); 4662 } 4663 ill->ill_frag_ptr = frag_ptr; 4664 ill->ill_frag_free_num_pkts = 0; 4665 ill->ill_last_frag_clean_time = 0; 4666 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4667 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4668 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4669 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4670 NULL, MUTEX_DEFAULT, NULL); 4671 } 4672 4673 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4674 if (ill->ill_phyint == NULL) { 4675 freemsg(info_mp); 4676 mi_free(frag_ptr); 4677 return (ENOMEM); 4678 } 4679 4680 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4681 /* 4682 * For now pretend this is a v4 ill. We need to set phyint_ill* 4683 * at this point because of the following reason. If we can't 4684 * enter the ipsq at some point and cv_wait, the writer that 4685 * wakes us up tries to locate us using the list of all phyints 4686 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4687 * If we don't set it now, we risk a missed wakeup. 4688 */ 4689 ill->ill_phyint->phyint_illv4 = ill; 4690 ill->ill_ppa = UINT_MAX; 4691 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4692 4693 if (!ipsq_init(ill)) { 4694 freemsg(info_mp); 4695 mi_free(frag_ptr); 4696 mi_free(ill->ill_phyint); 4697 return (ENOMEM); 4698 } 4699 4700 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4701 4702 /* Frag queue limit stuff */ 4703 ill->ill_frag_count = 0; 4704 ill->ill_ipf_gen = 0; 4705 4706 ill->ill_global_timer = INFINITY; 4707 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4708 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4709 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4710 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4711 4712 /* 4713 * Initialize IPv6 configuration variables. The IP module is always 4714 * opened as an IPv4 module. Instead tracking down the cases where 4715 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4716 * here for convenience, this has no effect until the ill is set to do 4717 * IPv6. 4718 */ 4719 ill->ill_reachable_time = ND_REACHABLE_TIME; 4720 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4721 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4722 ill->ill_max_buf = ND_MAX_Q; 4723 ill->ill_refcnt = 0; 4724 4725 /* Send down the Info Request to the driver. */ 4726 info_mp->b_datap->db_type = M_PCPROTO; 4727 dlir = (dl_info_req_t *)info_mp->b_rptr; 4728 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4729 dlir->dl_primitive = DL_INFO_REQ; 4730 4731 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4732 4733 qprocson(q); 4734 ill_dlpi_send(ill, info_mp); 4735 4736 return (0); 4737 } 4738 4739 /* 4740 * ill_dls_info 4741 * creates datalink socket info from the device. 4742 */ 4743 int 4744 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4745 { 4746 size_t len; 4747 ill_t *ill = ipif->ipif_ill; 4748 4749 sdl->sdl_family = AF_LINK; 4750 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4751 sdl->sdl_type = ill->ill_type; 4752 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4753 len = strlen(sdl->sdl_data); 4754 ASSERT(len < 256); 4755 sdl->sdl_nlen = (uchar_t)len; 4756 sdl->sdl_alen = ill->ill_phys_addr_length; 4757 sdl->sdl_slen = 0; 4758 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4759 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4760 4761 return (sizeof (struct sockaddr_dl)); 4762 } 4763 4764 /* 4765 * ill_xarp_info 4766 * creates xarp info from the device. 4767 */ 4768 static int 4769 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4770 { 4771 sdl->sdl_family = AF_LINK; 4772 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4773 sdl->sdl_type = ill->ill_type; 4774 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4775 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4776 sdl->sdl_alen = ill->ill_phys_addr_length; 4777 sdl->sdl_slen = 0; 4778 return (sdl->sdl_nlen); 4779 } 4780 4781 static int 4782 loopback_kstat_update(kstat_t *ksp, int rw) 4783 { 4784 kstat_named_t *kn; 4785 netstackid_t stackid; 4786 netstack_t *ns; 4787 ip_stack_t *ipst; 4788 4789 if (ksp == NULL || ksp->ks_data == NULL) 4790 return (EIO); 4791 4792 if (rw == KSTAT_WRITE) 4793 return (EACCES); 4794 4795 kn = KSTAT_NAMED_PTR(ksp); 4796 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4797 4798 ns = netstack_find_by_stackid(stackid); 4799 if (ns == NULL) 4800 return (-1); 4801 4802 ipst = ns->netstack_ip; 4803 if (ipst == NULL) { 4804 netstack_rele(ns); 4805 return (-1); 4806 } 4807 kn[0].value.ui32 = ipst->ips_loopback_packets; 4808 kn[1].value.ui32 = ipst->ips_loopback_packets; 4809 netstack_rele(ns); 4810 return (0); 4811 } 4812 4813 /* 4814 * Has ifindex been plumbed already. 4815 * Compares both phyint_ifindex and phyint_group_ifindex. 4816 */ 4817 static boolean_t 4818 phyint_exists(uint_t index, ip_stack_t *ipst) 4819 { 4820 phyint_t *phyi; 4821 4822 ASSERT(index != 0); 4823 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4824 /* 4825 * Indexes are stored in the phyint - a common structure 4826 * to both IPv4 and IPv6. 4827 */ 4828 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4829 for (; phyi != NULL; 4830 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4831 phyi, AVL_AFTER)) { 4832 if (phyi->phyint_ifindex == index || 4833 phyi->phyint_group_ifindex == index) 4834 return (B_TRUE); 4835 } 4836 return (B_FALSE); 4837 } 4838 4839 /* Pick a unique ifindex */ 4840 boolean_t 4841 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4842 { 4843 uint_t starting_index; 4844 4845 if (!ipst->ips_ill_index_wrap) { 4846 *indexp = ipst->ips_ill_index++; 4847 if (ipst->ips_ill_index == 0) { 4848 /* Reached the uint_t limit Next time wrap */ 4849 ipst->ips_ill_index_wrap = B_TRUE; 4850 } 4851 return (B_TRUE); 4852 } 4853 4854 /* 4855 * Start reusing unused indexes. Note that we hold the ill_g_lock 4856 * at this point and don't want to call any function that attempts 4857 * to get the lock again. 4858 */ 4859 starting_index = ipst->ips_ill_index++; 4860 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4861 if (ipst->ips_ill_index != 0 && 4862 !phyint_exists(ipst->ips_ill_index, ipst)) { 4863 /* found unused index - use it */ 4864 *indexp = ipst->ips_ill_index; 4865 return (B_TRUE); 4866 } 4867 } 4868 4869 /* 4870 * all interface indicies are inuse. 4871 */ 4872 return (B_FALSE); 4873 } 4874 4875 /* 4876 * Assign a unique interface index for the phyint. 4877 */ 4878 static boolean_t 4879 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4880 { 4881 ASSERT(phyi->phyint_ifindex == 0); 4882 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4883 } 4884 4885 /* 4886 * Return a pointer to the ill which matches the supplied name. Note that 4887 * the ill name length includes the null termination character. (May be 4888 * called as writer.) 4889 * If do_alloc and the interface is "lo0" it will be automatically created. 4890 * Cannot bump up reference on condemned ills. So dup detect can't be done 4891 * using this func. 4892 */ 4893 ill_t * 4894 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4895 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4896 ip_stack_t *ipst) 4897 { 4898 ill_t *ill; 4899 ipif_t *ipif; 4900 kstat_named_t *kn; 4901 boolean_t isloopback; 4902 ipsq_t *old_ipsq; 4903 in6_addr_t ov6addr; 4904 4905 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4906 4907 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4908 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4909 rw_exit(&ipst->ips_ill_g_lock); 4910 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4911 return (ill); 4912 4913 /* 4914 * Couldn't find it. Does this happen to be a lookup for the 4915 * loopback device and are we allowed to allocate it? 4916 */ 4917 if (!isloopback || !do_alloc) 4918 return (NULL); 4919 4920 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4921 4922 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4923 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4924 rw_exit(&ipst->ips_ill_g_lock); 4925 return (ill); 4926 } 4927 4928 /* Create the loopback device on demand */ 4929 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4930 sizeof (ipif_loopback_name), BPRI_MED)); 4931 if (ill == NULL) 4932 goto done; 4933 4934 *ill = ill_null; 4935 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4936 ill->ill_ipst = ipst; 4937 netstack_hold(ipst->ips_netstack); 4938 /* 4939 * For exclusive stacks we set the zoneid to zero 4940 * to make IP operate as if in the global zone. 4941 */ 4942 ill->ill_zoneid = GLOBAL_ZONEID; 4943 4944 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4945 if (ill->ill_phyint == NULL) 4946 goto done; 4947 4948 if (isv6) 4949 ill->ill_phyint->phyint_illv6 = ill; 4950 else 4951 ill->ill_phyint->phyint_illv4 = ill; 4952 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4953 ill->ill_max_frag = IP_LOOPBACK_MTU; 4954 /* Add room for tcp+ip headers */ 4955 if (isv6) { 4956 ill->ill_isv6 = B_TRUE; 4957 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4958 } else { 4959 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4960 } 4961 if (!ill_allocate_mibs(ill)) 4962 goto done; 4963 ill->ill_max_mtu = ill->ill_max_frag; 4964 /* 4965 * ipif_loopback_name can't be pointed at directly because its used 4966 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4967 * from the glist, ill_glist_delete() sets the first character of 4968 * ill_name to '\0'. 4969 */ 4970 ill->ill_name = (char *)ill + sizeof (*ill); 4971 (void) strcpy(ill->ill_name, ipif_loopback_name); 4972 ill->ill_name_length = sizeof (ipif_loopback_name); 4973 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4974 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4975 4976 ill->ill_global_timer = INFINITY; 4977 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4978 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4979 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4980 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4981 4982 /* No resolver here. */ 4983 ill->ill_net_type = IRE_LOOPBACK; 4984 4985 /* Initialize the ipsq */ 4986 if (!ipsq_init(ill)) 4987 goto done; 4988 4989 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4990 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4991 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4992 #ifdef DEBUG 4993 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4994 #endif 4995 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4996 if (ipif == NULL) 4997 goto done; 4998 4999 ill->ill_flags = ILLF_MULTICAST; 5000 5001 ov6addr = ipif->ipif_v6lcl_addr; 5002 /* Set up default loopback address and mask. */ 5003 if (!isv6) { 5004 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5005 5006 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5007 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5008 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5009 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5010 ipif->ipif_v6subnet); 5011 ill->ill_flags |= ILLF_IPV4; 5012 } else { 5013 ipif->ipif_v6lcl_addr = ipv6_loopback; 5014 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5015 ipif->ipif_v6net_mask = ipv6_all_ones; 5016 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5017 ipif->ipif_v6subnet); 5018 ill->ill_flags |= ILLF_IPV6; 5019 } 5020 5021 /* 5022 * Chain us in at the end of the ill list. hold the ill 5023 * before we make it globally visible. 1 for the lookup. 5024 */ 5025 ill->ill_refcnt = 0; 5026 ill_refhold(ill); 5027 5028 ill->ill_frag_count = 0; 5029 ill->ill_frag_free_num_pkts = 0; 5030 ill->ill_last_frag_clean_time = 0; 5031 5032 old_ipsq = ill->ill_phyint->phyint_ipsq; 5033 5034 if (ill_glist_insert(ill, "lo", isv6) != 0) 5035 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5036 5037 /* Let SCTP know so that it can add this to its list */ 5038 sctp_update_ill(ill, SCTP_ILL_INSERT); 5039 5040 /* 5041 * We have already assigned ipif_v6lcl_addr above, but we need to 5042 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5043 * requires to be after ill_glist_insert() since we need the 5044 * ill_index set. Pass on ipv6_loopback as the old address. 5045 */ 5046 sctp_update_ipif_addr(ipif, ov6addr); 5047 5048 /* 5049 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5050 */ 5051 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5052 /* Loopback ills aren't in any IPMP group */ 5053 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5054 ipsq_delete(old_ipsq); 5055 } 5056 5057 /* 5058 * Delay this till the ipif is allocated as ipif_allocate 5059 * de-references ill_phyint for getting the ifindex. We 5060 * can't do this before ipif_allocate because ill_phyint_reinit 5061 * -> phyint_assign_ifindex expects ipif to be present. 5062 */ 5063 mutex_enter(&ill->ill_phyint->phyint_lock); 5064 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5065 mutex_exit(&ill->ill_phyint->phyint_lock); 5066 5067 if (ipst->ips_loopback_ksp == NULL) { 5068 /* Export loopback interface statistics */ 5069 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5070 ipif_loopback_name, "net", 5071 KSTAT_TYPE_NAMED, 2, 0, 5072 ipst->ips_netstack->netstack_stackid); 5073 if (ipst->ips_loopback_ksp != NULL) { 5074 ipst->ips_loopback_ksp->ks_update = 5075 loopback_kstat_update; 5076 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5077 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5078 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5079 ipst->ips_loopback_ksp->ks_private = 5080 (void *)(uintptr_t)ipst->ips_netstack-> 5081 netstack_stackid; 5082 kstat_install(ipst->ips_loopback_ksp); 5083 } 5084 } 5085 5086 if (error != NULL) 5087 *error = 0; 5088 *did_alloc = B_TRUE; 5089 rw_exit(&ipst->ips_ill_g_lock); 5090 return (ill); 5091 done: 5092 if (ill != NULL) { 5093 if (ill->ill_phyint != NULL) { 5094 ipsq_t *ipsq; 5095 5096 ipsq = ill->ill_phyint->phyint_ipsq; 5097 if (ipsq != NULL) { 5098 ipsq->ipsq_ipst = NULL; 5099 kmem_free(ipsq, sizeof (ipsq_t)); 5100 } 5101 mi_free(ill->ill_phyint); 5102 } 5103 ill_free_mib(ill); 5104 if (ill->ill_ipst != NULL) 5105 netstack_rele(ill->ill_ipst->ips_netstack); 5106 mi_free(ill); 5107 } 5108 rw_exit(&ipst->ips_ill_g_lock); 5109 if (error != NULL) 5110 *error = ENOMEM; 5111 return (NULL); 5112 } 5113 5114 /* 5115 * For IPP calls - use the ip_stack_t for global stack. 5116 */ 5117 ill_t * 5118 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5119 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5120 { 5121 ip_stack_t *ipst; 5122 ill_t *ill; 5123 5124 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5125 if (ipst == NULL) { 5126 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5127 return (NULL); 5128 } 5129 5130 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5131 netstack_rele(ipst->ips_netstack); 5132 return (ill); 5133 } 5134 5135 /* 5136 * Return a pointer to the ill which matches the index and IP version type. 5137 */ 5138 ill_t * 5139 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5140 ipsq_func_t func, int *err, ip_stack_t *ipst) 5141 { 5142 ill_t *ill; 5143 ipsq_t *ipsq; 5144 phyint_t *phyi; 5145 5146 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5147 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5148 5149 if (err != NULL) 5150 *err = 0; 5151 5152 /* 5153 * Indexes are stored in the phyint - a common structure 5154 * to both IPv4 and IPv6. 5155 */ 5156 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5157 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5158 (void *) &index, NULL); 5159 if (phyi != NULL) { 5160 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5161 if (ill != NULL) { 5162 /* 5163 * The block comment at the start of ipif_down 5164 * explains the use of the macros used below 5165 */ 5166 GRAB_CONN_LOCK(q); 5167 mutex_enter(&ill->ill_lock); 5168 if (ILL_CAN_LOOKUP(ill)) { 5169 ill_refhold_locked(ill); 5170 mutex_exit(&ill->ill_lock); 5171 RELEASE_CONN_LOCK(q); 5172 rw_exit(&ipst->ips_ill_g_lock); 5173 return (ill); 5174 } else if (ILL_CAN_WAIT(ill, q)) { 5175 ipsq = ill->ill_phyint->phyint_ipsq; 5176 mutex_enter(&ipsq->ipsq_lock); 5177 rw_exit(&ipst->ips_ill_g_lock); 5178 mutex_exit(&ill->ill_lock); 5179 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5180 mutex_exit(&ipsq->ipsq_lock); 5181 RELEASE_CONN_LOCK(q); 5182 if (err != NULL) 5183 *err = EINPROGRESS; 5184 return (NULL); 5185 } 5186 RELEASE_CONN_LOCK(q); 5187 mutex_exit(&ill->ill_lock); 5188 } 5189 } 5190 rw_exit(&ipst->ips_ill_g_lock); 5191 if (err != NULL) 5192 *err = ENXIO; 5193 return (NULL); 5194 } 5195 5196 /* 5197 * Return the ifindex next in sequence after the passed in ifindex. 5198 * If there is no next ifindex for the given protocol, return 0. 5199 */ 5200 uint_t 5201 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5202 { 5203 phyint_t *phyi; 5204 phyint_t *phyi_initial; 5205 uint_t ifindex; 5206 5207 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5208 5209 if (index == 0) { 5210 phyi = avl_first( 5211 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5212 } else { 5213 phyi = phyi_initial = avl_find( 5214 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5215 (void *) &index, NULL); 5216 } 5217 5218 for (; phyi != NULL; 5219 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5220 phyi, AVL_AFTER)) { 5221 /* 5222 * If we're not returning the first interface in the tree 5223 * and we still haven't moved past the phyint_t that 5224 * corresponds to index, avl_walk needs to be called again 5225 */ 5226 if (!((index != 0) && (phyi == phyi_initial))) { 5227 if (isv6) { 5228 if ((phyi->phyint_illv6) && 5229 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5230 (phyi->phyint_illv6->ill_isv6 == 1)) 5231 break; 5232 } else { 5233 if ((phyi->phyint_illv4) && 5234 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5235 (phyi->phyint_illv4->ill_isv6 == 0)) 5236 break; 5237 } 5238 } 5239 } 5240 5241 rw_exit(&ipst->ips_ill_g_lock); 5242 5243 if (phyi != NULL) 5244 ifindex = phyi->phyint_ifindex; 5245 else 5246 ifindex = 0; 5247 5248 return (ifindex); 5249 } 5250 5251 /* 5252 * Return the ifindex for the named interface. 5253 * If there is no next ifindex for the interface, return 0. 5254 */ 5255 uint_t 5256 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5257 { 5258 phyint_t *phyi; 5259 avl_index_t where = 0; 5260 uint_t ifindex; 5261 5262 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5263 5264 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5265 name, &where)) == NULL) { 5266 rw_exit(&ipst->ips_ill_g_lock); 5267 return (0); 5268 } 5269 5270 ifindex = phyi->phyint_ifindex; 5271 5272 rw_exit(&ipst->ips_ill_g_lock); 5273 5274 return (ifindex); 5275 } 5276 5277 /* 5278 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5279 * that gives a running thread a reference to the ill. This reference must be 5280 * released by the thread when it is done accessing the ill and related 5281 * objects. ill_refcnt can not be used to account for static references 5282 * such as other structures pointing to an ill. Callers must generally 5283 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5284 * or be sure that the ill is not being deleted or changing state before 5285 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5286 * ill won't change any of its critical state such as address, netmask etc. 5287 */ 5288 void 5289 ill_refhold(ill_t *ill) 5290 { 5291 mutex_enter(&ill->ill_lock); 5292 ill->ill_refcnt++; 5293 ILL_TRACE_REF(ill); 5294 mutex_exit(&ill->ill_lock); 5295 } 5296 5297 void 5298 ill_refhold_locked(ill_t *ill) 5299 { 5300 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5301 ill->ill_refcnt++; 5302 ILL_TRACE_REF(ill); 5303 } 5304 5305 int 5306 ill_check_and_refhold(ill_t *ill) 5307 { 5308 mutex_enter(&ill->ill_lock); 5309 if (ILL_CAN_LOOKUP(ill)) { 5310 ill_refhold_locked(ill); 5311 mutex_exit(&ill->ill_lock); 5312 return (0); 5313 } 5314 mutex_exit(&ill->ill_lock); 5315 return (ILL_LOOKUP_FAILED); 5316 } 5317 5318 /* 5319 * Must not be called while holding any locks. Otherwise if this is 5320 * the last reference to be released, there is a chance of recursive mutex 5321 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5322 * to restart an ioctl. 5323 */ 5324 void 5325 ill_refrele(ill_t *ill) 5326 { 5327 mutex_enter(&ill->ill_lock); 5328 ASSERT(ill->ill_refcnt != 0); 5329 ill->ill_refcnt--; 5330 ILL_UNTRACE_REF(ill); 5331 if (ill->ill_refcnt != 0) { 5332 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5333 mutex_exit(&ill->ill_lock); 5334 return; 5335 } 5336 5337 /* Drops the ill_lock */ 5338 ipif_ill_refrele_tail(ill); 5339 } 5340 5341 /* 5342 * Obtain a weak reference count on the ill. This reference ensures the 5343 * ill won't be freed, but the ill may change any of its critical state 5344 * such as netmask, address etc. Returns an error if the ill has started 5345 * closing. 5346 */ 5347 boolean_t 5348 ill_waiter_inc(ill_t *ill) 5349 { 5350 mutex_enter(&ill->ill_lock); 5351 if (ill->ill_state_flags & ILL_CONDEMNED) { 5352 mutex_exit(&ill->ill_lock); 5353 return (B_FALSE); 5354 } 5355 ill->ill_waiters++; 5356 mutex_exit(&ill->ill_lock); 5357 return (B_TRUE); 5358 } 5359 5360 void 5361 ill_waiter_dcr(ill_t *ill) 5362 { 5363 mutex_enter(&ill->ill_lock); 5364 ill->ill_waiters--; 5365 if (ill->ill_waiters == 0) 5366 cv_broadcast(&ill->ill_cv); 5367 mutex_exit(&ill->ill_lock); 5368 } 5369 5370 /* 5371 * Named Dispatch routine to produce a formatted report on all ILLs. 5372 * This report is accessed by using the ndd utility to "get" ND variable 5373 * "ip_ill_status". 5374 */ 5375 /* ARGSUSED */ 5376 int 5377 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5378 { 5379 ill_t *ill; 5380 ill_walk_context_t ctx; 5381 ip_stack_t *ipst; 5382 5383 ipst = CONNQ_TO_IPST(q); 5384 5385 (void) mi_mpprintf(mp, 5386 "ILL " MI_COL_HDRPAD_STR 5387 /* 01234567[89ABCDEF] */ 5388 "rq " MI_COL_HDRPAD_STR 5389 /* 01234567[89ABCDEF] */ 5390 "wq " MI_COL_HDRPAD_STR 5391 /* 01234567[89ABCDEF] */ 5392 "upcnt mxfrg err name"); 5393 /* 12345 12345 123 xxxxxxxx */ 5394 5395 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5396 ill = ILL_START_WALK_ALL(&ctx, ipst); 5397 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5398 (void) mi_mpprintf(mp, 5399 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5400 "%05u %05u %03d %s", 5401 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5402 ill->ill_ipif_up_count, 5403 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5404 } 5405 rw_exit(&ipst->ips_ill_g_lock); 5406 5407 return (0); 5408 } 5409 5410 /* 5411 * Named Dispatch routine to produce a formatted report on all IPIFs. 5412 * This report is accessed by using the ndd utility to "get" ND variable 5413 * "ip_ipif_status". 5414 */ 5415 /* ARGSUSED */ 5416 int 5417 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5418 { 5419 char buf1[INET6_ADDRSTRLEN]; 5420 char buf2[INET6_ADDRSTRLEN]; 5421 char buf3[INET6_ADDRSTRLEN]; 5422 char buf4[INET6_ADDRSTRLEN]; 5423 char buf5[INET6_ADDRSTRLEN]; 5424 char buf6[INET6_ADDRSTRLEN]; 5425 char buf[LIFNAMSIZ]; 5426 ill_t *ill; 5427 ipif_t *ipif; 5428 nv_t *nvp; 5429 uint64_t flags; 5430 zoneid_t zoneid; 5431 ill_walk_context_t ctx; 5432 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5433 5434 (void) mi_mpprintf(mp, 5435 "IPIF metric mtu in/out/forward name zone flags...\n" 5436 "\tlocal address\n" 5437 "\tsrc address\n" 5438 "\tsubnet\n" 5439 "\tmask\n" 5440 "\tbroadcast\n" 5441 "\tp-p-dst"); 5442 5443 ASSERT(q->q_next == NULL); 5444 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5445 5446 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5447 ill = ILL_START_WALK_ALL(&ctx, ipst); 5448 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5449 for (ipif = ill->ill_ipif; ipif != NULL; 5450 ipif = ipif->ipif_next) { 5451 if (zoneid != GLOBAL_ZONEID && 5452 zoneid != ipif->ipif_zoneid && 5453 ipif->ipif_zoneid != ALL_ZONES) 5454 continue; 5455 5456 ipif_get_name(ipif, buf, sizeof (buf)); 5457 (void) mi_mpprintf(mp, 5458 MI_COL_PTRFMT_STR 5459 "%04u %05u %u/%u/%u %s %d", 5460 (void *)ipif, 5461 ipif->ipif_metric, ipif->ipif_mtu, 5462 ipif->ipif_ib_pkt_count, 5463 ipif->ipif_ob_pkt_count, 5464 ipif->ipif_fo_pkt_count, 5465 buf, 5466 ipif->ipif_zoneid); 5467 5468 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5469 ipif->ipif_ill->ill_phyint->phyint_flags; 5470 5471 /* Tack on text strings for any flags. */ 5472 nvp = ipif_nv_tbl; 5473 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5474 if (nvp->nv_value & flags) 5475 (void) mi_mpprintf_nr(mp, " %s", 5476 nvp->nv_name); 5477 } 5478 (void) mi_mpprintf(mp, 5479 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5480 inet_ntop(AF_INET6, 5481 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5482 inet_ntop(AF_INET6, 5483 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5484 inet_ntop(AF_INET6, 5485 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5486 inet_ntop(AF_INET6, 5487 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5488 inet_ntop(AF_INET6, 5489 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5490 inet_ntop(AF_INET6, 5491 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5492 } 5493 } 5494 rw_exit(&ipst->ips_ill_g_lock); 5495 return (0); 5496 } 5497 5498 /* 5499 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5500 * driver. We construct best guess defaults for lower level information that 5501 * we need. If an interface is brought up without injection of any overriding 5502 * information from outside, we have to be ready to go with these defaults. 5503 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5504 * we primarely want the dl_provider_style. 5505 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5506 * at which point we assume the other part of the information is valid. 5507 */ 5508 void 5509 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5510 { 5511 uchar_t *brdcst_addr; 5512 uint_t brdcst_addr_length, phys_addr_length; 5513 t_scalar_t sap_length; 5514 dl_info_ack_t *dlia; 5515 ip_m_t *ipm; 5516 dl_qos_cl_sel1_t *sel1; 5517 5518 ASSERT(IAM_WRITER_ILL(ill)); 5519 5520 /* 5521 * Till the ill is fully up ILL_CHANGING will be set and 5522 * the ill is not globally visible. So no need for a lock. 5523 */ 5524 dlia = (dl_info_ack_t *)mp->b_rptr; 5525 ill->ill_mactype = dlia->dl_mac_type; 5526 5527 ipm = ip_m_lookup(dlia->dl_mac_type); 5528 if (ipm == NULL) { 5529 ipm = ip_m_lookup(DL_OTHER); 5530 ASSERT(ipm != NULL); 5531 } 5532 ill->ill_media = ipm; 5533 5534 /* 5535 * When the new DLPI stuff is ready we'll pull lengths 5536 * from dlia. 5537 */ 5538 if (dlia->dl_version == DL_VERSION_2) { 5539 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5540 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5541 brdcst_addr_length); 5542 if (brdcst_addr == NULL) { 5543 brdcst_addr_length = 0; 5544 } 5545 sap_length = dlia->dl_sap_length; 5546 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5547 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5548 brdcst_addr_length, sap_length, phys_addr_length)); 5549 } else { 5550 brdcst_addr_length = 6; 5551 brdcst_addr = ip_six_byte_all_ones; 5552 sap_length = -2; 5553 phys_addr_length = brdcst_addr_length; 5554 } 5555 5556 ill->ill_bcast_addr_length = brdcst_addr_length; 5557 ill->ill_phys_addr_length = phys_addr_length; 5558 ill->ill_sap_length = sap_length; 5559 ill->ill_max_frag = dlia->dl_max_sdu; 5560 ill->ill_max_mtu = ill->ill_max_frag; 5561 5562 ill->ill_type = ipm->ip_m_type; 5563 5564 if (!ill->ill_dlpi_style_set) { 5565 if (dlia->dl_provider_style == DL_STYLE2) 5566 ill->ill_needs_attach = 1; 5567 5568 /* 5569 * Allocate the first ipif on this ill. We don't delay it 5570 * further as ioctl handling assumes atleast one ipif to 5571 * be present. 5572 * 5573 * At this point we don't know whether the ill is v4 or v6. 5574 * We will know this whan the SIOCSLIFNAME happens and 5575 * the correct value for ill_isv6 will be assigned in 5576 * ipif_set_values(). We need to hold the ill lock and 5577 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5578 * the wakeup. 5579 */ 5580 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5581 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5582 mutex_enter(&ill->ill_lock); 5583 ASSERT(ill->ill_dlpi_style_set == 0); 5584 ill->ill_dlpi_style_set = 1; 5585 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5586 cv_broadcast(&ill->ill_cv); 5587 mutex_exit(&ill->ill_lock); 5588 freemsg(mp); 5589 return; 5590 } 5591 ASSERT(ill->ill_ipif != NULL); 5592 /* 5593 * We know whether it is IPv4 or IPv6 now, as this is the 5594 * second DL_INFO_ACK we are recieving in response to the 5595 * DL_INFO_REQ sent in ipif_set_values. 5596 */ 5597 if (ill->ill_isv6) 5598 ill->ill_sap = IP6_DL_SAP; 5599 else 5600 ill->ill_sap = IP_DL_SAP; 5601 /* 5602 * Set ipif_mtu which is used to set the IRE's 5603 * ire_max_frag value. The driver could have sent 5604 * a different mtu from what it sent last time. No 5605 * need to call ipif_mtu_change because IREs have 5606 * not yet been created. 5607 */ 5608 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5609 /* 5610 * Clear all the flags that were set based on ill_bcast_addr_length 5611 * and ill_phys_addr_length (in ipif_set_values) as these could have 5612 * changed now and we need to re-evaluate. 5613 */ 5614 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5615 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5616 5617 /* 5618 * Free ill_resolver_mp and ill_bcast_mp as things could have 5619 * changed now. 5620 */ 5621 if (ill->ill_bcast_addr_length == 0) { 5622 if (ill->ill_resolver_mp != NULL) 5623 freemsg(ill->ill_resolver_mp); 5624 if (ill->ill_bcast_mp != NULL) 5625 freemsg(ill->ill_bcast_mp); 5626 if (ill->ill_flags & ILLF_XRESOLV) 5627 ill->ill_net_type = IRE_IF_RESOLVER; 5628 else 5629 ill->ill_net_type = IRE_IF_NORESOLVER; 5630 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5631 ill->ill_phys_addr_length, 5632 ill->ill_sap, 5633 ill->ill_sap_length); 5634 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5635 5636 if (ill->ill_isv6) 5637 /* 5638 * Note: xresolv interfaces will eventually need NOARP 5639 * set here as well, but that will require those 5640 * external resolvers to have some knowledge of 5641 * that flag and act appropriately. Not to be changed 5642 * at present. 5643 */ 5644 ill->ill_flags |= ILLF_NONUD; 5645 else 5646 ill->ill_flags |= ILLF_NOARP; 5647 5648 if (ill->ill_phys_addr_length == 0) { 5649 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5650 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5651 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5652 } else { 5653 /* pt-pt supports multicast. */ 5654 ill->ill_flags |= ILLF_MULTICAST; 5655 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5656 } 5657 } 5658 } else { 5659 ill->ill_net_type = IRE_IF_RESOLVER; 5660 if (ill->ill_bcast_mp != NULL) 5661 freemsg(ill->ill_bcast_mp); 5662 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5663 ill->ill_bcast_addr_length, ill->ill_sap, 5664 ill->ill_sap_length); 5665 /* 5666 * Later detect lack of DLPI driver multicast 5667 * capability by catching DL_ENABMULTI errors in 5668 * ip_rput_dlpi. 5669 */ 5670 ill->ill_flags |= ILLF_MULTICAST; 5671 if (!ill->ill_isv6) 5672 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5673 } 5674 /* By default an interface does not support any CoS marking */ 5675 ill->ill_flags &= ~ILLF_COS_ENABLED; 5676 5677 /* 5678 * If we get QoS information in DL_INFO_ACK, the device supports 5679 * some form of CoS marking, set ILLF_COS_ENABLED. 5680 */ 5681 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5682 dlia->dl_qos_length); 5683 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5684 ill->ill_flags |= ILLF_COS_ENABLED; 5685 } 5686 5687 /* Clear any previous error indication. */ 5688 ill->ill_error = 0; 5689 freemsg(mp); 5690 } 5691 5692 /* 5693 * Perform various checks to verify that an address would make sense as a 5694 * local, remote, or subnet interface address. 5695 */ 5696 static boolean_t 5697 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5698 { 5699 ipaddr_t net_mask; 5700 5701 /* 5702 * Don't allow all zeroes, or all ones, but allow 5703 * all ones netmask. 5704 */ 5705 if ((net_mask = ip_net_mask(addr)) == 0) 5706 return (B_FALSE); 5707 /* A given netmask overrides the "guess" netmask */ 5708 if (subnet_mask != 0) 5709 net_mask = subnet_mask; 5710 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5711 (addr == (addr | ~net_mask)))) { 5712 return (B_FALSE); 5713 } 5714 5715 /* 5716 * Even if the netmask is all ones, we do not allow address to be 5717 * 255.255.255.255 5718 */ 5719 if (addr == INADDR_BROADCAST) 5720 return (B_FALSE); 5721 5722 if (CLASSD(addr)) 5723 return (B_FALSE); 5724 5725 return (B_TRUE); 5726 } 5727 5728 #define V6_IPIF_LINKLOCAL(p) \ 5729 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5730 5731 /* 5732 * Compare two given ipifs and check if the second one is better than 5733 * the first one using the order of preference (not taking deprecated 5734 * into acount) specified in ipif_lookup_multicast(). 5735 */ 5736 static boolean_t 5737 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5738 { 5739 /* Check the least preferred first. */ 5740 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5741 /* If both ipifs are the same, use the first one. */ 5742 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5743 return (B_FALSE); 5744 else 5745 return (B_TRUE); 5746 } 5747 5748 /* For IPv6, check for link local address. */ 5749 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5750 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5751 V6_IPIF_LINKLOCAL(new_ipif)) { 5752 /* The second one is equal or less preferred. */ 5753 return (B_FALSE); 5754 } else { 5755 return (B_TRUE); 5756 } 5757 } 5758 5759 /* Then check for point to point interface. */ 5760 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5761 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5762 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5763 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5764 return (B_FALSE); 5765 } else { 5766 return (B_TRUE); 5767 } 5768 } 5769 5770 /* old_ipif is a normal interface, so no need to use the new one. */ 5771 return (B_FALSE); 5772 } 5773 5774 /* 5775 * Find any non-virtual, not condemned, and up multicast capable interface 5776 * given an IP instance and zoneid. Order of preference is: 5777 * 5778 * 1. normal 5779 * 1.1 normal, but deprecated 5780 * 2. point to point 5781 * 2.1 point to point, but deprecated 5782 * 3. link local 5783 * 3.1 link local, but deprecated 5784 * 4. loopback. 5785 */ 5786 ipif_t * 5787 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5788 { 5789 ill_t *ill; 5790 ill_walk_context_t ctx; 5791 ipif_t *ipif; 5792 ipif_t *saved_ipif = NULL; 5793 ipif_t *dep_ipif = NULL; 5794 5795 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5796 if (isv6) 5797 ill = ILL_START_WALK_V6(&ctx, ipst); 5798 else 5799 ill = ILL_START_WALK_V4(&ctx, ipst); 5800 5801 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5802 mutex_enter(&ill->ill_lock); 5803 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5804 !(ill->ill_flags & ILLF_MULTICAST)) { 5805 mutex_exit(&ill->ill_lock); 5806 continue; 5807 } 5808 for (ipif = ill->ill_ipif; ipif != NULL; 5809 ipif = ipif->ipif_next) { 5810 if (zoneid != ipif->ipif_zoneid && 5811 zoneid != ALL_ZONES && 5812 ipif->ipif_zoneid != ALL_ZONES) { 5813 continue; 5814 } 5815 if (!(ipif->ipif_flags & IPIF_UP) || 5816 !IPIF_CAN_LOOKUP(ipif)) { 5817 continue; 5818 } 5819 5820 /* 5821 * Found one candidate. If it is deprecated, 5822 * remember it in dep_ipif. If it is not deprecated, 5823 * remember it in saved_ipif. 5824 */ 5825 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5826 if (dep_ipif == NULL) { 5827 dep_ipif = ipif; 5828 } else if (ipif_comp_multi(dep_ipif, ipif, 5829 isv6)) { 5830 /* 5831 * If the previous dep_ipif does not 5832 * belong to the same ill, we've done 5833 * a ipif_refhold() on it. So we need 5834 * to release it. 5835 */ 5836 if (dep_ipif->ipif_ill != ill) 5837 ipif_refrele(dep_ipif); 5838 dep_ipif = ipif; 5839 } 5840 continue; 5841 } 5842 if (saved_ipif == NULL) { 5843 saved_ipif = ipif; 5844 } else { 5845 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5846 if (saved_ipif->ipif_ill != ill) 5847 ipif_refrele(saved_ipif); 5848 saved_ipif = ipif; 5849 } 5850 } 5851 } 5852 /* 5853 * Before going to the next ill, do a ipif_refhold() on the 5854 * saved ones. 5855 */ 5856 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5857 ipif_refhold_locked(saved_ipif); 5858 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5859 ipif_refhold_locked(dep_ipif); 5860 mutex_exit(&ill->ill_lock); 5861 } 5862 rw_exit(&ipst->ips_ill_g_lock); 5863 5864 /* 5865 * If we have only the saved_ipif, return it. But if we have both 5866 * saved_ipif and dep_ipif, check to see which one is better. 5867 */ 5868 if (saved_ipif != NULL) { 5869 if (dep_ipif != NULL) { 5870 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5871 ipif_refrele(saved_ipif); 5872 return (dep_ipif); 5873 } else { 5874 ipif_refrele(dep_ipif); 5875 return (saved_ipif); 5876 } 5877 } 5878 return (saved_ipif); 5879 } else { 5880 return (dep_ipif); 5881 } 5882 } 5883 5884 /* 5885 * This function is called when an application does not specify an interface 5886 * to be used for multicast traffic (joining a group/sending data). It 5887 * calls ire_lookup_multi() to look for an interface route for the 5888 * specified multicast group. Doing this allows the administrator to add 5889 * prefix routes for multicast to indicate which interface to be used for 5890 * multicast traffic in the above scenario. The route could be for all 5891 * multicast (224.0/4), for a single multicast group (a /32 route) or 5892 * anything in between. If there is no such multicast route, we just find 5893 * any multicast capable interface and return it. The returned ipif 5894 * is refhold'ed. 5895 */ 5896 ipif_t * 5897 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5898 { 5899 ire_t *ire; 5900 ipif_t *ipif; 5901 5902 ire = ire_lookup_multi(group, zoneid, ipst); 5903 if (ire != NULL) { 5904 ipif = ire->ire_ipif; 5905 ipif_refhold(ipif); 5906 ire_refrele(ire); 5907 return (ipif); 5908 } 5909 5910 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5911 } 5912 5913 /* 5914 * Look for an ipif with the specified interface address and destination. 5915 * The destination address is used only for matching point-to-point interfaces. 5916 */ 5917 ipif_t * 5918 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5919 ipsq_func_t func, int *error, ip_stack_t *ipst) 5920 { 5921 ipif_t *ipif; 5922 ill_t *ill; 5923 ill_walk_context_t ctx; 5924 ipsq_t *ipsq; 5925 5926 if (error != NULL) 5927 *error = 0; 5928 5929 /* 5930 * First match all the point-to-point interfaces 5931 * before looking at non-point-to-point interfaces. 5932 * This is done to avoid returning non-point-to-point 5933 * ipif instead of unnumbered point-to-point ipif. 5934 */ 5935 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5936 ill = ILL_START_WALK_V4(&ctx, ipst); 5937 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5938 GRAB_CONN_LOCK(q); 5939 mutex_enter(&ill->ill_lock); 5940 for (ipif = ill->ill_ipif; ipif != NULL; 5941 ipif = ipif->ipif_next) { 5942 /* Allow the ipif to be down */ 5943 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5944 (ipif->ipif_lcl_addr == if_addr) && 5945 (ipif->ipif_pp_dst_addr == dst)) { 5946 /* 5947 * The block comment at the start of ipif_down 5948 * explains the use of the macros used below 5949 */ 5950 if (IPIF_CAN_LOOKUP(ipif)) { 5951 ipif_refhold_locked(ipif); 5952 mutex_exit(&ill->ill_lock); 5953 RELEASE_CONN_LOCK(q); 5954 rw_exit(&ipst->ips_ill_g_lock); 5955 return (ipif); 5956 } else if (IPIF_CAN_WAIT(ipif, q)) { 5957 ipsq = ill->ill_phyint->phyint_ipsq; 5958 mutex_enter(&ipsq->ipsq_lock); 5959 mutex_exit(&ill->ill_lock); 5960 rw_exit(&ipst->ips_ill_g_lock); 5961 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5962 ill); 5963 mutex_exit(&ipsq->ipsq_lock); 5964 RELEASE_CONN_LOCK(q); 5965 if (error != NULL) 5966 *error = EINPROGRESS; 5967 return (NULL); 5968 } 5969 } 5970 } 5971 mutex_exit(&ill->ill_lock); 5972 RELEASE_CONN_LOCK(q); 5973 } 5974 rw_exit(&ipst->ips_ill_g_lock); 5975 5976 /* lookup the ipif based on interface address */ 5977 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5978 ipst); 5979 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5980 return (ipif); 5981 } 5982 5983 /* 5984 * Look for an ipif with the specified address. For point-point links 5985 * we look for matches on either the destination address and the local 5986 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5987 * is set. 5988 * Matches on a specific ill if match_ill is set. 5989 */ 5990 ipif_t * 5991 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5992 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5993 { 5994 ipif_t *ipif; 5995 ill_t *ill; 5996 boolean_t ptp = B_FALSE; 5997 ipsq_t *ipsq; 5998 ill_walk_context_t ctx; 5999 6000 if (error != NULL) 6001 *error = 0; 6002 6003 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6004 /* 6005 * Repeat twice, first based on local addresses and 6006 * next time for pointopoint. 6007 */ 6008 repeat: 6009 ill = ILL_START_WALK_V4(&ctx, ipst); 6010 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6011 if (match_ill != NULL && ill != match_ill) { 6012 continue; 6013 } 6014 GRAB_CONN_LOCK(q); 6015 mutex_enter(&ill->ill_lock); 6016 for (ipif = ill->ill_ipif; ipif != NULL; 6017 ipif = ipif->ipif_next) { 6018 if (zoneid != ALL_ZONES && 6019 zoneid != ipif->ipif_zoneid && 6020 ipif->ipif_zoneid != ALL_ZONES) 6021 continue; 6022 /* Allow the ipif to be down */ 6023 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6024 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6025 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6026 (ipif->ipif_pp_dst_addr == addr))) { 6027 /* 6028 * The block comment at the start of ipif_down 6029 * explains the use of the macros used below 6030 */ 6031 if (IPIF_CAN_LOOKUP(ipif)) { 6032 ipif_refhold_locked(ipif); 6033 mutex_exit(&ill->ill_lock); 6034 RELEASE_CONN_LOCK(q); 6035 rw_exit(&ipst->ips_ill_g_lock); 6036 return (ipif); 6037 } else if (IPIF_CAN_WAIT(ipif, q)) { 6038 ipsq = ill->ill_phyint->phyint_ipsq; 6039 mutex_enter(&ipsq->ipsq_lock); 6040 mutex_exit(&ill->ill_lock); 6041 rw_exit(&ipst->ips_ill_g_lock); 6042 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6043 ill); 6044 mutex_exit(&ipsq->ipsq_lock); 6045 RELEASE_CONN_LOCK(q); 6046 if (error != NULL) 6047 *error = EINPROGRESS; 6048 return (NULL); 6049 } 6050 } 6051 } 6052 mutex_exit(&ill->ill_lock); 6053 RELEASE_CONN_LOCK(q); 6054 } 6055 6056 /* If we already did the ptp case, then we are done */ 6057 if (ptp) { 6058 rw_exit(&ipst->ips_ill_g_lock); 6059 if (error != NULL) 6060 *error = ENXIO; 6061 return (NULL); 6062 } 6063 ptp = B_TRUE; 6064 goto repeat; 6065 } 6066 6067 /* 6068 * Look for an ipif with the specified address. For point-point links 6069 * we look for matches on either the destination address and the local 6070 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6071 * is set. 6072 * Matches on a specific ill if match_ill is set. 6073 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6074 */ 6075 zoneid_t 6076 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6077 { 6078 zoneid_t zoneid; 6079 ipif_t *ipif; 6080 ill_t *ill; 6081 boolean_t ptp = B_FALSE; 6082 ill_walk_context_t ctx; 6083 6084 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6085 /* 6086 * Repeat twice, first based on local addresses and 6087 * next time for pointopoint. 6088 */ 6089 repeat: 6090 ill = ILL_START_WALK_V4(&ctx, ipst); 6091 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6092 if (match_ill != NULL && ill != match_ill) { 6093 continue; 6094 } 6095 mutex_enter(&ill->ill_lock); 6096 for (ipif = ill->ill_ipif; ipif != NULL; 6097 ipif = ipif->ipif_next) { 6098 /* Allow the ipif to be down */ 6099 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6100 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6101 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6102 (ipif->ipif_pp_dst_addr == addr)) && 6103 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6104 zoneid = ipif->ipif_zoneid; 6105 mutex_exit(&ill->ill_lock); 6106 rw_exit(&ipst->ips_ill_g_lock); 6107 /* 6108 * If ipif_zoneid was ALL_ZONES then we have 6109 * a trusted extensions shared IP address. 6110 * In that case GLOBAL_ZONEID works to send. 6111 */ 6112 if (zoneid == ALL_ZONES) 6113 zoneid = GLOBAL_ZONEID; 6114 return (zoneid); 6115 } 6116 } 6117 mutex_exit(&ill->ill_lock); 6118 } 6119 6120 /* If we already did the ptp case, then we are done */ 6121 if (ptp) { 6122 rw_exit(&ipst->ips_ill_g_lock); 6123 return (ALL_ZONES); 6124 } 6125 ptp = B_TRUE; 6126 goto repeat; 6127 } 6128 6129 /* 6130 * Look for an ipif that matches the specified remote address i.e. the 6131 * ipif that would receive the specified packet. 6132 * First look for directly connected interfaces and then do a recursive 6133 * IRE lookup and pick the first ipif corresponding to the source address in the 6134 * ire. 6135 * Returns: held ipif 6136 */ 6137 ipif_t * 6138 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6139 { 6140 ipif_t *ipif; 6141 ire_t *ire; 6142 ip_stack_t *ipst = ill->ill_ipst; 6143 6144 ASSERT(!ill->ill_isv6); 6145 6146 /* 6147 * Someone could be changing this ipif currently or change it 6148 * after we return this. Thus a few packets could use the old 6149 * old values. However structure updates/creates (ire, ilg, ilm etc) 6150 * will atomically be updated or cleaned up with the new value 6151 * Thus we don't need a lock to check the flags or other attrs below. 6152 */ 6153 mutex_enter(&ill->ill_lock); 6154 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6155 if (!IPIF_CAN_LOOKUP(ipif)) 6156 continue; 6157 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6158 ipif->ipif_zoneid != ALL_ZONES) 6159 continue; 6160 /* Allow the ipif to be down */ 6161 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6162 if ((ipif->ipif_pp_dst_addr == addr) || 6163 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6164 ipif->ipif_lcl_addr == addr)) { 6165 ipif_refhold_locked(ipif); 6166 mutex_exit(&ill->ill_lock); 6167 return (ipif); 6168 } 6169 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6170 ipif_refhold_locked(ipif); 6171 mutex_exit(&ill->ill_lock); 6172 return (ipif); 6173 } 6174 } 6175 mutex_exit(&ill->ill_lock); 6176 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6177 NULL, MATCH_IRE_RECURSIVE, ipst); 6178 if (ire != NULL) { 6179 /* 6180 * The callers of this function wants to know the 6181 * interface on which they have to send the replies 6182 * back. For IRE_CACHES that have ire_stq and ire_ipif 6183 * derived from different ills, we really don't care 6184 * what we return here. 6185 */ 6186 ipif = ire->ire_ipif; 6187 if (ipif != NULL) { 6188 ipif_refhold(ipif); 6189 ire_refrele(ire); 6190 return (ipif); 6191 } 6192 ire_refrele(ire); 6193 } 6194 /* Pick the first interface */ 6195 ipif = ipif_get_next_ipif(NULL, ill); 6196 return (ipif); 6197 } 6198 6199 /* 6200 * This func does not prevent refcnt from increasing. But if 6201 * the caller has taken steps to that effect, then this func 6202 * can be used to determine whether the ill has become quiescent 6203 */ 6204 static boolean_t 6205 ill_is_quiescent(ill_t *ill) 6206 { 6207 ipif_t *ipif; 6208 6209 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6210 6211 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6212 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6213 return (B_FALSE); 6214 } 6215 } 6216 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6217 return (B_FALSE); 6218 } 6219 return (B_TRUE); 6220 } 6221 6222 boolean_t 6223 ill_is_freeable(ill_t *ill) 6224 { 6225 ipif_t *ipif; 6226 6227 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6228 6229 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6230 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6231 return (B_FALSE); 6232 } 6233 } 6234 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6235 return (B_FALSE); 6236 } 6237 return (B_TRUE); 6238 } 6239 6240 /* 6241 * This func does not prevent refcnt from increasing. But if 6242 * the caller has taken steps to that effect, then this func 6243 * can be used to determine whether the ipif has become quiescent 6244 */ 6245 static boolean_t 6246 ipif_is_quiescent(ipif_t *ipif) 6247 { 6248 ill_t *ill; 6249 6250 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6251 6252 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6253 return (B_FALSE); 6254 } 6255 6256 ill = ipif->ipif_ill; 6257 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6258 ill->ill_logical_down) { 6259 return (B_TRUE); 6260 } 6261 6262 /* This is the last ipif going down or being deleted on this ill */ 6263 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6264 return (B_FALSE); 6265 } 6266 6267 return (B_TRUE); 6268 } 6269 6270 /* 6271 * return true if the ipif can be destroyed: the ipif has to be quiescent 6272 * with zero references from ire/nce/ilm to it. 6273 */ 6274 static boolean_t 6275 ipif_is_freeable(ipif_t *ipif) 6276 { 6277 6278 ill_t *ill; 6279 6280 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6281 6282 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6283 return (B_FALSE); 6284 } 6285 6286 ill = ipif->ipif_ill; 6287 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6288 ill->ill_logical_down) { 6289 return (B_TRUE); 6290 } 6291 6292 /* This is the last ipif going down or being deleted on this ill */ 6293 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6294 return (B_FALSE); 6295 } 6296 6297 return (B_TRUE); 6298 } 6299 6300 /* 6301 * This func does not prevent refcnt from increasing. But if 6302 * the caller has taken steps to that effect, then this func 6303 * can be used to determine whether the ipifs marked with IPIF_MOVING 6304 * have become quiescent and can be moved in a failover/failback. 6305 */ 6306 static ipif_t * 6307 ill_quiescent_to_move(ill_t *ill) 6308 { 6309 ipif_t *ipif; 6310 6311 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6312 6313 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6314 if (ipif->ipif_state_flags & IPIF_MOVING) { 6315 if (ipif->ipif_refcnt != 0 || 6316 !IPIF_DOWN_OK(ipif)) { 6317 return (ipif); 6318 } 6319 } 6320 } 6321 return (NULL); 6322 } 6323 6324 /* 6325 * The ipif/ill/ire has been refreled. Do the tail processing. 6326 * Determine if the ipif or ill in question has become quiescent and if so 6327 * wakeup close and/or restart any queued pending ioctl that is waiting 6328 * for the ipif_down (or ill_down) 6329 */ 6330 void 6331 ipif_ill_refrele_tail(ill_t *ill) 6332 { 6333 mblk_t *mp; 6334 conn_t *connp; 6335 ipsq_t *ipsq; 6336 ipif_t *ipif; 6337 dl_notify_ind_t *dlindp; 6338 6339 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6340 6341 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6342 ill_is_freeable(ill)) { 6343 /* ill_close may be waiting */ 6344 cv_broadcast(&ill->ill_cv); 6345 } 6346 6347 /* ipsq can't change because ill_lock is held */ 6348 ipsq = ill->ill_phyint->phyint_ipsq; 6349 if (ipsq->ipsq_waitfor == 0) { 6350 /* Not waiting for anything, just return. */ 6351 mutex_exit(&ill->ill_lock); 6352 return; 6353 } 6354 ASSERT(ipsq->ipsq_pending_mp != NULL && 6355 ipsq->ipsq_pending_ipif != NULL); 6356 /* 6357 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6358 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6359 * be zero for restarting an ioctl that ends up downing the ill. 6360 */ 6361 ipif = ipsq->ipsq_pending_ipif; 6362 if (ipif->ipif_ill != ill) { 6363 /* The ioctl is pending on some other ill. */ 6364 mutex_exit(&ill->ill_lock); 6365 return; 6366 } 6367 6368 switch (ipsq->ipsq_waitfor) { 6369 case IPIF_DOWN: 6370 if (!ipif_is_quiescent(ipif)) { 6371 mutex_exit(&ill->ill_lock); 6372 return; 6373 } 6374 break; 6375 case IPIF_FREE: 6376 if (!ipif_is_freeable(ipif)) { 6377 mutex_exit(&ill->ill_lock); 6378 return; 6379 } 6380 break; 6381 6382 case ILL_DOWN: 6383 if (!ill_is_quiescent(ill)) { 6384 mutex_exit(&ill->ill_lock); 6385 return; 6386 } 6387 break; 6388 case ILL_FREE: 6389 /* 6390 * case ILL_FREE arises only for loopback. otherwise ill_delete 6391 * waits synchronously in ip_close, and no message is queued in 6392 * ipsq_pending_mp at all in this case 6393 */ 6394 if (!ill_is_freeable(ill)) { 6395 mutex_exit(&ill->ill_lock); 6396 return; 6397 } 6398 break; 6399 6400 case ILL_MOVE_OK: 6401 if (ill_quiescent_to_move(ill) != NULL) { 6402 mutex_exit(&ill->ill_lock); 6403 return; 6404 } 6405 break; 6406 default: 6407 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6408 (void *)ipsq, ipsq->ipsq_waitfor); 6409 } 6410 6411 /* 6412 * Incr refcnt for the qwriter_ip call below which 6413 * does a refrele 6414 */ 6415 ill_refhold_locked(ill); 6416 mp = ipsq_pending_mp_get(ipsq, &connp); 6417 mutex_exit(&ill->ill_lock); 6418 6419 ASSERT(mp != NULL); 6420 /* 6421 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6422 * we can only get here when the current operation decides it 6423 * it needs to quiesce via ipsq_pending_mp_add(). 6424 */ 6425 switch (mp->b_datap->db_type) { 6426 case M_PCPROTO: 6427 case M_PROTO: 6428 /* 6429 * For now, only DL_NOTIFY_IND messages can use this facility. 6430 */ 6431 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6432 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6433 6434 switch (dlindp->dl_notification) { 6435 case DL_NOTE_PHYS_ADDR: 6436 qwriter_ip(ill, ill->ill_rq, mp, 6437 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6438 return; 6439 default: 6440 ASSERT(0); 6441 } 6442 break; 6443 6444 case M_ERROR: 6445 case M_HANGUP: 6446 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6447 B_TRUE); 6448 return; 6449 6450 case M_IOCTL: 6451 case M_IOCDATA: 6452 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6453 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6454 return; 6455 6456 default: 6457 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6458 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6459 } 6460 } 6461 6462 #ifdef DEBUG 6463 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6464 static void 6465 th_trace_rrecord(th_trace_t *th_trace) 6466 { 6467 tr_buf_t *tr_buf; 6468 uint_t lastref; 6469 6470 lastref = th_trace->th_trace_lastref; 6471 lastref++; 6472 if (lastref == TR_BUF_MAX) 6473 lastref = 0; 6474 th_trace->th_trace_lastref = lastref; 6475 tr_buf = &th_trace->th_trbuf[lastref]; 6476 tr_buf->tr_time = lbolt; 6477 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6478 } 6479 6480 static void 6481 th_trace_free(void *value) 6482 { 6483 th_trace_t *th_trace = value; 6484 6485 ASSERT(th_trace->th_refcnt == 0); 6486 kmem_free(th_trace, sizeof (*th_trace)); 6487 } 6488 6489 /* 6490 * Find or create the per-thread hash table used to track object references. 6491 * The ipst argument is NULL if we shouldn't allocate. 6492 * 6493 * Accesses per-thread data, so there's no need to lock here. 6494 */ 6495 static mod_hash_t * 6496 th_trace_gethash(ip_stack_t *ipst) 6497 { 6498 th_hash_t *thh; 6499 6500 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6501 mod_hash_t *mh; 6502 char name[256]; 6503 size_t objsize, rshift; 6504 int retv; 6505 6506 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6507 return (NULL); 6508 (void) snprintf(name, sizeof (name), "th_trace_%p", curthread); 6509 6510 /* 6511 * We use mod_hash_create_extended here rather than the more 6512 * obvious mod_hash_create_ptrhash because the latter has a 6513 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6514 * block. 6515 */ 6516 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6517 MAX(sizeof (ire_t), sizeof (nce_t))); 6518 rshift = highbit(objsize); 6519 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6520 th_trace_free, mod_hash_byptr, (void *)rshift, 6521 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6522 if (mh == NULL) { 6523 kmem_free(thh, sizeof (*thh)); 6524 return (NULL); 6525 } 6526 thh->thh_hash = mh; 6527 thh->thh_ipst = ipst; 6528 /* 6529 * We trace ills, ipifs, ires, and nces. All of these are 6530 * per-IP-stack, so the lock on the thread list is as well. 6531 */ 6532 rw_enter(&ip_thread_rwlock, RW_WRITER); 6533 list_insert_tail(&ip_thread_list, thh); 6534 rw_exit(&ip_thread_rwlock); 6535 retv = tsd_set(ip_thread_data, thh); 6536 ASSERT(retv == 0); 6537 } 6538 return (thh != NULL ? thh->thh_hash : NULL); 6539 } 6540 6541 boolean_t 6542 th_trace_ref(const void *obj, ip_stack_t *ipst) 6543 { 6544 th_trace_t *th_trace; 6545 mod_hash_t *mh; 6546 mod_hash_val_t val; 6547 6548 if ((mh = th_trace_gethash(ipst)) == NULL) 6549 return (B_FALSE); 6550 6551 /* 6552 * Attempt to locate the trace buffer for this obj and thread. 6553 * If it does not exist, then allocate a new trace buffer and 6554 * insert into the hash. 6555 */ 6556 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6557 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6558 if (th_trace == NULL) 6559 return (B_FALSE); 6560 6561 th_trace->th_id = curthread; 6562 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6563 (mod_hash_val_t)th_trace) != 0) { 6564 kmem_free(th_trace, sizeof (th_trace_t)); 6565 return (B_FALSE); 6566 } 6567 } else { 6568 th_trace = (th_trace_t *)val; 6569 } 6570 6571 ASSERT(th_trace->th_refcnt >= 0 && 6572 th_trace->th_refcnt < TR_BUF_MAX - 1); 6573 6574 th_trace->th_refcnt++; 6575 th_trace_rrecord(th_trace); 6576 return (B_TRUE); 6577 } 6578 6579 /* 6580 * For the purpose of tracing a reference release, we assume that global 6581 * tracing is always on and that the same thread initiated the reference hold 6582 * is releasing. 6583 */ 6584 void 6585 th_trace_unref(const void *obj) 6586 { 6587 int retv; 6588 mod_hash_t *mh; 6589 th_trace_t *th_trace; 6590 mod_hash_val_t val; 6591 6592 mh = th_trace_gethash(NULL); 6593 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6594 ASSERT(retv == 0); 6595 th_trace = (th_trace_t *)val; 6596 6597 ASSERT(th_trace->th_refcnt > 0); 6598 th_trace->th_refcnt--; 6599 th_trace_rrecord(th_trace); 6600 } 6601 6602 /* 6603 * If tracing has been disabled, then we assume that the reference counts are 6604 * now useless, and we clear them out before destroying the entries. 6605 */ 6606 void 6607 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6608 { 6609 th_hash_t *thh; 6610 mod_hash_t *mh; 6611 mod_hash_val_t val; 6612 th_trace_t *th_trace; 6613 int retv; 6614 6615 rw_enter(&ip_thread_rwlock, RW_READER); 6616 for (thh = list_head(&ip_thread_list); thh != NULL; 6617 thh = list_next(&ip_thread_list, thh)) { 6618 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6619 &val) == 0) { 6620 th_trace = (th_trace_t *)val; 6621 if (trace_disable) 6622 th_trace->th_refcnt = 0; 6623 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6624 ASSERT(retv == 0); 6625 } 6626 } 6627 rw_exit(&ip_thread_rwlock); 6628 } 6629 6630 void 6631 ipif_trace_ref(ipif_t *ipif) 6632 { 6633 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6634 6635 if (ipif->ipif_trace_disable) 6636 return; 6637 6638 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6639 ipif->ipif_trace_disable = B_TRUE; 6640 ipif_trace_cleanup(ipif); 6641 } 6642 } 6643 6644 void 6645 ipif_untrace_ref(ipif_t *ipif) 6646 { 6647 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6648 6649 if (!ipif->ipif_trace_disable) 6650 th_trace_unref(ipif); 6651 } 6652 6653 void 6654 ill_trace_ref(ill_t *ill) 6655 { 6656 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6657 6658 if (ill->ill_trace_disable) 6659 return; 6660 6661 if (!th_trace_ref(ill, ill->ill_ipst)) { 6662 ill->ill_trace_disable = B_TRUE; 6663 ill_trace_cleanup(ill); 6664 } 6665 } 6666 6667 void 6668 ill_untrace_ref(ill_t *ill) 6669 { 6670 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6671 6672 if (!ill->ill_trace_disable) 6673 th_trace_unref(ill); 6674 } 6675 6676 /* 6677 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6678 * failure, ipif_trace_disable is set. 6679 */ 6680 static void 6681 ipif_trace_cleanup(const ipif_t *ipif) 6682 { 6683 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6684 } 6685 6686 /* 6687 * Called when ill is unplumbed or when memory alloc fails. Note that on 6688 * failure, ill_trace_disable is set. 6689 */ 6690 static void 6691 ill_trace_cleanup(const ill_t *ill) 6692 { 6693 th_trace_cleanup(ill, ill->ill_trace_disable); 6694 } 6695 #endif /* DEBUG */ 6696 6697 void 6698 ipif_refhold_locked(ipif_t *ipif) 6699 { 6700 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6701 ipif->ipif_refcnt++; 6702 IPIF_TRACE_REF(ipif); 6703 } 6704 6705 void 6706 ipif_refhold(ipif_t *ipif) 6707 { 6708 ill_t *ill; 6709 6710 ill = ipif->ipif_ill; 6711 mutex_enter(&ill->ill_lock); 6712 ipif->ipif_refcnt++; 6713 IPIF_TRACE_REF(ipif); 6714 mutex_exit(&ill->ill_lock); 6715 } 6716 6717 /* 6718 * Must not be called while holding any locks. Otherwise if this is 6719 * the last reference to be released there is a chance of recursive mutex 6720 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6721 * to restart an ioctl. 6722 */ 6723 void 6724 ipif_refrele(ipif_t *ipif) 6725 { 6726 ill_t *ill; 6727 6728 ill = ipif->ipif_ill; 6729 6730 mutex_enter(&ill->ill_lock); 6731 ASSERT(ipif->ipif_refcnt != 0); 6732 ipif->ipif_refcnt--; 6733 IPIF_UNTRACE_REF(ipif); 6734 if (ipif->ipif_refcnt != 0) { 6735 mutex_exit(&ill->ill_lock); 6736 return; 6737 } 6738 6739 /* Drops the ill_lock */ 6740 ipif_ill_refrele_tail(ill); 6741 } 6742 6743 ipif_t * 6744 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6745 { 6746 ipif_t *ipif; 6747 6748 mutex_enter(&ill->ill_lock); 6749 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6750 ipif != NULL; ipif = ipif->ipif_next) { 6751 if (!IPIF_CAN_LOOKUP(ipif)) 6752 continue; 6753 ipif_refhold_locked(ipif); 6754 mutex_exit(&ill->ill_lock); 6755 return (ipif); 6756 } 6757 mutex_exit(&ill->ill_lock); 6758 return (NULL); 6759 } 6760 6761 /* 6762 * TODO: make this table extendible at run time 6763 * Return a pointer to the mac type info for 'mac_type' 6764 */ 6765 static ip_m_t * 6766 ip_m_lookup(t_uscalar_t mac_type) 6767 { 6768 ip_m_t *ipm; 6769 6770 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6771 if (ipm->ip_m_mac_type == mac_type) 6772 return (ipm); 6773 return (NULL); 6774 } 6775 6776 /* 6777 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6778 * ipif_arg is passed in to associate it with the correct interface. 6779 * We may need to restart this operation if the ipif cannot be looked up 6780 * due to an exclusive operation that is currently in progress. The restart 6781 * entry point is specified by 'func' 6782 */ 6783 int 6784 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6785 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6786 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6787 struct rtsa_s *sp, ip_stack_t *ipst) 6788 { 6789 ire_t *ire; 6790 ire_t *gw_ire = NULL; 6791 ipif_t *ipif = NULL; 6792 boolean_t ipif_refheld = B_FALSE; 6793 uint_t type; 6794 int match_flags = MATCH_IRE_TYPE; 6795 int error; 6796 tsol_gc_t *gc = NULL; 6797 tsol_gcgrp_t *gcgrp = NULL; 6798 boolean_t gcgrp_xtraref = B_FALSE; 6799 6800 ip1dbg(("ip_rt_add:")); 6801 6802 if (ire_arg != NULL) 6803 *ire_arg = NULL; 6804 6805 /* 6806 * If this is the case of RTF_HOST being set, then we set the netmask 6807 * to all ones (regardless if one was supplied). 6808 */ 6809 if (flags & RTF_HOST) 6810 mask = IP_HOST_MASK; 6811 6812 /* 6813 * Prevent routes with a zero gateway from being created (since 6814 * interfaces can currently be plumbed and brought up no assigned 6815 * address). 6816 */ 6817 if (gw_addr == 0) 6818 return (ENETUNREACH); 6819 /* 6820 * Get the ipif, if any, corresponding to the gw_addr 6821 */ 6822 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6823 ipst); 6824 if (ipif != NULL) { 6825 if (IS_VNI(ipif->ipif_ill)) { 6826 ipif_refrele(ipif); 6827 return (EINVAL); 6828 } 6829 ipif_refheld = B_TRUE; 6830 } else if (error == EINPROGRESS) { 6831 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6832 return (EINPROGRESS); 6833 } else { 6834 error = 0; 6835 } 6836 6837 if (ipif != NULL) { 6838 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6839 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6840 } else { 6841 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6842 } 6843 6844 /* 6845 * GateD will attempt to create routes with a loopback interface 6846 * address as the gateway and with RTF_GATEWAY set. We allow 6847 * these routes to be added, but create them as interface routes 6848 * since the gateway is an interface address. 6849 */ 6850 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6851 flags &= ~RTF_GATEWAY; 6852 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6853 mask == IP_HOST_MASK) { 6854 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6855 ALL_ZONES, NULL, match_flags, ipst); 6856 if (ire != NULL) { 6857 ire_refrele(ire); 6858 if (ipif_refheld) 6859 ipif_refrele(ipif); 6860 return (EEXIST); 6861 } 6862 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6863 "for 0x%x\n", (void *)ipif, 6864 ipif->ipif_ire_type, 6865 ntohl(ipif->ipif_lcl_addr))); 6866 ire = ire_create( 6867 (uchar_t *)&dst_addr, /* dest address */ 6868 (uchar_t *)&mask, /* mask */ 6869 (uchar_t *)&ipif->ipif_src_addr, 6870 NULL, /* no gateway */ 6871 &ipif->ipif_mtu, 6872 NULL, 6873 ipif->ipif_rq, /* recv-from queue */ 6874 NULL, /* no send-to queue */ 6875 ipif->ipif_ire_type, /* LOOPBACK */ 6876 ipif, 6877 0, 6878 0, 6879 0, 6880 (ipif->ipif_flags & IPIF_PRIVATE) ? 6881 RTF_PRIVATE : 0, 6882 &ire_uinfo_null, 6883 NULL, 6884 NULL, 6885 ipst); 6886 6887 if (ire == NULL) { 6888 if (ipif_refheld) 6889 ipif_refrele(ipif); 6890 return (ENOMEM); 6891 } 6892 error = ire_add(&ire, q, mp, func, B_FALSE); 6893 if (error == 0) 6894 goto save_ire; 6895 if (ipif_refheld) 6896 ipif_refrele(ipif); 6897 return (error); 6898 6899 } 6900 } 6901 6902 /* 6903 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6904 * and the gateway address provided is one of the system's interface 6905 * addresses. By using the routing socket interface and supplying an 6906 * RTA_IFP sockaddr with an interface index, an alternate method of 6907 * specifying an interface route to be created is available which uses 6908 * the interface index that specifies the outgoing interface rather than 6909 * the address of an outgoing interface (which may not be able to 6910 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6911 * flag, routes can be specified which not only specify the next-hop to 6912 * be used when routing to a certain prefix, but also which outgoing 6913 * interface should be used. 6914 * 6915 * Previously, interfaces would have unique addresses assigned to them 6916 * and so the address assigned to a particular interface could be used 6917 * to identify a particular interface. One exception to this was the 6918 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6919 * 6920 * With the advent of IPv6 and its link-local addresses, this 6921 * restriction was relaxed and interfaces could share addresses between 6922 * themselves. In fact, typically all of the link-local interfaces on 6923 * an IPv6 node or router will have the same link-local address. In 6924 * order to differentiate between these interfaces, the use of an 6925 * interface index is necessary and this index can be carried inside a 6926 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6927 * of using the interface index, however, is that all of the ipif's that 6928 * are part of an ill have the same index and so the RTA_IFP sockaddr 6929 * cannot be used to differentiate between ipif's (or logical 6930 * interfaces) that belong to the same ill (physical interface). 6931 * 6932 * For example, in the following case involving IPv4 interfaces and 6933 * logical interfaces 6934 * 6935 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6936 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6937 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6938 * 6939 * the ipif's corresponding to each of these interface routes can be 6940 * uniquely identified by the "gateway" (actually interface address). 6941 * 6942 * In this case involving multiple IPv6 default routes to a particular 6943 * link-local gateway, the use of RTA_IFP is necessary to specify which 6944 * default route is of interest: 6945 * 6946 * default fe80::123:4567:89ab:cdef U if0 6947 * default fe80::123:4567:89ab:cdef U if1 6948 */ 6949 6950 /* RTF_GATEWAY not set */ 6951 if (!(flags & RTF_GATEWAY)) { 6952 queue_t *stq; 6953 6954 if (sp != NULL) { 6955 ip2dbg(("ip_rt_add: gateway security attributes " 6956 "cannot be set with interface route\n")); 6957 if (ipif_refheld) 6958 ipif_refrele(ipif); 6959 return (EINVAL); 6960 } 6961 6962 /* 6963 * As the interface index specified with the RTA_IFP sockaddr is 6964 * the same for all ipif's off of an ill, the matching logic 6965 * below uses MATCH_IRE_ILL if such an index was specified. 6966 * This means that routes sharing the same prefix when added 6967 * using a RTA_IFP sockaddr must have distinct interface 6968 * indices (namely, they must be on distinct ill's). 6969 * 6970 * On the other hand, since the gateway address will usually be 6971 * different for each ipif on the system, the matching logic 6972 * uses MATCH_IRE_IPIF in the case of a traditional interface 6973 * route. This means that interface routes for the same prefix 6974 * can be created if they belong to distinct ipif's and if a 6975 * RTA_IFP sockaddr is not present. 6976 */ 6977 if (ipif_arg != NULL) { 6978 if (ipif_refheld) { 6979 ipif_refrele(ipif); 6980 ipif_refheld = B_FALSE; 6981 } 6982 ipif = ipif_arg; 6983 match_flags |= MATCH_IRE_ILL; 6984 } else { 6985 /* 6986 * Check the ipif corresponding to the gw_addr 6987 */ 6988 if (ipif == NULL) 6989 return (ENETUNREACH); 6990 match_flags |= MATCH_IRE_IPIF; 6991 } 6992 ASSERT(ipif != NULL); 6993 6994 /* 6995 * We check for an existing entry at this point. 6996 * 6997 * Since a netmask isn't passed in via the ioctl interface 6998 * (SIOCADDRT), we don't check for a matching netmask in that 6999 * case. 7000 */ 7001 if (!ioctl_msg) 7002 match_flags |= MATCH_IRE_MASK; 7003 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 7004 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7005 if (ire != NULL) { 7006 ire_refrele(ire); 7007 if (ipif_refheld) 7008 ipif_refrele(ipif); 7009 return (EEXIST); 7010 } 7011 7012 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7013 ? ipif->ipif_rq : ipif->ipif_wq; 7014 7015 /* 7016 * Create a copy of the IRE_LOOPBACK, 7017 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7018 * the modified address and netmask. 7019 */ 7020 ire = ire_create( 7021 (uchar_t *)&dst_addr, 7022 (uint8_t *)&mask, 7023 (uint8_t *)&ipif->ipif_src_addr, 7024 NULL, 7025 &ipif->ipif_mtu, 7026 NULL, 7027 NULL, 7028 stq, 7029 ipif->ipif_net_type, 7030 ipif, 7031 0, 7032 0, 7033 0, 7034 flags, 7035 &ire_uinfo_null, 7036 NULL, 7037 NULL, 7038 ipst); 7039 if (ire == NULL) { 7040 if (ipif_refheld) 7041 ipif_refrele(ipif); 7042 return (ENOMEM); 7043 } 7044 7045 /* 7046 * Some software (for example, GateD and Sun Cluster) attempts 7047 * to create (what amount to) IRE_PREFIX routes with the 7048 * loopback address as the gateway. This is primarily done to 7049 * set up prefixes with the RTF_REJECT flag set (for example, 7050 * when generating aggregate routes.) 7051 * 7052 * If the IRE type (as defined by ipif->ipif_net_type) is 7053 * IRE_LOOPBACK, then we map the request into a 7054 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 7055 * these interface routes, by definition, can only be that. 7056 * 7057 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7058 * routine, but rather using ire_create() directly. 7059 * 7060 */ 7061 if (ipif->ipif_net_type == IRE_LOOPBACK) { 7062 ire->ire_type = IRE_IF_NORESOLVER; 7063 ire->ire_flags |= RTF_BLACKHOLE; 7064 } 7065 7066 error = ire_add(&ire, q, mp, func, B_FALSE); 7067 if (error == 0) 7068 goto save_ire; 7069 7070 /* 7071 * In the result of failure, ire_add() will have already 7072 * deleted the ire in question, so there is no need to 7073 * do that here. 7074 */ 7075 if (ipif_refheld) 7076 ipif_refrele(ipif); 7077 return (error); 7078 } 7079 if (ipif_refheld) { 7080 ipif_refrele(ipif); 7081 ipif_refheld = B_FALSE; 7082 } 7083 7084 /* 7085 * Get an interface IRE for the specified gateway. 7086 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7087 * gateway, it is currently unreachable and we fail the request 7088 * accordingly. 7089 */ 7090 ipif = ipif_arg; 7091 if (ipif_arg != NULL) 7092 match_flags |= MATCH_IRE_ILL; 7093 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7094 ALL_ZONES, 0, NULL, match_flags, ipst); 7095 if (gw_ire == NULL) 7096 return (ENETUNREACH); 7097 7098 /* 7099 * We create one of three types of IREs as a result of this request 7100 * based on the netmask. A netmask of all ones (which is automatically 7101 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7102 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7103 * created. Otherwise, an IRE_PREFIX route is created for the 7104 * destination prefix. 7105 */ 7106 if (mask == IP_HOST_MASK) 7107 type = IRE_HOST; 7108 else if (mask == 0) 7109 type = IRE_DEFAULT; 7110 else 7111 type = IRE_PREFIX; 7112 7113 /* check for a duplicate entry */ 7114 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7115 NULL, ALL_ZONES, 0, NULL, 7116 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7117 if (ire != NULL) { 7118 ire_refrele(gw_ire); 7119 ire_refrele(ire); 7120 return (EEXIST); 7121 } 7122 7123 /* Security attribute exists */ 7124 if (sp != NULL) { 7125 tsol_gcgrp_addr_t ga; 7126 7127 /* find or create the gateway credentials group */ 7128 ga.ga_af = AF_INET; 7129 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7130 7131 /* we hold reference to it upon success */ 7132 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7133 if (gcgrp == NULL) { 7134 ire_refrele(gw_ire); 7135 return (ENOMEM); 7136 } 7137 7138 /* 7139 * Create and add the security attribute to the group; a 7140 * reference to the group is made upon allocating a new 7141 * entry successfully. If it finds an already-existing 7142 * entry for the security attribute in the group, it simply 7143 * returns it and no new reference is made to the group. 7144 */ 7145 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7146 if (gc == NULL) { 7147 /* release reference held by gcgrp_lookup */ 7148 GCGRP_REFRELE(gcgrp); 7149 ire_refrele(gw_ire); 7150 return (ENOMEM); 7151 } 7152 } 7153 7154 /* Create the IRE. */ 7155 ire = ire_create( 7156 (uchar_t *)&dst_addr, /* dest address */ 7157 (uchar_t *)&mask, /* mask */ 7158 /* src address assigned by the caller? */ 7159 (uchar_t *)(((src_addr != INADDR_ANY) && 7160 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7161 (uchar_t *)&gw_addr, /* gateway address */ 7162 &gw_ire->ire_max_frag, 7163 NULL, /* no src nce */ 7164 NULL, /* no recv-from queue */ 7165 NULL, /* no send-to queue */ 7166 (ushort_t)type, /* IRE type */ 7167 ipif_arg, 7168 0, 7169 0, 7170 0, 7171 flags, 7172 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7173 gc, /* security attribute */ 7174 NULL, 7175 ipst); 7176 7177 /* 7178 * The ire holds a reference to the 'gc' and the 'gc' holds a 7179 * reference to the 'gcgrp'. We can now release the extra reference 7180 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7181 */ 7182 if (gcgrp_xtraref) 7183 GCGRP_REFRELE(gcgrp); 7184 if (ire == NULL) { 7185 if (gc != NULL) 7186 GC_REFRELE(gc); 7187 ire_refrele(gw_ire); 7188 return (ENOMEM); 7189 } 7190 7191 /* 7192 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7193 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7194 */ 7195 7196 /* Add the new IRE. */ 7197 error = ire_add(&ire, q, mp, func, B_FALSE); 7198 if (error != 0) { 7199 /* 7200 * In the result of failure, ire_add() will have already 7201 * deleted the ire in question, so there is no need to 7202 * do that here. 7203 */ 7204 ire_refrele(gw_ire); 7205 return (error); 7206 } 7207 7208 if (flags & RTF_MULTIRT) { 7209 /* 7210 * Invoke the CGTP (multirouting) filtering module 7211 * to add the dst address in the filtering database. 7212 * Replicated inbound packets coming from that address 7213 * will be filtered to discard the duplicates. 7214 * It is not necessary to call the CGTP filter hook 7215 * when the dst address is a broadcast or multicast, 7216 * because an IP source address cannot be a broadcast 7217 * or a multicast. 7218 */ 7219 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7220 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7221 if (ire_dst != NULL) { 7222 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7223 ire_refrele(ire_dst); 7224 goto save_ire; 7225 } 7226 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7227 !CLASSD(ire->ire_addr)) { 7228 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7229 ipst->ips_netstack->netstack_stackid, 7230 ire->ire_addr, 7231 ire->ire_gateway_addr, 7232 ire->ire_src_addr, 7233 gw_ire->ire_src_addr); 7234 if (res != 0) { 7235 ire_refrele(gw_ire); 7236 ire_delete(ire); 7237 return (res); 7238 } 7239 } 7240 } 7241 7242 /* 7243 * Now that the prefix IRE entry has been created, delete any 7244 * existing gateway IRE cache entries as well as any IRE caches 7245 * using the gateway, and force them to be created through 7246 * ip_newroute. 7247 */ 7248 if (gc != NULL) { 7249 ASSERT(gcgrp != NULL); 7250 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7251 } 7252 7253 save_ire: 7254 if (gw_ire != NULL) { 7255 ire_refrele(gw_ire); 7256 } 7257 if (ipif != NULL) { 7258 /* 7259 * Save enough information so that we can recreate the IRE if 7260 * the interface goes down and then up. The metrics associated 7261 * with the route will be saved as well when rts_setmetrics() is 7262 * called after the IRE has been created. In the case where 7263 * memory cannot be allocated, none of this information will be 7264 * saved. 7265 */ 7266 ipif_save_ire(ipif, ire); 7267 } 7268 if (ioctl_msg) 7269 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7270 if (ire_arg != NULL) { 7271 /* 7272 * Store the ire that was successfully added into where ire_arg 7273 * points to so that callers don't have to look it up 7274 * themselves (but they are responsible for ire_refrele()ing 7275 * the ire when they are finished with it). 7276 */ 7277 *ire_arg = ire; 7278 } else { 7279 ire_refrele(ire); /* Held in ire_add */ 7280 } 7281 if (ipif_refheld) 7282 ipif_refrele(ipif); 7283 return (0); 7284 } 7285 7286 /* 7287 * ip_rt_delete is called to delete an IPv4 route. 7288 * ipif_arg is passed in to associate it with the correct interface. 7289 * We may need to restart this operation if the ipif cannot be looked up 7290 * due to an exclusive operation that is currently in progress. The restart 7291 * entry point is specified by 'func' 7292 */ 7293 /* ARGSUSED4 */ 7294 int 7295 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7296 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7297 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7298 { 7299 ire_t *ire = NULL; 7300 ipif_t *ipif; 7301 boolean_t ipif_refheld = B_FALSE; 7302 uint_t type; 7303 uint_t match_flags = MATCH_IRE_TYPE; 7304 int err = 0; 7305 7306 ip1dbg(("ip_rt_delete:")); 7307 /* 7308 * If this is the case of RTF_HOST being set, then we set the netmask 7309 * to all ones. Otherwise, we use the netmask if one was supplied. 7310 */ 7311 if (flags & RTF_HOST) { 7312 mask = IP_HOST_MASK; 7313 match_flags |= MATCH_IRE_MASK; 7314 } else if (rtm_addrs & RTA_NETMASK) { 7315 match_flags |= MATCH_IRE_MASK; 7316 } 7317 7318 /* 7319 * Note that RTF_GATEWAY is never set on a delete, therefore 7320 * we check if the gateway address is one of our interfaces first, 7321 * and fall back on RTF_GATEWAY routes. 7322 * 7323 * This makes it possible to delete an original 7324 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7325 * 7326 * As the interface index specified with the RTA_IFP sockaddr is the 7327 * same for all ipif's off of an ill, the matching logic below uses 7328 * MATCH_IRE_ILL if such an index was specified. This means a route 7329 * sharing the same prefix and interface index as the the route 7330 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7331 * is specified in the request. 7332 * 7333 * On the other hand, since the gateway address will usually be 7334 * different for each ipif on the system, the matching logic 7335 * uses MATCH_IRE_IPIF in the case of a traditional interface 7336 * route. This means that interface routes for the same prefix can be 7337 * uniquely identified if they belong to distinct ipif's and if a 7338 * RTA_IFP sockaddr is not present. 7339 * 7340 * For more detail on specifying routes by gateway address and by 7341 * interface index, see the comments in ip_rt_add(). 7342 */ 7343 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7344 ipst); 7345 if (ipif != NULL) 7346 ipif_refheld = B_TRUE; 7347 else if (err == EINPROGRESS) 7348 return (err); 7349 else 7350 err = 0; 7351 if (ipif != NULL) { 7352 if (ipif_arg != NULL) { 7353 if (ipif_refheld) { 7354 ipif_refrele(ipif); 7355 ipif_refheld = B_FALSE; 7356 } 7357 ipif = ipif_arg; 7358 match_flags |= MATCH_IRE_ILL; 7359 } else { 7360 match_flags |= MATCH_IRE_IPIF; 7361 } 7362 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7363 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7364 ALL_ZONES, NULL, match_flags, ipst); 7365 } 7366 if (ire == NULL) { 7367 ire = ire_ftable_lookup(dst_addr, mask, 0, 7368 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7369 match_flags, ipst); 7370 } 7371 } 7372 7373 if (ire == NULL) { 7374 /* 7375 * At this point, the gateway address is not one of our own 7376 * addresses or a matching interface route was not found. We 7377 * set the IRE type to lookup based on whether 7378 * this is a host route, a default route or just a prefix. 7379 * 7380 * If an ipif_arg was passed in, then the lookup is based on an 7381 * interface index so MATCH_IRE_ILL is added to match_flags. 7382 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7383 * set as the route being looked up is not a traditional 7384 * interface route. 7385 */ 7386 match_flags &= ~MATCH_IRE_IPIF; 7387 match_flags |= MATCH_IRE_GW; 7388 if (ipif_arg != NULL) 7389 match_flags |= MATCH_IRE_ILL; 7390 if (mask == IP_HOST_MASK) 7391 type = IRE_HOST; 7392 else if (mask == 0) 7393 type = IRE_DEFAULT; 7394 else 7395 type = IRE_PREFIX; 7396 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7397 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7398 } 7399 7400 if (ipif_refheld) 7401 ipif_refrele(ipif); 7402 7403 /* ipif is not refheld anymore */ 7404 if (ire == NULL) 7405 return (ESRCH); 7406 7407 if (ire->ire_flags & RTF_MULTIRT) { 7408 /* 7409 * Invoke the CGTP (multirouting) filtering module 7410 * to remove the dst address from the filtering database. 7411 * Packets coming from that address will no longer be 7412 * filtered to remove duplicates. 7413 */ 7414 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7415 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7416 ipst->ips_netstack->netstack_stackid, 7417 ire->ire_addr, ire->ire_gateway_addr); 7418 } 7419 ip_cgtp_bcast_delete(ire, ipst); 7420 } 7421 7422 ipif = ire->ire_ipif; 7423 if (ipif != NULL) 7424 ipif_remove_ire(ipif, ire); 7425 if (ioctl_msg) 7426 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7427 ire_delete(ire); 7428 ire_refrele(ire); 7429 return (err); 7430 } 7431 7432 /* 7433 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7434 */ 7435 /* ARGSUSED */ 7436 int 7437 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7438 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7439 { 7440 ipaddr_t dst_addr; 7441 ipaddr_t gw_addr; 7442 ipaddr_t mask; 7443 int error = 0; 7444 mblk_t *mp1; 7445 struct rtentry *rt; 7446 ipif_t *ipif = NULL; 7447 ip_stack_t *ipst; 7448 7449 ASSERT(q->q_next == NULL); 7450 ipst = CONNQ_TO_IPST(q); 7451 7452 ip1dbg(("ip_siocaddrt:")); 7453 /* Existence of mp1 verified in ip_wput_nondata */ 7454 mp1 = mp->b_cont->b_cont; 7455 rt = (struct rtentry *)mp1->b_rptr; 7456 7457 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7458 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7459 7460 /* 7461 * If the RTF_HOST flag is on, this is a request to assign a gateway 7462 * to a particular host address. In this case, we set the netmask to 7463 * all ones for the particular destination address. Otherwise, 7464 * determine the netmask to be used based on dst_addr and the interfaces 7465 * in use. 7466 */ 7467 if (rt->rt_flags & RTF_HOST) { 7468 mask = IP_HOST_MASK; 7469 } else { 7470 /* 7471 * Note that ip_subnet_mask returns a zero mask in the case of 7472 * default (an all-zeroes address). 7473 */ 7474 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7475 } 7476 7477 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7478 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7479 if (ipif != NULL) 7480 ipif_refrele(ipif); 7481 return (error); 7482 } 7483 7484 /* 7485 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7486 */ 7487 /* ARGSUSED */ 7488 int 7489 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7490 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7491 { 7492 ipaddr_t dst_addr; 7493 ipaddr_t gw_addr; 7494 ipaddr_t mask; 7495 int error; 7496 mblk_t *mp1; 7497 struct rtentry *rt; 7498 ipif_t *ipif = NULL; 7499 ip_stack_t *ipst; 7500 7501 ASSERT(q->q_next == NULL); 7502 ipst = CONNQ_TO_IPST(q); 7503 7504 ip1dbg(("ip_siocdelrt:")); 7505 /* Existence of mp1 verified in ip_wput_nondata */ 7506 mp1 = mp->b_cont->b_cont; 7507 rt = (struct rtentry *)mp1->b_rptr; 7508 7509 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7510 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7511 7512 /* 7513 * If the RTF_HOST flag is on, this is a request to delete a gateway 7514 * to a particular host address. In this case, we set the netmask to 7515 * all ones for the particular destination address. Otherwise, 7516 * determine the netmask to be used based on dst_addr and the interfaces 7517 * in use. 7518 */ 7519 if (rt->rt_flags & RTF_HOST) { 7520 mask = IP_HOST_MASK; 7521 } else { 7522 /* 7523 * Note that ip_subnet_mask returns a zero mask in the case of 7524 * default (an all-zeroes address). 7525 */ 7526 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7527 } 7528 7529 error = ip_rt_delete(dst_addr, mask, gw_addr, 7530 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7531 mp, ip_process_ioctl, ipst); 7532 if (ipif != NULL) 7533 ipif_refrele(ipif); 7534 return (error); 7535 } 7536 7537 /* 7538 * Enqueue the mp onto the ipsq, chained by b_next. 7539 * b_prev stores the function to be executed later, and b_queue the queue 7540 * where this mp originated. 7541 */ 7542 void 7543 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7544 ill_t *pending_ill) 7545 { 7546 conn_t *connp = NULL; 7547 7548 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7549 ASSERT(func != NULL); 7550 7551 mp->b_queue = q; 7552 mp->b_prev = (void *)func; 7553 mp->b_next = NULL; 7554 7555 switch (type) { 7556 case CUR_OP: 7557 if (ipsq->ipsq_mptail != NULL) { 7558 ASSERT(ipsq->ipsq_mphead != NULL); 7559 ipsq->ipsq_mptail->b_next = mp; 7560 } else { 7561 ASSERT(ipsq->ipsq_mphead == NULL); 7562 ipsq->ipsq_mphead = mp; 7563 } 7564 ipsq->ipsq_mptail = mp; 7565 break; 7566 7567 case NEW_OP: 7568 if (ipsq->ipsq_xopq_mptail != NULL) { 7569 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7570 ipsq->ipsq_xopq_mptail->b_next = mp; 7571 } else { 7572 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7573 ipsq->ipsq_xopq_mphead = mp; 7574 } 7575 ipsq->ipsq_xopq_mptail = mp; 7576 break; 7577 default: 7578 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7579 } 7580 7581 if (CONN_Q(q) && pending_ill != NULL) { 7582 connp = Q_TO_CONN(q); 7583 7584 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7585 connp->conn_oper_pending_ill = pending_ill; 7586 } 7587 } 7588 7589 /* 7590 * Return the mp at the head of the ipsq. After emptying the ipsq 7591 * look at the next ioctl, if this ioctl is complete. Otherwise 7592 * return, we will resume when we complete the current ioctl. 7593 * The current ioctl will wait till it gets a response from the 7594 * driver below. 7595 */ 7596 static mblk_t * 7597 ipsq_dq(ipsq_t *ipsq) 7598 { 7599 mblk_t *mp; 7600 7601 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7602 7603 mp = ipsq->ipsq_mphead; 7604 if (mp != NULL) { 7605 ipsq->ipsq_mphead = mp->b_next; 7606 if (ipsq->ipsq_mphead == NULL) 7607 ipsq->ipsq_mptail = NULL; 7608 mp->b_next = NULL; 7609 return (mp); 7610 } 7611 if (ipsq->ipsq_current_ipif != NULL) 7612 return (NULL); 7613 mp = ipsq->ipsq_xopq_mphead; 7614 if (mp != NULL) { 7615 ipsq->ipsq_xopq_mphead = mp->b_next; 7616 if (ipsq->ipsq_xopq_mphead == NULL) 7617 ipsq->ipsq_xopq_mptail = NULL; 7618 mp->b_next = NULL; 7619 return (mp); 7620 } 7621 return (NULL); 7622 } 7623 7624 /* 7625 * Enter the ipsq corresponding to ill, by waiting synchronously till 7626 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7627 * will have to drain completely before ipsq_enter returns success. 7628 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7629 * and the ipsq_exit logic will start the next enqueued ioctl after 7630 * completion of the current ioctl. If 'force' is used, we don't wait 7631 * for the enqueued ioctls. This is needed when a conn_close wants to 7632 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7633 * of an ill can also use this option. But we dont' use it currently. 7634 */ 7635 #define ENTER_SQ_WAIT_TICKS 100 7636 boolean_t 7637 ipsq_enter(ill_t *ill, boolean_t force) 7638 { 7639 ipsq_t *ipsq; 7640 boolean_t waited_enough = B_FALSE; 7641 7642 /* 7643 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7644 * Since the <ill-ipsq> assocs could change while we wait for the 7645 * writer, it is easier to wait on a fixed global rather than try to 7646 * cv_wait on a changing ipsq. 7647 */ 7648 mutex_enter(&ill->ill_lock); 7649 for (;;) { 7650 if (ill->ill_state_flags & ILL_CONDEMNED) { 7651 mutex_exit(&ill->ill_lock); 7652 return (B_FALSE); 7653 } 7654 7655 ipsq = ill->ill_phyint->phyint_ipsq; 7656 mutex_enter(&ipsq->ipsq_lock); 7657 if (ipsq->ipsq_writer == NULL && 7658 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7659 break; 7660 } else if (ipsq->ipsq_writer != NULL) { 7661 mutex_exit(&ipsq->ipsq_lock); 7662 cv_wait(&ill->ill_cv, &ill->ill_lock); 7663 } else { 7664 mutex_exit(&ipsq->ipsq_lock); 7665 if (force) { 7666 (void) cv_timedwait(&ill->ill_cv, 7667 &ill->ill_lock, 7668 lbolt + ENTER_SQ_WAIT_TICKS); 7669 waited_enough = B_TRUE; 7670 continue; 7671 } else { 7672 cv_wait(&ill->ill_cv, &ill->ill_lock); 7673 } 7674 } 7675 } 7676 7677 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7678 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7679 ipsq->ipsq_writer = curthread; 7680 ipsq->ipsq_reentry_cnt++; 7681 #ifdef DEBUG 7682 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7683 #endif 7684 mutex_exit(&ipsq->ipsq_lock); 7685 mutex_exit(&ill->ill_lock); 7686 return (B_TRUE); 7687 } 7688 7689 /* 7690 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7691 * certain critical operations like plumbing (i.e. most set ioctls), 7692 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7693 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7694 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7695 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7696 * threads executing in the ipsq. Responses from the driver pertain to the 7697 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7698 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7699 * 7700 * If a thread does not want to reenter the ipsq when it is already writer, 7701 * it must make sure that the specified reentry point to be called later 7702 * when the ipsq is empty, nor any code path starting from the specified reentry 7703 * point must never ever try to enter the ipsq again. Otherwise it can lead 7704 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7705 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7706 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7707 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7708 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7709 * ioctl if the current ioctl has completed. If the current ioctl is still 7710 * in progress it simply returns. The current ioctl could be waiting for 7711 * a response from another module (arp_ or the driver or could be waiting for 7712 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7713 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7714 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7715 * ipsq_current_ipif is clear which happens only on ioctl completion. 7716 */ 7717 7718 /* 7719 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7720 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7721 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7722 * completion. 7723 */ 7724 ipsq_t * 7725 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7726 ipsq_func_t func, int type, boolean_t reentry_ok) 7727 { 7728 ipsq_t *ipsq; 7729 7730 /* Only 1 of ipif or ill can be specified */ 7731 ASSERT((ipif != NULL) ^ (ill != NULL)); 7732 if (ipif != NULL) 7733 ill = ipif->ipif_ill; 7734 7735 /* 7736 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7737 * ipsq of an ill can't change when ill_lock is held. 7738 */ 7739 GRAB_CONN_LOCK(q); 7740 mutex_enter(&ill->ill_lock); 7741 ipsq = ill->ill_phyint->phyint_ipsq; 7742 mutex_enter(&ipsq->ipsq_lock); 7743 7744 /* 7745 * 1. Enter the ipsq if we are already writer and reentry is ok. 7746 * (Note: If the caller does not specify reentry_ok then neither 7747 * 'func' nor any of its callees must ever attempt to enter the ipsq 7748 * again. Otherwise it can lead to an infinite loop 7749 * 2. Enter the ipsq if there is no current writer and this attempted 7750 * entry is part of the current ioctl or operation 7751 * 3. Enter the ipsq if there is no current writer and this is a new 7752 * ioctl (or operation) and the ioctl (or operation) queue is 7753 * empty and there is no ioctl (or operation) currently in progress 7754 */ 7755 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7756 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7757 ipsq->ipsq_current_ipif == NULL))) || 7758 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7759 /* Success. */ 7760 ipsq->ipsq_reentry_cnt++; 7761 ipsq->ipsq_writer = curthread; 7762 mutex_exit(&ipsq->ipsq_lock); 7763 mutex_exit(&ill->ill_lock); 7764 RELEASE_CONN_LOCK(q); 7765 #ifdef DEBUG 7766 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7767 IPSQ_STACK_DEPTH); 7768 #endif 7769 return (ipsq); 7770 } 7771 7772 ipsq_enq(ipsq, q, mp, func, type, ill); 7773 7774 mutex_exit(&ipsq->ipsq_lock); 7775 mutex_exit(&ill->ill_lock); 7776 RELEASE_CONN_LOCK(q); 7777 return (NULL); 7778 } 7779 7780 /* 7781 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7782 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7783 * cannot be entered, the mp is queued for completion. 7784 */ 7785 void 7786 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7787 boolean_t reentry_ok) 7788 { 7789 ipsq_t *ipsq; 7790 7791 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7792 7793 /* 7794 * Drop the caller's refhold on the ill. This is safe since we either 7795 * entered the IPSQ (and thus are exclusive), or failed to enter the 7796 * IPSQ, in which case we return without accessing ill anymore. This 7797 * is needed because func needs to see the correct refcount. 7798 * e.g. removeif can work only then. 7799 */ 7800 ill_refrele(ill); 7801 if (ipsq != NULL) { 7802 (*func)(ipsq, q, mp, NULL); 7803 ipsq_exit(ipsq); 7804 } 7805 } 7806 7807 /* 7808 * If there are more than ILL_GRP_CNT ills in a group, 7809 * we use kmem alloc'd buffers, else use the stack 7810 */ 7811 #define ILL_GRP_CNT 14 7812 /* 7813 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7814 * Called by a thread that is currently exclusive on this ipsq. 7815 */ 7816 void 7817 ipsq_exit(ipsq_t *ipsq) 7818 { 7819 queue_t *q; 7820 mblk_t *mp; 7821 ipsq_func_t func; 7822 int next; 7823 ill_t **ill_list = NULL; 7824 size_t ill_list_size = 0; 7825 int cnt = 0; 7826 boolean_t need_ipsq_free = B_FALSE; 7827 ip_stack_t *ipst = ipsq->ipsq_ipst; 7828 7829 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7830 mutex_enter(&ipsq->ipsq_lock); 7831 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7832 if (ipsq->ipsq_reentry_cnt != 1) { 7833 ipsq->ipsq_reentry_cnt--; 7834 mutex_exit(&ipsq->ipsq_lock); 7835 return; 7836 } 7837 7838 mp = ipsq_dq(ipsq); 7839 while (mp != NULL) { 7840 again: 7841 mutex_exit(&ipsq->ipsq_lock); 7842 func = (ipsq_func_t)mp->b_prev; 7843 q = (queue_t *)mp->b_queue; 7844 mp->b_prev = NULL; 7845 mp->b_queue = NULL; 7846 7847 /* 7848 * If 'q' is an conn queue, it is valid, since we did a 7849 * a refhold on the connp, at the start of the ioctl. 7850 * If 'q' is an ill queue, it is valid, since close of an 7851 * ill will clean up the 'ipsq'. 7852 */ 7853 (*func)(ipsq, q, mp, NULL); 7854 7855 mutex_enter(&ipsq->ipsq_lock); 7856 mp = ipsq_dq(ipsq); 7857 } 7858 7859 mutex_exit(&ipsq->ipsq_lock); 7860 7861 /* 7862 * Need to grab the locks in the right order. Need to 7863 * atomically check (under ipsq_lock) that there are no 7864 * messages before relinquishing the ipsq. Also need to 7865 * atomically wakeup waiters on ill_cv while holding ill_lock. 7866 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7867 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7868 * to grab ill_g_lock as writer. 7869 */ 7870 rw_enter(&ipst->ips_ill_g_lock, 7871 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7872 7873 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7874 if (ipsq->ipsq_refs != 0) { 7875 /* At most 2 ills v4/v6 per phyint */ 7876 cnt = ipsq->ipsq_refs << 1; 7877 ill_list_size = cnt * sizeof (ill_t *); 7878 /* 7879 * If memory allocation fails, we will do the split 7880 * the next time ipsq_exit is called for whatever reason. 7881 * As long as the ipsq_split flag is set the need to 7882 * split is remembered. 7883 */ 7884 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7885 if (ill_list != NULL) 7886 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7887 } 7888 mutex_enter(&ipsq->ipsq_lock); 7889 mp = ipsq_dq(ipsq); 7890 if (mp != NULL) { 7891 /* oops, some message has landed up, we can't get out */ 7892 if (ill_list != NULL) 7893 ill_unlock_ills(ill_list, cnt); 7894 rw_exit(&ipst->ips_ill_g_lock); 7895 if (ill_list != NULL) 7896 kmem_free(ill_list, ill_list_size); 7897 ill_list = NULL; 7898 ill_list_size = 0; 7899 cnt = 0; 7900 goto again; 7901 } 7902 7903 /* 7904 * Split only if no ioctl is pending and if memory alloc succeeded 7905 * above. 7906 */ 7907 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7908 ill_list != NULL) { 7909 /* 7910 * No new ill can join this ipsq since we are holding the 7911 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7912 * ipsq. ill_split_ipsq may fail due to memory shortage. 7913 * If so we will retry on the next ipsq_exit. 7914 */ 7915 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7916 } 7917 7918 /* 7919 * We are holding the ipsq lock, hence no new messages can 7920 * land up on the ipsq, and there are no messages currently. 7921 * Now safe to get out. Wake up waiters and relinquish ipsq 7922 * atomically while holding ill locks. 7923 */ 7924 ipsq->ipsq_writer = NULL; 7925 ipsq->ipsq_reentry_cnt--; 7926 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7927 #ifdef DEBUG 7928 ipsq->ipsq_depth = 0; 7929 #endif 7930 mutex_exit(&ipsq->ipsq_lock); 7931 /* 7932 * For IPMP this should wake up all ills in this ipsq. 7933 * We need to hold the ill_lock while waking up waiters to 7934 * avoid missed wakeups. But there is no need to acquire all 7935 * the ill locks and then wakeup. If we have not acquired all 7936 * the locks (due to memory failure above) ill_signal_ipsq_ills 7937 * wakes up ills one at a time after getting the right ill_lock 7938 */ 7939 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7940 if (ill_list != NULL) 7941 ill_unlock_ills(ill_list, cnt); 7942 if (ipsq->ipsq_refs == 0) 7943 need_ipsq_free = B_TRUE; 7944 rw_exit(&ipst->ips_ill_g_lock); 7945 if (ill_list != 0) 7946 kmem_free(ill_list, ill_list_size); 7947 7948 if (need_ipsq_free) { 7949 /* 7950 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7951 * looked up. ipsq can be looked up only thru ill or phyint 7952 * and there are no ills/phyint on this ipsq. 7953 */ 7954 ipsq_delete(ipsq); 7955 } 7956 7957 /* 7958 * Now that we're outside the IPSQ, start any IGMP/MLD timers. We 7959 * can't start these inside the IPSQ since e.g. igmp_start_timers() -> 7960 * untimeout() (inside the IPSQ, waiting for an executing timeout to 7961 * finish) could deadlock with igmp_timeout_handler() -> ipsq_enter() 7962 * (executing the timeout, waiting to get inside the IPSQ). 7963 * 7964 * However, there is one exception to the above: if this thread *is* 7965 * the IGMP/MLD timeout handler thread, then we must not start its 7966 * timer until the current handler is done. 7967 */ 7968 mutex_enter(&ipst->ips_igmp_timer_lock); 7969 if (curthread != ipst->ips_igmp_timer_thread) { 7970 next = ipst->ips_igmp_deferred_next; 7971 ipst->ips_igmp_deferred_next = INFINITY; 7972 mutex_exit(&ipst->ips_igmp_timer_lock); 7973 7974 if (next != INFINITY) 7975 igmp_start_timers(next, ipst); 7976 } else { 7977 mutex_exit(&ipst->ips_igmp_timer_lock); 7978 } 7979 7980 mutex_enter(&ipst->ips_mld_timer_lock); 7981 if (curthread != ipst->ips_mld_timer_thread) { 7982 next = ipst->ips_mld_deferred_next; 7983 ipst->ips_mld_deferred_next = INFINITY; 7984 mutex_exit(&ipst->ips_mld_timer_lock); 7985 7986 if (next != INFINITY) 7987 mld_start_timers(next, ipst); 7988 } else { 7989 mutex_exit(&ipst->ips_mld_timer_lock); 7990 } 7991 } 7992 7993 /* 7994 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7995 * and `ioccmd'. 7996 */ 7997 void 7998 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 7999 { 8000 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8001 8002 mutex_enter(&ipsq->ipsq_lock); 8003 ASSERT(ipsq->ipsq_current_ipif == NULL); 8004 ASSERT(ipsq->ipsq_current_ioctl == 0); 8005 ipsq->ipsq_current_done = B_FALSE; 8006 ipsq->ipsq_current_ipif = ipif; 8007 ipsq->ipsq_current_ioctl = ioccmd; 8008 mutex_exit(&ipsq->ipsq_lock); 8009 } 8010 8011 /* 8012 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 8013 * the next exclusive operation to begin once we ipsq_exit(). However, if 8014 * pending DLPI operations remain, then we will wait for the queue to drain 8015 * before allowing the next exclusive operation to begin. This ensures that 8016 * DLPI operations from one exclusive operation are never improperly processed 8017 * as part of a subsequent exclusive operation. 8018 */ 8019 void 8020 ipsq_current_finish(ipsq_t *ipsq) 8021 { 8022 ipif_t *ipif = ipsq->ipsq_current_ipif; 8023 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 8024 8025 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8026 8027 /* 8028 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8029 * (but in that case, IPIF_CHANGING will already be clear and no 8030 * pending DLPI messages can remain). 8031 */ 8032 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8033 ill_t *ill = ipif->ipif_ill; 8034 8035 mutex_enter(&ill->ill_lock); 8036 dlpi_pending = ill->ill_dlpi_pending; 8037 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8038 /* Send any queued event */ 8039 ill_nic_info_dispatch(ill); 8040 mutex_exit(&ill->ill_lock); 8041 } 8042 8043 mutex_enter(&ipsq->ipsq_lock); 8044 ipsq->ipsq_current_ioctl = 0; 8045 ipsq->ipsq_current_done = B_TRUE; 8046 if (dlpi_pending == DL_PRIM_INVAL) 8047 ipsq->ipsq_current_ipif = NULL; 8048 mutex_exit(&ipsq->ipsq_lock); 8049 } 8050 8051 /* 8052 * The ill is closing. Flush all messages on the ipsq that originated 8053 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8054 * for this ill since ipsq_enter could not have entered until then. 8055 * New messages can't be queued since the CONDEMNED flag is set. 8056 */ 8057 static void 8058 ipsq_flush(ill_t *ill) 8059 { 8060 queue_t *q; 8061 mblk_t *prev; 8062 mblk_t *mp; 8063 mblk_t *mp_next; 8064 ipsq_t *ipsq; 8065 8066 ASSERT(IAM_WRITER_ILL(ill)); 8067 ipsq = ill->ill_phyint->phyint_ipsq; 8068 /* 8069 * Flush any messages sent up by the driver. 8070 */ 8071 mutex_enter(&ipsq->ipsq_lock); 8072 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8073 mp_next = mp->b_next; 8074 q = mp->b_queue; 8075 if (q == ill->ill_rq || q == ill->ill_wq) { 8076 /* Remove the mp from the ipsq */ 8077 if (prev == NULL) 8078 ipsq->ipsq_mphead = mp->b_next; 8079 else 8080 prev->b_next = mp->b_next; 8081 if (ipsq->ipsq_mptail == mp) { 8082 ASSERT(mp_next == NULL); 8083 ipsq->ipsq_mptail = prev; 8084 } 8085 inet_freemsg(mp); 8086 } else { 8087 prev = mp; 8088 } 8089 } 8090 mutex_exit(&ipsq->ipsq_lock); 8091 (void) ipsq_pending_mp_cleanup(ill, NULL); 8092 ipsq_xopq_mp_cleanup(ill, NULL); 8093 ill_pending_mp_cleanup(ill); 8094 } 8095 8096 /* ARGSUSED */ 8097 int 8098 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8099 ip_ioctl_cmd_t *ipip, void *ifreq) 8100 { 8101 ill_t *ill; 8102 struct lifreq *lifr = (struct lifreq *)ifreq; 8103 boolean_t isv6; 8104 conn_t *connp; 8105 ip_stack_t *ipst; 8106 8107 connp = Q_TO_CONN(q); 8108 ipst = connp->conn_netstack->netstack_ip; 8109 isv6 = connp->conn_af_isv6; 8110 /* 8111 * Set original index. 8112 * Failover and failback move logical interfaces 8113 * from one physical interface to another. The 8114 * original index indicates the parent of a logical 8115 * interface, in other words, the physical interface 8116 * the logical interface will be moved back to on 8117 * failback. 8118 */ 8119 8120 /* 8121 * Don't allow the original index to be changed 8122 * for non-failover addresses, autoconfigured 8123 * addresses, or IPv6 link local addresses. 8124 */ 8125 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8126 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8127 return (EINVAL); 8128 } 8129 /* 8130 * The new original index must be in use by some 8131 * physical interface. 8132 */ 8133 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8134 NULL, NULL, ipst); 8135 if (ill == NULL) 8136 return (ENXIO); 8137 ill_refrele(ill); 8138 8139 ipif->ipif_orig_ifindex = lifr->lifr_index; 8140 /* 8141 * When this ipif gets failed back, don't 8142 * preserve the original id, as it is no 8143 * longer applicable. 8144 */ 8145 ipif->ipif_orig_ipifid = 0; 8146 /* 8147 * For IPv4, change the original index of any 8148 * multicast addresses associated with the 8149 * ipif to the new value. 8150 */ 8151 if (!isv6) { 8152 ilm_t *ilm; 8153 8154 mutex_enter(&ipif->ipif_ill->ill_lock); 8155 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8156 ilm = ilm->ilm_next) { 8157 if (ilm->ilm_ipif == ipif) { 8158 ilm->ilm_orig_ifindex = lifr->lifr_index; 8159 } 8160 } 8161 mutex_exit(&ipif->ipif_ill->ill_lock); 8162 } 8163 return (0); 8164 } 8165 8166 /* ARGSUSED */ 8167 int 8168 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8169 ip_ioctl_cmd_t *ipip, void *ifreq) 8170 { 8171 struct lifreq *lifr = (struct lifreq *)ifreq; 8172 8173 /* 8174 * Get the original interface index i.e the one 8175 * before FAILOVER if it ever happened. 8176 */ 8177 lifr->lifr_index = ipif->ipif_orig_ifindex; 8178 return (0); 8179 } 8180 8181 /* 8182 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8183 * refhold and return the associated ipif 8184 */ 8185 /* ARGSUSED */ 8186 int 8187 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8188 cmd_info_t *ci, ipsq_func_t func) 8189 { 8190 boolean_t exists; 8191 struct iftun_req *ta; 8192 ipif_t *ipif; 8193 ill_t *ill; 8194 boolean_t isv6; 8195 mblk_t *mp1; 8196 int error; 8197 conn_t *connp; 8198 ip_stack_t *ipst; 8199 8200 /* Existence verified in ip_wput_nondata */ 8201 mp1 = mp->b_cont->b_cont; 8202 ta = (struct iftun_req *)mp1->b_rptr; 8203 /* 8204 * Null terminate the string to protect against buffer 8205 * overrun. String was generated by user code and may not 8206 * be trusted. 8207 */ 8208 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8209 8210 connp = Q_TO_CONN(q); 8211 isv6 = connp->conn_af_isv6; 8212 ipst = connp->conn_netstack->netstack_ip; 8213 8214 /* Disallows implicit create */ 8215 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8216 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8217 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8218 if (ipif == NULL) 8219 return (error); 8220 8221 if (ipif->ipif_id != 0) { 8222 /* 8223 * We really don't want to set/get tunnel parameters 8224 * on virtual tunnel interfaces. Only allow the 8225 * base tunnel to do these. 8226 */ 8227 ipif_refrele(ipif); 8228 return (EINVAL); 8229 } 8230 8231 /* 8232 * Send down to tunnel mod for ioctl processing. 8233 * Will finish ioctl in ip_rput_other(). 8234 */ 8235 ill = ipif->ipif_ill; 8236 if (ill->ill_net_type == IRE_LOOPBACK) { 8237 ipif_refrele(ipif); 8238 return (EOPNOTSUPP); 8239 } 8240 8241 if (ill->ill_wq == NULL) { 8242 ipif_refrele(ipif); 8243 return (ENXIO); 8244 } 8245 /* 8246 * Mark the ioctl as coming from an IPv6 interface for 8247 * tun's convenience. 8248 */ 8249 if (ill->ill_isv6) 8250 ta->ifta_flags |= 0x80000000; 8251 ci->ci_ipif = ipif; 8252 return (0); 8253 } 8254 8255 /* 8256 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8257 * and return the associated ipif. 8258 * Return value: 8259 * Non zero: An error has occurred. ci may not be filled out. 8260 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8261 * a held ipif in ci.ci_ipif. 8262 */ 8263 int 8264 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8265 cmd_info_t *ci, ipsq_func_t func) 8266 { 8267 sin_t *sin; 8268 sin6_t *sin6; 8269 char *name; 8270 struct ifreq *ifr; 8271 struct lifreq *lifr; 8272 ipif_t *ipif = NULL; 8273 ill_t *ill; 8274 conn_t *connp; 8275 boolean_t isv6; 8276 boolean_t exists; 8277 int err; 8278 mblk_t *mp1; 8279 zoneid_t zoneid; 8280 ip_stack_t *ipst; 8281 8282 if (q->q_next != NULL) { 8283 ill = (ill_t *)q->q_ptr; 8284 isv6 = ill->ill_isv6; 8285 connp = NULL; 8286 zoneid = ALL_ZONES; 8287 ipst = ill->ill_ipst; 8288 } else { 8289 ill = NULL; 8290 connp = Q_TO_CONN(q); 8291 isv6 = connp->conn_af_isv6; 8292 zoneid = connp->conn_zoneid; 8293 if (zoneid == GLOBAL_ZONEID) { 8294 /* global zone can access ipifs in all zones */ 8295 zoneid = ALL_ZONES; 8296 } 8297 ipst = connp->conn_netstack->netstack_ip; 8298 } 8299 8300 /* Has been checked in ip_wput_nondata */ 8301 mp1 = mp->b_cont->b_cont; 8302 8303 if (ipip->ipi_cmd_type == IF_CMD) { 8304 /* This a old style SIOC[GS]IF* command */ 8305 ifr = (struct ifreq *)mp1->b_rptr; 8306 /* 8307 * Null terminate the string to protect against buffer 8308 * overrun. String was generated by user code and may not 8309 * be trusted. 8310 */ 8311 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8312 sin = (sin_t *)&ifr->ifr_addr; 8313 name = ifr->ifr_name; 8314 ci->ci_sin = sin; 8315 ci->ci_sin6 = NULL; 8316 ci->ci_lifr = (struct lifreq *)ifr; 8317 } else { 8318 /* This a new style SIOC[GS]LIF* command */ 8319 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8320 lifr = (struct lifreq *)mp1->b_rptr; 8321 /* 8322 * Null terminate the string to protect against buffer 8323 * overrun. String was generated by user code and may not 8324 * be trusted. 8325 */ 8326 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8327 name = lifr->lifr_name; 8328 sin = (sin_t *)&lifr->lifr_addr; 8329 sin6 = (sin6_t *)&lifr->lifr_addr; 8330 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8331 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8332 LIFNAMSIZ); 8333 } 8334 ci->ci_sin = sin; 8335 ci->ci_sin6 = sin6; 8336 ci->ci_lifr = lifr; 8337 } 8338 8339 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8340 /* 8341 * The ioctl will be failed if the ioctl comes down 8342 * an conn stream 8343 */ 8344 if (ill == NULL) { 8345 /* 8346 * Not an ill queue, return EINVAL same as the 8347 * old error code. 8348 */ 8349 return (ENXIO); 8350 } 8351 ipif = ill->ill_ipif; 8352 ipif_refhold(ipif); 8353 } else { 8354 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8355 &exists, isv6, zoneid, 8356 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8357 ipst); 8358 if (ipif == NULL) { 8359 if (err == EINPROGRESS) 8360 return (err); 8361 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8362 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8363 /* 8364 * Need to try both v4 and v6 since this 8365 * ioctl can come down either v4 or v6 8366 * socket. The lifreq.lifr_family passed 8367 * down by this ioctl is AF_UNSPEC. 8368 */ 8369 ipif = ipif_lookup_on_name(name, 8370 mi_strlen(name), B_FALSE, &exists, !isv6, 8371 zoneid, (connp == NULL) ? q : 8372 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8373 if (err == EINPROGRESS) 8374 return (err); 8375 } 8376 err = 0; /* Ensure we don't use it below */ 8377 } 8378 } 8379 8380 /* 8381 * Old style [GS]IFCMD does not admit IPv6 ipif 8382 */ 8383 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8384 ipif_refrele(ipif); 8385 return (ENXIO); 8386 } 8387 8388 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8389 name[0] == '\0') { 8390 /* 8391 * Handle a or a SIOC?IF* with a null name 8392 * during plumb (on the ill queue before the I_PLINK). 8393 */ 8394 ipif = ill->ill_ipif; 8395 ipif_refhold(ipif); 8396 } 8397 8398 if (ipif == NULL) 8399 return (ENXIO); 8400 8401 /* 8402 * Allow only GET operations if this ipif has been created 8403 * temporarily due to a MOVE operation. 8404 */ 8405 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8406 ipif_refrele(ipif); 8407 return (EINVAL); 8408 } 8409 8410 ci->ci_ipif = ipif; 8411 return (0); 8412 } 8413 8414 /* 8415 * Return the total number of ipifs. 8416 */ 8417 static uint_t 8418 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8419 { 8420 uint_t numifs = 0; 8421 ill_t *ill; 8422 ill_walk_context_t ctx; 8423 ipif_t *ipif; 8424 8425 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8426 ill = ILL_START_WALK_V4(&ctx, ipst); 8427 8428 while (ill != NULL) { 8429 for (ipif = ill->ill_ipif; ipif != NULL; 8430 ipif = ipif->ipif_next) { 8431 if (ipif->ipif_zoneid == zoneid || 8432 ipif->ipif_zoneid == ALL_ZONES) 8433 numifs++; 8434 } 8435 ill = ill_next(&ctx, ill); 8436 } 8437 rw_exit(&ipst->ips_ill_g_lock); 8438 return (numifs); 8439 } 8440 8441 /* 8442 * Return the total number of ipifs. 8443 */ 8444 static uint_t 8445 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8446 { 8447 uint_t numifs = 0; 8448 ill_t *ill; 8449 ipif_t *ipif; 8450 ill_walk_context_t ctx; 8451 8452 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8453 8454 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8455 if (family == AF_INET) 8456 ill = ILL_START_WALK_V4(&ctx, ipst); 8457 else if (family == AF_INET6) 8458 ill = ILL_START_WALK_V6(&ctx, ipst); 8459 else 8460 ill = ILL_START_WALK_ALL(&ctx, ipst); 8461 8462 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8463 for (ipif = ill->ill_ipif; ipif != NULL; 8464 ipif = ipif->ipif_next) { 8465 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8466 !(lifn_flags & LIFC_NOXMIT)) 8467 continue; 8468 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8469 !(lifn_flags & LIFC_TEMPORARY)) 8470 continue; 8471 if (((ipif->ipif_flags & 8472 (IPIF_NOXMIT|IPIF_NOLOCAL| 8473 IPIF_DEPRECATED)) || 8474 IS_LOOPBACK(ill) || 8475 !(ipif->ipif_flags & IPIF_UP)) && 8476 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8477 continue; 8478 8479 if (zoneid != ipif->ipif_zoneid && 8480 ipif->ipif_zoneid != ALL_ZONES && 8481 (zoneid != GLOBAL_ZONEID || 8482 !(lifn_flags & LIFC_ALLZONES))) 8483 continue; 8484 8485 numifs++; 8486 } 8487 } 8488 rw_exit(&ipst->ips_ill_g_lock); 8489 return (numifs); 8490 } 8491 8492 uint_t 8493 ip_get_lifsrcofnum(ill_t *ill) 8494 { 8495 uint_t numifs = 0; 8496 ill_t *ill_head = ill; 8497 ip_stack_t *ipst = ill->ill_ipst; 8498 8499 /* 8500 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8501 * other thread may be trying to relink the ILLs in this usesrc group 8502 * and adjusting the ill_usesrc_grp_next pointers 8503 */ 8504 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8505 if ((ill->ill_usesrc_ifindex == 0) && 8506 (ill->ill_usesrc_grp_next != NULL)) { 8507 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8508 ill = ill->ill_usesrc_grp_next) 8509 numifs++; 8510 } 8511 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8512 8513 return (numifs); 8514 } 8515 8516 /* Null values are passed in for ipif, sin, and ifreq */ 8517 /* ARGSUSED */ 8518 int 8519 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8520 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8521 { 8522 int *nump; 8523 conn_t *connp = Q_TO_CONN(q); 8524 8525 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8526 8527 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8528 nump = (int *)mp->b_cont->b_cont->b_rptr; 8529 8530 *nump = ip_get_numifs(connp->conn_zoneid, 8531 connp->conn_netstack->netstack_ip); 8532 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8533 return (0); 8534 } 8535 8536 /* Null values are passed in for ipif, sin, and ifreq */ 8537 /* ARGSUSED */ 8538 int 8539 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8540 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8541 { 8542 struct lifnum *lifn; 8543 mblk_t *mp1; 8544 conn_t *connp = Q_TO_CONN(q); 8545 8546 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8547 8548 /* Existence checked in ip_wput_nondata */ 8549 mp1 = mp->b_cont->b_cont; 8550 8551 lifn = (struct lifnum *)mp1->b_rptr; 8552 switch (lifn->lifn_family) { 8553 case AF_UNSPEC: 8554 case AF_INET: 8555 case AF_INET6: 8556 break; 8557 default: 8558 return (EAFNOSUPPORT); 8559 } 8560 8561 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8562 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8563 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8564 return (0); 8565 } 8566 8567 /* ARGSUSED */ 8568 int 8569 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8570 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8571 { 8572 STRUCT_HANDLE(ifconf, ifc); 8573 mblk_t *mp1; 8574 struct iocblk *iocp; 8575 struct ifreq *ifr; 8576 ill_walk_context_t ctx; 8577 ill_t *ill; 8578 ipif_t *ipif; 8579 struct sockaddr_in *sin; 8580 int32_t ifclen; 8581 zoneid_t zoneid; 8582 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8583 8584 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8585 8586 ip1dbg(("ip_sioctl_get_ifconf")); 8587 /* Existence verified in ip_wput_nondata */ 8588 mp1 = mp->b_cont->b_cont; 8589 iocp = (struct iocblk *)mp->b_rptr; 8590 zoneid = Q_TO_CONN(q)->conn_zoneid; 8591 8592 /* 8593 * The original SIOCGIFCONF passed in a struct ifconf which specified 8594 * the user buffer address and length into which the list of struct 8595 * ifreqs was to be copied. Since AT&T Streams does not seem to 8596 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8597 * the SIOCGIFCONF operation was redefined to simply provide 8598 * a large output buffer into which we are supposed to jam the ifreq 8599 * array. The same ioctl command code was used, despite the fact that 8600 * both the applications and the kernel code had to change, thus making 8601 * it impossible to support both interfaces. 8602 * 8603 * For reasons not good enough to try to explain, the following 8604 * algorithm is used for deciding what to do with one of these: 8605 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8606 * form with the output buffer coming down as the continuation message. 8607 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8608 * and we have to copy in the ifconf structure to find out how big the 8609 * output buffer is and where to copy out to. Sure no problem... 8610 * 8611 */ 8612 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8613 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8614 int numifs = 0; 8615 size_t ifc_bufsize; 8616 8617 /* 8618 * Must be (better be!) continuation of a TRANSPARENT 8619 * IOCTL. We just copied in the ifconf structure. 8620 */ 8621 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8622 (struct ifconf *)mp1->b_rptr); 8623 8624 /* 8625 * Allocate a buffer to hold requested information. 8626 * 8627 * If ifc_len is larger than what is needed, we only 8628 * allocate what we will use. 8629 * 8630 * If ifc_len is smaller than what is needed, return 8631 * EINVAL. 8632 * 8633 * XXX: the ill_t structure can hava 2 counters, for 8634 * v4 and v6 (not just ill_ipif_up_count) to store the 8635 * number of interfaces for a device, so we don't need 8636 * to count them here... 8637 */ 8638 numifs = ip_get_numifs(zoneid, ipst); 8639 8640 ifclen = STRUCT_FGET(ifc, ifc_len); 8641 ifc_bufsize = numifs * sizeof (struct ifreq); 8642 if (ifc_bufsize > ifclen) { 8643 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8644 /* old behaviour */ 8645 return (EINVAL); 8646 } else { 8647 ifc_bufsize = ifclen; 8648 } 8649 } 8650 8651 mp1 = mi_copyout_alloc(q, mp, 8652 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8653 if (mp1 == NULL) 8654 return (ENOMEM); 8655 8656 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8657 } 8658 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8659 /* 8660 * the SIOCGIFCONF ioctl only knows about 8661 * IPv4 addresses, so don't try to tell 8662 * it about interfaces with IPv6-only 8663 * addresses. (Last parm 'isv6' is B_FALSE) 8664 */ 8665 8666 ifr = (struct ifreq *)mp1->b_rptr; 8667 8668 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8669 ill = ILL_START_WALK_V4(&ctx, ipst); 8670 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8671 for (ipif = ill->ill_ipif; ipif != NULL; 8672 ipif = ipif->ipif_next) { 8673 if (zoneid != ipif->ipif_zoneid && 8674 ipif->ipif_zoneid != ALL_ZONES) 8675 continue; 8676 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8677 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8678 /* old behaviour */ 8679 rw_exit(&ipst->ips_ill_g_lock); 8680 return (EINVAL); 8681 } else { 8682 goto if_copydone; 8683 } 8684 } 8685 ipif_get_name(ipif, ifr->ifr_name, 8686 sizeof (ifr->ifr_name)); 8687 sin = (sin_t *)&ifr->ifr_addr; 8688 *sin = sin_null; 8689 sin->sin_family = AF_INET; 8690 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8691 ifr++; 8692 } 8693 } 8694 if_copydone: 8695 rw_exit(&ipst->ips_ill_g_lock); 8696 mp1->b_wptr = (uchar_t *)ifr; 8697 8698 if (STRUCT_BUF(ifc) != NULL) { 8699 STRUCT_FSET(ifc, ifc_len, 8700 (int)((uchar_t *)ifr - mp1->b_rptr)); 8701 } 8702 return (0); 8703 } 8704 8705 /* 8706 * Get the interfaces using the address hosted on the interface passed in, 8707 * as a source adddress 8708 */ 8709 /* ARGSUSED */ 8710 int 8711 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8712 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8713 { 8714 mblk_t *mp1; 8715 ill_t *ill, *ill_head; 8716 ipif_t *ipif, *orig_ipif; 8717 int numlifs = 0; 8718 size_t lifs_bufsize, lifsmaxlen; 8719 struct lifreq *lifr; 8720 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8721 uint_t ifindex; 8722 zoneid_t zoneid; 8723 int err = 0; 8724 boolean_t isv6 = B_FALSE; 8725 struct sockaddr_in *sin; 8726 struct sockaddr_in6 *sin6; 8727 STRUCT_HANDLE(lifsrcof, lifs); 8728 ip_stack_t *ipst; 8729 8730 ipst = CONNQ_TO_IPST(q); 8731 8732 ASSERT(q->q_next == NULL); 8733 8734 zoneid = Q_TO_CONN(q)->conn_zoneid; 8735 8736 /* Existence verified in ip_wput_nondata */ 8737 mp1 = mp->b_cont->b_cont; 8738 8739 /* 8740 * Must be (better be!) continuation of a TRANSPARENT 8741 * IOCTL. We just copied in the lifsrcof structure. 8742 */ 8743 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8744 (struct lifsrcof *)mp1->b_rptr); 8745 8746 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8747 return (EINVAL); 8748 8749 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8750 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8751 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8752 ip_process_ioctl, &err, ipst); 8753 if (ipif == NULL) { 8754 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8755 ifindex)); 8756 return (err); 8757 } 8758 8759 /* Allocate a buffer to hold requested information */ 8760 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8761 lifs_bufsize = numlifs * sizeof (struct lifreq); 8762 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8763 /* The actual size needed is always returned in lifs_len */ 8764 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8765 8766 /* If the amount we need is more than what is passed in, abort */ 8767 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8768 ipif_refrele(ipif); 8769 return (0); 8770 } 8771 8772 mp1 = mi_copyout_alloc(q, mp, 8773 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8774 if (mp1 == NULL) { 8775 ipif_refrele(ipif); 8776 return (ENOMEM); 8777 } 8778 8779 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8780 bzero(mp1->b_rptr, lifs_bufsize); 8781 8782 lifr = (struct lifreq *)mp1->b_rptr; 8783 8784 ill = ill_head = ipif->ipif_ill; 8785 orig_ipif = ipif; 8786 8787 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8788 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8789 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8790 8791 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8792 for (; (ill != NULL) && (ill != ill_head); 8793 ill = ill->ill_usesrc_grp_next) { 8794 8795 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8796 break; 8797 8798 ipif = ill->ill_ipif; 8799 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8800 if (ipif->ipif_isv6) { 8801 sin6 = (sin6_t *)&lifr->lifr_addr; 8802 *sin6 = sin6_null; 8803 sin6->sin6_family = AF_INET6; 8804 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8805 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8806 &ipif->ipif_v6net_mask); 8807 } else { 8808 sin = (sin_t *)&lifr->lifr_addr; 8809 *sin = sin_null; 8810 sin->sin_family = AF_INET; 8811 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8812 lifr->lifr_addrlen = ip_mask_to_plen( 8813 ipif->ipif_net_mask); 8814 } 8815 lifr++; 8816 } 8817 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8818 rw_exit(&ipst->ips_ill_g_lock); 8819 ipif_refrele(orig_ipif); 8820 mp1->b_wptr = (uchar_t *)lifr; 8821 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8822 8823 return (0); 8824 } 8825 8826 /* ARGSUSED */ 8827 int 8828 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8829 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8830 { 8831 mblk_t *mp1; 8832 int list; 8833 ill_t *ill; 8834 ipif_t *ipif; 8835 int flags; 8836 int numlifs = 0; 8837 size_t lifc_bufsize; 8838 struct lifreq *lifr; 8839 sa_family_t family; 8840 struct sockaddr_in *sin; 8841 struct sockaddr_in6 *sin6; 8842 ill_walk_context_t ctx; 8843 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8844 int32_t lifclen; 8845 zoneid_t zoneid; 8846 STRUCT_HANDLE(lifconf, lifc); 8847 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8848 8849 ip1dbg(("ip_sioctl_get_lifconf")); 8850 8851 ASSERT(q->q_next == NULL); 8852 8853 zoneid = Q_TO_CONN(q)->conn_zoneid; 8854 8855 /* Existence verified in ip_wput_nondata */ 8856 mp1 = mp->b_cont->b_cont; 8857 8858 /* 8859 * An extended version of SIOCGIFCONF that takes an 8860 * additional address family and flags field. 8861 * AF_UNSPEC retrieve both IPv4 and IPv6. 8862 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8863 * interfaces are omitted. 8864 * Similarly, IPIF_TEMPORARY interfaces are omitted 8865 * unless LIFC_TEMPORARY is specified. 8866 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8867 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8868 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8869 * has priority over LIFC_NOXMIT. 8870 */ 8871 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8872 8873 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8874 return (EINVAL); 8875 8876 /* 8877 * Must be (better be!) continuation of a TRANSPARENT 8878 * IOCTL. We just copied in the lifconf structure. 8879 */ 8880 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8881 8882 family = STRUCT_FGET(lifc, lifc_family); 8883 flags = STRUCT_FGET(lifc, lifc_flags); 8884 8885 switch (family) { 8886 case AF_UNSPEC: 8887 /* 8888 * walk all ILL's. 8889 */ 8890 list = MAX_G_HEADS; 8891 break; 8892 case AF_INET: 8893 /* 8894 * walk only IPV4 ILL's. 8895 */ 8896 list = IP_V4_G_HEAD; 8897 break; 8898 case AF_INET6: 8899 /* 8900 * walk only IPV6 ILL's. 8901 */ 8902 list = IP_V6_G_HEAD; 8903 break; 8904 default: 8905 return (EAFNOSUPPORT); 8906 } 8907 8908 /* 8909 * Allocate a buffer to hold requested information. 8910 * 8911 * If lifc_len is larger than what is needed, we only 8912 * allocate what we will use. 8913 * 8914 * If lifc_len is smaller than what is needed, return 8915 * EINVAL. 8916 */ 8917 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8918 lifc_bufsize = numlifs * sizeof (struct lifreq); 8919 lifclen = STRUCT_FGET(lifc, lifc_len); 8920 if (lifc_bufsize > lifclen) { 8921 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8922 return (EINVAL); 8923 else 8924 lifc_bufsize = lifclen; 8925 } 8926 8927 mp1 = mi_copyout_alloc(q, mp, 8928 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8929 if (mp1 == NULL) 8930 return (ENOMEM); 8931 8932 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8933 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8934 8935 lifr = (struct lifreq *)mp1->b_rptr; 8936 8937 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8938 ill = ill_first(list, list, &ctx, ipst); 8939 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8940 for (ipif = ill->ill_ipif; ipif != NULL; 8941 ipif = ipif->ipif_next) { 8942 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8943 !(flags & LIFC_NOXMIT)) 8944 continue; 8945 8946 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8947 !(flags & LIFC_TEMPORARY)) 8948 continue; 8949 8950 if (((ipif->ipif_flags & 8951 (IPIF_NOXMIT|IPIF_NOLOCAL| 8952 IPIF_DEPRECATED)) || 8953 IS_LOOPBACK(ill) || 8954 !(ipif->ipif_flags & IPIF_UP)) && 8955 (flags & LIFC_EXTERNAL_SOURCE)) 8956 continue; 8957 8958 if (zoneid != ipif->ipif_zoneid && 8959 ipif->ipif_zoneid != ALL_ZONES && 8960 (zoneid != GLOBAL_ZONEID || 8961 !(flags & LIFC_ALLZONES))) 8962 continue; 8963 8964 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8965 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8966 rw_exit(&ipst->ips_ill_g_lock); 8967 return (EINVAL); 8968 } else { 8969 goto lif_copydone; 8970 } 8971 } 8972 8973 ipif_get_name(ipif, lifr->lifr_name, 8974 sizeof (lifr->lifr_name)); 8975 if (ipif->ipif_isv6) { 8976 sin6 = (sin6_t *)&lifr->lifr_addr; 8977 *sin6 = sin6_null; 8978 sin6->sin6_family = AF_INET6; 8979 sin6->sin6_addr = 8980 ipif->ipif_v6lcl_addr; 8981 lifr->lifr_addrlen = 8982 ip_mask_to_plen_v6( 8983 &ipif->ipif_v6net_mask); 8984 } else { 8985 sin = (sin_t *)&lifr->lifr_addr; 8986 *sin = sin_null; 8987 sin->sin_family = AF_INET; 8988 sin->sin_addr.s_addr = 8989 ipif->ipif_lcl_addr; 8990 lifr->lifr_addrlen = 8991 ip_mask_to_plen( 8992 ipif->ipif_net_mask); 8993 } 8994 lifr++; 8995 } 8996 } 8997 lif_copydone: 8998 rw_exit(&ipst->ips_ill_g_lock); 8999 9000 mp1->b_wptr = (uchar_t *)lifr; 9001 if (STRUCT_BUF(lifc) != NULL) { 9002 STRUCT_FSET(lifc, lifc_len, 9003 (int)((uchar_t *)lifr - mp1->b_rptr)); 9004 } 9005 return (0); 9006 } 9007 9008 /* ARGSUSED */ 9009 int 9010 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9011 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9012 { 9013 ip_stack_t *ipst; 9014 9015 if (q->q_next == NULL) 9016 ipst = CONNQ_TO_IPST(q); 9017 else 9018 ipst = ILLQ_TO_IPST(q); 9019 9020 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9021 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9022 return (0); 9023 } 9024 9025 static void 9026 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9027 { 9028 ip6_asp_t *table; 9029 size_t table_size; 9030 mblk_t *data_mp; 9031 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9032 ip_stack_t *ipst; 9033 9034 if (q->q_next == NULL) 9035 ipst = CONNQ_TO_IPST(q); 9036 else 9037 ipst = ILLQ_TO_IPST(q); 9038 9039 /* These two ioctls are I_STR only */ 9040 if (iocp->ioc_count == TRANSPARENT) { 9041 miocnak(q, mp, 0, EINVAL); 9042 return; 9043 } 9044 9045 data_mp = mp->b_cont; 9046 if (data_mp == NULL) { 9047 /* The user passed us a NULL argument */ 9048 table = NULL; 9049 table_size = iocp->ioc_count; 9050 } else { 9051 /* 9052 * The user provided a table. The stream head 9053 * may have copied in the user data in chunks, 9054 * so make sure everything is pulled up 9055 * properly. 9056 */ 9057 if (MBLKL(data_mp) < iocp->ioc_count) { 9058 mblk_t *new_data_mp; 9059 if ((new_data_mp = msgpullup(data_mp, -1)) == 9060 NULL) { 9061 miocnak(q, mp, 0, ENOMEM); 9062 return; 9063 } 9064 freemsg(data_mp); 9065 data_mp = new_data_mp; 9066 mp->b_cont = data_mp; 9067 } 9068 table = (ip6_asp_t *)data_mp->b_rptr; 9069 table_size = iocp->ioc_count; 9070 } 9071 9072 switch (iocp->ioc_cmd) { 9073 case SIOCGIP6ADDRPOLICY: 9074 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9075 if (iocp->ioc_rval == -1) 9076 iocp->ioc_error = EINVAL; 9077 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9078 else if (table != NULL && 9079 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9080 ip6_asp_t *src = table; 9081 ip6_asp32_t *dst = (void *)table; 9082 int count = table_size / sizeof (ip6_asp_t); 9083 int i; 9084 9085 /* 9086 * We need to do an in-place shrink of the array 9087 * to match the alignment attributes of the 9088 * 32-bit ABI looking at it. 9089 */ 9090 /* LINTED: logical expression always true: op "||" */ 9091 ASSERT(sizeof (*src) > sizeof (*dst)); 9092 for (i = 1; i < count; i++) 9093 bcopy(src + i, dst + i, sizeof (*dst)); 9094 } 9095 #endif 9096 break; 9097 9098 case SIOCSIP6ADDRPOLICY: 9099 ASSERT(mp->b_prev == NULL); 9100 mp->b_prev = (void *)q; 9101 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9102 /* 9103 * We pass in the datamodel here so that the ip6_asp_replace() 9104 * routine can handle converting from 32-bit to native formats 9105 * where necessary. 9106 * 9107 * A better way to handle this might be to convert the inbound 9108 * data structure here, and hang it off a new 'mp'; thus the 9109 * ip6_asp_replace() logic would always be dealing with native 9110 * format data structures.. 9111 * 9112 * (An even simpler way to handle these ioctls is to just 9113 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9114 * and just recompile everything that depends on it.) 9115 */ 9116 #endif 9117 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9118 iocp->ioc_flag & IOC_MODELS); 9119 return; 9120 } 9121 9122 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9123 qreply(q, mp); 9124 } 9125 9126 static void 9127 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9128 { 9129 mblk_t *data_mp; 9130 struct dstinforeq *dir; 9131 uint8_t *end, *cur; 9132 in6_addr_t *daddr, *saddr; 9133 ipaddr_t v4daddr; 9134 ire_t *ire; 9135 char *slabel, *dlabel; 9136 boolean_t isipv4; 9137 int match_ire; 9138 ill_t *dst_ill; 9139 ipif_t *src_ipif, *ire_ipif; 9140 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9141 zoneid_t zoneid; 9142 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9143 9144 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9145 zoneid = Q_TO_CONN(q)->conn_zoneid; 9146 9147 /* 9148 * This ioctl is I_STR only, and must have a 9149 * data mblk following the M_IOCTL mblk. 9150 */ 9151 data_mp = mp->b_cont; 9152 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9153 miocnak(q, mp, 0, EINVAL); 9154 return; 9155 } 9156 9157 if (MBLKL(data_mp) < iocp->ioc_count) { 9158 mblk_t *new_data_mp; 9159 9160 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9161 miocnak(q, mp, 0, ENOMEM); 9162 return; 9163 } 9164 freemsg(data_mp); 9165 data_mp = new_data_mp; 9166 mp->b_cont = data_mp; 9167 } 9168 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9169 9170 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9171 end - cur >= sizeof (struct dstinforeq); 9172 cur += sizeof (struct dstinforeq)) { 9173 dir = (struct dstinforeq *)cur; 9174 daddr = &dir->dir_daddr; 9175 saddr = &dir->dir_saddr; 9176 9177 /* 9178 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9179 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9180 * and ipif_select_source[_v6]() do not. 9181 */ 9182 dir->dir_dscope = ip_addr_scope_v6(daddr); 9183 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9184 9185 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9186 if (isipv4) { 9187 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9188 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9189 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9190 } else { 9191 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9192 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9193 } 9194 if (ire == NULL) { 9195 dir->dir_dreachable = 0; 9196 9197 /* move on to next dst addr */ 9198 continue; 9199 } 9200 dir->dir_dreachable = 1; 9201 9202 ire_ipif = ire->ire_ipif; 9203 if (ire_ipif == NULL) 9204 goto next_dst; 9205 9206 /* 9207 * We expect to get back an interface ire or a 9208 * gateway ire cache entry. For both types, the 9209 * output interface is ire_ipif->ipif_ill. 9210 */ 9211 dst_ill = ire_ipif->ipif_ill; 9212 dir->dir_dmactype = dst_ill->ill_mactype; 9213 9214 if (isipv4) { 9215 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9216 } else { 9217 src_ipif = ipif_select_source_v6(dst_ill, 9218 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9219 zoneid); 9220 } 9221 if (src_ipif == NULL) 9222 goto next_dst; 9223 9224 *saddr = src_ipif->ipif_v6lcl_addr; 9225 dir->dir_sscope = ip_addr_scope_v6(saddr); 9226 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9227 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9228 dir->dir_sdeprecated = 9229 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9230 ipif_refrele(src_ipif); 9231 next_dst: 9232 ire_refrele(ire); 9233 } 9234 miocack(q, mp, iocp->ioc_count, 0); 9235 } 9236 9237 /* 9238 * Check if this is an address assigned to this machine. 9239 * Skips interfaces that are down by using ire checks. 9240 * Translates mapped addresses to v4 addresses and then 9241 * treats them as such, returning true if the v4 address 9242 * associated with this mapped address is configured. 9243 * Note: Applications will have to be careful what they do 9244 * with the response; use of mapped addresses limits 9245 * what can be done with the socket, especially with 9246 * respect to socket options and ioctls - neither IPv4 9247 * options nor IPv6 sticky options/ancillary data options 9248 * may be used. 9249 */ 9250 /* ARGSUSED */ 9251 int 9252 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9253 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9254 { 9255 struct sioc_addrreq *sia; 9256 sin_t *sin; 9257 ire_t *ire; 9258 mblk_t *mp1; 9259 zoneid_t zoneid; 9260 ip_stack_t *ipst; 9261 9262 ip1dbg(("ip_sioctl_tmyaddr")); 9263 9264 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9265 zoneid = Q_TO_CONN(q)->conn_zoneid; 9266 ipst = CONNQ_TO_IPST(q); 9267 9268 /* Existence verified in ip_wput_nondata */ 9269 mp1 = mp->b_cont->b_cont; 9270 sia = (struct sioc_addrreq *)mp1->b_rptr; 9271 sin = (sin_t *)&sia->sa_addr; 9272 switch (sin->sin_family) { 9273 case AF_INET6: { 9274 sin6_t *sin6 = (sin6_t *)sin; 9275 9276 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9277 ipaddr_t v4_addr; 9278 9279 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9280 v4_addr); 9281 ire = ire_ctable_lookup(v4_addr, 0, 9282 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9283 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9284 } else { 9285 in6_addr_t v6addr; 9286 9287 v6addr = sin6->sin6_addr; 9288 ire = ire_ctable_lookup_v6(&v6addr, 0, 9289 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9290 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9291 } 9292 break; 9293 } 9294 case AF_INET: { 9295 ipaddr_t v4addr; 9296 9297 v4addr = sin->sin_addr.s_addr; 9298 ire = ire_ctable_lookup(v4addr, 0, 9299 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9300 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9301 break; 9302 } 9303 default: 9304 return (EAFNOSUPPORT); 9305 } 9306 if (ire != NULL) { 9307 sia->sa_res = 1; 9308 ire_refrele(ire); 9309 } else { 9310 sia->sa_res = 0; 9311 } 9312 return (0); 9313 } 9314 9315 /* 9316 * Check if this is an address assigned on-link i.e. neighbor, 9317 * and makes sure it's reachable from the current zone. 9318 * Returns true for my addresses as well. 9319 * Translates mapped addresses to v4 addresses and then 9320 * treats them as such, returning true if the v4 address 9321 * associated with this mapped address is configured. 9322 * Note: Applications will have to be careful what they do 9323 * with the response; use of mapped addresses limits 9324 * what can be done with the socket, especially with 9325 * respect to socket options and ioctls - neither IPv4 9326 * options nor IPv6 sticky options/ancillary data options 9327 * may be used. 9328 */ 9329 /* ARGSUSED */ 9330 int 9331 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9332 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9333 { 9334 struct sioc_addrreq *sia; 9335 sin_t *sin; 9336 mblk_t *mp1; 9337 ire_t *ire = NULL; 9338 zoneid_t zoneid; 9339 ip_stack_t *ipst; 9340 9341 ip1dbg(("ip_sioctl_tonlink")); 9342 9343 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9344 zoneid = Q_TO_CONN(q)->conn_zoneid; 9345 ipst = CONNQ_TO_IPST(q); 9346 9347 /* Existence verified in ip_wput_nondata */ 9348 mp1 = mp->b_cont->b_cont; 9349 sia = (struct sioc_addrreq *)mp1->b_rptr; 9350 sin = (sin_t *)&sia->sa_addr; 9351 9352 /* 9353 * Match addresses with a zero gateway field to avoid 9354 * routes going through a router. 9355 * Exclude broadcast and multicast addresses. 9356 */ 9357 switch (sin->sin_family) { 9358 case AF_INET6: { 9359 sin6_t *sin6 = (sin6_t *)sin; 9360 9361 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9362 ipaddr_t v4_addr; 9363 9364 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9365 v4_addr); 9366 if (!CLASSD(v4_addr)) { 9367 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9368 NULL, NULL, zoneid, NULL, 9369 MATCH_IRE_GW, ipst); 9370 } 9371 } else { 9372 in6_addr_t v6addr; 9373 in6_addr_t v6gw; 9374 9375 v6addr = sin6->sin6_addr; 9376 v6gw = ipv6_all_zeros; 9377 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9378 ire = ire_route_lookup_v6(&v6addr, 0, 9379 &v6gw, 0, NULL, NULL, zoneid, 9380 NULL, MATCH_IRE_GW, ipst); 9381 } 9382 } 9383 break; 9384 } 9385 case AF_INET: { 9386 ipaddr_t v4addr; 9387 9388 v4addr = sin->sin_addr.s_addr; 9389 if (!CLASSD(v4addr)) { 9390 ire = ire_route_lookup(v4addr, 0, 0, 0, 9391 NULL, NULL, zoneid, NULL, 9392 MATCH_IRE_GW, ipst); 9393 } 9394 break; 9395 } 9396 default: 9397 return (EAFNOSUPPORT); 9398 } 9399 sia->sa_res = 0; 9400 if (ire != NULL) { 9401 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9402 IRE_LOCAL|IRE_LOOPBACK)) { 9403 sia->sa_res = 1; 9404 } 9405 ire_refrele(ire); 9406 } 9407 return (0); 9408 } 9409 9410 /* 9411 * TBD: implement when kernel maintaines a list of site prefixes. 9412 */ 9413 /* ARGSUSED */ 9414 int 9415 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9416 ip_ioctl_cmd_t *ipip, void *ifreq) 9417 { 9418 return (ENXIO); 9419 } 9420 9421 /* ARGSUSED */ 9422 int 9423 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9424 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9425 { 9426 ill_t *ill; 9427 mblk_t *mp1; 9428 conn_t *connp; 9429 boolean_t success; 9430 9431 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9432 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9433 /* ioctl comes down on an conn */ 9434 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9435 connp = Q_TO_CONN(q); 9436 9437 mp->b_datap->db_type = M_IOCTL; 9438 9439 /* 9440 * Send down a copy. (copymsg does not copy b_next/b_prev). 9441 * The original mp contains contaminated b_next values due to 'mi', 9442 * which is needed to do the mi_copy_done. Unfortunately if we 9443 * send down the original mblk itself and if we are popped due to an 9444 * an unplumb before the response comes back from tunnel, 9445 * the streamhead (which does a freemsg) will see this contaminated 9446 * message and the assertion in freemsg about non-null b_next/b_prev 9447 * will panic a DEBUG kernel. 9448 */ 9449 mp1 = copymsg(mp); 9450 if (mp1 == NULL) 9451 return (ENOMEM); 9452 9453 ill = ipif->ipif_ill; 9454 mutex_enter(&connp->conn_lock); 9455 mutex_enter(&ill->ill_lock); 9456 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9457 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9458 mp, 0); 9459 } else { 9460 success = ill_pending_mp_add(ill, connp, mp); 9461 } 9462 mutex_exit(&ill->ill_lock); 9463 mutex_exit(&connp->conn_lock); 9464 9465 if (success) { 9466 ip1dbg(("sending down tunparam request ")); 9467 putnext(ill->ill_wq, mp1); 9468 return (EINPROGRESS); 9469 } else { 9470 /* The conn has started closing */ 9471 freemsg(mp1); 9472 return (EINTR); 9473 } 9474 } 9475 9476 /* 9477 * ARP IOCTLs. 9478 * How does IP get in the business of fronting ARP configuration/queries? 9479 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9480 * are by tradition passed in through a datagram socket. That lands in IP. 9481 * As it happens, this is just as well since the interface is quite crude in 9482 * that it passes in no information about protocol or hardware types, or 9483 * interface association. After making the protocol assumption, IP is in 9484 * the position to look up the name of the ILL, which ARP will need, and 9485 * format a request that can be handled by ARP. The request is passed up 9486 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9487 * back a response. ARP supports its own set of more general IOCTLs, in 9488 * case anyone is interested. 9489 */ 9490 /* ARGSUSED */ 9491 int 9492 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9493 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9494 { 9495 mblk_t *mp1; 9496 mblk_t *mp2; 9497 mblk_t *pending_mp; 9498 ipaddr_t ipaddr; 9499 area_t *area; 9500 struct iocblk *iocp; 9501 conn_t *connp; 9502 struct arpreq *ar; 9503 struct xarpreq *xar; 9504 int flags, alength; 9505 char *lladdr; 9506 ip_stack_t *ipst; 9507 ill_t *ill = ipif->ipif_ill; 9508 boolean_t if_arp_ioctl = B_FALSE; 9509 9510 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9511 connp = Q_TO_CONN(q); 9512 ipst = connp->conn_netstack->netstack_ip; 9513 9514 if (ipip->ipi_cmd_type == XARP_CMD) { 9515 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9516 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9517 ar = NULL; 9518 9519 flags = xar->xarp_flags; 9520 lladdr = LLADDR(&xar->xarp_ha); 9521 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9522 /* 9523 * Validate against user's link layer address length 9524 * input and name and addr length limits. 9525 */ 9526 alength = ill->ill_phys_addr_length; 9527 if (ipip->ipi_cmd == SIOCSXARP) { 9528 if (alength != xar->xarp_ha.sdl_alen || 9529 (alength + xar->xarp_ha.sdl_nlen > 9530 sizeof (xar->xarp_ha.sdl_data))) 9531 return (EINVAL); 9532 } 9533 } else { 9534 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9535 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9536 xar = NULL; 9537 9538 flags = ar->arp_flags; 9539 lladdr = ar->arp_ha.sa_data; 9540 /* 9541 * Theoretically, the sa_family could tell us what link 9542 * layer type this operation is trying to deal with. By 9543 * common usage AF_UNSPEC means ethernet. We'll assume 9544 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9545 * for now. Our new SIOC*XARP ioctls can be used more 9546 * generally. 9547 * 9548 * If the underlying media happens to have a non 6 byte 9549 * address, arp module will fail set/get, but the del 9550 * operation will succeed. 9551 */ 9552 alength = 6; 9553 if ((ipip->ipi_cmd != SIOCDARP) && 9554 (alength != ill->ill_phys_addr_length)) { 9555 return (EINVAL); 9556 } 9557 } 9558 9559 /* 9560 * We are going to pass up to ARP a packet chain that looks 9561 * like: 9562 * 9563 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9564 * 9565 * Get a copy of the original IOCTL mblk to head the chain, 9566 * to be sent up (in mp1). Also get another copy to store 9567 * in the ill_pending_mp list, for matching the response 9568 * when it comes back from ARP. 9569 */ 9570 mp1 = copyb(mp); 9571 pending_mp = copymsg(mp); 9572 if (mp1 == NULL || pending_mp == NULL) { 9573 if (mp1 != NULL) 9574 freeb(mp1); 9575 if (pending_mp != NULL) 9576 inet_freemsg(pending_mp); 9577 return (ENOMEM); 9578 } 9579 9580 ipaddr = sin->sin_addr.s_addr; 9581 9582 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9583 (caddr_t)&ipaddr); 9584 if (mp2 == NULL) { 9585 freeb(mp1); 9586 inet_freemsg(pending_mp); 9587 return (ENOMEM); 9588 } 9589 /* Put together the chain. */ 9590 mp1->b_cont = mp2; 9591 mp1->b_datap->db_type = M_IOCTL; 9592 mp2->b_cont = mp; 9593 mp2->b_datap->db_type = M_DATA; 9594 9595 iocp = (struct iocblk *)mp1->b_rptr; 9596 9597 /* 9598 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9599 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9600 * cp_private field (or cp_rval on 32-bit systems) in place of the 9601 * ioc_count field; set ioc_count to be correct. 9602 */ 9603 iocp->ioc_count = MBLKL(mp1->b_cont); 9604 9605 /* 9606 * Set the proper command in the ARP message. 9607 * Convert the SIOC{G|S|D}ARP calls into our 9608 * AR_ENTRY_xxx calls. 9609 */ 9610 area = (area_t *)mp2->b_rptr; 9611 switch (iocp->ioc_cmd) { 9612 case SIOCDARP: 9613 case SIOCDXARP: 9614 /* 9615 * We defer deleting the corresponding IRE until 9616 * we return from arp. 9617 */ 9618 area->area_cmd = AR_ENTRY_DELETE; 9619 area->area_proto_mask_offset = 0; 9620 break; 9621 case SIOCGARP: 9622 case SIOCGXARP: 9623 area->area_cmd = AR_ENTRY_SQUERY; 9624 area->area_proto_mask_offset = 0; 9625 break; 9626 case SIOCSARP: 9627 case SIOCSXARP: 9628 /* 9629 * Delete the corresponding ire to make sure IP will 9630 * pick up any change from arp. 9631 */ 9632 if (!if_arp_ioctl) { 9633 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9634 } else { 9635 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9636 if (ipif != NULL) { 9637 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9638 ipst); 9639 ipif_refrele(ipif); 9640 } 9641 } 9642 break; 9643 } 9644 iocp->ioc_cmd = area->area_cmd; 9645 9646 /* 9647 * Fill in the rest of the ARP operation fields. 9648 */ 9649 area->area_hw_addr_length = alength; 9650 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9651 9652 /* Translate the flags. */ 9653 if (flags & ATF_PERM) 9654 area->area_flags |= ACE_F_PERMANENT; 9655 if (flags & ATF_PUBL) 9656 area->area_flags |= ACE_F_PUBLISH; 9657 if (flags & ATF_AUTHORITY) 9658 area->area_flags |= ACE_F_AUTHORITY; 9659 9660 /* 9661 * Before sending 'mp' to ARP, we have to clear the b_next 9662 * and b_prev. Otherwise if STREAMS encounters such a message 9663 * in freemsg(), (because ARP can close any time) it can cause 9664 * a panic. But mi code needs the b_next and b_prev values of 9665 * mp->b_cont, to complete the ioctl. So we store it here 9666 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9667 * when the response comes down from ARP. 9668 */ 9669 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9670 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9671 mp->b_cont->b_next = NULL; 9672 mp->b_cont->b_prev = NULL; 9673 9674 mutex_enter(&connp->conn_lock); 9675 mutex_enter(&ill->ill_lock); 9676 /* conn has not yet started closing, hence this can't fail */ 9677 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9678 mutex_exit(&ill->ill_lock); 9679 mutex_exit(&connp->conn_lock); 9680 9681 /* 9682 * Up to ARP it goes. The response will come back in ip_wput() as an 9683 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9684 */ 9685 putnext(ill->ill_rq, mp1); 9686 return (EINPROGRESS); 9687 } 9688 9689 /* 9690 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9691 * the associated sin and refhold and return the associated ipif via `ci'. 9692 */ 9693 int 9694 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9695 cmd_info_t *ci, ipsq_func_t func) 9696 { 9697 mblk_t *mp1; 9698 int err; 9699 sin_t *sin; 9700 conn_t *connp; 9701 ipif_t *ipif; 9702 ire_t *ire = NULL; 9703 ill_t *ill = NULL; 9704 boolean_t exists; 9705 ip_stack_t *ipst; 9706 struct arpreq *ar; 9707 struct xarpreq *xar; 9708 struct sockaddr_dl *sdl; 9709 9710 /* ioctl comes down on a conn */ 9711 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9712 connp = Q_TO_CONN(q); 9713 if (connp->conn_af_isv6) 9714 return (ENXIO); 9715 9716 ipst = connp->conn_netstack->netstack_ip; 9717 9718 /* Verified in ip_wput_nondata */ 9719 mp1 = mp->b_cont->b_cont; 9720 9721 if (ipip->ipi_cmd_type == XARP_CMD) { 9722 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9723 xar = (struct xarpreq *)mp1->b_rptr; 9724 sin = (sin_t *)&xar->xarp_pa; 9725 sdl = &xar->xarp_ha; 9726 9727 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9728 return (ENXIO); 9729 if (sdl->sdl_nlen >= LIFNAMSIZ) 9730 return (EINVAL); 9731 } else { 9732 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9733 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9734 ar = (struct arpreq *)mp1->b_rptr; 9735 sin = (sin_t *)&ar->arp_pa; 9736 } 9737 9738 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9739 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9740 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9741 mp, func, &err, ipst); 9742 if (ipif == NULL) 9743 return (err); 9744 if (ipif->ipif_id != 0 || 9745 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9746 ipif_refrele(ipif); 9747 return (ENXIO); 9748 } 9749 } else { 9750 /* 9751 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9752 * 0: use the IP address to figure out the ill. In the IPMP 9753 * case, a simple forwarding table lookup will return the 9754 * IRE_IF_RESOLVER for the first interface in the group, which 9755 * might not be the interface on which the requested IP 9756 * address was resolved due to the ill selection algorithm 9757 * (see ip_newroute_get_dst_ill()). So we do a cache table 9758 * lookup first: if the IRE cache entry for the IP address is 9759 * still there, it will contain the ill pointer for the right 9760 * interface, so we use that. If the cache entry has been 9761 * flushed, we fall back to the forwarding table lookup. This 9762 * should be rare enough since IRE cache entries have a longer 9763 * life expectancy than ARP cache entries. 9764 */ 9765 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9766 ipst); 9767 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9768 ((ill = ire_to_ill(ire)) == NULL) || 9769 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9770 if (ire != NULL) 9771 ire_refrele(ire); 9772 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9773 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9774 NULL, MATCH_IRE_TYPE, ipst); 9775 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9776 9777 if (ire != NULL) 9778 ire_refrele(ire); 9779 return (ENXIO); 9780 } 9781 } 9782 ASSERT(ire != NULL && ill != NULL); 9783 ipif = ill->ill_ipif; 9784 ipif_refhold(ipif); 9785 ire_refrele(ire); 9786 } 9787 ci->ci_sin = sin; 9788 ci->ci_ipif = ipif; 9789 return (0); 9790 } 9791 9792 /* 9793 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9794 * atomically set/clear the muxids. Also complete the ioctl by acking or 9795 * naking it. Note that the code is structured such that the link type, 9796 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9797 * its clones use the persistent link, while pppd(1M) and perhaps many 9798 * other daemons may use non-persistent link. When combined with some 9799 * ill_t states, linking and unlinking lower streams may be used as 9800 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9801 */ 9802 /* ARGSUSED */ 9803 void 9804 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9805 { 9806 mblk_t *mp1, *mp2; 9807 struct linkblk *li; 9808 struct ipmx_s *ipmxp; 9809 ill_t *ill; 9810 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9811 int err = 0; 9812 boolean_t entered_ipsq = B_FALSE; 9813 boolean_t islink; 9814 ip_stack_t *ipst; 9815 9816 if (CONN_Q(q)) 9817 ipst = CONNQ_TO_IPST(q); 9818 else 9819 ipst = ILLQ_TO_IPST(q); 9820 9821 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9822 ioccmd == I_LINK || ioccmd == I_UNLINK); 9823 9824 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9825 9826 mp1 = mp->b_cont; /* This is the linkblk info */ 9827 li = (struct linkblk *)mp1->b_rptr; 9828 9829 /* 9830 * ARP has added this special mblk, and the utility is asking us 9831 * to perform consistency checks, and also atomically set the 9832 * muxid. Ifconfig is an example. It achieves this by using 9833 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9834 * to /dev/udp[6] stream for use as the mux when plinking the IP 9835 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9836 * and other comments in this routine for more details. 9837 */ 9838 mp2 = mp1->b_cont; /* This is added by ARP */ 9839 9840 /* 9841 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9842 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9843 * get the special mblk above. For backward compatibility, we 9844 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9845 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9846 * not atomic, and can leave the streams unplumbable if the utility 9847 * is interrupted before it does the SIOCSLIFMUXID. 9848 */ 9849 if (mp2 == NULL) { 9850 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9851 if (err == EINPROGRESS) 9852 return; 9853 goto done; 9854 } 9855 9856 /* 9857 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9858 * ARP has appended this last mblk to tell us whether the lower stream 9859 * is an arp-dev stream or an IP module stream. 9860 */ 9861 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9862 if (ipmxp->ipmx_arpdev_stream) { 9863 /* 9864 * The lower stream is the arp-dev stream. 9865 */ 9866 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9867 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9868 if (ill == NULL) { 9869 if (err == EINPROGRESS) 9870 return; 9871 err = EINVAL; 9872 goto done; 9873 } 9874 9875 if (ipsq == NULL) { 9876 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9877 NEW_OP, B_TRUE); 9878 if (ipsq == NULL) { 9879 ill_refrele(ill); 9880 return; 9881 } 9882 entered_ipsq = B_TRUE; 9883 } 9884 ASSERT(IAM_WRITER_ILL(ill)); 9885 ill_refrele(ill); 9886 9887 /* 9888 * To ensure consistency between IP and ARP, the following 9889 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9890 * This is because the muxid's are stored in the IP stream on 9891 * the ill. 9892 * 9893 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9894 * the ARP stream. On an arp-dev stream, IP checks that it is 9895 * not yet plinked, and it also checks that the corresponding 9896 * IP stream is already plinked. 9897 * 9898 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9899 * punlinking the IP stream. IP does not allow punlink of the 9900 * IP stream unless the arp stream has been punlinked. 9901 */ 9902 if ((islink && 9903 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9904 (!islink && ill->ill_arp_muxid != li->l_index)) { 9905 err = EINVAL; 9906 goto done; 9907 } 9908 ill->ill_arp_muxid = islink ? li->l_index : 0; 9909 } else { 9910 /* 9911 * The lower stream is probably an IP module stream. Do 9912 * consistency checking. 9913 */ 9914 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9915 if (err == EINPROGRESS) 9916 return; 9917 } 9918 done: 9919 if (err == 0) 9920 miocack(q, mp, 0, 0); 9921 else 9922 miocnak(q, mp, 0, err); 9923 9924 /* Conn was refheld in ip_sioctl_copyin_setup */ 9925 if (CONN_Q(q)) 9926 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9927 if (entered_ipsq) 9928 ipsq_exit(ipsq); 9929 } 9930 9931 /* 9932 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9933 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9934 * module stream). If `doconsist' is set, then do the extended consistency 9935 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9936 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9937 * an error code on failure. 9938 */ 9939 static int 9940 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9941 struct linkblk *li, boolean_t doconsist) 9942 { 9943 ill_t *ill; 9944 queue_t *ipwq, *dwq; 9945 const char *name; 9946 struct qinit *qinfo; 9947 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9948 boolean_t entered_ipsq = B_FALSE; 9949 9950 /* 9951 * Walk the lower stream to verify it's the IP module stream. 9952 * The IP module is identified by its name, wput function, 9953 * and non-NULL q_next. STREAMS ensures that the lower stream 9954 * (li->l_qbot) will not vanish until this ioctl completes. 9955 */ 9956 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9957 qinfo = ipwq->q_qinfo; 9958 name = qinfo->qi_minfo->mi_idname; 9959 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9960 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9961 break; 9962 } 9963 } 9964 9965 /* 9966 * If this isn't an IP module stream, bail. 9967 */ 9968 if (ipwq == NULL) 9969 return (0); 9970 9971 ill = ipwq->q_ptr; 9972 ASSERT(ill != NULL); 9973 9974 if (ipsq == NULL) { 9975 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9976 NEW_OP, B_TRUE); 9977 if (ipsq == NULL) 9978 return (EINPROGRESS); 9979 entered_ipsq = B_TRUE; 9980 } 9981 ASSERT(IAM_WRITER_ILL(ill)); 9982 9983 if (doconsist) { 9984 /* 9985 * Consistency checking requires that I_{P}LINK occurs 9986 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9987 * occurs prior to clearing ill_arp_muxid. 9988 */ 9989 if ((islink && ill->ill_ip_muxid != 0) || 9990 (!islink && ill->ill_arp_muxid != 0)) { 9991 if (entered_ipsq) 9992 ipsq_exit(ipsq); 9993 return (EINVAL); 9994 } 9995 } 9996 9997 /* 9998 * As part of I_{P}LINKing, stash the number of downstream modules and 9999 * the read queue of the module immediately below IP in the ill. 10000 * These are used during the capability negotiation below. 10001 */ 10002 ill->ill_lmod_rq = NULL; 10003 ill->ill_lmod_cnt = 0; 10004 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10005 ill->ill_lmod_rq = RD(dwq); 10006 for (; dwq != NULL; dwq = dwq->q_next) 10007 ill->ill_lmod_cnt++; 10008 } 10009 10010 if (doconsist) 10011 ill->ill_ip_muxid = islink ? li->l_index : 0; 10012 10013 /* 10014 * If there's at least one up ipif on this ill, then we're bound to 10015 * the underlying driver via DLPI. In that case, renegotiate 10016 * capabilities to account for any possible change in modules 10017 * interposed between IP and the driver. 10018 */ 10019 if (ill->ill_ipif_up_count > 0) { 10020 if (islink) 10021 ill_capability_probe(ill); 10022 else 10023 ill_capability_reset(ill); 10024 } 10025 10026 if (entered_ipsq) 10027 ipsq_exit(ipsq); 10028 10029 return (0); 10030 } 10031 10032 /* 10033 * Search the ioctl command in the ioctl tables and return a pointer 10034 * to the ioctl command information. The ioctl command tables are 10035 * static and fully populated at compile time. 10036 */ 10037 ip_ioctl_cmd_t * 10038 ip_sioctl_lookup(int ioc_cmd) 10039 { 10040 int index; 10041 ip_ioctl_cmd_t *ipip; 10042 ip_ioctl_cmd_t *ipip_end; 10043 10044 if (ioc_cmd == IPI_DONTCARE) 10045 return (NULL); 10046 10047 /* 10048 * Do a 2 step search. First search the indexed table 10049 * based on the least significant byte of the ioctl cmd. 10050 * If we don't find a match, then search the misc table 10051 * serially. 10052 */ 10053 index = ioc_cmd & 0xFF; 10054 if (index < ip_ndx_ioctl_count) { 10055 ipip = &ip_ndx_ioctl_table[index]; 10056 if (ipip->ipi_cmd == ioc_cmd) { 10057 /* Found a match in the ndx table */ 10058 return (ipip); 10059 } 10060 } 10061 10062 /* Search the misc table */ 10063 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10064 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10065 if (ipip->ipi_cmd == ioc_cmd) 10066 /* Found a match in the misc table */ 10067 return (ipip); 10068 } 10069 10070 return (NULL); 10071 } 10072 10073 /* 10074 * Wrapper function for resuming deferred ioctl processing 10075 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10076 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10077 */ 10078 /* ARGSUSED */ 10079 void 10080 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10081 void *dummy_arg) 10082 { 10083 ip_sioctl_copyin_setup(q, mp); 10084 } 10085 10086 /* 10087 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10088 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10089 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10090 * We establish here the size of the block to be copied in. mi_copyin 10091 * arranges for this to happen, an processing continues in ip_wput with 10092 * an M_IOCDATA message. 10093 */ 10094 void 10095 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10096 { 10097 int copyin_size; 10098 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10099 ip_ioctl_cmd_t *ipip; 10100 cred_t *cr; 10101 ip_stack_t *ipst; 10102 10103 if (CONN_Q(q)) 10104 ipst = CONNQ_TO_IPST(q); 10105 else 10106 ipst = ILLQ_TO_IPST(q); 10107 10108 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10109 if (ipip == NULL) { 10110 /* 10111 * The ioctl is not one we understand or own. 10112 * Pass it along to be processed down stream, 10113 * if this is a module instance of IP, else nak 10114 * the ioctl. 10115 */ 10116 if (q->q_next == NULL) { 10117 goto nak; 10118 } else { 10119 putnext(q, mp); 10120 return; 10121 } 10122 } 10123 10124 /* 10125 * If this is deferred, then we will do all the checks when we 10126 * come back. 10127 */ 10128 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10129 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10130 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10131 return; 10132 } 10133 10134 /* 10135 * Only allow a very small subset of IP ioctls on this stream if 10136 * IP is a module and not a driver. Allowing ioctls to be processed 10137 * in this case may cause assert failures or data corruption. 10138 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10139 * ioctls allowed on an IP module stream, after which this stream 10140 * normally becomes a multiplexor (at which time the stream head 10141 * will fail all ioctls). 10142 */ 10143 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10144 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10145 /* 10146 * Pass common Streams ioctls which the IP 10147 * module does not own or consume along to 10148 * be processed down stream. 10149 */ 10150 putnext(q, mp); 10151 return; 10152 } else { 10153 goto nak; 10154 } 10155 } 10156 10157 /* Make sure we have ioctl data to process. */ 10158 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10159 goto nak; 10160 10161 /* 10162 * Prefer dblk credential over ioctl credential; some synthesized 10163 * ioctls have kcred set because there's no way to crhold() 10164 * a credential in some contexts. (ioc_cr is not crfree() by 10165 * the framework; the caller of ioctl needs to hold the reference 10166 * for the duration of the call). 10167 */ 10168 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10169 10170 /* Make sure normal users don't send down privileged ioctls */ 10171 if ((ipip->ipi_flags & IPI_PRIV) && 10172 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10173 /* We checked the privilege earlier but log it here */ 10174 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10175 return; 10176 } 10177 10178 /* 10179 * The ioctl command tables can only encode fixed length 10180 * ioctl data. If the length is variable, the table will 10181 * encode the length as zero. Such special cases are handled 10182 * below in the switch. 10183 */ 10184 if (ipip->ipi_copyin_size != 0) { 10185 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10186 return; 10187 } 10188 10189 switch (iocp->ioc_cmd) { 10190 case O_SIOCGIFCONF: 10191 case SIOCGIFCONF: 10192 /* 10193 * This IOCTL is hilarious. See comments in 10194 * ip_sioctl_get_ifconf for the story. 10195 */ 10196 if (iocp->ioc_count == TRANSPARENT) 10197 copyin_size = SIZEOF_STRUCT(ifconf, 10198 iocp->ioc_flag); 10199 else 10200 copyin_size = iocp->ioc_count; 10201 mi_copyin(q, mp, NULL, copyin_size); 10202 return; 10203 10204 case O_SIOCGLIFCONF: 10205 case SIOCGLIFCONF: 10206 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10207 mi_copyin(q, mp, NULL, copyin_size); 10208 return; 10209 10210 case SIOCGLIFSRCOF: 10211 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10212 mi_copyin(q, mp, NULL, copyin_size); 10213 return; 10214 case SIOCGIP6ADDRPOLICY: 10215 ip_sioctl_ip6addrpolicy(q, mp); 10216 ip6_asp_table_refrele(ipst); 10217 return; 10218 10219 case SIOCSIP6ADDRPOLICY: 10220 ip_sioctl_ip6addrpolicy(q, mp); 10221 return; 10222 10223 case SIOCGDSTINFO: 10224 ip_sioctl_dstinfo(q, mp); 10225 ip6_asp_table_refrele(ipst); 10226 return; 10227 10228 case I_PLINK: 10229 case I_PUNLINK: 10230 case I_LINK: 10231 case I_UNLINK: 10232 /* 10233 * We treat non-persistent link similarly as the persistent 10234 * link case, in terms of plumbing/unplumbing, as well as 10235 * dynamic re-plumbing events indicator. See comments 10236 * in ip_sioctl_plink() for more. 10237 * 10238 * Request can be enqueued in the 'ipsq' while waiting 10239 * to become exclusive. So bump up the conn ref. 10240 */ 10241 if (CONN_Q(q)) 10242 CONN_INC_REF(Q_TO_CONN(q)); 10243 ip_sioctl_plink(NULL, q, mp, NULL); 10244 return; 10245 10246 case ND_GET: 10247 case ND_SET: 10248 /* 10249 * Use of the nd table requires holding the reader lock. 10250 * Modifying the nd table thru nd_load/nd_unload requires 10251 * the writer lock. 10252 */ 10253 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10254 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10255 rw_exit(&ipst->ips_ip_g_nd_lock); 10256 10257 if (iocp->ioc_error) 10258 iocp->ioc_count = 0; 10259 mp->b_datap->db_type = M_IOCACK; 10260 qreply(q, mp); 10261 return; 10262 } 10263 rw_exit(&ipst->ips_ip_g_nd_lock); 10264 /* 10265 * We don't understand this subioctl of ND_GET / ND_SET. 10266 * Maybe intended for some driver / module below us 10267 */ 10268 if (q->q_next) { 10269 putnext(q, mp); 10270 } else { 10271 iocp->ioc_error = ENOENT; 10272 mp->b_datap->db_type = M_IOCNAK; 10273 iocp->ioc_count = 0; 10274 qreply(q, mp); 10275 } 10276 return; 10277 10278 case IP_IOCTL: 10279 ip_wput_ioctl(q, mp); 10280 return; 10281 default: 10282 cmn_err(CE_PANIC, "should not happen "); 10283 } 10284 nak: 10285 if (mp->b_cont != NULL) { 10286 freemsg(mp->b_cont); 10287 mp->b_cont = NULL; 10288 } 10289 iocp->ioc_error = EINVAL; 10290 mp->b_datap->db_type = M_IOCNAK; 10291 iocp->ioc_count = 0; 10292 qreply(q, mp); 10293 } 10294 10295 /* ip_wput hands off ARP IOCTL responses to us */ 10296 void 10297 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10298 { 10299 struct arpreq *ar; 10300 struct xarpreq *xar; 10301 area_t *area; 10302 mblk_t *area_mp; 10303 struct iocblk *iocp; 10304 mblk_t *orig_ioc_mp, *tmp; 10305 struct iocblk *orig_iocp; 10306 ill_t *ill; 10307 conn_t *connp = NULL; 10308 uint_t ioc_id; 10309 mblk_t *pending_mp; 10310 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10311 int *flagsp; 10312 char *storage = NULL; 10313 sin_t *sin; 10314 ipaddr_t addr; 10315 int err; 10316 ip_stack_t *ipst; 10317 10318 ill = q->q_ptr; 10319 ASSERT(ill != NULL); 10320 ipst = ill->ill_ipst; 10321 10322 /* 10323 * We should get back from ARP a packet chain that looks like: 10324 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10325 */ 10326 if (!(area_mp = mp->b_cont) || 10327 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10328 !(orig_ioc_mp = area_mp->b_cont) || 10329 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10330 freemsg(mp); 10331 return; 10332 } 10333 10334 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10335 10336 tmp = (orig_ioc_mp->b_cont)->b_cont; 10337 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10338 (orig_iocp->ioc_cmd == SIOCSXARP) || 10339 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10340 x_arp_ioctl = B_TRUE; 10341 xar = (struct xarpreq *)tmp->b_rptr; 10342 sin = (sin_t *)&xar->xarp_pa; 10343 flagsp = &xar->xarp_flags; 10344 storage = xar->xarp_ha.sdl_data; 10345 if (xar->xarp_ha.sdl_nlen != 0) 10346 ifx_arp_ioctl = B_TRUE; 10347 } else { 10348 ar = (struct arpreq *)tmp->b_rptr; 10349 sin = (sin_t *)&ar->arp_pa; 10350 flagsp = &ar->arp_flags; 10351 storage = ar->arp_ha.sa_data; 10352 } 10353 10354 iocp = (struct iocblk *)mp->b_rptr; 10355 10356 /* 10357 * Pick out the originating queue based on the ioc_id. 10358 */ 10359 ioc_id = iocp->ioc_id; 10360 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10361 if (pending_mp == NULL) { 10362 ASSERT(connp == NULL); 10363 inet_freemsg(mp); 10364 return; 10365 } 10366 ASSERT(connp != NULL); 10367 q = CONNP_TO_WQ(connp); 10368 10369 /* Uncouple the internally generated IOCTL from the original one */ 10370 area = (area_t *)area_mp->b_rptr; 10371 area_mp->b_cont = NULL; 10372 10373 /* 10374 * Restore the b_next and b_prev used by mi code. This is needed 10375 * to complete the ioctl using mi* functions. We stored them in 10376 * the pending mp prior to sending the request to ARP. 10377 */ 10378 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10379 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10380 inet_freemsg(pending_mp); 10381 10382 /* 10383 * We're done if there was an error or if this is not an SIOCG{X}ARP 10384 * Catch the case where there is an IRE_CACHE by no entry in the 10385 * arp table. 10386 */ 10387 addr = sin->sin_addr.s_addr; 10388 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10389 ire_t *ire; 10390 dl_unitdata_req_t *dlup; 10391 mblk_t *llmp; 10392 int addr_len; 10393 ill_t *ipsqill = NULL; 10394 10395 if (ifx_arp_ioctl) { 10396 /* 10397 * There's no need to lookup the ill, since 10398 * we've already done that when we started 10399 * processing the ioctl and sent the message 10400 * to ARP on that ill. So use the ill that 10401 * is stored in q->q_ptr. 10402 */ 10403 ipsqill = ill; 10404 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10405 ipsqill->ill_ipif, ALL_ZONES, 10406 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10407 } else { 10408 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10409 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10410 if (ire != NULL) 10411 ipsqill = ire_to_ill(ire); 10412 } 10413 10414 if ((x_arp_ioctl) && (ipsqill != NULL)) 10415 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10416 10417 if (ire != NULL) { 10418 /* 10419 * Since the ire obtained from cachetable is used for 10420 * mac addr copying below, treat an incomplete ire as if 10421 * as if we never found it. 10422 */ 10423 if (ire->ire_nce != NULL && 10424 ire->ire_nce->nce_state != ND_REACHABLE) { 10425 ire_refrele(ire); 10426 ire = NULL; 10427 ipsqill = NULL; 10428 goto errack; 10429 } 10430 *flagsp = ATF_INUSE; 10431 llmp = (ire->ire_nce != NULL ? 10432 ire->ire_nce->nce_res_mp : NULL); 10433 if (llmp != NULL && ipsqill != NULL) { 10434 uchar_t *macaddr; 10435 10436 addr_len = ipsqill->ill_phys_addr_length; 10437 if (x_arp_ioctl && ((addr_len + 10438 ipsqill->ill_name_length) > 10439 sizeof (xar->xarp_ha.sdl_data))) { 10440 ire_refrele(ire); 10441 freemsg(mp); 10442 ip_ioctl_finish(q, orig_ioc_mp, 10443 EINVAL, NO_COPYOUT, NULL); 10444 return; 10445 } 10446 *flagsp |= ATF_COM; 10447 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10448 if (ipsqill->ill_sap_length < 0) 10449 macaddr = llmp->b_rptr + 10450 dlup->dl_dest_addr_offset; 10451 else 10452 macaddr = llmp->b_rptr + 10453 dlup->dl_dest_addr_offset + 10454 ipsqill->ill_sap_length; 10455 /* 10456 * For SIOCGARP, MAC address length 10457 * validation has already been done 10458 * before the ioctl was issued to ARP to 10459 * allow it to progress only on 6 byte 10460 * addressable (ethernet like) media. Thus 10461 * the mac address copying can not overwrite 10462 * the sa_data area below. 10463 */ 10464 bcopy(macaddr, storage, addr_len); 10465 } 10466 /* Ditch the internal IOCTL. */ 10467 freemsg(mp); 10468 ire_refrele(ire); 10469 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10470 return; 10471 } 10472 } 10473 10474 /* 10475 * Delete the coresponding IRE_CACHE if any. 10476 * Reset the error if there was one (in case there was no entry 10477 * in arp.) 10478 */ 10479 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10480 ipif_t *ipintf = NULL; 10481 10482 if (ifx_arp_ioctl) { 10483 /* 10484 * There's no need to lookup the ill, since 10485 * we've already done that when we started 10486 * processing the ioctl and sent the message 10487 * to ARP on that ill. So use the ill that 10488 * is stored in q->q_ptr. 10489 */ 10490 ipintf = ill->ill_ipif; 10491 } 10492 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10493 /* 10494 * The address in "addr" may be an entry for a 10495 * router. If that's true, then any off-net 10496 * IRE_CACHE entries that go through the router 10497 * with address "addr" must be clobbered. Use 10498 * ire_walk to achieve this goal. 10499 */ 10500 if (ifx_arp_ioctl) 10501 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10502 ire_delete_cache_gw, (char *)&addr, ill); 10503 else 10504 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10505 ALL_ZONES, ipst); 10506 iocp->ioc_error = 0; 10507 } 10508 } 10509 errack: 10510 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10511 err = iocp->ioc_error; 10512 freemsg(mp); 10513 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10514 return; 10515 } 10516 10517 /* 10518 * Completion of an SIOCG{X}ARP. Translate the information from 10519 * the area_t into the struct {x}arpreq. 10520 */ 10521 if (x_arp_ioctl) { 10522 storage += ill_xarp_info(&xar->xarp_ha, ill); 10523 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10524 sizeof (xar->xarp_ha.sdl_data)) { 10525 freemsg(mp); 10526 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10527 NULL); 10528 return; 10529 } 10530 } 10531 *flagsp = ATF_INUSE; 10532 if (area->area_flags & ACE_F_PERMANENT) 10533 *flagsp |= ATF_PERM; 10534 if (area->area_flags & ACE_F_PUBLISH) 10535 *flagsp |= ATF_PUBL; 10536 if (area->area_flags & ACE_F_AUTHORITY) 10537 *flagsp |= ATF_AUTHORITY; 10538 if (area->area_hw_addr_length != 0) { 10539 *flagsp |= ATF_COM; 10540 /* 10541 * For SIOCGARP, MAC address length validation has 10542 * already been done before the ioctl was issued to ARP 10543 * to allow it to progress only on 6 byte addressable 10544 * (ethernet like) media. Thus the mac address copying 10545 * can not overwrite the sa_data area below. 10546 */ 10547 bcopy((char *)area + area->area_hw_addr_offset, 10548 storage, area->area_hw_addr_length); 10549 } 10550 10551 /* Ditch the internal IOCTL. */ 10552 freemsg(mp); 10553 /* Complete the original. */ 10554 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10555 } 10556 10557 /* 10558 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10559 * interface) create the next available logical interface for this 10560 * physical interface. 10561 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10562 * ipif with the specified name. 10563 * 10564 * If the address family is not AF_UNSPEC then set the address as well. 10565 * 10566 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10567 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10568 * 10569 * Executed as a writer on the ill or ill group. 10570 * So no lock is needed to traverse the ipif chain, or examine the 10571 * phyint flags. 10572 */ 10573 /* ARGSUSED */ 10574 int 10575 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10576 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10577 { 10578 mblk_t *mp1; 10579 struct lifreq *lifr; 10580 boolean_t isv6; 10581 boolean_t exists; 10582 char *name; 10583 char *endp; 10584 char *cp; 10585 int namelen; 10586 ipif_t *ipif; 10587 long id; 10588 ipsq_t *ipsq; 10589 ill_t *ill; 10590 sin_t *sin; 10591 int err = 0; 10592 boolean_t found_sep = B_FALSE; 10593 conn_t *connp; 10594 zoneid_t zoneid; 10595 int orig_ifindex = 0; 10596 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10597 10598 ASSERT(q->q_next == NULL); 10599 ip1dbg(("ip_sioctl_addif\n")); 10600 /* Existence of mp1 has been checked in ip_wput_nondata */ 10601 mp1 = mp->b_cont->b_cont; 10602 /* 10603 * Null terminate the string to protect against buffer 10604 * overrun. String was generated by user code and may not 10605 * be trusted. 10606 */ 10607 lifr = (struct lifreq *)mp1->b_rptr; 10608 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10609 name = lifr->lifr_name; 10610 ASSERT(CONN_Q(q)); 10611 connp = Q_TO_CONN(q); 10612 isv6 = connp->conn_af_isv6; 10613 zoneid = connp->conn_zoneid; 10614 namelen = mi_strlen(name); 10615 if (namelen == 0) 10616 return (EINVAL); 10617 10618 exists = B_FALSE; 10619 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10620 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10621 /* 10622 * Allow creating lo0 using SIOCLIFADDIF. 10623 * can't be any other writer thread. So can pass null below 10624 * for the last 4 args to ipif_lookup_name. 10625 */ 10626 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10627 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10628 /* Prevent any further action */ 10629 if (ipif == NULL) { 10630 return (ENOBUFS); 10631 } else if (!exists) { 10632 /* We created the ipif now and as writer */ 10633 ipif_refrele(ipif); 10634 return (0); 10635 } else { 10636 ill = ipif->ipif_ill; 10637 ill_refhold(ill); 10638 ipif_refrele(ipif); 10639 } 10640 } else { 10641 /* Look for a colon in the name. */ 10642 endp = &name[namelen]; 10643 for (cp = endp; --cp > name; ) { 10644 if (*cp == IPIF_SEPARATOR_CHAR) { 10645 found_sep = B_TRUE; 10646 /* 10647 * Reject any non-decimal aliases for plumbing 10648 * of logical interfaces. Aliases with leading 10649 * zeroes are also rejected as they introduce 10650 * ambiguity in the naming of the interfaces. 10651 * Comparing with "0" takes care of all such 10652 * cases. 10653 */ 10654 if ((strncmp("0", cp+1, 1)) == 0) 10655 return (EINVAL); 10656 10657 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10658 id <= 0 || *endp != '\0') { 10659 return (EINVAL); 10660 } 10661 *cp = '\0'; 10662 break; 10663 } 10664 } 10665 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10666 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10667 if (found_sep) 10668 *cp = IPIF_SEPARATOR_CHAR; 10669 if (ill == NULL) 10670 return (err); 10671 } 10672 10673 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10674 B_TRUE); 10675 10676 /* 10677 * Release the refhold due to the lookup, now that we are excl 10678 * or we are just returning 10679 */ 10680 ill_refrele(ill); 10681 10682 if (ipsq == NULL) 10683 return (EINPROGRESS); 10684 10685 /* 10686 * If the interface is failed, inactive or offlined, look for a working 10687 * interface in the ill group and create the ipif there. If we can't 10688 * find a good interface, create the ipif anyway so that in.mpathd can 10689 * move it to the first repaired interface. 10690 */ 10691 if ((ill->ill_phyint->phyint_flags & 10692 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10693 ill->ill_phyint->phyint_groupname_len != 0) { 10694 phyint_t *phyi; 10695 char *groupname = ill->ill_phyint->phyint_groupname; 10696 10697 /* 10698 * We're looking for a working interface, but it doesn't matter 10699 * if it's up or down; so instead of following the group lists, 10700 * we look at each physical interface and compare the groupname. 10701 * We're only interested in interfaces with IPv4 (resp. IPv6) 10702 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10703 * Otherwise we create the ipif on the failed interface. 10704 */ 10705 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10706 phyi = avl_first(&ipst->ips_phyint_g_list-> 10707 phyint_list_avl_by_index); 10708 for (; phyi != NULL; 10709 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10710 phyint_list_avl_by_index, 10711 phyi, AVL_AFTER)) { 10712 if (phyi->phyint_groupname_len == 0) 10713 continue; 10714 ASSERT(phyi->phyint_groupname != NULL); 10715 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10716 !(phyi->phyint_flags & 10717 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10718 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10719 (phyi->phyint_illv4 != NULL))) { 10720 break; 10721 } 10722 } 10723 rw_exit(&ipst->ips_ill_g_lock); 10724 10725 if (phyi != NULL) { 10726 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10727 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10728 phyi->phyint_illv4); 10729 } 10730 } 10731 10732 /* 10733 * We are now exclusive on the ipsq, so an ill move will be serialized 10734 * before or after us. 10735 */ 10736 ASSERT(IAM_WRITER_ILL(ill)); 10737 ASSERT(ill->ill_move_in_progress == B_FALSE); 10738 10739 if (found_sep && orig_ifindex == 0) { 10740 /* Now see if there is an IPIF with this unit number. */ 10741 for (ipif = ill->ill_ipif; ipif != NULL; 10742 ipif = ipif->ipif_next) { 10743 if (ipif->ipif_id == id) { 10744 err = EEXIST; 10745 goto done; 10746 } 10747 } 10748 } 10749 10750 /* 10751 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10752 * of lo0. We never come here when we plumb lo0:0. It 10753 * happens in ipif_lookup_on_name. 10754 * The specified unit number is ignored when we create the ipif on a 10755 * different interface. However, we save it in ipif_orig_ipifid below so 10756 * that the ipif fails back to the right position. 10757 */ 10758 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10759 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10760 err = ENOBUFS; 10761 goto done; 10762 } 10763 10764 /* Return created name with ioctl */ 10765 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10766 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10767 ip1dbg(("created %s\n", lifr->lifr_name)); 10768 10769 /* Set address */ 10770 sin = (sin_t *)&lifr->lifr_addr; 10771 if (sin->sin_family != AF_UNSPEC) { 10772 err = ip_sioctl_addr(ipif, sin, q, mp, 10773 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10774 } 10775 10776 /* Set ifindex and unit number for failback */ 10777 if (err == 0 && orig_ifindex != 0) { 10778 ipif->ipif_orig_ifindex = orig_ifindex; 10779 if (found_sep) { 10780 ipif->ipif_orig_ipifid = id; 10781 } 10782 } 10783 10784 done: 10785 ipsq_exit(ipsq); 10786 return (err); 10787 } 10788 10789 /* 10790 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10791 * interface) delete it based on the IP address (on this physical interface). 10792 * Otherwise delete it based on the ipif_id. 10793 * Also, special handling to allow a removeif of lo0. 10794 */ 10795 /* ARGSUSED */ 10796 int 10797 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10798 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10799 { 10800 conn_t *connp; 10801 ill_t *ill = ipif->ipif_ill; 10802 boolean_t success; 10803 ip_stack_t *ipst; 10804 10805 ipst = CONNQ_TO_IPST(q); 10806 10807 ASSERT(q->q_next == NULL); 10808 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10809 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10810 ASSERT(IAM_WRITER_IPIF(ipif)); 10811 10812 connp = Q_TO_CONN(q); 10813 /* 10814 * Special case for unplumbing lo0 (the loopback physical interface). 10815 * If unplumbing lo0, the incoming address structure has been 10816 * initialized to all zeros. When unplumbing lo0, all its logical 10817 * interfaces must be removed too. 10818 * 10819 * Note that this interface may be called to remove a specific 10820 * loopback logical interface (eg, lo0:1). But in that case 10821 * ipif->ipif_id != 0 so that the code path for that case is the 10822 * same as any other interface (meaning it skips the code directly 10823 * below). 10824 */ 10825 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10826 if (sin->sin_family == AF_UNSPEC && 10827 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10828 /* 10829 * Mark it condemned. No new ref. will be made to ill. 10830 */ 10831 mutex_enter(&ill->ill_lock); 10832 ill->ill_state_flags |= ILL_CONDEMNED; 10833 for (ipif = ill->ill_ipif; ipif != NULL; 10834 ipif = ipif->ipif_next) { 10835 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10836 } 10837 mutex_exit(&ill->ill_lock); 10838 10839 ipif = ill->ill_ipif; 10840 /* unplumb the loopback interface */ 10841 ill_delete(ill); 10842 mutex_enter(&connp->conn_lock); 10843 mutex_enter(&ill->ill_lock); 10844 ASSERT(ill->ill_group == NULL); 10845 10846 /* Are any references to this ill active */ 10847 if (ill_is_freeable(ill)) { 10848 mutex_exit(&ill->ill_lock); 10849 mutex_exit(&connp->conn_lock); 10850 ill_delete_tail(ill); 10851 mutex_enter(&ill->ill_lock); 10852 ill_nic_info_dispatch(ill); 10853 mutex_exit(&ill->ill_lock); 10854 mi_free(ill); 10855 return (0); 10856 } 10857 success = ipsq_pending_mp_add(connp, ipif, 10858 CONNP_TO_WQ(connp), mp, ILL_FREE); 10859 mutex_exit(&connp->conn_lock); 10860 mutex_exit(&ill->ill_lock); 10861 if (success) 10862 return (EINPROGRESS); 10863 else 10864 return (EINTR); 10865 } 10866 } 10867 10868 /* 10869 * We are exclusive on the ipsq, so an ill move will be serialized 10870 * before or after us. 10871 */ 10872 ASSERT(ill->ill_move_in_progress == B_FALSE); 10873 10874 if (ipif->ipif_id == 0) { 10875 10876 ipsq_t *ipsq; 10877 10878 /* Find based on address */ 10879 if (ipif->ipif_isv6) { 10880 sin6_t *sin6; 10881 10882 if (sin->sin_family != AF_INET6) 10883 return (EAFNOSUPPORT); 10884 10885 sin6 = (sin6_t *)sin; 10886 /* We are a writer, so we should be able to lookup */ 10887 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10888 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10889 if (ipif == NULL) { 10890 /* 10891 * Maybe the address in on another interface in 10892 * the same IPMP group? We check this below. 10893 */ 10894 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10895 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10896 ipst); 10897 } 10898 } else { 10899 ipaddr_t addr; 10900 10901 if (sin->sin_family != AF_INET) 10902 return (EAFNOSUPPORT); 10903 10904 addr = sin->sin_addr.s_addr; 10905 /* We are a writer, so we should be able to lookup */ 10906 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10907 NULL, NULL, NULL, ipst); 10908 if (ipif == NULL) { 10909 /* 10910 * Maybe the address in on another interface in 10911 * the same IPMP group? We check this below. 10912 */ 10913 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10914 NULL, NULL, NULL, NULL, ipst); 10915 } 10916 } 10917 if (ipif == NULL) { 10918 return (EADDRNOTAVAIL); 10919 } 10920 10921 /* 10922 * It is possible for a user to send an SIOCLIFREMOVEIF with 10923 * lifr_name of the physical interface but with an ip address 10924 * lifr_addr of a logical interface plumbed over it. 10925 * So update ipsq_current_ipif once ipif points to the 10926 * correct interface after doing ipif_lookup_addr(). 10927 */ 10928 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10929 ASSERT(ipsq != NULL); 10930 10931 mutex_enter(&ipsq->ipsq_lock); 10932 ipsq->ipsq_current_ipif = ipif; 10933 mutex_exit(&ipsq->ipsq_lock); 10934 10935 /* 10936 * When the address to be removed is hosted on a different 10937 * interface, we check if the interface is in the same IPMP 10938 * group as the specified one; if so we proceed with the 10939 * removal. 10940 * ill->ill_group is NULL when the ill is down, so we have to 10941 * compare the group names instead. 10942 */ 10943 if (ipif->ipif_ill != ill && 10944 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10945 ill->ill_phyint->phyint_groupname_len == 0 || 10946 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10947 ill->ill_phyint->phyint_groupname) != 0)) { 10948 ipif_refrele(ipif); 10949 return (EADDRNOTAVAIL); 10950 } 10951 10952 /* This is a writer */ 10953 ipif_refrele(ipif); 10954 } 10955 10956 /* 10957 * Can not delete instance zero since it is tied to the ill. 10958 */ 10959 if (ipif->ipif_id == 0) 10960 return (EBUSY); 10961 10962 mutex_enter(&ill->ill_lock); 10963 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10964 mutex_exit(&ill->ill_lock); 10965 10966 ipif_free(ipif); 10967 10968 mutex_enter(&connp->conn_lock); 10969 mutex_enter(&ill->ill_lock); 10970 10971 10972 /* Are any references to this ipif active */ 10973 if (ipif_is_freeable(ipif)) { 10974 mutex_exit(&ill->ill_lock); 10975 mutex_exit(&connp->conn_lock); 10976 ipif_non_duplicate(ipif); 10977 ipif_down_tail(ipif); 10978 ipif_free_tail(ipif); /* frees ipif */ 10979 return (0); 10980 } 10981 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10982 IPIF_FREE); 10983 mutex_exit(&ill->ill_lock); 10984 mutex_exit(&connp->conn_lock); 10985 if (success) 10986 return (EINPROGRESS); 10987 else 10988 return (EINTR); 10989 } 10990 10991 /* 10992 * Restart the removeif ioctl. The refcnt has gone down to 0. 10993 * The ipif is already condemned. So can't find it thru lookups. 10994 */ 10995 /* ARGSUSED */ 10996 int 10997 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10998 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10999 { 11000 ill_t *ill = ipif->ipif_ill; 11001 11002 ASSERT(IAM_WRITER_IPIF(ipif)); 11003 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11004 11005 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11006 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11007 11008 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11009 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 11010 ill_delete_tail(ill); 11011 mutex_enter(&ill->ill_lock); 11012 ill_nic_info_dispatch(ill); 11013 mutex_exit(&ill->ill_lock); 11014 mi_free(ill); 11015 return (0); 11016 } 11017 11018 ipif_non_duplicate(ipif); 11019 ipif_down_tail(ipif); 11020 ipif_free_tail(ipif); 11021 11022 ILL_UNMARK_CHANGING(ill); 11023 return (0); 11024 } 11025 11026 /* 11027 * Set the local interface address. 11028 * Allow an address of all zero when the interface is down. 11029 */ 11030 /* ARGSUSED */ 11031 int 11032 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11033 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11034 { 11035 int err = 0; 11036 in6_addr_t v6addr; 11037 boolean_t need_up = B_FALSE; 11038 11039 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11040 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11041 11042 ASSERT(IAM_WRITER_IPIF(ipif)); 11043 11044 if (ipif->ipif_isv6) { 11045 sin6_t *sin6; 11046 ill_t *ill; 11047 phyint_t *phyi; 11048 11049 if (sin->sin_family != AF_INET6) 11050 return (EAFNOSUPPORT); 11051 11052 sin6 = (sin6_t *)sin; 11053 v6addr = sin6->sin6_addr; 11054 ill = ipif->ipif_ill; 11055 phyi = ill->ill_phyint; 11056 11057 /* 11058 * Enforce that true multicast interfaces have a link-local 11059 * address for logical unit 0. 11060 */ 11061 if (ipif->ipif_id == 0 && 11062 (ill->ill_flags & ILLF_MULTICAST) && 11063 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11064 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11065 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11066 return (EADDRNOTAVAIL); 11067 } 11068 11069 /* 11070 * up interfaces shouldn't have the unspecified address 11071 * unless they also have the IPIF_NOLOCAL flags set and 11072 * have a subnet assigned. 11073 */ 11074 if ((ipif->ipif_flags & IPIF_UP) && 11075 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11076 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11077 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11078 return (EADDRNOTAVAIL); 11079 } 11080 11081 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11082 return (EADDRNOTAVAIL); 11083 } else { 11084 ipaddr_t addr; 11085 11086 if (sin->sin_family != AF_INET) 11087 return (EAFNOSUPPORT); 11088 11089 addr = sin->sin_addr.s_addr; 11090 11091 /* Allow 0 as the local address. */ 11092 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11093 return (EADDRNOTAVAIL); 11094 11095 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11096 } 11097 11098 /* 11099 * Even if there is no change we redo things just to rerun 11100 * ipif_set_default. 11101 */ 11102 if (ipif->ipif_flags & IPIF_UP) { 11103 /* 11104 * Setting a new local address, make sure 11105 * we have net and subnet bcast ire's for 11106 * the old address if we need them. 11107 */ 11108 if (!ipif->ipif_isv6) 11109 ipif_check_bcast_ires(ipif); 11110 /* 11111 * If the interface is already marked up, 11112 * we call ipif_down which will take care 11113 * of ditching any IREs that have been set 11114 * up based on the old interface address. 11115 */ 11116 err = ipif_logical_down(ipif, q, mp); 11117 if (err == EINPROGRESS) 11118 return (err); 11119 ipif_down_tail(ipif); 11120 need_up = 1; 11121 } 11122 11123 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11124 return (err); 11125 } 11126 11127 int 11128 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11129 boolean_t need_up) 11130 { 11131 in6_addr_t v6addr; 11132 in6_addr_t ov6addr; 11133 ipaddr_t addr; 11134 sin6_t *sin6; 11135 int sinlen; 11136 int err = 0; 11137 ill_t *ill = ipif->ipif_ill; 11138 boolean_t need_dl_down; 11139 boolean_t need_arp_down; 11140 struct iocblk *iocp; 11141 11142 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11143 11144 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11145 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11146 ASSERT(IAM_WRITER_IPIF(ipif)); 11147 11148 /* Must cancel any pending timer before taking the ill_lock */ 11149 if (ipif->ipif_recovery_id != 0) 11150 (void) untimeout(ipif->ipif_recovery_id); 11151 ipif->ipif_recovery_id = 0; 11152 11153 if (ipif->ipif_isv6) { 11154 sin6 = (sin6_t *)sin; 11155 v6addr = sin6->sin6_addr; 11156 sinlen = sizeof (struct sockaddr_in6); 11157 } else { 11158 addr = sin->sin_addr.s_addr; 11159 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11160 sinlen = sizeof (struct sockaddr_in); 11161 } 11162 mutex_enter(&ill->ill_lock); 11163 ov6addr = ipif->ipif_v6lcl_addr; 11164 ipif->ipif_v6lcl_addr = v6addr; 11165 sctp_update_ipif_addr(ipif, ov6addr); 11166 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11167 ipif->ipif_v6src_addr = ipv6_all_zeros; 11168 } else { 11169 ipif->ipif_v6src_addr = v6addr; 11170 } 11171 ipif->ipif_addr_ready = 0; 11172 11173 /* 11174 * If the interface was previously marked as a duplicate, then since 11175 * we've now got a "new" address, it should no longer be considered a 11176 * duplicate -- even if the "new" address is the same as the old one. 11177 * Note that if all ipifs are down, we may have a pending ARP down 11178 * event to handle. This is because we want to recover from duplicates 11179 * and thus delay tearing down ARP until the duplicates have been 11180 * removed or disabled. 11181 */ 11182 need_dl_down = need_arp_down = B_FALSE; 11183 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11184 need_arp_down = !need_up; 11185 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11186 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11187 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11188 need_dl_down = B_TRUE; 11189 } 11190 } 11191 11192 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11193 !ill->ill_is_6to4tun) { 11194 queue_t *wqp = ill->ill_wq; 11195 11196 /* 11197 * The local address of this interface is a 6to4 address, 11198 * check if this interface is in fact a 6to4 tunnel or just 11199 * an interface configured with a 6to4 address. We are only 11200 * interested in the former. 11201 */ 11202 if (wqp != NULL) { 11203 while ((wqp->q_next != NULL) && 11204 (wqp->q_next->q_qinfo != NULL) && 11205 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11206 11207 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11208 == TUN6TO4_MODID) { 11209 /* set for use in IP */ 11210 ill->ill_is_6to4tun = 1; 11211 break; 11212 } 11213 wqp = wqp->q_next; 11214 } 11215 } 11216 } 11217 11218 ipif_set_default(ipif); 11219 11220 /* 11221 * When publishing an interface address change event, we only notify 11222 * the event listeners of the new address. It is assumed that if they 11223 * actively care about the addresses assigned that they will have 11224 * already discovered the previous address assigned (if there was one.) 11225 * 11226 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11227 */ 11228 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11229 (void) ill_hook_event_create(ill, MAP_IPIF_ID(ipif->ipif_id), 11230 NE_ADDRESS_CHANGE, sin, sinlen); 11231 } 11232 11233 mutex_exit(&ill->ill_lock); 11234 11235 if (need_up) { 11236 /* 11237 * Now bring the interface back up. If this 11238 * is the only IPIF for the ILL, ipif_up 11239 * will have to re-bind to the device, so 11240 * we may get back EINPROGRESS, in which 11241 * case, this IOCTL will get completed in 11242 * ip_rput_dlpi when we see the DL_BIND_ACK. 11243 */ 11244 err = ipif_up(ipif, q, mp); 11245 } 11246 11247 if (need_dl_down) 11248 ill_dl_down(ill); 11249 if (need_arp_down) 11250 ipif_arp_down(ipif); 11251 11252 return (err); 11253 } 11254 11255 11256 /* 11257 * Restart entry point to restart the address set operation after the 11258 * refcounts have dropped to zero. 11259 */ 11260 /* ARGSUSED */ 11261 int 11262 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11263 ip_ioctl_cmd_t *ipip, void *ifreq) 11264 { 11265 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11266 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11267 ASSERT(IAM_WRITER_IPIF(ipif)); 11268 ipif_down_tail(ipif); 11269 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11270 } 11271 11272 /* ARGSUSED */ 11273 int 11274 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11275 ip_ioctl_cmd_t *ipip, void *if_req) 11276 { 11277 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11278 struct lifreq *lifr = (struct lifreq *)if_req; 11279 11280 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11281 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11282 /* 11283 * The net mask and address can't change since we have a 11284 * reference to the ipif. So no lock is necessary. 11285 */ 11286 if (ipif->ipif_isv6) { 11287 *sin6 = sin6_null; 11288 sin6->sin6_family = AF_INET6; 11289 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11290 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11291 lifr->lifr_addrlen = 11292 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11293 } else { 11294 *sin = sin_null; 11295 sin->sin_family = AF_INET; 11296 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11297 if (ipip->ipi_cmd_type == LIF_CMD) { 11298 lifr->lifr_addrlen = 11299 ip_mask_to_plen(ipif->ipif_net_mask); 11300 } 11301 } 11302 return (0); 11303 } 11304 11305 /* 11306 * Set the destination address for a pt-pt interface. 11307 */ 11308 /* ARGSUSED */ 11309 int 11310 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11311 ip_ioctl_cmd_t *ipip, void *if_req) 11312 { 11313 int err = 0; 11314 in6_addr_t v6addr; 11315 boolean_t need_up = B_FALSE; 11316 11317 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11318 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11319 ASSERT(IAM_WRITER_IPIF(ipif)); 11320 11321 if (ipif->ipif_isv6) { 11322 sin6_t *sin6; 11323 11324 if (sin->sin_family != AF_INET6) 11325 return (EAFNOSUPPORT); 11326 11327 sin6 = (sin6_t *)sin; 11328 v6addr = sin6->sin6_addr; 11329 11330 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11331 return (EADDRNOTAVAIL); 11332 } else { 11333 ipaddr_t addr; 11334 11335 if (sin->sin_family != AF_INET) 11336 return (EAFNOSUPPORT); 11337 11338 addr = sin->sin_addr.s_addr; 11339 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11340 return (EADDRNOTAVAIL); 11341 11342 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11343 } 11344 11345 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11346 return (0); /* No change */ 11347 11348 if (ipif->ipif_flags & IPIF_UP) { 11349 /* 11350 * If the interface is already marked up, 11351 * we call ipif_down which will take care 11352 * of ditching any IREs that have been set 11353 * up based on the old pp dst address. 11354 */ 11355 err = ipif_logical_down(ipif, q, mp); 11356 if (err == EINPROGRESS) 11357 return (err); 11358 ipif_down_tail(ipif); 11359 need_up = B_TRUE; 11360 } 11361 /* 11362 * could return EINPROGRESS. If so ioctl will complete in 11363 * ip_rput_dlpi_writer 11364 */ 11365 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11366 return (err); 11367 } 11368 11369 static int 11370 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11371 boolean_t need_up) 11372 { 11373 in6_addr_t v6addr; 11374 ill_t *ill = ipif->ipif_ill; 11375 int err = 0; 11376 boolean_t need_dl_down; 11377 boolean_t need_arp_down; 11378 11379 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11380 ipif->ipif_id, (void *)ipif)); 11381 11382 /* Must cancel any pending timer before taking the ill_lock */ 11383 if (ipif->ipif_recovery_id != 0) 11384 (void) untimeout(ipif->ipif_recovery_id); 11385 ipif->ipif_recovery_id = 0; 11386 11387 if (ipif->ipif_isv6) { 11388 sin6_t *sin6; 11389 11390 sin6 = (sin6_t *)sin; 11391 v6addr = sin6->sin6_addr; 11392 } else { 11393 ipaddr_t addr; 11394 11395 addr = sin->sin_addr.s_addr; 11396 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11397 } 11398 mutex_enter(&ill->ill_lock); 11399 /* Set point to point destination address. */ 11400 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11401 /* 11402 * Allow this as a means of creating logical 11403 * pt-pt interfaces on top of e.g. an Ethernet. 11404 * XXX Undocumented HACK for testing. 11405 * pt-pt interfaces are created with NUD disabled. 11406 */ 11407 ipif->ipif_flags |= IPIF_POINTOPOINT; 11408 ipif->ipif_flags &= ~IPIF_BROADCAST; 11409 if (ipif->ipif_isv6) 11410 ill->ill_flags |= ILLF_NONUD; 11411 } 11412 11413 /* 11414 * If the interface was previously marked as a duplicate, then since 11415 * we've now got a "new" address, it should no longer be considered a 11416 * duplicate -- even if the "new" address is the same as the old one. 11417 * Note that if all ipifs are down, we may have a pending ARP down 11418 * event to handle. 11419 */ 11420 need_dl_down = need_arp_down = B_FALSE; 11421 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11422 need_arp_down = !need_up; 11423 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11424 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11425 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11426 need_dl_down = B_TRUE; 11427 } 11428 } 11429 11430 /* Set the new address. */ 11431 ipif->ipif_v6pp_dst_addr = v6addr; 11432 /* Make sure subnet tracks pp_dst */ 11433 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11434 mutex_exit(&ill->ill_lock); 11435 11436 if (need_up) { 11437 /* 11438 * Now bring the interface back up. If this 11439 * is the only IPIF for the ILL, ipif_up 11440 * will have to re-bind to the device, so 11441 * we may get back EINPROGRESS, in which 11442 * case, this IOCTL will get completed in 11443 * ip_rput_dlpi when we see the DL_BIND_ACK. 11444 */ 11445 err = ipif_up(ipif, q, mp); 11446 } 11447 11448 if (need_dl_down) 11449 ill_dl_down(ill); 11450 11451 if (need_arp_down) 11452 ipif_arp_down(ipif); 11453 return (err); 11454 } 11455 11456 /* 11457 * Restart entry point to restart the dstaddress set operation after the 11458 * refcounts have dropped to zero. 11459 */ 11460 /* ARGSUSED */ 11461 int 11462 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11463 ip_ioctl_cmd_t *ipip, void *ifreq) 11464 { 11465 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11466 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11467 ipif_down_tail(ipif); 11468 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11469 } 11470 11471 /* ARGSUSED */ 11472 int 11473 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11474 ip_ioctl_cmd_t *ipip, void *if_req) 11475 { 11476 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11477 11478 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11479 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11480 /* 11481 * Get point to point destination address. The addresses can't 11482 * change since we hold a reference to the ipif. 11483 */ 11484 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11485 return (EADDRNOTAVAIL); 11486 11487 if (ipif->ipif_isv6) { 11488 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11489 *sin6 = sin6_null; 11490 sin6->sin6_family = AF_INET6; 11491 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11492 } else { 11493 *sin = sin_null; 11494 sin->sin_family = AF_INET; 11495 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11496 } 11497 return (0); 11498 } 11499 11500 /* 11501 * part of ipmp, make this func return the active/inactive state and 11502 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11503 */ 11504 /* 11505 * This function either sets or clears the IFF_INACTIVE flag. 11506 * 11507 * As long as there are some addresses or multicast memberships on the 11508 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11509 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11510 * will be used for outbound packets. 11511 * 11512 * Caller needs to verify the validity of setting IFF_INACTIVE. 11513 */ 11514 static void 11515 phyint_inactive(phyint_t *phyi) 11516 { 11517 ill_t *ill_v4; 11518 ill_t *ill_v6; 11519 ipif_t *ipif; 11520 ilm_t *ilm; 11521 11522 ill_v4 = phyi->phyint_illv4; 11523 ill_v6 = phyi->phyint_illv6; 11524 11525 /* 11526 * No need for a lock while traversing the list since iam 11527 * a writer 11528 */ 11529 if (ill_v4 != NULL) { 11530 ASSERT(IAM_WRITER_ILL(ill_v4)); 11531 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11532 ipif = ipif->ipif_next) { 11533 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11534 mutex_enter(&phyi->phyint_lock); 11535 phyi->phyint_flags &= ~PHYI_INACTIVE; 11536 mutex_exit(&phyi->phyint_lock); 11537 return; 11538 } 11539 } 11540 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11541 ilm = ilm->ilm_next) { 11542 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11543 mutex_enter(&phyi->phyint_lock); 11544 phyi->phyint_flags &= ~PHYI_INACTIVE; 11545 mutex_exit(&phyi->phyint_lock); 11546 return; 11547 } 11548 } 11549 } 11550 if (ill_v6 != NULL) { 11551 ill_v6 = phyi->phyint_illv6; 11552 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11553 ipif = ipif->ipif_next) { 11554 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11555 mutex_enter(&phyi->phyint_lock); 11556 phyi->phyint_flags &= ~PHYI_INACTIVE; 11557 mutex_exit(&phyi->phyint_lock); 11558 return; 11559 } 11560 } 11561 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11562 ilm = ilm->ilm_next) { 11563 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11564 mutex_enter(&phyi->phyint_lock); 11565 phyi->phyint_flags &= ~PHYI_INACTIVE; 11566 mutex_exit(&phyi->phyint_lock); 11567 return; 11568 } 11569 } 11570 } 11571 mutex_enter(&phyi->phyint_lock); 11572 phyi->phyint_flags |= PHYI_INACTIVE; 11573 mutex_exit(&phyi->phyint_lock); 11574 } 11575 11576 /* 11577 * This function is called only when the phyint flags change. Currently 11578 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11579 * that we can select a good ill. 11580 */ 11581 static void 11582 ip_redo_nomination(phyint_t *phyi) 11583 { 11584 ill_t *ill_v4; 11585 11586 ill_v4 = phyi->phyint_illv4; 11587 11588 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11589 ASSERT(IAM_WRITER_ILL(ill_v4)); 11590 if (ill_v4->ill_group->illgrp_ill_count > 1) 11591 ill_nominate_bcast_rcv(ill_v4->ill_group); 11592 } 11593 } 11594 11595 /* 11596 * Heuristic to check if ill is INACTIVE. 11597 * Checks if ill has an ipif with an usable ip address. 11598 * 11599 * Return values: 11600 * B_TRUE - ill is INACTIVE; has no usable ipif 11601 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11602 */ 11603 static boolean_t 11604 ill_is_inactive(ill_t *ill) 11605 { 11606 ipif_t *ipif; 11607 11608 /* Check whether it is in an IPMP group */ 11609 if (ill->ill_phyint->phyint_groupname == NULL) 11610 return (B_FALSE); 11611 11612 if (ill->ill_ipif_up_count == 0) 11613 return (B_TRUE); 11614 11615 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11616 uint64_t flags = ipif->ipif_flags; 11617 11618 /* 11619 * This ipif is usable if it is IPIF_UP and not a 11620 * dedicated test address. A dedicated test address 11621 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11622 * (note in particular that V6 test addresses are 11623 * link-local data addresses and thus are marked 11624 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11625 */ 11626 if ((flags & IPIF_UP) && 11627 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11628 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11629 return (B_FALSE); 11630 } 11631 return (B_TRUE); 11632 } 11633 11634 /* 11635 * Set interface flags. 11636 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11637 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11638 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11639 * 11640 * NOTE : We really don't enforce that ipif_id zero should be used 11641 * for setting any flags other than IFF_LOGINT_FLAGS. This 11642 * is because applications generally does SICGLIFFLAGS and 11643 * ORs in the new flags (that affects the logical) and does a 11644 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11645 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11646 * flags that will be turned on is correct with respect to 11647 * ipif_id 0. For backward compatibility reasons, it is not done. 11648 */ 11649 /* ARGSUSED */ 11650 int 11651 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11652 ip_ioctl_cmd_t *ipip, void *if_req) 11653 { 11654 uint64_t turn_on; 11655 uint64_t turn_off; 11656 int err; 11657 phyint_t *phyi; 11658 ill_t *ill; 11659 uint64_t intf_flags; 11660 boolean_t phyint_flags_modified = B_FALSE; 11661 uint64_t flags; 11662 struct ifreq *ifr; 11663 struct lifreq *lifr; 11664 boolean_t set_linklocal = B_FALSE; 11665 boolean_t zero_source = B_FALSE; 11666 ip_stack_t *ipst; 11667 11668 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11669 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11670 11671 ASSERT(IAM_WRITER_IPIF(ipif)); 11672 11673 ill = ipif->ipif_ill; 11674 phyi = ill->ill_phyint; 11675 ipst = ill->ill_ipst; 11676 11677 if (ipip->ipi_cmd_type == IF_CMD) { 11678 ifr = (struct ifreq *)if_req; 11679 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11680 } else { 11681 lifr = (struct lifreq *)if_req; 11682 flags = lifr->lifr_flags; 11683 } 11684 11685 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11686 11687 /* 11688 * Have the flags been set correctly until now? 11689 */ 11690 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11691 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11692 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11693 /* 11694 * Compare the new flags to the old, and partition 11695 * into those coming on and those going off. 11696 * For the 16 bit command keep the bits above bit 16 unchanged. 11697 */ 11698 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11699 flags |= intf_flags & ~0xFFFF; 11700 11701 /* 11702 * First check which bits will change and then which will 11703 * go on and off 11704 */ 11705 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11706 if (!turn_on) 11707 return (0); /* No change */ 11708 11709 turn_off = intf_flags & turn_on; 11710 turn_on ^= turn_off; 11711 err = 0; 11712 11713 /* 11714 * Don't allow any bits belonging to the logical interface 11715 * to be set or cleared on the replacement ipif that was 11716 * created temporarily during a MOVE. 11717 */ 11718 if (ipif->ipif_replace_zero && 11719 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11720 return (EINVAL); 11721 } 11722 11723 /* 11724 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11725 * IPv6 interfaces. 11726 */ 11727 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11728 return (EINVAL); 11729 11730 /* 11731 * cannot turn off IFF_NOXMIT on VNI interfaces. 11732 */ 11733 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11734 return (EINVAL); 11735 11736 /* 11737 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11738 * interfaces. It makes no sense in that context. 11739 */ 11740 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11741 return (EINVAL); 11742 11743 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11744 zero_source = B_TRUE; 11745 11746 /* 11747 * For IPv6 ipif_id 0, don't allow the interface to be up without 11748 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11749 * If the link local address isn't set, and can be set, it will get 11750 * set later on in this function. 11751 */ 11752 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11753 (flags & IFF_UP) && !zero_source && 11754 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11755 if (ipif_cant_setlinklocal(ipif)) 11756 return (EINVAL); 11757 set_linklocal = B_TRUE; 11758 } 11759 11760 /* 11761 * ILL cannot be part of a usesrc group and and IPMP group at the 11762 * same time. No need to grab ill_g_usesrc_lock here, see 11763 * synchronization notes in ip.c 11764 */ 11765 if (turn_on & PHYI_STANDBY && 11766 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11767 return (EINVAL); 11768 } 11769 11770 /* 11771 * If we modify physical interface flags, we'll potentially need to 11772 * send up two routing socket messages for the changes (one for the 11773 * IPv4 ill, and another for the IPv6 ill). Note that here. 11774 */ 11775 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11776 phyint_flags_modified = B_TRUE; 11777 11778 /* 11779 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11780 * we need to flush the IRE_CACHES belonging to this ill. 11781 * We handle this case here without doing the DOWN/UP dance 11782 * like it is done for other flags. If some other flags are 11783 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11784 * below will handle it by bringing it down and then 11785 * bringing it UP. 11786 */ 11787 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11788 ill_t *ill_v4, *ill_v6; 11789 11790 ill_v4 = phyi->phyint_illv4; 11791 ill_v6 = phyi->phyint_illv6; 11792 11793 /* 11794 * First set the INACTIVE flag if needed. Then delete the ires. 11795 * ire_add will atomically prevent creating new IRE_CACHEs 11796 * unless hidden flag is set. 11797 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11798 */ 11799 if ((turn_on & PHYI_FAILED) && 11800 ((intf_flags & PHYI_STANDBY) || 11801 !ipst->ips_ipmp_enable_failback)) { 11802 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11803 phyi->phyint_flags &= ~PHYI_INACTIVE; 11804 } 11805 if ((turn_off & PHYI_FAILED) && 11806 ((intf_flags & PHYI_STANDBY) || 11807 (!ipst->ips_ipmp_enable_failback && 11808 ill_is_inactive(ill)))) { 11809 phyint_inactive(phyi); 11810 } 11811 11812 if (turn_on & PHYI_STANDBY) { 11813 /* 11814 * We implicitly set INACTIVE only when STANDBY is set. 11815 * INACTIVE is also set on non-STANDBY phyint when user 11816 * disables FAILBACK using configuration file. 11817 * Do not allow STANDBY to be set on such INACTIVE 11818 * phyint 11819 */ 11820 if (phyi->phyint_flags & PHYI_INACTIVE) 11821 return (EINVAL); 11822 if (!(phyi->phyint_flags & PHYI_FAILED)) 11823 phyint_inactive(phyi); 11824 } 11825 if (turn_off & PHYI_STANDBY) { 11826 if (ipst->ips_ipmp_enable_failback) { 11827 /* 11828 * Reset PHYI_INACTIVE. 11829 */ 11830 phyi->phyint_flags &= ~PHYI_INACTIVE; 11831 } else if (ill_is_inactive(ill) && 11832 !(phyi->phyint_flags & PHYI_FAILED)) { 11833 /* 11834 * Need to set INACTIVE, when user sets 11835 * STANDBY on a non-STANDBY phyint and 11836 * later resets STANDBY 11837 */ 11838 phyint_inactive(phyi); 11839 } 11840 } 11841 /* 11842 * We should always send up a message so that the 11843 * daemons come to know of it. Note that the zeroth 11844 * interface can be down and the check below for IPIF_UP 11845 * will not make sense as we are actually setting 11846 * a phyint flag here. We assume that the ipif used 11847 * is always the zeroth ipif. (ip_rts_ifmsg does not 11848 * send up any message for non-zero ipifs). 11849 */ 11850 phyint_flags_modified = B_TRUE; 11851 11852 if (ill_v4 != NULL) { 11853 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11854 IRE_CACHE, ill_stq_cache_delete, 11855 (char *)ill_v4, ill_v4); 11856 illgrp_reset_schednext(ill_v4); 11857 } 11858 if (ill_v6 != NULL) { 11859 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11860 IRE_CACHE, ill_stq_cache_delete, 11861 (char *)ill_v6, ill_v6); 11862 illgrp_reset_schednext(ill_v6); 11863 } 11864 } 11865 11866 /* 11867 * If ILLF_ROUTER changes, we need to change the ip forwarding 11868 * status of the interface and, if the interface is part of an IPMP 11869 * group, all other interfaces that are part of the same IPMP 11870 * group. 11871 */ 11872 if ((turn_on | turn_off) & ILLF_ROUTER) 11873 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11874 11875 /* 11876 * If the interface is not UP and we are not going to 11877 * bring it UP, record the flags and return. When the 11878 * interface comes UP later, the right actions will be 11879 * taken. 11880 */ 11881 if (!(ipif->ipif_flags & IPIF_UP) && 11882 !(turn_on & IPIF_UP)) { 11883 /* Record new flags in their respective places. */ 11884 mutex_enter(&ill->ill_lock); 11885 mutex_enter(&ill->ill_phyint->phyint_lock); 11886 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11887 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11888 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11889 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11890 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11891 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11892 mutex_exit(&ill->ill_lock); 11893 mutex_exit(&ill->ill_phyint->phyint_lock); 11894 11895 /* 11896 * We do the broadcast and nomination here rather 11897 * than waiting for a FAILOVER/FAILBACK to happen. In 11898 * the case of FAILBACK from INACTIVE standby to the 11899 * interface that has been repaired, PHYI_FAILED has not 11900 * been cleared yet. If there are only two interfaces in 11901 * that group, all we have is a FAILED and INACTIVE 11902 * interface. If we do the nomination soon after a failback, 11903 * the broadcast nomination code would select the 11904 * INACTIVE interface for receiving broadcasts as FAILED is 11905 * not yet cleared. As we don't want STANDBY/INACTIVE to 11906 * receive broadcast packets, we need to redo nomination 11907 * when the FAILED is cleared here. Thus, in general we 11908 * always do the nomination here for FAILED, STANDBY 11909 * and OFFLINE. 11910 */ 11911 if (((turn_on | turn_off) & 11912 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11913 ip_redo_nomination(phyi); 11914 } 11915 if (phyint_flags_modified) { 11916 if (phyi->phyint_illv4 != NULL) { 11917 ip_rts_ifmsg(phyi->phyint_illv4-> 11918 ill_ipif); 11919 } 11920 if (phyi->phyint_illv6 != NULL) { 11921 ip_rts_ifmsg(phyi->phyint_illv6-> 11922 ill_ipif); 11923 } 11924 } 11925 return (0); 11926 } else if (set_linklocal || zero_source) { 11927 mutex_enter(&ill->ill_lock); 11928 if (set_linklocal) 11929 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11930 if (zero_source) 11931 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11932 mutex_exit(&ill->ill_lock); 11933 } 11934 11935 /* 11936 * Disallow IPv6 interfaces coming up that have the unspecified address, 11937 * or point-to-point interfaces with an unspecified destination. We do 11938 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11939 * have a subnet assigned, which is how in.ndpd currently manages its 11940 * onlink prefix list when no addresses are configured with those 11941 * prefixes. 11942 */ 11943 if (ipif->ipif_isv6 && 11944 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11945 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11946 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11947 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11948 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11949 return (EINVAL); 11950 } 11951 11952 /* 11953 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11954 * from being brought up. 11955 */ 11956 if (!ipif->ipif_isv6 && 11957 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11958 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11959 return (EINVAL); 11960 } 11961 11962 /* 11963 * The only flag changes that we currently take specific action on 11964 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11965 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11966 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11967 * the flags and bringing it back up again. 11968 */ 11969 if ((turn_on|turn_off) & 11970 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11971 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11972 /* 11973 * Taking this ipif down, make sure we have 11974 * valid net and subnet bcast ire's for other 11975 * logical interfaces, if we need them. 11976 */ 11977 if (!ipif->ipif_isv6) 11978 ipif_check_bcast_ires(ipif); 11979 11980 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11981 !(turn_off & IPIF_UP)) { 11982 if (ipif->ipif_flags & IPIF_UP) 11983 ill->ill_logical_down = 1; 11984 turn_on &= ~IPIF_UP; 11985 } 11986 err = ipif_down(ipif, q, mp); 11987 ip1dbg(("ipif_down returns %d err ", err)); 11988 if (err == EINPROGRESS) 11989 return (err); 11990 ipif_down_tail(ipif); 11991 } 11992 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11993 } 11994 11995 static int 11996 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 11997 { 11998 ill_t *ill; 11999 phyint_t *phyi; 12000 uint64_t turn_on; 12001 uint64_t turn_off; 12002 uint64_t intf_flags; 12003 boolean_t phyint_flags_modified = B_FALSE; 12004 int err = 0; 12005 boolean_t set_linklocal = B_FALSE; 12006 boolean_t zero_source = B_FALSE; 12007 12008 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12009 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12010 12011 ASSERT(IAM_WRITER_IPIF(ipif)); 12012 12013 ill = ipif->ipif_ill; 12014 phyi = ill->ill_phyint; 12015 12016 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12017 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12018 12019 turn_off = intf_flags & turn_on; 12020 turn_on ^= turn_off; 12021 12022 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12023 phyint_flags_modified = B_TRUE; 12024 12025 /* 12026 * Now we change the flags. Track current value of 12027 * other flags in their respective places. 12028 */ 12029 mutex_enter(&ill->ill_lock); 12030 mutex_enter(&phyi->phyint_lock); 12031 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12032 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12033 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12034 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12035 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12036 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12037 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12038 set_linklocal = B_TRUE; 12039 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12040 } 12041 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12042 zero_source = B_TRUE; 12043 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12044 } 12045 mutex_exit(&ill->ill_lock); 12046 mutex_exit(&phyi->phyint_lock); 12047 12048 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12049 ip_redo_nomination(phyi); 12050 12051 if (set_linklocal) 12052 (void) ipif_setlinklocal(ipif); 12053 12054 if (zero_source) 12055 ipif->ipif_v6src_addr = ipv6_all_zeros; 12056 else 12057 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12058 12059 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 12060 /* 12061 * XXX ipif_up really does not know whether a phyint flags 12062 * was modified or not. So, it sends up information on 12063 * only one routing sockets message. As we don't bring up 12064 * the interface and also set STANDBY/FAILED simultaneously 12065 * it should be okay. 12066 */ 12067 err = ipif_up(ipif, q, mp); 12068 } else { 12069 /* 12070 * Make sure routing socket sees all changes to the flags. 12071 * ipif_up_done* handles this when we use ipif_up. 12072 */ 12073 if (phyint_flags_modified) { 12074 if (phyi->phyint_illv4 != NULL) { 12075 ip_rts_ifmsg(phyi->phyint_illv4-> 12076 ill_ipif); 12077 } 12078 if (phyi->phyint_illv6 != NULL) { 12079 ip_rts_ifmsg(phyi->phyint_illv6-> 12080 ill_ipif); 12081 } 12082 } else { 12083 ip_rts_ifmsg(ipif); 12084 } 12085 /* 12086 * Update the flags in SCTP's IPIF list, ipif_up() will do 12087 * this in need_up case. 12088 */ 12089 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12090 } 12091 return (err); 12092 } 12093 12094 /* 12095 * Restart the flags operation now that the refcounts have dropped to zero. 12096 */ 12097 /* ARGSUSED */ 12098 int 12099 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12100 ip_ioctl_cmd_t *ipip, void *if_req) 12101 { 12102 uint64_t flags; 12103 struct ifreq *ifr = if_req; 12104 struct lifreq *lifr = if_req; 12105 12106 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12107 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12108 12109 ipif_down_tail(ipif); 12110 if (ipip->ipi_cmd_type == IF_CMD) { 12111 /* cast to uint16_t prevents unwanted sign extension */ 12112 flags = (uint16_t)ifr->ifr_flags; 12113 } else { 12114 flags = lifr->lifr_flags; 12115 } 12116 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 12117 } 12118 12119 /* 12120 * Can operate on either a module or a driver queue. 12121 */ 12122 /* ARGSUSED */ 12123 int 12124 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12125 ip_ioctl_cmd_t *ipip, void *if_req) 12126 { 12127 /* 12128 * Has the flags been set correctly till now ? 12129 */ 12130 ill_t *ill = ipif->ipif_ill; 12131 phyint_t *phyi = ill->ill_phyint; 12132 12133 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12134 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12135 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12136 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12137 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12138 12139 /* 12140 * Need a lock since some flags can be set even when there are 12141 * references to the ipif. 12142 */ 12143 mutex_enter(&ill->ill_lock); 12144 if (ipip->ipi_cmd_type == IF_CMD) { 12145 struct ifreq *ifr = (struct ifreq *)if_req; 12146 12147 /* Get interface flags (low 16 only). */ 12148 ifr->ifr_flags = ((ipif->ipif_flags | 12149 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12150 } else { 12151 struct lifreq *lifr = (struct lifreq *)if_req; 12152 12153 /* Get interface flags. */ 12154 lifr->lifr_flags = ipif->ipif_flags | 12155 ill->ill_flags | phyi->phyint_flags; 12156 } 12157 mutex_exit(&ill->ill_lock); 12158 return (0); 12159 } 12160 12161 /* ARGSUSED */ 12162 int 12163 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12164 ip_ioctl_cmd_t *ipip, void *if_req) 12165 { 12166 int mtu; 12167 int ip_min_mtu; 12168 struct ifreq *ifr; 12169 struct lifreq *lifr; 12170 ire_t *ire; 12171 ip_stack_t *ipst; 12172 12173 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12174 ipif->ipif_id, (void *)ipif)); 12175 if (ipip->ipi_cmd_type == IF_CMD) { 12176 ifr = (struct ifreq *)if_req; 12177 mtu = ifr->ifr_metric; 12178 } else { 12179 lifr = (struct lifreq *)if_req; 12180 mtu = lifr->lifr_mtu; 12181 } 12182 12183 if (ipif->ipif_isv6) 12184 ip_min_mtu = IPV6_MIN_MTU; 12185 else 12186 ip_min_mtu = IP_MIN_MTU; 12187 12188 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12189 return (EINVAL); 12190 12191 /* 12192 * Change the MTU size in all relevant ire's. 12193 * Mtu change Vs. new ire creation - protocol below. 12194 * First change ipif_mtu and the ire_max_frag of the 12195 * interface ire. Then do an ire walk and change the 12196 * ire_max_frag of all affected ires. During ire_add 12197 * under the bucket lock, set the ire_max_frag of the 12198 * new ire being created from the ipif/ire from which 12199 * it is being derived. If an mtu change happens after 12200 * the ire is added, the new ire will be cleaned up. 12201 * Conversely if the mtu change happens before the ire 12202 * is added, ire_add will see the new value of the mtu. 12203 */ 12204 ipif->ipif_mtu = mtu; 12205 ipif->ipif_flags |= IPIF_FIXEDMTU; 12206 12207 if (ipif->ipif_isv6) 12208 ire = ipif_to_ire_v6(ipif); 12209 else 12210 ire = ipif_to_ire(ipif); 12211 if (ire != NULL) { 12212 ire->ire_max_frag = ipif->ipif_mtu; 12213 ire_refrele(ire); 12214 } 12215 ipst = ipif->ipif_ill->ill_ipst; 12216 if (ipif->ipif_flags & IPIF_UP) { 12217 if (ipif->ipif_isv6) 12218 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12219 ipst); 12220 else 12221 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12222 ipst); 12223 } 12224 /* Update the MTU in SCTP's list */ 12225 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12226 return (0); 12227 } 12228 12229 /* Get interface MTU. */ 12230 /* ARGSUSED */ 12231 int 12232 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12233 ip_ioctl_cmd_t *ipip, void *if_req) 12234 { 12235 struct ifreq *ifr; 12236 struct lifreq *lifr; 12237 12238 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12239 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12240 if (ipip->ipi_cmd_type == IF_CMD) { 12241 ifr = (struct ifreq *)if_req; 12242 ifr->ifr_metric = ipif->ipif_mtu; 12243 } else { 12244 lifr = (struct lifreq *)if_req; 12245 lifr->lifr_mtu = ipif->ipif_mtu; 12246 } 12247 return (0); 12248 } 12249 12250 /* Set interface broadcast address. */ 12251 /* ARGSUSED2 */ 12252 int 12253 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12254 ip_ioctl_cmd_t *ipip, void *if_req) 12255 { 12256 ipaddr_t addr; 12257 ire_t *ire; 12258 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12259 12260 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12261 ipif->ipif_id)); 12262 12263 ASSERT(IAM_WRITER_IPIF(ipif)); 12264 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12265 return (EADDRNOTAVAIL); 12266 12267 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12268 12269 if (sin->sin_family != AF_INET) 12270 return (EAFNOSUPPORT); 12271 12272 addr = sin->sin_addr.s_addr; 12273 if (ipif->ipif_flags & IPIF_UP) { 12274 /* 12275 * If we are already up, make sure the new 12276 * broadcast address makes sense. If it does, 12277 * there should be an IRE for it already. 12278 * Don't match on ipif, only on the ill 12279 * since we are sharing these now. Don't use 12280 * MATCH_IRE_ILL_GROUP as we are looking for 12281 * the broadcast ire on this ill and each ill 12282 * in the group has its own broadcast ire. 12283 */ 12284 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12285 ipif, ALL_ZONES, NULL, 12286 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12287 if (ire == NULL) { 12288 return (EINVAL); 12289 } else { 12290 ire_refrele(ire); 12291 } 12292 } 12293 /* 12294 * Changing the broadcast addr for this ipif. 12295 * Make sure we have valid net and subnet bcast 12296 * ire's for other logical interfaces, if needed. 12297 */ 12298 if (addr != ipif->ipif_brd_addr) 12299 ipif_check_bcast_ires(ipif); 12300 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12301 return (0); 12302 } 12303 12304 /* Get interface broadcast address. */ 12305 /* ARGSUSED */ 12306 int 12307 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12308 ip_ioctl_cmd_t *ipip, void *if_req) 12309 { 12310 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12311 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12312 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12313 return (EADDRNOTAVAIL); 12314 12315 /* IPIF_BROADCAST not possible with IPv6 */ 12316 ASSERT(!ipif->ipif_isv6); 12317 *sin = sin_null; 12318 sin->sin_family = AF_INET; 12319 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12320 return (0); 12321 } 12322 12323 /* 12324 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12325 */ 12326 /* ARGSUSED */ 12327 int 12328 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12329 ip_ioctl_cmd_t *ipip, void *if_req) 12330 { 12331 int err = 0; 12332 in6_addr_t v6mask; 12333 12334 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12335 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12336 12337 ASSERT(IAM_WRITER_IPIF(ipif)); 12338 12339 if (ipif->ipif_isv6) { 12340 sin6_t *sin6; 12341 12342 if (sin->sin_family != AF_INET6) 12343 return (EAFNOSUPPORT); 12344 12345 sin6 = (sin6_t *)sin; 12346 v6mask = sin6->sin6_addr; 12347 } else { 12348 ipaddr_t mask; 12349 12350 if (sin->sin_family != AF_INET) 12351 return (EAFNOSUPPORT); 12352 12353 mask = sin->sin_addr.s_addr; 12354 V4MASK_TO_V6(mask, v6mask); 12355 } 12356 12357 /* 12358 * No big deal if the interface isn't already up, or the mask 12359 * isn't really changing, or this is pt-pt. 12360 */ 12361 if (!(ipif->ipif_flags & IPIF_UP) || 12362 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12363 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12364 ipif->ipif_v6net_mask = v6mask; 12365 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12366 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12367 ipif->ipif_v6net_mask, 12368 ipif->ipif_v6subnet); 12369 } 12370 return (0); 12371 } 12372 /* 12373 * Make sure we have valid net and subnet broadcast ire's 12374 * for the old netmask, if needed by other logical interfaces. 12375 */ 12376 if (!ipif->ipif_isv6) 12377 ipif_check_bcast_ires(ipif); 12378 12379 err = ipif_logical_down(ipif, q, mp); 12380 if (err == EINPROGRESS) 12381 return (err); 12382 ipif_down_tail(ipif); 12383 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12384 return (err); 12385 } 12386 12387 static int 12388 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12389 { 12390 in6_addr_t v6mask; 12391 int err = 0; 12392 12393 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12394 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12395 12396 if (ipif->ipif_isv6) { 12397 sin6_t *sin6; 12398 12399 sin6 = (sin6_t *)sin; 12400 v6mask = sin6->sin6_addr; 12401 } else { 12402 ipaddr_t mask; 12403 12404 mask = sin->sin_addr.s_addr; 12405 V4MASK_TO_V6(mask, v6mask); 12406 } 12407 12408 ipif->ipif_v6net_mask = v6mask; 12409 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12410 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12411 ipif->ipif_v6subnet); 12412 } 12413 err = ipif_up(ipif, q, mp); 12414 12415 if (err == 0 || err == EINPROGRESS) { 12416 /* 12417 * The interface must be DL_BOUND if this packet has to 12418 * go out on the wire. Since we only go through a logical 12419 * down and are bound with the driver during an internal 12420 * down/up that is satisfied. 12421 */ 12422 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12423 /* Potentially broadcast an address mask reply. */ 12424 ipif_mask_reply(ipif); 12425 } 12426 } 12427 return (err); 12428 } 12429 12430 /* ARGSUSED */ 12431 int 12432 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12433 ip_ioctl_cmd_t *ipip, void *if_req) 12434 { 12435 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12436 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12437 ipif_down_tail(ipif); 12438 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12439 } 12440 12441 /* Get interface net mask. */ 12442 /* ARGSUSED */ 12443 int 12444 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12445 ip_ioctl_cmd_t *ipip, void *if_req) 12446 { 12447 struct lifreq *lifr = (struct lifreq *)if_req; 12448 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12449 12450 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12451 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12452 12453 /* 12454 * net mask can't change since we have a reference to the ipif. 12455 */ 12456 if (ipif->ipif_isv6) { 12457 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12458 *sin6 = sin6_null; 12459 sin6->sin6_family = AF_INET6; 12460 sin6->sin6_addr = ipif->ipif_v6net_mask; 12461 lifr->lifr_addrlen = 12462 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12463 } else { 12464 *sin = sin_null; 12465 sin->sin_family = AF_INET; 12466 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12467 if (ipip->ipi_cmd_type == LIF_CMD) { 12468 lifr->lifr_addrlen = 12469 ip_mask_to_plen(ipif->ipif_net_mask); 12470 } 12471 } 12472 return (0); 12473 } 12474 12475 /* ARGSUSED */ 12476 int 12477 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12478 ip_ioctl_cmd_t *ipip, void *if_req) 12479 { 12480 12481 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12482 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12483 /* 12484 * Set interface metric. We don't use this for 12485 * anything but we keep track of it in case it is 12486 * important to routing applications or such. 12487 */ 12488 if (ipip->ipi_cmd_type == IF_CMD) { 12489 struct ifreq *ifr; 12490 12491 ifr = (struct ifreq *)if_req; 12492 ipif->ipif_metric = ifr->ifr_metric; 12493 } else { 12494 struct lifreq *lifr; 12495 12496 lifr = (struct lifreq *)if_req; 12497 ipif->ipif_metric = lifr->lifr_metric; 12498 } 12499 return (0); 12500 } 12501 12502 /* ARGSUSED */ 12503 int 12504 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12505 ip_ioctl_cmd_t *ipip, void *if_req) 12506 { 12507 /* Get interface metric. */ 12508 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12509 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12510 if (ipip->ipi_cmd_type == IF_CMD) { 12511 struct ifreq *ifr; 12512 12513 ifr = (struct ifreq *)if_req; 12514 ifr->ifr_metric = ipif->ipif_metric; 12515 } else { 12516 struct lifreq *lifr; 12517 12518 lifr = (struct lifreq *)if_req; 12519 lifr->lifr_metric = ipif->ipif_metric; 12520 } 12521 12522 return (0); 12523 } 12524 12525 /* ARGSUSED */ 12526 int 12527 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12528 ip_ioctl_cmd_t *ipip, void *if_req) 12529 { 12530 12531 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12532 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12533 /* 12534 * Set the muxid returned from I_PLINK. 12535 */ 12536 if (ipip->ipi_cmd_type == IF_CMD) { 12537 struct ifreq *ifr = (struct ifreq *)if_req; 12538 12539 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12540 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12541 } else { 12542 struct lifreq *lifr = (struct lifreq *)if_req; 12543 12544 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12545 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12546 } 12547 return (0); 12548 } 12549 12550 /* ARGSUSED */ 12551 int 12552 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12553 ip_ioctl_cmd_t *ipip, void *if_req) 12554 { 12555 12556 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12557 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12558 /* 12559 * Get the muxid saved in ill for I_PUNLINK. 12560 */ 12561 if (ipip->ipi_cmd_type == IF_CMD) { 12562 struct ifreq *ifr = (struct ifreq *)if_req; 12563 12564 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12565 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12566 } else { 12567 struct lifreq *lifr = (struct lifreq *)if_req; 12568 12569 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12570 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12571 } 12572 return (0); 12573 } 12574 12575 /* 12576 * Set the subnet prefix. Does not modify the broadcast address. 12577 */ 12578 /* ARGSUSED */ 12579 int 12580 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12581 ip_ioctl_cmd_t *ipip, void *if_req) 12582 { 12583 int err = 0; 12584 in6_addr_t v6addr; 12585 in6_addr_t v6mask; 12586 boolean_t need_up = B_FALSE; 12587 int addrlen; 12588 12589 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12590 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12591 12592 ASSERT(IAM_WRITER_IPIF(ipif)); 12593 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12594 12595 if (ipif->ipif_isv6) { 12596 sin6_t *sin6; 12597 12598 if (sin->sin_family != AF_INET6) 12599 return (EAFNOSUPPORT); 12600 12601 sin6 = (sin6_t *)sin; 12602 v6addr = sin6->sin6_addr; 12603 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12604 return (EADDRNOTAVAIL); 12605 } else { 12606 ipaddr_t addr; 12607 12608 if (sin->sin_family != AF_INET) 12609 return (EAFNOSUPPORT); 12610 12611 addr = sin->sin_addr.s_addr; 12612 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12613 return (EADDRNOTAVAIL); 12614 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12615 /* Add 96 bits */ 12616 addrlen += IPV6_ABITS - IP_ABITS; 12617 } 12618 12619 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12620 return (EINVAL); 12621 12622 /* Check if bits in the address is set past the mask */ 12623 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12624 return (EINVAL); 12625 12626 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12627 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12628 return (0); /* No change */ 12629 12630 if (ipif->ipif_flags & IPIF_UP) { 12631 /* 12632 * If the interface is already marked up, 12633 * we call ipif_down which will take care 12634 * of ditching any IREs that have been set 12635 * up based on the old interface address. 12636 */ 12637 err = ipif_logical_down(ipif, q, mp); 12638 if (err == EINPROGRESS) 12639 return (err); 12640 ipif_down_tail(ipif); 12641 need_up = B_TRUE; 12642 } 12643 12644 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12645 return (err); 12646 } 12647 12648 static int 12649 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12650 queue_t *q, mblk_t *mp, boolean_t need_up) 12651 { 12652 ill_t *ill = ipif->ipif_ill; 12653 int err = 0; 12654 12655 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12656 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12657 12658 /* Set the new address. */ 12659 mutex_enter(&ill->ill_lock); 12660 ipif->ipif_v6net_mask = v6mask; 12661 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12662 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12663 ipif->ipif_v6subnet); 12664 } 12665 mutex_exit(&ill->ill_lock); 12666 12667 if (need_up) { 12668 /* 12669 * Now bring the interface back up. If this 12670 * is the only IPIF for the ILL, ipif_up 12671 * will have to re-bind to the device, so 12672 * we may get back EINPROGRESS, in which 12673 * case, this IOCTL will get completed in 12674 * ip_rput_dlpi when we see the DL_BIND_ACK. 12675 */ 12676 err = ipif_up(ipif, q, mp); 12677 if (err == EINPROGRESS) 12678 return (err); 12679 } 12680 return (err); 12681 } 12682 12683 /* ARGSUSED */ 12684 int 12685 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12686 ip_ioctl_cmd_t *ipip, void *if_req) 12687 { 12688 int addrlen; 12689 in6_addr_t v6addr; 12690 in6_addr_t v6mask; 12691 struct lifreq *lifr = (struct lifreq *)if_req; 12692 12693 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12694 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12695 ipif_down_tail(ipif); 12696 12697 addrlen = lifr->lifr_addrlen; 12698 if (ipif->ipif_isv6) { 12699 sin6_t *sin6; 12700 12701 sin6 = (sin6_t *)sin; 12702 v6addr = sin6->sin6_addr; 12703 } else { 12704 ipaddr_t addr; 12705 12706 addr = sin->sin_addr.s_addr; 12707 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12708 addrlen += IPV6_ABITS - IP_ABITS; 12709 } 12710 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12711 12712 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12713 } 12714 12715 /* ARGSUSED */ 12716 int 12717 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12718 ip_ioctl_cmd_t *ipip, void *if_req) 12719 { 12720 struct lifreq *lifr = (struct lifreq *)if_req; 12721 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12722 12723 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12724 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12725 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12726 12727 if (ipif->ipif_isv6) { 12728 *sin6 = sin6_null; 12729 sin6->sin6_family = AF_INET6; 12730 sin6->sin6_addr = ipif->ipif_v6subnet; 12731 lifr->lifr_addrlen = 12732 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12733 } else { 12734 *sin = sin_null; 12735 sin->sin_family = AF_INET; 12736 sin->sin_addr.s_addr = ipif->ipif_subnet; 12737 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12738 } 12739 return (0); 12740 } 12741 12742 /* 12743 * Set the IPv6 address token. 12744 */ 12745 /* ARGSUSED */ 12746 int 12747 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12748 ip_ioctl_cmd_t *ipi, void *if_req) 12749 { 12750 ill_t *ill = ipif->ipif_ill; 12751 int err; 12752 in6_addr_t v6addr; 12753 in6_addr_t v6mask; 12754 boolean_t need_up = B_FALSE; 12755 int i; 12756 sin6_t *sin6 = (sin6_t *)sin; 12757 struct lifreq *lifr = (struct lifreq *)if_req; 12758 int addrlen; 12759 12760 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12761 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12762 ASSERT(IAM_WRITER_IPIF(ipif)); 12763 12764 addrlen = lifr->lifr_addrlen; 12765 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12766 if (ipif->ipif_id != 0) 12767 return (EINVAL); 12768 12769 if (!ipif->ipif_isv6) 12770 return (EINVAL); 12771 12772 if (addrlen > IPV6_ABITS) 12773 return (EINVAL); 12774 12775 v6addr = sin6->sin6_addr; 12776 12777 /* 12778 * The length of the token is the length from the end. To get 12779 * the proper mask for this, compute the mask of the bits not 12780 * in the token; ie. the prefix, and then xor to get the mask. 12781 */ 12782 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12783 return (EINVAL); 12784 for (i = 0; i < 4; i++) { 12785 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12786 } 12787 12788 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12789 ill->ill_token_length == addrlen) 12790 return (0); /* No change */ 12791 12792 if (ipif->ipif_flags & IPIF_UP) { 12793 err = ipif_logical_down(ipif, q, mp); 12794 if (err == EINPROGRESS) 12795 return (err); 12796 ipif_down_tail(ipif); 12797 need_up = B_TRUE; 12798 } 12799 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12800 return (err); 12801 } 12802 12803 static int 12804 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12805 mblk_t *mp, boolean_t need_up) 12806 { 12807 in6_addr_t v6addr; 12808 in6_addr_t v6mask; 12809 ill_t *ill = ipif->ipif_ill; 12810 int i; 12811 int err = 0; 12812 12813 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12814 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12815 v6addr = sin6->sin6_addr; 12816 /* 12817 * The length of the token is the length from the end. To get 12818 * the proper mask for this, compute the mask of the bits not 12819 * in the token; ie. the prefix, and then xor to get the mask. 12820 */ 12821 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12822 for (i = 0; i < 4; i++) 12823 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12824 12825 mutex_enter(&ill->ill_lock); 12826 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12827 ill->ill_token_length = addrlen; 12828 mutex_exit(&ill->ill_lock); 12829 12830 if (need_up) { 12831 /* 12832 * Now bring the interface back up. If this 12833 * is the only IPIF for the ILL, ipif_up 12834 * will have to re-bind to the device, so 12835 * we may get back EINPROGRESS, in which 12836 * case, this IOCTL will get completed in 12837 * ip_rput_dlpi when we see the DL_BIND_ACK. 12838 */ 12839 err = ipif_up(ipif, q, mp); 12840 if (err == EINPROGRESS) 12841 return (err); 12842 } 12843 return (err); 12844 } 12845 12846 /* ARGSUSED */ 12847 int 12848 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12849 ip_ioctl_cmd_t *ipi, void *if_req) 12850 { 12851 ill_t *ill; 12852 sin6_t *sin6 = (sin6_t *)sin; 12853 struct lifreq *lifr = (struct lifreq *)if_req; 12854 12855 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12856 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12857 if (ipif->ipif_id != 0) 12858 return (EINVAL); 12859 12860 ill = ipif->ipif_ill; 12861 if (!ill->ill_isv6) 12862 return (ENXIO); 12863 12864 *sin6 = sin6_null; 12865 sin6->sin6_family = AF_INET6; 12866 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12867 sin6->sin6_addr = ill->ill_token; 12868 lifr->lifr_addrlen = ill->ill_token_length; 12869 return (0); 12870 } 12871 12872 /* 12873 * Set (hardware) link specific information that might override 12874 * what was acquired through the DL_INFO_ACK. 12875 * The logic is as follows. 12876 * 12877 * become exclusive 12878 * set CHANGING flag 12879 * change mtu on affected IREs 12880 * clear CHANGING flag 12881 * 12882 * An ire add that occurs before the CHANGING flag is set will have its mtu 12883 * changed by the ip_sioctl_lnkinfo. 12884 * 12885 * During the time the CHANGING flag is set, no new ires will be added to the 12886 * bucket, and ire add will fail (due the CHANGING flag). 12887 * 12888 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12889 * before it is added to the bucket. 12890 * 12891 * Obviously only 1 thread can set the CHANGING flag and we need to become 12892 * exclusive to set the flag. 12893 */ 12894 /* ARGSUSED */ 12895 int 12896 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12897 ip_ioctl_cmd_t *ipi, void *if_req) 12898 { 12899 ill_t *ill = ipif->ipif_ill; 12900 ipif_t *nipif; 12901 int ip_min_mtu; 12902 boolean_t mtu_walk = B_FALSE; 12903 struct lifreq *lifr = (struct lifreq *)if_req; 12904 lif_ifinfo_req_t *lir; 12905 ire_t *ire; 12906 12907 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12908 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12909 lir = &lifr->lifr_ifinfo; 12910 ASSERT(IAM_WRITER_IPIF(ipif)); 12911 12912 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12913 if (ipif->ipif_id != 0) 12914 return (EINVAL); 12915 12916 /* Set interface MTU. */ 12917 if (ipif->ipif_isv6) 12918 ip_min_mtu = IPV6_MIN_MTU; 12919 else 12920 ip_min_mtu = IP_MIN_MTU; 12921 12922 /* 12923 * Verify values before we set anything. Allow zero to 12924 * mean unspecified. 12925 */ 12926 if (lir->lir_maxmtu != 0 && 12927 (lir->lir_maxmtu > ill->ill_max_frag || 12928 lir->lir_maxmtu < ip_min_mtu)) 12929 return (EINVAL); 12930 if (lir->lir_reachtime != 0 && 12931 lir->lir_reachtime > ND_MAX_REACHTIME) 12932 return (EINVAL); 12933 if (lir->lir_reachretrans != 0 && 12934 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12935 return (EINVAL); 12936 12937 mutex_enter(&ill->ill_lock); 12938 ill->ill_state_flags |= ILL_CHANGING; 12939 for (nipif = ill->ill_ipif; nipif != NULL; 12940 nipif = nipif->ipif_next) { 12941 nipif->ipif_state_flags |= IPIF_CHANGING; 12942 } 12943 12944 mutex_exit(&ill->ill_lock); 12945 12946 if (lir->lir_maxmtu != 0) { 12947 ill->ill_max_mtu = lir->lir_maxmtu; 12948 ill->ill_mtu_userspecified = 1; 12949 mtu_walk = B_TRUE; 12950 } 12951 12952 if (lir->lir_reachtime != 0) 12953 ill->ill_reachable_time = lir->lir_reachtime; 12954 12955 if (lir->lir_reachretrans != 0) 12956 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12957 12958 ill->ill_max_hops = lir->lir_maxhops; 12959 12960 ill->ill_max_buf = ND_MAX_Q; 12961 12962 if (mtu_walk) { 12963 /* 12964 * Set the MTU on all ipifs associated with this ill except 12965 * for those whose MTU was fixed via SIOCSLIFMTU. 12966 */ 12967 for (nipif = ill->ill_ipif; nipif != NULL; 12968 nipif = nipif->ipif_next) { 12969 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12970 continue; 12971 12972 nipif->ipif_mtu = ill->ill_max_mtu; 12973 12974 if (!(nipif->ipif_flags & IPIF_UP)) 12975 continue; 12976 12977 if (nipif->ipif_isv6) 12978 ire = ipif_to_ire_v6(nipif); 12979 else 12980 ire = ipif_to_ire(nipif); 12981 if (ire != NULL) { 12982 ire->ire_max_frag = ipif->ipif_mtu; 12983 ire_refrele(ire); 12984 } 12985 12986 ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change, 12987 nipif, ill); 12988 } 12989 } 12990 12991 mutex_enter(&ill->ill_lock); 12992 for (nipif = ill->ill_ipif; nipif != NULL; 12993 nipif = nipif->ipif_next) { 12994 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12995 } 12996 ILL_UNMARK_CHANGING(ill); 12997 mutex_exit(&ill->ill_lock); 12998 12999 return (0); 13000 } 13001 13002 /* ARGSUSED */ 13003 int 13004 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13005 ip_ioctl_cmd_t *ipi, void *if_req) 13006 { 13007 struct lif_ifinfo_req *lir; 13008 ill_t *ill = ipif->ipif_ill; 13009 13010 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13011 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13012 if (ipif->ipif_id != 0) 13013 return (EINVAL); 13014 13015 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13016 lir->lir_maxhops = ill->ill_max_hops; 13017 lir->lir_reachtime = ill->ill_reachable_time; 13018 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13019 lir->lir_maxmtu = ill->ill_max_mtu; 13020 13021 return (0); 13022 } 13023 13024 /* 13025 * Return best guess as to the subnet mask for the specified address. 13026 * Based on the subnet masks for all the configured interfaces. 13027 * 13028 * We end up returning a zero mask in the case of default, multicast or 13029 * experimental. 13030 */ 13031 static ipaddr_t 13032 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13033 { 13034 ipaddr_t net_mask; 13035 ill_t *ill; 13036 ipif_t *ipif; 13037 ill_walk_context_t ctx; 13038 ipif_t *fallback_ipif = NULL; 13039 13040 net_mask = ip_net_mask(addr); 13041 if (net_mask == 0) { 13042 *ipifp = NULL; 13043 return (0); 13044 } 13045 13046 /* Let's check to see if this is maybe a local subnet route. */ 13047 /* this function only applies to IPv4 interfaces */ 13048 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13049 ill = ILL_START_WALK_V4(&ctx, ipst); 13050 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13051 mutex_enter(&ill->ill_lock); 13052 for (ipif = ill->ill_ipif; ipif != NULL; 13053 ipif = ipif->ipif_next) { 13054 if (!IPIF_CAN_LOOKUP(ipif)) 13055 continue; 13056 if (!(ipif->ipif_flags & IPIF_UP)) 13057 continue; 13058 if ((ipif->ipif_subnet & net_mask) == 13059 (addr & net_mask)) { 13060 /* 13061 * Don't trust pt-pt interfaces if there are 13062 * other interfaces. 13063 */ 13064 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13065 if (fallback_ipif == NULL) { 13066 ipif_refhold_locked(ipif); 13067 fallback_ipif = ipif; 13068 } 13069 continue; 13070 } 13071 13072 /* 13073 * Fine. Just assume the same net mask as the 13074 * directly attached subnet interface is using. 13075 */ 13076 ipif_refhold_locked(ipif); 13077 mutex_exit(&ill->ill_lock); 13078 rw_exit(&ipst->ips_ill_g_lock); 13079 if (fallback_ipif != NULL) 13080 ipif_refrele(fallback_ipif); 13081 *ipifp = ipif; 13082 return (ipif->ipif_net_mask); 13083 } 13084 } 13085 mutex_exit(&ill->ill_lock); 13086 } 13087 rw_exit(&ipst->ips_ill_g_lock); 13088 13089 *ipifp = fallback_ipif; 13090 return ((fallback_ipif != NULL) ? 13091 fallback_ipif->ipif_net_mask : net_mask); 13092 } 13093 13094 /* 13095 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13096 */ 13097 static void 13098 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13099 { 13100 IOCP iocp; 13101 ipft_t *ipft; 13102 ipllc_t *ipllc; 13103 mblk_t *mp1; 13104 cred_t *cr; 13105 int error = 0; 13106 conn_t *connp; 13107 13108 ip1dbg(("ip_wput_ioctl")); 13109 iocp = (IOCP)mp->b_rptr; 13110 mp1 = mp->b_cont; 13111 if (mp1 == NULL) { 13112 iocp->ioc_error = EINVAL; 13113 mp->b_datap->db_type = M_IOCNAK; 13114 iocp->ioc_count = 0; 13115 qreply(q, mp); 13116 return; 13117 } 13118 13119 /* 13120 * These IOCTLs provide various control capabilities to 13121 * upstream agents such as ULPs and processes. There 13122 * are currently two such IOCTLs implemented. They 13123 * are used by TCP to provide update information for 13124 * existing IREs and to forcibly delete an IRE for a 13125 * host that is not responding, thereby forcing an 13126 * attempt at a new route. 13127 */ 13128 iocp->ioc_error = EINVAL; 13129 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13130 goto done; 13131 13132 ipllc = (ipllc_t *)mp1->b_rptr; 13133 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13134 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13135 break; 13136 } 13137 /* 13138 * prefer credential from mblk over ioctl; 13139 * see ip_sioctl_copyin_setup 13140 */ 13141 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13142 13143 /* 13144 * Refhold the conn in case the request gets queued up in some lookup 13145 */ 13146 ASSERT(CONN_Q(q)); 13147 connp = Q_TO_CONN(q); 13148 CONN_INC_REF(connp); 13149 if (ipft->ipft_pfi && 13150 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13151 pullupmsg(mp1, ipft->ipft_min_size))) { 13152 error = (*ipft->ipft_pfi)(q, 13153 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13154 } 13155 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13156 /* 13157 * CONN_OPER_PENDING_DONE happens in the function called 13158 * through ipft_pfi above. 13159 */ 13160 return; 13161 } 13162 13163 CONN_OPER_PENDING_DONE(connp); 13164 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13165 freemsg(mp); 13166 return; 13167 } 13168 iocp->ioc_error = error; 13169 13170 done: 13171 mp->b_datap->db_type = M_IOCACK; 13172 if (iocp->ioc_error) 13173 iocp->ioc_count = 0; 13174 qreply(q, mp); 13175 } 13176 13177 /* 13178 * Lookup an ipif using the sequence id (ipif_seqid) 13179 */ 13180 ipif_t * 13181 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13182 { 13183 ipif_t *ipif; 13184 13185 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13186 13187 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13188 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13189 return (ipif); 13190 } 13191 return (NULL); 13192 } 13193 13194 /* 13195 * Assign a unique id for the ipif. This is used later when we send 13196 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13197 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13198 * IRE is added, we verify that ipif has not disappeared. 13199 */ 13200 13201 static void 13202 ipif_assign_seqid(ipif_t *ipif) 13203 { 13204 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13205 13206 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13207 } 13208 13209 /* 13210 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13211 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13212 * be inserted into the first space available in the list. The value of 13213 * ipif_id will then be set to the appropriate value for its position. 13214 */ 13215 static int 13216 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13217 { 13218 ill_t *ill; 13219 ipif_t *tipif; 13220 ipif_t **tipifp; 13221 int id; 13222 ip_stack_t *ipst; 13223 13224 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13225 IAM_WRITER_IPIF(ipif)); 13226 13227 ill = ipif->ipif_ill; 13228 ASSERT(ill != NULL); 13229 ipst = ill->ill_ipst; 13230 13231 /* 13232 * In the case of lo0:0 we already hold the ill_g_lock. 13233 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13234 * ipif_insert. Another such caller is ipif_move. 13235 */ 13236 if (acquire_g_lock) 13237 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13238 if (acquire_ill_lock) 13239 mutex_enter(&ill->ill_lock); 13240 id = ipif->ipif_id; 13241 tipifp = &(ill->ill_ipif); 13242 if (id == -1) { /* need to find a real id */ 13243 id = 0; 13244 while ((tipif = *tipifp) != NULL) { 13245 ASSERT(tipif->ipif_id >= id); 13246 if (tipif->ipif_id != id) 13247 break; /* non-consecutive id */ 13248 id++; 13249 tipifp = &(tipif->ipif_next); 13250 } 13251 /* limit number of logical interfaces */ 13252 if (id >= ipst->ips_ip_addrs_per_if) { 13253 if (acquire_ill_lock) 13254 mutex_exit(&ill->ill_lock); 13255 if (acquire_g_lock) 13256 rw_exit(&ipst->ips_ill_g_lock); 13257 return (-1); 13258 } 13259 ipif->ipif_id = id; /* assign new id */ 13260 } else if (id < ipst->ips_ip_addrs_per_if) { 13261 /* we have a real id; insert ipif in the right place */ 13262 while ((tipif = *tipifp) != NULL) { 13263 ASSERT(tipif->ipif_id != id); 13264 if (tipif->ipif_id > id) 13265 break; /* found correct location */ 13266 tipifp = &(tipif->ipif_next); 13267 } 13268 } else { 13269 if (acquire_ill_lock) 13270 mutex_exit(&ill->ill_lock); 13271 if (acquire_g_lock) 13272 rw_exit(&ipst->ips_ill_g_lock); 13273 return (-1); 13274 } 13275 13276 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13277 13278 ipif->ipif_next = tipif; 13279 *tipifp = ipif; 13280 if (acquire_ill_lock) 13281 mutex_exit(&ill->ill_lock); 13282 if (acquire_g_lock) 13283 rw_exit(&ipst->ips_ill_g_lock); 13284 return (0); 13285 } 13286 13287 static void 13288 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13289 { 13290 ipif_t **ipifp; 13291 ill_t *ill = ipif->ipif_ill; 13292 13293 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13294 if (acquire_ill_lock) 13295 mutex_enter(&ill->ill_lock); 13296 else 13297 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13298 13299 ipifp = &ill->ill_ipif; 13300 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13301 if (*ipifp == ipif) { 13302 *ipifp = ipif->ipif_next; 13303 break; 13304 } 13305 } 13306 13307 if (acquire_ill_lock) 13308 mutex_exit(&ill->ill_lock); 13309 } 13310 13311 /* 13312 * Allocate and initialize a new interface control structure. (Always 13313 * called as writer.) 13314 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13315 * is not part of the global linked list of ills. ipif_seqid is unique 13316 * in the system and to preserve the uniqueness, it is assigned only 13317 * when ill becomes part of the global list. At that point ill will 13318 * have a name. If it doesn't get assigned here, it will get assigned 13319 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13320 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13321 * the interface flags or any other information from the DL_INFO_ACK for 13322 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13323 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13324 * second DL_INFO_ACK comes in from the driver. 13325 */ 13326 static ipif_t * 13327 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13328 { 13329 ipif_t *ipif; 13330 phyint_t *phyi; 13331 13332 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13333 ill->ill_name, id, (void *)ill)); 13334 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13335 13336 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13337 return (NULL); 13338 *ipif = ipif_zero; /* start clean */ 13339 13340 ipif->ipif_ill = ill; 13341 ipif->ipif_id = id; /* could be -1 */ 13342 /* 13343 * Inherit the zoneid from the ill; for the shared stack instance 13344 * this is always the global zone 13345 */ 13346 ipif->ipif_zoneid = ill->ill_zoneid; 13347 13348 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13349 13350 ipif->ipif_refcnt = 0; 13351 ipif->ipif_saved_ire_cnt = 0; 13352 13353 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13354 mi_free(ipif); 13355 return (NULL); 13356 } 13357 /* -1 id should have been replaced by real id */ 13358 id = ipif->ipif_id; 13359 ASSERT(id >= 0); 13360 13361 if (ill->ill_name[0] != '\0') 13362 ipif_assign_seqid(ipif); 13363 13364 /* 13365 * Keep a copy of original id in ipif_orig_ipifid. Failback 13366 * will attempt to restore the original id. The SIOCSLIFOINDEX 13367 * ioctl sets ipif_orig_ipifid to zero. 13368 */ 13369 ipif->ipif_orig_ipifid = id; 13370 13371 /* 13372 * We grab the ill_lock and phyint_lock to protect the flag changes. 13373 * The ipif is still not up and can't be looked up until the 13374 * ioctl completes and the IPIF_CHANGING flag is cleared. 13375 */ 13376 mutex_enter(&ill->ill_lock); 13377 mutex_enter(&ill->ill_phyint->phyint_lock); 13378 /* 13379 * Set the running flag when logical interface zero is created. 13380 * For subsequent logical interfaces, a DLPI link down 13381 * notification message may have cleared the running flag to 13382 * indicate the link is down, so we shouldn't just blindly set it. 13383 */ 13384 if (id == 0) 13385 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13386 ipif->ipif_ire_type = ire_type; 13387 phyi = ill->ill_phyint; 13388 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13389 13390 if (ipif->ipif_isv6) { 13391 ill->ill_flags |= ILLF_IPV6; 13392 } else { 13393 ipaddr_t inaddr_any = INADDR_ANY; 13394 13395 ill->ill_flags |= ILLF_IPV4; 13396 13397 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13398 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13399 &ipif->ipif_v6lcl_addr); 13400 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13401 &ipif->ipif_v6src_addr); 13402 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13403 &ipif->ipif_v6subnet); 13404 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13405 &ipif->ipif_v6net_mask); 13406 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13407 &ipif->ipif_v6brd_addr); 13408 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13409 &ipif->ipif_v6pp_dst_addr); 13410 } 13411 13412 /* 13413 * Don't set the interface flags etc. now, will do it in 13414 * ip_ll_subnet_defaults. 13415 */ 13416 if (!initialize) { 13417 mutex_exit(&ill->ill_lock); 13418 mutex_exit(&ill->ill_phyint->phyint_lock); 13419 return (ipif); 13420 } 13421 ipif->ipif_mtu = ill->ill_max_mtu; 13422 13423 if (ill->ill_bcast_addr_length != 0) { 13424 /* 13425 * Later detect lack of DLPI driver multicast 13426 * capability by catching DL_ENABMULTI errors in 13427 * ip_rput_dlpi. 13428 */ 13429 ill->ill_flags |= ILLF_MULTICAST; 13430 if (!ipif->ipif_isv6) 13431 ipif->ipif_flags |= IPIF_BROADCAST; 13432 } else { 13433 if (ill->ill_net_type != IRE_LOOPBACK) { 13434 if (ipif->ipif_isv6) 13435 /* 13436 * Note: xresolv interfaces will eventually need 13437 * NOARP set here as well, but that will require 13438 * those external resolvers to have some 13439 * knowledge of that flag and act appropriately. 13440 * Not to be changed at present. 13441 */ 13442 ill->ill_flags |= ILLF_NONUD; 13443 else 13444 ill->ill_flags |= ILLF_NOARP; 13445 } 13446 if (ill->ill_phys_addr_length == 0) { 13447 if (ill->ill_media && 13448 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13449 ipif->ipif_flags |= IPIF_NOXMIT; 13450 phyi->phyint_flags |= PHYI_VIRTUAL; 13451 } else { 13452 /* pt-pt supports multicast. */ 13453 ill->ill_flags |= ILLF_MULTICAST; 13454 if (ill->ill_net_type == IRE_LOOPBACK) { 13455 phyi->phyint_flags |= 13456 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13457 } else { 13458 ipif->ipif_flags |= IPIF_POINTOPOINT; 13459 } 13460 } 13461 } 13462 } 13463 mutex_exit(&ill->ill_lock); 13464 mutex_exit(&ill->ill_phyint->phyint_lock); 13465 return (ipif); 13466 } 13467 13468 /* 13469 * If appropriate, send a message up to the resolver delete the entry 13470 * for the address of this interface which is going out of business. 13471 * (Always called as writer). 13472 * 13473 * NOTE : We need to check for NULL mps as some of the fields are 13474 * initialized only for some interface types. See ipif_resolver_up() 13475 * for details. 13476 */ 13477 void 13478 ipif_arp_down(ipif_t *ipif) 13479 { 13480 mblk_t *mp; 13481 ill_t *ill = ipif->ipif_ill; 13482 13483 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13484 ASSERT(IAM_WRITER_IPIF(ipif)); 13485 13486 /* Delete the mapping for the local address */ 13487 mp = ipif->ipif_arp_del_mp; 13488 if (mp != NULL) { 13489 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13490 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13491 putnext(ill->ill_rq, mp); 13492 ipif->ipif_arp_del_mp = NULL; 13493 } 13494 13495 /* 13496 * If this is the last ipif that is going down and there are no 13497 * duplicate addresses we may yet attempt to re-probe, then we need to 13498 * clean up ARP completely. 13499 */ 13500 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13501 13502 /* Send up AR_INTERFACE_DOWN message */ 13503 mp = ill->ill_arp_down_mp; 13504 if (mp != NULL) { 13505 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13506 *(unsigned *)mp->b_rptr, ill->ill_name, 13507 ipif->ipif_id)); 13508 putnext(ill->ill_rq, mp); 13509 ill->ill_arp_down_mp = NULL; 13510 } 13511 13512 /* Tell ARP to delete the multicast mappings */ 13513 mp = ill->ill_arp_del_mapping_mp; 13514 if (mp != NULL) { 13515 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13516 *(unsigned *)mp->b_rptr, ill->ill_name, 13517 ipif->ipif_id)); 13518 putnext(ill->ill_rq, mp); 13519 ill->ill_arp_del_mapping_mp = NULL; 13520 } 13521 } 13522 } 13523 13524 /* 13525 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13526 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13527 * that it wants the add_mp allocated in this function to be returned 13528 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13529 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13530 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13531 * as it does a ipif_arp_down after calling this function - which will 13532 * remove what we add here. 13533 * 13534 * Returns -1 on failures and 0 on success. 13535 */ 13536 int 13537 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13538 { 13539 mblk_t *del_mp = NULL; 13540 mblk_t *add_mp = NULL; 13541 mblk_t *mp; 13542 ill_t *ill = ipif->ipif_ill; 13543 phyint_t *phyi = ill->ill_phyint; 13544 ipaddr_t addr, mask, extract_mask = 0; 13545 arma_t *arma; 13546 uint8_t *maddr, *bphys_addr; 13547 uint32_t hw_start; 13548 dl_unitdata_req_t *dlur; 13549 13550 ASSERT(IAM_WRITER_IPIF(ipif)); 13551 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13552 return (0); 13553 13554 /* 13555 * Delete the existing mapping from ARP. Normally ipif_down 13556 * -> ipif_arp_down should send this up to ARP. The only 13557 * reason we would find this when we are switching from 13558 * Multicast to Broadcast where we did not do a down. 13559 */ 13560 mp = ill->ill_arp_del_mapping_mp; 13561 if (mp != NULL) { 13562 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13563 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13564 putnext(ill->ill_rq, mp); 13565 ill->ill_arp_del_mapping_mp = NULL; 13566 } 13567 13568 if (arp_add_mapping_mp != NULL) 13569 *arp_add_mapping_mp = NULL; 13570 13571 /* 13572 * Check that the address is not to long for the constant 13573 * length reserved in the template arma_t. 13574 */ 13575 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13576 return (-1); 13577 13578 /* Add mapping mblk */ 13579 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13580 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13581 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13582 (caddr_t)&addr); 13583 if (add_mp == NULL) 13584 return (-1); 13585 arma = (arma_t *)add_mp->b_rptr; 13586 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13587 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13588 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13589 13590 /* 13591 * Determine the broadcast address. 13592 */ 13593 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13594 if (ill->ill_sap_length < 0) 13595 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13596 else 13597 bphys_addr = (uchar_t *)dlur + 13598 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13599 /* 13600 * Check PHYI_MULTI_BCAST and length of physical 13601 * address to determine if we use the mapping or the 13602 * broadcast address. 13603 */ 13604 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13605 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13606 bphys_addr, maddr, &hw_start, &extract_mask)) 13607 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13608 13609 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13610 (ill->ill_flags & ILLF_MULTICAST)) { 13611 /* Make sure this will not match the "exact" entry. */ 13612 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13613 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13614 (caddr_t)&addr); 13615 if (del_mp == NULL) { 13616 freemsg(add_mp); 13617 return (-1); 13618 } 13619 bcopy(&extract_mask, (char *)arma + 13620 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13621 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13622 /* Use link-layer broadcast address for MULTI_BCAST */ 13623 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13624 ip2dbg(("ipif_arp_setup_multicast: adding" 13625 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13626 } else { 13627 arma->arma_hw_mapping_start = hw_start; 13628 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13629 " ARP setup for %s\n", ill->ill_name)); 13630 } 13631 } else { 13632 freemsg(add_mp); 13633 ASSERT(del_mp == NULL); 13634 /* It is neither MULTICAST nor MULTI_BCAST */ 13635 return (0); 13636 } 13637 ASSERT(add_mp != NULL && del_mp != NULL); 13638 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13639 ill->ill_arp_del_mapping_mp = del_mp; 13640 if (arp_add_mapping_mp != NULL) { 13641 /* The caller just wants the mblks allocated */ 13642 *arp_add_mapping_mp = add_mp; 13643 } else { 13644 /* The caller wants us to send it to arp */ 13645 putnext(ill->ill_rq, add_mp); 13646 } 13647 return (0); 13648 } 13649 13650 /* 13651 * Get the resolver set up for a new interface address. 13652 * (Always called as writer.) 13653 * Called both for IPv4 and IPv6 interfaces, 13654 * though it only sets up the resolver for v6 13655 * if it's an xresolv interface (one using an external resolver). 13656 * Honors ILLF_NOARP. 13657 * The enumerated value res_act is used to tune the behavior. 13658 * If set to Res_act_initial, then we set up all the resolver 13659 * structures for a new interface. If set to Res_act_move, then 13660 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13661 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13662 * asynchronous hardware address change notification. If set to 13663 * Res_act_defend, then we tell ARP that it needs to send a single 13664 * gratuitous message in defense of the address. 13665 * Returns error on failure. 13666 */ 13667 int 13668 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13669 { 13670 caddr_t addr; 13671 mblk_t *arp_up_mp = NULL; 13672 mblk_t *arp_down_mp = NULL; 13673 mblk_t *arp_add_mp = NULL; 13674 mblk_t *arp_del_mp = NULL; 13675 mblk_t *arp_add_mapping_mp = NULL; 13676 mblk_t *arp_del_mapping_mp = NULL; 13677 ill_t *ill = ipif->ipif_ill; 13678 uchar_t *area_p = NULL; 13679 uchar_t *ared_p = NULL; 13680 int err = ENOMEM; 13681 boolean_t was_dup; 13682 13683 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13684 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13685 ASSERT(IAM_WRITER_IPIF(ipif)); 13686 13687 was_dup = B_FALSE; 13688 if (res_act == Res_act_initial) { 13689 ipif->ipif_addr_ready = 0; 13690 /* 13691 * We're bringing an interface up here. There's no way that we 13692 * should need to shut down ARP now. 13693 */ 13694 mutex_enter(&ill->ill_lock); 13695 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13696 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13697 ill->ill_ipif_dup_count--; 13698 was_dup = B_TRUE; 13699 } 13700 mutex_exit(&ill->ill_lock); 13701 } 13702 if (ipif->ipif_recovery_id != 0) 13703 (void) untimeout(ipif->ipif_recovery_id); 13704 ipif->ipif_recovery_id = 0; 13705 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13706 ipif->ipif_addr_ready = 1; 13707 return (0); 13708 } 13709 /* NDP will set the ipif_addr_ready flag when it's ready */ 13710 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13711 return (0); 13712 13713 if (ill->ill_isv6) { 13714 /* 13715 * External resolver for IPv6 13716 */ 13717 ASSERT(res_act == Res_act_initial); 13718 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13719 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13720 area_p = (uchar_t *)&ip6_area_template; 13721 ared_p = (uchar_t *)&ip6_ared_template; 13722 } 13723 } else { 13724 /* 13725 * IPv4 arp case. If the ARP stream has already started 13726 * closing, fail this request for ARP bringup. Else 13727 * record the fact that an ARP bringup is pending. 13728 */ 13729 mutex_enter(&ill->ill_lock); 13730 if (ill->ill_arp_closing) { 13731 mutex_exit(&ill->ill_lock); 13732 err = EINVAL; 13733 goto failed; 13734 } else { 13735 if (ill->ill_ipif_up_count == 0 && 13736 ill->ill_ipif_dup_count == 0 && !was_dup) 13737 ill->ill_arp_bringup_pending = 1; 13738 mutex_exit(&ill->ill_lock); 13739 } 13740 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13741 addr = (caddr_t)&ipif->ipif_lcl_addr; 13742 area_p = (uchar_t *)&ip_area_template; 13743 ared_p = (uchar_t *)&ip_ared_template; 13744 } 13745 } 13746 13747 /* 13748 * Add an entry for the local address in ARP only if it 13749 * is not UNNUMBERED and the address is not INADDR_ANY. 13750 */ 13751 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13752 area_t *area; 13753 13754 /* Now ask ARP to publish our address. */ 13755 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13756 if (arp_add_mp == NULL) 13757 goto failed; 13758 area = (area_t *)arp_add_mp->b_rptr; 13759 if (res_act != Res_act_initial) { 13760 /* 13761 * Copy the new hardware address and length into 13762 * arp_add_mp to be sent to ARP. 13763 */ 13764 area->area_hw_addr_length = ill->ill_phys_addr_length; 13765 bcopy(ill->ill_phys_addr, 13766 ((char *)area + area->area_hw_addr_offset), 13767 area->area_hw_addr_length); 13768 } 13769 13770 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13771 ACE_F_MYADDR; 13772 13773 if (res_act == Res_act_defend) { 13774 area->area_flags |= ACE_F_DEFEND; 13775 /* 13776 * If we're just defending our address now, then 13777 * there's no need to set up ARP multicast mappings. 13778 * The publish command is enough. 13779 */ 13780 goto done; 13781 } 13782 13783 if (res_act != Res_act_initial) 13784 goto arp_setup_multicast; 13785 13786 /* 13787 * Allocate an ARP deletion message so we know we can tell ARP 13788 * when the interface goes down. 13789 */ 13790 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13791 if (arp_del_mp == NULL) 13792 goto failed; 13793 13794 } else { 13795 if (res_act != Res_act_initial) 13796 goto done; 13797 } 13798 /* 13799 * Need to bring up ARP or setup multicast mapping only 13800 * when the first interface is coming UP. 13801 */ 13802 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13803 was_dup) { 13804 goto done; 13805 } 13806 13807 /* 13808 * Allocate an ARP down message (to be saved) and an ARP up 13809 * message. 13810 */ 13811 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13812 if (arp_down_mp == NULL) 13813 goto failed; 13814 13815 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13816 if (arp_up_mp == NULL) 13817 goto failed; 13818 13819 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13820 goto done; 13821 13822 arp_setup_multicast: 13823 /* 13824 * Setup the multicast mappings. This function initializes 13825 * ill_arp_del_mapping_mp also. This does not need to be done for 13826 * IPv6. 13827 */ 13828 if (!ill->ill_isv6) { 13829 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13830 if (err != 0) 13831 goto failed; 13832 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13833 ASSERT(arp_add_mapping_mp != NULL); 13834 } 13835 13836 done: 13837 if (arp_del_mp != NULL) { 13838 ASSERT(ipif->ipif_arp_del_mp == NULL); 13839 ipif->ipif_arp_del_mp = arp_del_mp; 13840 } 13841 if (arp_down_mp != NULL) { 13842 ASSERT(ill->ill_arp_down_mp == NULL); 13843 ill->ill_arp_down_mp = arp_down_mp; 13844 } 13845 if (arp_del_mapping_mp != NULL) { 13846 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13847 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13848 } 13849 if (arp_up_mp != NULL) { 13850 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13851 ill->ill_name, ipif->ipif_id)); 13852 putnext(ill->ill_rq, arp_up_mp); 13853 } 13854 if (arp_add_mp != NULL) { 13855 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13856 ill->ill_name, ipif->ipif_id)); 13857 /* 13858 * If it's an extended ARP implementation, then we'll wait to 13859 * hear that DAD has finished before using the interface. 13860 */ 13861 if (!ill->ill_arp_extend) 13862 ipif->ipif_addr_ready = 1; 13863 putnext(ill->ill_rq, arp_add_mp); 13864 } else { 13865 ipif->ipif_addr_ready = 1; 13866 } 13867 if (arp_add_mapping_mp != NULL) { 13868 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13869 ill->ill_name, ipif->ipif_id)); 13870 putnext(ill->ill_rq, arp_add_mapping_mp); 13871 } 13872 if (res_act != Res_act_initial) 13873 return (0); 13874 13875 if (ill->ill_flags & ILLF_NOARP) 13876 err = ill_arp_off(ill); 13877 else 13878 err = ill_arp_on(ill); 13879 if (err != 0) { 13880 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13881 freemsg(ipif->ipif_arp_del_mp); 13882 freemsg(ill->ill_arp_down_mp); 13883 freemsg(ill->ill_arp_del_mapping_mp); 13884 ipif->ipif_arp_del_mp = NULL; 13885 ill->ill_arp_down_mp = NULL; 13886 ill->ill_arp_del_mapping_mp = NULL; 13887 return (err); 13888 } 13889 return ((ill->ill_ipif_up_count != 0 || was_dup || 13890 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13891 13892 failed: 13893 ip1dbg(("ipif_resolver_up: FAILED\n")); 13894 freemsg(arp_add_mp); 13895 freemsg(arp_del_mp); 13896 freemsg(arp_add_mapping_mp); 13897 freemsg(arp_up_mp); 13898 freemsg(arp_down_mp); 13899 ill->ill_arp_bringup_pending = 0; 13900 return (err); 13901 } 13902 13903 /* 13904 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13905 * just gone back up. 13906 */ 13907 static void 13908 ipif_arp_start_dad(ipif_t *ipif) 13909 { 13910 ill_t *ill = ipif->ipif_ill; 13911 mblk_t *arp_add_mp; 13912 area_t *area; 13913 13914 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13915 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13916 ipif->ipif_lcl_addr == INADDR_ANY || 13917 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13918 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13919 /* 13920 * If we can't contact ARP for some reason, that's not really a 13921 * problem. Just send out the routing socket notification that 13922 * DAD completion would have done, and continue. 13923 */ 13924 ipif_mask_reply(ipif); 13925 ip_rts_ifmsg(ipif); 13926 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13927 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13928 ipif->ipif_addr_ready = 1; 13929 return; 13930 } 13931 13932 /* Setting the 'unverified' flag restarts DAD */ 13933 area = (area_t *)arp_add_mp->b_rptr; 13934 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13935 ACE_F_UNVERIFIED; 13936 putnext(ill->ill_rq, arp_add_mp); 13937 } 13938 13939 static void 13940 ipif_ndp_start_dad(ipif_t *ipif) 13941 { 13942 nce_t *nce; 13943 13944 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13945 if (nce == NULL) 13946 return; 13947 13948 if (!ndp_restart_dad(nce)) { 13949 /* 13950 * If we can't restart DAD for some reason, that's not really a 13951 * problem. Just send out the routing socket notification that 13952 * DAD completion would have done, and continue. 13953 */ 13954 ip_rts_ifmsg(ipif); 13955 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13956 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13957 ipif->ipif_addr_ready = 1; 13958 } 13959 NCE_REFRELE(nce); 13960 } 13961 13962 /* 13963 * Restart duplicate address detection on all interfaces on the given ill. 13964 * 13965 * This is called when an interface transitions from down to up 13966 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13967 * 13968 * Note that since the underlying physical link has transitioned, we must cause 13969 * at least one routing socket message to be sent here, either via DAD 13970 * completion or just by default on the first ipif. (If we don't do this, then 13971 * in.mpathd will see long delays when doing link-based failure recovery.) 13972 */ 13973 void 13974 ill_restart_dad(ill_t *ill, boolean_t went_up) 13975 { 13976 ipif_t *ipif; 13977 13978 if (ill == NULL) 13979 return; 13980 13981 /* 13982 * If layer two doesn't support duplicate address detection, then just 13983 * send the routing socket message now and be done with it. 13984 */ 13985 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13986 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13987 ip_rts_ifmsg(ill->ill_ipif); 13988 return; 13989 } 13990 13991 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13992 if (went_up) { 13993 if (ipif->ipif_flags & IPIF_UP) { 13994 if (ill->ill_isv6) 13995 ipif_ndp_start_dad(ipif); 13996 else 13997 ipif_arp_start_dad(ipif); 13998 } else if (ill->ill_isv6 && 13999 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14000 /* 14001 * For IPv4, the ARP module itself will 14002 * automatically start the DAD process when it 14003 * sees DL_NOTE_LINK_UP. We respond to the 14004 * AR_CN_READY at the completion of that task. 14005 * For IPv6, we must kick off the bring-up 14006 * process now. 14007 */ 14008 ndp_do_recovery(ipif); 14009 } else { 14010 /* 14011 * Unfortunately, the first ipif is "special" 14012 * and represents the underlying ill in the 14013 * routing socket messages. Thus, when this 14014 * one ipif is down, we must still notify so 14015 * that the user knows the IFF_RUNNING status 14016 * change. (If the first ipif is up, then 14017 * we'll handle eventual routing socket 14018 * notification via DAD completion.) 14019 */ 14020 if (ipif == ill->ill_ipif) 14021 ip_rts_ifmsg(ill->ill_ipif); 14022 } 14023 } else { 14024 /* 14025 * After link down, we'll need to send a new routing 14026 * message when the link comes back, so clear 14027 * ipif_addr_ready. 14028 */ 14029 ipif->ipif_addr_ready = 0; 14030 } 14031 } 14032 14033 /* 14034 * If we've torn down links, then notify the user right away. 14035 */ 14036 if (!went_up) 14037 ip_rts_ifmsg(ill->ill_ipif); 14038 } 14039 14040 /* 14041 * Wakeup all threads waiting to enter the ipsq, and sleeping 14042 * on any of the ills in this ipsq. The ill_lock of the ill 14043 * must be held so that waiters don't miss wakeups 14044 */ 14045 static void 14046 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14047 { 14048 phyint_t *phyint; 14049 14050 phyint = ipsq->ipsq_phyint_list; 14051 while (phyint != NULL) { 14052 if (phyint->phyint_illv4) { 14053 if (!caller_holds_lock) 14054 mutex_enter(&phyint->phyint_illv4->ill_lock); 14055 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14056 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14057 if (!caller_holds_lock) 14058 mutex_exit(&phyint->phyint_illv4->ill_lock); 14059 } 14060 if (phyint->phyint_illv6) { 14061 if (!caller_holds_lock) 14062 mutex_enter(&phyint->phyint_illv6->ill_lock); 14063 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14064 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14065 if (!caller_holds_lock) 14066 mutex_exit(&phyint->phyint_illv6->ill_lock); 14067 } 14068 phyint = phyint->phyint_ipsq_next; 14069 } 14070 } 14071 14072 static ipsq_t * 14073 ipsq_create(char *groupname, ip_stack_t *ipst) 14074 { 14075 ipsq_t *ipsq; 14076 14077 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14078 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14079 if (ipsq == NULL) { 14080 return (NULL); 14081 } 14082 14083 if (groupname != NULL) 14084 (void) strcpy(ipsq->ipsq_name, groupname); 14085 else 14086 ipsq->ipsq_name[0] = '\0'; 14087 14088 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14089 ipsq->ipsq_flags |= IPSQ_GROUP; 14090 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14091 ipst->ips_ipsq_g_head = ipsq; 14092 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14093 return (ipsq); 14094 } 14095 14096 /* 14097 * Return an ipsq correspoding to the groupname. If 'create' is true 14098 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14099 * uniquely with an IPMP group. However during IPMP groupname operations, 14100 * multiple IPMP groups may be associated with a single ipsq. But no 14101 * IPMP group can be associated with more than 1 ipsq at any time. 14102 * For example 14103 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14104 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14105 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14106 * 14107 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14108 * status shown below during the execution of the above command. 14109 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14110 * 14111 * After the completion of the above groupname command we return to the stable 14112 * state shown below. 14113 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14114 * hme4 mpk17-85 ipsq2 mpk17-85 1 14115 * 14116 * Because of the above, we don't search based on the ipsq_name since that 14117 * would miss the correct ipsq during certain windows as shown above. 14118 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14119 * natural state. 14120 */ 14121 static ipsq_t * 14122 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14123 ip_stack_t *ipst) 14124 { 14125 ipsq_t *ipsq; 14126 int group_len; 14127 phyint_t *phyint; 14128 14129 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14130 14131 group_len = strlen(groupname); 14132 ASSERT(group_len != 0); 14133 group_len++; 14134 14135 for (ipsq = ipst->ips_ipsq_g_head; 14136 ipsq != NULL; 14137 ipsq = ipsq->ipsq_next) { 14138 /* 14139 * When an ipsq is being split, and ill_split_ipsq 14140 * calls this function, we exclude it from being considered. 14141 */ 14142 if (ipsq == exclude_ipsq) 14143 continue; 14144 14145 /* 14146 * Compare against the ipsq_name. The groupname change happens 14147 * in 2 phases. The 1st phase merges the from group into 14148 * the to group's ipsq, by calling ill_merge_groups and restarts 14149 * the ioctl. The 2nd phase then locates the ipsq again thru 14150 * ipsq_name. At this point the phyint_groupname has not been 14151 * updated. 14152 */ 14153 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14154 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14155 /* 14156 * Verify that an ipmp groupname is exactly 14157 * part of 1 ipsq and is not found in any other 14158 * ipsq. 14159 */ 14160 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14161 NULL); 14162 return (ipsq); 14163 } 14164 14165 /* 14166 * Comparison against ipsq_name alone is not sufficient. 14167 * In the case when groups are currently being 14168 * merged, the ipsq could hold other IPMP groups temporarily. 14169 * so we walk the phyint list and compare against the 14170 * phyint_groupname as well. 14171 */ 14172 phyint = ipsq->ipsq_phyint_list; 14173 while (phyint != NULL) { 14174 if ((group_len == phyint->phyint_groupname_len) && 14175 (bcmp(phyint->phyint_groupname, groupname, 14176 group_len) == 0)) { 14177 /* 14178 * Verify that an ipmp groupname is exactly 14179 * part of 1 ipsq and is not found in any other 14180 * ipsq. 14181 */ 14182 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14183 ipst) == NULL); 14184 return (ipsq); 14185 } 14186 phyint = phyint->phyint_ipsq_next; 14187 } 14188 } 14189 if (create) 14190 ipsq = ipsq_create(groupname, ipst); 14191 return (ipsq); 14192 } 14193 14194 static void 14195 ipsq_delete(ipsq_t *ipsq) 14196 { 14197 ipsq_t *nipsq; 14198 ipsq_t *pipsq = NULL; 14199 ip_stack_t *ipst = ipsq->ipsq_ipst; 14200 14201 /* 14202 * We don't hold the ipsq lock, but we are sure no new 14203 * messages can land up, since the ipsq_refs is zero. 14204 * i.e. this ipsq is unnamed and no phyint or phyint group 14205 * is associated with this ipsq. (Lookups are based on ill_name 14206 * or phyint_groupname) 14207 */ 14208 ASSERT(ipsq->ipsq_refs == 0); 14209 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14210 ASSERT(ipsq->ipsq_pending_mp == NULL); 14211 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14212 /* 14213 * This is not the ipsq of an IPMP group. 14214 */ 14215 ipsq->ipsq_ipst = NULL; 14216 kmem_free(ipsq, sizeof (ipsq_t)); 14217 return; 14218 } 14219 14220 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14221 14222 /* 14223 * Locate the ipsq before we can remove it from 14224 * the singly linked list of ipsq's. 14225 */ 14226 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14227 nipsq = nipsq->ipsq_next) { 14228 if (nipsq == ipsq) { 14229 break; 14230 } 14231 pipsq = nipsq; 14232 } 14233 14234 ASSERT(nipsq == ipsq); 14235 14236 /* unlink ipsq from the list */ 14237 if (pipsq != NULL) 14238 pipsq->ipsq_next = ipsq->ipsq_next; 14239 else 14240 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14241 ipsq->ipsq_ipst = NULL; 14242 kmem_free(ipsq, sizeof (ipsq_t)); 14243 rw_exit(&ipst->ips_ill_g_lock); 14244 } 14245 14246 static void 14247 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14248 queue_t *q) 14249 { 14250 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14251 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14252 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14253 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14254 ASSERT(current_mp != NULL); 14255 14256 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14257 NEW_OP, NULL); 14258 14259 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14260 new_ipsq->ipsq_xopq_mphead != NULL); 14261 14262 /* 14263 * move from old ipsq to the new ipsq. 14264 */ 14265 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14266 if (old_ipsq->ipsq_xopq_mphead != NULL) 14267 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14268 14269 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14270 } 14271 14272 void 14273 ill_group_cleanup(ill_t *ill) 14274 { 14275 ill_t *ill_v4; 14276 ill_t *ill_v6; 14277 ipif_t *ipif; 14278 14279 ill_v4 = ill->ill_phyint->phyint_illv4; 14280 ill_v6 = ill->ill_phyint->phyint_illv6; 14281 14282 if (ill_v4 != NULL) { 14283 mutex_enter(&ill_v4->ill_lock); 14284 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14285 ipif = ipif->ipif_next) { 14286 IPIF_UNMARK_MOVING(ipif); 14287 } 14288 ill_v4->ill_up_ipifs = B_FALSE; 14289 mutex_exit(&ill_v4->ill_lock); 14290 } 14291 14292 if (ill_v6 != NULL) { 14293 mutex_enter(&ill_v6->ill_lock); 14294 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14295 ipif = ipif->ipif_next) { 14296 IPIF_UNMARK_MOVING(ipif); 14297 } 14298 ill_v6->ill_up_ipifs = B_FALSE; 14299 mutex_exit(&ill_v6->ill_lock); 14300 } 14301 } 14302 /* 14303 * This function is called when an ill has had a change in its group status 14304 * to bring up all the ipifs that were up before the change. 14305 */ 14306 int 14307 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14308 { 14309 ipif_t *ipif; 14310 ill_t *ill_v4; 14311 ill_t *ill_v6; 14312 ill_t *from_ill; 14313 int err = 0; 14314 14315 ASSERT(IAM_WRITER_ILL(ill)); 14316 14317 /* 14318 * Except for ipif_state_flags and ill_state_flags the other 14319 * fields of the ipif/ill that are modified below are protected 14320 * implicitly since we are a writer. We would have tried to down 14321 * even an ipif that was already down, in ill_down_ipifs. So we 14322 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14323 */ 14324 ill_v4 = ill->ill_phyint->phyint_illv4; 14325 ill_v6 = ill->ill_phyint->phyint_illv6; 14326 if (ill_v4 != NULL) { 14327 ill_v4->ill_up_ipifs = B_TRUE; 14328 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14329 ipif = ipif->ipif_next) { 14330 mutex_enter(&ill_v4->ill_lock); 14331 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14332 IPIF_UNMARK_MOVING(ipif); 14333 mutex_exit(&ill_v4->ill_lock); 14334 if (ipif->ipif_was_up) { 14335 if (!(ipif->ipif_flags & IPIF_UP)) 14336 err = ipif_up(ipif, q, mp); 14337 ipif->ipif_was_up = B_FALSE; 14338 if (err != 0) { 14339 /* 14340 * Can there be any other error ? 14341 */ 14342 ASSERT(err == EINPROGRESS); 14343 return (err); 14344 } 14345 } 14346 } 14347 mutex_enter(&ill_v4->ill_lock); 14348 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14349 mutex_exit(&ill_v4->ill_lock); 14350 ill_v4->ill_up_ipifs = B_FALSE; 14351 if (ill_v4->ill_move_in_progress) { 14352 ASSERT(ill_v4->ill_move_peer != NULL); 14353 ill_v4->ill_move_in_progress = B_FALSE; 14354 from_ill = ill_v4->ill_move_peer; 14355 from_ill->ill_move_in_progress = B_FALSE; 14356 from_ill->ill_move_peer = NULL; 14357 mutex_enter(&from_ill->ill_lock); 14358 from_ill->ill_state_flags &= ~ILL_CHANGING; 14359 mutex_exit(&from_ill->ill_lock); 14360 if (ill_v6 == NULL) { 14361 if (from_ill->ill_phyint->phyint_flags & 14362 PHYI_STANDBY) { 14363 phyint_inactive(from_ill->ill_phyint); 14364 } 14365 if (ill_v4->ill_phyint->phyint_flags & 14366 PHYI_STANDBY) { 14367 phyint_inactive(ill_v4->ill_phyint); 14368 } 14369 } 14370 ill_v4->ill_move_peer = NULL; 14371 } 14372 } 14373 14374 if (ill_v6 != NULL) { 14375 ill_v6->ill_up_ipifs = B_TRUE; 14376 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14377 ipif = ipif->ipif_next) { 14378 mutex_enter(&ill_v6->ill_lock); 14379 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14380 IPIF_UNMARK_MOVING(ipif); 14381 mutex_exit(&ill_v6->ill_lock); 14382 if (ipif->ipif_was_up) { 14383 if (!(ipif->ipif_flags & IPIF_UP)) 14384 err = ipif_up(ipif, q, mp); 14385 ipif->ipif_was_up = B_FALSE; 14386 if (err != 0) { 14387 /* 14388 * Can there be any other error ? 14389 */ 14390 ASSERT(err == EINPROGRESS); 14391 return (err); 14392 } 14393 } 14394 } 14395 mutex_enter(&ill_v6->ill_lock); 14396 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14397 mutex_exit(&ill_v6->ill_lock); 14398 ill_v6->ill_up_ipifs = B_FALSE; 14399 if (ill_v6->ill_move_in_progress) { 14400 ASSERT(ill_v6->ill_move_peer != NULL); 14401 ill_v6->ill_move_in_progress = B_FALSE; 14402 from_ill = ill_v6->ill_move_peer; 14403 from_ill->ill_move_in_progress = B_FALSE; 14404 from_ill->ill_move_peer = NULL; 14405 mutex_enter(&from_ill->ill_lock); 14406 from_ill->ill_state_flags &= ~ILL_CHANGING; 14407 mutex_exit(&from_ill->ill_lock); 14408 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14409 phyint_inactive(from_ill->ill_phyint); 14410 } 14411 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14412 phyint_inactive(ill_v6->ill_phyint); 14413 } 14414 ill_v6->ill_move_peer = NULL; 14415 } 14416 } 14417 return (0); 14418 } 14419 14420 /* 14421 * bring down all the approriate ipifs. 14422 */ 14423 /* ARGSUSED */ 14424 static void 14425 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14426 { 14427 ipif_t *ipif; 14428 14429 ASSERT(IAM_WRITER_ILL(ill)); 14430 14431 /* 14432 * Except for ipif_state_flags the other fields of the ipif/ill that 14433 * are modified below are protected implicitly since we are a writer 14434 */ 14435 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14436 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14437 continue; 14438 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14439 /* 14440 * We go through the ipif_down logic even if the ipif 14441 * is already down, since routes can be added based 14442 * on down ipifs. Going through ipif_down once again 14443 * will delete any IREs created based on these routes. 14444 */ 14445 if (ipif->ipif_flags & IPIF_UP) 14446 ipif->ipif_was_up = B_TRUE; 14447 /* 14448 * If called with chk_nofailover true ipif is moving. 14449 */ 14450 mutex_enter(&ill->ill_lock); 14451 if (chk_nofailover) { 14452 ipif->ipif_state_flags |= 14453 IPIF_MOVING | IPIF_CHANGING; 14454 } else { 14455 ipif->ipif_state_flags |= IPIF_CHANGING; 14456 } 14457 mutex_exit(&ill->ill_lock); 14458 /* 14459 * Need to re-create net/subnet bcast ires if 14460 * they are dependent on ipif. 14461 */ 14462 if (!ipif->ipif_isv6) 14463 ipif_check_bcast_ires(ipif); 14464 (void) ipif_logical_down(ipif, NULL, NULL); 14465 ipif_non_duplicate(ipif); 14466 ipif_down_tail(ipif); 14467 } 14468 } 14469 } 14470 14471 #define IPSQ_INC_REF(ipsq, ipst) { \ 14472 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14473 (ipsq)->ipsq_refs++; \ 14474 } 14475 14476 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14477 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14478 (ipsq)->ipsq_refs--; \ 14479 if ((ipsq)->ipsq_refs == 0) \ 14480 (ipsq)->ipsq_name[0] = '\0'; \ 14481 } 14482 14483 /* 14484 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14485 * new_ipsq. 14486 */ 14487 static void 14488 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14489 { 14490 phyint_t *phyint; 14491 phyint_t *next_phyint; 14492 14493 /* 14494 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14495 * writer and the ill_lock of the ill in question. Also the dest 14496 * ipsq can't vanish while we hold the ill_g_lock as writer. 14497 */ 14498 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14499 14500 phyint = cur_ipsq->ipsq_phyint_list; 14501 cur_ipsq->ipsq_phyint_list = NULL; 14502 while (phyint != NULL) { 14503 next_phyint = phyint->phyint_ipsq_next; 14504 IPSQ_DEC_REF(cur_ipsq, ipst); 14505 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14506 new_ipsq->ipsq_phyint_list = phyint; 14507 IPSQ_INC_REF(new_ipsq, ipst); 14508 phyint->phyint_ipsq = new_ipsq; 14509 phyint = next_phyint; 14510 } 14511 } 14512 14513 #define SPLIT_SUCCESS 0 14514 #define SPLIT_NOT_NEEDED 1 14515 #define SPLIT_FAILED 2 14516 14517 int 14518 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14519 ip_stack_t *ipst) 14520 { 14521 ipsq_t *newipsq = NULL; 14522 14523 /* 14524 * Assertions denote pre-requisites for changing the ipsq of 14525 * a phyint 14526 */ 14527 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14528 /* 14529 * <ill-phyint> assocs can't change while ill_g_lock 14530 * is held as writer. See ill_phyint_reinit() 14531 */ 14532 ASSERT(phyint->phyint_illv4 == NULL || 14533 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14534 ASSERT(phyint->phyint_illv6 == NULL || 14535 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14536 14537 if ((phyint->phyint_groupname_len != 14538 (strlen(cur_ipsq->ipsq_name) + 1) || 14539 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14540 phyint->phyint_groupname_len) != 0)) { 14541 /* 14542 * Once we fail in creating a new ipsq due to memory shortage, 14543 * don't attempt to create new ipsq again, based on another 14544 * phyint, since we want all phyints belonging to an IPMP group 14545 * to be in the same ipsq even in the event of mem alloc fails. 14546 */ 14547 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14548 cur_ipsq, ipst); 14549 if (newipsq == NULL) { 14550 /* Memory allocation failure */ 14551 return (SPLIT_FAILED); 14552 } else { 14553 /* ipsq_refs protected by ill_g_lock (writer) */ 14554 IPSQ_DEC_REF(cur_ipsq, ipst); 14555 phyint->phyint_ipsq = newipsq; 14556 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14557 newipsq->ipsq_phyint_list = phyint; 14558 IPSQ_INC_REF(newipsq, ipst); 14559 return (SPLIT_SUCCESS); 14560 } 14561 } 14562 return (SPLIT_NOT_NEEDED); 14563 } 14564 14565 /* 14566 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14567 * to do this split 14568 */ 14569 static int 14570 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14571 { 14572 ipsq_t *newipsq; 14573 14574 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14575 /* 14576 * <ill-phyint> assocs can't change while ill_g_lock 14577 * is held as writer. See ill_phyint_reinit() 14578 */ 14579 14580 ASSERT(phyint->phyint_illv4 == NULL || 14581 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14582 ASSERT(phyint->phyint_illv6 == NULL || 14583 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14584 14585 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14586 phyint->phyint_illv4: phyint->phyint_illv6)) { 14587 /* 14588 * ipsq_init failed due to no memory 14589 * caller will use the same ipsq 14590 */ 14591 return (SPLIT_FAILED); 14592 } 14593 14594 /* ipsq_ref is protected by ill_g_lock (writer) */ 14595 IPSQ_DEC_REF(cur_ipsq, ipst); 14596 14597 /* 14598 * This is a new ipsq that is unknown to the world. 14599 * So we don't need to hold ipsq_lock, 14600 */ 14601 newipsq = phyint->phyint_ipsq; 14602 newipsq->ipsq_writer = NULL; 14603 newipsq->ipsq_reentry_cnt--; 14604 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14605 #ifdef DEBUG 14606 newipsq->ipsq_depth = 0; 14607 #endif 14608 14609 return (SPLIT_SUCCESS); 14610 } 14611 14612 /* 14613 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14614 * ipsq's representing their individual groups or themselves. Return 14615 * whether split needs to be retried again later. 14616 */ 14617 static boolean_t 14618 ill_split_ipsq(ipsq_t *cur_ipsq) 14619 { 14620 phyint_t *phyint; 14621 phyint_t *next_phyint; 14622 int error; 14623 boolean_t need_retry = B_FALSE; 14624 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14625 14626 phyint = cur_ipsq->ipsq_phyint_list; 14627 cur_ipsq->ipsq_phyint_list = NULL; 14628 while (phyint != NULL) { 14629 next_phyint = phyint->phyint_ipsq_next; 14630 /* 14631 * 'created' will tell us whether the callee actually 14632 * created an ipsq. Lack of memory may force the callee 14633 * to return without creating an ipsq. 14634 */ 14635 if (phyint->phyint_groupname == NULL) { 14636 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14637 } else { 14638 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14639 need_retry, ipst); 14640 } 14641 14642 switch (error) { 14643 case SPLIT_FAILED: 14644 need_retry = B_TRUE; 14645 /* FALLTHRU */ 14646 case SPLIT_NOT_NEEDED: 14647 /* 14648 * Keep it on the list. 14649 */ 14650 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14651 cur_ipsq->ipsq_phyint_list = phyint; 14652 break; 14653 case SPLIT_SUCCESS: 14654 break; 14655 default: 14656 ASSERT(0); 14657 } 14658 14659 phyint = next_phyint; 14660 } 14661 return (need_retry); 14662 } 14663 14664 /* 14665 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14666 * and return the ills in the list. This list will be 14667 * needed to unlock all the ills later on by the caller. 14668 * The <ill-ipsq> associations could change between the 14669 * lock and unlock. Hence the unlock can't traverse the 14670 * ipsq to get the list of ills. 14671 */ 14672 static int 14673 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14674 { 14675 int cnt = 0; 14676 phyint_t *phyint; 14677 ip_stack_t *ipst = ipsq->ipsq_ipst; 14678 14679 /* 14680 * The caller holds ill_g_lock to ensure that the ill memberships 14681 * of the ipsq don't change 14682 */ 14683 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14684 14685 phyint = ipsq->ipsq_phyint_list; 14686 while (phyint != NULL) { 14687 if (phyint->phyint_illv4 != NULL) { 14688 ASSERT(cnt < list_max); 14689 list[cnt++] = phyint->phyint_illv4; 14690 } 14691 if (phyint->phyint_illv6 != NULL) { 14692 ASSERT(cnt < list_max); 14693 list[cnt++] = phyint->phyint_illv6; 14694 } 14695 phyint = phyint->phyint_ipsq_next; 14696 } 14697 ill_lock_ills(list, cnt); 14698 return (cnt); 14699 } 14700 14701 void 14702 ill_lock_ills(ill_t **list, int cnt) 14703 { 14704 int i; 14705 14706 if (cnt > 1) { 14707 boolean_t try_again; 14708 do { 14709 try_again = B_FALSE; 14710 for (i = 0; i < cnt - 1; i++) { 14711 if (list[i] < list[i + 1]) { 14712 ill_t *tmp; 14713 14714 /* swap the elements */ 14715 tmp = list[i]; 14716 list[i] = list[i + 1]; 14717 list[i + 1] = tmp; 14718 try_again = B_TRUE; 14719 } 14720 } 14721 } while (try_again); 14722 } 14723 14724 for (i = 0; i < cnt; i++) { 14725 if (i == 0) { 14726 if (list[i] != NULL) 14727 mutex_enter(&list[i]->ill_lock); 14728 else 14729 return; 14730 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14731 mutex_enter(&list[i]->ill_lock); 14732 } 14733 } 14734 } 14735 14736 void 14737 ill_unlock_ills(ill_t **list, int cnt) 14738 { 14739 int i; 14740 14741 for (i = 0; i < cnt; i++) { 14742 if ((i == 0) && (list[i] != NULL)) { 14743 mutex_exit(&list[i]->ill_lock); 14744 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14745 mutex_exit(&list[i]->ill_lock); 14746 } 14747 } 14748 } 14749 14750 /* 14751 * Merge all the ills from 1 ipsq group into another ipsq group. 14752 * The source ipsq group is specified by the ipsq associated with 14753 * 'from_ill'. The destination ipsq group is specified by the ipsq 14754 * associated with 'to_ill' or 'groupname' respectively. 14755 * Note that ipsq itself does not have a reference count mechanism 14756 * and functions don't look up an ipsq and pass it around. Instead 14757 * functions pass around an ill or groupname, and the ipsq is looked 14758 * up from the ill or groupname and the required operation performed 14759 * atomically with the lookup on the ipsq. 14760 */ 14761 static int 14762 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14763 queue_t *q) 14764 { 14765 ipsq_t *old_ipsq; 14766 ipsq_t *new_ipsq; 14767 ill_t **ill_list; 14768 int cnt; 14769 size_t ill_list_size; 14770 boolean_t became_writer_on_new_sq = B_FALSE; 14771 ip_stack_t *ipst = from_ill->ill_ipst; 14772 14773 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14774 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14775 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14776 14777 /* 14778 * Need to hold ill_g_lock as writer and also the ill_lock to 14779 * change the <ill-ipsq> assoc of an ill. Need to hold the 14780 * ipsq_lock to prevent new messages from landing on an ipsq. 14781 */ 14782 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14783 14784 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14785 if (groupname != NULL) 14786 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14787 else { 14788 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14789 } 14790 14791 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14792 14793 /* 14794 * both groups are on the same ipsq. 14795 */ 14796 if (old_ipsq == new_ipsq) { 14797 rw_exit(&ipst->ips_ill_g_lock); 14798 return (0); 14799 } 14800 14801 cnt = old_ipsq->ipsq_refs << 1; 14802 ill_list_size = cnt * sizeof (ill_t *); 14803 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14804 if (ill_list == NULL) { 14805 rw_exit(&ipst->ips_ill_g_lock); 14806 return (ENOMEM); 14807 } 14808 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14809 14810 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14811 mutex_enter(&new_ipsq->ipsq_lock); 14812 if ((new_ipsq->ipsq_writer == NULL && 14813 new_ipsq->ipsq_current_ipif == NULL) || 14814 (new_ipsq->ipsq_writer == curthread)) { 14815 new_ipsq->ipsq_writer = curthread; 14816 new_ipsq->ipsq_reentry_cnt++; 14817 became_writer_on_new_sq = B_TRUE; 14818 } 14819 14820 /* 14821 * We are holding ill_g_lock as writer and all the ill locks of 14822 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14823 * message can land up on the old ipsq even though we don't hold the 14824 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14825 */ 14826 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14827 14828 /* 14829 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14830 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14831 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14832 */ 14833 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14834 14835 /* 14836 * Mark the new ipsq as needing a split since it is currently 14837 * being shared by more than 1 IPMP group. The split will 14838 * occur at the end of ipsq_exit 14839 */ 14840 new_ipsq->ipsq_split = B_TRUE; 14841 14842 /* Now release all the locks */ 14843 mutex_exit(&new_ipsq->ipsq_lock); 14844 ill_unlock_ills(ill_list, cnt); 14845 rw_exit(&ipst->ips_ill_g_lock); 14846 14847 kmem_free(ill_list, ill_list_size); 14848 14849 /* 14850 * If we succeeded in becoming writer on the new ipsq, then 14851 * drain the new ipsq and start processing all enqueued messages 14852 * including the current ioctl we are processing which is either 14853 * a set groupname or failover/failback. 14854 */ 14855 if (became_writer_on_new_sq) 14856 ipsq_exit(new_ipsq); 14857 14858 /* 14859 * syncq has been changed and all the messages have been moved. 14860 */ 14861 mutex_enter(&old_ipsq->ipsq_lock); 14862 old_ipsq->ipsq_current_ipif = NULL; 14863 old_ipsq->ipsq_current_ioctl = 0; 14864 old_ipsq->ipsq_current_done = B_TRUE; 14865 mutex_exit(&old_ipsq->ipsq_lock); 14866 return (EINPROGRESS); 14867 } 14868 14869 /* 14870 * Delete and add the loopback copy and non-loopback copy of 14871 * the BROADCAST ire corresponding to ill and addr. Used to 14872 * group broadcast ires together when ill becomes part of 14873 * a group. 14874 * 14875 * This function is also called when ill is leaving the group 14876 * so that the ires belonging to the group gets re-grouped. 14877 */ 14878 static void 14879 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14880 { 14881 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14882 ire_t **ire_ptpn = &ire_head; 14883 ip_stack_t *ipst = ill->ill_ipst; 14884 14885 /* 14886 * The loopback and non-loopback IREs are inserted in the order in which 14887 * they're found, on the basis that they are correctly ordered (loopback 14888 * first). 14889 */ 14890 for (;;) { 14891 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14892 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14893 if (ire == NULL) 14894 break; 14895 14896 /* 14897 * we are passing in KM_SLEEP because it is not easy to 14898 * go back to a sane state in case of memory failure. 14899 */ 14900 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14901 ASSERT(nire != NULL); 14902 bzero(nire, sizeof (ire_t)); 14903 /* 14904 * Don't use ire_max_frag directly since we don't 14905 * hold on to 'ire' until we add the new ire 'nire' and 14906 * we don't want the new ire to have a dangling reference 14907 * to 'ire'. The ire_max_frag of a broadcast ire must 14908 * be in sync with the ipif_mtu of the associate ipif. 14909 * For eg. this happens as a result of SIOCSLIFNAME, 14910 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14911 * the driver. A change in ire_max_frag triggered as 14912 * as a result of path mtu discovery, or due to an 14913 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14914 * route change -mtu command does not apply to broadcast ires. 14915 * 14916 * XXX We need a recovery strategy here if ire_init fails 14917 */ 14918 if (ire_init(nire, 14919 (uchar_t *)&ire->ire_addr, 14920 (uchar_t *)&ire->ire_mask, 14921 (uchar_t *)&ire->ire_src_addr, 14922 (uchar_t *)&ire->ire_gateway_addr, 14923 ire->ire_stq == NULL ? &ip_loopback_mtu : 14924 &ire->ire_ipif->ipif_mtu, 14925 ire->ire_nce, 14926 ire->ire_rfq, 14927 ire->ire_stq, 14928 ire->ire_type, 14929 ire->ire_ipif, 14930 ire->ire_cmask, 14931 ire->ire_phandle, 14932 ire->ire_ihandle, 14933 ire->ire_flags, 14934 &ire->ire_uinfo, 14935 NULL, 14936 NULL, 14937 ipst) == NULL) { 14938 cmn_err(CE_PANIC, "ire_init() failed"); 14939 } 14940 ire_delete(ire); 14941 ire_refrele(ire); 14942 14943 /* 14944 * The newly created IREs are inserted at the tail of the list 14945 * starting with ire_head. As we've just allocated them no one 14946 * knows about them so it's safe. 14947 */ 14948 *ire_ptpn = nire; 14949 ire_ptpn = &nire->ire_next; 14950 } 14951 14952 for (nire = ire_head; nire != NULL; nire = nire_next) { 14953 int error; 14954 ire_t *oire; 14955 /* unlink the IRE from our list before calling ire_add() */ 14956 nire_next = nire->ire_next; 14957 nire->ire_next = NULL; 14958 14959 /* ire_add adds the ire at the right place in the list */ 14960 oire = nire; 14961 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14962 ASSERT(error == 0); 14963 ASSERT(oire == nire); 14964 ire_refrele(nire); /* Held in ire_add */ 14965 } 14966 } 14967 14968 /* 14969 * This function is usually called when an ill is inserted in 14970 * a group and all the ipifs are already UP. As all the ipifs 14971 * are already UP, the broadcast ires have already been created 14972 * and been inserted. But, ire_add_v4 would not have grouped properly. 14973 * We need to re-group for the benefit of ip_wput_ire which 14974 * expects BROADCAST ires to be grouped properly to avoid sending 14975 * more than one copy of the broadcast packet per group. 14976 * 14977 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14978 * because when ipif_up_done ends up calling this, ires have 14979 * already been added before illgrp_insert i.e before ill_group 14980 * has been initialized. 14981 */ 14982 static void 14983 ill_group_bcast_for_xmit(ill_t *ill) 14984 { 14985 ill_group_t *illgrp; 14986 ipif_t *ipif; 14987 ipaddr_t addr; 14988 ipaddr_t net_mask; 14989 ipaddr_t subnet_netmask; 14990 14991 illgrp = ill->ill_group; 14992 14993 /* 14994 * This function is called even when an ill is deleted from 14995 * the group. Hence, illgrp could be null. 14996 */ 14997 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 14998 return; 14999 15000 /* 15001 * Delete all the BROADCAST ires matching this ill and add 15002 * them back. This time, ire_add_v4 should take care of 15003 * grouping them with others because ill is part of the 15004 * group. 15005 */ 15006 ill_bcast_delete_and_add(ill, 0); 15007 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15008 15009 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15010 15011 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15012 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15013 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15014 } else { 15015 net_mask = htonl(IN_CLASSA_NET); 15016 } 15017 addr = net_mask & ipif->ipif_subnet; 15018 ill_bcast_delete_and_add(ill, addr); 15019 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15020 15021 subnet_netmask = ipif->ipif_net_mask; 15022 addr = ipif->ipif_subnet; 15023 ill_bcast_delete_and_add(ill, addr); 15024 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15025 } 15026 } 15027 15028 /* 15029 * This function is called from illgrp_delete when ill is being deleted 15030 * from the group. 15031 * 15032 * As ill is not there in the group anymore, any address belonging 15033 * to this ill should be cleared of IRE_MARK_NORECV. 15034 */ 15035 static void 15036 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15037 { 15038 ire_t *ire; 15039 irb_t *irb; 15040 ip_stack_t *ipst = ill->ill_ipst; 15041 15042 ASSERT(ill->ill_group == NULL); 15043 15044 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15045 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15046 15047 if (ire != NULL) { 15048 /* 15049 * IPMP and plumbing operations are serialized on the ipsq, so 15050 * no one will insert or delete a broadcast ire under our feet. 15051 */ 15052 irb = ire->ire_bucket; 15053 rw_enter(&irb->irb_lock, RW_READER); 15054 ire_refrele(ire); 15055 15056 for (; ire != NULL; ire = ire->ire_next) { 15057 if (ire->ire_addr != addr) 15058 break; 15059 if (ire_to_ill(ire) != ill) 15060 continue; 15061 15062 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15063 ire->ire_marks &= ~IRE_MARK_NORECV; 15064 } 15065 rw_exit(&irb->irb_lock); 15066 } 15067 } 15068 15069 /* 15070 * This function must be called only after the broadcast ires 15071 * have been grouped together. For a given address addr, nominate 15072 * only one of the ires whose interface is not FAILED or OFFLINE. 15073 * 15074 * This is also called when an ipif goes down, so that we can nominate 15075 * a different ire with the same address for receiving. 15076 */ 15077 static void 15078 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15079 { 15080 irb_t *irb; 15081 ire_t *ire; 15082 ire_t *ire1; 15083 ire_t *save_ire; 15084 ire_t **irep = NULL; 15085 boolean_t first = B_TRUE; 15086 ire_t *clear_ire = NULL; 15087 ire_t *start_ire = NULL; 15088 ire_t *new_lb_ire; 15089 ire_t *new_nlb_ire; 15090 boolean_t new_lb_ire_used = B_FALSE; 15091 boolean_t new_nlb_ire_used = B_FALSE; 15092 uint64_t match_flags; 15093 uint64_t phyi_flags; 15094 boolean_t fallback = B_FALSE; 15095 uint_t max_frag; 15096 15097 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15098 NULL, MATCH_IRE_TYPE, ipst); 15099 /* 15100 * We may not be able to find some ires if a previous 15101 * ire_create failed. This happens when an ipif goes 15102 * down and we are unable to create BROADCAST ires due 15103 * to memory failure. Thus, we have to check for NULL 15104 * below. This should handle the case for LOOPBACK, 15105 * POINTOPOINT and interfaces with some POINTOPOINT 15106 * logicals for which there are no BROADCAST ires. 15107 */ 15108 if (ire == NULL) 15109 return; 15110 /* 15111 * Currently IRE_BROADCASTS are deleted when an ipif 15112 * goes down which runs exclusively. Thus, setting 15113 * IRE_MARK_RCVD should not race with ire_delete marking 15114 * IRE_MARK_CONDEMNED. We grab the lock below just to 15115 * be consistent with other parts of the code that walks 15116 * a given bucket. 15117 */ 15118 save_ire = ire; 15119 irb = ire->ire_bucket; 15120 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15121 if (new_lb_ire == NULL) { 15122 ire_refrele(ire); 15123 return; 15124 } 15125 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15126 if (new_nlb_ire == NULL) { 15127 ire_refrele(ire); 15128 kmem_cache_free(ire_cache, new_lb_ire); 15129 return; 15130 } 15131 IRB_REFHOLD(irb); 15132 rw_enter(&irb->irb_lock, RW_WRITER); 15133 /* 15134 * Get to the first ire matching the address and the 15135 * group. If the address does not match we are done 15136 * as we could not find the IRE. If the address matches 15137 * we should get to the first one matching the group. 15138 */ 15139 while (ire != NULL) { 15140 if (ire->ire_addr != addr || 15141 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15142 break; 15143 } 15144 ire = ire->ire_next; 15145 } 15146 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15147 start_ire = ire; 15148 redo: 15149 while (ire != NULL && ire->ire_addr == addr && 15150 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15151 /* 15152 * The first ire for any address within a group 15153 * should always be the one with IRE_MARK_NORECV cleared 15154 * so that ip_wput_ire can avoid searching for one. 15155 * Note down the insertion point which will be used 15156 * later. 15157 */ 15158 if (first && (irep == NULL)) 15159 irep = ire->ire_ptpn; 15160 /* 15161 * PHYI_FAILED is set when the interface fails. 15162 * This interface might have become good, but the 15163 * daemon has not yet detected. We should still 15164 * not receive on this. PHYI_OFFLINE should never 15165 * be picked as this has been offlined and soon 15166 * be removed. 15167 */ 15168 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15169 if (phyi_flags & PHYI_OFFLINE) { 15170 ire->ire_marks |= IRE_MARK_NORECV; 15171 ire = ire->ire_next; 15172 continue; 15173 } 15174 if (phyi_flags & match_flags) { 15175 ire->ire_marks |= IRE_MARK_NORECV; 15176 ire = ire->ire_next; 15177 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15178 PHYI_INACTIVE) { 15179 fallback = B_TRUE; 15180 } 15181 continue; 15182 } 15183 if (first) { 15184 /* 15185 * We will move this to the front of the list later 15186 * on. 15187 */ 15188 clear_ire = ire; 15189 ire->ire_marks &= ~IRE_MARK_NORECV; 15190 } else { 15191 ire->ire_marks |= IRE_MARK_NORECV; 15192 } 15193 first = B_FALSE; 15194 ire = ire->ire_next; 15195 } 15196 /* 15197 * If we never nominated anybody, try nominating at least 15198 * an INACTIVE, if we found one. Do it only once though. 15199 */ 15200 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15201 fallback) { 15202 match_flags = PHYI_FAILED; 15203 ire = start_ire; 15204 irep = NULL; 15205 goto redo; 15206 } 15207 ire_refrele(save_ire); 15208 15209 /* 15210 * irep non-NULL indicates that we entered the while loop 15211 * above. If clear_ire is at the insertion point, we don't 15212 * have to do anything. clear_ire will be NULL if all the 15213 * interfaces are failed. 15214 * 15215 * We cannot unlink and reinsert the ire at the right place 15216 * in the list since there can be other walkers of this bucket. 15217 * Instead we delete and recreate the ire 15218 */ 15219 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15220 ire_t *clear_ire_stq = NULL; 15221 15222 bzero(new_lb_ire, sizeof (ire_t)); 15223 /* XXX We need a recovery strategy here. */ 15224 if (ire_init(new_lb_ire, 15225 (uchar_t *)&clear_ire->ire_addr, 15226 (uchar_t *)&clear_ire->ire_mask, 15227 (uchar_t *)&clear_ire->ire_src_addr, 15228 (uchar_t *)&clear_ire->ire_gateway_addr, 15229 &clear_ire->ire_max_frag, 15230 NULL, /* let ire_nce_init derive the resolver info */ 15231 clear_ire->ire_rfq, 15232 clear_ire->ire_stq, 15233 clear_ire->ire_type, 15234 clear_ire->ire_ipif, 15235 clear_ire->ire_cmask, 15236 clear_ire->ire_phandle, 15237 clear_ire->ire_ihandle, 15238 clear_ire->ire_flags, 15239 &clear_ire->ire_uinfo, 15240 NULL, 15241 NULL, 15242 ipst) == NULL) 15243 cmn_err(CE_PANIC, "ire_init() failed"); 15244 if (clear_ire->ire_stq == NULL) { 15245 ire_t *ire_next = clear_ire->ire_next; 15246 if (ire_next != NULL && 15247 ire_next->ire_stq != NULL && 15248 ire_next->ire_addr == clear_ire->ire_addr && 15249 ire_next->ire_ipif->ipif_ill == 15250 clear_ire->ire_ipif->ipif_ill) { 15251 clear_ire_stq = ire_next; 15252 15253 bzero(new_nlb_ire, sizeof (ire_t)); 15254 /* XXX We need a recovery strategy here. */ 15255 if (ire_init(new_nlb_ire, 15256 (uchar_t *)&clear_ire_stq->ire_addr, 15257 (uchar_t *)&clear_ire_stq->ire_mask, 15258 (uchar_t *)&clear_ire_stq->ire_src_addr, 15259 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15260 &clear_ire_stq->ire_max_frag, 15261 NULL, 15262 clear_ire_stq->ire_rfq, 15263 clear_ire_stq->ire_stq, 15264 clear_ire_stq->ire_type, 15265 clear_ire_stq->ire_ipif, 15266 clear_ire_stq->ire_cmask, 15267 clear_ire_stq->ire_phandle, 15268 clear_ire_stq->ire_ihandle, 15269 clear_ire_stq->ire_flags, 15270 &clear_ire_stq->ire_uinfo, 15271 NULL, 15272 NULL, 15273 ipst) == NULL) 15274 cmn_err(CE_PANIC, "ire_init() failed"); 15275 } 15276 } 15277 15278 /* 15279 * Delete the ire. We can't call ire_delete() since 15280 * we are holding the bucket lock. We can't release the 15281 * bucket lock since we can't allow irep to change. So just 15282 * mark it CONDEMNED. The IRB_REFRELE will delete the 15283 * ire from the list and do the refrele. 15284 */ 15285 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15286 irb->irb_marks |= IRB_MARK_CONDEMNED; 15287 15288 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15289 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15290 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15291 } 15292 15293 /* 15294 * Also take care of otherfields like ib/ob pkt count 15295 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15296 */ 15297 15298 /* Set the max_frag before adding the ire */ 15299 max_frag = *new_lb_ire->ire_max_fragp; 15300 new_lb_ire->ire_max_fragp = NULL; 15301 new_lb_ire->ire_max_frag = max_frag; 15302 15303 /* Add the new ire's. Insert at *irep */ 15304 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15305 ire1 = *irep; 15306 if (ire1 != NULL) 15307 ire1->ire_ptpn = &new_lb_ire->ire_next; 15308 new_lb_ire->ire_next = ire1; 15309 /* Link the new one in. */ 15310 new_lb_ire->ire_ptpn = irep; 15311 membar_producer(); 15312 *irep = new_lb_ire; 15313 new_lb_ire_used = B_TRUE; 15314 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15315 new_lb_ire->ire_bucket->irb_ire_cnt++; 15316 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), new_lb_ire->ire_ipif, 15317 (char *), "ire", (void *), new_lb_ire); 15318 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15319 15320 if (clear_ire_stq != NULL) { 15321 /* Set the max_frag before adding the ire */ 15322 max_frag = *new_nlb_ire->ire_max_fragp; 15323 new_nlb_ire->ire_max_fragp = NULL; 15324 new_nlb_ire->ire_max_frag = max_frag; 15325 15326 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15327 irep = &new_lb_ire->ire_next; 15328 /* Add the new ire. Insert at *irep */ 15329 ire1 = *irep; 15330 if (ire1 != NULL) 15331 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15332 new_nlb_ire->ire_next = ire1; 15333 /* Link the new one in. */ 15334 new_nlb_ire->ire_ptpn = irep; 15335 membar_producer(); 15336 *irep = new_nlb_ire; 15337 new_nlb_ire_used = B_TRUE; 15338 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15339 ire_stats_inserted); 15340 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15341 DTRACE_PROBE3(ipif__incr__cnt, 15342 (ipif_t *), new_nlb_ire->ire_ipif, 15343 (char *), "ire", (void *), new_nlb_ire); 15344 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15345 DTRACE_PROBE3(ill__incr__cnt, 15346 (ill_t *), new_nlb_ire->ire_stq->q_ptr, 15347 (char *), "ire", (void *), new_nlb_ire); 15348 ((ill_t *)(new_nlb_ire->ire_stq->q_ptr))->ill_ire_cnt++; 15349 } 15350 } 15351 rw_exit(&irb->irb_lock); 15352 if (!new_lb_ire_used) 15353 kmem_cache_free(ire_cache, new_lb_ire); 15354 if (!new_nlb_ire_used) 15355 kmem_cache_free(ire_cache, new_nlb_ire); 15356 IRB_REFRELE(irb); 15357 } 15358 15359 /* 15360 * Whenever an ipif goes down we have to renominate a different 15361 * broadcast ire to receive. Whenever an ipif comes up, we need 15362 * to make sure that we have only one nominated to receive. 15363 */ 15364 static void 15365 ipif_renominate_bcast(ipif_t *ipif) 15366 { 15367 ill_t *ill = ipif->ipif_ill; 15368 ipaddr_t subnet_addr; 15369 ipaddr_t net_addr; 15370 ipaddr_t net_mask = 0; 15371 ipaddr_t subnet_netmask; 15372 ipaddr_t addr; 15373 ill_group_t *illgrp; 15374 ip_stack_t *ipst = ill->ill_ipst; 15375 15376 illgrp = ill->ill_group; 15377 /* 15378 * If this is the last ipif going down, it might take 15379 * the ill out of the group. In that case ipif_down -> 15380 * illgrp_delete takes care of doing the nomination. 15381 * ipif_down does not call for this case. 15382 */ 15383 ASSERT(illgrp != NULL); 15384 15385 /* There could not have been any ires associated with this */ 15386 if (ipif->ipif_subnet == 0) 15387 return; 15388 15389 ill_mark_bcast(illgrp, 0, ipst); 15390 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15391 15392 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15393 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15394 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15395 } else { 15396 net_mask = htonl(IN_CLASSA_NET); 15397 } 15398 addr = net_mask & ipif->ipif_subnet; 15399 ill_mark_bcast(illgrp, addr, ipst); 15400 15401 net_addr = ~net_mask | addr; 15402 ill_mark_bcast(illgrp, net_addr, ipst); 15403 15404 subnet_netmask = ipif->ipif_net_mask; 15405 addr = ipif->ipif_subnet; 15406 ill_mark_bcast(illgrp, addr, ipst); 15407 15408 subnet_addr = ~subnet_netmask | addr; 15409 ill_mark_bcast(illgrp, subnet_addr, ipst); 15410 } 15411 15412 /* 15413 * Whenever we form or delete ill groups, we need to nominate one set of 15414 * BROADCAST ires for receiving in the group. 15415 * 15416 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15417 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15418 * for ill_ipif_up_count to be non-zero. This is the only case where 15419 * ill_ipif_up_count is zero and we would still find the ires. 15420 * 15421 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15422 * ipif is UP and we just have to do the nomination. 15423 * 15424 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15425 * from the group. So, we have to do the nomination. 15426 * 15427 * Because of (3), there could be just one ill in the group. But we have 15428 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15429 * Thus, this function does not optimize when there is only one ill as 15430 * it is not correct for (3). 15431 */ 15432 static void 15433 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15434 { 15435 ill_t *ill; 15436 ipif_t *ipif; 15437 ipaddr_t subnet_addr; 15438 ipaddr_t prev_subnet_addr = 0; 15439 ipaddr_t net_addr; 15440 ipaddr_t prev_net_addr = 0; 15441 ipaddr_t net_mask = 0; 15442 ipaddr_t subnet_netmask; 15443 ipaddr_t addr; 15444 ip_stack_t *ipst; 15445 15446 /* 15447 * When the last memeber is leaving, there is nothing to 15448 * nominate. 15449 */ 15450 if (illgrp->illgrp_ill_count == 0) { 15451 ASSERT(illgrp->illgrp_ill == NULL); 15452 return; 15453 } 15454 15455 ill = illgrp->illgrp_ill; 15456 ASSERT(!ill->ill_isv6); 15457 ipst = ill->ill_ipst; 15458 /* 15459 * We assume that ires with same address and belonging to the 15460 * same group, has been grouped together. Nominating a *single* 15461 * ill in the group for sending and receiving broadcast is done 15462 * by making sure that the first BROADCAST ire (which will be 15463 * the one returned by ire_ctable_lookup for ip_rput and the 15464 * one that will be used in ip_wput_ire) will be the one that 15465 * will not have IRE_MARK_NORECV set. 15466 * 15467 * 1) ip_rput checks and discards packets received on ires marked 15468 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15469 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15470 * first ire in the group for every broadcast address in the group. 15471 * ip_rput will accept packets only on the first ire i.e only 15472 * one copy of the ill. 15473 * 15474 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15475 * packet for the whole group. It needs to send out on the ill 15476 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15477 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15478 * the copy echoed back on other port where the ire is not marked 15479 * with IRE_MARK_NORECV. 15480 * 15481 * Note that we just need to have the first IRE either loopback or 15482 * non-loopback (either of them may not exist if ire_create failed 15483 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15484 * always hit the first one and hence will always accept one copy. 15485 * 15486 * We have a broadcast ire per ill for all the unique prefixes 15487 * hosted on that ill. As we don't have a way of knowing the 15488 * unique prefixes on a given ill and hence in the whole group, 15489 * we just call ill_mark_bcast on all the prefixes that exist 15490 * in the group. For the common case of one prefix, the code 15491 * below optimizes by remebering the last address used for 15492 * markng. In the case of multiple prefixes, this will still 15493 * optimize depending the order of prefixes. 15494 * 15495 * The only unique address across the whole group is 0.0.0.0 and 15496 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15497 * the first ire in the bucket for receiving and disables the 15498 * others. 15499 */ 15500 ill_mark_bcast(illgrp, 0, ipst); 15501 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15502 for (; ill != NULL; ill = ill->ill_group_next) { 15503 15504 for (ipif = ill->ill_ipif; ipif != NULL; 15505 ipif = ipif->ipif_next) { 15506 15507 if (!(ipif->ipif_flags & IPIF_UP) || 15508 ipif->ipif_subnet == 0) { 15509 continue; 15510 } 15511 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15512 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15513 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15514 } else { 15515 net_mask = htonl(IN_CLASSA_NET); 15516 } 15517 addr = net_mask & ipif->ipif_subnet; 15518 if (prev_net_addr == 0 || prev_net_addr != addr) { 15519 ill_mark_bcast(illgrp, addr, ipst); 15520 net_addr = ~net_mask | addr; 15521 ill_mark_bcast(illgrp, net_addr, ipst); 15522 } 15523 prev_net_addr = addr; 15524 15525 subnet_netmask = ipif->ipif_net_mask; 15526 addr = ipif->ipif_subnet; 15527 if (prev_subnet_addr == 0 || 15528 prev_subnet_addr != addr) { 15529 ill_mark_bcast(illgrp, addr, ipst); 15530 subnet_addr = ~subnet_netmask | addr; 15531 ill_mark_bcast(illgrp, subnet_addr, ipst); 15532 } 15533 prev_subnet_addr = addr; 15534 } 15535 } 15536 } 15537 15538 /* 15539 * This function is called while forming ill groups. 15540 * 15541 * Currently, we handle only allmulti groups. We want to join 15542 * allmulti on only one of the ills in the groups. In future, 15543 * when we have link aggregation, we may have to join normal 15544 * multicast groups on multiple ills as switch does inbound load 15545 * balancing. Following are the functions that calls this 15546 * function : 15547 * 15548 * 1) ill_recover_multicast : Interface is coming back UP. 15549 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15550 * will call ill_recover_multicast to recover all the multicast 15551 * groups. We need to make sure that only one member is joined 15552 * in the ill group. 15553 * 15554 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15555 * Somebody is joining allmulti. We need to make sure that only one 15556 * member is joined in the group. 15557 * 15558 * 3) illgrp_insert : If allmulti has already joined, we need to make 15559 * sure that only one member is joined in the group. 15560 * 15561 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15562 * allmulti who we have nominated. We need to pick someother ill. 15563 * 15564 * 5) illgrp_delete : The ill we nominated is leaving the group, 15565 * we need to pick a new ill to join the group. 15566 * 15567 * For (1), (2), (5) - we just have to check whether there is 15568 * a good ill joined in the group. If we could not find any ills 15569 * joined the group, we should join. 15570 * 15571 * For (4), the one that was nominated to receive, left the group. 15572 * There could be nobody joined in the group when this function is 15573 * called. 15574 * 15575 * For (3) - we need to explicitly check whether there are multiple 15576 * ills joined in the group. 15577 * 15578 * For simplicity, we don't differentiate any of the above cases. We 15579 * just leave the group if it is joined on any of them and join on 15580 * the first good ill. 15581 */ 15582 int 15583 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15584 { 15585 ilm_t *ilm; 15586 ill_t *ill; 15587 ill_t *fallback_inactive_ill = NULL; 15588 ill_t *fallback_failed_ill = NULL; 15589 int ret = 0; 15590 15591 /* 15592 * Leave the allmulti on all the ills and start fresh. 15593 */ 15594 for (ill = illgrp->illgrp_ill; ill != NULL; 15595 ill = ill->ill_group_next) { 15596 if (ill->ill_join_allmulti) 15597 (void) ip_leave_allmulti(ill->ill_ipif); 15598 } 15599 15600 /* 15601 * Choose a good ill. Fallback to inactive or failed if 15602 * none available. We need to fallback to FAILED in the 15603 * case where we have 2 interfaces in a group - where 15604 * one of them is failed and another is a good one and 15605 * the good one (not marked inactive) is leaving the group. 15606 */ 15607 ret = 0; 15608 for (ill = illgrp->illgrp_ill; ill != NULL; 15609 ill = ill->ill_group_next) { 15610 /* Never pick an offline interface */ 15611 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15612 continue; 15613 15614 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15615 fallback_failed_ill = ill; 15616 continue; 15617 } 15618 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15619 fallback_inactive_ill = ill; 15620 continue; 15621 } 15622 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15623 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15624 ret = ip_join_allmulti(ill->ill_ipif); 15625 /* 15626 * ip_join_allmulti can fail because of memory 15627 * failures. So, make sure we join at least 15628 * on one ill. 15629 */ 15630 if (ill->ill_join_allmulti) 15631 return (0); 15632 } 15633 } 15634 } 15635 if (ret != 0) { 15636 /* 15637 * If we tried nominating above and failed to do so, 15638 * return error. We might have tried multiple times. 15639 * But, return the latest error. 15640 */ 15641 return (ret); 15642 } 15643 if ((ill = fallback_inactive_ill) != NULL) { 15644 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15645 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15646 ret = ip_join_allmulti(ill->ill_ipif); 15647 return (ret); 15648 } 15649 } 15650 } else if ((ill = fallback_failed_ill) != NULL) { 15651 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15652 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15653 ret = ip_join_allmulti(ill->ill_ipif); 15654 return (ret); 15655 } 15656 } 15657 } 15658 return (0); 15659 } 15660 15661 /* 15662 * This function is called from illgrp_delete after it is 15663 * deleted from the group to reschedule responsibilities 15664 * to a different ill. 15665 */ 15666 static void 15667 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15668 { 15669 ilm_t *ilm; 15670 ipif_t *ipif; 15671 ipaddr_t subnet_addr; 15672 ipaddr_t net_addr; 15673 ipaddr_t net_mask = 0; 15674 ipaddr_t subnet_netmask; 15675 ipaddr_t addr; 15676 ip_stack_t *ipst = ill->ill_ipst; 15677 15678 ASSERT(ill->ill_group == NULL); 15679 /* 15680 * Broadcast Responsibility: 15681 * 15682 * 1. If this ill has been nominated for receiving broadcast 15683 * packets, we need to find a new one. Before we find a new 15684 * one, we need to re-group the ires that are part of this new 15685 * group (assumed by ill_nominate_bcast_rcv). We do this by 15686 * calling ill_group_bcast_for_xmit(ill) which will do the right 15687 * thing for us. 15688 * 15689 * 2. If this ill was not nominated for receiving broadcast 15690 * packets, we need to clear the IRE_MARK_NORECV flag 15691 * so that we continue to send up broadcast packets. 15692 */ 15693 if (!ill->ill_isv6) { 15694 /* 15695 * Case 1 above : No optimization here. Just redo the 15696 * nomination. 15697 */ 15698 ill_group_bcast_for_xmit(ill); 15699 ill_nominate_bcast_rcv(illgrp); 15700 15701 /* 15702 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15703 */ 15704 ill_clear_bcast_mark(ill, 0); 15705 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15706 15707 for (ipif = ill->ill_ipif; ipif != NULL; 15708 ipif = ipif->ipif_next) { 15709 15710 if (!(ipif->ipif_flags & IPIF_UP) || 15711 ipif->ipif_subnet == 0) { 15712 continue; 15713 } 15714 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15715 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15716 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15717 } else { 15718 net_mask = htonl(IN_CLASSA_NET); 15719 } 15720 addr = net_mask & ipif->ipif_subnet; 15721 ill_clear_bcast_mark(ill, addr); 15722 15723 net_addr = ~net_mask | addr; 15724 ill_clear_bcast_mark(ill, net_addr); 15725 15726 subnet_netmask = ipif->ipif_net_mask; 15727 addr = ipif->ipif_subnet; 15728 ill_clear_bcast_mark(ill, addr); 15729 15730 subnet_addr = ~subnet_netmask | addr; 15731 ill_clear_bcast_mark(ill, subnet_addr); 15732 } 15733 } 15734 15735 /* 15736 * Multicast Responsibility. 15737 * 15738 * If we have joined allmulti on this one, find a new member 15739 * in the group to join allmulti. As this ill is already part 15740 * of allmulti, we don't have to join on this one. 15741 * 15742 * If we have not joined allmulti on this one, there is no 15743 * responsibility to handoff. But we need to take new 15744 * responsibility i.e, join allmulti on this one if we need 15745 * to. 15746 */ 15747 if (ill->ill_join_allmulti) { 15748 (void) ill_nominate_mcast_rcv(illgrp); 15749 } else { 15750 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15751 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15752 (void) ip_join_allmulti(ill->ill_ipif); 15753 break; 15754 } 15755 } 15756 } 15757 15758 /* 15759 * We intentionally do the flushing of IRE_CACHES only matching 15760 * on the ill and not on groups. Note that we are already deleted 15761 * from the group. 15762 * 15763 * This will make sure that all IRE_CACHES whose stq is pointing 15764 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15765 * deleted and IRE_CACHES that are not pointing at this ill will 15766 * be left alone. 15767 */ 15768 ire_walk_ill(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_CACHE, 15769 illgrp_cache_delete, ill, ill); 15770 15771 /* 15772 * Some conn may have cached one of the IREs deleted above. By removing 15773 * the ire reference, we clean up the extra reference to the ill held in 15774 * ire->ire_stq. 15775 */ 15776 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15777 15778 /* 15779 * Re-do source address selection for all the members in the 15780 * group, if they borrowed source address from one of the ipifs 15781 * in this ill. 15782 */ 15783 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15784 if (ill->ill_isv6) { 15785 ipif_update_other_ipifs_v6(ipif, illgrp); 15786 } else { 15787 ipif_update_other_ipifs(ipif, illgrp); 15788 } 15789 } 15790 } 15791 15792 /* 15793 * Delete the ill from the group. The caller makes sure that it is 15794 * in a group and it okay to delete from the group. So, we always 15795 * delete here. 15796 */ 15797 static void 15798 illgrp_delete(ill_t *ill) 15799 { 15800 ill_group_t *illgrp; 15801 ill_group_t *tmpg; 15802 ill_t *tmp_ill; 15803 ip_stack_t *ipst = ill->ill_ipst; 15804 15805 /* 15806 * Reset illgrp_ill_schednext if it was pointing at us. 15807 * We need to do this before we set ill_group to NULL. 15808 */ 15809 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15810 mutex_enter(&ill->ill_lock); 15811 15812 illgrp_reset_schednext(ill); 15813 15814 illgrp = ill->ill_group; 15815 15816 /* Delete the ill from illgrp. */ 15817 if (illgrp->illgrp_ill == ill) { 15818 illgrp->illgrp_ill = ill->ill_group_next; 15819 } else { 15820 tmp_ill = illgrp->illgrp_ill; 15821 while (tmp_ill->ill_group_next != ill) { 15822 tmp_ill = tmp_ill->ill_group_next; 15823 ASSERT(tmp_ill != NULL); 15824 } 15825 tmp_ill->ill_group_next = ill->ill_group_next; 15826 } 15827 ill->ill_group = NULL; 15828 ill->ill_group_next = NULL; 15829 15830 illgrp->illgrp_ill_count--; 15831 mutex_exit(&ill->ill_lock); 15832 rw_exit(&ipst->ips_ill_g_lock); 15833 15834 /* 15835 * As this ill is leaving the group, we need to hand off 15836 * the responsibilities to the other ills in the group, if 15837 * this ill had some responsibilities. 15838 */ 15839 15840 ill_handoff_responsibility(ill, illgrp); 15841 15842 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15843 15844 if (illgrp->illgrp_ill_count == 0) { 15845 15846 ASSERT(illgrp->illgrp_ill == NULL); 15847 if (ill->ill_isv6) { 15848 if (illgrp == ipst->ips_illgrp_head_v6) { 15849 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15850 } else { 15851 tmpg = ipst->ips_illgrp_head_v6; 15852 while (tmpg->illgrp_next != illgrp) { 15853 tmpg = tmpg->illgrp_next; 15854 ASSERT(tmpg != NULL); 15855 } 15856 tmpg->illgrp_next = illgrp->illgrp_next; 15857 } 15858 } else { 15859 if (illgrp == ipst->ips_illgrp_head_v4) { 15860 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15861 } else { 15862 tmpg = ipst->ips_illgrp_head_v4; 15863 while (tmpg->illgrp_next != illgrp) { 15864 tmpg = tmpg->illgrp_next; 15865 ASSERT(tmpg != NULL); 15866 } 15867 tmpg->illgrp_next = illgrp->illgrp_next; 15868 } 15869 } 15870 mutex_destroy(&illgrp->illgrp_lock); 15871 mi_free(illgrp); 15872 } 15873 rw_exit(&ipst->ips_ill_g_lock); 15874 15875 /* 15876 * Even though the ill is out of the group its not necessary 15877 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15878 * We will split the ipsq when phyint_groupname is set to NULL. 15879 */ 15880 15881 /* 15882 * Send a routing sockets message if we are deleting from 15883 * groups with names. 15884 */ 15885 if (ill->ill_phyint->phyint_groupname_len != 0) 15886 ip_rts_ifmsg(ill->ill_ipif); 15887 } 15888 15889 /* 15890 * Re-do source address selection. This is normally called when 15891 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15892 * ipif comes up. 15893 */ 15894 void 15895 ill_update_source_selection(ill_t *ill) 15896 { 15897 ipif_t *ipif; 15898 15899 ASSERT(IAM_WRITER_ILL(ill)); 15900 15901 if (ill->ill_group != NULL) 15902 ill = ill->ill_group->illgrp_ill; 15903 15904 for (; ill != NULL; ill = ill->ill_group_next) { 15905 for (ipif = ill->ill_ipif; ipif != NULL; 15906 ipif = ipif->ipif_next) { 15907 if (ill->ill_isv6) 15908 ipif_recreate_interface_routes_v6(NULL, ipif); 15909 else 15910 ipif_recreate_interface_routes(NULL, ipif); 15911 } 15912 } 15913 } 15914 15915 /* 15916 * Insert ill in a group headed by illgrp_head. The caller can either 15917 * pass a groupname in which case we search for a group with the 15918 * same name to insert in or pass a group to insert in. This function 15919 * would only search groups with names. 15920 * 15921 * NOTE : The caller should make sure that there is at least one ipif 15922 * UP on this ill so that illgrp_scheduler can pick this ill 15923 * for outbound packets. If ill_ipif_up_count is zero, we have 15924 * already sent a DL_UNBIND to the driver and we don't want to 15925 * send anymore packets. We don't assert for ipif_up_count 15926 * to be greater than zero, because ipif_up_done wants to call 15927 * this function before bumping up the ipif_up_count. See 15928 * ipif_up_done() for details. 15929 */ 15930 int 15931 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15932 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15933 { 15934 ill_group_t *illgrp; 15935 ill_t *prev_ill; 15936 phyint_t *phyi; 15937 ip_stack_t *ipst = ill->ill_ipst; 15938 15939 ASSERT(ill->ill_group == NULL); 15940 15941 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15942 mutex_enter(&ill->ill_lock); 15943 15944 if (groupname != NULL) { 15945 /* 15946 * Look for a group with a matching groupname to insert. 15947 */ 15948 for (illgrp = *illgrp_head; illgrp != NULL; 15949 illgrp = illgrp->illgrp_next) { 15950 15951 ill_t *tmp_ill; 15952 15953 /* 15954 * If we have an ill_group_t in the list which has 15955 * no ill_t assigned then we must be in the process of 15956 * removing this group. We skip this as illgrp_delete() 15957 * will remove it from the list. 15958 */ 15959 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15960 ASSERT(illgrp->illgrp_ill_count == 0); 15961 continue; 15962 } 15963 15964 ASSERT(tmp_ill->ill_phyint != NULL); 15965 phyi = tmp_ill->ill_phyint; 15966 /* 15967 * Look at groups which has names only. 15968 */ 15969 if (phyi->phyint_groupname_len == 0) 15970 continue; 15971 /* 15972 * Names are stored in the phyint common to both 15973 * IPv4 and IPv6. 15974 */ 15975 if (mi_strcmp(phyi->phyint_groupname, 15976 groupname) == 0) { 15977 break; 15978 } 15979 } 15980 } else { 15981 /* 15982 * If the caller passes in a NULL "grp_to_insert", we 15983 * allocate one below and insert this singleton. 15984 */ 15985 illgrp = grp_to_insert; 15986 } 15987 15988 ill->ill_group_next = NULL; 15989 15990 if (illgrp == NULL) { 15991 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 15992 if (illgrp == NULL) { 15993 return (ENOMEM); 15994 } 15995 illgrp->illgrp_next = *illgrp_head; 15996 *illgrp_head = illgrp; 15997 illgrp->illgrp_ill = ill; 15998 illgrp->illgrp_ill_count = 1; 15999 ill->ill_group = illgrp; 16000 /* 16001 * Used in illgrp_scheduler to protect multiple threads 16002 * from traversing the list. 16003 */ 16004 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16005 } else { 16006 ASSERT(ill->ill_net_type == 16007 illgrp->illgrp_ill->ill_net_type); 16008 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16009 16010 /* Insert ill at tail of this group */ 16011 prev_ill = illgrp->illgrp_ill; 16012 while (prev_ill->ill_group_next != NULL) 16013 prev_ill = prev_ill->ill_group_next; 16014 prev_ill->ill_group_next = ill; 16015 ill->ill_group = illgrp; 16016 illgrp->illgrp_ill_count++; 16017 /* 16018 * Inherit group properties. Currently only forwarding 16019 * is the property we try to keep the same with all the 16020 * ills. When there are more, we will abstract this into 16021 * a function. 16022 */ 16023 ill->ill_flags &= ~ILLF_ROUTER; 16024 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16025 } 16026 mutex_exit(&ill->ill_lock); 16027 rw_exit(&ipst->ips_ill_g_lock); 16028 16029 /* 16030 * 1) When ipif_up_done() calls this function, ipif_up_count 16031 * may be zero as it has not yet been bumped. But the ires 16032 * have already been added. So, we do the nomination here 16033 * itself. But, when ip_sioctl_groupname calls this, it checks 16034 * for ill_ipif_up_count != 0. Thus we don't check for 16035 * ill_ipif_up_count here while nominating broadcast ires for 16036 * receive. 16037 * 16038 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16039 * to group them properly as ire_add() has already happened 16040 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16041 * case, we need to do it here anyway. 16042 */ 16043 if (!ill->ill_isv6) { 16044 ill_group_bcast_for_xmit(ill); 16045 ill_nominate_bcast_rcv(illgrp); 16046 } 16047 16048 if (!ipif_is_coming_up) { 16049 /* 16050 * When ipif_up_done() calls this function, the multicast 16051 * groups have not been joined yet. So, there is no point in 16052 * nomination. ip_join_allmulti will handle groups when 16053 * ill_recover_multicast is called from ipif_up_done() later. 16054 */ 16055 (void) ill_nominate_mcast_rcv(illgrp); 16056 /* 16057 * ipif_up_done calls ill_update_source_selection 16058 * anyway. Moreover, we don't want to re-create 16059 * interface routes while ipif_up_done() still has reference 16060 * to them. Refer to ipif_up_done() for more details. 16061 */ 16062 ill_update_source_selection(ill); 16063 } 16064 16065 /* 16066 * Send a routing sockets message if we are inserting into 16067 * groups with names. 16068 */ 16069 if (groupname != NULL) 16070 ip_rts_ifmsg(ill->ill_ipif); 16071 return (0); 16072 } 16073 16074 /* 16075 * Return the first phyint matching the groupname. There could 16076 * be more than one when there are ill groups. 16077 * 16078 * If 'usable' is set, then we exclude ones that are marked with any of 16079 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16080 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16081 * emulation of ipmp. 16082 */ 16083 phyint_t * 16084 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16085 { 16086 phyint_t *phyi; 16087 16088 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16089 /* 16090 * Group names are stored in the phyint - a common structure 16091 * to both IPv4 and IPv6. 16092 */ 16093 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16094 for (; phyi != NULL; 16095 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16096 phyi, AVL_AFTER)) { 16097 if (phyi->phyint_groupname_len == 0) 16098 continue; 16099 /* 16100 * Skip the ones that should not be used since the callers 16101 * sometime use this for sending packets. 16102 */ 16103 if (usable && (phyi->phyint_flags & 16104 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16105 continue; 16106 16107 ASSERT(phyi->phyint_groupname != NULL); 16108 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16109 return (phyi); 16110 } 16111 return (NULL); 16112 } 16113 16114 16115 /* 16116 * Return the first usable phyint matching the group index. By 'usable' 16117 * we exclude ones that are marked ununsable with any of 16118 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16119 * 16120 * Used only for the ipmp/netinfo emulation of ipmp. 16121 */ 16122 phyint_t * 16123 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16124 { 16125 phyint_t *phyi; 16126 16127 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16128 16129 if (!ipst->ips_ipmp_hook_emulation) 16130 return (NULL); 16131 16132 /* 16133 * Group indicies are stored in the phyint - a common structure 16134 * to both IPv4 and IPv6. 16135 */ 16136 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16137 for (; phyi != NULL; 16138 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16139 phyi, AVL_AFTER)) { 16140 /* Ignore the ones that do not have a group */ 16141 if (phyi->phyint_groupname_len == 0) 16142 continue; 16143 16144 ASSERT(phyi->phyint_group_ifindex != 0); 16145 /* 16146 * Skip the ones that should not be used since the callers 16147 * sometime use this for sending packets. 16148 */ 16149 if (phyi->phyint_flags & 16150 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16151 continue; 16152 if (phyi->phyint_group_ifindex == group_ifindex) 16153 return (phyi); 16154 } 16155 return (NULL); 16156 } 16157 16158 /* 16159 * MT notes on creation and deletion of IPMP groups 16160 * 16161 * Creation and deletion of IPMP groups introduce the need to merge or 16162 * split the associated serialization objects i.e the ipsq's. Normally all 16163 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16164 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16165 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16166 * is a need to change the <ill-ipsq> association and we have to operate on both 16167 * the source and destination IPMP groups. For eg. attempting to set the 16168 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16169 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16170 * source or destination IPMP group are mapped to a single ipsq for executing 16171 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16172 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16173 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16174 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16175 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16176 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16177 * 16178 * In the above example the ioctl handling code locates the current ipsq of hme0 16179 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16180 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16181 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16182 * the destination ipsq. If the destination ipsq is not busy, it also enters 16183 * the destination ipsq exclusively. Now the actual groupname setting operation 16184 * can proceed. If the destination ipsq is busy, the operation is enqueued 16185 * on the destination (merged) ipsq and will be handled in the unwind from 16186 * ipsq_exit. 16187 * 16188 * To prevent other threads accessing the ill while the group name change is 16189 * in progres, we bring down the ipifs which also removes the ill from the 16190 * group. The group is changed in phyint and when the first ipif on the ill 16191 * is brought up, the ill is inserted into the right IPMP group by 16192 * illgrp_insert. 16193 */ 16194 /* ARGSUSED */ 16195 int 16196 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16197 ip_ioctl_cmd_t *ipip, void *ifreq) 16198 { 16199 int i; 16200 char *tmp; 16201 int namelen; 16202 ill_t *ill = ipif->ipif_ill; 16203 ill_t *ill_v4, *ill_v6; 16204 int err = 0; 16205 phyint_t *phyi; 16206 phyint_t *phyi_tmp; 16207 struct lifreq *lifr; 16208 mblk_t *mp1; 16209 char *groupname; 16210 ipsq_t *ipsq; 16211 ip_stack_t *ipst = ill->ill_ipst; 16212 16213 ASSERT(IAM_WRITER_IPIF(ipif)); 16214 16215 /* Existance verified in ip_wput_nondata */ 16216 mp1 = mp->b_cont->b_cont; 16217 lifr = (struct lifreq *)mp1->b_rptr; 16218 groupname = lifr->lifr_groupname; 16219 16220 if (ipif->ipif_id != 0) 16221 return (EINVAL); 16222 16223 phyi = ill->ill_phyint; 16224 ASSERT(phyi != NULL); 16225 16226 if (phyi->phyint_flags & PHYI_VIRTUAL) 16227 return (EINVAL); 16228 16229 tmp = groupname; 16230 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16231 ; 16232 16233 if (i == LIFNAMSIZ) { 16234 /* no null termination */ 16235 return (EINVAL); 16236 } 16237 16238 /* 16239 * Calculate the namelen exclusive of the null 16240 * termination character. 16241 */ 16242 namelen = tmp - groupname; 16243 16244 ill_v4 = phyi->phyint_illv4; 16245 ill_v6 = phyi->phyint_illv6; 16246 16247 /* 16248 * ILL cannot be part of a usesrc group and and IPMP group at the 16249 * same time. No need to grab the ill_g_usesrc_lock here, see 16250 * synchronization notes in ip.c 16251 */ 16252 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16253 return (EINVAL); 16254 } 16255 16256 /* 16257 * mark the ill as changing. 16258 * this should queue all new requests on the syncq. 16259 */ 16260 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16261 16262 if (ill_v4 != NULL) 16263 ill_v4->ill_state_flags |= ILL_CHANGING; 16264 if (ill_v6 != NULL) 16265 ill_v6->ill_state_flags |= ILL_CHANGING; 16266 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16267 16268 if (namelen == 0) { 16269 /* 16270 * Null string means remove this interface from the 16271 * existing group. 16272 */ 16273 if (phyi->phyint_groupname_len == 0) { 16274 /* 16275 * Never was in a group. 16276 */ 16277 err = 0; 16278 goto done; 16279 } 16280 16281 /* 16282 * IPv4 or IPv6 may be temporarily out of the group when all 16283 * the ipifs are down. Thus, we need to check for ill_group to 16284 * be non-NULL. 16285 */ 16286 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16287 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16288 mutex_enter(&ill_v4->ill_lock); 16289 if (!ill_is_quiescent(ill_v4)) { 16290 /* 16291 * ipsq_pending_mp_add will not fail since 16292 * connp is NULL 16293 */ 16294 (void) ipsq_pending_mp_add(NULL, 16295 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16296 mutex_exit(&ill_v4->ill_lock); 16297 err = EINPROGRESS; 16298 goto done; 16299 } 16300 mutex_exit(&ill_v4->ill_lock); 16301 } 16302 16303 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16304 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16305 mutex_enter(&ill_v6->ill_lock); 16306 if (!ill_is_quiescent(ill_v6)) { 16307 (void) ipsq_pending_mp_add(NULL, 16308 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16309 mutex_exit(&ill_v6->ill_lock); 16310 err = EINPROGRESS; 16311 goto done; 16312 } 16313 mutex_exit(&ill_v6->ill_lock); 16314 } 16315 16316 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16317 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16318 mutex_enter(&phyi->phyint_lock); 16319 ASSERT(phyi->phyint_groupname != NULL); 16320 mi_free(phyi->phyint_groupname); 16321 phyi->phyint_groupname = NULL; 16322 phyi->phyint_groupname_len = 0; 16323 16324 /* Restore the ifindex used to be the per interface one */ 16325 phyi->phyint_group_ifindex = 0; 16326 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16327 mutex_exit(&phyi->phyint_lock); 16328 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16329 rw_exit(&ipst->ips_ill_g_lock); 16330 err = ill_up_ipifs(ill, q, mp); 16331 16332 /* 16333 * set the split flag so that the ipsq can be split 16334 */ 16335 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16336 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16337 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16338 16339 } else { 16340 if (phyi->phyint_groupname_len != 0) { 16341 ASSERT(phyi->phyint_groupname != NULL); 16342 /* Are we inserting in the same group ? */ 16343 if (mi_strcmp(groupname, 16344 phyi->phyint_groupname) == 0) { 16345 err = 0; 16346 goto done; 16347 } 16348 } 16349 16350 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16351 /* 16352 * Merge ipsq for the group's. 16353 * This check is here as multiple groups/ills might be 16354 * sharing the same ipsq. 16355 * If we have to merege than the operation is restarted 16356 * on the new ipsq. 16357 */ 16358 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16359 if (phyi->phyint_ipsq != ipsq) { 16360 rw_exit(&ipst->ips_ill_g_lock); 16361 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16362 goto done; 16363 } 16364 /* 16365 * Running exclusive on new ipsq. 16366 */ 16367 16368 ASSERT(ipsq != NULL); 16369 ASSERT(ipsq->ipsq_writer == curthread); 16370 16371 /* 16372 * Check whether the ill_type and ill_net_type matches before 16373 * we allocate any memory so that the cleanup is easier. 16374 * 16375 * We can't group dissimilar ones as we can't load spread 16376 * packets across the group because of potential link-level 16377 * header differences. 16378 */ 16379 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16380 if (phyi_tmp != NULL) { 16381 if ((ill_v4 != NULL && 16382 phyi_tmp->phyint_illv4 != NULL) && 16383 ((ill_v4->ill_net_type != 16384 phyi_tmp->phyint_illv4->ill_net_type) || 16385 (ill_v4->ill_type != 16386 phyi_tmp->phyint_illv4->ill_type))) { 16387 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16388 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16389 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16390 rw_exit(&ipst->ips_ill_g_lock); 16391 return (EINVAL); 16392 } 16393 if ((ill_v6 != NULL && 16394 phyi_tmp->phyint_illv6 != NULL) && 16395 ((ill_v6->ill_net_type != 16396 phyi_tmp->phyint_illv6->ill_net_type) || 16397 (ill_v6->ill_type != 16398 phyi_tmp->phyint_illv6->ill_type))) { 16399 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16400 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16401 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16402 rw_exit(&ipst->ips_ill_g_lock); 16403 return (EINVAL); 16404 } 16405 } 16406 16407 rw_exit(&ipst->ips_ill_g_lock); 16408 16409 /* 16410 * bring down all v4 ipifs. 16411 */ 16412 if (ill_v4 != NULL) { 16413 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16414 } 16415 16416 /* 16417 * bring down all v6 ipifs. 16418 */ 16419 if (ill_v6 != NULL) { 16420 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16421 } 16422 16423 /* 16424 * make sure all ipifs are down and there are no active 16425 * references. Call to ipsq_pending_mp_add will not fail 16426 * since connp is NULL. 16427 */ 16428 if (ill_v4 != NULL) { 16429 mutex_enter(&ill_v4->ill_lock); 16430 if (!ill_is_quiescent(ill_v4)) { 16431 (void) ipsq_pending_mp_add(NULL, 16432 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16433 mutex_exit(&ill_v4->ill_lock); 16434 err = EINPROGRESS; 16435 goto done; 16436 } 16437 mutex_exit(&ill_v4->ill_lock); 16438 } 16439 16440 if (ill_v6 != NULL) { 16441 mutex_enter(&ill_v6->ill_lock); 16442 if (!ill_is_quiescent(ill_v6)) { 16443 (void) ipsq_pending_mp_add(NULL, 16444 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16445 mutex_exit(&ill_v6->ill_lock); 16446 err = EINPROGRESS; 16447 goto done; 16448 } 16449 mutex_exit(&ill_v6->ill_lock); 16450 } 16451 16452 /* 16453 * allocate including space for null terminator 16454 * before we insert. 16455 */ 16456 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16457 if (tmp == NULL) 16458 return (ENOMEM); 16459 16460 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16461 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16462 mutex_enter(&phyi->phyint_lock); 16463 if (phyi->phyint_groupname_len != 0) { 16464 ASSERT(phyi->phyint_groupname != NULL); 16465 mi_free(phyi->phyint_groupname); 16466 } 16467 16468 /* 16469 * setup the new group name. 16470 */ 16471 phyi->phyint_groupname = tmp; 16472 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16473 phyi->phyint_groupname_len = namelen + 1; 16474 16475 if (ipst->ips_ipmp_hook_emulation) { 16476 /* 16477 * If the group already exists we use the existing 16478 * group_ifindex, otherwise we pick a new index here. 16479 */ 16480 if (phyi_tmp != NULL) { 16481 phyi->phyint_group_ifindex = 16482 phyi_tmp->phyint_group_ifindex; 16483 } else { 16484 /* XXX We need a recovery strategy here. */ 16485 if (!ip_assign_ifindex( 16486 &phyi->phyint_group_ifindex, ipst)) 16487 cmn_err(CE_PANIC, 16488 "ip_assign_ifindex() failed"); 16489 } 16490 } 16491 /* 16492 * Select whether the netinfo and hook use the per-interface 16493 * or per-group ifindex. 16494 */ 16495 if (ipst->ips_ipmp_hook_emulation) 16496 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16497 else 16498 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16499 16500 if (ipst->ips_ipmp_hook_emulation && 16501 phyi_tmp != NULL) { 16502 /* First phyint in group - group PLUMB event */ 16503 ill_nic_info_plumb(ill, B_TRUE); 16504 } 16505 mutex_exit(&phyi->phyint_lock); 16506 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16507 rw_exit(&ipst->ips_ill_g_lock); 16508 16509 err = ill_up_ipifs(ill, q, mp); 16510 } 16511 16512 done: 16513 /* 16514 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16515 */ 16516 if (err != EINPROGRESS) { 16517 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16518 if (ill_v4 != NULL) 16519 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16520 if (ill_v6 != NULL) 16521 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16522 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16523 } 16524 return (err); 16525 } 16526 16527 /* ARGSUSED */ 16528 int 16529 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16530 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16531 { 16532 ill_t *ill; 16533 phyint_t *phyi; 16534 struct lifreq *lifr; 16535 mblk_t *mp1; 16536 16537 /* Existence verified in ip_wput_nondata */ 16538 mp1 = mp->b_cont->b_cont; 16539 lifr = (struct lifreq *)mp1->b_rptr; 16540 ill = ipif->ipif_ill; 16541 phyi = ill->ill_phyint; 16542 16543 lifr->lifr_groupname[0] = '\0'; 16544 /* 16545 * ill_group may be null if all the interfaces 16546 * are down. But still, the phyint should always 16547 * hold the name. 16548 */ 16549 if (phyi->phyint_groupname_len != 0) { 16550 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16551 phyi->phyint_groupname_len); 16552 } 16553 16554 return (0); 16555 } 16556 16557 16558 typedef struct conn_move_s { 16559 ill_t *cm_from_ill; 16560 ill_t *cm_to_ill; 16561 int cm_ifindex; 16562 } conn_move_t; 16563 16564 /* 16565 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16566 */ 16567 static void 16568 conn_move(conn_t *connp, caddr_t arg) 16569 { 16570 conn_move_t *connm; 16571 int ifindex; 16572 int i; 16573 ill_t *from_ill; 16574 ill_t *to_ill; 16575 ilg_t *ilg; 16576 ilm_t *ret_ilm; 16577 16578 connm = (conn_move_t *)arg; 16579 ifindex = connm->cm_ifindex; 16580 from_ill = connm->cm_from_ill; 16581 to_ill = connm->cm_to_ill; 16582 16583 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16584 16585 /* All multicast fields protected by conn_lock */ 16586 mutex_enter(&connp->conn_lock); 16587 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16588 if ((connp->conn_outgoing_ill == from_ill) && 16589 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16590 connp->conn_outgoing_ill = to_ill; 16591 connp->conn_incoming_ill = to_ill; 16592 } 16593 16594 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16595 16596 if ((connp->conn_multicast_ill == from_ill) && 16597 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16598 connp->conn_multicast_ill = connm->cm_to_ill; 16599 } 16600 16601 /* 16602 * Change the ilg_ill to point to the new one. This assumes 16603 * ilm_move_v6 has moved the ilms to new_ill and the driver 16604 * has been told to receive packets on this interface. 16605 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16606 * But when doing a FAILOVER, it might fail with ENOMEM and so 16607 * some ilms may not have moved. We check to see whether 16608 * the ilms have moved to to_ill. We can't check on from_ill 16609 * as in the process of moving, we could have split an ilm 16610 * in to two - which has the same orig_ifindex and v6group. 16611 * 16612 * For IPv4, ilg_ipif moves implicitly. The code below really 16613 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16614 */ 16615 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16616 ilg = &connp->conn_ilg[i]; 16617 if ((ilg->ilg_ill == from_ill) && 16618 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16619 /* ifindex != 0 indicates failback */ 16620 if (ifindex != 0) { 16621 connp->conn_ilg[i].ilg_ill = to_ill; 16622 continue; 16623 } 16624 16625 mutex_enter(&to_ill->ill_lock); 16626 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16627 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16628 connp->conn_zoneid); 16629 mutex_exit(&to_ill->ill_lock); 16630 16631 if (ret_ilm != NULL) 16632 connp->conn_ilg[i].ilg_ill = to_ill; 16633 } 16634 } 16635 mutex_exit(&connp->conn_lock); 16636 } 16637 16638 static void 16639 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16640 { 16641 conn_move_t connm; 16642 ip_stack_t *ipst = from_ill->ill_ipst; 16643 16644 connm.cm_from_ill = from_ill; 16645 connm.cm_to_ill = to_ill; 16646 connm.cm_ifindex = ifindex; 16647 16648 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16649 } 16650 16651 /* 16652 * ilm has been moved from from_ill to to_ill. 16653 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16654 * appropriately. 16655 * 16656 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16657 * the code there de-references ipif_ill to get the ill to 16658 * send multicast requests. It does not work as ipif is on its 16659 * move and already moved when this function is called. 16660 * Thus, we need to use from_ill and to_ill send down multicast 16661 * requests. 16662 */ 16663 static void 16664 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16665 { 16666 ipif_t *ipif; 16667 ilm_t *ilm; 16668 16669 /* 16670 * See whether we need to send down DL_ENABMULTI_REQ on 16671 * to_ill as ilm has just been added. 16672 */ 16673 ASSERT(IAM_WRITER_ILL(to_ill)); 16674 ASSERT(IAM_WRITER_ILL(from_ill)); 16675 16676 ILM_WALKER_HOLD(to_ill); 16677 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16678 16679 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16680 continue; 16681 /* 16682 * no locks held, ill/ipif cannot dissappear as long 16683 * as we are writer. 16684 */ 16685 ipif = to_ill->ill_ipif; 16686 /* 16687 * No need to hold any lock as we are the writer and this 16688 * can only be changed by a writer. 16689 */ 16690 ilm->ilm_is_new = B_FALSE; 16691 16692 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16693 ipif->ipif_flags & IPIF_POINTOPOINT) { 16694 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16695 "resolver\n")); 16696 continue; /* Must be IRE_IF_NORESOLVER */ 16697 } 16698 16699 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16700 ip1dbg(("ilm_send_multicast_reqs: " 16701 "to_ill MULTI_BCAST\n")); 16702 goto from; 16703 } 16704 16705 if (to_ill->ill_isv6) 16706 mld_joingroup(ilm); 16707 else 16708 igmp_joingroup(ilm); 16709 16710 if (to_ill->ill_ipif_up_count == 0) { 16711 /* 16712 * Nobody there. All multicast addresses will be 16713 * re-joined when we get the DL_BIND_ACK bringing the 16714 * interface up. 16715 */ 16716 ilm->ilm_notify_driver = B_FALSE; 16717 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16718 goto from; 16719 } 16720 16721 /* 16722 * For allmulti address, we want to join on only one interface. 16723 * Checking for ilm_numentries_v6 is not correct as you may 16724 * find an ilm with zero address on to_ill, but we may not 16725 * have nominated to_ill for receiving. Thus, if we have 16726 * nominated from_ill (ill_join_allmulti is set), nominate 16727 * only if to_ill is not already nominated (to_ill normally 16728 * should not have been nominated if "from_ill" has already 16729 * been nominated. As we don't prevent failovers from happening 16730 * across groups, we don't assert). 16731 */ 16732 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16733 /* 16734 * There is no need to hold ill locks as we are 16735 * writer on both ills and when ill_join_allmulti 16736 * is changed the thread is always a writer. 16737 */ 16738 if (from_ill->ill_join_allmulti && 16739 !to_ill->ill_join_allmulti) { 16740 (void) ip_join_allmulti(to_ill->ill_ipif); 16741 } 16742 } else if (ilm->ilm_notify_driver) { 16743 16744 /* 16745 * This is a newly moved ilm so we need to tell the 16746 * driver about the new group. There can be more than 16747 * one ilm's for the same group in the list each with a 16748 * different orig_ifindex. We have to inform the driver 16749 * once. In ilm_move_v[4,6] we only set the flag 16750 * ilm_notify_driver for the first ilm. 16751 */ 16752 16753 (void) ip_ll_send_enabmulti_req(to_ill, 16754 &ilm->ilm_v6addr); 16755 } 16756 16757 ilm->ilm_notify_driver = B_FALSE; 16758 16759 /* 16760 * See whether we need to send down DL_DISABMULTI_REQ on 16761 * from_ill as ilm has just been removed. 16762 */ 16763 from: 16764 ipif = from_ill->ill_ipif; 16765 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16766 ipif->ipif_flags & IPIF_POINTOPOINT) { 16767 ip1dbg(("ilm_send_multicast_reqs: " 16768 "from_ill not resolver\n")); 16769 continue; /* Must be IRE_IF_NORESOLVER */ 16770 } 16771 16772 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16773 ip1dbg(("ilm_send_multicast_reqs: " 16774 "from_ill MULTI_BCAST\n")); 16775 continue; 16776 } 16777 16778 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16779 if (from_ill->ill_join_allmulti) 16780 (void) ip_leave_allmulti(from_ill->ill_ipif); 16781 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16782 (void) ip_ll_send_disabmulti_req(from_ill, 16783 &ilm->ilm_v6addr); 16784 } 16785 } 16786 ILM_WALKER_RELE(to_ill); 16787 } 16788 16789 /* 16790 * This function is called when all multicast memberships needs 16791 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16792 * called only once unlike the IPv4 counterpart where it is called after 16793 * every logical interface is moved. The reason is due to multicast 16794 * memberships are joined using an interface address in IPv4 while in 16795 * IPv6, interface index is used. 16796 */ 16797 static void 16798 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16799 { 16800 ilm_t *ilm; 16801 ilm_t *ilm_next; 16802 ilm_t *new_ilm; 16803 ilm_t **ilmp; 16804 int count; 16805 char buf[INET6_ADDRSTRLEN]; 16806 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16807 ip_stack_t *ipst = from_ill->ill_ipst; 16808 16809 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16810 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16811 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16812 16813 if (ifindex == 0) { 16814 /* 16815 * Form the solicited node mcast address which is used later. 16816 */ 16817 ipif_t *ipif; 16818 16819 ipif = from_ill->ill_ipif; 16820 ASSERT(ipif->ipif_id == 0); 16821 16822 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16823 } 16824 16825 ilmp = &from_ill->ill_ilm; 16826 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16827 ilm_next = ilm->ilm_next; 16828 16829 if (ilm->ilm_flags & ILM_DELETED) { 16830 ilmp = &ilm->ilm_next; 16831 continue; 16832 } 16833 16834 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16835 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16836 ASSERT(ilm->ilm_orig_ifindex != 0); 16837 if (ilm->ilm_orig_ifindex == ifindex) { 16838 /* 16839 * We are failing back multicast memberships. 16840 * If the same ilm exists in to_ill, it means somebody 16841 * has joined the same group there e.g. ff02::1 16842 * is joined within the kernel when the interfaces 16843 * came UP. 16844 */ 16845 ASSERT(ilm->ilm_ipif == NULL); 16846 if (new_ilm != NULL) { 16847 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16848 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16849 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16850 new_ilm->ilm_is_new = B_TRUE; 16851 } 16852 } else { 16853 /* 16854 * check if we can just move the ilm 16855 */ 16856 if (from_ill->ill_ilm_walker_cnt != 0) { 16857 /* 16858 * We have walkers we cannot move 16859 * the ilm, so allocate a new ilm, 16860 * this (old) ilm will be marked 16861 * ILM_DELETED at the end of the loop 16862 * and will be freed when the 16863 * last walker exits. 16864 */ 16865 new_ilm = (ilm_t *)mi_zalloc 16866 (sizeof (ilm_t)); 16867 if (new_ilm == NULL) { 16868 ip0dbg(("ilm_move_v6: " 16869 "FAILBACK of IPv6" 16870 " multicast address %s : " 16871 "from %s to" 16872 " %s failed : ENOMEM \n", 16873 inet_ntop(AF_INET6, 16874 &ilm->ilm_v6addr, buf, 16875 sizeof (buf)), 16876 from_ill->ill_name, 16877 to_ill->ill_name)); 16878 16879 ilmp = &ilm->ilm_next; 16880 continue; 16881 } 16882 *new_ilm = *ilm; 16883 /* 16884 * we don't want new_ilm linked to 16885 * ilm's filter list. 16886 */ 16887 new_ilm->ilm_filter = NULL; 16888 } else { 16889 /* 16890 * No walkers we can move the ilm. 16891 * lets take it out of the list. 16892 */ 16893 *ilmp = ilm->ilm_next; 16894 ilm->ilm_next = NULL; 16895 DTRACE_PROBE3(ill__decr__cnt, 16896 (ill_t *), from_ill, 16897 (char *), "ilm", (void *), ilm); 16898 ASSERT(from_ill->ill_ilm_cnt > 0); 16899 from_ill->ill_ilm_cnt--; 16900 16901 new_ilm = ilm; 16902 } 16903 16904 /* 16905 * if this is the first ilm for the group 16906 * set ilm_notify_driver so that we notify the 16907 * driver in ilm_send_multicast_reqs. 16908 */ 16909 if (ilm_lookup_ill_v6(to_ill, 16910 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16911 new_ilm->ilm_notify_driver = B_TRUE; 16912 16913 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 16914 (char *), "ilm", (void *), new_ilm); 16915 new_ilm->ilm_ill = to_ill; 16916 to_ill->ill_ilm_cnt++; 16917 16918 /* Add to the to_ill's list */ 16919 new_ilm->ilm_next = to_ill->ill_ilm; 16920 to_ill->ill_ilm = new_ilm; 16921 /* 16922 * set the flag so that mld_joingroup is 16923 * called in ilm_send_multicast_reqs(). 16924 */ 16925 new_ilm->ilm_is_new = B_TRUE; 16926 } 16927 goto bottom; 16928 } else if (ifindex != 0) { 16929 /* 16930 * If this is FAILBACK (ifindex != 0) and the ifindex 16931 * has not matched above, look at the next ilm. 16932 */ 16933 ilmp = &ilm->ilm_next; 16934 continue; 16935 } 16936 /* 16937 * If we are here, it means ifindex is 0. Failover 16938 * everything. 16939 * 16940 * We need to handle solicited node mcast address 16941 * and all_nodes mcast address differently as they 16942 * are joined witin the kenrel (ipif_multicast_up) 16943 * and potentially from the userland. We are called 16944 * after the ipifs of from_ill has been moved. 16945 * If we still find ilms on ill with solicited node 16946 * mcast address or all_nodes mcast address, it must 16947 * belong to the UP interface that has not moved e.g. 16948 * ipif_id 0 with the link local prefix does not move. 16949 * We join this on the new ill accounting for all the 16950 * userland memberships so that applications don't 16951 * see any failure. 16952 * 16953 * We need to make sure that we account only for the 16954 * solicited node and all node multicast addresses 16955 * that was brought UP on these. In the case of 16956 * a failover from A to B, we might have ilms belonging 16957 * to A (ilm_orig_ifindex pointing at A) on B accounting 16958 * for the membership from the userland. If we are failing 16959 * over from B to C now, we will find the ones belonging 16960 * to A on B. These don't account for the ill_ipif_up_count. 16961 * They just move from B to C. The check below on 16962 * ilm_orig_ifindex ensures that. 16963 */ 16964 if ((ilm->ilm_orig_ifindex == 16965 from_ill->ill_phyint->phyint_ifindex) && 16966 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16967 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16968 &ilm->ilm_v6addr))) { 16969 ASSERT(ilm->ilm_refcnt > 0); 16970 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16971 /* 16972 * For indentation reasons, we are not using a 16973 * "else" here. 16974 */ 16975 if (count == 0) { 16976 ilmp = &ilm->ilm_next; 16977 continue; 16978 } 16979 ilm->ilm_refcnt -= count; 16980 if (new_ilm != NULL) { 16981 /* 16982 * Can find one with the same 16983 * ilm_orig_ifindex, if we are failing 16984 * over to a STANDBY. This happens 16985 * when somebody wants to join a group 16986 * on a STANDBY interface and we 16987 * internally join on a different one. 16988 * If we had joined on from_ill then, a 16989 * failover now will find a new ilm 16990 * with this index. 16991 */ 16992 ip1dbg(("ilm_move_v6: FAILOVER, found" 16993 " new ilm on %s, group address %s\n", 16994 to_ill->ill_name, 16995 inet_ntop(AF_INET6, 16996 &ilm->ilm_v6addr, buf, 16997 sizeof (buf)))); 16998 new_ilm->ilm_refcnt += count; 16999 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17000 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17001 new_ilm->ilm_is_new = B_TRUE; 17002 } 17003 } else { 17004 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17005 if (new_ilm == NULL) { 17006 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17007 " multicast address %s : from %s to" 17008 " %s failed : ENOMEM \n", 17009 inet_ntop(AF_INET6, 17010 &ilm->ilm_v6addr, buf, 17011 sizeof (buf)), from_ill->ill_name, 17012 to_ill->ill_name)); 17013 ilmp = &ilm->ilm_next; 17014 continue; 17015 } 17016 *new_ilm = *ilm; 17017 new_ilm->ilm_filter = NULL; 17018 new_ilm->ilm_refcnt = count; 17019 new_ilm->ilm_timer = INFINITY; 17020 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17021 new_ilm->ilm_is_new = B_TRUE; 17022 /* 17023 * If the to_ill has not joined this 17024 * group we need to tell the driver in 17025 * ill_send_multicast_reqs. 17026 */ 17027 if (ilm_lookup_ill_v6(to_ill, 17028 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17029 new_ilm->ilm_notify_driver = B_TRUE; 17030 17031 new_ilm->ilm_ill = to_ill; 17032 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 17033 (char *), "ilm", (void *), new_ilm); 17034 to_ill->ill_ilm_cnt++; 17035 17036 /* Add to the to_ill's list */ 17037 new_ilm->ilm_next = to_ill->ill_ilm; 17038 to_ill->ill_ilm = new_ilm; 17039 ASSERT(new_ilm->ilm_ipif == NULL); 17040 } 17041 if (ilm->ilm_refcnt == 0) { 17042 goto bottom; 17043 } else { 17044 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17045 CLEAR_SLIST(new_ilm->ilm_filter); 17046 ilmp = &ilm->ilm_next; 17047 } 17048 continue; 17049 } else { 17050 /* 17051 * ifindex = 0 means, move everything pointing at 17052 * from_ill. We are doing this becuase ill has 17053 * either FAILED or became INACTIVE. 17054 * 17055 * As we would like to move things later back to 17056 * from_ill, we want to retain the identity of this 17057 * ilm. Thus, we don't blindly increment the reference 17058 * count on the ilms matching the address alone. We 17059 * need to match on the ilm_orig_index also. new_ilm 17060 * was obtained by matching ilm_orig_index also. 17061 */ 17062 if (new_ilm != NULL) { 17063 /* 17064 * This is possible only if a previous restore 17065 * was incomplete i.e restore to 17066 * ilm_orig_ifindex left some ilms because 17067 * of some failures. Thus when we are failing 17068 * again, we might find our old friends there. 17069 */ 17070 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17071 " on %s, group address %s\n", 17072 to_ill->ill_name, 17073 inet_ntop(AF_INET6, 17074 &ilm->ilm_v6addr, buf, 17075 sizeof (buf)))); 17076 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17077 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17078 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17079 new_ilm->ilm_is_new = B_TRUE; 17080 } 17081 } else { 17082 if (from_ill->ill_ilm_walker_cnt != 0) { 17083 new_ilm = (ilm_t *) 17084 mi_zalloc(sizeof (ilm_t)); 17085 if (new_ilm == NULL) { 17086 ip0dbg(("ilm_move_v6: " 17087 "FAILOVER of IPv6" 17088 " multicast address %s : " 17089 "from %s to" 17090 " %s failed : ENOMEM \n", 17091 inet_ntop(AF_INET6, 17092 &ilm->ilm_v6addr, buf, 17093 sizeof (buf)), 17094 from_ill->ill_name, 17095 to_ill->ill_name)); 17096 17097 ilmp = &ilm->ilm_next; 17098 continue; 17099 } 17100 *new_ilm = *ilm; 17101 new_ilm->ilm_filter = NULL; 17102 } else { 17103 *ilmp = ilm->ilm_next; 17104 DTRACE_PROBE3(ill__decr__cnt, 17105 (ill_t *), from_ill, 17106 (char *), "ilm", (void *), ilm); 17107 ASSERT(from_ill->ill_ilm_cnt > 0); 17108 from_ill->ill_ilm_cnt--; 17109 17110 new_ilm = ilm; 17111 } 17112 /* 17113 * If the to_ill has not joined this 17114 * group we need to tell the driver in 17115 * ill_send_multicast_reqs. 17116 */ 17117 if (ilm_lookup_ill_v6(to_ill, 17118 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17119 new_ilm->ilm_notify_driver = B_TRUE; 17120 17121 /* Add to the to_ill's list */ 17122 new_ilm->ilm_next = to_ill->ill_ilm; 17123 to_ill->ill_ilm = new_ilm; 17124 ASSERT(ilm->ilm_ipif == NULL); 17125 new_ilm->ilm_ill = to_ill; 17126 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 17127 (char *), "ilm", (void *), new_ilm); 17128 to_ill->ill_ilm_cnt++; 17129 new_ilm->ilm_is_new = B_TRUE; 17130 } 17131 17132 } 17133 17134 bottom: 17135 /* 17136 * Revert multicast filter state to (EXCLUDE, NULL). 17137 * new_ilm->ilm_is_new should already be set if needed. 17138 */ 17139 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17140 CLEAR_SLIST(new_ilm->ilm_filter); 17141 /* 17142 * We allocated/got a new ilm, free the old one. 17143 */ 17144 if (new_ilm != ilm) { 17145 if (from_ill->ill_ilm_walker_cnt == 0) { 17146 *ilmp = ilm->ilm_next; 17147 17148 ASSERT(ilm->ilm_ipif == NULL); /* ipv6 */ 17149 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), 17150 from_ill, (char *), "ilm", (void *), ilm); 17151 ASSERT(from_ill->ill_ilm_cnt > 0); 17152 from_ill->ill_ilm_cnt--; 17153 17154 ilm_inactive(ilm); /* frees this ilm */ 17155 17156 } else { 17157 ilm->ilm_flags |= ILM_DELETED; 17158 from_ill->ill_ilm_cleanup_reqd = 1; 17159 ilmp = &ilm->ilm_next; 17160 } 17161 } 17162 } 17163 } 17164 17165 /* 17166 * Move all the multicast memberships to to_ill. Called when 17167 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17168 * different from IPv6 counterpart as multicast memberships are associated 17169 * with ills in IPv6. This function is called after every ipif is moved 17170 * unlike IPv6, where it is moved only once. 17171 */ 17172 static void 17173 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17174 { 17175 ilm_t *ilm; 17176 ilm_t *ilm_next; 17177 ilm_t *new_ilm; 17178 ilm_t **ilmp; 17179 ip_stack_t *ipst = from_ill->ill_ipst; 17180 17181 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17182 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17183 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17184 17185 ilmp = &from_ill->ill_ilm; 17186 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17187 ilm_next = ilm->ilm_next; 17188 17189 if (ilm->ilm_flags & ILM_DELETED) { 17190 ilmp = &ilm->ilm_next; 17191 continue; 17192 } 17193 17194 ASSERT(ilm->ilm_ipif != NULL); 17195 17196 if (ilm->ilm_ipif != ipif) { 17197 ilmp = &ilm->ilm_next; 17198 continue; 17199 } 17200 17201 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17202 htonl(INADDR_ALLHOSTS_GROUP)) { 17203 new_ilm = ilm_lookup_ipif(ipif, 17204 V4_PART_OF_V6(ilm->ilm_v6addr)); 17205 if (new_ilm != NULL) { 17206 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17207 /* 17208 * We still need to deal with the from_ill. 17209 */ 17210 new_ilm->ilm_is_new = B_TRUE; 17211 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17212 CLEAR_SLIST(new_ilm->ilm_filter); 17213 ASSERT(ilm->ilm_ipif == ipif); 17214 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17215 if (from_ill->ill_ilm_walker_cnt == 0) { 17216 DTRACE_PROBE3(ill__decr__cnt, 17217 (ill_t *), from_ill, 17218 (char *), "ilm", (void *), ilm); 17219 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17220 } 17221 goto delete_ilm; 17222 } 17223 /* 17224 * If we could not find one e.g. ipif is 17225 * still down on to_ill, we add this ilm 17226 * on ill_new to preserve the reference 17227 * count. 17228 */ 17229 } 17230 /* 17231 * When ipifs move, ilms always move with it 17232 * to the NEW ill. Thus we should never be 17233 * able to find ilm till we really move it here. 17234 */ 17235 ASSERT(ilm_lookup_ipif(ipif, 17236 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17237 17238 if (from_ill->ill_ilm_walker_cnt != 0) { 17239 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17240 if (new_ilm == NULL) { 17241 char buf[INET6_ADDRSTRLEN]; 17242 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17243 " multicast address %s : " 17244 "from %s to" 17245 " %s failed : ENOMEM \n", 17246 inet_ntop(AF_INET, 17247 &ilm->ilm_v6addr, buf, 17248 sizeof (buf)), 17249 from_ill->ill_name, 17250 to_ill->ill_name)); 17251 17252 ilmp = &ilm->ilm_next; 17253 continue; 17254 } 17255 *new_ilm = *ilm; 17256 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), ipif, 17257 (char *), "ilm", (void *), ilm); 17258 new_ilm->ilm_ipif->ipif_ilm_cnt++; 17259 /* We don't want new_ilm linked to ilm's filter list */ 17260 new_ilm->ilm_filter = NULL; 17261 } else { 17262 /* Remove from the list */ 17263 *ilmp = ilm->ilm_next; 17264 new_ilm = ilm; 17265 } 17266 17267 /* 17268 * If we have never joined this group on the to_ill 17269 * make sure we tell the driver. 17270 */ 17271 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17272 ALL_ZONES) == NULL) 17273 new_ilm->ilm_notify_driver = B_TRUE; 17274 17275 /* Add to the to_ill's list */ 17276 new_ilm->ilm_next = to_ill->ill_ilm; 17277 to_ill->ill_ilm = new_ilm; 17278 new_ilm->ilm_is_new = B_TRUE; 17279 17280 /* 17281 * Revert multicast filter state to (EXCLUDE, NULL) 17282 */ 17283 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17284 CLEAR_SLIST(new_ilm->ilm_filter); 17285 17286 /* 17287 * Delete only if we have allocated a new ilm. 17288 */ 17289 if (new_ilm != ilm) { 17290 delete_ilm: 17291 if (from_ill->ill_ilm_walker_cnt == 0) { 17292 /* Remove from the list */ 17293 *ilmp = ilm->ilm_next; 17294 ilm->ilm_next = NULL; 17295 DTRACE_PROBE3(ipif__decr__cnt, 17296 (ipif_t *), ilm->ilm_ipif, 17297 (char *), "ilm", (void *), ilm); 17298 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17299 ilm->ilm_ipif->ipif_ilm_cnt--; 17300 ilm_inactive(ilm); 17301 } else { 17302 ilm->ilm_flags |= ILM_DELETED; 17303 from_ill->ill_ilm_cleanup_reqd = 1; 17304 ilmp = &ilm->ilm_next; 17305 } 17306 } 17307 } 17308 } 17309 17310 static uint_t 17311 ipif_get_id(ill_t *ill, uint_t id) 17312 { 17313 uint_t unit; 17314 ipif_t *tipif; 17315 boolean_t found = B_FALSE; 17316 ip_stack_t *ipst = ill->ill_ipst; 17317 17318 /* 17319 * During failback, we want to go back to the same id 17320 * instead of the smallest id so that the original 17321 * configuration is maintained. id is non-zero in that 17322 * case. 17323 */ 17324 if (id != 0) { 17325 /* 17326 * While failing back, if we still have an ipif with 17327 * MAX_ADDRS_PER_IF, it means this will be replaced 17328 * as soon as we return from this function. It was 17329 * to set to MAX_ADDRS_PER_IF by the caller so that 17330 * we can choose the smallest id. Thus we return zero 17331 * in that case ignoring the hint. 17332 */ 17333 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17334 return (0); 17335 for (tipif = ill->ill_ipif; tipif != NULL; 17336 tipif = tipif->ipif_next) { 17337 if (tipif->ipif_id == id) { 17338 found = B_TRUE; 17339 break; 17340 } 17341 } 17342 /* 17343 * If somebody already plumbed another logical 17344 * with the same id, we won't be able to find it. 17345 */ 17346 if (!found) 17347 return (id); 17348 } 17349 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17350 found = B_FALSE; 17351 for (tipif = ill->ill_ipif; tipif != NULL; 17352 tipif = tipif->ipif_next) { 17353 if (tipif->ipif_id == unit) { 17354 found = B_TRUE; 17355 break; 17356 } 17357 } 17358 if (!found) 17359 break; 17360 } 17361 return (unit); 17362 } 17363 17364 /* ARGSUSED */ 17365 static int 17366 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17367 ipif_t **rep_ipif_ptr) 17368 { 17369 ill_t *from_ill; 17370 ipif_t *rep_ipif; 17371 uint_t unit; 17372 int err = 0; 17373 ipif_t *to_ipif; 17374 struct iocblk *iocp; 17375 boolean_t failback_cmd; 17376 boolean_t remove_ipif; 17377 int rc; 17378 ip_stack_t *ipst; 17379 17380 ASSERT(IAM_WRITER_ILL(to_ill)); 17381 ASSERT(IAM_WRITER_IPIF(ipif)); 17382 17383 iocp = (struct iocblk *)mp->b_rptr; 17384 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17385 remove_ipif = B_FALSE; 17386 17387 from_ill = ipif->ipif_ill; 17388 ipst = from_ill->ill_ipst; 17389 17390 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17391 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17392 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17393 17394 /* 17395 * Don't move LINK LOCAL addresses as they are tied to 17396 * physical interface. 17397 */ 17398 if (from_ill->ill_isv6 && 17399 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17400 ipif->ipif_was_up = B_FALSE; 17401 IPIF_UNMARK_MOVING(ipif); 17402 return (0); 17403 } 17404 17405 /* 17406 * We set the ipif_id to maximum so that the search for 17407 * ipif_id will pick the lowest number i.e 0 in the 17408 * following 2 cases : 17409 * 17410 * 1) We have a replacement ipif at the head of to_ill. 17411 * We can't remove it yet as we can exceed ip_addrs_per_if 17412 * on to_ill and hence the MOVE might fail. We want to 17413 * remove it only if we could move the ipif. Thus, by 17414 * setting it to the MAX value, we make the search in 17415 * ipif_get_id return the zeroth id. 17416 * 17417 * 2) When DR pulls out the NIC and re-plumbs the interface, 17418 * we might just have a zero address plumbed on the ipif 17419 * with zero id in the case of IPv4. We remove that while 17420 * doing the failback. We want to remove it only if we 17421 * could move the ipif. Thus, by setting it to the MAX 17422 * value, we make the search in ipif_get_id return the 17423 * zeroth id. 17424 * 17425 * Both (1) and (2) are done only when when we are moving 17426 * an ipif (either due to failover/failback) which originally 17427 * belonged to this interface i.e the ipif_orig_ifindex is 17428 * the same as to_ill's ifindex. This is needed so that 17429 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17430 * from B -> A (B is being removed from the group) and 17431 * FAILBACK from A -> B restores the original configuration. 17432 * Without the check for orig_ifindex, the second FAILOVER 17433 * could make the ipif belonging to B replace the A's zeroth 17434 * ipif and the subsequent failback re-creating the replacement 17435 * ipif again. 17436 * 17437 * NOTE : We created the replacement ipif when we did a 17438 * FAILOVER (See below). We could check for FAILBACK and 17439 * then look for replacement ipif to be removed. But we don't 17440 * want to do that because we wan't to allow the possibility 17441 * of a FAILOVER from A -> B (which creates the replacement ipif), 17442 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17443 * from B -> A. 17444 */ 17445 to_ipif = to_ill->ill_ipif; 17446 if ((to_ill->ill_phyint->phyint_ifindex == 17447 ipif->ipif_orig_ifindex) && 17448 to_ipif->ipif_replace_zero) { 17449 ASSERT(to_ipif->ipif_id == 0); 17450 remove_ipif = B_TRUE; 17451 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17452 } 17453 /* 17454 * Find the lowest logical unit number on the to_ill. 17455 * If we are failing back, try to get the original id 17456 * rather than the lowest one so that the original 17457 * configuration is maintained. 17458 * 17459 * XXX need a better scheme for this. 17460 */ 17461 if (failback_cmd) { 17462 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17463 } else { 17464 unit = ipif_get_id(to_ill, 0); 17465 } 17466 17467 /* Reset back to zero in case we fail below */ 17468 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17469 to_ipif->ipif_id = 0; 17470 17471 if (unit == ipst->ips_ip_addrs_per_if) { 17472 ipif->ipif_was_up = B_FALSE; 17473 IPIF_UNMARK_MOVING(ipif); 17474 return (EINVAL); 17475 } 17476 17477 /* 17478 * ipif is ready to move from "from_ill" to "to_ill". 17479 * 17480 * 1) If we are moving ipif with id zero, create a 17481 * replacement ipif for this ipif on from_ill. If this fails 17482 * fail the MOVE operation. 17483 * 17484 * 2) Remove the replacement ipif on to_ill if any. 17485 * We could remove the replacement ipif when we are moving 17486 * the ipif with id zero. But what if somebody already 17487 * unplumbed it ? Thus we always remove it if it is present. 17488 * We want to do it only if we are sure we are going to 17489 * move the ipif to to_ill which is why there are no 17490 * returns due to error till ipif is linked to to_ill. 17491 * Note that the first ipif that we failback will always 17492 * be zero if it is present. 17493 */ 17494 if (ipif->ipif_id == 0) { 17495 ipaddr_t inaddr_any = INADDR_ANY; 17496 17497 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17498 if (rep_ipif == NULL) { 17499 ipif->ipif_was_up = B_FALSE; 17500 IPIF_UNMARK_MOVING(ipif); 17501 return (ENOMEM); 17502 } 17503 *rep_ipif = ipif_zero; 17504 /* 17505 * Before we put the ipif on the list, store the addresses 17506 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17507 * assumes so. This logic is not any different from what 17508 * ipif_allocate does. 17509 */ 17510 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17511 &rep_ipif->ipif_v6lcl_addr); 17512 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17513 &rep_ipif->ipif_v6src_addr); 17514 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17515 &rep_ipif->ipif_v6subnet); 17516 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17517 &rep_ipif->ipif_v6net_mask); 17518 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17519 &rep_ipif->ipif_v6brd_addr); 17520 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17521 &rep_ipif->ipif_v6pp_dst_addr); 17522 /* 17523 * We mark IPIF_NOFAILOVER so that this can never 17524 * move. 17525 */ 17526 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17527 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17528 rep_ipif->ipif_replace_zero = B_TRUE; 17529 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17530 MUTEX_DEFAULT, NULL); 17531 rep_ipif->ipif_id = 0; 17532 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17533 rep_ipif->ipif_ill = from_ill; 17534 rep_ipif->ipif_orig_ifindex = 17535 from_ill->ill_phyint->phyint_ifindex; 17536 /* Insert at head */ 17537 rep_ipif->ipif_next = from_ill->ill_ipif; 17538 from_ill->ill_ipif = rep_ipif; 17539 /* 17540 * We don't really care to let apps know about 17541 * this interface. 17542 */ 17543 } 17544 17545 if (remove_ipif) { 17546 /* 17547 * We set to a max value above for this case to get 17548 * id zero. ASSERT that we did get one. 17549 */ 17550 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17551 rep_ipif = to_ipif; 17552 to_ill->ill_ipif = rep_ipif->ipif_next; 17553 rep_ipif->ipif_next = NULL; 17554 /* 17555 * If some apps scanned and find this interface, 17556 * it is time to let them know, so that they can 17557 * delete it. 17558 */ 17559 17560 *rep_ipif_ptr = rep_ipif; 17561 } 17562 17563 /* Get it out of the ILL interface list. */ 17564 ipif_remove(ipif, B_FALSE); 17565 17566 /* Assign the new ill */ 17567 ipif->ipif_ill = to_ill; 17568 ipif->ipif_id = unit; 17569 /* id has already been checked */ 17570 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17571 ASSERT(rc == 0); 17572 /* Let SCTP update its list */ 17573 sctp_move_ipif(ipif, from_ill, to_ill); 17574 /* 17575 * Handle the failover and failback of ipif_t between 17576 * ill_t that have differing maximum mtu values. 17577 */ 17578 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17579 if (ipif->ipif_saved_mtu == 0) { 17580 /* 17581 * As this ipif_t is moving to an ill_t 17582 * that has a lower ill_max_mtu, its 17583 * ipif_mtu needs to be saved so it can 17584 * be restored during failback or during 17585 * failover to an ill_t which has a 17586 * higher ill_max_mtu. 17587 */ 17588 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17589 ipif->ipif_mtu = to_ill->ill_max_mtu; 17590 } else { 17591 /* 17592 * The ipif_t is, once again, moving to 17593 * an ill_t that has a lower maximum mtu 17594 * value. 17595 */ 17596 ipif->ipif_mtu = to_ill->ill_max_mtu; 17597 } 17598 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17599 ipif->ipif_saved_mtu != 0) { 17600 /* 17601 * The mtu of this ipif_t had to be reduced 17602 * during an earlier failover; this is an 17603 * opportunity for it to be increased (either as 17604 * part of another failover or a failback). 17605 */ 17606 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17607 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17608 ipif->ipif_saved_mtu = 0; 17609 } else { 17610 ipif->ipif_mtu = to_ill->ill_max_mtu; 17611 } 17612 } 17613 17614 /* 17615 * We preserve all the other fields of the ipif including 17616 * ipif_saved_ire_mp. The routes that are saved here will 17617 * be recreated on the new interface and back on the old 17618 * interface when we move back. 17619 */ 17620 ASSERT(ipif->ipif_arp_del_mp == NULL); 17621 17622 return (err); 17623 } 17624 17625 static int 17626 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17627 int ifindex, ipif_t **rep_ipif_ptr) 17628 { 17629 ipif_t *mipif; 17630 ipif_t *ipif_next; 17631 int err; 17632 17633 /* 17634 * We don't really try to MOVE back things if some of the 17635 * operations fail. The daemon will take care of moving again 17636 * later on. 17637 */ 17638 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17639 ipif_next = mipif->ipif_next; 17640 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17641 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17642 17643 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17644 17645 /* 17646 * When the MOVE fails, it is the job of the 17647 * application to take care of this properly 17648 * i.e try again if it is ENOMEM. 17649 */ 17650 if (mipif->ipif_ill != from_ill) { 17651 /* 17652 * ipif has moved. 17653 * 17654 * Move the multicast memberships associated 17655 * with this ipif to the new ill. For IPv6, we 17656 * do it once after all the ipifs are moved 17657 * (in ill_move) as they are not associated 17658 * with ipifs. 17659 * 17660 * We need to move the ilms as the ipif has 17661 * already been moved to a new ill even 17662 * in the case of errors. Neither 17663 * ilm_free(ipif) will find the ilm 17664 * when somebody unplumbs this ipif nor 17665 * ilm_delete(ilm) will be able to find the 17666 * ilm, if we don't move now. 17667 */ 17668 if (!from_ill->ill_isv6) 17669 ilm_move_v4(from_ill, to_ill, mipif); 17670 } 17671 17672 if (err != 0) 17673 return (err); 17674 } 17675 } 17676 return (0); 17677 } 17678 17679 static int 17680 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17681 { 17682 int ifindex; 17683 int err; 17684 struct iocblk *iocp; 17685 ipif_t *ipif; 17686 ipif_t *rep_ipif_ptr = NULL; 17687 ipif_t *from_ipif = NULL; 17688 boolean_t check_rep_if = B_FALSE; 17689 ip_stack_t *ipst = from_ill->ill_ipst; 17690 17691 iocp = (struct iocblk *)mp->b_rptr; 17692 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17693 /* 17694 * Move everything pointing at from_ill to to_ill. 17695 * We acheive this by passing in 0 as ifindex. 17696 */ 17697 ifindex = 0; 17698 } else { 17699 /* 17700 * Move everything pointing at from_ill whose original 17701 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17702 * We acheive this by passing in ifindex rather than 0. 17703 * Multicast vifs, ilgs move implicitly because ipifs move. 17704 */ 17705 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17706 ifindex = to_ill->ill_phyint->phyint_ifindex; 17707 } 17708 17709 /* 17710 * Determine if there is at least one ipif that would move from 17711 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17712 * ipif (if it exists) on the to_ill would be consumed as a result of 17713 * the move, in which case we need to quiesce the replacement ipif also. 17714 */ 17715 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17716 from_ipif = from_ipif->ipif_next) { 17717 if (((ifindex == 0) || 17718 (ifindex == from_ipif->ipif_orig_ifindex)) && 17719 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17720 check_rep_if = B_TRUE; 17721 break; 17722 } 17723 } 17724 17725 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17726 17727 GRAB_ILL_LOCKS(from_ill, to_ill); 17728 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17729 (void) ipsq_pending_mp_add(NULL, ipif, q, 17730 mp, ILL_MOVE_OK); 17731 RELEASE_ILL_LOCKS(from_ill, to_ill); 17732 return (EINPROGRESS); 17733 } 17734 17735 /* Check if the replacement ipif is quiescent to delete */ 17736 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17737 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17738 to_ill->ill_ipif->ipif_state_flags |= 17739 IPIF_MOVING | IPIF_CHANGING; 17740 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17741 (void) ipsq_pending_mp_add(NULL, ipif, q, 17742 mp, ILL_MOVE_OK); 17743 RELEASE_ILL_LOCKS(from_ill, to_ill); 17744 return (EINPROGRESS); 17745 } 17746 } 17747 RELEASE_ILL_LOCKS(from_ill, to_ill); 17748 17749 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17750 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17751 GRAB_ILL_LOCKS(from_ill, to_ill); 17752 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17753 17754 /* ilm_move is done inside ipif_move for IPv4 */ 17755 if (err == 0 && from_ill->ill_isv6) 17756 ilm_move_v6(from_ill, to_ill, ifindex); 17757 17758 RELEASE_ILL_LOCKS(from_ill, to_ill); 17759 rw_exit(&ipst->ips_ill_g_lock); 17760 17761 /* 17762 * send rts messages and multicast messages. 17763 */ 17764 if (rep_ipif_ptr != NULL) { 17765 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17766 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17767 rep_ipif_ptr->ipif_recovery_id = 0; 17768 } 17769 ip_rts_ifmsg(rep_ipif_ptr); 17770 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17771 #ifdef DEBUG 17772 ipif_trace_cleanup(rep_ipif_ptr); 17773 #endif 17774 mi_free(rep_ipif_ptr); 17775 } 17776 17777 conn_move_ill(from_ill, to_ill, ifindex); 17778 17779 return (err); 17780 } 17781 17782 /* 17783 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17784 * Also checks for the validity of the arguments. 17785 * Note: We are already exclusive inside the from group. 17786 * It is upto the caller to release refcnt on the to_ill's. 17787 */ 17788 static int 17789 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17790 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17791 { 17792 int dst_index; 17793 ipif_t *ipif_v4, *ipif_v6; 17794 struct lifreq *lifr; 17795 mblk_t *mp1; 17796 boolean_t exists; 17797 sin_t *sin; 17798 int err = 0; 17799 ip_stack_t *ipst; 17800 17801 if (CONN_Q(q)) 17802 ipst = CONNQ_TO_IPST(q); 17803 else 17804 ipst = ILLQ_TO_IPST(q); 17805 17806 if ((mp1 = mp->b_cont) == NULL) 17807 return (EPROTO); 17808 17809 if ((mp1 = mp1->b_cont) == NULL) 17810 return (EPROTO); 17811 17812 lifr = (struct lifreq *)mp1->b_rptr; 17813 sin = (sin_t *)&lifr->lifr_addr; 17814 17815 /* 17816 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17817 * specific operations. 17818 */ 17819 if (sin->sin_family != AF_UNSPEC) 17820 return (EINVAL); 17821 17822 /* 17823 * Get ipif with id 0. We are writer on the from ill. So we can pass 17824 * NULLs for the last 4 args and we know the lookup won't fail 17825 * with EINPROGRESS. 17826 */ 17827 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17828 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17829 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17830 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17831 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17832 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17833 17834 if (ipif_v4 == NULL && ipif_v6 == NULL) 17835 return (ENXIO); 17836 17837 if (ipif_v4 != NULL) { 17838 ASSERT(ipif_v4->ipif_refcnt != 0); 17839 if (ipif_v4->ipif_id != 0) { 17840 err = EINVAL; 17841 goto done; 17842 } 17843 17844 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17845 *ill_from_v4 = ipif_v4->ipif_ill; 17846 } 17847 17848 if (ipif_v6 != NULL) { 17849 ASSERT(ipif_v6->ipif_refcnt != 0); 17850 if (ipif_v6->ipif_id != 0) { 17851 err = EINVAL; 17852 goto done; 17853 } 17854 17855 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17856 *ill_from_v6 = ipif_v6->ipif_ill; 17857 } 17858 17859 err = 0; 17860 dst_index = lifr->lifr_movetoindex; 17861 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17862 q, mp, ip_process_ioctl, &err, ipst); 17863 if (err != 0) { 17864 /* 17865 * There could be only v6. 17866 */ 17867 if (err != ENXIO) 17868 goto done; 17869 err = 0; 17870 } 17871 17872 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17873 q, mp, ip_process_ioctl, &err, ipst); 17874 if (err != 0) { 17875 if (err != ENXIO) 17876 goto done; 17877 if (*ill_to_v4 == NULL) { 17878 err = ENXIO; 17879 goto done; 17880 } 17881 err = 0; 17882 } 17883 17884 /* 17885 * If we have something to MOVE i.e "from" not NULL, 17886 * "to" should be non-NULL. 17887 */ 17888 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17889 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17890 err = EINVAL; 17891 } 17892 17893 done: 17894 if (ipif_v4 != NULL) 17895 ipif_refrele(ipif_v4); 17896 if (ipif_v6 != NULL) 17897 ipif_refrele(ipif_v6); 17898 return (err); 17899 } 17900 17901 /* 17902 * FAILOVER and FAILBACK are modelled as MOVE operations. 17903 * 17904 * We don't check whether the MOVE is within the same group or 17905 * not, because this ioctl can be used as a generic mechanism 17906 * to failover from interface A to B, though things will function 17907 * only if they are really part of the same group. Moreover, 17908 * all ipifs may be down and hence temporarily out of the group. 17909 * 17910 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17911 * down first and then V6. For each we wait for the ipif's to become quiescent. 17912 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17913 * have been deleted and there are no active references. Once quiescent the 17914 * ipif's are moved and brought up on the new ill. 17915 * 17916 * Normally the source ill and destination ill belong to the same IPMP group 17917 * and hence the same ipsq_t. In the event they don't belong to the same 17918 * same group the two ipsq's are first merged into one ipsq - that of the 17919 * to_ill. The multicast memberships on the source and destination ill cannot 17920 * change during the move operation since multicast joins/leaves also have to 17921 * execute on the same ipsq and are hence serialized. 17922 */ 17923 /* ARGSUSED */ 17924 int 17925 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17926 ip_ioctl_cmd_t *ipip, void *ifreq) 17927 { 17928 ill_t *ill_to_v4 = NULL; 17929 ill_t *ill_to_v6 = NULL; 17930 ill_t *ill_from_v4 = NULL; 17931 ill_t *ill_from_v6 = NULL; 17932 int err = 0; 17933 17934 /* 17935 * setup from and to ill's, we can get EINPROGRESS only for 17936 * to_ill's. 17937 */ 17938 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17939 &ill_to_v4, &ill_to_v6); 17940 17941 if (err != 0) { 17942 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17943 goto done; 17944 } 17945 17946 /* 17947 * nothing to do. 17948 */ 17949 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17950 goto done; 17951 } 17952 17953 /* 17954 * nothing to do. 17955 */ 17956 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17957 goto done; 17958 } 17959 17960 /* 17961 * Mark the ill as changing. 17962 * ILL_CHANGING flag is cleared when the ipif's are brought up 17963 * in ill_up_ipifs in case of error they are cleared below. 17964 */ 17965 17966 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17967 if (ill_from_v4 != NULL) 17968 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17969 if (ill_from_v6 != NULL) 17970 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17971 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17972 17973 /* 17974 * Make sure that both src and dst are 17975 * in the same syncq group. If not make it happen. 17976 * We are not holding any locks because we are the writer 17977 * on the from_ipsq and we will hold locks in ill_merge_groups 17978 * to protect to_ipsq against changing. 17979 */ 17980 if (ill_from_v4 != NULL) { 17981 if (ill_from_v4->ill_phyint->phyint_ipsq != 17982 ill_to_v4->ill_phyint->phyint_ipsq) { 17983 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17984 NULL, mp, q); 17985 goto err_ret; 17986 17987 } 17988 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17989 } else { 17990 17991 if (ill_from_v6->ill_phyint->phyint_ipsq != 17992 ill_to_v6->ill_phyint->phyint_ipsq) { 17993 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17994 NULL, mp, q); 17995 goto err_ret; 17996 17997 } 17998 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17999 } 18000 18001 /* 18002 * Now that the ipsq's have been merged and we are the writer 18003 * lets mark to_ill as changing as well. 18004 */ 18005 18006 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18007 if (ill_to_v4 != NULL) 18008 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18009 if (ill_to_v6 != NULL) 18010 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18011 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18012 18013 /* 18014 * Its ok for us to proceed with the move even if 18015 * ill_pending_mp is non null on one of the from ill's as the reply 18016 * should not be looking at the ipif, it should only care about the 18017 * ill itself. 18018 */ 18019 18020 /* 18021 * lets move ipv4 first. 18022 */ 18023 if (ill_from_v4 != NULL) { 18024 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18025 ill_from_v4->ill_move_in_progress = B_TRUE; 18026 ill_to_v4->ill_move_in_progress = B_TRUE; 18027 ill_to_v4->ill_move_peer = ill_from_v4; 18028 ill_from_v4->ill_move_peer = ill_to_v4; 18029 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18030 } 18031 18032 /* 18033 * Now lets move ipv6. 18034 */ 18035 if (err == 0 && ill_from_v6 != NULL) { 18036 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18037 ill_from_v6->ill_move_in_progress = B_TRUE; 18038 ill_to_v6->ill_move_in_progress = B_TRUE; 18039 ill_to_v6->ill_move_peer = ill_from_v6; 18040 ill_from_v6->ill_move_peer = ill_to_v6; 18041 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18042 } 18043 18044 err_ret: 18045 /* 18046 * EINPROGRESS means we are waiting for the ipif's that need to be 18047 * moved to become quiescent. 18048 */ 18049 if (err == EINPROGRESS) { 18050 goto done; 18051 } 18052 18053 /* 18054 * if err is set ill_up_ipifs will not be called 18055 * lets clear the flags. 18056 */ 18057 18058 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18059 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18060 /* 18061 * Some of the clearing may be redundant. But it is simple 18062 * not making any extra checks. 18063 */ 18064 if (ill_from_v6 != NULL) { 18065 ill_from_v6->ill_move_in_progress = B_FALSE; 18066 ill_from_v6->ill_move_peer = NULL; 18067 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18068 } 18069 if (ill_from_v4 != NULL) { 18070 ill_from_v4->ill_move_in_progress = B_FALSE; 18071 ill_from_v4->ill_move_peer = NULL; 18072 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18073 } 18074 if (ill_to_v6 != NULL) { 18075 ill_to_v6->ill_move_in_progress = B_FALSE; 18076 ill_to_v6->ill_move_peer = NULL; 18077 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18078 } 18079 if (ill_to_v4 != NULL) { 18080 ill_to_v4->ill_move_in_progress = B_FALSE; 18081 ill_to_v4->ill_move_peer = NULL; 18082 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18083 } 18084 18085 /* 18086 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18087 * Do this always to maintain proper state i.e even in case of errors. 18088 * As phyint_inactive looks at both v4 and v6 interfaces, 18089 * we need not call on both v4 and v6 interfaces. 18090 */ 18091 if (ill_from_v4 != NULL) { 18092 if ((ill_from_v4->ill_phyint->phyint_flags & 18093 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18094 phyint_inactive(ill_from_v4->ill_phyint); 18095 } 18096 } else if (ill_from_v6 != NULL) { 18097 if ((ill_from_v6->ill_phyint->phyint_flags & 18098 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18099 phyint_inactive(ill_from_v6->ill_phyint); 18100 } 18101 } 18102 18103 if (ill_to_v4 != NULL) { 18104 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18105 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18106 } 18107 } else if (ill_to_v6 != NULL) { 18108 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18109 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18110 } 18111 } 18112 18113 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18114 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18115 18116 no_err: 18117 /* 18118 * lets bring the interfaces up on the to_ill. 18119 */ 18120 if (err == 0) { 18121 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18122 q, mp); 18123 } 18124 18125 if (err == 0) { 18126 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18127 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18128 18129 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18130 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18131 } 18132 done: 18133 18134 if (ill_to_v4 != NULL) { 18135 ill_refrele(ill_to_v4); 18136 } 18137 if (ill_to_v6 != NULL) { 18138 ill_refrele(ill_to_v6); 18139 } 18140 18141 return (err); 18142 } 18143 18144 static void 18145 ill_dl_down(ill_t *ill) 18146 { 18147 /* 18148 * The ill is down; unbind but stay attached since we're still 18149 * associated with a PPA. If we have negotiated DLPI capabilites 18150 * with the data link service provider (IDS_OK) then reset them. 18151 * The interval between unbinding and rebinding is potentially 18152 * unbounded hence we cannot assume things will be the same. 18153 * The DLPI capabilities will be probed again when the data link 18154 * is brought up. 18155 */ 18156 mblk_t *mp = ill->ill_unbind_mp; 18157 18158 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18159 18160 ill->ill_unbind_mp = NULL; 18161 if (mp != NULL) { 18162 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18163 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18164 ill->ill_name)); 18165 mutex_enter(&ill->ill_lock); 18166 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18167 mutex_exit(&ill->ill_lock); 18168 /* 18169 * Reset the capabilities if the negotiation is done or is 18170 * still in progress. Note that ill_capability_reset() will 18171 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent 18172 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored. 18173 * 18174 * Further, reset ill_capab_reneg to be B_FALSE so that the 18175 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent 18176 * the capabilities renegotiation from happening. 18177 */ 18178 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 18179 ill_capability_reset(ill); 18180 ill->ill_capab_reneg = B_FALSE; 18181 18182 ill_dlpi_send(ill, mp); 18183 } 18184 18185 /* 18186 * Toss all of our multicast memberships. We could keep them, but 18187 * then we'd have to do bookkeeping of any joins and leaves performed 18188 * by the application while the the interface is down (we can't just 18189 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18190 * on a downed interface). 18191 */ 18192 ill_leave_multicast(ill); 18193 18194 mutex_enter(&ill->ill_lock); 18195 ill->ill_dl_up = 0; 18196 (void) ill_hook_event_create(ill, 0, NE_DOWN, NULL, 0); 18197 mutex_exit(&ill->ill_lock); 18198 } 18199 18200 static void 18201 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18202 { 18203 union DL_primitives *dlp; 18204 t_uscalar_t prim; 18205 18206 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18207 18208 dlp = (union DL_primitives *)mp->b_rptr; 18209 prim = dlp->dl_primitive; 18210 18211 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18212 dl_primstr(prim), prim, ill->ill_name)); 18213 18214 switch (prim) { 18215 case DL_PHYS_ADDR_REQ: 18216 { 18217 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18218 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18219 break; 18220 } 18221 case DL_BIND_REQ: 18222 mutex_enter(&ill->ill_lock); 18223 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18224 mutex_exit(&ill->ill_lock); 18225 break; 18226 } 18227 18228 /* 18229 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18230 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18231 * we only wait for the ACK of the DL_UNBIND_REQ. 18232 */ 18233 mutex_enter(&ill->ill_lock); 18234 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18235 (prim == DL_UNBIND_REQ)) { 18236 ill->ill_dlpi_pending = prim; 18237 } 18238 mutex_exit(&ill->ill_lock); 18239 18240 putnext(ill->ill_wq, mp); 18241 } 18242 18243 /* 18244 * Helper function for ill_dlpi_send(). 18245 */ 18246 /* ARGSUSED */ 18247 static void 18248 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18249 { 18250 ill_dlpi_send(q->q_ptr, mp); 18251 } 18252 18253 /* 18254 * Send a DLPI control message to the driver but make sure there 18255 * is only one outstanding message. Uses ill_dlpi_pending to tell 18256 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18257 * when an ACK or a NAK is received to process the next queued message. 18258 */ 18259 void 18260 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18261 { 18262 mblk_t **mpp; 18263 18264 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18265 18266 /* 18267 * To ensure that any DLPI requests for current exclusive operation 18268 * are always completely sent before any DLPI messages for other 18269 * operations, require writer access before enqueuing. 18270 */ 18271 if (!IAM_WRITER_ILL(ill)) { 18272 ill_refhold(ill); 18273 /* qwriter_ip() does the ill_refrele() */ 18274 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18275 NEW_OP, B_TRUE); 18276 return; 18277 } 18278 18279 mutex_enter(&ill->ill_lock); 18280 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18281 /* Must queue message. Tail insertion */ 18282 mpp = &ill->ill_dlpi_deferred; 18283 while (*mpp != NULL) 18284 mpp = &((*mpp)->b_next); 18285 18286 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18287 ill->ill_name)); 18288 18289 *mpp = mp; 18290 mutex_exit(&ill->ill_lock); 18291 return; 18292 } 18293 mutex_exit(&ill->ill_lock); 18294 ill_dlpi_dispatch(ill, mp); 18295 } 18296 18297 /* 18298 * Send all deferred DLPI messages without waiting for their ACKs. 18299 */ 18300 void 18301 ill_dlpi_send_deferred(ill_t *ill) 18302 { 18303 mblk_t *mp, *nextmp; 18304 18305 /* 18306 * Clear ill_dlpi_pending so that the message is not queued in 18307 * ill_dlpi_send(). 18308 */ 18309 mutex_enter(&ill->ill_lock); 18310 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18311 mp = ill->ill_dlpi_deferred; 18312 ill->ill_dlpi_deferred = NULL; 18313 mutex_exit(&ill->ill_lock); 18314 18315 for (; mp != NULL; mp = nextmp) { 18316 nextmp = mp->b_next; 18317 mp->b_next = NULL; 18318 ill_dlpi_send(ill, mp); 18319 } 18320 } 18321 18322 /* 18323 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18324 */ 18325 boolean_t 18326 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18327 { 18328 t_uscalar_t pending; 18329 18330 mutex_enter(&ill->ill_lock); 18331 if (ill->ill_dlpi_pending == prim) { 18332 mutex_exit(&ill->ill_lock); 18333 return (B_TRUE); 18334 } 18335 18336 /* 18337 * During teardown, ill_dlpi_dispatch() will send DLPI requests 18338 * without waiting, so don't print any warnings in that case. 18339 */ 18340 if (ill->ill_state_flags & ILL_CONDEMNED) { 18341 mutex_exit(&ill->ill_lock); 18342 return (B_FALSE); 18343 } 18344 pending = ill->ill_dlpi_pending; 18345 mutex_exit(&ill->ill_lock); 18346 18347 if (pending == DL_PRIM_INVAL) { 18348 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18349 "received unsolicited ack for %s on %s\n", 18350 dl_primstr(prim), ill->ill_name); 18351 } else { 18352 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18353 "received unexpected ack for %s on %s (expecting %s)\n", 18354 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 18355 } 18356 return (B_FALSE); 18357 } 18358 18359 /* 18360 * Complete the current DLPI operation associated with `prim' on `ill' and 18361 * start the next queued DLPI operation (if any). If there are no queued DLPI 18362 * operations and the ill's current exclusive IPSQ operation has finished 18363 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 18364 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 18365 * the comments above ipsq_current_finish() for details. 18366 */ 18367 void 18368 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18369 { 18370 mblk_t *mp; 18371 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18372 18373 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18374 mutex_enter(&ill->ill_lock); 18375 18376 ASSERT(prim != DL_PRIM_INVAL); 18377 ASSERT(ill->ill_dlpi_pending == prim); 18378 18379 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18380 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18381 18382 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18383 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18384 18385 mutex_enter(&ipsq->ipsq_lock); 18386 if (ipsq->ipsq_current_done) 18387 ipsq->ipsq_current_ipif = NULL; 18388 mutex_exit(&ipsq->ipsq_lock); 18389 18390 cv_signal(&ill->ill_cv); 18391 mutex_exit(&ill->ill_lock); 18392 return; 18393 } 18394 18395 ill->ill_dlpi_deferred = mp->b_next; 18396 mp->b_next = NULL; 18397 mutex_exit(&ill->ill_lock); 18398 18399 ill_dlpi_dispatch(ill, mp); 18400 } 18401 18402 void 18403 conn_delete_ire(conn_t *connp, caddr_t arg) 18404 { 18405 ipif_t *ipif = (ipif_t *)arg; 18406 ire_t *ire; 18407 18408 /* 18409 * Look at the cached ires on conns which has pointers to ipifs. 18410 * We just call ire_refrele which clears up the reference 18411 * to ire. Called when a conn closes. Also called from ipif_free 18412 * to cleanup indirect references to the stale ipif via the cached ire. 18413 */ 18414 mutex_enter(&connp->conn_lock); 18415 ire = connp->conn_ire_cache; 18416 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18417 connp->conn_ire_cache = NULL; 18418 mutex_exit(&connp->conn_lock); 18419 IRE_REFRELE_NOTR(ire); 18420 return; 18421 } 18422 mutex_exit(&connp->conn_lock); 18423 18424 } 18425 18426 /* 18427 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18428 * of IREs. Those IREs may have been previously cached in the conn structure. 18429 * This ipcl_walk() walker function releases all references to such IREs based 18430 * on the condemned flag. 18431 */ 18432 /* ARGSUSED */ 18433 void 18434 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18435 { 18436 ire_t *ire; 18437 18438 mutex_enter(&connp->conn_lock); 18439 ire = connp->conn_ire_cache; 18440 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18441 connp->conn_ire_cache = NULL; 18442 mutex_exit(&connp->conn_lock); 18443 IRE_REFRELE_NOTR(ire); 18444 return; 18445 } 18446 mutex_exit(&connp->conn_lock); 18447 } 18448 18449 /* 18450 * Take down a specific interface, but don't lose any information about it. 18451 * Also delete interface from its interface group (ifgrp). 18452 * (Always called as writer.) 18453 * This function goes through the down sequence even if the interface is 18454 * already down. There are 2 reasons. 18455 * a. Currently we permit interface routes that depend on down interfaces 18456 * to be added. This behaviour itself is questionable. However it appears 18457 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18458 * time. We go thru the cleanup in order to remove these routes. 18459 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18460 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18461 * down, but we need to cleanup i.e. do ill_dl_down and 18462 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18463 * 18464 * IP-MT notes: 18465 * 18466 * Model of reference to interfaces. 18467 * 18468 * The following members in ipif_t track references to the ipif. 18469 * int ipif_refcnt; Active reference count 18470 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18471 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 18472 * 18473 * The following members in ill_t track references to the ill. 18474 * int ill_refcnt; active refcnt 18475 * uint_t ill_ire_cnt; Number of ires referencing ill 18476 * uint_t ill_nce_cnt; Number of nces referencing ill 18477 * uint_t ill_ilm_cnt; Number of ilms referencing ill 18478 * 18479 * Reference to an ipif or ill can be obtained in any of the following ways. 18480 * 18481 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18482 * Pointers to ipif / ill from other data structures viz ire and conn. 18483 * Implicit reference to the ipif / ill by holding a reference to the ire. 18484 * 18485 * The ipif/ill lookup functions return a reference held ipif / ill. 18486 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18487 * This is a purely dynamic reference count associated with threads holding 18488 * references to the ipif / ill. Pointers from other structures do not 18489 * count towards this reference count. 18490 * 18491 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 18492 * associated with the ipif/ill. This is incremented whenever a new 18493 * ire is created referencing the ipif/ill. This is done atomically inside 18494 * ire_add_v[46] where the ire is actually added to the ire hash table. 18495 * The count is decremented in ire_inactive where the ire is destroyed. 18496 * 18497 * nce's reference ill's thru nce_ill and the count of nce's associated with 18498 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18499 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18500 * table. Similarly it is decremented in ndp_inactive() where the nce 18501 * is destroyed. 18502 * 18503 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 18504 * is incremented in ilm_add_v6() and decremented before the ilm is freed 18505 * in ilm_walker_cleanup() or ilm_delete(). 18506 * 18507 * Flow of ioctls involving interface down/up 18508 * 18509 * The following is the sequence of an attempt to set some critical flags on an 18510 * up interface. 18511 * ip_sioctl_flags 18512 * ipif_down 18513 * wait for ipif to be quiescent 18514 * ipif_down_tail 18515 * ip_sioctl_flags_tail 18516 * 18517 * All set ioctls that involve down/up sequence would have a skeleton similar 18518 * to the above. All the *tail functions are called after the refcounts have 18519 * dropped to the appropriate values. 18520 * 18521 * The mechanism to quiesce an ipif is as follows. 18522 * 18523 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18524 * on the ipif. Callers either pass a flag requesting wait or the lookup 18525 * functions will return NULL. 18526 * 18527 * Delete all ires referencing this ipif 18528 * 18529 * Any thread attempting to do an ipif_refhold on an ipif that has been 18530 * obtained thru a cached pointer will first make sure that 18531 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18532 * increment the refcount. 18533 * 18534 * The above guarantees that the ipif refcount will eventually come down to 18535 * zero and the ipif will quiesce, once all threads that currently hold a 18536 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18537 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18538 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 18539 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 18540 * in ip.h 18541 * 18542 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18543 * 18544 * Threads trying to lookup an ipif or ill can pass a flag requesting 18545 * wait and restart if the ipif / ill cannot be looked up currently. 18546 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18547 * failure if the ipif is currently undergoing an exclusive operation, and 18548 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18549 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18550 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18551 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18552 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18553 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18554 * until we release the ipsq_lock, even though the the ill/ipif state flags 18555 * can change after we drop the ill_lock. 18556 * 18557 * An attempt to send out a packet using an ipif that is currently 18558 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18559 * operation and restart it later when the exclusive condition on the ipif ends. 18560 * This is an example of not passing the wait flag to the lookup functions. For 18561 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18562 * out a multicast packet on that ipif will fail while the ipif is 18563 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18564 * currently IPIF_CHANGING will also fail. 18565 */ 18566 int 18567 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18568 { 18569 ill_t *ill = ipif->ipif_ill; 18570 phyint_t *phyi; 18571 conn_t *connp; 18572 boolean_t success; 18573 boolean_t ipif_was_up = B_FALSE; 18574 ip_stack_t *ipst = ill->ill_ipst; 18575 18576 ASSERT(IAM_WRITER_IPIF(ipif)); 18577 18578 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18579 18580 if (ipif->ipif_flags & IPIF_UP) { 18581 mutex_enter(&ill->ill_lock); 18582 ipif->ipif_flags &= ~IPIF_UP; 18583 ASSERT(ill->ill_ipif_up_count > 0); 18584 --ill->ill_ipif_up_count; 18585 mutex_exit(&ill->ill_lock); 18586 ipif_was_up = B_TRUE; 18587 /* Update status in SCTP's list */ 18588 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18589 } 18590 18591 /* 18592 * Blow away memberships we established in ipif_multicast_up(). 18593 */ 18594 ipif_multicast_down(ipif); 18595 18596 /* 18597 * Remove from the mapping for __sin6_src_id. We insert only 18598 * when the address is not INADDR_ANY. As IPv4 addresses are 18599 * stored as mapped addresses, we need to check for mapped 18600 * INADDR_ANY also. 18601 */ 18602 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18603 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18604 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18605 int err; 18606 18607 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18608 ipif->ipif_zoneid, ipst); 18609 if (err != 0) { 18610 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18611 } 18612 } 18613 18614 /* 18615 * Before we delete the ill from the group (if any), we need 18616 * to make sure that we delete all the routes dependent on 18617 * this and also any ipifs dependent on this ipif for 18618 * source address. We need to do before we delete from 18619 * the group because 18620 * 18621 * 1) ipif_down_delete_ire de-references ill->ill_group. 18622 * 18623 * 2) ipif_update_other_ipifs needs to walk the whole group 18624 * for re-doing source address selection. Note that 18625 * ipif_select_source[_v6] called from 18626 * ipif_update_other_ipifs[_v6] will not pick this ipif 18627 * because we have already marked down here i.e cleared 18628 * IPIF_UP. 18629 */ 18630 if (ipif->ipif_isv6) { 18631 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18632 ipst); 18633 } else { 18634 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18635 ipst); 18636 } 18637 18638 /* 18639 * Cleaning up the conn_ire_cache or conns must be done only after the 18640 * ires have been deleted above. Otherwise a thread could end up 18641 * caching an ire in a conn after we have finished the cleanup of the 18642 * conn. The caching is done after making sure that the ire is not yet 18643 * condemned. Also documented in the block comment above ip_output 18644 */ 18645 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18646 /* Also, delete the ires cached in SCTP */ 18647 sctp_ire_cache_flush(ipif); 18648 18649 /* 18650 * Update any other ipifs which have used "our" local address as 18651 * a source address. This entails removing and recreating IRE_INTERFACE 18652 * entries for such ipifs. 18653 */ 18654 if (ipif->ipif_isv6) 18655 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18656 else 18657 ipif_update_other_ipifs(ipif, ill->ill_group); 18658 18659 if (ipif_was_up) { 18660 /* 18661 * Check whether it is last ipif to leave this group. 18662 * If this is the last ipif to leave, we should remove 18663 * this ill from the group as ipif_select_source will not 18664 * be able to find any useful ipifs if this ill is selected 18665 * for load balancing. 18666 * 18667 * For nameless groups, we should call ifgrp_delete if this 18668 * belongs to some group. As this ipif is going down, we may 18669 * need to reconstruct groups. 18670 */ 18671 phyi = ill->ill_phyint; 18672 /* 18673 * If the phyint_groupname_len is 0, it may or may not 18674 * be in the nameless group. If the phyint_groupname_len is 18675 * not 0, then this ill should be part of some group. 18676 * As we always insert this ill in the group if 18677 * phyint_groupname_len is not zero when the first ipif 18678 * comes up (in ipif_up_done), it should be in a group 18679 * when the namelen is not 0. 18680 * 18681 * NOTE : When we delete the ill from the group,it will 18682 * blow away all the IRE_CACHES pointing either at this ipif or 18683 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18684 * should be pointing at this ill. 18685 */ 18686 ASSERT(phyi->phyint_groupname_len == 0 || 18687 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18688 18689 if (phyi->phyint_groupname_len != 0) { 18690 if (ill->ill_ipif_up_count == 0) 18691 illgrp_delete(ill); 18692 } 18693 18694 /* 18695 * If we have deleted some of the broadcast ires associated 18696 * with this ipif, we need to re-nominate somebody else if 18697 * the ires that we deleted were the nominated ones. 18698 */ 18699 if (ill->ill_group != NULL && !ill->ill_isv6) 18700 ipif_renominate_bcast(ipif); 18701 } 18702 18703 /* 18704 * neighbor-discovery or arp entries for this interface. 18705 */ 18706 ipif_ndp_down(ipif); 18707 18708 /* 18709 * If mp is NULL the caller will wait for the appropriate refcnt. 18710 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18711 * and ill_delete -> ipif_free -> ipif_down 18712 */ 18713 if (mp == NULL) { 18714 ASSERT(q == NULL); 18715 return (0); 18716 } 18717 18718 if (CONN_Q(q)) { 18719 connp = Q_TO_CONN(q); 18720 mutex_enter(&connp->conn_lock); 18721 } else { 18722 connp = NULL; 18723 } 18724 mutex_enter(&ill->ill_lock); 18725 /* 18726 * Are there any ire's pointing to this ipif that are still active ? 18727 * If this is the last ipif going down, are there any ire's pointing 18728 * to this ill that are still active ? 18729 */ 18730 if (ipif_is_quiescent(ipif)) { 18731 mutex_exit(&ill->ill_lock); 18732 if (connp != NULL) 18733 mutex_exit(&connp->conn_lock); 18734 return (0); 18735 } 18736 18737 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18738 ill->ill_name, (void *)ill)); 18739 /* 18740 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18741 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18742 * which in turn is called by the last refrele on the ipif/ill/ire. 18743 */ 18744 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18745 if (!success) { 18746 /* The conn is closing. So just return */ 18747 ASSERT(connp != NULL); 18748 mutex_exit(&ill->ill_lock); 18749 mutex_exit(&connp->conn_lock); 18750 return (EINTR); 18751 } 18752 18753 mutex_exit(&ill->ill_lock); 18754 if (connp != NULL) 18755 mutex_exit(&connp->conn_lock); 18756 return (EINPROGRESS); 18757 } 18758 18759 void 18760 ipif_down_tail(ipif_t *ipif) 18761 { 18762 ill_t *ill = ipif->ipif_ill; 18763 18764 /* 18765 * Skip any loopback interface (null wq). 18766 * If this is the last logical interface on the ill 18767 * have ill_dl_down tell the driver we are gone (unbind) 18768 * Note that lun 0 can ipif_down even though 18769 * there are other logical units that are up. 18770 * This occurs e.g. when we change a "significant" IFF_ flag. 18771 */ 18772 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18773 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18774 ill->ill_dl_up) { 18775 ill_dl_down(ill); 18776 } 18777 ill->ill_logical_down = 0; 18778 18779 /* 18780 * Have to be after removing the routes in ipif_down_delete_ire. 18781 */ 18782 if (ipif->ipif_isv6) { 18783 if (ill->ill_flags & ILLF_XRESOLV) 18784 ipif_arp_down(ipif); 18785 } else { 18786 ipif_arp_down(ipif); 18787 } 18788 18789 ip_rts_ifmsg(ipif); 18790 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18791 } 18792 18793 /* 18794 * Bring interface logically down without bringing the physical interface 18795 * down e.g. when the netmask is changed. This avoids long lasting link 18796 * negotiations between an ethernet interface and a certain switches. 18797 */ 18798 static int 18799 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18800 { 18801 /* 18802 * The ill_logical_down flag is a transient flag. It is set here 18803 * and is cleared once the down has completed in ipif_down_tail. 18804 * This flag does not indicate whether the ill stream is in the 18805 * DL_BOUND state with the driver. Instead this flag is used by 18806 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18807 * the driver. The state of the ill stream i.e. whether it is 18808 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18809 */ 18810 ipif->ipif_ill->ill_logical_down = 1; 18811 return (ipif_down(ipif, q, mp)); 18812 } 18813 18814 /* 18815 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18816 * If the usesrc client ILL is already part of a usesrc group or not, 18817 * in either case a ire_stq with the matching usesrc client ILL will 18818 * locate the IRE's that need to be deleted. We want IREs to be created 18819 * with the new source address. 18820 */ 18821 static void 18822 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18823 { 18824 ill_t *ucill = (ill_t *)ill_arg; 18825 18826 ASSERT(IAM_WRITER_ILL(ucill)); 18827 18828 if (ire->ire_stq == NULL) 18829 return; 18830 18831 if ((ire->ire_type == IRE_CACHE) && 18832 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18833 ire_delete(ire); 18834 } 18835 18836 /* 18837 * ire_walk routine to delete every IRE dependent on the interface 18838 * address that is going down. (Always called as writer.) 18839 * Works for both v4 and v6. 18840 * In addition for checking for ire_ipif matches it also checks for 18841 * IRE_CACHE entries which have the same source address as the 18842 * disappearing ipif since ipif_select_source might have picked 18843 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18844 * care of any IRE_INTERFACE with the disappearing source address. 18845 */ 18846 static void 18847 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18848 { 18849 ipif_t *ipif = (ipif_t *)ipif_arg; 18850 ill_t *ire_ill; 18851 ill_t *ipif_ill; 18852 18853 ASSERT(IAM_WRITER_IPIF(ipif)); 18854 if (ire->ire_ipif == NULL) 18855 return; 18856 18857 /* 18858 * For IPv4, we derive source addresses for an IRE from ipif's 18859 * belonging to the same IPMP group as the IRE's outgoing 18860 * interface. If an IRE's outgoing interface isn't in the 18861 * same IPMP group as a particular ipif, then that ipif 18862 * couldn't have been used as a source address for this IRE. 18863 * 18864 * For IPv6, source addresses are only restricted to the IPMP group 18865 * if the IRE is for a link-local address or a multicast address. 18866 * Otherwise, source addresses for an IRE can be chosen from 18867 * interfaces other than the the outgoing interface for that IRE. 18868 * 18869 * For source address selection details, see ipif_select_source() 18870 * and ipif_select_source_v6(). 18871 */ 18872 if (ire->ire_ipversion == IPV4_VERSION || 18873 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18874 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18875 ire_ill = ire->ire_ipif->ipif_ill; 18876 ipif_ill = ipif->ipif_ill; 18877 18878 if (ire_ill->ill_group != ipif_ill->ill_group) { 18879 return; 18880 } 18881 } 18882 18883 if (ire->ire_ipif != ipif) { 18884 /* 18885 * Look for a matching source address. 18886 */ 18887 if (ire->ire_type != IRE_CACHE) 18888 return; 18889 if (ipif->ipif_flags & IPIF_NOLOCAL) 18890 return; 18891 18892 if (ire->ire_ipversion == IPV4_VERSION) { 18893 if (ire->ire_src_addr != ipif->ipif_src_addr) 18894 return; 18895 } else { 18896 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18897 &ipif->ipif_v6lcl_addr)) 18898 return; 18899 } 18900 ire_delete(ire); 18901 return; 18902 } 18903 /* 18904 * ire_delete() will do an ire_flush_cache which will delete 18905 * all ire_ipif matches 18906 */ 18907 ire_delete(ire); 18908 } 18909 18910 /* 18911 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18912 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18913 * 2) when an interface is brought up or down (on that ill). 18914 * This ensures that the IRE_CACHE entries don't retain stale source 18915 * address selection results. 18916 */ 18917 void 18918 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18919 { 18920 ill_t *ill = (ill_t *)ill_arg; 18921 ill_t *ipif_ill; 18922 18923 ASSERT(IAM_WRITER_ILL(ill)); 18924 /* 18925 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18926 * Hence this should be IRE_CACHE. 18927 */ 18928 ASSERT(ire->ire_type == IRE_CACHE); 18929 18930 /* 18931 * We are called for IRE_CACHES whose ire_ipif matches ill. 18932 * We are only interested in IRE_CACHES that has borrowed 18933 * the source address from ill_arg e.g. ipif_up_done[_v6] 18934 * for which we need to look at ire_ipif->ipif_ill match 18935 * with ill. 18936 */ 18937 ASSERT(ire->ire_ipif != NULL); 18938 ipif_ill = ire->ire_ipif->ipif_ill; 18939 if (ipif_ill == ill || (ill->ill_group != NULL && 18940 ipif_ill->ill_group == ill->ill_group)) { 18941 ire_delete(ire); 18942 } 18943 } 18944 18945 /* 18946 * Delete all the ire whose stq references ill_arg. 18947 */ 18948 static void 18949 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18950 { 18951 ill_t *ill = (ill_t *)ill_arg; 18952 ill_t *ire_ill; 18953 18954 ASSERT(IAM_WRITER_ILL(ill)); 18955 /* 18956 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18957 * Hence this should be IRE_CACHE. 18958 */ 18959 ASSERT(ire->ire_type == IRE_CACHE); 18960 18961 /* 18962 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18963 * matches ill. We are only interested in IRE_CACHES that 18964 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18965 * filtering here. 18966 */ 18967 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18968 18969 if (ire_ill == ill) 18970 ire_delete(ire); 18971 } 18972 18973 /* 18974 * This is called when an ill leaves the group. We want to delete 18975 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18976 * pointing at ill. 18977 */ 18978 static void 18979 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18980 { 18981 ill_t *ill = (ill_t *)ill_arg; 18982 18983 ASSERT(IAM_WRITER_ILL(ill)); 18984 ASSERT(ill->ill_group == NULL); 18985 /* 18986 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18987 * Hence this should be IRE_CACHE. 18988 */ 18989 ASSERT(ire->ire_type == IRE_CACHE); 18990 /* 18991 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18992 * matches ill. We are interested in both. 18993 */ 18994 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18995 (ire->ire_ipif->ipif_ill == ill)); 18996 18997 ire_delete(ire); 18998 } 18999 19000 /* 19001 * Initiate deallocate of an IPIF. Always called as writer. Called by 19002 * ill_delete or ip_sioctl_removeif. 19003 */ 19004 static void 19005 ipif_free(ipif_t *ipif) 19006 { 19007 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19008 19009 ASSERT(IAM_WRITER_IPIF(ipif)); 19010 19011 if (ipif->ipif_recovery_id != 0) 19012 (void) untimeout(ipif->ipif_recovery_id); 19013 ipif->ipif_recovery_id = 0; 19014 19015 /* Remove conn references */ 19016 reset_conn_ipif(ipif); 19017 19018 /* 19019 * Make sure we have valid net and subnet broadcast ire's for the 19020 * other ipif's which share them with this ipif. 19021 */ 19022 if (!ipif->ipif_isv6) 19023 ipif_check_bcast_ires(ipif); 19024 19025 /* 19026 * Take down the interface. We can be called either from ill_delete 19027 * or from ip_sioctl_removeif. 19028 */ 19029 (void) ipif_down(ipif, NULL, NULL); 19030 19031 /* 19032 * Now that the interface is down, there's no chance it can still 19033 * become a duplicate. Cancel any timer that may have been set while 19034 * tearing down. 19035 */ 19036 if (ipif->ipif_recovery_id != 0) 19037 (void) untimeout(ipif->ipif_recovery_id); 19038 ipif->ipif_recovery_id = 0; 19039 19040 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19041 /* Remove pointers to this ill in the multicast routing tables */ 19042 reset_mrt_vif_ipif(ipif); 19043 rw_exit(&ipst->ips_ill_g_lock); 19044 } 19045 19046 /* 19047 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19048 * also ill_move(). 19049 */ 19050 static void 19051 ipif_free_tail(ipif_t *ipif) 19052 { 19053 mblk_t *mp; 19054 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19055 19056 /* 19057 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19058 */ 19059 mutex_enter(&ipif->ipif_saved_ire_lock); 19060 mp = ipif->ipif_saved_ire_mp; 19061 ipif->ipif_saved_ire_mp = NULL; 19062 mutex_exit(&ipif->ipif_saved_ire_lock); 19063 freemsg(mp); 19064 19065 /* 19066 * Need to hold both ill_g_lock and ill_lock while 19067 * inserting or removing an ipif from the linked list 19068 * of ipifs hanging off the ill. 19069 */ 19070 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19071 19072 ASSERT(ilm_walk_ipif(ipif) == 0); 19073 19074 #ifdef DEBUG 19075 ipif_trace_cleanup(ipif); 19076 #endif 19077 19078 /* Ask SCTP to take it out of it list */ 19079 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19080 19081 /* Get it out of the ILL interface list. */ 19082 ipif_remove(ipif, B_TRUE); 19083 rw_exit(&ipst->ips_ill_g_lock); 19084 19085 mutex_destroy(&ipif->ipif_saved_ire_lock); 19086 19087 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19088 ASSERT(ipif->ipif_recovery_id == 0); 19089 19090 /* Free the memory. */ 19091 mi_free(ipif); 19092 } 19093 19094 /* 19095 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19096 * is zero. 19097 */ 19098 void 19099 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19100 { 19101 char lbuf[LIFNAMSIZ]; 19102 char *name; 19103 size_t name_len; 19104 19105 buf[0] = '\0'; 19106 name = ipif->ipif_ill->ill_name; 19107 name_len = ipif->ipif_ill->ill_name_length; 19108 if (ipif->ipif_id != 0) { 19109 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19110 ipif->ipif_id); 19111 name = lbuf; 19112 name_len = mi_strlen(name) + 1; 19113 } 19114 len -= 1; 19115 buf[len] = '\0'; 19116 len = MIN(len, name_len); 19117 bcopy(name, buf, len); 19118 } 19119 19120 /* 19121 * Find an IPIF based on the name passed in. Names can be of the 19122 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19123 * The <phys> string can have forms like <dev><#> (e.g., le0), 19124 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19125 * When there is no colon, the implied unit id is zero. <phys> must 19126 * correspond to the name of an ILL. (May be called as writer.) 19127 */ 19128 static ipif_t * 19129 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19130 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19131 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19132 { 19133 char *cp; 19134 char *endp; 19135 long id; 19136 ill_t *ill; 19137 ipif_t *ipif; 19138 uint_t ire_type; 19139 boolean_t did_alloc = B_FALSE; 19140 ipsq_t *ipsq; 19141 19142 if (error != NULL) 19143 *error = 0; 19144 19145 /* 19146 * If the caller wants to us to create the ipif, make sure we have a 19147 * valid zoneid 19148 */ 19149 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19150 19151 if (namelen == 0) { 19152 if (error != NULL) 19153 *error = ENXIO; 19154 return (NULL); 19155 } 19156 19157 *exists = B_FALSE; 19158 /* Look for a colon in the name. */ 19159 endp = &name[namelen]; 19160 for (cp = endp; --cp > name; ) { 19161 if (*cp == IPIF_SEPARATOR_CHAR) 19162 break; 19163 } 19164 19165 if (*cp == IPIF_SEPARATOR_CHAR) { 19166 /* 19167 * Reject any non-decimal aliases for logical 19168 * interfaces. Aliases with leading zeroes 19169 * are also rejected as they introduce ambiguity 19170 * in the naming of the interfaces. 19171 * In order to confirm with existing semantics, 19172 * and to not break any programs/script relying 19173 * on that behaviour, if<0>:0 is considered to be 19174 * a valid interface. 19175 * 19176 * If alias has two or more digits and the first 19177 * is zero, fail. 19178 */ 19179 if (&cp[2] < endp && cp[1] == '0') { 19180 if (error != NULL) 19181 *error = EINVAL; 19182 return (NULL); 19183 } 19184 } 19185 19186 if (cp <= name) { 19187 cp = endp; 19188 } else { 19189 *cp = '\0'; 19190 } 19191 19192 /* 19193 * Look up the ILL, based on the portion of the name 19194 * before the slash. ill_lookup_on_name returns a held ill. 19195 * Temporary to check whether ill exists already. If so 19196 * ill_lookup_on_name will clear it. 19197 */ 19198 ill = ill_lookup_on_name(name, do_alloc, isv6, 19199 q, mp, func, error, &did_alloc, ipst); 19200 if (cp != endp) 19201 *cp = IPIF_SEPARATOR_CHAR; 19202 if (ill == NULL) 19203 return (NULL); 19204 19205 /* Establish the unit number in the name. */ 19206 id = 0; 19207 if (cp < endp && *endp == '\0') { 19208 /* If there was a colon, the unit number follows. */ 19209 cp++; 19210 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19211 ill_refrele(ill); 19212 if (error != NULL) 19213 *error = ENXIO; 19214 return (NULL); 19215 } 19216 } 19217 19218 GRAB_CONN_LOCK(q); 19219 mutex_enter(&ill->ill_lock); 19220 /* Now see if there is an IPIF with this unit number. */ 19221 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19222 if (ipif->ipif_id == id) { 19223 if (zoneid != ALL_ZONES && 19224 zoneid != ipif->ipif_zoneid && 19225 ipif->ipif_zoneid != ALL_ZONES) { 19226 mutex_exit(&ill->ill_lock); 19227 RELEASE_CONN_LOCK(q); 19228 ill_refrele(ill); 19229 if (error != NULL) 19230 *error = ENXIO; 19231 return (NULL); 19232 } 19233 /* 19234 * The block comment at the start of ipif_down 19235 * explains the use of the macros used below 19236 */ 19237 if (IPIF_CAN_LOOKUP(ipif)) { 19238 ipif_refhold_locked(ipif); 19239 mutex_exit(&ill->ill_lock); 19240 if (!did_alloc) 19241 *exists = B_TRUE; 19242 /* 19243 * Drop locks before calling ill_refrele 19244 * since it can potentially call into 19245 * ipif_ill_refrele_tail which can end up 19246 * in trying to acquire any lock. 19247 */ 19248 RELEASE_CONN_LOCK(q); 19249 ill_refrele(ill); 19250 return (ipif); 19251 } else if (IPIF_CAN_WAIT(ipif, q)) { 19252 ipsq = ill->ill_phyint->phyint_ipsq; 19253 mutex_enter(&ipsq->ipsq_lock); 19254 mutex_exit(&ill->ill_lock); 19255 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19256 mutex_exit(&ipsq->ipsq_lock); 19257 RELEASE_CONN_LOCK(q); 19258 ill_refrele(ill); 19259 if (error != NULL) 19260 *error = EINPROGRESS; 19261 return (NULL); 19262 } 19263 } 19264 } 19265 RELEASE_CONN_LOCK(q); 19266 19267 if (!do_alloc) { 19268 mutex_exit(&ill->ill_lock); 19269 ill_refrele(ill); 19270 if (error != NULL) 19271 *error = ENXIO; 19272 return (NULL); 19273 } 19274 19275 /* 19276 * If none found, atomically allocate and return a new one. 19277 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19278 * to support "receive only" use of lo0:1 etc. as is still done 19279 * below as an initial guess. 19280 * However, this is now likely to be overriden later in ipif_up_done() 19281 * when we know for sure what address has been configured on the 19282 * interface, since we might have more than one loopback interface 19283 * with a loopback address, e.g. in the case of zones, and all the 19284 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19285 */ 19286 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19287 ire_type = IRE_LOOPBACK; 19288 else 19289 ire_type = IRE_LOCAL; 19290 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19291 if (ipif != NULL) 19292 ipif_refhold_locked(ipif); 19293 else if (error != NULL) 19294 *error = ENOMEM; 19295 mutex_exit(&ill->ill_lock); 19296 ill_refrele(ill); 19297 return (ipif); 19298 } 19299 19300 /* 19301 * This routine is called whenever a new address comes up on an ipif. If 19302 * we are configured to respond to address mask requests, then we are supposed 19303 * to broadcast an address mask reply at this time. This routine is also 19304 * called if we are already up, but a netmask change is made. This is legal 19305 * but might not make the system manager very popular. (May be called 19306 * as writer.) 19307 */ 19308 void 19309 ipif_mask_reply(ipif_t *ipif) 19310 { 19311 icmph_t *icmph; 19312 ipha_t *ipha; 19313 mblk_t *mp; 19314 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19315 19316 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19317 19318 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19319 return; 19320 19321 /* ICMP mask reply is IPv4 only */ 19322 ASSERT(!ipif->ipif_isv6); 19323 /* ICMP mask reply is not for a loopback interface */ 19324 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19325 19326 mp = allocb(REPLY_LEN, BPRI_HI); 19327 if (mp == NULL) 19328 return; 19329 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19330 19331 ipha = (ipha_t *)mp->b_rptr; 19332 bzero(ipha, REPLY_LEN); 19333 *ipha = icmp_ipha; 19334 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19335 ipha->ipha_src = ipif->ipif_src_addr; 19336 ipha->ipha_dst = ipif->ipif_brd_addr; 19337 ipha->ipha_length = htons(REPLY_LEN); 19338 ipha->ipha_ident = 0; 19339 19340 icmph = (icmph_t *)&ipha[1]; 19341 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19342 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19343 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19344 19345 put(ipif->ipif_wq, mp); 19346 19347 #undef REPLY_LEN 19348 } 19349 19350 /* 19351 * When the mtu in the ipif changes, we call this routine through ire_walk 19352 * to update all the relevant IREs. 19353 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19354 */ 19355 static void 19356 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19357 { 19358 ipif_t *ipif = (ipif_t *)ipif_arg; 19359 19360 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19361 return; 19362 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19363 } 19364 19365 /* 19366 * When the mtu in the ill changes, we call this routine through ire_walk 19367 * to update all the relevant IREs. 19368 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19369 */ 19370 void 19371 ill_mtu_change(ire_t *ire, char *ill_arg) 19372 { 19373 ill_t *ill = (ill_t *)ill_arg; 19374 19375 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19376 return; 19377 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19378 } 19379 19380 /* 19381 * Join the ipif specific multicast groups. 19382 * Must be called after a mapping has been set up in the resolver. (Always 19383 * called as writer.) 19384 */ 19385 void 19386 ipif_multicast_up(ipif_t *ipif) 19387 { 19388 int err, index; 19389 ill_t *ill; 19390 19391 ASSERT(IAM_WRITER_IPIF(ipif)); 19392 19393 ill = ipif->ipif_ill; 19394 index = ill->ill_phyint->phyint_ifindex; 19395 19396 ip1dbg(("ipif_multicast_up\n")); 19397 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19398 return; 19399 19400 if (ipif->ipif_isv6) { 19401 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19402 return; 19403 19404 /* Join the all hosts multicast address */ 19405 ip1dbg(("ipif_multicast_up - addmulti\n")); 19406 /* 19407 * Passing B_TRUE means we have to join the multicast 19408 * membership on this interface even though this is 19409 * FAILED. If we join on a different one in the group, 19410 * we will not be able to delete the membership later 19411 * as we currently don't track where we join when we 19412 * join within the kernel unlike applications where 19413 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19414 * for more on this. 19415 */ 19416 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19417 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19418 if (err != 0) { 19419 ip0dbg(("ipif_multicast_up: " 19420 "all_hosts_mcast failed %d\n", 19421 err)); 19422 return; 19423 } 19424 /* 19425 * Enable multicast for the solicited node multicast address 19426 */ 19427 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19428 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19429 19430 ipv6_multi.s6_addr32[3] |= 19431 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19432 19433 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19434 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19435 NULL); 19436 if (err != 0) { 19437 ip0dbg(("ipif_multicast_up: solicited MC" 19438 " failed %d\n", err)); 19439 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19440 ill, ill->ill_phyint->phyint_ifindex, 19441 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19442 return; 19443 } 19444 } 19445 } else { 19446 if (ipif->ipif_lcl_addr == INADDR_ANY) 19447 return; 19448 19449 /* Join the all hosts multicast address */ 19450 ip1dbg(("ipif_multicast_up - addmulti\n")); 19451 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19452 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19453 if (err) { 19454 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19455 return; 19456 } 19457 } 19458 ipif->ipif_multicast_up = 1; 19459 } 19460 19461 /* 19462 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19463 * (Explicit memberships are blown away in ill_leave_multicast() when the 19464 * ill is brought down.) 19465 */ 19466 static void 19467 ipif_multicast_down(ipif_t *ipif) 19468 { 19469 int err; 19470 19471 ASSERT(IAM_WRITER_IPIF(ipif)); 19472 19473 ip1dbg(("ipif_multicast_down\n")); 19474 if (!ipif->ipif_multicast_up) 19475 return; 19476 19477 ip1dbg(("ipif_multicast_down - delmulti\n")); 19478 19479 if (!ipif->ipif_isv6) { 19480 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19481 B_TRUE); 19482 if (err != 0) 19483 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19484 19485 ipif->ipif_multicast_up = 0; 19486 return; 19487 } 19488 19489 /* 19490 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19491 * we should look for ilms on this ill rather than the ones that have 19492 * been failed over here. They are here temporarily. As 19493 * ipif_multicast_up has joined on this ill, we should delete only 19494 * from this ill. 19495 */ 19496 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19497 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19498 B_TRUE, B_TRUE); 19499 if (err != 0) { 19500 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19501 err)); 19502 } 19503 /* 19504 * Disable multicast for the solicited node multicast address 19505 */ 19506 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19507 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19508 19509 ipv6_multi.s6_addr32[3] |= 19510 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19511 19512 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19513 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19514 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19515 19516 if (err != 0) { 19517 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19518 err)); 19519 } 19520 } 19521 19522 ipif->ipif_multicast_up = 0; 19523 } 19524 19525 /* 19526 * Used when an interface comes up to recreate any extra routes on this 19527 * interface. 19528 */ 19529 static ire_t ** 19530 ipif_recover_ire(ipif_t *ipif) 19531 { 19532 mblk_t *mp; 19533 ire_t **ipif_saved_irep; 19534 ire_t **irep; 19535 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19536 19537 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19538 ipif->ipif_id)); 19539 19540 mutex_enter(&ipif->ipif_saved_ire_lock); 19541 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19542 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19543 if (ipif_saved_irep == NULL) { 19544 mutex_exit(&ipif->ipif_saved_ire_lock); 19545 return (NULL); 19546 } 19547 19548 irep = ipif_saved_irep; 19549 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19550 ire_t *ire; 19551 queue_t *rfq; 19552 queue_t *stq; 19553 ifrt_t *ifrt; 19554 uchar_t *src_addr; 19555 uchar_t *gateway_addr; 19556 ushort_t type; 19557 19558 /* 19559 * When the ire was initially created and then added in 19560 * ip_rt_add(), it was created either using ipif->ipif_net_type 19561 * in the case of a traditional interface route, or as one of 19562 * the IRE_OFFSUBNET types (with the exception of 19563 * IRE_HOST types ire which is created by icmp_redirect() and 19564 * which we don't need to save or recover). In the case where 19565 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19566 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19567 * to satisfy software like GateD and Sun Cluster which creates 19568 * routes using the the loopback interface's address as a 19569 * gateway. 19570 * 19571 * As ifrt->ifrt_type reflects the already updated ire_type, 19572 * ire_create() will be called in the same way here as 19573 * in ip_rt_add(), namely using ipif->ipif_net_type when 19574 * the route looks like a traditional interface route (where 19575 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19576 * the saved ifrt->ifrt_type. This means that in the case where 19577 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19578 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19579 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19580 */ 19581 ifrt = (ifrt_t *)mp->b_rptr; 19582 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19583 if (ifrt->ifrt_type & IRE_INTERFACE) { 19584 rfq = NULL; 19585 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19586 ? ipif->ipif_rq : ipif->ipif_wq; 19587 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19588 ? (uint8_t *)&ifrt->ifrt_src_addr 19589 : (uint8_t *)&ipif->ipif_src_addr; 19590 gateway_addr = NULL; 19591 type = ipif->ipif_net_type; 19592 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19593 /* Recover multiroute broadcast IRE. */ 19594 rfq = ipif->ipif_rq; 19595 stq = ipif->ipif_wq; 19596 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19597 ? (uint8_t *)&ifrt->ifrt_src_addr 19598 : (uint8_t *)&ipif->ipif_src_addr; 19599 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19600 type = ifrt->ifrt_type; 19601 } else { 19602 rfq = NULL; 19603 stq = NULL; 19604 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19605 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19606 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19607 type = ifrt->ifrt_type; 19608 } 19609 19610 /* 19611 * Create a copy of the IRE with the saved address and netmask. 19612 */ 19613 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19614 "0x%x/0x%x\n", 19615 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19616 ntohl(ifrt->ifrt_addr), 19617 ntohl(ifrt->ifrt_mask))); 19618 ire = ire_create( 19619 (uint8_t *)&ifrt->ifrt_addr, 19620 (uint8_t *)&ifrt->ifrt_mask, 19621 src_addr, 19622 gateway_addr, 19623 &ifrt->ifrt_max_frag, 19624 NULL, 19625 rfq, 19626 stq, 19627 type, 19628 ipif, 19629 0, 19630 0, 19631 0, 19632 ifrt->ifrt_flags, 19633 &ifrt->ifrt_iulp_info, 19634 NULL, 19635 NULL, 19636 ipst); 19637 19638 if (ire == NULL) { 19639 mutex_exit(&ipif->ipif_saved_ire_lock); 19640 kmem_free(ipif_saved_irep, 19641 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19642 return (NULL); 19643 } 19644 19645 /* 19646 * Some software (for example, GateD and Sun Cluster) attempts 19647 * to create (what amount to) IRE_PREFIX routes with the 19648 * loopback address as the gateway. This is primarily done to 19649 * set up prefixes with the RTF_REJECT flag set (for example, 19650 * when generating aggregate routes.) 19651 * 19652 * If the IRE type (as defined by ipif->ipif_net_type) is 19653 * IRE_LOOPBACK, then we map the request into a 19654 * IRE_IF_NORESOLVER. 19655 */ 19656 if (ipif->ipif_net_type == IRE_LOOPBACK) 19657 ire->ire_type = IRE_IF_NORESOLVER; 19658 /* 19659 * ire held by ire_add, will be refreled' towards the 19660 * the end of ipif_up_done 19661 */ 19662 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19663 *irep = ire; 19664 irep++; 19665 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19666 } 19667 mutex_exit(&ipif->ipif_saved_ire_lock); 19668 return (ipif_saved_irep); 19669 } 19670 19671 /* 19672 * Used to set the netmask and broadcast address to default values when the 19673 * interface is brought up. (Always called as writer.) 19674 */ 19675 static void 19676 ipif_set_default(ipif_t *ipif) 19677 { 19678 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19679 19680 if (!ipif->ipif_isv6) { 19681 /* 19682 * Interface holds an IPv4 address. Default 19683 * mask is the natural netmask. 19684 */ 19685 if (!ipif->ipif_net_mask) { 19686 ipaddr_t v4mask; 19687 19688 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19689 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19690 } 19691 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19692 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19693 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19694 } else { 19695 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19696 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19697 } 19698 /* 19699 * NOTE: SunOS 4.X does this even if the broadcast address 19700 * has been already set thus we do the same here. 19701 */ 19702 if (ipif->ipif_flags & IPIF_BROADCAST) { 19703 ipaddr_t v4addr; 19704 19705 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19706 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19707 } 19708 } else { 19709 /* 19710 * Interface holds an IPv6-only address. Default 19711 * mask is all-ones. 19712 */ 19713 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19714 ipif->ipif_v6net_mask = ipv6_all_ones; 19715 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19716 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19717 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19718 } else { 19719 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19720 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19721 } 19722 } 19723 } 19724 19725 /* 19726 * Return 0 if this address can be used as local address without causing 19727 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19728 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19729 * Special checks are needed to allow the same IPv6 link-local address 19730 * on different ills. 19731 * TODO: allowing the same site-local address on different ill's. 19732 */ 19733 int 19734 ip_addr_availability_check(ipif_t *new_ipif) 19735 { 19736 in6_addr_t our_v6addr; 19737 ill_t *ill; 19738 ipif_t *ipif; 19739 ill_walk_context_t ctx; 19740 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19741 19742 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19743 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19744 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19745 19746 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19747 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19748 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19749 return (0); 19750 19751 our_v6addr = new_ipif->ipif_v6lcl_addr; 19752 19753 if (new_ipif->ipif_isv6) 19754 ill = ILL_START_WALK_V6(&ctx, ipst); 19755 else 19756 ill = ILL_START_WALK_V4(&ctx, ipst); 19757 19758 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19759 for (ipif = ill->ill_ipif; ipif != NULL; 19760 ipif = ipif->ipif_next) { 19761 if ((ipif == new_ipif) || 19762 !(ipif->ipif_flags & IPIF_UP) || 19763 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19764 continue; 19765 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19766 &our_v6addr)) { 19767 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19768 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19769 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19770 ipif->ipif_flags |= IPIF_UNNUMBERED; 19771 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19772 new_ipif->ipif_ill != ill) 19773 continue; 19774 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19775 new_ipif->ipif_ill != ill) 19776 continue; 19777 else if (new_ipif->ipif_zoneid != 19778 ipif->ipif_zoneid && 19779 ipif->ipif_zoneid != ALL_ZONES && 19780 IS_LOOPBACK(ill)) 19781 continue; 19782 else if (new_ipif->ipif_ill == ill) 19783 return (EADDRINUSE); 19784 else 19785 return (EADDRNOTAVAIL); 19786 } 19787 } 19788 } 19789 19790 return (0); 19791 } 19792 19793 /* 19794 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19795 * IREs for the ipif. 19796 * When the routine returns EINPROGRESS then mp has been consumed and 19797 * the ioctl will be acked from ip_rput_dlpi. 19798 */ 19799 static int 19800 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19801 { 19802 ill_t *ill = ipif->ipif_ill; 19803 boolean_t isv6 = ipif->ipif_isv6; 19804 int err = 0; 19805 boolean_t success; 19806 19807 ASSERT(IAM_WRITER_IPIF(ipif)); 19808 19809 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19810 19811 /* Shouldn't get here if it is already up. */ 19812 if (ipif->ipif_flags & IPIF_UP) 19813 return (EALREADY); 19814 19815 /* Skip arp/ndp for any loopback interface. */ 19816 if (ill->ill_wq != NULL) { 19817 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19818 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19819 19820 if (!ill->ill_dl_up) { 19821 /* 19822 * ill_dl_up is not yet set. i.e. we are yet to 19823 * DL_BIND with the driver and this is the first 19824 * logical interface on the ill to become "up". 19825 * Tell the driver to get going (via DL_BIND_REQ). 19826 * Note that changing "significant" IFF_ flags 19827 * address/netmask etc cause a down/up dance, but 19828 * does not cause an unbind (DL_UNBIND) with the driver 19829 */ 19830 return (ill_dl_up(ill, ipif, mp, q)); 19831 } 19832 19833 /* 19834 * ipif_resolver_up may end up sending an 19835 * AR_INTERFACE_UP message to ARP, which would, in 19836 * turn send a DLPI message to the driver. ioctls are 19837 * serialized and so we cannot send more than one 19838 * interface up message at a time. If ipif_resolver_up 19839 * does send an interface up message to ARP, we get 19840 * EINPROGRESS and we will complete in ip_arp_done. 19841 */ 19842 19843 ASSERT(connp != NULL || !CONN_Q(q)); 19844 ASSERT(ipsq->ipsq_pending_mp == NULL); 19845 if (connp != NULL) 19846 mutex_enter(&connp->conn_lock); 19847 mutex_enter(&ill->ill_lock); 19848 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19849 mutex_exit(&ill->ill_lock); 19850 if (connp != NULL) 19851 mutex_exit(&connp->conn_lock); 19852 if (!success) 19853 return (EINTR); 19854 19855 /* 19856 * Crank up IPv6 neighbor discovery 19857 * Unlike ARP, this should complete when 19858 * ipif_ndp_up returns. However, for 19859 * ILLF_XRESOLV interfaces we also send a 19860 * AR_INTERFACE_UP to the external resolver. 19861 * That ioctl will complete in ip_rput. 19862 */ 19863 if (isv6) { 19864 err = ipif_ndp_up(ipif); 19865 if (err != 0) { 19866 if (err != EINPROGRESS) 19867 mp = ipsq_pending_mp_get(ipsq, &connp); 19868 return (err); 19869 } 19870 } 19871 /* Now, ARP */ 19872 err = ipif_resolver_up(ipif, Res_act_initial); 19873 if (err == EINPROGRESS) { 19874 /* We will complete it in ip_arp_done */ 19875 return (err); 19876 } 19877 mp = ipsq_pending_mp_get(ipsq, &connp); 19878 ASSERT(mp != NULL); 19879 if (err != 0) 19880 return (err); 19881 } else { 19882 /* 19883 * Interfaces without underlying hardware don't do duplicate 19884 * address detection. 19885 */ 19886 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19887 ipif->ipif_addr_ready = 1; 19888 } 19889 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19890 } 19891 19892 /* 19893 * Perform a bind for the physical device. 19894 * When the routine returns EINPROGRESS then mp has been consumed and 19895 * the ioctl will be acked from ip_rput_dlpi. 19896 * Allocate an unbind message and save it until ipif_down. 19897 */ 19898 static int 19899 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19900 { 19901 areq_t *areq; 19902 mblk_t *areq_mp = NULL; 19903 mblk_t *bind_mp = NULL; 19904 mblk_t *unbind_mp = NULL; 19905 conn_t *connp; 19906 boolean_t success; 19907 uint16_t sap_addr; 19908 19909 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19910 ASSERT(IAM_WRITER_ILL(ill)); 19911 ASSERT(mp != NULL); 19912 19913 /* Create a resolver cookie for ARP */ 19914 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19915 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19916 if (areq_mp == NULL) 19917 return (ENOMEM); 19918 19919 freemsg(ill->ill_resolver_mp); 19920 ill->ill_resolver_mp = areq_mp; 19921 areq = (areq_t *)areq_mp->b_rptr; 19922 sap_addr = ill->ill_sap; 19923 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19924 } 19925 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19926 DL_BIND_REQ); 19927 if (bind_mp == NULL) 19928 goto bad; 19929 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19930 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19931 19932 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19933 if (unbind_mp == NULL) 19934 goto bad; 19935 19936 /* 19937 * Record state needed to complete this operation when the 19938 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19939 */ 19940 ASSERT(WR(q)->q_next == NULL); 19941 connp = Q_TO_CONN(q); 19942 19943 mutex_enter(&connp->conn_lock); 19944 mutex_enter(&ipif->ipif_ill->ill_lock); 19945 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19946 mutex_exit(&ipif->ipif_ill->ill_lock); 19947 mutex_exit(&connp->conn_lock); 19948 if (!success) 19949 goto bad; 19950 19951 /* 19952 * Save the unbind message for ill_dl_down(); it will be consumed when 19953 * the interface goes down. 19954 */ 19955 ASSERT(ill->ill_unbind_mp == NULL); 19956 ill->ill_unbind_mp = unbind_mp; 19957 19958 ill_dlpi_send(ill, bind_mp); 19959 /* Send down link-layer capabilities probe if not already done. */ 19960 ill_capability_probe(ill); 19961 19962 /* 19963 * Sysid used to rely on the fact that netboots set domainname 19964 * and the like. Now that miniroot boots aren't strictly netboots 19965 * and miniroot network configuration is driven from userland 19966 * these things still need to be set. This situation can be detected 19967 * by comparing the interface being configured here to the one 19968 * dhcifname was set to reference by the boot loader. Once sysid is 19969 * converted to use dhcp_ipc_getinfo() this call can go away. 19970 */ 19971 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 19972 (strcmp(ill->ill_name, dhcifname) == 0) && 19973 (strlen(srpc_domain) == 0)) { 19974 if (dhcpinit() != 0) 19975 cmn_err(CE_WARN, "no cached dhcp response"); 19976 } 19977 19978 /* 19979 * This operation will complete in ip_rput_dlpi with either 19980 * a DL_BIND_ACK or DL_ERROR_ACK. 19981 */ 19982 return (EINPROGRESS); 19983 bad: 19984 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19985 /* 19986 * We don't have to check for possible removal from illgrp 19987 * as we have not yet inserted in illgrp. For groups 19988 * without names, this ipif is still not UP and hence 19989 * this could not have possibly had any influence in forming 19990 * groups. 19991 */ 19992 19993 freemsg(bind_mp); 19994 freemsg(unbind_mp); 19995 return (ENOMEM); 19996 } 19997 19998 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19999 20000 /* 20001 * DLPI and ARP is up. 20002 * Create all the IREs associated with an interface bring up multicast. 20003 * Set the interface flag and finish other initialization 20004 * that potentially had to be differed to after DL_BIND_ACK. 20005 */ 20006 int 20007 ipif_up_done(ipif_t *ipif) 20008 { 20009 ire_t *ire_array[20]; 20010 ire_t **irep = ire_array; 20011 ire_t **irep1; 20012 ipaddr_t net_mask = 0; 20013 ipaddr_t subnet_mask, route_mask; 20014 ill_t *ill = ipif->ipif_ill; 20015 queue_t *stq; 20016 ipif_t *src_ipif; 20017 ipif_t *tmp_ipif; 20018 boolean_t flush_ire_cache = B_TRUE; 20019 int err = 0; 20020 phyint_t *phyi; 20021 ire_t **ipif_saved_irep = NULL; 20022 int ipif_saved_ire_cnt; 20023 int cnt; 20024 boolean_t src_ipif_held = B_FALSE; 20025 boolean_t ire_added = B_FALSE; 20026 boolean_t loopback = B_FALSE; 20027 ip_stack_t *ipst = ill->ill_ipst; 20028 20029 ip1dbg(("ipif_up_done(%s:%u)\n", 20030 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20031 /* Check if this is a loopback interface */ 20032 if (ipif->ipif_ill->ill_wq == NULL) 20033 loopback = B_TRUE; 20034 20035 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20036 /* 20037 * If all other interfaces for this ill are down or DEPRECATED, 20038 * or otherwise unsuitable for source address selection, remove 20039 * any IRE_CACHE entries for this ill to make sure source 20040 * address selection gets to take this new ipif into account. 20041 * No need to hold ill_lock while traversing the ipif list since 20042 * we are writer 20043 */ 20044 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20045 tmp_ipif = tmp_ipif->ipif_next) { 20046 if (((tmp_ipif->ipif_flags & 20047 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20048 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20049 (tmp_ipif == ipif)) 20050 continue; 20051 /* first useable pre-existing interface */ 20052 flush_ire_cache = B_FALSE; 20053 break; 20054 } 20055 if (flush_ire_cache) 20056 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20057 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20058 20059 /* 20060 * Figure out which way the send-to queue should go. Only 20061 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20062 * should show up here. 20063 */ 20064 switch (ill->ill_net_type) { 20065 case IRE_IF_RESOLVER: 20066 stq = ill->ill_rq; 20067 break; 20068 case IRE_IF_NORESOLVER: 20069 case IRE_LOOPBACK: 20070 stq = ill->ill_wq; 20071 break; 20072 default: 20073 return (EINVAL); 20074 } 20075 20076 if (IS_LOOPBACK(ill)) { 20077 /* 20078 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20079 * ipif_lookup_on_name(), but in the case of zones we can have 20080 * several loopback addresses on lo0. So all the interfaces with 20081 * loopback addresses need to be marked IRE_LOOPBACK. 20082 */ 20083 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20084 htonl(INADDR_LOOPBACK)) 20085 ipif->ipif_ire_type = IRE_LOOPBACK; 20086 else 20087 ipif->ipif_ire_type = IRE_LOCAL; 20088 } 20089 20090 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20091 /* 20092 * Can't use our source address. Select a different 20093 * source address for the IRE_INTERFACE and IRE_LOCAL 20094 */ 20095 src_ipif = ipif_select_source(ipif->ipif_ill, 20096 ipif->ipif_subnet, ipif->ipif_zoneid); 20097 if (src_ipif == NULL) 20098 src_ipif = ipif; /* Last resort */ 20099 else 20100 src_ipif_held = B_TRUE; 20101 } else { 20102 src_ipif = ipif; 20103 } 20104 20105 /* Create all the IREs associated with this interface */ 20106 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20107 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20108 20109 /* 20110 * If we're on a labeled system then make sure that zone- 20111 * private addresses have proper remote host database entries. 20112 */ 20113 if (is_system_labeled() && 20114 ipif->ipif_ire_type != IRE_LOOPBACK && 20115 !tsol_check_interface_address(ipif)) 20116 return (EINVAL); 20117 20118 /* Register the source address for __sin6_src_id */ 20119 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20120 ipif->ipif_zoneid, ipst); 20121 if (err != 0) { 20122 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20123 return (err); 20124 } 20125 20126 /* If the interface address is set, create the local IRE. */ 20127 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20128 (void *)ipif, 20129 ipif->ipif_ire_type, 20130 ntohl(ipif->ipif_lcl_addr))); 20131 *irep++ = ire_create( 20132 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20133 (uchar_t *)&ip_g_all_ones, /* mask */ 20134 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20135 NULL, /* no gateway */ 20136 &ip_loopback_mtuplus, /* max frag size */ 20137 NULL, 20138 ipif->ipif_rq, /* recv-from queue */ 20139 NULL, /* no send-to queue */ 20140 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20141 ipif, 20142 0, 20143 0, 20144 0, 20145 (ipif->ipif_flags & IPIF_PRIVATE) ? 20146 RTF_PRIVATE : 0, 20147 &ire_uinfo_null, 20148 NULL, 20149 NULL, 20150 ipst); 20151 } else { 20152 ip1dbg(( 20153 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20154 ipif->ipif_ire_type, 20155 ntohl(ipif->ipif_lcl_addr), 20156 (uint_t)ipif->ipif_flags)); 20157 } 20158 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20159 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20160 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20161 } else { 20162 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20163 } 20164 20165 subnet_mask = ipif->ipif_net_mask; 20166 20167 /* 20168 * If mask was not specified, use natural netmask of 20169 * interface address. Also, store this mask back into the 20170 * ipif struct. 20171 */ 20172 if (subnet_mask == 0) { 20173 subnet_mask = net_mask; 20174 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20175 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20176 ipif->ipif_v6subnet); 20177 } 20178 20179 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20180 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20181 ipif->ipif_subnet != INADDR_ANY) { 20182 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20183 20184 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20185 route_mask = IP_HOST_MASK; 20186 } else { 20187 route_mask = subnet_mask; 20188 } 20189 20190 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20191 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20192 (void *)ipif, (void *)ill, 20193 ill->ill_net_type, 20194 ntohl(ipif->ipif_subnet))); 20195 *irep++ = ire_create( 20196 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20197 (uchar_t *)&route_mask, /* mask */ 20198 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20199 NULL, /* no gateway */ 20200 &ipif->ipif_mtu, /* max frag */ 20201 NULL, 20202 NULL, /* no recv queue */ 20203 stq, /* send-to queue */ 20204 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20205 ipif, 20206 0, 20207 0, 20208 0, 20209 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20210 &ire_uinfo_null, 20211 NULL, 20212 NULL, 20213 ipst); 20214 } 20215 20216 /* 20217 * Create any necessary broadcast IREs. 20218 */ 20219 if (ipif->ipif_flags & IPIF_BROADCAST) 20220 irep = ipif_create_bcast_ires(ipif, irep); 20221 20222 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20223 20224 /* If an earlier ire_create failed, get out now */ 20225 for (irep1 = irep; irep1 > ire_array; ) { 20226 irep1--; 20227 if (*irep1 == NULL) { 20228 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20229 err = ENOMEM; 20230 goto bad; 20231 } 20232 } 20233 20234 /* 20235 * Need to atomically check for ip_addr_availablity_check 20236 * under ip_addr_avail_lock, and if it fails got bad, and remove 20237 * from group also.The ill_g_lock is grabbed as reader 20238 * just to make sure no new ills or new ipifs are being added 20239 * to the system while we are checking the uniqueness of addresses. 20240 */ 20241 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20242 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20243 /* Mark it up, and increment counters. */ 20244 ipif->ipif_flags |= IPIF_UP; 20245 ill->ill_ipif_up_count++; 20246 err = ip_addr_availability_check(ipif); 20247 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20248 rw_exit(&ipst->ips_ill_g_lock); 20249 20250 if (err != 0) { 20251 /* 20252 * Our address may already be up on the same ill. In this case, 20253 * the ARP entry for our ipif replaced the one for the other 20254 * ipif. So we don't want to delete it (otherwise the other ipif 20255 * would be unable to send packets). 20256 * ip_addr_availability_check() identifies this case for us and 20257 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20258 * which is the expected error code. 20259 */ 20260 if (err == EADDRINUSE) { 20261 freemsg(ipif->ipif_arp_del_mp); 20262 ipif->ipif_arp_del_mp = NULL; 20263 err = EADDRNOTAVAIL; 20264 } 20265 ill->ill_ipif_up_count--; 20266 ipif->ipif_flags &= ~IPIF_UP; 20267 goto bad; 20268 } 20269 20270 /* 20271 * Add in all newly created IREs. ire_create_bcast() has 20272 * already checked for duplicates of the IRE_BROADCAST type. 20273 * We want to add before we call ifgrp_insert which wants 20274 * to know whether IRE_IF_RESOLVER exists or not. 20275 * 20276 * NOTE : We refrele the ire though we may branch to "bad" 20277 * later on where we do ire_delete. This is okay 20278 * because nobody can delete it as we are running 20279 * exclusively. 20280 */ 20281 for (irep1 = irep; irep1 > ire_array; ) { 20282 irep1--; 20283 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20284 /* 20285 * refheld by ire_add. refele towards the end of the func 20286 */ 20287 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20288 } 20289 ire_added = B_TRUE; 20290 /* 20291 * Form groups if possible. 20292 * 20293 * If we are supposed to be in a ill_group with a name, insert it 20294 * now as we know that at least one ipif is UP. Otherwise form 20295 * nameless groups. 20296 * 20297 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20298 * this ipif into the appropriate interface group, or create a 20299 * new one. If this is already in a nameless group, we try to form 20300 * a bigger group looking at other ills potentially sharing this 20301 * ipif's prefix. 20302 */ 20303 phyi = ill->ill_phyint; 20304 if (phyi->phyint_groupname_len != 0) { 20305 ASSERT(phyi->phyint_groupname != NULL); 20306 if (ill->ill_ipif_up_count == 1) { 20307 ASSERT(ill->ill_group == NULL); 20308 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20309 phyi->phyint_groupname, NULL, B_TRUE); 20310 if (err != 0) { 20311 ip1dbg(("ipif_up_done: illgrp allocation " 20312 "failed, error %d\n", err)); 20313 goto bad; 20314 } 20315 } 20316 ASSERT(ill->ill_group != NULL); 20317 } 20318 20319 /* 20320 * When this is part of group, we need to make sure that 20321 * any broadcast ires created because of this ipif coming 20322 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20323 * so that we don't receive duplicate broadcast packets. 20324 */ 20325 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20326 ipif_renominate_bcast(ipif); 20327 20328 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20329 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20330 ipif_saved_irep = ipif_recover_ire(ipif); 20331 20332 if (!loopback) { 20333 /* 20334 * If the broadcast address has been set, make sure it makes 20335 * sense based on the interface address. 20336 * Only match on ill since we are sharing broadcast addresses. 20337 */ 20338 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20339 (ipif->ipif_flags & IPIF_BROADCAST)) { 20340 ire_t *ire; 20341 20342 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20343 IRE_BROADCAST, ipif, ALL_ZONES, 20344 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20345 20346 if (ire == NULL) { 20347 /* 20348 * If there isn't a matching broadcast IRE, 20349 * revert to the default for this netmask. 20350 */ 20351 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20352 mutex_enter(&ipif->ipif_ill->ill_lock); 20353 ipif_set_default(ipif); 20354 mutex_exit(&ipif->ipif_ill->ill_lock); 20355 } else { 20356 ire_refrele(ire); 20357 } 20358 } 20359 20360 } 20361 20362 /* This is the first interface on this ill */ 20363 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20364 /* 20365 * Need to recover all multicast memberships in the driver. 20366 * This had to be deferred until we had attached. 20367 */ 20368 ill_recover_multicast(ill); 20369 } 20370 /* Join the allhosts multicast address */ 20371 ipif_multicast_up(ipif); 20372 20373 if (!loopback) { 20374 /* 20375 * See whether anybody else would benefit from the 20376 * new ipif that we added. We call this always rather 20377 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20378 * ipif is for the benefit of illgrp_insert (done above) 20379 * which does not do source address selection as it does 20380 * not want to re-create interface routes that we are 20381 * having reference to it here. 20382 */ 20383 ill_update_source_selection(ill); 20384 } 20385 20386 for (irep1 = irep; irep1 > ire_array; ) { 20387 irep1--; 20388 if (*irep1 != NULL) { 20389 /* was held in ire_add */ 20390 ire_refrele(*irep1); 20391 } 20392 } 20393 20394 cnt = ipif_saved_ire_cnt; 20395 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20396 if (*irep1 != NULL) { 20397 /* was held in ire_add */ 20398 ire_refrele(*irep1); 20399 } 20400 } 20401 20402 if (!loopback && ipif->ipif_addr_ready) { 20403 /* Broadcast an address mask reply. */ 20404 ipif_mask_reply(ipif); 20405 } 20406 if (ipif_saved_irep != NULL) { 20407 kmem_free(ipif_saved_irep, 20408 ipif_saved_ire_cnt * sizeof (ire_t *)); 20409 } 20410 if (src_ipif_held) 20411 ipif_refrele(src_ipif); 20412 20413 /* 20414 * This had to be deferred until we had bound. Tell routing sockets and 20415 * others that this interface is up if it looks like the address has 20416 * been validated. Otherwise, if it isn't ready yet, wait for 20417 * duplicate address detection to do its thing. 20418 */ 20419 if (ipif->ipif_addr_ready) { 20420 ip_rts_ifmsg(ipif); 20421 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20422 /* Let SCTP update the status for this ipif */ 20423 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20424 } 20425 return (0); 20426 20427 bad: 20428 ip1dbg(("ipif_up_done: FAILED \n")); 20429 /* 20430 * We don't have to bother removing from ill groups because 20431 * 20432 * 1) For groups with names, we insert only when the first ipif 20433 * comes up. In that case if it fails, it will not be in any 20434 * group. So, we need not try to remove for that case. 20435 * 20436 * 2) For groups without names, either we tried to insert ipif_ill 20437 * in a group as singleton or found some other group to become 20438 * a bigger group. For the former, if it fails we don't have 20439 * anything to do as ipif_ill is not in the group and for the 20440 * latter, there are no failures in illgrp_insert/illgrp_delete 20441 * (ENOMEM can't occur for this. Check ifgrp_insert). 20442 */ 20443 while (irep > ire_array) { 20444 irep--; 20445 if (*irep != NULL) { 20446 ire_delete(*irep); 20447 if (ire_added) 20448 ire_refrele(*irep); 20449 } 20450 } 20451 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20452 20453 if (ipif_saved_irep != NULL) { 20454 kmem_free(ipif_saved_irep, 20455 ipif_saved_ire_cnt * sizeof (ire_t *)); 20456 } 20457 if (src_ipif_held) 20458 ipif_refrele(src_ipif); 20459 20460 ipif_arp_down(ipif); 20461 return (err); 20462 } 20463 20464 /* 20465 * Turn off the ARP with the ILLF_NOARP flag. 20466 */ 20467 static int 20468 ill_arp_off(ill_t *ill) 20469 { 20470 mblk_t *arp_off_mp = NULL; 20471 mblk_t *arp_on_mp = NULL; 20472 20473 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20474 20475 ASSERT(IAM_WRITER_ILL(ill)); 20476 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20477 20478 /* 20479 * If the on message is still around we've already done 20480 * an arp_off without doing an arp_on thus there is no 20481 * work needed. 20482 */ 20483 if (ill->ill_arp_on_mp != NULL) 20484 return (0); 20485 20486 /* 20487 * Allocate an ARP on message (to be saved) and an ARP off message 20488 */ 20489 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20490 if (!arp_off_mp) 20491 return (ENOMEM); 20492 20493 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20494 if (!arp_on_mp) 20495 goto failed; 20496 20497 ASSERT(ill->ill_arp_on_mp == NULL); 20498 ill->ill_arp_on_mp = arp_on_mp; 20499 20500 /* Send an AR_INTERFACE_OFF request */ 20501 putnext(ill->ill_rq, arp_off_mp); 20502 return (0); 20503 failed: 20504 20505 if (arp_off_mp) 20506 freemsg(arp_off_mp); 20507 return (ENOMEM); 20508 } 20509 20510 /* 20511 * Turn on ARP by turning off the ILLF_NOARP flag. 20512 */ 20513 static int 20514 ill_arp_on(ill_t *ill) 20515 { 20516 mblk_t *mp; 20517 20518 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20519 20520 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20521 20522 ASSERT(IAM_WRITER_ILL(ill)); 20523 /* 20524 * Send an AR_INTERFACE_ON request if we have already done 20525 * an arp_off (which allocated the message). 20526 */ 20527 if (ill->ill_arp_on_mp != NULL) { 20528 mp = ill->ill_arp_on_mp; 20529 ill->ill_arp_on_mp = NULL; 20530 putnext(ill->ill_rq, mp); 20531 } 20532 return (0); 20533 } 20534 20535 /* 20536 * Called after either deleting ill from the group or when setting 20537 * FAILED or STANDBY on the interface. 20538 */ 20539 static void 20540 illgrp_reset_schednext(ill_t *ill) 20541 { 20542 ill_group_t *illgrp; 20543 ill_t *save_ill; 20544 20545 ASSERT(IAM_WRITER_ILL(ill)); 20546 /* 20547 * When called from illgrp_delete, ill_group will be non-NULL. 20548 * But when called from ip_sioctl_flags, it could be NULL if 20549 * somebody is setting FAILED/INACTIVE on some interface which 20550 * is not part of a group. 20551 */ 20552 illgrp = ill->ill_group; 20553 if (illgrp == NULL) 20554 return; 20555 if (illgrp->illgrp_ill_schednext != ill) 20556 return; 20557 20558 illgrp->illgrp_ill_schednext = NULL; 20559 save_ill = ill; 20560 /* 20561 * Choose a good ill to be the next one for 20562 * outbound traffic. As the flags FAILED/STANDBY is 20563 * not yet marked when called from ip_sioctl_flags, 20564 * we check for ill separately. 20565 */ 20566 for (ill = illgrp->illgrp_ill; ill != NULL; 20567 ill = ill->ill_group_next) { 20568 if ((ill != save_ill) && 20569 !(ill->ill_phyint->phyint_flags & 20570 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20571 illgrp->illgrp_ill_schednext = ill; 20572 return; 20573 } 20574 } 20575 } 20576 20577 /* 20578 * Given an ill, find the next ill in the group to be scheduled. 20579 * (This should be called by ip_newroute() before ire_create().) 20580 * The passed in ill may be pulled out of the group, after we have picked 20581 * up a different outgoing ill from the same group. However ire add will 20582 * atomically check this. 20583 */ 20584 ill_t * 20585 illgrp_scheduler(ill_t *ill) 20586 { 20587 ill_t *retill; 20588 ill_group_t *illgrp; 20589 int illcnt; 20590 int i; 20591 uint64_t flags; 20592 ip_stack_t *ipst = ill->ill_ipst; 20593 20594 /* 20595 * We don't use a lock to check for the ill_group. If this ill 20596 * is currently being inserted we may end up just returning this 20597 * ill itself. That is ok. 20598 */ 20599 if (ill->ill_group == NULL) { 20600 ill_refhold(ill); 20601 return (ill); 20602 } 20603 20604 /* 20605 * Grab the ill_g_lock as reader to make sure we are dealing with 20606 * a set of stable ills. No ill can be added or deleted or change 20607 * group while we hold the reader lock. 20608 */ 20609 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20610 if ((illgrp = ill->ill_group) == NULL) { 20611 rw_exit(&ipst->ips_ill_g_lock); 20612 ill_refhold(ill); 20613 return (ill); 20614 } 20615 20616 illcnt = illgrp->illgrp_ill_count; 20617 mutex_enter(&illgrp->illgrp_lock); 20618 retill = illgrp->illgrp_ill_schednext; 20619 20620 if (retill == NULL) 20621 retill = illgrp->illgrp_ill; 20622 20623 /* 20624 * We do a circular search beginning at illgrp_ill_schednext 20625 * or illgrp_ill. We don't check the flags against the ill lock 20626 * since it can change anytime. The ire creation will be atomic 20627 * and will fail if the ill is FAILED or OFFLINE. 20628 */ 20629 for (i = 0; i < illcnt; i++) { 20630 flags = retill->ill_phyint->phyint_flags; 20631 20632 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20633 ILL_CAN_LOOKUP(retill)) { 20634 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20635 ill_refhold(retill); 20636 break; 20637 } 20638 retill = retill->ill_group_next; 20639 if (retill == NULL) 20640 retill = illgrp->illgrp_ill; 20641 } 20642 mutex_exit(&illgrp->illgrp_lock); 20643 rw_exit(&ipst->ips_ill_g_lock); 20644 20645 return (i == illcnt ? NULL : retill); 20646 } 20647 20648 /* 20649 * Checks for availbility of a usable source address (if there is one) when the 20650 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20651 * this selection is done regardless of the destination. 20652 */ 20653 boolean_t 20654 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20655 { 20656 uint_t ifindex; 20657 ipif_t *ipif = NULL; 20658 ill_t *uill; 20659 boolean_t isv6; 20660 ip_stack_t *ipst = ill->ill_ipst; 20661 20662 ASSERT(ill != NULL); 20663 20664 isv6 = ill->ill_isv6; 20665 ifindex = ill->ill_usesrc_ifindex; 20666 if (ifindex != 0) { 20667 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20668 NULL, ipst); 20669 if (uill == NULL) 20670 return (NULL); 20671 mutex_enter(&uill->ill_lock); 20672 for (ipif = uill->ill_ipif; ipif != NULL; 20673 ipif = ipif->ipif_next) { 20674 if (!IPIF_CAN_LOOKUP(ipif)) 20675 continue; 20676 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20677 continue; 20678 if (!(ipif->ipif_flags & IPIF_UP)) 20679 continue; 20680 if (ipif->ipif_zoneid != zoneid) 20681 continue; 20682 if ((isv6 && 20683 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20684 (ipif->ipif_lcl_addr == INADDR_ANY)) 20685 continue; 20686 mutex_exit(&uill->ill_lock); 20687 ill_refrele(uill); 20688 return (B_TRUE); 20689 } 20690 mutex_exit(&uill->ill_lock); 20691 ill_refrele(uill); 20692 } 20693 return (B_FALSE); 20694 } 20695 20696 /* 20697 * Determine the best source address given a destination address and an ill. 20698 * Prefers non-deprecated over deprecated but will return a deprecated 20699 * address if there is no other choice. If there is a usable source address 20700 * on the interface pointed to by ill_usesrc_ifindex then that is given 20701 * first preference. 20702 * 20703 * Returns NULL if there is no suitable source address for the ill. 20704 * This only occurs when there is no valid source address for the ill. 20705 */ 20706 ipif_t * 20707 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20708 { 20709 ipif_t *ipif; 20710 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20711 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20712 int index = 0; 20713 boolean_t wrapped = B_FALSE; 20714 boolean_t same_subnet_only = B_FALSE; 20715 boolean_t ipif_same_found, ipif_other_found; 20716 boolean_t specific_found; 20717 ill_t *till, *usill = NULL; 20718 tsol_tpc_t *src_rhtp, *dst_rhtp; 20719 ip_stack_t *ipst = ill->ill_ipst; 20720 20721 if (ill->ill_usesrc_ifindex != 0) { 20722 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20723 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20724 if (usill != NULL) 20725 ill = usill; /* Select source from usesrc ILL */ 20726 else 20727 return (NULL); 20728 } 20729 20730 /* 20731 * If we're dealing with an unlabeled destination on a labeled system, 20732 * make sure that we ignore source addresses that are incompatible with 20733 * the destination's default label. That destination's default label 20734 * must dominate the minimum label on the source address. 20735 */ 20736 dst_rhtp = NULL; 20737 if (is_system_labeled()) { 20738 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20739 if (dst_rhtp == NULL) 20740 return (NULL); 20741 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20742 TPC_RELE(dst_rhtp); 20743 dst_rhtp = NULL; 20744 } 20745 } 20746 20747 /* 20748 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20749 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20750 * After selecting the right ipif, under ill_lock make sure ipif is 20751 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20752 * we retry. Inside the loop we still need to check for CONDEMNED, 20753 * but not under a lock. 20754 */ 20755 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20756 20757 retry: 20758 till = ill; 20759 ipif_arr[0] = NULL; 20760 20761 if (till->ill_group != NULL) 20762 till = till->ill_group->illgrp_ill; 20763 20764 /* 20765 * Choose one good source address from each ill across the group. 20766 * If possible choose a source address in the same subnet as 20767 * the destination address. 20768 * 20769 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20770 * This is okay because of the following. 20771 * 20772 * If PHYI_FAILED is set and we still have non-deprecated 20773 * addresses, it means the addresses have not yet been 20774 * failed over to a different interface. We potentially 20775 * select them to create IRE_CACHES, which will be later 20776 * flushed when the addresses move over. 20777 * 20778 * If PHYI_INACTIVE is set and we still have non-deprecated 20779 * addresses, it means either the user has configured them 20780 * or PHYI_INACTIVE has not been cleared after the addresses 20781 * been moved over. For the former, in.mpathd does a failover 20782 * when the interface becomes INACTIVE and hence we should 20783 * not find them. Once INACTIVE is set, we don't allow them 20784 * to create logical interfaces anymore. For the latter, a 20785 * flush will happen when INACTIVE is cleared which will 20786 * flush the IRE_CACHES. 20787 * 20788 * If PHYI_OFFLINE is set, all the addresses will be failed 20789 * over soon. We potentially select them to create IRE_CACHEs, 20790 * which will be later flushed when the addresses move over. 20791 * 20792 * NOTE : As ipif_select_source is called to borrow source address 20793 * for an ipif that is part of a group, source address selection 20794 * will be re-done whenever the group changes i.e either an 20795 * insertion/deletion in the group. 20796 * 20797 * Fill ipif_arr[] with source addresses, using these rules: 20798 * 20799 * 1. At most one source address from a given ill ends up 20800 * in ipif_arr[] -- that is, at most one of the ipif's 20801 * associated with a given ill ends up in ipif_arr[]. 20802 * 20803 * 2. If there is at least one non-deprecated ipif in the 20804 * IPMP group with a source address on the same subnet as 20805 * our destination, then fill ipif_arr[] only with 20806 * source addresses on the same subnet as our destination. 20807 * Note that because of (1), only the first 20808 * non-deprecated ipif found with a source address 20809 * matching the destination ends up in ipif_arr[]. 20810 * 20811 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20812 * addresses not in the same subnet as our destination. 20813 * Again, because of (1), only the first off-subnet source 20814 * address will be chosen. 20815 * 20816 * 4. If there are no non-deprecated ipifs, then just use 20817 * the source address associated with the last deprecated 20818 * one we find that happens to be on the same subnet, 20819 * otherwise the first one not in the same subnet. 20820 */ 20821 specific_found = B_FALSE; 20822 for (; till != NULL; till = till->ill_group_next) { 20823 ipif_same_found = B_FALSE; 20824 ipif_other_found = B_FALSE; 20825 for (ipif = till->ill_ipif; ipif != NULL; 20826 ipif = ipif->ipif_next) { 20827 if (!IPIF_CAN_LOOKUP(ipif)) 20828 continue; 20829 /* Always skip NOLOCAL and ANYCAST interfaces */ 20830 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20831 continue; 20832 if (!(ipif->ipif_flags & IPIF_UP) || 20833 !ipif->ipif_addr_ready) 20834 continue; 20835 if (ipif->ipif_zoneid != zoneid && 20836 ipif->ipif_zoneid != ALL_ZONES) 20837 continue; 20838 /* 20839 * Interfaces with 0.0.0.0 address are allowed to be UP, 20840 * but are not valid as source addresses. 20841 */ 20842 if (ipif->ipif_lcl_addr == INADDR_ANY) 20843 continue; 20844 20845 /* 20846 * Check compatibility of local address for 20847 * destination's default label if we're on a labeled 20848 * system. Incompatible addresses can't be used at 20849 * all. 20850 */ 20851 if (dst_rhtp != NULL) { 20852 boolean_t incompat; 20853 20854 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20855 IPV4_VERSION, B_FALSE); 20856 if (src_rhtp == NULL) 20857 continue; 20858 incompat = 20859 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20860 src_rhtp->tpc_tp.tp_doi != 20861 dst_rhtp->tpc_tp.tp_doi || 20862 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20863 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20864 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20865 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20866 TPC_RELE(src_rhtp); 20867 if (incompat) 20868 continue; 20869 } 20870 20871 /* 20872 * We prefer not to use all all-zones addresses, if we 20873 * can avoid it, as they pose problems with unlabeled 20874 * destinations. 20875 */ 20876 if (ipif->ipif_zoneid != ALL_ZONES) { 20877 if (!specific_found && 20878 (!same_subnet_only || 20879 (ipif->ipif_net_mask & dst) == 20880 ipif->ipif_subnet)) { 20881 index = 0; 20882 specific_found = B_TRUE; 20883 ipif_other_found = B_FALSE; 20884 } 20885 } else { 20886 if (specific_found) 20887 continue; 20888 } 20889 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20890 if (ipif_dep == NULL || 20891 (ipif->ipif_net_mask & dst) == 20892 ipif->ipif_subnet) 20893 ipif_dep = ipif; 20894 continue; 20895 } 20896 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20897 /* found a source address in the same subnet */ 20898 if (!same_subnet_only) { 20899 same_subnet_only = B_TRUE; 20900 index = 0; 20901 } 20902 ipif_same_found = B_TRUE; 20903 } else { 20904 if (same_subnet_only || ipif_other_found) 20905 continue; 20906 ipif_other_found = B_TRUE; 20907 } 20908 ipif_arr[index++] = ipif; 20909 if (index == MAX_IPIF_SELECT_SOURCE) { 20910 wrapped = B_TRUE; 20911 index = 0; 20912 } 20913 if (ipif_same_found) 20914 break; 20915 } 20916 } 20917 20918 if (ipif_arr[0] == NULL) { 20919 ipif = ipif_dep; 20920 } else { 20921 if (wrapped) 20922 index = MAX_IPIF_SELECT_SOURCE; 20923 ipif = ipif_arr[ipif_rand(ipst) % index]; 20924 ASSERT(ipif != NULL); 20925 } 20926 20927 if (ipif != NULL) { 20928 mutex_enter(&ipif->ipif_ill->ill_lock); 20929 if (!IPIF_CAN_LOOKUP(ipif)) { 20930 mutex_exit(&ipif->ipif_ill->ill_lock); 20931 goto retry; 20932 } 20933 ipif_refhold_locked(ipif); 20934 mutex_exit(&ipif->ipif_ill->ill_lock); 20935 } 20936 20937 rw_exit(&ipst->ips_ill_g_lock); 20938 if (usill != NULL) 20939 ill_refrele(usill); 20940 if (dst_rhtp != NULL) 20941 TPC_RELE(dst_rhtp); 20942 20943 #ifdef DEBUG 20944 if (ipif == NULL) { 20945 char buf1[INET6_ADDRSTRLEN]; 20946 20947 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20948 ill->ill_name, 20949 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20950 } else { 20951 char buf1[INET6_ADDRSTRLEN]; 20952 char buf2[INET6_ADDRSTRLEN]; 20953 20954 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20955 ipif->ipif_ill->ill_name, 20956 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20957 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20958 buf2, sizeof (buf2)))); 20959 } 20960 #endif /* DEBUG */ 20961 return (ipif); 20962 } 20963 20964 20965 /* 20966 * If old_ipif is not NULL, see if ipif was derived from old 20967 * ipif and if so, recreate the interface route by re-doing 20968 * source address selection. This happens when ipif_down -> 20969 * ipif_update_other_ipifs calls us. 20970 * 20971 * If old_ipif is NULL, just redo the source address selection 20972 * if needed. This happens when illgrp_insert or ipif_up_done 20973 * calls us. 20974 */ 20975 static void 20976 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20977 { 20978 ire_t *ire; 20979 ire_t *ipif_ire; 20980 queue_t *stq; 20981 ipif_t *nipif; 20982 ill_t *ill; 20983 boolean_t need_rele = B_FALSE; 20984 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 20985 20986 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20987 ASSERT(IAM_WRITER_IPIF(ipif)); 20988 20989 ill = ipif->ipif_ill; 20990 if (!(ipif->ipif_flags & 20991 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20992 /* 20993 * Can't possibly have borrowed the source 20994 * from old_ipif. 20995 */ 20996 return; 20997 } 20998 20999 /* 21000 * Is there any work to be done? No work if the address 21001 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21002 * ipif_select_source() does not borrow addresses from 21003 * NOLOCAL and ANYCAST interfaces). 21004 */ 21005 if ((old_ipif != NULL) && 21006 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21007 (old_ipif->ipif_ill->ill_wq == NULL) || 21008 (old_ipif->ipif_flags & 21009 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21010 return; 21011 } 21012 21013 /* 21014 * Perform the same checks as when creating the 21015 * IRE_INTERFACE in ipif_up_done. 21016 */ 21017 if (!(ipif->ipif_flags & IPIF_UP)) 21018 return; 21019 21020 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21021 (ipif->ipif_subnet == INADDR_ANY)) 21022 return; 21023 21024 ipif_ire = ipif_to_ire(ipif); 21025 if (ipif_ire == NULL) 21026 return; 21027 21028 /* 21029 * We know that ipif uses some other source for its 21030 * IRE_INTERFACE. Is it using the source of this 21031 * old_ipif? 21032 */ 21033 if (old_ipif != NULL && 21034 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21035 ire_refrele(ipif_ire); 21036 return; 21037 } 21038 if (ip_debug > 2) { 21039 /* ip1dbg */ 21040 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21041 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21042 } 21043 21044 stq = ipif_ire->ire_stq; 21045 21046 /* 21047 * Can't use our source address. Select a different 21048 * source address for the IRE_INTERFACE. 21049 */ 21050 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21051 if (nipif == NULL) { 21052 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21053 nipif = ipif; 21054 } else { 21055 need_rele = B_TRUE; 21056 } 21057 21058 ire = ire_create( 21059 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21060 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21061 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21062 NULL, /* no gateway */ 21063 &ipif->ipif_mtu, /* max frag */ 21064 NULL, /* no src nce */ 21065 NULL, /* no recv from queue */ 21066 stq, /* send-to queue */ 21067 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21068 ipif, 21069 0, 21070 0, 21071 0, 21072 0, 21073 &ire_uinfo_null, 21074 NULL, 21075 NULL, 21076 ipst); 21077 21078 if (ire != NULL) { 21079 ire_t *ret_ire; 21080 int error; 21081 21082 /* 21083 * We don't need ipif_ire anymore. We need to delete 21084 * before we add so that ire_add does not detect 21085 * duplicates. 21086 */ 21087 ire_delete(ipif_ire); 21088 ret_ire = ire; 21089 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21090 ASSERT(error == 0); 21091 ASSERT(ire == ret_ire); 21092 /* Held in ire_add */ 21093 ire_refrele(ret_ire); 21094 } 21095 /* 21096 * Either we are falling through from above or could not 21097 * allocate a replacement. 21098 */ 21099 ire_refrele(ipif_ire); 21100 if (need_rele) 21101 ipif_refrele(nipif); 21102 } 21103 21104 /* 21105 * This old_ipif is going away. 21106 * 21107 * Determine if any other ipif's is using our address as 21108 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21109 * IPIF_DEPRECATED). 21110 * Find the IRE_INTERFACE for such ipifs and recreate them 21111 * to use an different source address following the rules in 21112 * ipif_up_done. 21113 * 21114 * This function takes an illgrp as an argument so that illgrp_delete 21115 * can call this to update source address even after deleting the 21116 * old_ipif->ipif_ill from the ill group. 21117 */ 21118 static void 21119 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21120 { 21121 ipif_t *ipif; 21122 ill_t *ill; 21123 char buf[INET6_ADDRSTRLEN]; 21124 21125 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21126 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21127 21128 ill = old_ipif->ipif_ill; 21129 21130 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21131 ill->ill_name, 21132 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21133 buf, sizeof (buf)))); 21134 /* 21135 * If this part of a group, look at all ills as ipif_select_source 21136 * borrows source address across all the ills in the group. 21137 */ 21138 if (illgrp != NULL) 21139 ill = illgrp->illgrp_ill; 21140 21141 for (; ill != NULL; ill = ill->ill_group_next) { 21142 for (ipif = ill->ill_ipif; ipif != NULL; 21143 ipif = ipif->ipif_next) { 21144 21145 if (ipif == old_ipif) 21146 continue; 21147 21148 ipif_recreate_interface_routes(old_ipif, ipif); 21149 } 21150 } 21151 } 21152 21153 /* ARGSUSED */ 21154 int 21155 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21156 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21157 { 21158 /* 21159 * ill_phyint_reinit merged the v4 and v6 into a single 21160 * ipsq. Could also have become part of a ipmp group in the 21161 * process, and we might not have been able to complete the 21162 * operation in ipif_set_values, if we could not become 21163 * exclusive. If so restart it here. 21164 */ 21165 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21166 } 21167 21168 /* 21169 * Can operate on either a module or a driver queue. 21170 * Returns an error if not a module queue. 21171 */ 21172 /* ARGSUSED */ 21173 int 21174 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21175 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21176 { 21177 queue_t *q1 = q; 21178 char *cp; 21179 char interf_name[LIFNAMSIZ]; 21180 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21181 21182 if (q->q_next == NULL) { 21183 ip1dbg(( 21184 "if_unitsel: IF_UNITSEL: no q_next\n")); 21185 return (EINVAL); 21186 } 21187 21188 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21189 return (EALREADY); 21190 21191 do { 21192 q1 = q1->q_next; 21193 } while (q1->q_next); 21194 cp = q1->q_qinfo->qi_minfo->mi_idname; 21195 (void) sprintf(interf_name, "%s%d", cp, ppa); 21196 21197 /* 21198 * Here we are not going to delay the ioack until after 21199 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21200 * original ioctl message before sending the requests. 21201 */ 21202 return (ipif_set_values(q, mp, interf_name, &ppa)); 21203 } 21204 21205 /* ARGSUSED */ 21206 int 21207 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21208 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21209 { 21210 return (ENXIO); 21211 } 21212 21213 /* 21214 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21215 * `irep'. Returns a pointer to the next free `irep' entry (just like 21216 * ire_check_and_create_bcast()). 21217 */ 21218 static ire_t ** 21219 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21220 { 21221 ipaddr_t addr; 21222 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21223 ipaddr_t subnetmask = ipif->ipif_net_mask; 21224 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21225 21226 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21227 21228 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21229 21230 if (ipif->ipif_lcl_addr == INADDR_ANY || 21231 (ipif->ipif_flags & IPIF_NOLOCAL)) 21232 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21233 21234 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21235 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21236 21237 /* 21238 * For backward compatibility, we create net broadcast IREs based on 21239 * the old "IP address class system", since some old machines only 21240 * respond to these class derived net broadcast. However, we must not 21241 * create these net broadcast IREs if the subnetmask is shorter than 21242 * the IP address class based derived netmask. Otherwise, we may 21243 * create a net broadcast address which is the same as an IP address 21244 * on the subnet -- and then TCP will refuse to talk to that address. 21245 */ 21246 if (netmask < subnetmask) { 21247 addr = netmask & ipif->ipif_subnet; 21248 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21249 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21250 flags); 21251 } 21252 21253 /* 21254 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21255 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21256 * created. Creating these broadcast IREs will only create confusion 21257 * as `addr' will be the same as the IP address. 21258 */ 21259 if (subnetmask != 0xFFFFFFFF) { 21260 addr = ipif->ipif_subnet; 21261 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21262 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21263 irep, flags); 21264 } 21265 21266 return (irep); 21267 } 21268 21269 /* 21270 * Broadcast IRE info structure used in the functions below. Since we 21271 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21272 */ 21273 typedef struct bcast_ireinfo { 21274 uchar_t bi_type; /* BCAST_* value from below */ 21275 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21276 bi_needrep:1, /* do we need to replace it? */ 21277 bi_haverep:1, /* have we replaced it? */ 21278 bi_pad:5; 21279 ipaddr_t bi_addr; /* IRE address */ 21280 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21281 } bcast_ireinfo_t; 21282 21283 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21284 21285 /* 21286 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21287 * return B_TRUE if it should immediately be used to recreate the IRE. 21288 */ 21289 static boolean_t 21290 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21291 { 21292 ipaddr_t addr; 21293 21294 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21295 21296 switch (bireinfop->bi_type) { 21297 case BCAST_NET: 21298 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21299 if (addr != bireinfop->bi_addr) 21300 return (B_FALSE); 21301 break; 21302 case BCAST_SUBNET: 21303 if (ipif->ipif_subnet != bireinfop->bi_addr) 21304 return (B_FALSE); 21305 break; 21306 } 21307 21308 bireinfop->bi_needrep = 1; 21309 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21310 if (bireinfop->bi_backup == NULL) 21311 bireinfop->bi_backup = ipif; 21312 return (B_FALSE); 21313 } 21314 return (B_TRUE); 21315 } 21316 21317 /* 21318 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21319 * them ala ire_check_and_create_bcast(). 21320 */ 21321 static ire_t ** 21322 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21323 { 21324 ipaddr_t mask, addr; 21325 21326 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21327 21328 addr = bireinfop->bi_addr; 21329 irep = ire_create_bcast(ipif, addr, irep); 21330 21331 switch (bireinfop->bi_type) { 21332 case BCAST_NET: 21333 mask = ip_net_mask(ipif->ipif_subnet); 21334 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21335 break; 21336 case BCAST_SUBNET: 21337 mask = ipif->ipif_net_mask; 21338 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21339 break; 21340 } 21341 21342 bireinfop->bi_haverep = 1; 21343 return (irep); 21344 } 21345 21346 /* 21347 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21348 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21349 * that are going away are still needed. If so, have ipif_create_bcast() 21350 * recreate them (except for the deprecated case, as explained below). 21351 */ 21352 static ire_t ** 21353 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21354 ire_t **irep) 21355 { 21356 int i; 21357 ipif_t *ipif; 21358 21359 ASSERT(!ill->ill_isv6); 21360 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21361 /* 21362 * Skip this ipif if it's (a) the one being taken down, (b) 21363 * not in the same zone, or (c) has no valid local address. 21364 */ 21365 if (ipif == test_ipif || 21366 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21367 ipif->ipif_subnet == 0 || 21368 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21369 (IPIF_UP|IPIF_BROADCAST)) 21370 continue; 21371 21372 /* 21373 * For each dying IRE that hasn't yet been replaced, see if 21374 * `ipif' needs it and whether the IRE should be recreated on 21375 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21376 * will return B_FALSE even if `ipif' needs the IRE on the 21377 * hopes that we'll later find a needy non-deprecated ipif. 21378 * However, the ipif is recorded in bi_backup for possible 21379 * subsequent use by ipif_check_bcast_ires(). 21380 */ 21381 for (i = 0; i < BCAST_COUNT; i++) { 21382 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21383 continue; 21384 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21385 continue; 21386 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21387 } 21388 21389 /* 21390 * If we've replaced all of the broadcast IREs that are going 21391 * to be taken down, we know we're done. 21392 */ 21393 for (i = 0; i < BCAST_COUNT; i++) { 21394 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21395 break; 21396 } 21397 if (i == BCAST_COUNT) 21398 break; 21399 } 21400 return (irep); 21401 } 21402 21403 /* 21404 * Check if `test_ipif' (which is going away) is associated with any existing 21405 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21406 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21407 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21408 * 21409 * This is necessary because broadcast IREs are shared. In particular, a 21410 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21411 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21412 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21413 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21414 * same zone, they will share the same set of broadcast IREs. 21415 * 21416 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21417 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21418 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21419 */ 21420 static void 21421 ipif_check_bcast_ires(ipif_t *test_ipif) 21422 { 21423 ill_t *ill = test_ipif->ipif_ill; 21424 ire_t *ire, *ire_array[12]; /* see note above */ 21425 ire_t **irep1, **irep = &ire_array[0]; 21426 uint_t i, willdie; 21427 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21428 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21429 21430 ASSERT(!test_ipif->ipif_isv6); 21431 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21432 21433 /* 21434 * No broadcast IREs for the LOOPBACK interface 21435 * or others such as point to point and IPIF_NOXMIT. 21436 */ 21437 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21438 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21439 return; 21440 21441 bzero(bireinfo, sizeof (bireinfo)); 21442 bireinfo[0].bi_type = BCAST_ALLZEROES; 21443 bireinfo[0].bi_addr = 0; 21444 21445 bireinfo[1].bi_type = BCAST_ALLONES; 21446 bireinfo[1].bi_addr = INADDR_BROADCAST; 21447 21448 bireinfo[2].bi_type = BCAST_NET; 21449 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21450 21451 if (test_ipif->ipif_net_mask != 0) 21452 mask = test_ipif->ipif_net_mask; 21453 bireinfo[3].bi_type = BCAST_SUBNET; 21454 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21455 21456 /* 21457 * Figure out what (if any) broadcast IREs will die as a result of 21458 * `test_ipif' going away. If none will die, we're done. 21459 */ 21460 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21461 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21462 test_ipif, ALL_ZONES, NULL, 21463 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21464 if (ire != NULL) { 21465 willdie++; 21466 bireinfo[i].bi_willdie = 1; 21467 ire_refrele(ire); 21468 } 21469 } 21470 21471 if (willdie == 0) 21472 return; 21473 21474 /* 21475 * Walk through all the ipifs that will be affected by the dying IREs, 21476 * and recreate the IREs as necessary. 21477 */ 21478 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21479 21480 /* 21481 * Scan through the set of broadcast IREs and see if there are any 21482 * that we need to replace that have not yet been replaced. If so, 21483 * replace them using the appropriate backup ipif. 21484 */ 21485 for (i = 0; i < BCAST_COUNT; i++) { 21486 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21487 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21488 &bireinfo[i], irep); 21489 } 21490 21491 /* 21492 * If we can't create all of them, don't add any of them. (Code in 21493 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21494 * non-loopback copy and loopback copy for a given address.) 21495 */ 21496 for (irep1 = irep; irep1 > ire_array; ) { 21497 irep1--; 21498 if (*irep1 == NULL) { 21499 ip0dbg(("ipif_check_bcast_ires: can't create " 21500 "IRE_BROADCAST, memory allocation failure\n")); 21501 while (irep > ire_array) { 21502 irep--; 21503 if (*irep != NULL) 21504 ire_delete(*irep); 21505 } 21506 return; 21507 } 21508 } 21509 21510 for (irep1 = irep; irep1 > ire_array; ) { 21511 irep1--; 21512 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21513 ire_refrele(*irep1); /* Held in ire_add */ 21514 } 21515 } 21516 21517 /* 21518 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21519 * from lifr_flags and the name from lifr_name. 21520 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21521 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21522 * Returns EINPROGRESS when mp has been consumed by queueing it on 21523 * ill_pending_mp and the ioctl will complete in ip_rput. 21524 * 21525 * Can operate on either a module or a driver queue. 21526 * Returns an error if not a module queue. 21527 */ 21528 /* ARGSUSED */ 21529 int 21530 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21531 ip_ioctl_cmd_t *ipip, void *if_req) 21532 { 21533 ill_t *ill = q->q_ptr; 21534 phyint_t *phyi; 21535 ip_stack_t *ipst; 21536 struct lifreq *lifr = if_req; 21537 21538 ASSERT(ipif != NULL); 21539 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21540 21541 if (q->q_next == NULL) { 21542 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21543 return (EINVAL); 21544 } 21545 21546 /* 21547 * If we are not writer on 'q' then this interface exists already 21548 * and previous lookups (ip_extract_lifreq()) found this ipif -- 21549 * so return EALREADY. 21550 */ 21551 if (ill != ipif->ipif_ill) 21552 return (EALREADY); 21553 21554 if (ill->ill_name[0] != '\0') 21555 return (EALREADY); 21556 21557 /* 21558 * Set all the flags. Allows all kinds of override. Provide some 21559 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21560 * unless there is either multicast/broadcast support in the driver 21561 * or it is a pt-pt link. 21562 */ 21563 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21564 /* Meaningless to IP thus don't allow them to be set. */ 21565 ip1dbg(("ip_setname: EINVAL 1\n")); 21566 return (EINVAL); 21567 } 21568 21569 /* 21570 * If there's another ill already with the requested name, ensure 21571 * that it's of the same type. Otherwise, ill_phyint_reinit() will 21572 * fuse together two unrelated ills, which will cause chaos. 21573 */ 21574 ipst = ill->ill_ipst; 21575 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 21576 lifr->lifr_name, NULL); 21577 if (phyi != NULL) { 21578 ill_t *ill_mate = phyi->phyint_illv4; 21579 21580 if (ill_mate == NULL) 21581 ill_mate = phyi->phyint_illv6; 21582 ASSERT(ill_mate != NULL); 21583 21584 if (ill_mate->ill_media->ip_m_mac_type != 21585 ill->ill_media->ip_m_mac_type) { 21586 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 21587 "use the same ill name on differing media\n")); 21588 return (EINVAL); 21589 } 21590 } 21591 21592 /* 21593 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21594 * ill_bcast_addr_length info. 21595 */ 21596 if (!ill->ill_needs_attach && 21597 ((lifr->lifr_flags & IFF_MULTICAST) && 21598 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21599 ill->ill_bcast_addr_length == 0)) { 21600 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21601 ip1dbg(("ip_setname: EINVAL 2\n")); 21602 return (EINVAL); 21603 } 21604 if ((lifr->lifr_flags & IFF_BROADCAST) && 21605 ((lifr->lifr_flags & IFF_IPV6) || 21606 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21607 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21608 ip1dbg(("ip_setname: EINVAL 3\n")); 21609 return (EINVAL); 21610 } 21611 if (lifr->lifr_flags & IFF_UP) { 21612 /* Can only be set with SIOCSLIFFLAGS */ 21613 ip1dbg(("ip_setname: EINVAL 4\n")); 21614 return (EINVAL); 21615 } 21616 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21617 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21618 ip1dbg(("ip_setname: EINVAL 5\n")); 21619 return (EINVAL); 21620 } 21621 /* 21622 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21623 */ 21624 if ((lifr->lifr_flags & IFF_XRESOLV) && 21625 !(lifr->lifr_flags & IFF_IPV6) && 21626 !(ipif->ipif_isv6)) { 21627 ip1dbg(("ip_setname: EINVAL 6\n")); 21628 return (EINVAL); 21629 } 21630 21631 /* 21632 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21633 * we have all the flags here. So, we assign rather than we OR. 21634 * We can't OR the flags here because we don't want to set 21635 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21636 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21637 * on lifr_flags value here. 21638 */ 21639 /* 21640 * This ill has not been inserted into the global list. 21641 * So we are still single threaded and don't need any lock 21642 */ 21643 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 21644 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21645 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21646 21647 /* We started off as V4. */ 21648 if (ill->ill_flags & ILLF_IPV6) { 21649 ill->ill_phyint->phyint_illv6 = ill; 21650 ill->ill_phyint->phyint_illv4 = NULL; 21651 } 21652 21653 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 21654 } 21655 21656 /* ARGSUSED */ 21657 int 21658 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21659 ip_ioctl_cmd_t *ipip, void *if_req) 21660 { 21661 /* 21662 * ill_phyint_reinit merged the v4 and v6 into a single 21663 * ipsq. Could also have become part of a ipmp group in the 21664 * process, and we might not have been able to complete the 21665 * slifname in ipif_set_values, if we could not become 21666 * exclusive. If so restart it here 21667 */ 21668 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21669 } 21670 21671 /* 21672 * Return a pointer to the ipif which matches the index, IP version type and 21673 * zoneid. 21674 */ 21675 ipif_t * 21676 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21677 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21678 { 21679 ill_t *ill; 21680 ipif_t *ipif = NULL; 21681 21682 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21683 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21684 21685 if (err != NULL) 21686 *err = 0; 21687 21688 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 21689 if (ill != NULL) { 21690 mutex_enter(&ill->ill_lock); 21691 for (ipif = ill->ill_ipif; ipif != NULL; 21692 ipif = ipif->ipif_next) { 21693 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 21694 zoneid == ipif->ipif_zoneid || 21695 ipif->ipif_zoneid == ALL_ZONES)) { 21696 ipif_refhold_locked(ipif); 21697 break; 21698 } 21699 } 21700 mutex_exit(&ill->ill_lock); 21701 ill_refrele(ill); 21702 if (ipif == NULL && err != NULL) 21703 *err = ENXIO; 21704 } 21705 return (ipif); 21706 } 21707 21708 typedef struct conn_change_s { 21709 uint_t cc_old_ifindex; 21710 uint_t cc_new_ifindex; 21711 } conn_change_t; 21712 21713 /* 21714 * ipcl_walk function for changing interface index. 21715 */ 21716 static void 21717 conn_change_ifindex(conn_t *connp, caddr_t arg) 21718 { 21719 conn_change_t *connc; 21720 uint_t old_ifindex; 21721 uint_t new_ifindex; 21722 int i; 21723 ilg_t *ilg; 21724 21725 connc = (conn_change_t *)arg; 21726 old_ifindex = connc->cc_old_ifindex; 21727 new_ifindex = connc->cc_new_ifindex; 21728 21729 if (connp->conn_orig_bound_ifindex == old_ifindex) 21730 connp->conn_orig_bound_ifindex = new_ifindex; 21731 21732 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21733 connp->conn_orig_multicast_ifindex = new_ifindex; 21734 21735 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21736 ilg = &connp->conn_ilg[i]; 21737 if (ilg->ilg_orig_ifindex == old_ifindex) 21738 ilg->ilg_orig_ifindex = new_ifindex; 21739 } 21740 } 21741 21742 /* 21743 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21744 * to new_index if it matches the old_index. 21745 * 21746 * Failovers typically happen within a group of ills. But somebody 21747 * can remove an ill from the group after a failover happened. If 21748 * we are setting the ifindex after this, we potentially need to 21749 * look at all the ills rather than just the ones in the group. 21750 * We cut down the work by looking at matching ill_net_types 21751 * and ill_types as we could not possibly grouped them together. 21752 */ 21753 static void 21754 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21755 { 21756 ill_t *ill; 21757 ipif_t *ipif; 21758 uint_t old_ifindex; 21759 uint_t new_ifindex; 21760 ilm_t *ilm; 21761 ill_walk_context_t ctx; 21762 ip_stack_t *ipst = ill_orig->ill_ipst; 21763 21764 old_ifindex = connc->cc_old_ifindex; 21765 new_ifindex = connc->cc_new_ifindex; 21766 21767 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21768 ill = ILL_START_WALK_ALL(&ctx, ipst); 21769 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21770 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21771 (ill_orig->ill_type != ill->ill_type)) { 21772 continue; 21773 } 21774 for (ipif = ill->ill_ipif; ipif != NULL; 21775 ipif = ipif->ipif_next) { 21776 if (ipif->ipif_orig_ifindex == old_ifindex) 21777 ipif->ipif_orig_ifindex = new_ifindex; 21778 } 21779 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21780 if (ilm->ilm_orig_ifindex == old_ifindex) 21781 ilm->ilm_orig_ifindex = new_ifindex; 21782 } 21783 } 21784 rw_exit(&ipst->ips_ill_g_lock); 21785 } 21786 21787 /* 21788 * We first need to ensure that the new index is unique, and 21789 * then carry the change across both v4 and v6 ill representation 21790 * of the physical interface. 21791 */ 21792 /* ARGSUSED */ 21793 int 21794 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21795 ip_ioctl_cmd_t *ipip, void *ifreq) 21796 { 21797 ill_t *ill; 21798 ill_t *ill_other; 21799 phyint_t *phyi; 21800 int old_index; 21801 conn_change_t connc; 21802 struct ifreq *ifr = (struct ifreq *)ifreq; 21803 struct lifreq *lifr = (struct lifreq *)ifreq; 21804 uint_t index; 21805 ill_t *ill_v4; 21806 ill_t *ill_v6; 21807 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21808 21809 if (ipip->ipi_cmd_type == IF_CMD) 21810 index = ifr->ifr_index; 21811 else 21812 index = lifr->lifr_index; 21813 21814 /* 21815 * Only allow on physical interface. Also, index zero is illegal. 21816 * 21817 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21818 * 21819 * 1) If PHYI_FAILED is set, a failover could have happened which 21820 * implies a possible failback might have to happen. As failback 21821 * depends on the old index, we should fail setting the index. 21822 * 21823 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21824 * any addresses or multicast memberships are failed over to 21825 * a non-STANDBY interface. As failback depends on the old 21826 * index, we should fail setting the index for this case also. 21827 * 21828 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21829 * Be consistent with PHYI_FAILED and fail the ioctl. 21830 */ 21831 ill = ipif->ipif_ill; 21832 phyi = ill->ill_phyint; 21833 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21834 ipif->ipif_id != 0 || index == 0) { 21835 return (EINVAL); 21836 } 21837 old_index = phyi->phyint_ifindex; 21838 21839 /* If the index is not changing, no work to do */ 21840 if (old_index == index) 21841 return (0); 21842 21843 /* 21844 * Use ill_lookup_on_ifindex to determine if the 21845 * new index is unused and if so allow the change. 21846 */ 21847 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21848 ipst); 21849 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21850 ipst); 21851 if (ill_v6 != NULL || ill_v4 != NULL) { 21852 if (ill_v4 != NULL) 21853 ill_refrele(ill_v4); 21854 if (ill_v6 != NULL) 21855 ill_refrele(ill_v6); 21856 return (EBUSY); 21857 } 21858 21859 /* 21860 * The new index is unused. Set it in the phyint. 21861 * Locate the other ill so that we can send a routing 21862 * sockets message. 21863 */ 21864 if (ill->ill_isv6) { 21865 ill_other = phyi->phyint_illv4; 21866 } else { 21867 ill_other = phyi->phyint_illv6; 21868 } 21869 21870 phyi->phyint_ifindex = index; 21871 21872 /* Update SCTP's ILL list */ 21873 sctp_ill_reindex(ill, old_index); 21874 21875 connc.cc_old_ifindex = old_index; 21876 connc.cc_new_ifindex = index; 21877 ip_change_ifindex(ill, &connc); 21878 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21879 21880 /* Send the routing sockets message */ 21881 ip_rts_ifmsg(ipif); 21882 if (ill_other != NULL) 21883 ip_rts_ifmsg(ill_other->ill_ipif); 21884 21885 return (0); 21886 } 21887 21888 /* ARGSUSED */ 21889 int 21890 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21891 ip_ioctl_cmd_t *ipip, void *ifreq) 21892 { 21893 struct ifreq *ifr = (struct ifreq *)ifreq; 21894 struct lifreq *lifr = (struct lifreq *)ifreq; 21895 21896 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21897 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21898 /* Get the interface index */ 21899 if (ipip->ipi_cmd_type == IF_CMD) { 21900 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21901 } else { 21902 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21903 } 21904 return (0); 21905 } 21906 21907 /* ARGSUSED */ 21908 int 21909 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21910 ip_ioctl_cmd_t *ipip, void *ifreq) 21911 { 21912 struct lifreq *lifr = (struct lifreq *)ifreq; 21913 21914 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21915 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21916 /* Get the interface zone */ 21917 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21918 lifr->lifr_zoneid = ipif->ipif_zoneid; 21919 return (0); 21920 } 21921 21922 /* 21923 * Set the zoneid of an interface. 21924 */ 21925 /* ARGSUSED */ 21926 int 21927 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21928 ip_ioctl_cmd_t *ipip, void *ifreq) 21929 { 21930 struct lifreq *lifr = (struct lifreq *)ifreq; 21931 int err = 0; 21932 boolean_t need_up = B_FALSE; 21933 zone_t *zptr; 21934 zone_status_t status; 21935 zoneid_t zoneid; 21936 21937 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21938 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21939 if (!is_system_labeled()) 21940 return (ENOTSUP); 21941 zoneid = GLOBAL_ZONEID; 21942 } 21943 21944 /* cannot assign instance zero to a non-global zone */ 21945 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21946 return (ENOTSUP); 21947 21948 /* 21949 * Cannot assign to a zone that doesn't exist or is shutting down. In 21950 * the event of a race with the zone shutdown processing, since IP 21951 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21952 * interface will be cleaned up even if the zone is shut down 21953 * immediately after the status check. If the interface can't be brought 21954 * down right away, and the zone is shut down before the restart 21955 * function is called, we resolve the possible races by rechecking the 21956 * zone status in the restart function. 21957 */ 21958 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21959 return (EINVAL); 21960 status = zone_status_get(zptr); 21961 zone_rele(zptr); 21962 21963 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21964 return (EINVAL); 21965 21966 if (ipif->ipif_flags & IPIF_UP) { 21967 /* 21968 * If the interface is already marked up, 21969 * we call ipif_down which will take care 21970 * of ditching any IREs that have been set 21971 * up based on the old interface address. 21972 */ 21973 err = ipif_logical_down(ipif, q, mp); 21974 if (err == EINPROGRESS) 21975 return (err); 21976 ipif_down_tail(ipif); 21977 need_up = B_TRUE; 21978 } 21979 21980 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21981 return (err); 21982 } 21983 21984 static int 21985 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21986 queue_t *q, mblk_t *mp, boolean_t need_up) 21987 { 21988 int err = 0; 21989 ip_stack_t *ipst; 21990 21991 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21992 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21993 21994 if (CONN_Q(q)) 21995 ipst = CONNQ_TO_IPST(q); 21996 else 21997 ipst = ILLQ_TO_IPST(q); 21998 21999 /* 22000 * For exclusive stacks we don't allow a different zoneid than 22001 * global. 22002 */ 22003 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22004 zoneid != GLOBAL_ZONEID) 22005 return (EINVAL); 22006 22007 /* Set the new zone id. */ 22008 ipif->ipif_zoneid = zoneid; 22009 22010 /* Update sctp list */ 22011 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22012 22013 if (need_up) { 22014 /* 22015 * Now bring the interface back up. If this 22016 * is the only IPIF for the ILL, ipif_up 22017 * will have to re-bind to the device, so 22018 * we may get back EINPROGRESS, in which 22019 * case, this IOCTL will get completed in 22020 * ip_rput_dlpi when we see the DL_BIND_ACK. 22021 */ 22022 err = ipif_up(ipif, q, mp); 22023 } 22024 return (err); 22025 } 22026 22027 /* ARGSUSED */ 22028 int 22029 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22030 ip_ioctl_cmd_t *ipip, void *if_req) 22031 { 22032 struct lifreq *lifr = (struct lifreq *)if_req; 22033 zoneid_t zoneid; 22034 zone_t *zptr; 22035 zone_status_t status; 22036 22037 ASSERT(ipif->ipif_id != 0); 22038 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22039 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22040 zoneid = GLOBAL_ZONEID; 22041 22042 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22043 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22044 22045 /* 22046 * We recheck the zone status to resolve the following race condition: 22047 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22048 * 2) hme0:1 is up and can't be brought down right away; 22049 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22050 * 3) zone "myzone" is halted; the zone status switches to 22051 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22052 * the interfaces to remove - hme0:1 is not returned because it's not 22053 * yet in "myzone", so it won't be removed; 22054 * 4) the restart function for SIOCSLIFZONE is called; without the 22055 * status check here, we would have hme0:1 in "myzone" after it's been 22056 * destroyed. 22057 * Note that if the status check fails, we need to bring the interface 22058 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22059 * ipif_up_done[_v6](). 22060 */ 22061 status = ZONE_IS_UNINITIALIZED; 22062 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22063 status = zone_status_get(zptr); 22064 zone_rele(zptr); 22065 } 22066 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22067 if (ipif->ipif_isv6) { 22068 (void) ipif_up_done_v6(ipif); 22069 } else { 22070 (void) ipif_up_done(ipif); 22071 } 22072 return (EINVAL); 22073 } 22074 22075 ipif_down_tail(ipif); 22076 22077 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22078 B_TRUE)); 22079 } 22080 22081 /* ARGSUSED */ 22082 int 22083 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22084 ip_ioctl_cmd_t *ipip, void *ifreq) 22085 { 22086 struct lifreq *lifr = ifreq; 22087 22088 ASSERT(q->q_next == NULL); 22089 ASSERT(CONN_Q(q)); 22090 22091 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22092 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22093 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22094 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22095 22096 return (0); 22097 } 22098 22099 /* Find the previous ILL in this usesrc group */ 22100 static ill_t * 22101 ill_prev_usesrc(ill_t *uill) 22102 { 22103 ill_t *ill; 22104 22105 for (ill = uill->ill_usesrc_grp_next; 22106 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22107 ill = ill->ill_usesrc_grp_next) 22108 /* do nothing */; 22109 return (ill); 22110 } 22111 22112 /* 22113 * Release all members of the usesrc group. This routine is called 22114 * from ill_delete when the interface being unplumbed is the 22115 * group head. 22116 */ 22117 static void 22118 ill_disband_usesrc_group(ill_t *uill) 22119 { 22120 ill_t *next_ill, *tmp_ill; 22121 ip_stack_t *ipst = uill->ill_ipst; 22122 22123 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22124 next_ill = uill->ill_usesrc_grp_next; 22125 22126 do { 22127 ASSERT(next_ill != NULL); 22128 tmp_ill = next_ill->ill_usesrc_grp_next; 22129 ASSERT(tmp_ill != NULL); 22130 next_ill->ill_usesrc_grp_next = NULL; 22131 next_ill->ill_usesrc_ifindex = 0; 22132 next_ill = tmp_ill; 22133 } while (next_ill->ill_usesrc_ifindex != 0); 22134 uill->ill_usesrc_grp_next = NULL; 22135 } 22136 22137 /* 22138 * Remove the client usesrc ILL from the list and relink to a new list 22139 */ 22140 int 22141 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22142 { 22143 ill_t *ill, *tmp_ill; 22144 ip_stack_t *ipst = ucill->ill_ipst; 22145 22146 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22147 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22148 22149 /* 22150 * Check if the usesrc client ILL passed in is not already 22151 * in use as a usesrc ILL i.e one whose source address is 22152 * in use OR a usesrc ILL is not already in use as a usesrc 22153 * client ILL 22154 */ 22155 if ((ucill->ill_usesrc_ifindex == 0) || 22156 (uill->ill_usesrc_ifindex != 0)) { 22157 return (-1); 22158 } 22159 22160 ill = ill_prev_usesrc(ucill); 22161 ASSERT(ill->ill_usesrc_grp_next != NULL); 22162 22163 /* Remove from the current list */ 22164 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22165 /* Only two elements in the list */ 22166 ASSERT(ill->ill_usesrc_ifindex == 0); 22167 ill->ill_usesrc_grp_next = NULL; 22168 } else { 22169 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22170 } 22171 22172 if (ifindex == 0) { 22173 ucill->ill_usesrc_ifindex = 0; 22174 ucill->ill_usesrc_grp_next = NULL; 22175 return (0); 22176 } 22177 22178 ucill->ill_usesrc_ifindex = ifindex; 22179 tmp_ill = uill->ill_usesrc_grp_next; 22180 uill->ill_usesrc_grp_next = ucill; 22181 ucill->ill_usesrc_grp_next = 22182 (tmp_ill != NULL) ? tmp_ill : uill; 22183 return (0); 22184 } 22185 22186 /* 22187 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22188 * ip.c for locking details. 22189 */ 22190 /* ARGSUSED */ 22191 int 22192 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22193 ip_ioctl_cmd_t *ipip, void *ifreq) 22194 { 22195 struct lifreq *lifr = (struct lifreq *)ifreq; 22196 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22197 ill_flag_changed = B_FALSE; 22198 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22199 int err = 0, ret; 22200 uint_t ifindex; 22201 phyint_t *us_phyint, *us_cli_phyint; 22202 ipsq_t *ipsq = NULL; 22203 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22204 22205 ASSERT(IAM_WRITER_IPIF(ipif)); 22206 ASSERT(q->q_next == NULL); 22207 ASSERT(CONN_Q(q)); 22208 22209 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22210 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22211 22212 ASSERT(us_cli_phyint != NULL); 22213 22214 /* 22215 * If the client ILL is being used for IPMP, abort. 22216 * Note, this can be done before ipsq_try_enter since we are already 22217 * exclusive on this ILL 22218 */ 22219 if ((us_cli_phyint->phyint_groupname != NULL) || 22220 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22221 return (EINVAL); 22222 } 22223 22224 ifindex = lifr->lifr_index; 22225 if (ifindex == 0) { 22226 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22227 /* non usesrc group interface, nothing to reset */ 22228 return (0); 22229 } 22230 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22231 /* valid reset request */ 22232 reset_flg = B_TRUE; 22233 } 22234 22235 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22236 ip_process_ioctl, &err, ipst); 22237 22238 if (usesrc_ill == NULL) { 22239 return (err); 22240 } 22241 22242 /* 22243 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22244 * group nor can either of the interfaces be used for standy. So 22245 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22246 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22247 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22248 * We are already exlusive on this ipsq i.e ipsq corresponding to 22249 * the usesrc_cli_ill 22250 */ 22251 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22252 NEW_OP, B_TRUE); 22253 if (ipsq == NULL) { 22254 err = EINPROGRESS; 22255 /* Operation enqueued on the ipsq of the usesrc ILL */ 22256 goto done; 22257 } 22258 22259 /* Check if the usesrc_ill is used for IPMP */ 22260 us_phyint = usesrc_ill->ill_phyint; 22261 if ((us_phyint->phyint_groupname != NULL) || 22262 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22263 err = EINVAL; 22264 goto done; 22265 } 22266 22267 /* 22268 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22269 * already a client then return EINVAL 22270 */ 22271 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22272 err = EINVAL; 22273 goto done; 22274 } 22275 22276 /* 22277 * If the ill_usesrc_ifindex field is already set to what it needs to 22278 * be then this is a duplicate operation. 22279 */ 22280 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22281 err = 0; 22282 goto done; 22283 } 22284 22285 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22286 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22287 usesrc_ill->ill_isv6)); 22288 22289 /* 22290 * The next step ensures that no new ires will be created referencing 22291 * the client ill, until the ILL_CHANGING flag is cleared. Then 22292 * we go through an ire walk deleting all ire caches that reference 22293 * the client ill. New ires referencing the client ill that are added 22294 * to the ire table before the ILL_CHANGING flag is set, will be 22295 * cleaned up by the ire walk below. Attempt to add new ires referencing 22296 * the client ill while the ILL_CHANGING flag is set will be failed 22297 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22298 * checks (under the ill_g_usesrc_lock) that the ire being added 22299 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22300 * belong to the same usesrc group. 22301 */ 22302 mutex_enter(&usesrc_cli_ill->ill_lock); 22303 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22304 mutex_exit(&usesrc_cli_ill->ill_lock); 22305 ill_flag_changed = B_TRUE; 22306 22307 if (ipif->ipif_isv6) 22308 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22309 ALL_ZONES, ipst); 22310 else 22311 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22312 ALL_ZONES, ipst); 22313 22314 /* 22315 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22316 * and the ill_usesrc_ifindex fields 22317 */ 22318 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22319 22320 if (reset_flg) { 22321 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22322 if (ret != 0) { 22323 err = EINVAL; 22324 } 22325 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22326 goto done; 22327 } 22328 22329 /* 22330 * Four possibilities to consider: 22331 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22332 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22333 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22334 * 4. Both are part of their respective usesrc groups 22335 */ 22336 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22337 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22338 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22339 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22340 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22341 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22342 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22343 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22344 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22345 /* Insert at head of list */ 22346 usesrc_cli_ill->ill_usesrc_grp_next = 22347 usesrc_ill->ill_usesrc_grp_next; 22348 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22349 } else { 22350 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22351 ifindex); 22352 if (ret != 0) 22353 err = EINVAL; 22354 } 22355 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22356 22357 done: 22358 if (ill_flag_changed) { 22359 mutex_enter(&usesrc_cli_ill->ill_lock); 22360 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22361 mutex_exit(&usesrc_cli_ill->ill_lock); 22362 } 22363 if (ipsq != NULL) 22364 ipsq_exit(ipsq); 22365 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22366 ill_refrele(usesrc_ill); 22367 return (err); 22368 } 22369 22370 /* 22371 * comparison function used by avl. 22372 */ 22373 static int 22374 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22375 { 22376 22377 uint_t index; 22378 22379 ASSERT(phyip != NULL && index_ptr != NULL); 22380 22381 index = *((uint_t *)index_ptr); 22382 /* 22383 * let the phyint with the lowest index be on top. 22384 */ 22385 if (((phyint_t *)phyip)->phyint_ifindex < index) 22386 return (1); 22387 if (((phyint_t *)phyip)->phyint_ifindex > index) 22388 return (-1); 22389 return (0); 22390 } 22391 22392 /* 22393 * comparison function used by avl. 22394 */ 22395 static int 22396 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22397 { 22398 ill_t *ill; 22399 int res = 0; 22400 22401 ASSERT(phyip != NULL && name_ptr != NULL); 22402 22403 if (((phyint_t *)phyip)->phyint_illv4) 22404 ill = ((phyint_t *)phyip)->phyint_illv4; 22405 else 22406 ill = ((phyint_t *)phyip)->phyint_illv6; 22407 ASSERT(ill != NULL); 22408 22409 res = strcmp(ill->ill_name, (char *)name_ptr); 22410 if (res > 0) 22411 return (1); 22412 else if (res < 0) 22413 return (-1); 22414 return (0); 22415 } 22416 /* 22417 * This function is called from ill_delete when the ill is being 22418 * unplumbed. We remove the reference from the phyint and we also 22419 * free the phyint when there are no more references to it. 22420 */ 22421 static void 22422 ill_phyint_free(ill_t *ill) 22423 { 22424 phyint_t *phyi; 22425 phyint_t *next_phyint; 22426 ipsq_t *cur_ipsq; 22427 ip_stack_t *ipst = ill->ill_ipst; 22428 22429 ASSERT(ill->ill_phyint != NULL); 22430 22431 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22432 phyi = ill->ill_phyint; 22433 ill->ill_phyint = NULL; 22434 /* 22435 * ill_init allocates a phyint always to store the copy 22436 * of flags relevant to phyint. At that point in time, we could 22437 * not assign the name and hence phyint_illv4/v6 could not be 22438 * initialized. Later in ipif_set_values, we assign the name to 22439 * the ill, at which point in time we assign phyint_illv4/v6. 22440 * Thus we don't rely on phyint_illv6 to be initialized always. 22441 */ 22442 if (ill->ill_flags & ILLF_IPV6) { 22443 phyi->phyint_illv6 = NULL; 22444 } else { 22445 phyi->phyint_illv4 = NULL; 22446 } 22447 /* 22448 * ipif_down removes it from the group when the last ipif goes 22449 * down. 22450 */ 22451 ASSERT(ill->ill_group == NULL); 22452 22453 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22454 return; 22455 22456 /* 22457 * Make sure this phyint was put in the list. 22458 */ 22459 if (phyi->phyint_ifindex > 0) { 22460 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22461 phyi); 22462 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22463 phyi); 22464 } 22465 /* 22466 * remove phyint from the ipsq list. 22467 */ 22468 cur_ipsq = phyi->phyint_ipsq; 22469 if (phyi == cur_ipsq->ipsq_phyint_list) { 22470 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22471 } else { 22472 next_phyint = cur_ipsq->ipsq_phyint_list; 22473 while (next_phyint != NULL) { 22474 if (next_phyint->phyint_ipsq_next == phyi) { 22475 next_phyint->phyint_ipsq_next = 22476 phyi->phyint_ipsq_next; 22477 break; 22478 } 22479 next_phyint = next_phyint->phyint_ipsq_next; 22480 } 22481 ASSERT(next_phyint != NULL); 22482 } 22483 IPSQ_DEC_REF(cur_ipsq, ipst); 22484 22485 if (phyi->phyint_groupname_len != 0) { 22486 ASSERT(phyi->phyint_groupname != NULL); 22487 mi_free(phyi->phyint_groupname); 22488 } 22489 mi_free(phyi); 22490 } 22491 22492 /* 22493 * Attach the ill to the phyint structure which can be shared by both 22494 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22495 * function is called from ipif_set_values and ill_lookup_on_name (for 22496 * loopback) where we know the name of the ill. We lookup the ill and if 22497 * there is one present already with the name use that phyint. Otherwise 22498 * reuse the one allocated by ill_init. 22499 */ 22500 static void 22501 ill_phyint_reinit(ill_t *ill) 22502 { 22503 boolean_t isv6 = ill->ill_isv6; 22504 phyint_t *phyi_old; 22505 phyint_t *phyi; 22506 avl_index_t where = 0; 22507 ill_t *ill_other = NULL; 22508 ipsq_t *ipsq; 22509 ip_stack_t *ipst = ill->ill_ipst; 22510 22511 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22512 22513 phyi_old = ill->ill_phyint; 22514 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22515 phyi_old->phyint_illv6 == NULL)); 22516 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22517 phyi_old->phyint_illv4 == NULL)); 22518 ASSERT(phyi_old->phyint_ifindex == 0); 22519 22520 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22521 ill->ill_name, &where); 22522 22523 /* 22524 * 1. We grabbed the ill_g_lock before inserting this ill into 22525 * the global list of ills. So no other thread could have located 22526 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22527 * 2. Now locate the other protocol instance of this ill. 22528 * 3. Now grab both ill locks in the right order, and the phyint lock of 22529 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22530 * of neither ill can change. 22531 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22532 * other ill. 22533 * 5. Release all locks. 22534 */ 22535 22536 /* 22537 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22538 * we are initializing IPv4. 22539 */ 22540 if (phyi != NULL) { 22541 ill_other = (isv6) ? phyi->phyint_illv4 : 22542 phyi->phyint_illv6; 22543 ASSERT(ill_other->ill_phyint != NULL); 22544 ASSERT((isv6 && !ill_other->ill_isv6) || 22545 (!isv6 && ill_other->ill_isv6)); 22546 GRAB_ILL_LOCKS(ill, ill_other); 22547 /* 22548 * We are potentially throwing away phyint_flags which 22549 * could be different from the one that we obtain from 22550 * ill_other->ill_phyint. But it is okay as we are assuming 22551 * that the state maintained within IP is correct. 22552 */ 22553 mutex_enter(&phyi->phyint_lock); 22554 if (isv6) { 22555 ASSERT(phyi->phyint_illv6 == NULL); 22556 phyi->phyint_illv6 = ill; 22557 } else { 22558 ASSERT(phyi->phyint_illv4 == NULL); 22559 phyi->phyint_illv4 = ill; 22560 } 22561 /* 22562 * This is a new ill, currently undergoing SLIFNAME 22563 * So we could not have joined an IPMP group until now. 22564 */ 22565 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22566 phyi_old->phyint_groupname == NULL); 22567 22568 /* 22569 * This phyi_old is going away. Decref ipsq_refs and 22570 * assert it is zero. The ipsq itself will be freed in 22571 * ipsq_exit 22572 */ 22573 ipsq = phyi_old->phyint_ipsq; 22574 IPSQ_DEC_REF(ipsq, ipst); 22575 ASSERT(ipsq->ipsq_refs == 0); 22576 /* Get the singleton phyint out of the ipsq list */ 22577 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22578 ipsq->ipsq_phyint_list = NULL; 22579 phyi_old->phyint_illv4 = NULL; 22580 phyi_old->phyint_illv6 = NULL; 22581 mi_free(phyi_old); 22582 } else { 22583 mutex_enter(&ill->ill_lock); 22584 /* 22585 * We don't need to acquire any lock, since 22586 * the ill is not yet visible globally and we 22587 * have not yet released the ill_g_lock. 22588 */ 22589 phyi = phyi_old; 22590 mutex_enter(&phyi->phyint_lock); 22591 /* XXX We need a recovery strategy here. */ 22592 if (!phyint_assign_ifindex(phyi, ipst)) 22593 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22594 22595 /* No IPMP group yet, thus the hook uses the ifindex */ 22596 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22597 22598 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22599 (void *)phyi, where); 22600 22601 (void) avl_find(&ipst->ips_phyint_g_list-> 22602 phyint_list_avl_by_index, 22603 &phyi->phyint_ifindex, &where); 22604 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22605 (void *)phyi, where); 22606 } 22607 22608 /* 22609 * Reassigning ill_phyint automatically reassigns the ipsq also. 22610 * pending mp is not affected because that is per ill basis. 22611 */ 22612 ill->ill_phyint = phyi; 22613 22614 /* 22615 * Keep the index on ipif_orig_index to be used by FAILOVER. 22616 * We do this here as when the first ipif was allocated, 22617 * ipif_allocate does not know the right interface index. 22618 */ 22619 22620 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22621 /* 22622 * Now that the phyint's ifindex has been assigned, complete the 22623 * remaining 22624 */ 22625 22626 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22627 if (ill->ill_isv6) { 22628 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22629 ill->ill_phyint->phyint_ifindex; 22630 ill->ill_mcast_type = ipst->ips_mld_max_version; 22631 } else { 22632 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22633 } 22634 22635 /* 22636 * Generate an event within the hooks framework to indicate that 22637 * a new interface has just been added to IP. For this event to 22638 * be generated, the network interface must, at least, have an 22639 * ifindex assigned to it. 22640 * 22641 * This needs to be run inside the ill_g_lock perimeter to ensure 22642 * that the ordering of delivered events to listeners matches the 22643 * order of them in the kernel. 22644 * 22645 * This function could be called from ill_lookup_on_name. In that case 22646 * the interface is loopback "lo", which will not generate a NIC event. 22647 */ 22648 if (ill->ill_name_length <= 2 || 22649 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22650 /* 22651 * Generate nic plumb event for ill_name even if 22652 * ipmp_hook_emulation is set. That avoids generating events 22653 * for the ill_names should ipmp_hook_emulation be turned on 22654 * later. 22655 */ 22656 ill_nic_info_plumb(ill, B_FALSE); 22657 } 22658 RELEASE_ILL_LOCKS(ill, ill_other); 22659 mutex_exit(&phyi->phyint_lock); 22660 } 22661 22662 /* 22663 * Allocate a NE_PLUMB nic info event and store in the ill. 22664 * If 'group' is set we do it for the group name, otherwise the ill name. 22665 * It will be sent when we leave the ipsq. 22666 */ 22667 void 22668 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22669 { 22670 phyint_t *phyi = ill->ill_phyint; 22671 char *name; 22672 int namelen; 22673 22674 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22675 22676 if (group) { 22677 ASSERT(phyi->phyint_groupname_len != 0); 22678 namelen = phyi->phyint_groupname_len; 22679 name = phyi->phyint_groupname; 22680 } else { 22681 namelen = ill->ill_name_length; 22682 name = ill->ill_name; 22683 } 22684 22685 (void) ill_hook_event_create(ill, 0, NE_PLUMB, name, namelen); 22686 } 22687 22688 /* 22689 * Unhook the nic event message from the ill and enqueue it 22690 * into the nic event taskq. 22691 */ 22692 void 22693 ill_nic_info_dispatch(ill_t *ill) 22694 { 22695 hook_nic_event_t *info; 22696 22697 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22698 22699 if ((info = ill->ill_nic_event_info) != NULL) { 22700 if (ddi_taskq_dispatch(eventq_queue_nic, 22701 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22702 ip2dbg(("ill_nic_info_dispatch: " 22703 "ddi_taskq_dispatch failed\n")); 22704 if (info->hne_data != NULL) 22705 kmem_free(info->hne_data, info->hne_datalen); 22706 kmem_free(info, sizeof (hook_nic_event_t)); 22707 } 22708 ill->ill_nic_event_info = NULL; 22709 } 22710 } 22711 22712 /* 22713 * Notify any downstream modules of the name of this interface. 22714 * An M_IOCTL is used even though we don't expect a successful reply. 22715 * Any reply message from the driver (presumably an M_IOCNAK) will 22716 * eventually get discarded somewhere upstream. The message format is 22717 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22718 * to IP. 22719 */ 22720 static void 22721 ip_ifname_notify(ill_t *ill, queue_t *q) 22722 { 22723 mblk_t *mp1, *mp2; 22724 struct iocblk *iocp; 22725 struct lifreq *lifr; 22726 22727 mp1 = mkiocb(SIOCSLIFNAME); 22728 if (mp1 == NULL) 22729 return; 22730 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22731 if (mp2 == NULL) { 22732 freeb(mp1); 22733 return; 22734 } 22735 22736 mp1->b_cont = mp2; 22737 iocp = (struct iocblk *)mp1->b_rptr; 22738 iocp->ioc_count = sizeof (struct lifreq); 22739 22740 lifr = (struct lifreq *)mp2->b_rptr; 22741 mp2->b_wptr += sizeof (struct lifreq); 22742 bzero(lifr, sizeof (struct lifreq)); 22743 22744 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22745 lifr->lifr_ppa = ill->ill_ppa; 22746 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22747 22748 putnext(q, mp1); 22749 } 22750 22751 static int 22752 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22753 { 22754 int err; 22755 ip_stack_t *ipst = ill->ill_ipst; 22756 22757 /* Set the obsolete NDD per-interface forwarding name. */ 22758 err = ill_set_ndd_name(ill); 22759 if (err != 0) { 22760 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22761 err); 22762 } 22763 22764 /* Tell downstream modules where they are. */ 22765 ip_ifname_notify(ill, q); 22766 22767 /* 22768 * ill_dl_phys returns EINPROGRESS in the usual case. 22769 * Error cases are ENOMEM ... 22770 */ 22771 err = ill_dl_phys(ill, ipif, mp, q); 22772 22773 /* 22774 * If there is no IRE expiration timer running, get one started. 22775 * igmp and mld timers will be triggered by the first multicast 22776 */ 22777 if (ipst->ips_ip_ire_expire_id == 0) { 22778 /* 22779 * acquire the lock and check again. 22780 */ 22781 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22782 if (ipst->ips_ip_ire_expire_id == 0) { 22783 ipst->ips_ip_ire_expire_id = timeout( 22784 ip_trash_timer_expire, ipst, 22785 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22786 } 22787 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22788 } 22789 22790 if (ill->ill_isv6) { 22791 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22792 if (ipst->ips_mld_slowtimeout_id == 0) { 22793 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22794 (void *)ipst, 22795 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22796 } 22797 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22798 } else { 22799 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22800 if (ipst->ips_igmp_slowtimeout_id == 0) { 22801 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22802 (void *)ipst, 22803 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22804 } 22805 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22806 } 22807 22808 return (err); 22809 } 22810 22811 /* 22812 * Common routine for ppa and ifname setting. Should be called exclusive. 22813 * 22814 * Returns EINPROGRESS when mp has been consumed by queueing it on 22815 * ill_pending_mp and the ioctl will complete in ip_rput. 22816 * 22817 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22818 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22819 * For SLIFNAME, we pass these values back to the userland. 22820 */ 22821 static int 22822 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22823 { 22824 ill_t *ill; 22825 ipif_t *ipif; 22826 ipsq_t *ipsq; 22827 char *ppa_ptr; 22828 char *old_ptr; 22829 char old_char; 22830 int error; 22831 ip_stack_t *ipst; 22832 22833 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22834 ASSERT(q->q_next != NULL); 22835 ASSERT(interf_name != NULL); 22836 22837 ill = (ill_t *)q->q_ptr; 22838 ipst = ill->ill_ipst; 22839 22840 ASSERT(ill->ill_ipst != NULL); 22841 ASSERT(ill->ill_name[0] == '\0'); 22842 ASSERT(IAM_WRITER_ILL(ill)); 22843 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22844 ASSERT(ill->ill_ppa == UINT_MAX); 22845 22846 /* The ppa is sent down by ifconfig or is chosen */ 22847 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22848 return (EINVAL); 22849 } 22850 22851 /* 22852 * make sure ppa passed in is same as ppa in the name. 22853 * This check is not made when ppa == UINT_MAX in that case ppa 22854 * in the name could be anything. System will choose a ppa and 22855 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22856 */ 22857 if (*new_ppa_ptr != UINT_MAX) { 22858 /* stoi changes the pointer */ 22859 old_ptr = ppa_ptr; 22860 /* 22861 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22862 * (they don't have an externally visible ppa). We assign one 22863 * here so that we can manage the interface. Note that in 22864 * the past this value was always 0 for DLPI 1 drivers. 22865 */ 22866 if (*new_ppa_ptr == 0) 22867 *new_ppa_ptr = stoi(&old_ptr); 22868 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22869 return (EINVAL); 22870 } 22871 /* 22872 * terminate string before ppa 22873 * save char at that location. 22874 */ 22875 old_char = ppa_ptr[0]; 22876 ppa_ptr[0] = '\0'; 22877 22878 ill->ill_ppa = *new_ppa_ptr; 22879 /* 22880 * Finish as much work now as possible before calling ill_glist_insert 22881 * which makes the ill globally visible and also merges it with the 22882 * other protocol instance of this phyint. The remaining work is 22883 * done after entering the ipsq which may happen sometime later. 22884 * ill_set_ndd_name occurs after the ill has been made globally visible. 22885 */ 22886 ipif = ill->ill_ipif; 22887 22888 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22889 ipif_assign_seqid(ipif); 22890 22891 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22892 ill->ill_flags |= ILLF_IPV4; 22893 22894 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22895 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22896 22897 if (ill->ill_flags & ILLF_IPV6) { 22898 22899 ill->ill_isv6 = B_TRUE; 22900 if (ill->ill_rq != NULL) { 22901 ill->ill_rq->q_qinfo = &iprinitv6; 22902 ill->ill_wq->q_qinfo = &ipwinitv6; 22903 } 22904 22905 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22906 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22907 ipif->ipif_v6src_addr = ipv6_all_zeros; 22908 ipif->ipif_v6subnet = ipv6_all_zeros; 22909 ipif->ipif_v6net_mask = ipv6_all_zeros; 22910 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22911 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22912 /* 22913 * point-to-point or Non-mulicast capable 22914 * interfaces won't do NUD unless explicitly 22915 * configured to do so. 22916 */ 22917 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22918 !(ill->ill_flags & ILLF_MULTICAST)) { 22919 ill->ill_flags |= ILLF_NONUD; 22920 } 22921 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22922 if (ill->ill_flags & ILLF_NOARP) { 22923 /* 22924 * Note: xresolv interfaces will eventually need 22925 * NOARP set here as well, but that will require 22926 * those external resolvers to have some 22927 * knowledge of that flag and act appropriately. 22928 * Not to be changed at present. 22929 */ 22930 ill->ill_flags &= ~ILLF_NOARP; 22931 } 22932 /* 22933 * Set the ILLF_ROUTER flag according to the global 22934 * IPv6 forwarding policy. 22935 */ 22936 if (ipst->ips_ipv6_forward != 0) 22937 ill->ill_flags |= ILLF_ROUTER; 22938 } else if (ill->ill_flags & ILLF_IPV4) { 22939 ill->ill_isv6 = B_FALSE; 22940 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22941 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22942 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22943 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22944 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22945 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22946 /* 22947 * Set the ILLF_ROUTER flag according to the global 22948 * IPv4 forwarding policy. 22949 */ 22950 if (ipst->ips_ip_g_forward != 0) 22951 ill->ill_flags |= ILLF_ROUTER; 22952 } 22953 22954 ASSERT(ill->ill_phyint != NULL); 22955 22956 /* 22957 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 22958 * be completed in ill_glist_insert -> ill_phyint_reinit 22959 */ 22960 if (!ill_allocate_mibs(ill)) 22961 return (ENOMEM); 22962 22963 /* 22964 * Pick a default sap until we get the DL_INFO_ACK back from 22965 * the driver. 22966 */ 22967 if (ill->ill_sap == 0) { 22968 if (ill->ill_isv6) 22969 ill->ill_sap = IP6_DL_SAP; 22970 else 22971 ill->ill_sap = IP_DL_SAP; 22972 } 22973 22974 ill->ill_ifname_pending = 1; 22975 ill->ill_ifname_pending_err = 0; 22976 22977 ill_refhold(ill); 22978 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 22979 if ((error = ill_glist_insert(ill, interf_name, 22980 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 22981 ill->ill_ppa = UINT_MAX; 22982 ill->ill_name[0] = '\0'; 22983 /* 22984 * undo null termination done above. 22985 */ 22986 ppa_ptr[0] = old_char; 22987 rw_exit(&ipst->ips_ill_g_lock); 22988 ill_refrele(ill); 22989 return (error); 22990 } 22991 22992 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 22993 22994 /* 22995 * When we return the buffer pointed to by interf_name should contain 22996 * the same name as in ill_name. 22997 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 22998 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 22999 * so copy full name and update the ppa ptr. 23000 * When ppa passed in != UINT_MAX all values are correct just undo 23001 * null termination, this saves a bcopy. 23002 */ 23003 if (*new_ppa_ptr == UINT_MAX) { 23004 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23005 *new_ppa_ptr = ill->ill_ppa; 23006 } else { 23007 /* 23008 * undo null termination done above. 23009 */ 23010 ppa_ptr[0] = old_char; 23011 } 23012 23013 /* Let SCTP know about this ILL */ 23014 sctp_update_ill(ill, SCTP_ILL_INSERT); 23015 23016 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23017 B_TRUE); 23018 23019 rw_exit(&ipst->ips_ill_g_lock); 23020 ill_refrele(ill); 23021 if (ipsq == NULL) 23022 return (EINPROGRESS); 23023 23024 /* 23025 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23026 */ 23027 if (ipsq->ipsq_current_ipif == NULL) 23028 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23029 else 23030 ASSERT(ipsq->ipsq_current_ipif == ipif); 23031 23032 error = ipif_set_values_tail(ill, ipif, mp, q); 23033 ipsq_exit(ipsq); 23034 if (error != 0 && error != EINPROGRESS) { 23035 /* 23036 * restore previous values 23037 */ 23038 ill->ill_isv6 = B_FALSE; 23039 } 23040 return (error); 23041 } 23042 23043 23044 void 23045 ipif_init(ip_stack_t *ipst) 23046 { 23047 hrtime_t hrt; 23048 int i; 23049 23050 /* 23051 * Can't call drv_getparm here as it is too early in the boot. 23052 * As we use ipif_src_random just for picking a different 23053 * source address everytime, this need not be really random. 23054 */ 23055 hrt = gethrtime(); 23056 ipst->ips_ipif_src_random = 23057 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23058 23059 for (i = 0; i < MAX_G_HEADS; i++) { 23060 ipst->ips_ill_g_heads[i].ill_g_list_head = 23061 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23062 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23063 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23064 } 23065 23066 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23067 ill_phyint_compare_index, 23068 sizeof (phyint_t), 23069 offsetof(struct phyint, phyint_avl_by_index)); 23070 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23071 ill_phyint_compare_name, 23072 sizeof (phyint_t), 23073 offsetof(struct phyint, phyint_avl_by_name)); 23074 } 23075 23076 /* 23077 * Lookup the ipif corresponding to the onlink destination address. For 23078 * point-to-point interfaces, it matches with remote endpoint destination 23079 * address. For point-to-multipoint interfaces it only tries to match the 23080 * destination with the interface's subnet address. The longest, most specific 23081 * match is found to take care of such rare network configurations like - 23082 * le0: 129.146.1.1/16 23083 * le1: 129.146.2.2/24 23084 * It is used only by SO_DONTROUTE at the moment. 23085 */ 23086 ipif_t * 23087 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23088 { 23089 ipif_t *ipif, *best_ipif; 23090 ill_t *ill; 23091 ill_walk_context_t ctx; 23092 23093 ASSERT(zoneid != ALL_ZONES); 23094 best_ipif = NULL; 23095 23096 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23097 ill = ILL_START_WALK_V4(&ctx, ipst); 23098 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23099 mutex_enter(&ill->ill_lock); 23100 for (ipif = ill->ill_ipif; ipif != NULL; 23101 ipif = ipif->ipif_next) { 23102 if (!IPIF_CAN_LOOKUP(ipif)) 23103 continue; 23104 if (ipif->ipif_zoneid != zoneid && 23105 ipif->ipif_zoneid != ALL_ZONES) 23106 continue; 23107 /* 23108 * Point-to-point case. Look for exact match with 23109 * destination address. 23110 */ 23111 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23112 if (ipif->ipif_pp_dst_addr == addr) { 23113 ipif_refhold_locked(ipif); 23114 mutex_exit(&ill->ill_lock); 23115 rw_exit(&ipst->ips_ill_g_lock); 23116 if (best_ipif != NULL) 23117 ipif_refrele(best_ipif); 23118 return (ipif); 23119 } 23120 } else if (ipif->ipif_subnet == (addr & 23121 ipif->ipif_net_mask)) { 23122 /* 23123 * Point-to-multipoint case. Looping through to 23124 * find the most specific match. If there are 23125 * multiple best match ipif's then prefer ipif's 23126 * that are UP. If there is only one best match 23127 * ipif and it is DOWN we must still return it. 23128 */ 23129 if ((best_ipif == NULL) || 23130 (ipif->ipif_net_mask > 23131 best_ipif->ipif_net_mask) || 23132 ((ipif->ipif_net_mask == 23133 best_ipif->ipif_net_mask) && 23134 ((ipif->ipif_flags & IPIF_UP) && 23135 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23136 ipif_refhold_locked(ipif); 23137 mutex_exit(&ill->ill_lock); 23138 rw_exit(&ipst->ips_ill_g_lock); 23139 if (best_ipif != NULL) 23140 ipif_refrele(best_ipif); 23141 best_ipif = ipif; 23142 rw_enter(&ipst->ips_ill_g_lock, 23143 RW_READER); 23144 mutex_enter(&ill->ill_lock); 23145 } 23146 } 23147 } 23148 mutex_exit(&ill->ill_lock); 23149 } 23150 rw_exit(&ipst->ips_ill_g_lock); 23151 return (best_ipif); 23152 } 23153 23154 /* 23155 * Save enough information so that we can recreate the IRE if 23156 * the interface goes down and then up. 23157 */ 23158 static void 23159 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23160 { 23161 mblk_t *save_mp; 23162 23163 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23164 if (save_mp != NULL) { 23165 ifrt_t *ifrt; 23166 23167 save_mp->b_wptr += sizeof (ifrt_t); 23168 ifrt = (ifrt_t *)save_mp->b_rptr; 23169 bzero(ifrt, sizeof (ifrt_t)); 23170 ifrt->ifrt_type = ire->ire_type; 23171 ifrt->ifrt_addr = ire->ire_addr; 23172 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23173 ifrt->ifrt_src_addr = ire->ire_src_addr; 23174 ifrt->ifrt_mask = ire->ire_mask; 23175 ifrt->ifrt_flags = ire->ire_flags; 23176 ifrt->ifrt_max_frag = ire->ire_max_frag; 23177 mutex_enter(&ipif->ipif_saved_ire_lock); 23178 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23179 ipif->ipif_saved_ire_mp = save_mp; 23180 ipif->ipif_saved_ire_cnt++; 23181 mutex_exit(&ipif->ipif_saved_ire_lock); 23182 } 23183 } 23184 23185 static void 23186 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23187 { 23188 mblk_t **mpp; 23189 mblk_t *mp; 23190 ifrt_t *ifrt; 23191 23192 /* Remove from ipif_saved_ire_mp list if it is there */ 23193 mutex_enter(&ipif->ipif_saved_ire_lock); 23194 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23195 mpp = &(*mpp)->b_cont) { 23196 /* 23197 * On a given ipif, the triple of address, gateway and 23198 * mask is unique for each saved IRE (in the case of 23199 * ordinary interface routes, the gateway address is 23200 * all-zeroes). 23201 */ 23202 mp = *mpp; 23203 ifrt = (ifrt_t *)mp->b_rptr; 23204 if (ifrt->ifrt_addr == ire->ire_addr && 23205 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23206 ifrt->ifrt_mask == ire->ire_mask) { 23207 *mpp = mp->b_cont; 23208 ipif->ipif_saved_ire_cnt--; 23209 freeb(mp); 23210 break; 23211 } 23212 } 23213 mutex_exit(&ipif->ipif_saved_ire_lock); 23214 } 23215 23216 /* 23217 * IP multirouting broadcast routes handling 23218 * Append CGTP broadcast IREs to regular ones created 23219 * at ifconfig time. 23220 */ 23221 static void 23222 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23223 { 23224 ire_t *ire_prim; 23225 23226 ASSERT(ire != NULL); 23227 ASSERT(ire_dst != NULL); 23228 23229 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23230 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23231 if (ire_prim != NULL) { 23232 /* 23233 * We are in the special case of broadcasts for 23234 * CGTP. We add an IRE_BROADCAST that holds 23235 * the RTF_MULTIRT flag, the destination 23236 * address of ire_dst and the low level 23237 * info of ire_prim. In other words, CGTP 23238 * broadcast is added to the redundant ipif. 23239 */ 23240 ipif_t *ipif_prim; 23241 ire_t *bcast_ire; 23242 23243 ipif_prim = ire_prim->ire_ipif; 23244 23245 ip2dbg(("ip_cgtp_filter_bcast_add: " 23246 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23247 (void *)ire_dst, (void *)ire_prim, 23248 (void *)ipif_prim)); 23249 23250 bcast_ire = ire_create( 23251 (uchar_t *)&ire->ire_addr, 23252 (uchar_t *)&ip_g_all_ones, 23253 (uchar_t *)&ire_dst->ire_src_addr, 23254 (uchar_t *)&ire->ire_gateway_addr, 23255 &ipif_prim->ipif_mtu, 23256 NULL, 23257 ipif_prim->ipif_rq, 23258 ipif_prim->ipif_wq, 23259 IRE_BROADCAST, 23260 ipif_prim, 23261 0, 23262 0, 23263 0, 23264 ire->ire_flags, 23265 &ire_uinfo_null, 23266 NULL, 23267 NULL, 23268 ipst); 23269 23270 if (bcast_ire != NULL) { 23271 23272 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23273 B_FALSE) == 0) { 23274 ip2dbg(("ip_cgtp_filter_bcast_add: " 23275 "added bcast_ire %p\n", 23276 (void *)bcast_ire)); 23277 23278 ipif_save_ire(bcast_ire->ire_ipif, 23279 bcast_ire); 23280 ire_refrele(bcast_ire); 23281 } 23282 } 23283 ire_refrele(ire_prim); 23284 } 23285 } 23286 23287 23288 /* 23289 * IP multirouting broadcast routes handling 23290 * Remove the broadcast ire 23291 */ 23292 static void 23293 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23294 { 23295 ire_t *ire_dst; 23296 23297 ASSERT(ire != NULL); 23298 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23299 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23300 if (ire_dst != NULL) { 23301 ire_t *ire_prim; 23302 23303 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23304 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23305 if (ire_prim != NULL) { 23306 ipif_t *ipif_prim; 23307 ire_t *bcast_ire; 23308 23309 ipif_prim = ire_prim->ire_ipif; 23310 23311 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23312 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23313 (void *)ire_dst, (void *)ire_prim, 23314 (void *)ipif_prim)); 23315 23316 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23317 ire->ire_gateway_addr, 23318 IRE_BROADCAST, 23319 ipif_prim, ALL_ZONES, 23320 NULL, 23321 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23322 MATCH_IRE_MASK, ipst); 23323 23324 if (bcast_ire != NULL) { 23325 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23326 "looked up bcast_ire %p\n", 23327 (void *)bcast_ire)); 23328 ipif_remove_ire(bcast_ire->ire_ipif, 23329 bcast_ire); 23330 ire_delete(bcast_ire); 23331 ire_refrele(bcast_ire); 23332 } 23333 ire_refrele(ire_prim); 23334 } 23335 ire_refrele(ire_dst); 23336 } 23337 } 23338 23339 /* 23340 * IPsec hardware acceleration capabilities related functions. 23341 */ 23342 23343 /* 23344 * Free a per-ill IPsec capabilities structure. 23345 */ 23346 static void 23347 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23348 { 23349 if (capab->auth_hw_algs != NULL) 23350 kmem_free(capab->auth_hw_algs, capab->algs_size); 23351 if (capab->encr_hw_algs != NULL) 23352 kmem_free(capab->encr_hw_algs, capab->algs_size); 23353 if (capab->encr_algparm != NULL) 23354 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23355 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23356 } 23357 23358 /* 23359 * Allocate a new per-ill IPsec capabilities structure. This structure 23360 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23361 * an array which specifies, for each algorithm, whether this algorithm 23362 * is supported by the ill or not. 23363 */ 23364 static ill_ipsec_capab_t * 23365 ill_ipsec_capab_alloc(void) 23366 { 23367 ill_ipsec_capab_t *capab; 23368 uint_t nelems; 23369 23370 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23371 if (capab == NULL) 23372 return (NULL); 23373 23374 /* we need one bit per algorithm */ 23375 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23376 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23377 23378 /* allocate memory to store algorithm flags */ 23379 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23380 if (capab->encr_hw_algs == NULL) 23381 goto nomem; 23382 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23383 if (capab->auth_hw_algs == NULL) 23384 goto nomem; 23385 /* 23386 * Leave encr_algparm NULL for now since we won't need it half 23387 * the time 23388 */ 23389 return (capab); 23390 23391 nomem: 23392 ill_ipsec_capab_free(capab); 23393 return (NULL); 23394 } 23395 23396 /* 23397 * Resize capability array. Since we're exclusive, this is OK. 23398 */ 23399 static boolean_t 23400 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23401 { 23402 ipsec_capab_algparm_t *nalp, *oalp; 23403 uint32_t olen, nlen; 23404 23405 oalp = capab->encr_algparm; 23406 olen = capab->encr_algparm_size; 23407 23408 if (oalp != NULL) { 23409 if (algid < capab->encr_algparm_end) 23410 return (B_TRUE); 23411 } 23412 23413 nlen = (algid + 1) * sizeof (*nalp); 23414 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23415 if (nalp == NULL) 23416 return (B_FALSE); 23417 23418 if (oalp != NULL) { 23419 bcopy(oalp, nalp, olen); 23420 kmem_free(oalp, olen); 23421 } 23422 capab->encr_algparm = nalp; 23423 capab->encr_algparm_size = nlen; 23424 capab->encr_algparm_end = algid + 1; 23425 23426 return (B_TRUE); 23427 } 23428 23429 /* 23430 * Compare the capabilities of the specified ill with the protocol 23431 * and algorithms specified by the SA passed as argument. 23432 * If they match, returns B_TRUE, B_FALSE if they do not match. 23433 * 23434 * The ill can be passed as a pointer to it, or by specifying its index 23435 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23436 * 23437 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23438 * packet is eligible for hardware acceleration, and by 23439 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23440 * to a particular ill. 23441 */ 23442 boolean_t 23443 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23444 ipsa_t *sa, netstack_t *ns) 23445 { 23446 boolean_t sa_isv6; 23447 uint_t algid; 23448 struct ill_ipsec_capab_s *cpp; 23449 boolean_t need_refrele = B_FALSE; 23450 ip_stack_t *ipst = ns->netstack_ip; 23451 23452 if (ill == NULL) { 23453 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23454 NULL, NULL, NULL, ipst); 23455 if (ill == NULL) { 23456 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23457 return (B_FALSE); 23458 } 23459 need_refrele = B_TRUE; 23460 } 23461 23462 /* 23463 * Use the address length specified by the SA to determine 23464 * if it corresponds to a IPv6 address, and fail the matching 23465 * if the isv6 flag passed as argument does not match. 23466 * Note: this check is used for SADB capability checking before 23467 * sending SA information to an ill. 23468 */ 23469 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23470 if (sa_isv6 != ill_isv6) 23471 /* protocol mismatch */ 23472 goto done; 23473 23474 /* 23475 * Check if the ill supports the protocol, algorithm(s) and 23476 * key size(s) specified by the SA, and get the pointers to 23477 * the algorithms supported by the ill. 23478 */ 23479 switch (sa->ipsa_type) { 23480 23481 case SADB_SATYPE_ESP: 23482 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23483 /* ill does not support ESP acceleration */ 23484 goto done; 23485 cpp = ill->ill_ipsec_capab_esp; 23486 algid = sa->ipsa_auth_alg; 23487 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23488 goto done; 23489 algid = sa->ipsa_encr_alg; 23490 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23491 goto done; 23492 if (algid < cpp->encr_algparm_end) { 23493 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23494 if (sa->ipsa_encrkeybits < alp->minkeylen) 23495 goto done; 23496 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23497 goto done; 23498 } 23499 break; 23500 23501 case SADB_SATYPE_AH: 23502 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23503 /* ill does not support AH acceleration */ 23504 goto done; 23505 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23506 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23507 goto done; 23508 break; 23509 } 23510 23511 if (need_refrele) 23512 ill_refrele(ill); 23513 return (B_TRUE); 23514 done: 23515 if (need_refrele) 23516 ill_refrele(ill); 23517 return (B_FALSE); 23518 } 23519 23520 /* 23521 * Add a new ill to the list of IPsec capable ills. 23522 * Called from ill_capability_ipsec_ack() when an ACK was received 23523 * indicating that IPsec hardware processing was enabled for an ill. 23524 * 23525 * ill must point to the ill for which acceleration was enabled. 23526 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23527 */ 23528 static void 23529 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23530 { 23531 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23532 uint_t sa_type; 23533 uint_t ipproto; 23534 ip_stack_t *ipst = ill->ill_ipst; 23535 23536 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23537 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23538 23539 switch (dl_cap) { 23540 case DL_CAPAB_IPSEC_AH: 23541 sa_type = SADB_SATYPE_AH; 23542 ills = &ipst->ips_ipsec_capab_ills_ah; 23543 ipproto = IPPROTO_AH; 23544 break; 23545 case DL_CAPAB_IPSEC_ESP: 23546 sa_type = SADB_SATYPE_ESP; 23547 ills = &ipst->ips_ipsec_capab_ills_esp; 23548 ipproto = IPPROTO_ESP; 23549 break; 23550 } 23551 23552 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23553 23554 /* 23555 * Add ill index to list of hardware accelerators. If 23556 * already in list, do nothing. 23557 */ 23558 for (cur_ill = *ills; cur_ill != NULL && 23559 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23560 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23561 ; 23562 23563 if (cur_ill == NULL) { 23564 /* if this is a new entry for this ill */ 23565 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23566 if (new_ill == NULL) { 23567 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23568 return; 23569 } 23570 23571 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23572 new_ill->ill_isv6 = ill->ill_isv6; 23573 new_ill->next = *ills; 23574 *ills = new_ill; 23575 } else if (!sadb_resync) { 23576 /* not resync'ing SADB and an entry exists for this ill */ 23577 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23578 return; 23579 } 23580 23581 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23582 23583 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23584 /* 23585 * IPsec module for protocol loaded, initiate dump 23586 * of the SADB to this ill. 23587 */ 23588 sadb_ill_download(ill, sa_type); 23589 } 23590 23591 /* 23592 * Remove an ill from the list of IPsec capable ills. 23593 */ 23594 static void 23595 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23596 { 23597 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23598 ip_stack_t *ipst = ill->ill_ipst; 23599 23600 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23601 dl_cap == DL_CAPAB_IPSEC_ESP); 23602 23603 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23604 &ipst->ips_ipsec_capab_ills_esp; 23605 23606 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23607 23608 prev_ill = NULL; 23609 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23610 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23611 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23612 ; 23613 if (cur_ill == NULL) { 23614 /* entry not found */ 23615 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23616 return; 23617 } 23618 if (prev_ill == NULL) { 23619 /* entry at front of list */ 23620 *ills = NULL; 23621 } else { 23622 prev_ill->next = cur_ill->next; 23623 } 23624 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23625 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23626 } 23627 23628 /* 23629 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23630 * supporting the specified IPsec protocol acceleration. 23631 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23632 * We free the mblk and, if sa is non-null, release the held referece. 23633 */ 23634 void 23635 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23636 netstack_t *ns) 23637 { 23638 ipsec_capab_ill_t *ici, *cur_ici; 23639 ill_t *ill; 23640 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23641 ip_stack_t *ipst = ns->netstack_ip; 23642 23643 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23644 ipst->ips_ipsec_capab_ills_esp; 23645 23646 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23647 23648 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23649 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23650 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23651 23652 /* 23653 * Handle the case where the ill goes away while the SADB is 23654 * attempting to send messages. If it's going away, it's 23655 * nuking its shadow SADB, so we don't care.. 23656 */ 23657 23658 if (ill == NULL) 23659 continue; 23660 23661 if (sa != NULL) { 23662 /* 23663 * Make sure capabilities match before 23664 * sending SA to ill. 23665 */ 23666 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23667 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23668 ill_refrele(ill); 23669 continue; 23670 } 23671 23672 mutex_enter(&sa->ipsa_lock); 23673 sa->ipsa_flags |= IPSA_F_HW; 23674 mutex_exit(&sa->ipsa_lock); 23675 } 23676 23677 /* 23678 * Copy template message, and add it to the front 23679 * of the mblk ship list. We want to avoid holding 23680 * the ipsec_capab_ills_lock while sending the 23681 * message to the ills. 23682 * 23683 * The b_next and b_prev are temporarily used 23684 * to build a list of mblks to be sent down, and to 23685 * save the ill to which they must be sent. 23686 */ 23687 nmp = copymsg(mp); 23688 if (nmp == NULL) { 23689 ill_refrele(ill); 23690 continue; 23691 } 23692 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23693 nmp->b_next = mp_ship_list; 23694 mp_ship_list = nmp; 23695 nmp->b_prev = (mblk_t *)ill; 23696 } 23697 23698 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23699 23700 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23701 /* restore the mblk to a sane state */ 23702 next_mp = nmp->b_next; 23703 nmp->b_next = NULL; 23704 ill = (ill_t *)nmp->b_prev; 23705 nmp->b_prev = NULL; 23706 23707 ill_dlpi_send(ill, nmp); 23708 ill_refrele(ill); 23709 } 23710 23711 if (sa != NULL) 23712 IPSA_REFRELE(sa); 23713 freemsg(mp); 23714 } 23715 23716 /* 23717 * Derive an interface id from the link layer address. 23718 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23719 */ 23720 static boolean_t 23721 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23722 { 23723 char *addr; 23724 23725 if (phys_length != ETHERADDRL) 23726 return (B_FALSE); 23727 23728 /* Form EUI-64 like address */ 23729 addr = (char *)&v6addr->s6_addr32[2]; 23730 bcopy((char *)phys_addr, addr, 3); 23731 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23732 addr[3] = (char)0xff; 23733 addr[4] = (char)0xfe; 23734 bcopy((char *)phys_addr + 3, addr + 5, 3); 23735 return (B_TRUE); 23736 } 23737 23738 /* ARGSUSED */ 23739 static boolean_t 23740 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23741 { 23742 return (B_FALSE); 23743 } 23744 23745 /* ARGSUSED */ 23746 static boolean_t 23747 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23748 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23749 { 23750 /* 23751 * Multicast address mappings used over Ethernet/802.X. 23752 * This address is used as a base for mappings. 23753 */ 23754 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23755 0x00, 0x00, 0x00}; 23756 23757 /* 23758 * Extract low order 32 bits from IPv6 multicast address. 23759 * Or that into the link layer address, starting from the 23760 * second byte. 23761 */ 23762 *hw_start = 2; 23763 v6_extract_mask->s6_addr32[0] = 0; 23764 v6_extract_mask->s6_addr32[1] = 0; 23765 v6_extract_mask->s6_addr32[2] = 0; 23766 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23767 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23768 return (B_TRUE); 23769 } 23770 23771 /* 23772 * Indicate by return value whether multicast is supported. If not, 23773 * this code should not touch/change any parameters. 23774 */ 23775 /* ARGSUSED */ 23776 static boolean_t 23777 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23778 uint32_t *hw_start, ipaddr_t *extract_mask) 23779 { 23780 /* 23781 * Multicast address mappings used over Ethernet/802.X. 23782 * This address is used as a base for mappings. 23783 */ 23784 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23785 0x00, 0x00, 0x00 }; 23786 23787 if (phys_length != ETHERADDRL) 23788 return (B_FALSE); 23789 23790 *extract_mask = htonl(0x007fffff); 23791 *hw_start = 2; 23792 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23793 return (B_TRUE); 23794 } 23795 23796 /* 23797 * Derive IPoIB interface id from the link layer address. 23798 */ 23799 static boolean_t 23800 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23801 { 23802 char *addr; 23803 23804 if (phys_length != 20) 23805 return (B_FALSE); 23806 addr = (char *)&v6addr->s6_addr32[2]; 23807 bcopy(phys_addr + 12, addr, 8); 23808 /* 23809 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23810 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23811 * rules. In these cases, the IBA considers these GUIDs to be in 23812 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23813 * required; vendors are required not to assign global EUI-64's 23814 * that differ only in u/l bit values, thus guaranteeing uniqueness 23815 * of the interface identifier. Whether the GUID is in modified 23816 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23817 * bit set to 1. 23818 */ 23819 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23820 return (B_TRUE); 23821 } 23822 23823 /* 23824 * Note on mapping from multicast IP addresses to IPoIB multicast link 23825 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23826 * The format of an IPoIB multicast address is: 23827 * 23828 * 4 byte QPN Scope Sign. Pkey 23829 * +--------------------------------------------+ 23830 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23831 * +--------------------------------------------+ 23832 * 23833 * The Scope and Pkey components are properties of the IBA port and 23834 * network interface. They can be ascertained from the broadcast address. 23835 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23836 */ 23837 23838 static boolean_t 23839 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23840 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23841 { 23842 /* 23843 * Base IPoIB IPv6 multicast address used for mappings. 23844 * Does not contain the IBA scope/Pkey values. 23845 */ 23846 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23847 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23848 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23849 23850 /* 23851 * Extract low order 80 bits from IPv6 multicast address. 23852 * Or that into the link layer address, starting from the 23853 * sixth byte. 23854 */ 23855 *hw_start = 6; 23856 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23857 23858 /* 23859 * Now fill in the IBA scope/Pkey values from the broadcast address. 23860 */ 23861 *(maddr + 5) = *(bphys_addr + 5); 23862 *(maddr + 8) = *(bphys_addr + 8); 23863 *(maddr + 9) = *(bphys_addr + 9); 23864 23865 v6_extract_mask->s6_addr32[0] = 0; 23866 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23867 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23868 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23869 return (B_TRUE); 23870 } 23871 23872 static boolean_t 23873 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23874 uint32_t *hw_start, ipaddr_t *extract_mask) 23875 { 23876 /* 23877 * Base IPoIB IPv4 multicast address used for mappings. 23878 * Does not contain the IBA scope/Pkey values. 23879 */ 23880 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23881 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23882 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23883 23884 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23885 return (B_FALSE); 23886 23887 /* 23888 * Extract low order 28 bits from IPv4 multicast address. 23889 * Or that into the link layer address, starting from the 23890 * sixteenth byte. 23891 */ 23892 *extract_mask = htonl(0x0fffffff); 23893 *hw_start = 16; 23894 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23895 23896 /* 23897 * Now fill in the IBA scope/Pkey values from the broadcast address. 23898 */ 23899 *(maddr + 5) = *(bphys_addr + 5); 23900 *(maddr + 8) = *(bphys_addr + 8); 23901 *(maddr + 9) = *(bphys_addr + 9); 23902 return (B_TRUE); 23903 } 23904 23905 /* 23906 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23907 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23908 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23909 * the link-local address is preferred. 23910 */ 23911 boolean_t 23912 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23913 { 23914 ipif_t *ipif; 23915 ipif_t *maybe_ipif = NULL; 23916 23917 mutex_enter(&ill->ill_lock); 23918 if (ill->ill_state_flags & ILL_CONDEMNED) { 23919 mutex_exit(&ill->ill_lock); 23920 if (ipifp != NULL) 23921 *ipifp = NULL; 23922 return (B_FALSE); 23923 } 23924 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23925 if (!IPIF_CAN_LOOKUP(ipif)) 23926 continue; 23927 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23928 ipif->ipif_zoneid != ALL_ZONES) 23929 continue; 23930 if ((ipif->ipif_flags & flags) != flags) 23931 continue; 23932 23933 if (ipifp == NULL) { 23934 mutex_exit(&ill->ill_lock); 23935 ASSERT(maybe_ipif == NULL); 23936 return (B_TRUE); 23937 } 23938 if (!ill->ill_isv6 || 23939 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23940 ipif_refhold_locked(ipif); 23941 mutex_exit(&ill->ill_lock); 23942 *ipifp = ipif; 23943 return (B_TRUE); 23944 } 23945 if (maybe_ipif == NULL) 23946 maybe_ipif = ipif; 23947 } 23948 if (ipifp != NULL) { 23949 if (maybe_ipif != NULL) 23950 ipif_refhold_locked(maybe_ipif); 23951 *ipifp = maybe_ipif; 23952 } 23953 mutex_exit(&ill->ill_lock); 23954 return (maybe_ipif != NULL); 23955 } 23956 23957 /* 23958 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 23959 */ 23960 boolean_t 23961 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23962 { 23963 ill_t *illg; 23964 ip_stack_t *ipst = ill->ill_ipst; 23965 23966 /* 23967 * We look at the passed-in ill first without grabbing ill_g_lock. 23968 */ 23969 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 23970 return (B_TRUE); 23971 } 23972 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23973 if (ill->ill_group == NULL) { 23974 /* ill not in a group */ 23975 rw_exit(&ipst->ips_ill_g_lock); 23976 return (B_FALSE); 23977 } 23978 23979 /* 23980 * There's no ipif in the zone on ill, however ill is part of an IPMP 23981 * group. We need to look for an ipif in the zone on all the ills in the 23982 * group. 23983 */ 23984 illg = ill->ill_group->illgrp_ill; 23985 do { 23986 /* 23987 * We don't call ipif_lookup_zoneid() on ill as we already know 23988 * that it's not there. 23989 */ 23990 if (illg != ill && 23991 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 23992 break; 23993 } 23994 } while ((illg = illg->ill_group_next) != NULL); 23995 rw_exit(&ipst->ips_ill_g_lock); 23996 return (illg != NULL); 23997 } 23998 23999 /* 24000 * Check if this ill is only being used to send ICMP probes for IPMP 24001 */ 24002 boolean_t 24003 ill_is_probeonly(ill_t *ill) 24004 { 24005 /* 24006 * Check if the interface is FAILED, or INACTIVE 24007 */ 24008 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24009 return (B_TRUE); 24010 24011 return (B_FALSE); 24012 } 24013 24014 /* 24015 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24016 * If a pointer to an ipif_t is returned then the caller will need to do 24017 * an ill_refrele(). 24018 * 24019 * If there is no real interface which matches the ifindex, then it looks 24020 * for a group that has a matching index. In the case of a group match the 24021 * lifidx must be zero. We don't need emulate the logical interfaces 24022 * since IP Filter's use of netinfo doesn't use that. 24023 */ 24024 ipif_t * 24025 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24026 ip_stack_t *ipst) 24027 { 24028 ipif_t *ipif; 24029 ill_t *ill; 24030 24031 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24032 ipst); 24033 24034 if (ill == NULL) { 24035 /* Fallback to group names only if hook_emulation set */ 24036 if (!ipst->ips_ipmp_hook_emulation) 24037 return (NULL); 24038 24039 if (lifidx != 0) 24040 return (NULL); 24041 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24042 if (ill == NULL) 24043 return (NULL); 24044 } 24045 24046 mutex_enter(&ill->ill_lock); 24047 if (ill->ill_state_flags & ILL_CONDEMNED) { 24048 mutex_exit(&ill->ill_lock); 24049 ill_refrele(ill); 24050 return (NULL); 24051 } 24052 24053 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24054 if (!IPIF_CAN_LOOKUP(ipif)) 24055 continue; 24056 if (lifidx == ipif->ipif_id) { 24057 ipif_refhold_locked(ipif); 24058 break; 24059 } 24060 } 24061 24062 mutex_exit(&ill->ill_lock); 24063 ill_refrele(ill); 24064 return (ipif); 24065 } 24066 24067 /* 24068 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24069 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24070 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24071 * for details. 24072 */ 24073 void 24074 ill_fastpath_flush(ill_t *ill) 24075 { 24076 ip_stack_t *ipst = ill->ill_ipst; 24077 24078 nce_fastpath_list_dispatch(ill, NULL, NULL); 24079 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24080 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24081 } 24082 24083 /* 24084 * Set the physical address information for `ill' to the contents of the 24085 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24086 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24087 * EINPROGRESS will be returned. 24088 */ 24089 int 24090 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24091 { 24092 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24093 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24094 24095 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24096 24097 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24098 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24099 /* Changing DL_IPV6_TOKEN is not yet supported */ 24100 return (0); 24101 } 24102 24103 /* 24104 * We need to store up to two copies of `mp' in `ill'. Due to the 24105 * design of ipsq_pending_mp_add(), we can't pass them as separate 24106 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24107 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24108 */ 24109 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24110 freemsg(mp); 24111 return (ENOMEM); 24112 } 24113 24114 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24115 24116 /* 24117 * If we can quiesce the ill, then set the address. If not, then 24118 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24119 */ 24120 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24121 mutex_enter(&ill->ill_lock); 24122 if (!ill_is_quiescent(ill)) { 24123 /* call cannot fail since `conn_t *' argument is NULL */ 24124 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24125 mp, ILL_DOWN); 24126 mutex_exit(&ill->ill_lock); 24127 return (EINPROGRESS); 24128 } 24129 mutex_exit(&ill->ill_lock); 24130 24131 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24132 return (0); 24133 } 24134 24135 /* 24136 * Once the ill associated with `q' has quiesced, set its physical address 24137 * information to the values in `addrmp'. Note that two copies of `addrmp' 24138 * are passed (linked by b_cont), since we sometimes need to save two distinct 24139 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24140 * failure (we'll free the other copy if it's not needed). Since the ill_t 24141 * is quiesced, we know any stale IREs with the old address information have 24142 * already been removed, so we don't need to call ill_fastpath_flush(). 24143 */ 24144 /* ARGSUSED */ 24145 static void 24146 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24147 { 24148 ill_t *ill = q->q_ptr; 24149 mblk_t *addrmp2 = unlinkb(addrmp); 24150 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24151 uint_t addrlen, addroff; 24152 24153 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24154 24155 addroff = dlindp->dl_addr_offset; 24156 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24157 24158 switch (dlindp->dl_data) { 24159 case DL_IPV6_LINK_LAYER_ADDR: 24160 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24161 freemsg(addrmp2); 24162 break; 24163 24164 case DL_CURR_PHYS_ADDR: 24165 freemsg(ill->ill_phys_addr_mp); 24166 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24167 ill->ill_phys_addr_mp = addrmp; 24168 ill->ill_phys_addr_length = addrlen; 24169 24170 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24171 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24172 else 24173 freemsg(addrmp2); 24174 break; 24175 default: 24176 ASSERT(0); 24177 } 24178 24179 /* 24180 * If there are ipifs to bring up, ill_up_ipifs() will return 24181 * EINPROGRESS, and ipsq_current_finish() will be called by 24182 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24183 * brought up. 24184 */ 24185 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24186 ipsq_current_finish(ipsq); 24187 } 24188 24189 /* 24190 * Helper routine for setting the ill_nd_lla fields. 24191 */ 24192 void 24193 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24194 { 24195 freemsg(ill->ill_nd_lla_mp); 24196 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24197 ill->ill_nd_lla_mp = ndmp; 24198 ill->ill_nd_lla_len = addrlen; 24199 } 24200 24201 major_t IP_MAJ; 24202 #define IP "ip" 24203 24204 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24205 #define UDPDEV "/devices/pseudo/udp@0:udp" 24206 24207 /* 24208 * Issue REMOVEIF ioctls to have the loopback interfaces 24209 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24210 * the former going away when the user-level processes in the zone 24211 * are killed * and the latter are cleaned up by the stream head 24212 * str_stack_shutdown callback that undoes all I_PLINKs. 24213 */ 24214 void 24215 ip_loopback_cleanup(ip_stack_t *ipst) 24216 { 24217 int error; 24218 ldi_handle_t lh = NULL; 24219 ldi_ident_t li = NULL; 24220 int rval; 24221 cred_t *cr; 24222 struct strioctl iocb; 24223 struct lifreq lifreq; 24224 24225 IP_MAJ = ddi_name_to_major(IP); 24226 24227 #ifdef NS_DEBUG 24228 (void) printf("ip_loopback_cleanup() stackid %d\n", 24229 ipst->ips_netstack->netstack_stackid); 24230 #endif 24231 24232 bzero(&lifreq, sizeof (lifreq)); 24233 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24234 24235 error = ldi_ident_from_major(IP_MAJ, &li); 24236 if (error) { 24237 #ifdef DEBUG 24238 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24239 error); 24240 #endif 24241 return; 24242 } 24243 24244 cr = zone_get_kcred(netstackid_to_zoneid( 24245 ipst->ips_netstack->netstack_stackid)); 24246 ASSERT(cr != NULL); 24247 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24248 if (error) { 24249 #ifdef DEBUG 24250 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24251 error); 24252 #endif 24253 goto out; 24254 } 24255 iocb.ic_cmd = SIOCLIFREMOVEIF; 24256 iocb.ic_timout = 15; 24257 iocb.ic_len = sizeof (lifreq); 24258 iocb.ic_dp = (char *)&lifreq; 24259 24260 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24261 /* LINTED - statement has no consequent */ 24262 if (error) { 24263 #ifdef NS_DEBUG 24264 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24265 "UDP6 error %d\n", error); 24266 #endif 24267 } 24268 (void) ldi_close(lh, FREAD|FWRITE, cr); 24269 lh = NULL; 24270 24271 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24272 if (error) { 24273 #ifdef NS_DEBUG 24274 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24275 error); 24276 #endif 24277 goto out; 24278 } 24279 24280 iocb.ic_cmd = SIOCLIFREMOVEIF; 24281 iocb.ic_timout = 15; 24282 iocb.ic_len = sizeof (lifreq); 24283 iocb.ic_dp = (char *)&lifreq; 24284 24285 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24286 /* LINTED - statement has no consequent */ 24287 if (error) { 24288 #ifdef NS_DEBUG 24289 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24290 "UDP error %d\n", error); 24291 #endif 24292 } 24293 (void) ldi_close(lh, FREAD|FWRITE, cr); 24294 lh = NULL; 24295 24296 out: 24297 /* Close layered handles */ 24298 if (lh) 24299 (void) ldi_close(lh, FREAD|FWRITE, cr); 24300 if (li) 24301 ldi_ident_release(li); 24302 24303 crfree(cr); 24304 } 24305 24306 /* 24307 * This needs to be in-sync with nic_event_t definition 24308 */ 24309 static const char * 24310 ill_hook_event2str(nic_event_t event) 24311 { 24312 switch (event) { 24313 case NE_PLUMB: 24314 return ("PLUMB"); 24315 case NE_UNPLUMB: 24316 return ("UNPLUMB"); 24317 case NE_UP: 24318 return ("UP"); 24319 case NE_DOWN: 24320 return ("DOWN"); 24321 case NE_ADDRESS_CHANGE: 24322 return ("ADDRESS_CHANGE"); 24323 default: 24324 return ("UNKNOWN"); 24325 } 24326 } 24327 24328 static void 24329 ill_hook_event_destroy(ill_t *ill) 24330 { 24331 hook_nic_event_t *info; 24332 24333 if ((info = ill->ill_nic_event_info) != NULL) { 24334 if (info->hne_data != NULL) 24335 kmem_free(info->hne_data, info->hne_datalen); 24336 kmem_free(info, sizeof (hook_nic_event_t)); 24337 24338 ill->ill_nic_event_info = NULL; 24339 } 24340 24341 } 24342 24343 boolean_t 24344 ill_hook_event_create(ill_t *ill, lif_if_t lif, nic_event_t event, 24345 nic_event_data_t data, size_t datalen) 24346 { 24347 ip_stack_t *ipst = ill->ill_ipst; 24348 hook_nic_event_t *info; 24349 const char *str = NULL; 24350 24351 /* destroy nic event info if it exists */ 24352 if ((info = ill->ill_nic_event_info) != NULL) { 24353 str = ill_hook_event2str(info->hne_event); 24354 ip2dbg(("ill_hook_event_create: unexpected nic event %s " 24355 "attached for %s\n", str, ill->ill_name)); 24356 ill_hook_event_destroy(ill); 24357 } 24358 24359 /* create a new nic event info */ 24360 if ((info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP)) == NULL) 24361 goto fail; 24362 24363 ill->ill_nic_event_info = info; 24364 24365 if (event == NE_UNPLUMB) 24366 info->hne_nic = ill->ill_phyint->phyint_ifindex; 24367 else 24368 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 24369 info->hne_lif = lif; 24370 info->hne_event = event; 24371 info->hne_family = ill->ill_isv6 ? 24372 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 24373 info->hne_data = NULL; 24374 info->hne_datalen = 0; 24375 24376 if (data != NULL && datalen != 0) { 24377 info->hne_data = kmem_alloc(datalen, KM_NOSLEEP); 24378 if (info->hne_data != NULL) { 24379 bcopy(data, info->hne_data, datalen); 24380 info->hne_datalen = datalen; 24381 } else { 24382 ill_hook_event_destroy(ill); 24383 goto fail; 24384 } 24385 } 24386 24387 return (B_TRUE); 24388 fail: 24389 str = ill_hook_event2str(event); 24390 ip2dbg(("ill_hook_event_create: could not attach %s nic event " 24391 "information for %s (ENOMEM)\n", str, ill->ill_name)); 24392 return (B_FALSE); 24393 } 24394