1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #include <sys/sysmacros.h> 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/txg.h> 32 #include <sys/spa_impl.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio_impl.h> 35 #include <sys/zio_compress.h> 36 #include <sys/zio_checksum.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/arc.h> 39 #include <sys/ddt.h> 40 #include <sys/blkptr.h> 41 #include <sys/zfeature.h> 42 43 /* 44 * ========================================================================== 45 * I/O type descriptions 46 * ========================================================================== 47 */ 48 const char *zio_type_name[ZIO_TYPES] = { 49 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", 50 "zio_ioctl" 51 }; 52 53 /* 54 * ========================================================================== 55 * I/O kmem caches 56 * ========================================================================== 57 */ 58 kmem_cache_t *zio_cache; 59 kmem_cache_t *zio_link_cache; 60 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 61 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 62 63 #ifdef _KERNEL 64 extern vmem_t *zio_alloc_arena; 65 #endif 66 67 #define ZIO_PIPELINE_CONTINUE 0x100 68 #define ZIO_PIPELINE_STOP 0x101 69 70 #define BP_SPANB(indblkshift, level) \ 71 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 72 #define COMPARE_META_LEVEL 0x80000000ul 73 /* 74 * The following actions directly effect the spa's sync-to-convergence logic. 75 * The values below define the sync pass when we start performing the action. 76 * Care should be taken when changing these values as they directly impact 77 * spa_sync() performance. Tuning these values may introduce subtle performance 78 * pathologies and should only be done in the context of performance analysis. 79 * These tunables will eventually be removed and replaced with #defines once 80 * enough analysis has been done to determine optimal values. 81 * 82 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 83 * regular blocks are not deferred. 84 */ 85 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 86 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ 87 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 88 89 /* 90 * An allocating zio is one that either currently has the DVA allocate 91 * stage set or will have it later in its lifetime. 92 */ 93 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 94 95 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; 96 97 #ifdef ZFS_DEBUG 98 int zio_buf_debug_limit = 16384; 99 #else 100 int zio_buf_debug_limit = 0; 101 #endif 102 103 void 104 zio_init(void) 105 { 106 size_t c; 107 vmem_t *data_alloc_arena = NULL; 108 109 #ifdef _KERNEL 110 data_alloc_arena = zio_alloc_arena; 111 #endif 112 zio_cache = kmem_cache_create("zio_cache", 113 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 114 zio_link_cache = kmem_cache_create("zio_link_cache", 115 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 116 117 /* 118 * For small buffers, we want a cache for each multiple of 119 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 120 * for each quarter-power of 2. 121 */ 122 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 123 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 124 size_t p2 = size; 125 size_t align = 0; 126 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; 127 128 while (!ISP2(p2)) 129 p2 &= p2 - 1; 130 131 #ifndef _KERNEL 132 /* 133 * If we are using watchpoints, put each buffer on its own page, 134 * to eliminate the performance overhead of trapping to the 135 * kernel when modifying a non-watched buffer that shares the 136 * page with a watched buffer. 137 */ 138 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 139 continue; 140 #endif 141 if (size <= 4 * SPA_MINBLOCKSIZE) { 142 align = SPA_MINBLOCKSIZE; 143 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 144 align = MIN(p2 >> 2, PAGESIZE); 145 } 146 147 if (align != 0) { 148 char name[36]; 149 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 150 zio_buf_cache[c] = kmem_cache_create(name, size, 151 align, NULL, NULL, NULL, NULL, NULL, cflags); 152 153 /* 154 * Since zio_data bufs do not appear in crash dumps, we 155 * pass KMC_NOTOUCH so that no allocator metadata is 156 * stored with the buffers. 157 */ 158 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 159 zio_data_buf_cache[c] = kmem_cache_create(name, size, 160 align, NULL, NULL, NULL, NULL, data_alloc_arena, 161 cflags | KMC_NOTOUCH); 162 } 163 } 164 165 while (--c != 0) { 166 ASSERT(zio_buf_cache[c] != NULL); 167 if (zio_buf_cache[c - 1] == NULL) 168 zio_buf_cache[c - 1] = zio_buf_cache[c]; 169 170 ASSERT(zio_data_buf_cache[c] != NULL); 171 if (zio_data_buf_cache[c - 1] == NULL) 172 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 173 } 174 175 zio_inject_init(); 176 } 177 178 void 179 zio_fini(void) 180 { 181 size_t c; 182 kmem_cache_t *last_cache = NULL; 183 kmem_cache_t *last_data_cache = NULL; 184 185 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 186 if (zio_buf_cache[c] != last_cache) { 187 last_cache = zio_buf_cache[c]; 188 kmem_cache_destroy(zio_buf_cache[c]); 189 } 190 zio_buf_cache[c] = NULL; 191 192 if (zio_data_buf_cache[c] != last_data_cache) { 193 last_data_cache = zio_data_buf_cache[c]; 194 kmem_cache_destroy(zio_data_buf_cache[c]); 195 } 196 zio_data_buf_cache[c] = NULL; 197 } 198 199 kmem_cache_destroy(zio_link_cache); 200 kmem_cache_destroy(zio_cache); 201 202 zio_inject_fini(); 203 } 204 205 /* 206 * ========================================================================== 207 * Allocate and free I/O buffers 208 * ========================================================================== 209 */ 210 211 /* 212 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 213 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 214 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 215 * excess / transient data in-core during a crashdump. 216 */ 217 void * 218 zio_buf_alloc(size_t size) 219 { 220 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 221 222 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 223 224 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 225 } 226 227 /* 228 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 229 * crashdump if the kernel panics. This exists so that we will limit the amount 230 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 231 * of kernel heap dumped to disk when the kernel panics) 232 */ 233 void * 234 zio_data_buf_alloc(size_t size) 235 { 236 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 237 238 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 239 240 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 241 } 242 243 void 244 zio_buf_free(void *buf, size_t size) 245 { 246 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 247 248 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 249 250 kmem_cache_free(zio_buf_cache[c], buf); 251 } 252 253 void 254 zio_data_buf_free(void *buf, size_t size) 255 { 256 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 257 258 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 259 260 kmem_cache_free(zio_data_buf_cache[c], buf); 261 } 262 263 /* 264 * ========================================================================== 265 * Push and pop I/O transform buffers 266 * ========================================================================== 267 */ 268 static void 269 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize, 270 zio_transform_func_t *transform) 271 { 272 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 273 274 zt->zt_orig_data = zio->io_data; 275 zt->zt_orig_size = zio->io_size; 276 zt->zt_bufsize = bufsize; 277 zt->zt_transform = transform; 278 279 zt->zt_next = zio->io_transform_stack; 280 zio->io_transform_stack = zt; 281 282 zio->io_data = data; 283 zio->io_size = size; 284 } 285 286 static void 287 zio_pop_transforms(zio_t *zio) 288 { 289 zio_transform_t *zt; 290 291 while ((zt = zio->io_transform_stack) != NULL) { 292 if (zt->zt_transform != NULL) 293 zt->zt_transform(zio, 294 zt->zt_orig_data, zt->zt_orig_size); 295 296 if (zt->zt_bufsize != 0) 297 zio_buf_free(zio->io_data, zt->zt_bufsize); 298 299 zio->io_data = zt->zt_orig_data; 300 zio->io_size = zt->zt_orig_size; 301 zio->io_transform_stack = zt->zt_next; 302 303 kmem_free(zt, sizeof (zio_transform_t)); 304 } 305 } 306 307 /* 308 * ========================================================================== 309 * I/O transform callbacks for subblocks and decompression 310 * ========================================================================== 311 */ 312 static void 313 zio_subblock(zio_t *zio, void *data, uint64_t size) 314 { 315 ASSERT(zio->io_size > size); 316 317 if (zio->io_type == ZIO_TYPE_READ) 318 bcopy(zio->io_data, data, size); 319 } 320 321 static void 322 zio_decompress(zio_t *zio, void *data, uint64_t size) 323 { 324 if (zio->io_error == 0 && 325 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 326 zio->io_data, data, zio->io_size, size) != 0) 327 zio->io_error = SET_ERROR(EIO); 328 } 329 330 /* 331 * ========================================================================== 332 * I/O parent/child relationships and pipeline interlocks 333 * ========================================================================== 334 */ 335 /* 336 * NOTE - Callers to zio_walk_parents() and zio_walk_children must 337 * continue calling these functions until they return NULL. 338 * Otherwise, the next caller will pick up the list walk in 339 * some indeterminate state. (Otherwise every caller would 340 * have to pass in a cookie to keep the state represented by 341 * io_walk_link, which gets annoying.) 342 */ 343 zio_t * 344 zio_walk_parents(zio_t *cio) 345 { 346 zio_link_t *zl = cio->io_walk_link; 347 list_t *pl = &cio->io_parent_list; 348 349 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl); 350 cio->io_walk_link = zl; 351 352 if (zl == NULL) 353 return (NULL); 354 355 ASSERT(zl->zl_child == cio); 356 return (zl->zl_parent); 357 } 358 359 zio_t * 360 zio_walk_children(zio_t *pio) 361 { 362 zio_link_t *zl = pio->io_walk_link; 363 list_t *cl = &pio->io_child_list; 364 365 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl); 366 pio->io_walk_link = zl; 367 368 if (zl == NULL) 369 return (NULL); 370 371 ASSERT(zl->zl_parent == pio); 372 return (zl->zl_child); 373 } 374 375 zio_t * 376 zio_unique_parent(zio_t *cio) 377 { 378 zio_t *pio = zio_walk_parents(cio); 379 380 VERIFY(zio_walk_parents(cio) == NULL); 381 return (pio); 382 } 383 384 void 385 zio_add_child(zio_t *pio, zio_t *cio) 386 { 387 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 388 389 /* 390 * Logical I/Os can have logical, gang, or vdev children. 391 * Gang I/Os can have gang or vdev children. 392 * Vdev I/Os can only have vdev children. 393 * The following ASSERT captures all of these constraints. 394 */ 395 ASSERT(cio->io_child_type <= pio->io_child_type); 396 397 zl->zl_parent = pio; 398 zl->zl_child = cio; 399 400 mutex_enter(&cio->io_lock); 401 mutex_enter(&pio->io_lock); 402 403 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 404 405 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 406 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 407 408 list_insert_head(&pio->io_child_list, zl); 409 list_insert_head(&cio->io_parent_list, zl); 410 411 pio->io_child_count++; 412 cio->io_parent_count++; 413 414 mutex_exit(&pio->io_lock); 415 mutex_exit(&cio->io_lock); 416 } 417 418 static void 419 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 420 { 421 ASSERT(zl->zl_parent == pio); 422 ASSERT(zl->zl_child == cio); 423 424 mutex_enter(&cio->io_lock); 425 mutex_enter(&pio->io_lock); 426 427 list_remove(&pio->io_child_list, zl); 428 list_remove(&cio->io_parent_list, zl); 429 430 pio->io_child_count--; 431 cio->io_parent_count--; 432 433 mutex_exit(&pio->io_lock); 434 mutex_exit(&cio->io_lock); 435 436 kmem_cache_free(zio_link_cache, zl); 437 } 438 439 static boolean_t 440 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 441 { 442 boolean_t waiting = B_FALSE; 443 444 mutex_enter(&zio->io_lock); 445 ASSERT(zio->io_stall == NULL); 446 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 447 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 448 continue; 449 450 uint64_t *countp = &zio->io_children[c][wait]; 451 if (*countp != 0) { 452 zio->io_stage >>= 1; 453 zio->io_stall = countp; 454 waiting = B_TRUE; 455 break; 456 } 457 } 458 mutex_exit(&zio->io_lock); 459 return (waiting); 460 } 461 462 static void 463 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 464 { 465 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 466 int *errorp = &pio->io_child_error[zio->io_child_type]; 467 468 mutex_enter(&pio->io_lock); 469 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 470 *errorp = zio_worst_error(*errorp, zio->io_error); 471 pio->io_reexecute |= zio->io_reexecute; 472 ASSERT3U(*countp, >, 0); 473 474 (*countp)--; 475 476 if (*countp == 0 && pio->io_stall == countp) { 477 pio->io_stall = NULL; 478 mutex_exit(&pio->io_lock); 479 zio_execute(pio); 480 } else { 481 mutex_exit(&pio->io_lock); 482 } 483 } 484 485 static void 486 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 487 { 488 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 489 zio->io_error = zio->io_child_error[c]; 490 } 491 492 /* 493 * ========================================================================== 494 * Create the various types of I/O (read, write, free, etc) 495 * ========================================================================== 496 */ 497 static zio_t * 498 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 499 void *data, uint64_t size, zio_done_func_t *done, void *private, 500 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 501 vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb, 502 enum zio_stage stage, enum zio_stage pipeline) 503 { 504 zio_t *zio; 505 506 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 507 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 508 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 509 510 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 511 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 512 ASSERT(vd || stage == ZIO_STAGE_OPEN); 513 514 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 515 bzero(zio, sizeof (zio_t)); 516 517 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 518 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 519 520 list_create(&zio->io_parent_list, sizeof (zio_link_t), 521 offsetof(zio_link_t, zl_parent_node)); 522 list_create(&zio->io_child_list, sizeof (zio_link_t), 523 offsetof(zio_link_t, zl_child_node)); 524 525 if (vd != NULL) 526 zio->io_child_type = ZIO_CHILD_VDEV; 527 else if (flags & ZIO_FLAG_GANG_CHILD) 528 zio->io_child_type = ZIO_CHILD_GANG; 529 else if (flags & ZIO_FLAG_DDT_CHILD) 530 zio->io_child_type = ZIO_CHILD_DDT; 531 else 532 zio->io_child_type = ZIO_CHILD_LOGICAL; 533 534 if (bp != NULL) { 535 zio->io_bp = (blkptr_t *)bp; 536 zio->io_bp_copy = *bp; 537 zio->io_bp_orig = *bp; 538 if (type != ZIO_TYPE_WRITE || 539 zio->io_child_type == ZIO_CHILD_DDT) 540 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 541 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 542 zio->io_logical = zio; 543 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 544 pipeline |= ZIO_GANG_STAGES; 545 } 546 547 zio->io_spa = spa; 548 zio->io_txg = txg; 549 zio->io_done = done; 550 zio->io_private = private; 551 zio->io_type = type; 552 zio->io_priority = priority; 553 zio->io_vd = vd; 554 zio->io_offset = offset; 555 zio->io_orig_data = zio->io_data = data; 556 zio->io_orig_size = zio->io_size = size; 557 zio->io_orig_flags = zio->io_flags = flags; 558 zio->io_orig_stage = zio->io_stage = stage; 559 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 560 561 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 562 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 563 564 if (zb != NULL) 565 zio->io_bookmark = *zb; 566 567 if (pio != NULL) { 568 if (zio->io_logical == NULL) 569 zio->io_logical = pio->io_logical; 570 if (zio->io_child_type == ZIO_CHILD_GANG) 571 zio->io_gang_leader = pio->io_gang_leader; 572 zio_add_child(pio, zio); 573 } 574 575 return (zio); 576 } 577 578 static void 579 zio_destroy(zio_t *zio) 580 { 581 list_destroy(&zio->io_parent_list); 582 list_destroy(&zio->io_child_list); 583 mutex_destroy(&zio->io_lock); 584 cv_destroy(&zio->io_cv); 585 kmem_cache_free(zio_cache, zio); 586 } 587 588 zio_t * 589 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 590 void *private, enum zio_flag flags) 591 { 592 zio_t *zio; 593 594 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 595 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 596 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 597 598 return (zio); 599 } 600 601 zio_t * 602 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 603 { 604 return (zio_null(NULL, spa, NULL, done, private, flags)); 605 } 606 607 void 608 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp) 609 { 610 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 611 zfs_panic_recover("blkptr at %p has invalid TYPE %llu", 612 bp, (longlong_t)BP_GET_TYPE(bp)); 613 } 614 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 615 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 616 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu", 617 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 618 } 619 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 620 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 621 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu", 622 bp, (longlong_t)BP_GET_COMPRESS(bp)); 623 } 624 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 625 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu", 626 bp, (longlong_t)BP_GET_LSIZE(bp)); 627 } 628 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 629 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu", 630 bp, (longlong_t)BP_GET_PSIZE(bp)); 631 } 632 633 if (BP_IS_EMBEDDED(bp)) { 634 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) { 635 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu", 636 bp, (longlong_t)BPE_GET_ETYPE(bp)); 637 } 638 } 639 640 /* 641 * Pool-specific checks. 642 * 643 * Note: it would be nice to verify that the blk_birth and 644 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 645 * allows the birth time of log blocks (and dmu_sync()-ed blocks 646 * that are in the log) to be arbitrarily large. 647 */ 648 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 649 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 650 if (vdevid >= spa->spa_root_vdev->vdev_children) { 651 zfs_panic_recover("blkptr at %p DVA %u has invalid " 652 "VDEV %llu", 653 bp, i, (longlong_t)vdevid); 654 continue; 655 } 656 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 657 if (vd == NULL) { 658 zfs_panic_recover("blkptr at %p DVA %u has invalid " 659 "VDEV %llu", 660 bp, i, (longlong_t)vdevid); 661 continue; 662 } 663 if (vd->vdev_ops == &vdev_hole_ops) { 664 zfs_panic_recover("blkptr at %p DVA %u has hole " 665 "VDEV %llu", 666 bp, i, (longlong_t)vdevid); 667 continue; 668 } 669 if (vd->vdev_ops == &vdev_missing_ops) { 670 /* 671 * "missing" vdevs are valid during import, but we 672 * don't have their detailed info (e.g. asize), so 673 * we can't perform any more checks on them. 674 */ 675 continue; 676 } 677 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 678 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 679 if (BP_IS_GANG(bp)) 680 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 681 if (offset + asize > vd->vdev_asize) { 682 zfs_panic_recover("blkptr at %p DVA %u has invalid " 683 "OFFSET %llu", 684 bp, i, (longlong_t)offset); 685 } 686 } 687 } 688 689 zio_t * 690 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 691 void *data, uint64_t size, zio_done_func_t *done, void *private, 692 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 693 { 694 zio_t *zio; 695 696 zfs_blkptr_verify(spa, bp); 697 698 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 699 data, size, done, private, 700 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 701 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 702 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 703 704 return (zio); 705 } 706 707 zio_t * 708 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 709 void *data, uint64_t size, const zio_prop_t *zp, 710 zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done, 711 void *private, 712 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 713 { 714 zio_t *zio; 715 716 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 717 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 718 zp->zp_compress >= ZIO_COMPRESS_OFF && 719 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 720 DMU_OT_IS_VALID(zp->zp_type) && 721 zp->zp_level < 32 && 722 zp->zp_copies > 0 && 723 zp->zp_copies <= spa_max_replication(spa)); 724 725 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 726 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 727 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 728 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 729 730 zio->io_ready = ready; 731 zio->io_physdone = physdone; 732 zio->io_prop = *zp; 733 734 /* 735 * Data can be NULL if we are going to call zio_write_override() to 736 * provide the already-allocated BP. But we may need the data to 737 * verify a dedup hit (if requested). In this case, don't try to 738 * dedup (just take the already-allocated BP verbatim). 739 */ 740 if (data == NULL && zio->io_prop.zp_dedup_verify) { 741 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 742 } 743 744 return (zio); 745 } 746 747 zio_t * 748 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, 749 uint64_t size, zio_done_func_t *done, void *private, 750 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 751 { 752 zio_t *zio; 753 754 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 755 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 756 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 757 758 return (zio); 759 } 760 761 void 762 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 763 { 764 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 765 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 766 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 767 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 768 769 /* 770 * We must reset the io_prop to match the values that existed 771 * when the bp was first written by dmu_sync() keeping in mind 772 * that nopwrite and dedup are mutually exclusive. 773 */ 774 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 775 zio->io_prop.zp_nopwrite = nopwrite; 776 zio->io_prop.zp_copies = copies; 777 zio->io_bp_override = bp; 778 } 779 780 void 781 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 782 { 783 784 /* 785 * The check for EMBEDDED is a performance optimization. We 786 * process the free here (by ignoring it) rather than 787 * putting it on the list and then processing it in zio_free_sync(). 788 */ 789 if (BP_IS_EMBEDDED(bp)) 790 return; 791 metaslab_check_free(spa, bp); 792 793 /* 794 * Frees that are for the currently-syncing txg, are not going to be 795 * deferred, and which will not need to do a read (i.e. not GANG or 796 * DEDUP), can be processed immediately. Otherwise, put them on the 797 * in-memory list for later processing. 798 */ 799 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || 800 txg != spa->spa_syncing_txg || 801 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) { 802 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 803 } else { 804 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0))); 805 } 806 } 807 808 zio_t * 809 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 810 enum zio_flag flags) 811 { 812 zio_t *zio; 813 enum zio_stage stage = ZIO_FREE_PIPELINE; 814 815 ASSERT(!BP_IS_HOLE(bp)); 816 ASSERT(spa_syncing_txg(spa) == txg); 817 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free); 818 819 if (BP_IS_EMBEDDED(bp)) 820 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 821 822 metaslab_check_free(spa, bp); 823 arc_freed(spa, bp); 824 825 /* 826 * GANG and DEDUP blocks can induce a read (for the gang block header, 827 * or the DDT), so issue them asynchronously so that this thread is 828 * not tied up. 829 */ 830 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) 831 stage |= ZIO_STAGE_ISSUE_ASYNC; 832 833 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 834 NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags, 835 NULL, 0, NULL, ZIO_STAGE_OPEN, stage); 836 837 return (zio); 838 } 839 840 zio_t * 841 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 842 zio_done_func_t *done, void *private, enum zio_flag flags) 843 { 844 zio_t *zio; 845 846 dprintf_bp(bp, "claiming in txg %llu", txg); 847 848 if (BP_IS_EMBEDDED(bp)) 849 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 850 851 /* 852 * A claim is an allocation of a specific block. Claims are needed 853 * to support immediate writes in the intent log. The issue is that 854 * immediate writes contain committed data, but in a txg that was 855 * *not* committed. Upon opening the pool after an unclean shutdown, 856 * the intent log claims all blocks that contain immediate write data 857 * so that the SPA knows they're in use. 858 * 859 * All claims *must* be resolved in the first txg -- before the SPA 860 * starts allocating blocks -- so that nothing is allocated twice. 861 * If txg == 0 we just verify that the block is claimable. 862 */ 863 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 864 ASSERT(txg == spa_first_txg(spa) || txg == 0); 865 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 866 867 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 868 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, 869 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 870 871 return (zio); 872 } 873 874 zio_t * 875 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 876 zio_done_func_t *done, void *private, enum zio_flag flags) 877 { 878 zio_t *zio; 879 int c; 880 881 if (vd->vdev_children == 0) { 882 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 883 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 884 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 885 886 zio->io_cmd = cmd; 887 } else { 888 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 889 890 for (c = 0; c < vd->vdev_children; c++) 891 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 892 done, private, flags)); 893 } 894 895 return (zio); 896 } 897 898 zio_t * 899 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 900 void *data, int checksum, zio_done_func_t *done, void *private, 901 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 902 { 903 zio_t *zio; 904 905 ASSERT(vd->vdev_children == 0); 906 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 907 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 908 ASSERT3U(offset + size, <=, vd->vdev_psize); 909 910 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 911 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, 912 NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 913 914 zio->io_prop.zp_checksum = checksum; 915 916 return (zio); 917 } 918 919 zio_t * 920 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 921 void *data, int checksum, zio_done_func_t *done, void *private, 922 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 923 { 924 zio_t *zio; 925 926 ASSERT(vd->vdev_children == 0); 927 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 928 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 929 ASSERT3U(offset + size, <=, vd->vdev_psize); 930 931 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 932 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, 933 NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 934 935 zio->io_prop.zp_checksum = checksum; 936 937 if (zio_checksum_table[checksum].ci_eck) { 938 /* 939 * zec checksums are necessarily destructive -- they modify 940 * the end of the write buffer to hold the verifier/checksum. 941 * Therefore, we must make a local copy in case the data is 942 * being written to multiple places in parallel. 943 */ 944 void *wbuf = zio_buf_alloc(size); 945 bcopy(data, wbuf, size); 946 zio_push_transform(zio, wbuf, size, size, NULL); 947 } 948 949 return (zio); 950 } 951 952 /* 953 * Create a child I/O to do some work for us. 954 */ 955 zio_t * 956 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 957 void *data, uint64_t size, int type, zio_priority_t priority, 958 enum zio_flag flags, zio_done_func_t *done, void *private) 959 { 960 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 961 zio_t *zio; 962 963 ASSERT(vd->vdev_parent == 964 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); 965 966 if (type == ZIO_TYPE_READ && bp != NULL) { 967 /* 968 * If we have the bp, then the child should perform the 969 * checksum and the parent need not. This pushes error 970 * detection as close to the leaves as possible and 971 * eliminates redundant checksums in the interior nodes. 972 */ 973 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 974 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 975 } 976 977 if (vd->vdev_children == 0) 978 offset += VDEV_LABEL_START_SIZE; 979 980 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE; 981 982 /* 983 * If we've decided to do a repair, the write is not speculative -- 984 * even if the original read was. 985 */ 986 if (flags & ZIO_FLAG_IO_REPAIR) 987 flags &= ~ZIO_FLAG_SPECULATIVE; 988 989 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, 990 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 991 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 992 993 zio->io_physdone = pio->io_physdone; 994 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 995 zio->io_logical->io_phys_children++; 996 997 return (zio); 998 } 999 1000 zio_t * 1001 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size, 1002 int type, zio_priority_t priority, enum zio_flag flags, 1003 zio_done_func_t *done, void *private) 1004 { 1005 zio_t *zio; 1006 1007 ASSERT(vd->vdev_ops->vdev_op_leaf); 1008 1009 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1010 data, size, done, private, type, priority, 1011 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1012 vd, offset, NULL, 1013 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1014 1015 return (zio); 1016 } 1017 1018 void 1019 zio_flush(zio_t *zio, vdev_t *vd) 1020 { 1021 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1022 NULL, NULL, 1023 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1024 } 1025 1026 void 1027 zio_shrink(zio_t *zio, uint64_t size) 1028 { 1029 ASSERT(zio->io_executor == NULL); 1030 ASSERT(zio->io_orig_size == zio->io_size); 1031 ASSERT(size <= zio->io_size); 1032 1033 /* 1034 * We don't shrink for raidz because of problems with the 1035 * reconstruction when reading back less than the block size. 1036 * Note, BP_IS_RAIDZ() assumes no compression. 1037 */ 1038 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1039 if (!BP_IS_RAIDZ(zio->io_bp)) 1040 zio->io_orig_size = zio->io_size = size; 1041 } 1042 1043 /* 1044 * ========================================================================== 1045 * Prepare to read and write logical blocks 1046 * ========================================================================== 1047 */ 1048 1049 static int 1050 zio_read_bp_init(zio_t *zio) 1051 { 1052 blkptr_t *bp = zio->io_bp; 1053 1054 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1055 zio->io_child_type == ZIO_CHILD_LOGICAL && 1056 !(zio->io_flags & ZIO_FLAG_RAW)) { 1057 uint64_t psize = 1058 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1059 void *cbuf = zio_buf_alloc(psize); 1060 1061 zio_push_transform(zio, cbuf, psize, psize, zio_decompress); 1062 } 1063 1064 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1065 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1066 decode_embedded_bp_compressed(bp, zio->io_data); 1067 } else { 1068 ASSERT(!BP_IS_EMBEDDED(bp)); 1069 } 1070 1071 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1072 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1073 1074 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1075 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1076 1077 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1078 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1079 1080 return (ZIO_PIPELINE_CONTINUE); 1081 } 1082 1083 static int 1084 zio_write_bp_init(zio_t *zio) 1085 { 1086 spa_t *spa = zio->io_spa; 1087 zio_prop_t *zp = &zio->io_prop; 1088 enum zio_compress compress = zp->zp_compress; 1089 blkptr_t *bp = zio->io_bp; 1090 uint64_t lsize = zio->io_size; 1091 uint64_t psize = lsize; 1092 int pass = 1; 1093 1094 /* 1095 * If our children haven't all reached the ready stage, 1096 * wait for them and then repeat this pipeline stage. 1097 */ 1098 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1099 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1100 return (ZIO_PIPELINE_STOP); 1101 } 1102 1103 if (!IO_IS_ALLOCATING(zio)) 1104 return (ZIO_PIPELINE_CONTINUE); 1105 1106 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1107 1108 if (zio->io_bp_override) { 1109 ASSERT(bp->blk_birth != zio->io_txg); 1110 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1111 1112 *bp = *zio->io_bp_override; 1113 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1114 1115 if (BP_IS_EMBEDDED(bp)) 1116 return (ZIO_PIPELINE_CONTINUE); 1117 1118 /* 1119 * If we've been overridden and nopwrite is set then 1120 * set the flag accordingly to indicate that a nopwrite 1121 * has already occurred. 1122 */ 1123 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1124 ASSERT(!zp->zp_dedup); 1125 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1126 return (ZIO_PIPELINE_CONTINUE); 1127 } 1128 1129 ASSERT(!zp->zp_nopwrite); 1130 1131 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1132 return (ZIO_PIPELINE_CONTINUE); 1133 1134 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup || 1135 zp->zp_dedup_verify); 1136 1137 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) { 1138 BP_SET_DEDUP(bp, 1); 1139 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1140 return (ZIO_PIPELINE_CONTINUE); 1141 } 1142 } 1143 1144 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1145 /* 1146 * We're rewriting an existing block, which means we're 1147 * working on behalf of spa_sync(). For spa_sync() to 1148 * converge, it must eventually be the case that we don't 1149 * have to allocate new blocks. But compression changes 1150 * the blocksize, which forces a reallocate, and makes 1151 * convergence take longer. Therefore, after the first 1152 * few passes, stop compressing to ensure convergence. 1153 */ 1154 pass = spa_sync_pass(spa); 1155 1156 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1157 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1158 ASSERT(!BP_GET_DEDUP(bp)); 1159 1160 if (pass >= zfs_sync_pass_dont_compress) 1161 compress = ZIO_COMPRESS_OFF; 1162 1163 /* Make sure someone doesn't change their mind on overwrites */ 1164 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1165 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1166 } 1167 1168 if (compress != ZIO_COMPRESS_OFF) { 1169 void *cbuf = zio_buf_alloc(lsize); 1170 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize); 1171 if (psize == 0 || psize == lsize) { 1172 compress = ZIO_COMPRESS_OFF; 1173 zio_buf_free(cbuf, lsize); 1174 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE && 1175 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1176 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1177 encode_embedded_bp_compressed(bp, 1178 cbuf, compress, lsize, psize); 1179 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1180 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1181 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1182 zio_buf_free(cbuf, lsize); 1183 bp->blk_birth = zio->io_txg; 1184 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1185 ASSERT(spa_feature_is_active(spa, 1186 SPA_FEATURE_EMBEDDED_DATA)); 1187 return (ZIO_PIPELINE_CONTINUE); 1188 } else { 1189 /* 1190 * Round up compressed size up to the ashift 1191 * of the smallest-ashift device, and zero the tail. 1192 * This ensures that the compressed size of the BP 1193 * (and thus compressratio property) are correct, 1194 * in that we charge for the padding used to fill out 1195 * the last sector. 1196 */ 1197 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 1198 size_t rounded = (size_t)P2ROUNDUP(psize, 1199 1ULL << spa->spa_min_ashift); 1200 if (rounded >= lsize) { 1201 compress = ZIO_COMPRESS_OFF; 1202 zio_buf_free(cbuf, lsize); 1203 psize = lsize; 1204 } else { 1205 bzero((char *)cbuf + psize, rounded - psize); 1206 psize = rounded; 1207 zio_push_transform(zio, cbuf, 1208 psize, lsize, NULL); 1209 } 1210 } 1211 } 1212 1213 /* 1214 * The final pass of spa_sync() must be all rewrites, but the first 1215 * few passes offer a trade-off: allocating blocks defers convergence, 1216 * but newly allocated blocks are sequential, so they can be written 1217 * to disk faster. Therefore, we allow the first few passes of 1218 * spa_sync() to allocate new blocks, but force rewrites after that. 1219 * There should only be a handful of blocks after pass 1 in any case. 1220 */ 1221 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1222 BP_GET_PSIZE(bp) == psize && 1223 pass >= zfs_sync_pass_rewrite) { 1224 ASSERT(psize != 0); 1225 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1226 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1227 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1228 } else { 1229 BP_ZERO(bp); 1230 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1231 } 1232 1233 if (psize == 0) { 1234 if (zio->io_bp_orig.blk_birth != 0 && 1235 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1236 BP_SET_LSIZE(bp, lsize); 1237 BP_SET_TYPE(bp, zp->zp_type); 1238 BP_SET_LEVEL(bp, zp->zp_level); 1239 BP_SET_BIRTH(bp, zio->io_txg, 0); 1240 } 1241 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1242 } else { 1243 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1244 BP_SET_LSIZE(bp, lsize); 1245 BP_SET_TYPE(bp, zp->zp_type); 1246 BP_SET_LEVEL(bp, zp->zp_level); 1247 BP_SET_PSIZE(bp, psize); 1248 BP_SET_COMPRESS(bp, compress); 1249 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1250 BP_SET_DEDUP(bp, zp->zp_dedup); 1251 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1252 if (zp->zp_dedup) { 1253 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1254 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1255 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1256 } 1257 if (zp->zp_nopwrite) { 1258 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1259 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1260 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1261 } 1262 } 1263 1264 return (ZIO_PIPELINE_CONTINUE); 1265 } 1266 1267 static int 1268 zio_free_bp_init(zio_t *zio) 1269 { 1270 blkptr_t *bp = zio->io_bp; 1271 1272 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1273 if (BP_GET_DEDUP(bp)) 1274 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1275 } 1276 1277 return (ZIO_PIPELINE_CONTINUE); 1278 } 1279 1280 /* 1281 * ========================================================================== 1282 * Execute the I/O pipeline 1283 * ========================================================================== 1284 */ 1285 1286 static void 1287 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1288 { 1289 spa_t *spa = zio->io_spa; 1290 zio_type_t t = zio->io_type; 1291 int flags = (cutinline ? TQ_FRONT : 0); 1292 1293 /* 1294 * If we're a config writer or a probe, the normal issue and 1295 * interrupt threads may all be blocked waiting for the config lock. 1296 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1297 */ 1298 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1299 t = ZIO_TYPE_NULL; 1300 1301 /* 1302 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1303 */ 1304 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1305 t = ZIO_TYPE_NULL; 1306 1307 /* 1308 * If this is a high priority I/O, then use the high priority taskq if 1309 * available. 1310 */ 1311 if (zio->io_priority == ZIO_PRIORITY_NOW && 1312 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1313 q++; 1314 1315 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1316 1317 /* 1318 * NB: We are assuming that the zio can only be dispatched 1319 * to a single taskq at a time. It would be a grievous error 1320 * to dispatch the zio to another taskq at the same time. 1321 */ 1322 ASSERT(zio->io_tqent.tqent_next == NULL); 1323 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1324 flags, &zio->io_tqent); 1325 } 1326 1327 static boolean_t 1328 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1329 { 1330 kthread_t *executor = zio->io_executor; 1331 spa_t *spa = zio->io_spa; 1332 1333 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1334 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1335 uint_t i; 1336 for (i = 0; i < tqs->stqs_count; i++) { 1337 if (taskq_member(tqs->stqs_taskq[i], executor)) 1338 return (B_TRUE); 1339 } 1340 } 1341 1342 return (B_FALSE); 1343 } 1344 1345 static int 1346 zio_issue_async(zio_t *zio) 1347 { 1348 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1349 1350 return (ZIO_PIPELINE_STOP); 1351 } 1352 1353 void 1354 zio_interrupt(zio_t *zio) 1355 { 1356 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1357 } 1358 1359 /* 1360 * Execute the I/O pipeline until one of the following occurs: 1361 * 1362 * (1) the I/O completes 1363 * (2) the pipeline stalls waiting for dependent child I/Os 1364 * (3) the I/O issues, so we're waiting for an I/O completion interrupt 1365 * (4) the I/O is delegated by vdev-level caching or aggregation 1366 * (5) the I/O is deferred due to vdev-level queueing 1367 * (6) the I/O is handed off to another thread. 1368 * 1369 * In all cases, the pipeline stops whenever there's no CPU work; it never 1370 * burns a thread in cv_wait(). 1371 * 1372 * There's no locking on io_stage because there's no legitimate way 1373 * for multiple threads to be attempting to process the same I/O. 1374 */ 1375 static zio_pipe_stage_t *zio_pipeline[]; 1376 1377 void 1378 zio_execute(zio_t *zio) 1379 { 1380 zio->io_executor = curthread; 1381 1382 while (zio->io_stage < ZIO_STAGE_DONE) { 1383 enum zio_stage pipeline = zio->io_pipeline; 1384 enum zio_stage stage = zio->io_stage; 1385 int rv; 1386 1387 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1388 ASSERT(ISP2(stage)); 1389 ASSERT(zio->io_stall == NULL); 1390 1391 do { 1392 stage <<= 1; 1393 } while ((stage & pipeline) == 0); 1394 1395 ASSERT(stage <= ZIO_STAGE_DONE); 1396 1397 /* 1398 * If we are in interrupt context and this pipeline stage 1399 * will grab a config lock that is held across I/O, 1400 * or may wait for an I/O that needs an interrupt thread 1401 * to complete, issue async to avoid deadlock. 1402 * 1403 * For VDEV_IO_START, we cut in line so that the io will 1404 * be sent to disk promptly. 1405 */ 1406 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 1407 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1408 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 1409 zio_requeue_io_start_cut_in_line : B_FALSE; 1410 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 1411 return; 1412 } 1413 1414 zio->io_stage = stage; 1415 rv = zio_pipeline[highbit64(stage) - 1](zio); 1416 1417 if (rv == ZIO_PIPELINE_STOP) 1418 return; 1419 1420 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1421 } 1422 } 1423 1424 /* 1425 * ========================================================================== 1426 * Initiate I/O, either sync or async 1427 * ========================================================================== 1428 */ 1429 int 1430 zio_wait(zio_t *zio) 1431 { 1432 int error; 1433 1434 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1435 ASSERT(zio->io_executor == NULL); 1436 1437 zio->io_waiter = curthread; 1438 1439 zio_execute(zio); 1440 1441 mutex_enter(&zio->io_lock); 1442 while (zio->io_executor != NULL) 1443 cv_wait(&zio->io_cv, &zio->io_lock); 1444 mutex_exit(&zio->io_lock); 1445 1446 error = zio->io_error; 1447 zio_destroy(zio); 1448 1449 return (error); 1450 } 1451 1452 void 1453 zio_nowait(zio_t *zio) 1454 { 1455 ASSERT(zio->io_executor == NULL); 1456 1457 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1458 zio_unique_parent(zio) == NULL) { 1459 /* 1460 * This is a logical async I/O with no parent to wait for it. 1461 * We add it to the spa_async_root_zio "Godfather" I/O which 1462 * will ensure they complete prior to unloading the pool. 1463 */ 1464 spa_t *spa = zio->io_spa; 1465 1466 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio); 1467 } 1468 1469 zio_execute(zio); 1470 } 1471 1472 /* 1473 * ========================================================================== 1474 * Reexecute or suspend/resume failed I/O 1475 * ========================================================================== 1476 */ 1477 1478 static void 1479 zio_reexecute(zio_t *pio) 1480 { 1481 zio_t *cio, *cio_next; 1482 1483 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1484 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1485 ASSERT(pio->io_gang_leader == NULL); 1486 ASSERT(pio->io_gang_tree == NULL); 1487 1488 pio->io_flags = pio->io_orig_flags; 1489 pio->io_stage = pio->io_orig_stage; 1490 pio->io_pipeline = pio->io_orig_pipeline; 1491 pio->io_reexecute = 0; 1492 pio->io_flags |= ZIO_FLAG_REEXECUTED; 1493 pio->io_error = 0; 1494 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1495 pio->io_state[w] = 0; 1496 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1497 pio->io_child_error[c] = 0; 1498 1499 if (IO_IS_ALLOCATING(pio)) 1500 BP_ZERO(pio->io_bp); 1501 1502 /* 1503 * As we reexecute pio's children, new children could be created. 1504 * New children go to the head of pio's io_child_list, however, 1505 * so we will (correctly) not reexecute them. The key is that 1506 * the remainder of pio's io_child_list, from 'cio_next' onward, 1507 * cannot be affected by any side effects of reexecuting 'cio'. 1508 */ 1509 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) { 1510 cio_next = zio_walk_children(pio); 1511 mutex_enter(&pio->io_lock); 1512 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1513 pio->io_children[cio->io_child_type][w]++; 1514 mutex_exit(&pio->io_lock); 1515 zio_reexecute(cio); 1516 } 1517 1518 /* 1519 * Now that all children have been reexecuted, execute the parent. 1520 * We don't reexecute "The Godfather" I/O here as it's the 1521 * responsibility of the caller to wait on him. 1522 */ 1523 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) 1524 zio_execute(pio); 1525 } 1526 1527 void 1528 zio_suspend(spa_t *spa, zio_t *zio) 1529 { 1530 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1531 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1532 "failure and the failure mode property for this pool " 1533 "is set to panic.", spa_name(spa)); 1534 1535 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1536 1537 mutex_enter(&spa->spa_suspend_lock); 1538 1539 if (spa->spa_suspend_zio_root == NULL) 1540 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1541 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 1542 ZIO_FLAG_GODFATHER); 1543 1544 spa->spa_suspended = B_TRUE; 1545 1546 if (zio != NULL) { 1547 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 1548 ASSERT(zio != spa->spa_suspend_zio_root); 1549 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1550 ASSERT(zio_unique_parent(zio) == NULL); 1551 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1552 zio_add_child(spa->spa_suspend_zio_root, zio); 1553 } 1554 1555 mutex_exit(&spa->spa_suspend_lock); 1556 } 1557 1558 int 1559 zio_resume(spa_t *spa) 1560 { 1561 zio_t *pio; 1562 1563 /* 1564 * Reexecute all previously suspended i/o. 1565 */ 1566 mutex_enter(&spa->spa_suspend_lock); 1567 spa->spa_suspended = B_FALSE; 1568 cv_broadcast(&spa->spa_suspend_cv); 1569 pio = spa->spa_suspend_zio_root; 1570 spa->spa_suspend_zio_root = NULL; 1571 mutex_exit(&spa->spa_suspend_lock); 1572 1573 if (pio == NULL) 1574 return (0); 1575 1576 zio_reexecute(pio); 1577 return (zio_wait(pio)); 1578 } 1579 1580 void 1581 zio_resume_wait(spa_t *spa) 1582 { 1583 mutex_enter(&spa->spa_suspend_lock); 1584 while (spa_suspended(spa)) 1585 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1586 mutex_exit(&spa->spa_suspend_lock); 1587 } 1588 1589 /* 1590 * ========================================================================== 1591 * Gang blocks. 1592 * 1593 * A gang block is a collection of small blocks that looks to the DMU 1594 * like one large block. When zio_dva_allocate() cannot find a block 1595 * of the requested size, due to either severe fragmentation or the pool 1596 * being nearly full, it calls zio_write_gang_block() to construct the 1597 * block from smaller fragments. 1598 * 1599 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1600 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1601 * an indirect block: it's an array of block pointers. It consumes 1602 * only one sector and hence is allocatable regardless of fragmentation. 1603 * The gang header's bps point to its gang members, which hold the data. 1604 * 1605 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1606 * as the verifier to ensure uniqueness of the SHA256 checksum. 1607 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1608 * not the gang header. This ensures that data block signatures (needed for 1609 * deduplication) are independent of how the block is physically stored. 1610 * 1611 * Gang blocks can be nested: a gang member may itself be a gang block. 1612 * Thus every gang block is a tree in which root and all interior nodes are 1613 * gang headers, and the leaves are normal blocks that contain user data. 1614 * The root of the gang tree is called the gang leader. 1615 * 1616 * To perform any operation (read, rewrite, free, claim) on a gang block, 1617 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1618 * in the io_gang_tree field of the original logical i/o by recursively 1619 * reading the gang leader and all gang headers below it. This yields 1620 * an in-core tree containing the contents of every gang header and the 1621 * bps for every constituent of the gang block. 1622 * 1623 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1624 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1625 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1626 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1627 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1628 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1629 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1630 * of the gang header plus zio_checksum_compute() of the data to update the 1631 * gang header's blk_cksum as described above. 1632 * 1633 * The two-phase assemble/issue model solves the problem of partial failure -- 1634 * what if you'd freed part of a gang block but then couldn't read the 1635 * gang header for another part? Assembling the entire gang tree first 1636 * ensures that all the necessary gang header I/O has succeeded before 1637 * starting the actual work of free, claim, or write. Once the gang tree 1638 * is assembled, free and claim are in-memory operations that cannot fail. 1639 * 1640 * In the event that a gang write fails, zio_dva_unallocate() walks the 1641 * gang tree to immediately free (i.e. insert back into the space map) 1642 * everything we've allocated. This ensures that we don't get ENOSPC 1643 * errors during repeated suspend/resume cycles due to a flaky device. 1644 * 1645 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1646 * the gang tree, we won't modify the block, so we can safely defer the free 1647 * (knowing that the block is still intact). If we *can* assemble the gang 1648 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1649 * each constituent bp and we can allocate a new block on the next sync pass. 1650 * 1651 * In all cases, the gang tree allows complete recovery from partial failure. 1652 * ========================================================================== 1653 */ 1654 1655 static zio_t * 1656 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1657 { 1658 if (gn != NULL) 1659 return (pio); 1660 1661 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp), 1662 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1663 &pio->io_bookmark)); 1664 } 1665 1666 zio_t * 1667 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1668 { 1669 zio_t *zio; 1670 1671 if (gn != NULL) { 1672 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1673 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, 1674 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1675 /* 1676 * As we rewrite each gang header, the pipeline will compute 1677 * a new gang block header checksum for it; but no one will 1678 * compute a new data checksum, so we do that here. The one 1679 * exception is the gang leader: the pipeline already computed 1680 * its data checksum because that stage precedes gang assembly. 1681 * (Presently, nothing actually uses interior data checksums; 1682 * this is just good hygiene.) 1683 */ 1684 if (gn != pio->io_gang_leader->io_gang_tree) { 1685 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1686 data, BP_GET_PSIZE(bp)); 1687 } 1688 /* 1689 * If we are here to damage data for testing purposes, 1690 * leave the GBH alone so that we can detect the damage. 1691 */ 1692 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 1693 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 1694 } else { 1695 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1696 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, 1697 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1698 } 1699 1700 return (zio); 1701 } 1702 1703 /* ARGSUSED */ 1704 zio_t * 1705 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1706 { 1707 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 1708 ZIO_GANG_CHILD_FLAGS(pio))); 1709 } 1710 1711 /* ARGSUSED */ 1712 zio_t * 1713 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1714 { 1715 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1716 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1717 } 1718 1719 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1720 NULL, 1721 zio_read_gang, 1722 zio_rewrite_gang, 1723 zio_free_gang, 1724 zio_claim_gang, 1725 NULL 1726 }; 1727 1728 static void zio_gang_tree_assemble_done(zio_t *zio); 1729 1730 static zio_gang_node_t * 1731 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1732 { 1733 zio_gang_node_t *gn; 1734 1735 ASSERT(*gnpp == NULL); 1736 1737 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1738 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1739 *gnpp = gn; 1740 1741 return (gn); 1742 } 1743 1744 static void 1745 zio_gang_node_free(zio_gang_node_t **gnpp) 1746 { 1747 zio_gang_node_t *gn = *gnpp; 1748 1749 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1750 ASSERT(gn->gn_child[g] == NULL); 1751 1752 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1753 kmem_free(gn, sizeof (*gn)); 1754 *gnpp = NULL; 1755 } 1756 1757 static void 1758 zio_gang_tree_free(zio_gang_node_t **gnpp) 1759 { 1760 zio_gang_node_t *gn = *gnpp; 1761 1762 if (gn == NULL) 1763 return; 1764 1765 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1766 zio_gang_tree_free(&gn->gn_child[g]); 1767 1768 zio_gang_node_free(gnpp); 1769 } 1770 1771 static void 1772 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 1773 { 1774 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 1775 1776 ASSERT(gio->io_gang_leader == gio); 1777 ASSERT(BP_IS_GANG(bp)); 1778 1779 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh, 1780 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, 1781 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 1782 } 1783 1784 static void 1785 zio_gang_tree_assemble_done(zio_t *zio) 1786 { 1787 zio_t *gio = zio->io_gang_leader; 1788 zio_gang_node_t *gn = zio->io_private; 1789 blkptr_t *bp = zio->io_bp; 1790 1791 ASSERT(gio == zio_unique_parent(zio)); 1792 ASSERT(zio->io_child_count == 0); 1793 1794 if (zio->io_error) 1795 return; 1796 1797 if (BP_SHOULD_BYTESWAP(bp)) 1798 byteswap_uint64_array(zio->io_data, zio->io_size); 1799 1800 ASSERT(zio->io_data == gn->gn_gbh); 1801 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1802 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 1803 1804 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1805 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1806 if (!BP_IS_GANG(gbp)) 1807 continue; 1808 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 1809 } 1810 } 1811 1812 static void 1813 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data) 1814 { 1815 zio_t *gio = pio->io_gang_leader; 1816 zio_t *zio; 1817 1818 ASSERT(BP_IS_GANG(bp) == !!gn); 1819 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 1820 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 1821 1822 /* 1823 * If you're a gang header, your data is in gn->gn_gbh. 1824 * If you're a gang member, your data is in 'data' and gn == NULL. 1825 */ 1826 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data); 1827 1828 if (gn != NULL) { 1829 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 1830 1831 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1832 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1833 if (BP_IS_HOLE(gbp)) 1834 continue; 1835 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data); 1836 data = (char *)data + BP_GET_PSIZE(gbp); 1837 } 1838 } 1839 1840 if (gn == gio->io_gang_tree) 1841 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data); 1842 1843 if (zio != pio) 1844 zio_nowait(zio); 1845 } 1846 1847 static int 1848 zio_gang_assemble(zio_t *zio) 1849 { 1850 blkptr_t *bp = zio->io_bp; 1851 1852 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 1853 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 1854 1855 zio->io_gang_leader = zio; 1856 1857 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 1858 1859 return (ZIO_PIPELINE_CONTINUE); 1860 } 1861 1862 static int 1863 zio_gang_issue(zio_t *zio) 1864 { 1865 blkptr_t *bp = zio->io_bp; 1866 1867 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 1868 return (ZIO_PIPELINE_STOP); 1869 } 1870 1871 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 1872 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 1873 1874 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 1875 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data); 1876 else 1877 zio_gang_tree_free(&zio->io_gang_tree); 1878 1879 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1880 1881 return (ZIO_PIPELINE_CONTINUE); 1882 } 1883 1884 static void 1885 zio_write_gang_member_ready(zio_t *zio) 1886 { 1887 zio_t *pio = zio_unique_parent(zio); 1888 zio_t *gio = zio->io_gang_leader; 1889 dva_t *cdva = zio->io_bp->blk_dva; 1890 dva_t *pdva = pio->io_bp->blk_dva; 1891 uint64_t asize; 1892 1893 if (BP_IS_HOLE(zio->io_bp)) 1894 return; 1895 1896 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 1897 1898 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 1899 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 1900 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 1901 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 1902 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1903 1904 mutex_enter(&pio->io_lock); 1905 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 1906 ASSERT(DVA_GET_GANG(&pdva[d])); 1907 asize = DVA_GET_ASIZE(&pdva[d]); 1908 asize += DVA_GET_ASIZE(&cdva[d]); 1909 DVA_SET_ASIZE(&pdva[d], asize); 1910 } 1911 mutex_exit(&pio->io_lock); 1912 } 1913 1914 static int 1915 zio_write_gang_block(zio_t *pio) 1916 { 1917 spa_t *spa = pio->io_spa; 1918 blkptr_t *bp = pio->io_bp; 1919 zio_t *gio = pio->io_gang_leader; 1920 zio_t *zio; 1921 zio_gang_node_t *gn, **gnpp; 1922 zio_gbh_phys_t *gbh; 1923 uint64_t txg = pio->io_txg; 1924 uint64_t resid = pio->io_size; 1925 uint64_t lsize; 1926 int copies = gio->io_prop.zp_copies; 1927 int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 1928 zio_prop_t zp; 1929 int error; 1930 1931 error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE, 1932 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, 1933 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER); 1934 if (error) { 1935 pio->io_error = error; 1936 return (ZIO_PIPELINE_CONTINUE); 1937 } 1938 1939 if (pio == gio) { 1940 gnpp = &gio->io_gang_tree; 1941 } else { 1942 gnpp = pio->io_private; 1943 ASSERT(pio->io_ready == zio_write_gang_member_ready); 1944 } 1945 1946 gn = zio_gang_node_alloc(gnpp); 1947 gbh = gn->gn_gbh; 1948 bzero(gbh, SPA_GANGBLOCKSIZE); 1949 1950 /* 1951 * Create the gang header. 1952 */ 1953 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL, 1954 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1955 1956 /* 1957 * Create and nowait the gang children. 1958 */ 1959 for (int g = 0; resid != 0; resid -= lsize, g++) { 1960 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 1961 SPA_MINBLOCKSIZE); 1962 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 1963 1964 zp.zp_checksum = gio->io_prop.zp_checksum; 1965 zp.zp_compress = ZIO_COMPRESS_OFF; 1966 zp.zp_type = DMU_OT_NONE; 1967 zp.zp_level = 0; 1968 zp.zp_copies = gio->io_prop.zp_copies; 1969 zp.zp_dedup = B_FALSE; 1970 zp.zp_dedup_verify = B_FALSE; 1971 zp.zp_nopwrite = B_FALSE; 1972 1973 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 1974 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp, 1975 zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g], 1976 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1977 &pio->io_bookmark)); 1978 } 1979 1980 /* 1981 * Set pio's pipeline to just wait for zio to finish. 1982 */ 1983 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1984 1985 zio_nowait(zio); 1986 1987 return (ZIO_PIPELINE_CONTINUE); 1988 } 1989 1990 /* 1991 * The zio_nop_write stage in the pipeline determines if allocating 1992 * a new bp is necessary. By leveraging a cryptographically secure checksum, 1993 * such as SHA256, we can compare the checksums of the new data and the old 1994 * to determine if allocating a new block is required. The nopwrite 1995 * feature can handle writes in either syncing or open context (i.e. zil 1996 * writes) and as a result is mutually exclusive with dedup. 1997 */ 1998 static int 1999 zio_nop_write(zio_t *zio) 2000 { 2001 blkptr_t *bp = zio->io_bp; 2002 blkptr_t *bp_orig = &zio->io_bp_orig; 2003 zio_prop_t *zp = &zio->io_prop; 2004 2005 ASSERT(BP_GET_LEVEL(bp) == 0); 2006 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2007 ASSERT(zp->zp_nopwrite); 2008 ASSERT(!zp->zp_dedup); 2009 ASSERT(zio->io_bp_override == NULL); 2010 ASSERT(IO_IS_ALLOCATING(zio)); 2011 2012 /* 2013 * Check to see if the original bp and the new bp have matching 2014 * characteristics (i.e. same checksum, compression algorithms, etc). 2015 * If they don't then just continue with the pipeline which will 2016 * allocate a new bp. 2017 */ 2018 if (BP_IS_HOLE(bp_orig) || 2019 !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup || 2020 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2021 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2022 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2023 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2024 return (ZIO_PIPELINE_CONTINUE); 2025 2026 /* 2027 * If the checksums match then reset the pipeline so that we 2028 * avoid allocating a new bp and issuing any I/O. 2029 */ 2030 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2031 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup); 2032 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2033 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2034 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2035 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2036 sizeof (uint64_t)) == 0); 2037 2038 *bp = *bp_orig; 2039 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2040 zio->io_flags |= ZIO_FLAG_NOPWRITE; 2041 } 2042 2043 return (ZIO_PIPELINE_CONTINUE); 2044 } 2045 2046 /* 2047 * ========================================================================== 2048 * Dedup 2049 * ========================================================================== 2050 */ 2051 static void 2052 zio_ddt_child_read_done(zio_t *zio) 2053 { 2054 blkptr_t *bp = zio->io_bp; 2055 ddt_entry_t *dde = zio->io_private; 2056 ddt_phys_t *ddp; 2057 zio_t *pio = zio_unique_parent(zio); 2058 2059 mutex_enter(&pio->io_lock); 2060 ddp = ddt_phys_select(dde, bp); 2061 if (zio->io_error == 0) 2062 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 2063 if (zio->io_error == 0 && dde->dde_repair_data == NULL) 2064 dde->dde_repair_data = zio->io_data; 2065 else 2066 zio_buf_free(zio->io_data, zio->io_size); 2067 mutex_exit(&pio->io_lock); 2068 } 2069 2070 static int 2071 zio_ddt_read_start(zio_t *zio) 2072 { 2073 blkptr_t *bp = zio->io_bp; 2074 2075 ASSERT(BP_GET_DEDUP(bp)); 2076 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2077 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2078 2079 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2080 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2081 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 2082 ddt_phys_t *ddp = dde->dde_phys; 2083 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 2084 blkptr_t blk; 2085 2086 ASSERT(zio->io_vsd == NULL); 2087 zio->io_vsd = dde; 2088 2089 if (ddp_self == NULL) 2090 return (ZIO_PIPELINE_CONTINUE); 2091 2092 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2093 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 2094 continue; 2095 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 2096 &blk); 2097 zio_nowait(zio_read(zio, zio->io_spa, &blk, 2098 zio_buf_alloc(zio->io_size), zio->io_size, 2099 zio_ddt_child_read_done, dde, zio->io_priority, 2100 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE, 2101 &zio->io_bookmark)); 2102 } 2103 return (ZIO_PIPELINE_CONTINUE); 2104 } 2105 2106 zio_nowait(zio_read(zio, zio->io_spa, bp, 2107 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority, 2108 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 2109 2110 return (ZIO_PIPELINE_CONTINUE); 2111 } 2112 2113 static int 2114 zio_ddt_read_done(zio_t *zio) 2115 { 2116 blkptr_t *bp = zio->io_bp; 2117 2118 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 2119 return (ZIO_PIPELINE_STOP); 2120 } 2121 2122 ASSERT(BP_GET_DEDUP(bp)); 2123 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2124 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2125 2126 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2127 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2128 ddt_entry_t *dde = zio->io_vsd; 2129 if (ddt == NULL) { 2130 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 2131 return (ZIO_PIPELINE_CONTINUE); 2132 } 2133 if (dde == NULL) { 2134 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 2135 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2136 return (ZIO_PIPELINE_STOP); 2137 } 2138 if (dde->dde_repair_data != NULL) { 2139 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size); 2140 zio->io_child_error[ZIO_CHILD_DDT] = 0; 2141 } 2142 ddt_repair_done(ddt, dde); 2143 zio->io_vsd = NULL; 2144 } 2145 2146 ASSERT(zio->io_vsd == NULL); 2147 2148 return (ZIO_PIPELINE_CONTINUE); 2149 } 2150 2151 static boolean_t 2152 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 2153 { 2154 spa_t *spa = zio->io_spa; 2155 2156 /* 2157 * Note: we compare the original data, not the transformed data, 2158 * because when zio->io_bp is an override bp, we will not have 2159 * pushed the I/O transforms. That's an important optimization 2160 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 2161 */ 2162 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2163 zio_t *lio = dde->dde_lead_zio[p]; 2164 2165 if (lio != NULL) { 2166 return (lio->io_orig_size != zio->io_orig_size || 2167 bcmp(zio->io_orig_data, lio->io_orig_data, 2168 zio->io_orig_size) != 0); 2169 } 2170 } 2171 2172 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2173 ddt_phys_t *ddp = &dde->dde_phys[p]; 2174 2175 if (ddp->ddp_phys_birth != 0) { 2176 arc_buf_t *abuf = NULL; 2177 arc_flags_t aflags = ARC_FLAG_WAIT; 2178 blkptr_t blk = *zio->io_bp; 2179 int error; 2180 2181 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2182 2183 ddt_exit(ddt); 2184 2185 error = arc_read(NULL, spa, &blk, 2186 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 2187 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2188 &aflags, &zio->io_bookmark); 2189 2190 if (error == 0) { 2191 if (arc_buf_size(abuf) != zio->io_orig_size || 2192 bcmp(abuf->b_data, zio->io_orig_data, 2193 zio->io_orig_size) != 0) 2194 error = SET_ERROR(EEXIST); 2195 VERIFY(arc_buf_remove_ref(abuf, &abuf)); 2196 } 2197 2198 ddt_enter(ddt); 2199 return (error != 0); 2200 } 2201 } 2202 2203 return (B_FALSE); 2204 } 2205 2206 static void 2207 zio_ddt_child_write_ready(zio_t *zio) 2208 { 2209 int p = zio->io_prop.zp_copies; 2210 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2211 ddt_entry_t *dde = zio->io_private; 2212 ddt_phys_t *ddp = &dde->dde_phys[p]; 2213 zio_t *pio; 2214 2215 if (zio->io_error) 2216 return; 2217 2218 ddt_enter(ddt); 2219 2220 ASSERT(dde->dde_lead_zio[p] == zio); 2221 2222 ddt_phys_fill(ddp, zio->io_bp); 2223 2224 while ((pio = zio_walk_parents(zio)) != NULL) 2225 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 2226 2227 ddt_exit(ddt); 2228 } 2229 2230 static void 2231 zio_ddt_child_write_done(zio_t *zio) 2232 { 2233 int p = zio->io_prop.zp_copies; 2234 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2235 ddt_entry_t *dde = zio->io_private; 2236 ddt_phys_t *ddp = &dde->dde_phys[p]; 2237 2238 ddt_enter(ddt); 2239 2240 ASSERT(ddp->ddp_refcnt == 0); 2241 ASSERT(dde->dde_lead_zio[p] == zio); 2242 dde->dde_lead_zio[p] = NULL; 2243 2244 if (zio->io_error == 0) { 2245 while (zio_walk_parents(zio) != NULL) 2246 ddt_phys_addref(ddp); 2247 } else { 2248 ddt_phys_clear(ddp); 2249 } 2250 2251 ddt_exit(ddt); 2252 } 2253 2254 static void 2255 zio_ddt_ditto_write_done(zio_t *zio) 2256 { 2257 int p = DDT_PHYS_DITTO; 2258 zio_prop_t *zp = &zio->io_prop; 2259 blkptr_t *bp = zio->io_bp; 2260 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2261 ddt_entry_t *dde = zio->io_private; 2262 ddt_phys_t *ddp = &dde->dde_phys[p]; 2263 ddt_key_t *ddk = &dde->dde_key; 2264 2265 ddt_enter(ddt); 2266 2267 ASSERT(ddp->ddp_refcnt == 0); 2268 ASSERT(dde->dde_lead_zio[p] == zio); 2269 dde->dde_lead_zio[p] = NULL; 2270 2271 if (zio->io_error == 0) { 2272 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); 2273 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); 2274 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); 2275 if (ddp->ddp_phys_birth != 0) 2276 ddt_phys_free(ddt, ddk, ddp, zio->io_txg); 2277 ddt_phys_fill(ddp, bp); 2278 } 2279 2280 ddt_exit(ddt); 2281 } 2282 2283 static int 2284 zio_ddt_write(zio_t *zio) 2285 { 2286 spa_t *spa = zio->io_spa; 2287 blkptr_t *bp = zio->io_bp; 2288 uint64_t txg = zio->io_txg; 2289 zio_prop_t *zp = &zio->io_prop; 2290 int p = zp->zp_copies; 2291 int ditto_copies; 2292 zio_t *cio = NULL; 2293 zio_t *dio = NULL; 2294 ddt_t *ddt = ddt_select(spa, bp); 2295 ddt_entry_t *dde; 2296 ddt_phys_t *ddp; 2297 2298 ASSERT(BP_GET_DEDUP(bp)); 2299 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 2300 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 2301 2302 ddt_enter(ddt); 2303 dde = ddt_lookup(ddt, bp, B_TRUE); 2304 ddp = &dde->dde_phys[p]; 2305 2306 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 2307 /* 2308 * If we're using a weak checksum, upgrade to a strong checksum 2309 * and try again. If we're already using a strong checksum, 2310 * we can't resolve it, so just convert to an ordinary write. 2311 * (And automatically e-mail a paper to Nature?) 2312 */ 2313 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) { 2314 zp->zp_checksum = spa_dedup_checksum(spa); 2315 zio_pop_transforms(zio); 2316 zio->io_stage = ZIO_STAGE_OPEN; 2317 BP_ZERO(bp); 2318 } else { 2319 zp->zp_dedup = B_FALSE; 2320 } 2321 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2322 ddt_exit(ddt); 2323 return (ZIO_PIPELINE_CONTINUE); 2324 } 2325 2326 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); 2327 ASSERT(ditto_copies < SPA_DVAS_PER_BP); 2328 2329 if (ditto_copies > ddt_ditto_copies_present(dde) && 2330 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { 2331 zio_prop_t czp = *zp; 2332 2333 czp.zp_copies = ditto_copies; 2334 2335 /* 2336 * If we arrived here with an override bp, we won't have run 2337 * the transform stack, so we won't have the data we need to 2338 * generate a child i/o. So, toss the override bp and restart. 2339 * This is safe, because using the override bp is just an 2340 * optimization; and it's rare, so the cost doesn't matter. 2341 */ 2342 if (zio->io_bp_override) { 2343 zio_pop_transforms(zio); 2344 zio->io_stage = ZIO_STAGE_OPEN; 2345 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2346 zio->io_bp_override = NULL; 2347 BP_ZERO(bp); 2348 ddt_exit(ddt); 2349 return (ZIO_PIPELINE_CONTINUE); 2350 } 2351 2352 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2353 zio->io_orig_size, &czp, NULL, NULL, 2354 zio_ddt_ditto_write_done, dde, zio->io_priority, 2355 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2356 2357 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL); 2358 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; 2359 } 2360 2361 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 2362 if (ddp->ddp_phys_birth != 0) 2363 ddt_bp_fill(ddp, bp, txg); 2364 if (dde->dde_lead_zio[p] != NULL) 2365 zio_add_child(zio, dde->dde_lead_zio[p]); 2366 else 2367 ddt_phys_addref(ddp); 2368 } else if (zio->io_bp_override) { 2369 ASSERT(bp->blk_birth == txg); 2370 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 2371 ddt_phys_fill(ddp, bp); 2372 ddt_phys_addref(ddp); 2373 } else { 2374 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2375 zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL, 2376 zio_ddt_child_write_done, dde, zio->io_priority, 2377 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2378 2379 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL); 2380 dde->dde_lead_zio[p] = cio; 2381 } 2382 2383 ddt_exit(ddt); 2384 2385 if (cio) 2386 zio_nowait(cio); 2387 if (dio) 2388 zio_nowait(dio); 2389 2390 return (ZIO_PIPELINE_CONTINUE); 2391 } 2392 2393 ddt_entry_t *freedde; /* for debugging */ 2394 2395 static int 2396 zio_ddt_free(zio_t *zio) 2397 { 2398 spa_t *spa = zio->io_spa; 2399 blkptr_t *bp = zio->io_bp; 2400 ddt_t *ddt = ddt_select(spa, bp); 2401 ddt_entry_t *dde; 2402 ddt_phys_t *ddp; 2403 2404 ASSERT(BP_GET_DEDUP(bp)); 2405 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2406 2407 ddt_enter(ddt); 2408 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 2409 ddp = ddt_phys_select(dde, bp); 2410 ddt_phys_decref(ddp); 2411 ddt_exit(ddt); 2412 2413 return (ZIO_PIPELINE_CONTINUE); 2414 } 2415 2416 /* 2417 * ========================================================================== 2418 * Allocate and free blocks 2419 * ========================================================================== 2420 */ 2421 static int 2422 zio_dva_allocate(zio_t *zio) 2423 { 2424 spa_t *spa = zio->io_spa; 2425 metaslab_class_t *mc = spa_normal_class(spa); 2426 blkptr_t *bp = zio->io_bp; 2427 int error; 2428 int flags = 0; 2429 2430 if (zio->io_gang_leader == NULL) { 2431 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2432 zio->io_gang_leader = zio; 2433 } 2434 2435 ASSERT(BP_IS_HOLE(bp)); 2436 ASSERT0(BP_GET_NDVAS(bp)); 2437 ASSERT3U(zio->io_prop.zp_copies, >, 0); 2438 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 2439 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 2440 2441 /* 2442 * The dump device does not support gang blocks so allocation on 2443 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid 2444 * the "fast" gang feature. 2445 */ 2446 flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0; 2447 flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ? 2448 METASLAB_GANG_CHILD : 0; 2449 error = metaslab_alloc(spa, mc, zio->io_size, bp, 2450 zio->io_prop.zp_copies, zio->io_txg, NULL, flags); 2451 2452 if (error) { 2453 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, " 2454 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 2455 error); 2456 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 2457 return (zio_write_gang_block(zio)); 2458 zio->io_error = error; 2459 } 2460 2461 return (ZIO_PIPELINE_CONTINUE); 2462 } 2463 2464 static int 2465 zio_dva_free(zio_t *zio) 2466 { 2467 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 2468 2469 return (ZIO_PIPELINE_CONTINUE); 2470 } 2471 2472 static int 2473 zio_dva_claim(zio_t *zio) 2474 { 2475 int error; 2476 2477 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 2478 if (error) 2479 zio->io_error = error; 2480 2481 return (ZIO_PIPELINE_CONTINUE); 2482 } 2483 2484 /* 2485 * Undo an allocation. This is used by zio_done() when an I/O fails 2486 * and we want to give back the block we just allocated. 2487 * This handles both normal blocks and gang blocks. 2488 */ 2489 static void 2490 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 2491 { 2492 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2493 ASSERT(zio->io_bp_override == NULL); 2494 2495 if (!BP_IS_HOLE(bp)) 2496 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 2497 2498 if (gn != NULL) { 2499 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2500 zio_dva_unallocate(zio, gn->gn_child[g], 2501 &gn->gn_gbh->zg_blkptr[g]); 2502 } 2503 } 2504 } 2505 2506 /* 2507 * Try to allocate an intent log block. Return 0 on success, errno on failure. 2508 */ 2509 int 2510 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp, 2511 uint64_t size, boolean_t use_slog) 2512 { 2513 int error = 1; 2514 2515 ASSERT(txg > spa_syncing_txg(spa)); 2516 2517 /* 2518 * ZIL blocks are always contiguous (i.e. not gang blocks) so we 2519 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang" 2520 * when allocating them. 2521 */ 2522 if (use_slog) { 2523 error = metaslab_alloc(spa, spa_log_class(spa), size, 2524 new_bp, 1, txg, old_bp, 2525 METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID); 2526 } 2527 2528 if (error) { 2529 error = metaslab_alloc(spa, spa_normal_class(spa), size, 2530 new_bp, 1, txg, old_bp, 2531 METASLAB_HINTBP_AVOID); 2532 } 2533 2534 if (error == 0) { 2535 BP_SET_LSIZE(new_bp, size); 2536 BP_SET_PSIZE(new_bp, size); 2537 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 2538 BP_SET_CHECKSUM(new_bp, 2539 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 2540 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 2541 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 2542 BP_SET_LEVEL(new_bp, 0); 2543 BP_SET_DEDUP(new_bp, 0); 2544 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 2545 } 2546 2547 return (error); 2548 } 2549 2550 /* 2551 * Free an intent log block. 2552 */ 2553 void 2554 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp) 2555 { 2556 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG); 2557 ASSERT(!BP_IS_GANG(bp)); 2558 2559 zio_free(spa, txg, bp); 2560 } 2561 2562 /* 2563 * ========================================================================== 2564 * Read and write to physical devices 2565 * ========================================================================== 2566 */ 2567 2568 2569 /* 2570 * Issue an I/O to the underlying vdev. Typically the issue pipeline 2571 * stops after this stage and will resume upon I/O completion. 2572 * However, there are instances where the vdev layer may need to 2573 * continue the pipeline when an I/O was not issued. Since the I/O 2574 * that was sent to the vdev layer might be different than the one 2575 * currently active in the pipeline (see vdev_queue_io()), we explicitly 2576 * force the underlying vdev layers to call either zio_execute() or 2577 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 2578 */ 2579 static int 2580 zio_vdev_io_start(zio_t *zio) 2581 { 2582 vdev_t *vd = zio->io_vd; 2583 uint64_t align; 2584 spa_t *spa = zio->io_spa; 2585 2586 ASSERT(zio->io_error == 0); 2587 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 2588 2589 if (vd == NULL) { 2590 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 2591 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 2592 2593 /* 2594 * The mirror_ops handle multiple DVAs in a single BP. 2595 */ 2596 vdev_mirror_ops.vdev_op_io_start(zio); 2597 return (ZIO_PIPELINE_STOP); 2598 } 2599 2600 /* 2601 * We keep track of time-sensitive I/Os so that the scan thread 2602 * can quickly react to certain workloads. In particular, we care 2603 * about non-scrubbing, top-level reads and writes with the following 2604 * characteristics: 2605 * - synchronous writes of user data to non-slog devices 2606 * - any reads of user data 2607 * When these conditions are met, adjust the timestamp of spa_last_io 2608 * which allows the scan thread to adjust its workload accordingly. 2609 */ 2610 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL && 2611 vd == vd->vdev_top && !vd->vdev_islog && 2612 zio->io_bookmark.zb_objset != DMU_META_OBJSET && 2613 zio->io_txg != spa_syncing_txg(spa)) { 2614 uint64_t old = spa->spa_last_io; 2615 uint64_t new = ddi_get_lbolt64(); 2616 if (old != new) 2617 (void) atomic_cas_64(&spa->spa_last_io, old, new); 2618 } 2619 2620 align = 1ULL << vd->vdev_top->vdev_ashift; 2621 2622 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 2623 P2PHASE(zio->io_size, align) != 0) { 2624 /* Transform logical writes to be a full physical block size. */ 2625 uint64_t asize = P2ROUNDUP(zio->io_size, align); 2626 char *abuf = zio_buf_alloc(asize); 2627 ASSERT(vd == vd->vdev_top); 2628 if (zio->io_type == ZIO_TYPE_WRITE) { 2629 bcopy(zio->io_data, abuf, zio->io_size); 2630 bzero(abuf + zio->io_size, asize - zio->io_size); 2631 } 2632 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 2633 } 2634 2635 /* 2636 * If this is not a physical io, make sure that it is properly aligned 2637 * before proceeding. 2638 */ 2639 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 2640 ASSERT0(P2PHASE(zio->io_offset, align)); 2641 ASSERT0(P2PHASE(zio->io_size, align)); 2642 } else { 2643 /* 2644 * For physical writes, we allow 512b aligned writes and assume 2645 * the device will perform a read-modify-write as necessary. 2646 */ 2647 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 2648 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 2649 } 2650 2651 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 2652 2653 /* 2654 * If this is a repair I/O, and there's no self-healing involved -- 2655 * that is, we're just resilvering what we expect to resilver -- 2656 * then don't do the I/O unless zio's txg is actually in vd's DTL. 2657 * This prevents spurious resilvering with nested replication. 2658 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 2659 * A is out of date, we'll read from C+D, then use the data to 2660 * resilver A+B -- but we don't actually want to resilver B, just A. 2661 * The top-level mirror has no way to know this, so instead we just 2662 * discard unnecessary repairs as we work our way down the vdev tree. 2663 * The same logic applies to any form of nested replication: 2664 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 2665 */ 2666 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 2667 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 2668 zio->io_txg != 0 && /* not a delegated i/o */ 2669 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 2670 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 2671 zio_vdev_io_bypass(zio); 2672 return (ZIO_PIPELINE_CONTINUE); 2673 } 2674 2675 if (vd->vdev_ops->vdev_op_leaf && 2676 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 2677 2678 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 2679 return (ZIO_PIPELINE_CONTINUE); 2680 2681 if ((zio = vdev_queue_io(zio)) == NULL) 2682 return (ZIO_PIPELINE_STOP); 2683 2684 if (!vdev_accessible(vd, zio)) { 2685 zio->io_error = SET_ERROR(ENXIO); 2686 zio_interrupt(zio); 2687 return (ZIO_PIPELINE_STOP); 2688 } 2689 } 2690 2691 vd->vdev_ops->vdev_op_io_start(zio); 2692 return (ZIO_PIPELINE_STOP); 2693 } 2694 2695 static int 2696 zio_vdev_io_done(zio_t *zio) 2697 { 2698 vdev_t *vd = zio->io_vd; 2699 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 2700 boolean_t unexpected_error = B_FALSE; 2701 2702 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 2703 return (ZIO_PIPELINE_STOP); 2704 } 2705 2706 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 2707 2708 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 2709 2710 vdev_queue_io_done(zio); 2711 2712 if (zio->io_type == ZIO_TYPE_WRITE) 2713 vdev_cache_write(zio); 2714 2715 if (zio_injection_enabled && zio->io_error == 0) 2716 zio->io_error = zio_handle_device_injection(vd, 2717 zio, EIO); 2718 2719 if (zio_injection_enabled && zio->io_error == 0) 2720 zio->io_error = zio_handle_label_injection(zio, EIO); 2721 2722 if (zio->io_error) { 2723 if (!vdev_accessible(vd, zio)) { 2724 zio->io_error = SET_ERROR(ENXIO); 2725 } else { 2726 unexpected_error = B_TRUE; 2727 } 2728 } 2729 } 2730 2731 ops->vdev_op_io_done(zio); 2732 2733 if (unexpected_error) 2734 VERIFY(vdev_probe(vd, zio) == NULL); 2735 2736 return (ZIO_PIPELINE_CONTINUE); 2737 } 2738 2739 /* 2740 * For non-raidz ZIOs, we can just copy aside the bad data read from the 2741 * disk, and use that to finish the checksum ereport later. 2742 */ 2743 static void 2744 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 2745 const void *good_buf) 2746 { 2747 /* no processing needed */ 2748 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 2749 } 2750 2751 /*ARGSUSED*/ 2752 void 2753 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 2754 { 2755 void *buf = zio_buf_alloc(zio->io_size); 2756 2757 bcopy(zio->io_data, buf, zio->io_size); 2758 2759 zcr->zcr_cbinfo = zio->io_size; 2760 zcr->zcr_cbdata = buf; 2761 zcr->zcr_finish = zio_vsd_default_cksum_finish; 2762 zcr->zcr_free = zio_buf_free; 2763 } 2764 2765 static int 2766 zio_vdev_io_assess(zio_t *zio) 2767 { 2768 vdev_t *vd = zio->io_vd; 2769 2770 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 2771 return (ZIO_PIPELINE_STOP); 2772 } 2773 2774 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 2775 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 2776 2777 if (zio->io_vsd != NULL) { 2778 zio->io_vsd_ops->vsd_free(zio); 2779 zio->io_vsd = NULL; 2780 } 2781 2782 if (zio_injection_enabled && zio->io_error == 0) 2783 zio->io_error = zio_handle_fault_injection(zio, EIO); 2784 2785 /* 2786 * If the I/O failed, determine whether we should attempt to retry it. 2787 * 2788 * On retry, we cut in line in the issue queue, since we don't want 2789 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 2790 */ 2791 if (zio->io_error && vd == NULL && 2792 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 2793 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 2794 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 2795 zio->io_error = 0; 2796 zio->io_flags |= ZIO_FLAG_IO_RETRY | 2797 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 2798 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 2799 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 2800 zio_requeue_io_start_cut_in_line); 2801 return (ZIO_PIPELINE_STOP); 2802 } 2803 2804 /* 2805 * If we got an error on a leaf device, convert it to ENXIO 2806 * if the device is not accessible at all. 2807 */ 2808 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 2809 !vdev_accessible(vd, zio)) 2810 zio->io_error = SET_ERROR(ENXIO); 2811 2812 /* 2813 * If we can't write to an interior vdev (mirror or RAID-Z), 2814 * set vdev_cant_write so that we stop trying to allocate from it. 2815 */ 2816 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 2817 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 2818 vd->vdev_cant_write = B_TRUE; 2819 } 2820 2821 if (zio->io_error) 2822 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2823 2824 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 2825 zio->io_physdone != NULL) { 2826 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 2827 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 2828 zio->io_physdone(zio->io_logical); 2829 } 2830 2831 return (ZIO_PIPELINE_CONTINUE); 2832 } 2833 2834 void 2835 zio_vdev_io_reissue(zio_t *zio) 2836 { 2837 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 2838 ASSERT(zio->io_error == 0); 2839 2840 zio->io_stage >>= 1; 2841 } 2842 2843 void 2844 zio_vdev_io_redone(zio_t *zio) 2845 { 2846 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 2847 2848 zio->io_stage >>= 1; 2849 } 2850 2851 void 2852 zio_vdev_io_bypass(zio_t *zio) 2853 { 2854 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 2855 ASSERT(zio->io_error == 0); 2856 2857 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 2858 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 2859 } 2860 2861 /* 2862 * ========================================================================== 2863 * Generate and verify checksums 2864 * ========================================================================== 2865 */ 2866 static int 2867 zio_checksum_generate(zio_t *zio) 2868 { 2869 blkptr_t *bp = zio->io_bp; 2870 enum zio_checksum checksum; 2871 2872 if (bp == NULL) { 2873 /* 2874 * This is zio_write_phys(). 2875 * We're either generating a label checksum, or none at all. 2876 */ 2877 checksum = zio->io_prop.zp_checksum; 2878 2879 if (checksum == ZIO_CHECKSUM_OFF) 2880 return (ZIO_PIPELINE_CONTINUE); 2881 2882 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 2883 } else { 2884 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 2885 ASSERT(!IO_IS_ALLOCATING(zio)); 2886 checksum = ZIO_CHECKSUM_GANG_HEADER; 2887 } else { 2888 checksum = BP_GET_CHECKSUM(bp); 2889 } 2890 } 2891 2892 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size); 2893 2894 return (ZIO_PIPELINE_CONTINUE); 2895 } 2896 2897 static int 2898 zio_checksum_verify(zio_t *zio) 2899 { 2900 zio_bad_cksum_t info; 2901 blkptr_t *bp = zio->io_bp; 2902 int error; 2903 2904 ASSERT(zio->io_vd != NULL); 2905 2906 if (bp == NULL) { 2907 /* 2908 * This is zio_read_phys(). 2909 * We're either verifying a label checksum, or nothing at all. 2910 */ 2911 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 2912 return (ZIO_PIPELINE_CONTINUE); 2913 2914 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 2915 } 2916 2917 if ((error = zio_checksum_error(zio, &info)) != 0) { 2918 zio->io_error = error; 2919 if (error == ECKSUM && 2920 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 2921 zfs_ereport_start_checksum(zio->io_spa, 2922 zio->io_vd, zio, zio->io_offset, 2923 zio->io_size, NULL, &info); 2924 } 2925 } 2926 2927 return (ZIO_PIPELINE_CONTINUE); 2928 } 2929 2930 /* 2931 * Called by RAID-Z to ensure we don't compute the checksum twice. 2932 */ 2933 void 2934 zio_checksum_verified(zio_t *zio) 2935 { 2936 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 2937 } 2938 2939 /* 2940 * ========================================================================== 2941 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 2942 * An error of 0 indicates success. ENXIO indicates whole-device failure, 2943 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 2944 * indicate errors that are specific to one I/O, and most likely permanent. 2945 * Any other error is presumed to be worse because we weren't expecting it. 2946 * ========================================================================== 2947 */ 2948 int 2949 zio_worst_error(int e1, int e2) 2950 { 2951 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 2952 int r1, r2; 2953 2954 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 2955 if (e1 == zio_error_rank[r1]) 2956 break; 2957 2958 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 2959 if (e2 == zio_error_rank[r2]) 2960 break; 2961 2962 return (r1 > r2 ? e1 : e2); 2963 } 2964 2965 /* 2966 * ========================================================================== 2967 * I/O completion 2968 * ========================================================================== 2969 */ 2970 static int 2971 zio_ready(zio_t *zio) 2972 { 2973 blkptr_t *bp = zio->io_bp; 2974 zio_t *pio, *pio_next; 2975 2976 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 2977 ZIO_WAIT_READY)) { 2978 return (ZIO_PIPELINE_STOP); 2979 } 2980 2981 if (zio->io_ready) { 2982 ASSERT(IO_IS_ALLOCATING(zio)); 2983 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 2984 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 2985 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 2986 2987 zio->io_ready(zio); 2988 } 2989 2990 if (bp != NULL && bp != &zio->io_bp_copy) 2991 zio->io_bp_copy = *bp; 2992 2993 if (zio->io_error) 2994 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2995 2996 mutex_enter(&zio->io_lock); 2997 zio->io_state[ZIO_WAIT_READY] = 1; 2998 pio = zio_walk_parents(zio); 2999 mutex_exit(&zio->io_lock); 3000 3001 /* 3002 * As we notify zio's parents, new parents could be added. 3003 * New parents go to the head of zio's io_parent_list, however, 3004 * so we will (correctly) not notify them. The remainder of zio's 3005 * io_parent_list, from 'pio_next' onward, cannot change because 3006 * all parents must wait for us to be done before they can be done. 3007 */ 3008 for (; pio != NULL; pio = pio_next) { 3009 pio_next = zio_walk_parents(zio); 3010 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 3011 } 3012 3013 if (zio->io_flags & ZIO_FLAG_NODATA) { 3014 if (BP_IS_GANG(bp)) { 3015 zio->io_flags &= ~ZIO_FLAG_NODATA; 3016 } else { 3017 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE); 3018 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 3019 } 3020 } 3021 3022 if (zio_injection_enabled && 3023 zio->io_spa->spa_syncing_txg == zio->io_txg) 3024 zio_handle_ignored_writes(zio); 3025 3026 return (ZIO_PIPELINE_CONTINUE); 3027 } 3028 3029 static int 3030 zio_done(zio_t *zio) 3031 { 3032 spa_t *spa = zio->io_spa; 3033 zio_t *lio = zio->io_logical; 3034 blkptr_t *bp = zio->io_bp; 3035 vdev_t *vd = zio->io_vd; 3036 uint64_t psize = zio->io_size; 3037 zio_t *pio, *pio_next; 3038 3039 /* 3040 * If our children haven't all completed, 3041 * wait for them and then repeat this pipeline stage. 3042 */ 3043 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 3044 return (ZIO_PIPELINE_STOP); 3045 } 3046 3047 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 3048 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 3049 ASSERT(zio->io_children[c][w] == 0); 3050 3051 if (bp != NULL && !BP_IS_EMBEDDED(bp)) { 3052 ASSERT(bp->blk_pad[0] == 0); 3053 ASSERT(bp->blk_pad[1] == 0); 3054 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 3055 (bp == zio_unique_parent(zio)->io_bp)); 3056 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 3057 zio->io_bp_override == NULL && 3058 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 3059 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 3060 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); 3061 ASSERT(BP_COUNT_GANG(bp) == 0 || 3062 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 3063 } 3064 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 3065 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); 3066 } 3067 3068 /* 3069 * If there were child vdev/gang/ddt errors, they apply to us now. 3070 */ 3071 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 3072 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 3073 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 3074 3075 /* 3076 * If the I/O on the transformed data was successful, generate any 3077 * checksum reports now while we still have the transformed data. 3078 */ 3079 if (zio->io_error == 0) { 3080 while (zio->io_cksum_report != NULL) { 3081 zio_cksum_report_t *zcr = zio->io_cksum_report; 3082 uint64_t align = zcr->zcr_align; 3083 uint64_t asize = P2ROUNDUP(psize, align); 3084 char *abuf = zio->io_data; 3085 3086 if (asize != psize) { 3087 abuf = zio_buf_alloc(asize); 3088 bcopy(zio->io_data, abuf, psize); 3089 bzero(abuf + psize, asize - psize); 3090 } 3091 3092 zio->io_cksum_report = zcr->zcr_next; 3093 zcr->zcr_next = NULL; 3094 zcr->zcr_finish(zcr, abuf); 3095 zfs_ereport_free_checksum(zcr); 3096 3097 if (asize != psize) 3098 zio_buf_free(abuf, asize); 3099 } 3100 } 3101 3102 zio_pop_transforms(zio); /* note: may set zio->io_error */ 3103 3104 vdev_stat_update(zio, psize); 3105 3106 if (zio->io_error) { 3107 /* 3108 * If this I/O is attached to a particular vdev, 3109 * generate an error message describing the I/O failure 3110 * at the block level. We ignore these errors if the 3111 * device is currently unavailable. 3112 */ 3113 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 3114 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 3115 3116 if ((zio->io_error == EIO || !(zio->io_flags & 3117 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 3118 zio == lio) { 3119 /* 3120 * For logical I/O requests, tell the SPA to log the 3121 * error and generate a logical data ereport. 3122 */ 3123 spa_log_error(spa, zio); 3124 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 3125 0, 0); 3126 } 3127 } 3128 3129 if (zio->io_error && zio == lio) { 3130 /* 3131 * Determine whether zio should be reexecuted. This will 3132 * propagate all the way to the root via zio_notify_parent(). 3133 */ 3134 ASSERT(vd == NULL && bp != NULL); 3135 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3136 3137 if (IO_IS_ALLOCATING(zio) && 3138 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 3139 if (zio->io_error != ENOSPC) 3140 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 3141 else 3142 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3143 } 3144 3145 if ((zio->io_type == ZIO_TYPE_READ || 3146 zio->io_type == ZIO_TYPE_FREE) && 3147 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 3148 zio->io_error == ENXIO && 3149 spa_load_state(spa) == SPA_LOAD_NONE && 3150 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 3151 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3152 3153 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 3154 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3155 3156 /* 3157 * Here is a possibly good place to attempt to do 3158 * either combinatorial reconstruction or error correction 3159 * based on checksums. It also might be a good place 3160 * to send out preliminary ereports before we suspend 3161 * processing. 3162 */ 3163 } 3164 3165 /* 3166 * If there were logical child errors, they apply to us now. 3167 * We defer this until now to avoid conflating logical child 3168 * errors with errors that happened to the zio itself when 3169 * updating vdev stats and reporting FMA events above. 3170 */ 3171 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 3172 3173 if ((zio->io_error || zio->io_reexecute) && 3174 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 3175 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 3176 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 3177 3178 zio_gang_tree_free(&zio->io_gang_tree); 3179 3180 /* 3181 * Godfather I/Os should never suspend. 3182 */ 3183 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 3184 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 3185 zio->io_reexecute = 0; 3186 3187 if (zio->io_reexecute) { 3188 /* 3189 * This is a logical I/O that wants to reexecute. 3190 * 3191 * Reexecute is top-down. When an i/o fails, if it's not 3192 * the root, it simply notifies its parent and sticks around. 3193 * The parent, seeing that it still has children in zio_done(), 3194 * does the same. This percolates all the way up to the root. 3195 * The root i/o will reexecute or suspend the entire tree. 3196 * 3197 * This approach ensures that zio_reexecute() honors 3198 * all the original i/o dependency relationships, e.g. 3199 * parents not executing until children are ready. 3200 */ 3201 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3202 3203 zio->io_gang_leader = NULL; 3204 3205 mutex_enter(&zio->io_lock); 3206 zio->io_state[ZIO_WAIT_DONE] = 1; 3207 mutex_exit(&zio->io_lock); 3208 3209 /* 3210 * "The Godfather" I/O monitors its children but is 3211 * not a true parent to them. It will track them through 3212 * the pipeline but severs its ties whenever they get into 3213 * trouble (e.g. suspended). This allows "The Godfather" 3214 * I/O to return status without blocking. 3215 */ 3216 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 3217 zio_link_t *zl = zio->io_walk_link; 3218 pio_next = zio_walk_parents(zio); 3219 3220 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 3221 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 3222 zio_remove_child(pio, zio, zl); 3223 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3224 } 3225 } 3226 3227 if ((pio = zio_unique_parent(zio)) != NULL) { 3228 /* 3229 * We're not a root i/o, so there's nothing to do 3230 * but notify our parent. Don't propagate errors 3231 * upward since we haven't permanently failed yet. 3232 */ 3233 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 3234 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 3235 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3236 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 3237 /* 3238 * We'd fail again if we reexecuted now, so suspend 3239 * until conditions improve (e.g. device comes online). 3240 */ 3241 zio_suspend(spa, zio); 3242 } else { 3243 /* 3244 * Reexecution is potentially a huge amount of work. 3245 * Hand it off to the otherwise-unused claim taskq. 3246 */ 3247 ASSERT(zio->io_tqent.tqent_next == NULL); 3248 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, 3249 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 3250 0, &zio->io_tqent); 3251 } 3252 return (ZIO_PIPELINE_STOP); 3253 } 3254 3255 ASSERT(zio->io_child_count == 0); 3256 ASSERT(zio->io_reexecute == 0); 3257 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 3258 3259 /* 3260 * Report any checksum errors, since the I/O is complete. 3261 */ 3262 while (zio->io_cksum_report != NULL) { 3263 zio_cksum_report_t *zcr = zio->io_cksum_report; 3264 zio->io_cksum_report = zcr->zcr_next; 3265 zcr->zcr_next = NULL; 3266 zcr->zcr_finish(zcr, NULL); 3267 zfs_ereport_free_checksum(zcr); 3268 } 3269 3270 /* 3271 * It is the responsibility of the done callback to ensure that this 3272 * particular zio is no longer discoverable for adoption, and as 3273 * such, cannot acquire any new parents. 3274 */ 3275 if (zio->io_done) 3276 zio->io_done(zio); 3277 3278 mutex_enter(&zio->io_lock); 3279 zio->io_state[ZIO_WAIT_DONE] = 1; 3280 mutex_exit(&zio->io_lock); 3281 3282 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 3283 zio_link_t *zl = zio->io_walk_link; 3284 pio_next = zio_walk_parents(zio); 3285 zio_remove_child(pio, zio, zl); 3286 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3287 } 3288 3289 if (zio->io_waiter != NULL) { 3290 mutex_enter(&zio->io_lock); 3291 zio->io_executor = NULL; 3292 cv_broadcast(&zio->io_cv); 3293 mutex_exit(&zio->io_lock); 3294 } else { 3295 zio_destroy(zio); 3296 } 3297 3298 return (ZIO_PIPELINE_STOP); 3299 } 3300 3301 /* 3302 * ========================================================================== 3303 * I/O pipeline definition 3304 * ========================================================================== 3305 */ 3306 static zio_pipe_stage_t *zio_pipeline[] = { 3307 NULL, 3308 zio_read_bp_init, 3309 zio_free_bp_init, 3310 zio_issue_async, 3311 zio_write_bp_init, 3312 zio_checksum_generate, 3313 zio_nop_write, 3314 zio_ddt_read_start, 3315 zio_ddt_read_done, 3316 zio_ddt_write, 3317 zio_ddt_free, 3318 zio_gang_assemble, 3319 zio_gang_issue, 3320 zio_dva_allocate, 3321 zio_dva_free, 3322 zio_dva_claim, 3323 zio_ready, 3324 zio_vdev_io_start, 3325 zio_vdev_io_done, 3326 zio_vdev_io_assess, 3327 zio_checksum_verify, 3328 zio_done 3329 }; 3330 3331 3332 3333 3334 /* 3335 * Compare two zbookmark_phys_t's to see which we would reach first in a 3336 * pre-order traversal of the object tree. 3337 * 3338 * This is simple in every case aside from the meta-dnode object. For all other 3339 * objects, we traverse them in order (object 1 before object 2, and so on). 3340 * However, all of these objects are traversed while traversing object 0, since 3341 * the data it points to is the list of objects. Thus, we need to convert to a 3342 * canonical representation so we can compare meta-dnode bookmarks to 3343 * non-meta-dnode bookmarks. 3344 * 3345 * We do this by calculating "equivalents" for each field of the zbookmark. 3346 * zbookmarks outside of the meta-dnode use their own object and level, and 3347 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 3348 * blocks this bookmark refers to) by multiplying their blkid by their span 3349 * (the number of L0 blocks contained within one block at their level). 3350 * zbookmarks inside the meta-dnode calculate their object equivalent 3351 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 3352 * level + 1<<31 (any value larger than a level could ever be) for their level. 3353 * This causes them to always compare before a bookmark in their object 3354 * equivalent, compare appropriately to bookmarks in other objects, and to 3355 * compare appropriately to other bookmarks in the meta-dnode. 3356 */ 3357 int 3358 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 3359 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 3360 { 3361 /* 3362 * These variables represent the "equivalent" values for the zbookmark, 3363 * after converting zbookmarks inside the meta dnode to their 3364 * normal-object equivalents. 3365 */ 3366 uint64_t zb1obj, zb2obj; 3367 uint64_t zb1L0, zb2L0; 3368 uint64_t zb1level, zb2level; 3369 3370 if (zb1->zb_object == zb2->zb_object && 3371 zb1->zb_level == zb2->zb_level && 3372 zb1->zb_blkid == zb2->zb_blkid) 3373 return (0); 3374 3375 /* 3376 * BP_SPANB calculates the span in blocks. 3377 */ 3378 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 3379 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 3380 3381 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 3382 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3383 zb1L0 = 0; 3384 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 3385 } else { 3386 zb1obj = zb1->zb_object; 3387 zb1level = zb1->zb_level; 3388 } 3389 3390 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 3391 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3392 zb2L0 = 0; 3393 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 3394 } else { 3395 zb2obj = zb2->zb_object; 3396 zb2level = zb2->zb_level; 3397 } 3398 3399 /* Now that we have a canonical representation, do the comparison. */ 3400 if (zb1obj != zb2obj) 3401 return (zb1obj < zb2obj ? -1 : 1); 3402 else if (zb1L0 != zb2L0) 3403 return (zb1L0 < zb2L0 ? -1 : 1); 3404 else if (zb1level != zb2level) 3405 return (zb1level > zb2level ? -1 : 1); 3406 /* 3407 * This can (theoretically) happen if the bookmarks have the same object 3408 * and level, but different blkids, if the block sizes are not the same. 3409 * There is presently no way to change the indirect block sizes 3410 */ 3411 return (0); 3412 } 3413 3414 /* 3415 * This function checks the following: given that last_block is the place that 3416 * our traversal stopped last time, does that guarantee that we've visited 3417 * every node under subtree_root? Therefore, we can't just use the raw output 3418 * of zbookmark_compare. We have to pass in a modified version of 3419 * subtree_root; by incrementing the block id, and then checking whether 3420 * last_block is before or equal to that, we can tell whether or not having 3421 * visited last_block implies that all of subtree_root's children have been 3422 * visited. 3423 */ 3424 boolean_t 3425 zbookmark_subtree_completed(const dnode_phys_t *dnp, 3426 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 3427 { 3428 zbookmark_phys_t mod_zb = *subtree_root; 3429 mod_zb.zb_blkid++; 3430 ASSERT(last_block->zb_level == 0); 3431 3432 /* The objset_phys_t isn't before anything. */ 3433 if (dnp == NULL) 3434 return (B_FALSE); 3435 3436 /* 3437 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 3438 * data block size in sectors, because that variable is only used if 3439 * the bookmark refers to a block in the meta-dnode. Since we don't 3440 * know without examining it what object it refers to, and there's no 3441 * harm in passing in this value in other cases, we always pass it in. 3442 * 3443 * We pass in 0 for the indirect block size shift because zb2 must be 3444 * level 0. The indirect block size is only used to calculate the span 3445 * of the bookmark, but since the bookmark must be level 0, the span is 3446 * always 1, so the math works out. 3447 * 3448 * If you make changes to how the zbookmark_compare code works, be sure 3449 * to make sure that this code still works afterwards. 3450 */ 3451 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 3452 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 3453 last_block) <= 0); 3454 } 3455