1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/dnode.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/kidmap.h> 58 #endif /* _KERNEL */ 59 60 #include <sys/dmu.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/refcount.h> 63 #include <sys/stat.h> 64 #include <sys/zap.h> 65 #include <sys/zfs_znode.h> 66 #include <sys/sa.h> 67 #include <sys/zfs_sa.h> 68 #include <sys/zfs_stat.h> 69 #include <sys/zfs_events.h> 70 #include <zev/zev.h> 71 72 #include "zfs_prop.h" 73 #include "zfs_comutil.h" 74 75 /* 76 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 77 * turned on when DEBUG is also defined. 78 */ 79 #ifdef DEBUG 80 #define ZNODE_STATS 81 #endif /* DEBUG */ 82 83 #ifdef ZNODE_STATS 84 #define ZNODE_STAT_ADD(stat) ((stat)++) 85 #else 86 #define ZNODE_STAT_ADD(stat) /* nothing */ 87 #endif /* ZNODE_STATS */ 88 89 /* 90 * Functions needed for userland (ie: libzpool) are not put under 91 * #ifdef_KERNEL; the rest of the functions have dependencies 92 * (such as VFS logic) that will not compile easily in userland. 93 */ 94 #ifdef _KERNEL 95 /* 96 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 97 * be freed before it can be safely accessed. 98 */ 99 krwlock_t zfsvfs_lock; 100 101 static kmem_cache_t *znode_cache = NULL; 102 103 /*ARGSUSED*/ 104 static void 105 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 106 { 107 /* 108 * We should never drop all dbuf refs without first clearing 109 * the eviction callback. 110 */ 111 panic("evicting znode %p\n", user_ptr); 112 } 113 114 /*ARGSUSED*/ 115 static int 116 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 117 { 118 znode_t *zp = buf; 119 120 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 121 122 zp->z_vnode = vn_alloc(kmflags); 123 if (zp->z_vnode == NULL) { 124 return (-1); 125 } 126 ZTOV(zp)->v_data = zp; 127 128 list_link_init(&zp->z_link_node); 129 130 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 131 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 132 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 133 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 134 135 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 136 avl_create(&zp->z_range_avl, zfs_range_compare, 137 sizeof (rl_t), offsetof(rl_t, r_node)); 138 139 zp->z_dirlocks = NULL; 140 zp->z_acl_cached = NULL; 141 zp->z_moved = 0; 142 return (0); 143 } 144 145 /*ARGSUSED*/ 146 static void 147 zfs_znode_cache_destructor(void *buf, void *arg) 148 { 149 znode_t *zp = buf; 150 151 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 152 ASSERT(ZTOV(zp)->v_data == zp); 153 vn_free(ZTOV(zp)); 154 ASSERT(!list_link_active(&zp->z_link_node)); 155 mutex_destroy(&zp->z_lock); 156 rw_destroy(&zp->z_parent_lock); 157 rw_destroy(&zp->z_name_lock); 158 mutex_destroy(&zp->z_acl_lock); 159 avl_destroy(&zp->z_range_avl); 160 mutex_destroy(&zp->z_range_lock); 161 162 ASSERT(zp->z_dirlocks == NULL); 163 ASSERT(zp->z_acl_cached == NULL); 164 } 165 166 #ifdef ZNODE_STATS 167 static struct { 168 uint64_t zms_zfsvfs_invalid; 169 uint64_t zms_zfsvfs_recheck1; 170 uint64_t zms_zfsvfs_unmounted; 171 uint64_t zms_zfsvfs_recheck2; 172 uint64_t zms_obj_held; 173 uint64_t zms_vnode_locked; 174 uint64_t zms_not_only_dnlc; 175 } znode_move_stats; 176 #endif /* ZNODE_STATS */ 177 178 static void 179 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 180 { 181 vnode_t *vp; 182 183 /* Copy fields. */ 184 nzp->z_zfsvfs = ozp->z_zfsvfs; 185 186 /* Swap vnodes. */ 187 vp = nzp->z_vnode; 188 nzp->z_vnode = ozp->z_vnode; 189 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 190 ZTOV(ozp)->v_data = ozp; 191 ZTOV(nzp)->v_data = nzp; 192 193 nzp->z_id = ozp->z_id; 194 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 195 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 196 nzp->z_unlinked = ozp->z_unlinked; 197 nzp->z_atime_dirty = ozp->z_atime_dirty; 198 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 199 nzp->z_blksz = ozp->z_blksz; 200 nzp->z_seq = ozp->z_seq; 201 nzp->z_mapcnt = ozp->z_mapcnt; 202 nzp->z_gen = ozp->z_gen; 203 nzp->z_sync_cnt = ozp->z_sync_cnt; 204 nzp->z_is_sa = ozp->z_is_sa; 205 nzp->z_sa_hdl = ozp->z_sa_hdl; 206 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2); 207 nzp->z_links = ozp->z_links; 208 nzp->z_size = ozp->z_size; 209 nzp->z_pflags = ozp->z_pflags; 210 nzp->z_uid = ozp->z_uid; 211 nzp->z_gid = ozp->z_gid; 212 nzp->z_mode = ozp->z_mode; 213 nzp->z_new_content = ozp->z_new_content; 214 215 /* 216 * Since this is just an idle znode and kmem is already dealing with 217 * memory pressure, release any cached ACL. 218 */ 219 if (ozp->z_acl_cached) { 220 zfs_acl_free(ozp->z_acl_cached); 221 ozp->z_acl_cached = NULL; 222 } 223 224 sa_set_userp(nzp->z_sa_hdl, nzp); 225 226 /* 227 * Invalidate the original znode by clearing fields that provide a 228 * pointer back to the znode. Set the low bit of the vfs pointer to 229 * ensure that zfs_znode_move() recognizes the znode as invalid in any 230 * subsequent callback. 231 */ 232 ozp->z_sa_hdl = NULL; 233 POINTER_INVALIDATE(&ozp->z_zfsvfs); 234 235 /* 236 * Mark the znode. 237 */ 238 nzp->z_moved = 1; 239 ozp->z_moved = (uint8_t)-1; 240 } 241 242 /*ARGSUSED*/ 243 static kmem_cbrc_t 244 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 245 { 246 znode_t *ozp = buf, *nzp = newbuf; 247 zfsvfs_t *zfsvfs; 248 vnode_t *vp; 249 250 /* 251 * The znode is on the file system's list of known znodes if the vfs 252 * pointer is valid. We set the low bit of the vfs pointer when freeing 253 * the znode to invalidate it, and the memory patterns written by kmem 254 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 255 * created znode sets the vfs pointer last of all to indicate that the 256 * znode is known and in a valid state to be moved by this function. 257 */ 258 zfsvfs = ozp->z_zfsvfs; 259 if (!POINTER_IS_VALID(zfsvfs)) { 260 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 261 return (KMEM_CBRC_DONT_KNOW); 262 } 263 264 /* 265 * Close a small window in which it's possible that the filesystem could 266 * be unmounted and freed, and zfsvfs, though valid in the previous 267 * statement, could point to unrelated memory by the time we try to 268 * prevent the filesystem from being unmounted. 269 */ 270 rw_enter(&zfsvfs_lock, RW_WRITER); 271 if (zfsvfs != ozp->z_zfsvfs) { 272 rw_exit(&zfsvfs_lock); 273 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 274 return (KMEM_CBRC_DONT_KNOW); 275 } 276 277 /* 278 * If the znode is still valid, then so is the file system. We know that 279 * no valid file system can be freed while we hold zfsvfs_lock, so we 280 * can safely ensure that the filesystem is not and will not be 281 * unmounted. The next statement is equivalent to ZFS_ENTER(). 282 */ 283 rrm_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 284 if (zfsvfs->z_unmounted) { 285 ZFS_EXIT(zfsvfs); 286 rw_exit(&zfsvfs_lock); 287 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 288 return (KMEM_CBRC_DONT_KNOW); 289 } 290 rw_exit(&zfsvfs_lock); 291 292 mutex_enter(&zfsvfs->z_znodes_lock); 293 /* 294 * Recheck the vfs pointer in case the znode was removed just before 295 * acquiring the lock. 296 */ 297 if (zfsvfs != ozp->z_zfsvfs) { 298 mutex_exit(&zfsvfs->z_znodes_lock); 299 ZFS_EXIT(zfsvfs); 300 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 301 return (KMEM_CBRC_DONT_KNOW); 302 } 303 304 /* 305 * At this point we know that as long as we hold z_znodes_lock, the 306 * znode cannot be freed and fields within the znode can be safely 307 * accessed. Now, prevent a race with zfs_zget(). 308 */ 309 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 310 mutex_exit(&zfsvfs->z_znodes_lock); 311 ZFS_EXIT(zfsvfs); 312 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 313 return (KMEM_CBRC_LATER); 314 } 315 316 vp = ZTOV(ozp); 317 if (mutex_tryenter(&vp->v_lock) == 0) { 318 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 319 mutex_exit(&zfsvfs->z_znodes_lock); 320 ZFS_EXIT(zfsvfs); 321 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 322 return (KMEM_CBRC_LATER); 323 } 324 325 /* Only move znodes that are referenced _only_ by the DNLC. */ 326 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 327 mutex_exit(&vp->v_lock); 328 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 329 mutex_exit(&zfsvfs->z_znodes_lock); 330 ZFS_EXIT(zfsvfs); 331 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 332 return (KMEM_CBRC_LATER); 333 } 334 335 /* 336 * The znode is known and in a valid state to move. We're holding the 337 * locks needed to execute the critical section. 338 */ 339 zfs_znode_move_impl(ozp, nzp); 340 mutex_exit(&vp->v_lock); 341 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 342 343 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 344 mutex_exit(&zfsvfs->z_znodes_lock); 345 ZFS_EXIT(zfsvfs); 346 347 return (KMEM_CBRC_YES); 348 } 349 350 void 351 zfs_znode_init(void) 352 { 353 /* 354 * Initialize zcache 355 */ 356 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 357 ASSERT(znode_cache == NULL); 358 znode_cache = kmem_cache_create("zfs_znode_cache", 359 sizeof (znode_t), 0, zfs_znode_cache_constructor, 360 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 361 kmem_cache_set_move(znode_cache, zfs_znode_move); 362 } 363 364 void 365 zfs_znode_fini(void) 366 { 367 /* 368 * Cleanup vfs & vnode ops 369 */ 370 zfs_remove_op_tables(); 371 372 /* 373 * Cleanup zcache 374 */ 375 if (znode_cache) 376 kmem_cache_destroy(znode_cache); 377 znode_cache = NULL; 378 rw_destroy(&zfsvfs_lock); 379 } 380 381 struct vnodeops *zfs_dvnodeops; 382 struct vnodeops *zfs_fvnodeops; 383 struct vnodeops *zfs_symvnodeops; 384 struct vnodeops *zfs_xdvnodeops; 385 struct vnodeops *zfs_evnodeops; 386 struct vnodeops *zfs_sharevnodeops; 387 388 void 389 zfs_remove_op_tables() 390 { 391 /* 392 * Remove vfs ops 393 */ 394 ASSERT(zfsfstype); 395 (void) vfs_freevfsops_by_type(zfsfstype); 396 zfsfstype = 0; 397 398 /* 399 * Remove vnode ops 400 */ 401 if (zfs_dvnodeops) 402 vn_freevnodeops(zfs_dvnodeops); 403 if (zfs_fvnodeops) 404 vn_freevnodeops(zfs_fvnodeops); 405 if (zfs_symvnodeops) 406 vn_freevnodeops(zfs_symvnodeops); 407 if (zfs_xdvnodeops) 408 vn_freevnodeops(zfs_xdvnodeops); 409 if (zfs_evnodeops) 410 vn_freevnodeops(zfs_evnodeops); 411 if (zfs_sharevnodeops) 412 vn_freevnodeops(zfs_sharevnodeops); 413 414 zfs_dvnodeops = NULL; 415 zfs_fvnodeops = NULL; 416 zfs_symvnodeops = NULL; 417 zfs_xdvnodeops = NULL; 418 zfs_evnodeops = NULL; 419 zfs_sharevnodeops = NULL; 420 } 421 422 extern const fs_operation_def_t zfs_dvnodeops_template[]; 423 extern const fs_operation_def_t zfs_fvnodeops_template[]; 424 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 425 extern const fs_operation_def_t zfs_symvnodeops_template[]; 426 extern const fs_operation_def_t zfs_evnodeops_template[]; 427 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 428 429 int 430 zfs_create_op_tables() 431 { 432 int error; 433 434 /* 435 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 436 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 437 * In this case we just return as the ops vectors are already set up. 438 */ 439 if (zfs_dvnodeops) 440 return (0); 441 442 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 443 &zfs_dvnodeops); 444 if (error) 445 return (error); 446 447 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 448 &zfs_fvnodeops); 449 if (error) 450 return (error); 451 452 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 453 &zfs_symvnodeops); 454 if (error) 455 return (error); 456 457 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 458 &zfs_xdvnodeops); 459 if (error) 460 return (error); 461 462 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 463 &zfs_evnodeops); 464 if (error) 465 return (error); 466 467 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 468 &zfs_sharevnodeops); 469 470 return (error); 471 } 472 473 int 474 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 475 { 476 zfs_acl_ids_t acl_ids; 477 vattr_t vattr; 478 znode_t *sharezp; 479 vnode_t *vp; 480 znode_t *zp; 481 int error; 482 483 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 484 vattr.va_type = VDIR; 485 vattr.va_mode = S_IFDIR|0555; 486 vattr.va_uid = crgetuid(kcred); 487 vattr.va_gid = crgetgid(kcred); 488 489 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 490 ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs)); 491 sharezp->z_moved = 0; 492 sharezp->z_unlinked = 0; 493 sharezp->z_atime_dirty = 0; 494 sharezp->z_zfsvfs = zfsvfs; 495 sharezp->z_is_sa = zfsvfs->z_use_sa; 496 497 vp = ZTOV(sharezp); 498 vn_reinit(vp); 499 vp->v_type = VDIR; 500 501 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 502 kcred, NULL, &acl_ids)); 503 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); 504 ASSERT3P(zp, ==, sharezp); 505 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 506 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 507 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 508 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 509 zfsvfs->z_shares_dir = sharezp->z_id; 510 511 zfs_acl_ids_free(&acl_ids); 512 ZTOV(sharezp)->v_count = 0; 513 sa_handle_destroy(sharezp->z_sa_hdl); 514 kmem_cache_free(znode_cache, sharezp); 515 516 return (error); 517 } 518 519 /* 520 * define a couple of values we need available 521 * for both 64 and 32 bit environments. 522 */ 523 #ifndef NBITSMINOR64 524 #define NBITSMINOR64 32 525 #endif 526 #ifndef MAXMAJ64 527 #define MAXMAJ64 0xffffffffUL 528 #endif 529 #ifndef MAXMIN64 530 #define MAXMIN64 0xffffffffUL 531 #endif 532 533 /* 534 * Create special expldev for ZFS private use. 535 * Can't use standard expldev since it doesn't do 536 * what we want. The standard expldev() takes a 537 * dev32_t in LP64 and expands it to a long dev_t. 538 * We need an interface that takes a dev32_t in ILP32 539 * and expands it to a long dev_t. 540 */ 541 static uint64_t 542 zfs_expldev(dev_t dev) 543 { 544 #ifndef _LP64 545 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 546 return (((uint64_t)major << NBITSMINOR64) | 547 ((minor_t)dev & MAXMIN32)); 548 #else 549 return (dev); 550 #endif 551 } 552 553 /* 554 * Special cmpldev for ZFS private use. 555 * Can't use standard cmpldev since it takes 556 * a long dev_t and compresses it to dev32_t in 557 * LP64. We need to do a compaction of a long dev_t 558 * to a dev32_t in ILP32. 559 */ 560 dev_t 561 zfs_cmpldev(uint64_t dev) 562 { 563 #ifndef _LP64 564 minor_t minor = (minor_t)dev & MAXMIN64; 565 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 566 567 if (major > MAXMAJ32 || minor > MAXMIN32) 568 return (NODEV32); 569 570 return (((dev32_t)major << NBITSMINOR32) | minor); 571 #else 572 return (dev); 573 #endif 574 } 575 576 static void 577 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, 578 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) 579 { 580 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 581 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 582 583 mutex_enter(&zp->z_lock); 584 585 ASSERT(zp->z_sa_hdl == NULL); 586 ASSERT(zp->z_acl_cached == NULL); 587 if (sa_hdl == NULL) { 588 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp, 589 SA_HDL_SHARED, &zp->z_sa_hdl)); 590 } else { 591 zp->z_sa_hdl = sa_hdl; 592 sa_set_userp(sa_hdl, zp); 593 } 594 595 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; 596 597 /* 598 * Slap on VROOT if we are the root znode 599 */ 600 if (zp->z_id == zfsvfs->z_root) 601 ZTOV(zp)->v_flag |= VROOT; 602 603 mutex_exit(&zp->z_lock); 604 vn_exists(ZTOV(zp)); 605 } 606 607 void 608 zfs_znode_dmu_fini(znode_t *zp) 609 { 610 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 611 zp->z_unlinked || 612 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 613 614 sa_handle_destroy(zp->z_sa_hdl); 615 zp->z_sa_hdl = NULL; 616 } 617 618 /* 619 * Construct a new znode/vnode and intialize. 620 * 621 * This does not do a call to dmu_set_user() that is 622 * up to the caller to do, in case you don't want to 623 * return the znode 624 */ 625 static znode_t * 626 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, 627 dmu_object_type_t obj_type, sa_handle_t *hdl) 628 { 629 znode_t *zp; 630 vnode_t *vp; 631 uint64_t mode; 632 uint64_t parent; 633 sa_bulk_attr_t bulk[9]; 634 int count = 0; 635 636 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 637 638 ASSERT(zp->z_dirlocks == NULL); 639 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 640 zp->z_moved = 0; 641 642 /* 643 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 644 * the zfs_znode_move() callback. 645 */ 646 zp->z_sa_hdl = NULL; 647 zp->z_unlinked = 0; 648 zp->z_atime_dirty = 0; 649 zp->z_mapcnt = 0; 650 zp->z_id = db->db_object; 651 zp->z_blksz = blksz; 652 zp->z_seq = 0x7A4653; 653 zp->z_sync_cnt = 0; 654 zp->z_new_content = 0; 655 656 vp = ZTOV(zp); 657 vn_reinit(vp); 658 659 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); 660 661 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); 662 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); 663 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 664 &zp->z_size, 8); 665 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 666 &zp->z_links, 8); 667 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 668 &zp->z_pflags, 8); 669 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); 670 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 671 &zp->z_atime, 16); 672 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 673 &zp->z_uid, 8); 674 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 675 &zp->z_gid, 8); 676 677 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) { 678 if (hdl == NULL) 679 sa_handle_destroy(zp->z_sa_hdl); 680 kmem_cache_free(znode_cache, zp); 681 return (NULL); 682 } 683 684 zp->z_mode = mode; 685 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 686 687 vp->v_type = IFTOVT((mode_t)mode); 688 689 switch (vp->v_type) { 690 case VDIR: 691 if (zp->z_pflags & ZFS_XATTR) { 692 vn_setops(vp, zfs_xdvnodeops); 693 vp->v_flag |= V_XATTRDIR; 694 } else { 695 vn_setops(vp, zfs_dvnodeops); 696 } 697 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 698 break; 699 case VBLK: 700 case VCHR: 701 { 702 uint64_t rdev; 703 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), 704 &rdev, sizeof (rdev)) == 0); 705 706 vp->v_rdev = zfs_cmpldev(rdev); 707 } 708 /*FALLTHROUGH*/ 709 case VFIFO: 710 case VSOCK: 711 case VDOOR: 712 vn_setops(vp, zfs_fvnodeops); 713 break; 714 case VREG: 715 vp->v_flag |= VMODSORT; 716 if (parent == zfsvfs->z_shares_dir) { 717 ASSERT(zp->z_uid == 0 && zp->z_gid == 0); 718 vn_setops(vp, zfs_sharevnodeops); 719 } else { 720 vn_setops(vp, zfs_fvnodeops); 721 } 722 break; 723 case VLNK: 724 vn_setops(vp, zfs_symvnodeops); 725 break; 726 default: 727 vn_setops(vp, zfs_evnodeops); 728 break; 729 } 730 731 mutex_enter(&zfsvfs->z_znodes_lock); 732 list_insert_tail(&zfsvfs->z_all_znodes, zp); 733 membar_producer(); 734 /* 735 * Everything else must be valid before assigning z_zfsvfs makes the 736 * znode eligible for zfs_znode_move(). 737 */ 738 zp->z_zfsvfs = zfsvfs; 739 mutex_exit(&zfsvfs->z_znodes_lock); 740 741 VFS_HOLD(zfsvfs->z_vfs); 742 return (zp); 743 } 744 745 static uint64_t empty_xattr; 746 static uint64_t pad[4]; 747 static zfs_acl_phys_t acl_phys; 748 /* 749 * Create a new DMU object to hold a zfs znode. 750 * 751 * IN: dzp - parent directory for new znode 752 * vap - file attributes for new znode 753 * tx - dmu transaction id for zap operations 754 * cr - credentials of caller 755 * flag - flags: 756 * IS_ROOT_NODE - new object will be root 757 * IS_XATTR - new object is an attribute 758 * bonuslen - length of bonus buffer 759 * setaclp - File/Dir initial ACL 760 * fuidp - Tracks fuid allocation. 761 * 762 * OUT: zpp - allocated znode 763 * 764 */ 765 void 766 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 767 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) 768 { 769 uint64_t crtime[2], atime[2], mtime[2], ctime[2]; 770 uint64_t mode, size, links, parent, pflags; 771 uint64_t dzp_pflags = 0; 772 uint64_t rdev = 0; 773 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 774 dmu_buf_t *db; 775 timestruc_t now; 776 uint64_t gen, obj; 777 int bonuslen; 778 sa_handle_t *sa_hdl; 779 dmu_object_type_t obj_type; 780 sa_bulk_attr_t sa_attrs[ZPL_END]; 781 int cnt = 0; 782 zfs_acl_locator_cb_t locate = { 0 }; 783 784 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 785 786 if (zfsvfs->z_replay) { 787 obj = vap->va_nodeid; 788 now = vap->va_ctime; /* see zfs_replay_create() */ 789 gen = vap->va_nblocks; /* ditto */ 790 } else { 791 obj = 0; 792 gethrestime(&now); 793 gen = dmu_tx_get_txg(tx); 794 } 795 796 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; 797 bonuslen = (obj_type == DMU_OT_SA) ? 798 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE; 799 800 /* 801 * Create a new DMU object. 802 */ 803 /* 804 * There's currently no mechanism for pre-reading the blocks that will 805 * be needed to allocate a new object, so we accept the small chance 806 * that there will be an i/o error and we will fail one of the 807 * assertions below. 808 */ 809 if (vap->va_type == VDIR) { 810 if (zfsvfs->z_replay) { 811 VERIFY0(zap_create_claim_norm(zfsvfs->z_os, obj, 812 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 813 obj_type, bonuslen, tx)); 814 } else { 815 obj = zap_create_norm(zfsvfs->z_os, 816 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 817 obj_type, bonuslen, tx); 818 } 819 } else { 820 if (zfsvfs->z_replay) { 821 VERIFY0(dmu_object_claim(zfsvfs->z_os, obj, 822 DMU_OT_PLAIN_FILE_CONTENTS, 0, 823 obj_type, bonuslen, tx)); 824 } else { 825 obj = dmu_object_alloc(zfsvfs->z_os, 826 DMU_OT_PLAIN_FILE_CONTENTS, 0, 827 obj_type, bonuslen, tx); 828 } 829 } 830 831 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 832 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); 833 834 /* 835 * If this is the root, fix up the half-initialized parent pointer 836 * to reference the just-allocated physical data area. 837 */ 838 if (flag & IS_ROOT_NODE) { 839 dzp->z_id = obj; 840 } else { 841 dzp_pflags = dzp->z_pflags; 842 } 843 844 /* 845 * If parent is an xattr, so am I. 846 */ 847 if (dzp_pflags & ZFS_XATTR) { 848 flag |= IS_XATTR; 849 } 850 851 if (zfsvfs->z_use_fuids) 852 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 853 else 854 pflags = 0; 855 856 if (vap->va_type == VDIR) { 857 size = 2; /* contents ("." and "..") */ 858 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 859 } else { 860 size = links = 0; 861 } 862 863 if (vap->va_type == VBLK || vap->va_type == VCHR) { 864 rdev = zfs_expldev(vap->va_rdev); 865 } 866 867 parent = dzp->z_id; 868 mode = acl_ids->z_mode; 869 if (flag & IS_XATTR) 870 pflags |= ZFS_XATTR; 871 872 /* 873 * No execs denied will be deterimed when zfs_mode_compute() is called. 874 */ 875 pflags |= acl_ids->z_aclp->z_hints & 876 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| 877 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); 878 879 ZFS_TIME_ENCODE(&now, crtime); 880 ZFS_TIME_ENCODE(&now, ctime); 881 882 if (vap->va_mask & AT_ATIME) { 883 ZFS_TIME_ENCODE(&vap->va_atime, atime); 884 } else { 885 ZFS_TIME_ENCODE(&now, atime); 886 } 887 888 if (vap->va_mask & AT_MTIME) { 889 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 890 } else { 891 ZFS_TIME_ENCODE(&now, mtime); 892 } 893 894 /* Now add in all of the "SA" attributes */ 895 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, 896 &sa_hdl)); 897 898 /* 899 * Setup the array of attributes to be replaced/set on the new file 900 * 901 * order for DMU_OT_ZNODE is critical since it needs to be constructed 902 * in the old znode_phys_t format. Don't change this ordering 903 */ 904 905 if (obj_type == DMU_OT_ZNODE) { 906 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 907 NULL, &atime, 16); 908 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 909 NULL, &mtime, 16); 910 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 911 NULL, &ctime, 16); 912 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 913 NULL, &crtime, 16); 914 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 915 NULL, &gen, 8); 916 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 917 NULL, &mode, 8); 918 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 919 NULL, &size, 8); 920 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 921 NULL, &parent, 8); 922 } else { 923 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 924 NULL, &mode, 8); 925 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 926 NULL, &size, 8); 927 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 928 NULL, &gen, 8); 929 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 930 &acl_ids->z_fuid, 8); 931 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 932 &acl_ids->z_fgid, 8); 933 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 934 NULL, &parent, 8); 935 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 936 NULL, &pflags, 8); 937 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 938 NULL, &atime, 16); 939 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 940 NULL, &mtime, 16); 941 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 942 NULL, &ctime, 16); 943 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 944 NULL, &crtime, 16); 945 } 946 947 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); 948 949 if (obj_type == DMU_OT_ZNODE) { 950 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, 951 &empty_xattr, 8); 952 } 953 if (obj_type == DMU_OT_ZNODE || 954 (vap->va_type == VBLK || vap->va_type == VCHR)) { 955 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), 956 NULL, &rdev, 8); 957 958 } 959 if (obj_type == DMU_OT_ZNODE) { 960 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 961 NULL, &pflags, 8); 962 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 963 &acl_ids->z_fuid, 8); 964 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 965 &acl_ids->z_fgid, 8); 966 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, 967 sizeof (uint64_t) * 4); 968 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, 969 &acl_phys, sizeof (zfs_acl_phys_t)); 970 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { 971 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, 972 &acl_ids->z_aclp->z_acl_count, 8); 973 locate.cb_aclp = acl_ids->z_aclp; 974 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), 975 zfs_acl_data_locator, &locate, 976 acl_ids->z_aclp->z_acl_bytes); 977 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags, 978 acl_ids->z_fuid, acl_ids->z_fgid); 979 } 980 981 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0); 982 983 if (!(flag & IS_ROOT_NODE)) { 984 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl); 985 ASSERT(*zpp != NULL); 986 } else { 987 /* 988 * If we are creating the root node, the "parent" we 989 * passed in is the znode for the root. 990 */ 991 *zpp = dzp; 992 993 (*zpp)->z_sa_hdl = sa_hdl; 994 } 995 996 (*zpp)->z_pflags = pflags; 997 (*zpp)->z_mode = mode; 998 999 if (vap->va_mask & AT_XVATTR) 1000 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx); 1001 1002 if (obj_type == DMU_OT_ZNODE || 1003 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { 1004 VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx)); 1005 } 1006 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1007 } 1008 1009 /* 1010 * Update in-core attributes. It is assumed the caller will be doing an 1011 * sa_bulk_update to push the changes out. 1012 */ 1013 void 1014 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) 1015 { 1016 xoptattr_t *xoap; 1017 1018 xoap = xva_getxoptattr(xvap); 1019 ASSERT(xoap); 1020 1021 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 1022 uint64_t times[2]; 1023 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); 1024 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), 1025 ×, sizeof (times), tx); 1026 XVA_SET_RTN(xvap, XAT_CREATETIME); 1027 } 1028 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 1029 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, 1030 zp->z_pflags, tx); 1031 XVA_SET_RTN(xvap, XAT_READONLY); 1032 } 1033 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 1034 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, 1035 zp->z_pflags, tx); 1036 XVA_SET_RTN(xvap, XAT_HIDDEN); 1037 } 1038 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 1039 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, 1040 zp->z_pflags, tx); 1041 XVA_SET_RTN(xvap, XAT_SYSTEM); 1042 } 1043 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 1044 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, 1045 zp->z_pflags, tx); 1046 XVA_SET_RTN(xvap, XAT_ARCHIVE); 1047 } 1048 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 1049 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, 1050 zp->z_pflags, tx); 1051 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 1052 } 1053 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 1054 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, 1055 zp->z_pflags, tx); 1056 XVA_SET_RTN(xvap, XAT_NOUNLINK); 1057 } 1058 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 1059 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, 1060 zp->z_pflags, tx); 1061 XVA_SET_RTN(xvap, XAT_APPENDONLY); 1062 } 1063 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 1064 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, 1065 zp->z_pflags, tx); 1066 XVA_SET_RTN(xvap, XAT_NODUMP); 1067 } 1068 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 1069 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, 1070 zp->z_pflags, tx); 1071 XVA_SET_RTN(xvap, XAT_OPAQUE); 1072 } 1073 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 1074 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 1075 xoap->xoa_av_quarantined, zp->z_pflags, tx); 1076 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 1077 } 1078 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 1079 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, 1080 zp->z_pflags, tx); 1081 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 1082 } 1083 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 1084 zfs_sa_set_scanstamp(zp, xvap, tx); 1085 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 1086 } 1087 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 1088 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, 1089 zp->z_pflags, tx); 1090 XVA_SET_RTN(xvap, XAT_REPARSE); 1091 } 1092 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 1093 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline, 1094 zp->z_pflags, tx); 1095 XVA_SET_RTN(xvap, XAT_OFFLINE); 1096 } 1097 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 1098 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse, 1099 zp->z_pflags, tx); 1100 XVA_SET_RTN(xvap, XAT_SPARSE); 1101 } 1102 } 1103 1104 int 1105 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 1106 { 1107 dmu_object_info_t doi; 1108 dmu_buf_t *db; 1109 znode_t *zp; 1110 int err; 1111 sa_handle_t *hdl; 1112 1113 *zpp = NULL; 1114 1115 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1116 1117 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1118 if (err) { 1119 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1120 return (err); 1121 } 1122 1123 dmu_object_info_from_db(db, &doi); 1124 if (doi.doi_bonus_type != DMU_OT_SA && 1125 (doi.doi_bonus_type != DMU_OT_ZNODE || 1126 (doi.doi_bonus_type == DMU_OT_ZNODE && 1127 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1128 sa_buf_rele(db, NULL); 1129 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1130 return (SET_ERROR(EINVAL)); 1131 } 1132 1133 hdl = dmu_buf_get_user(db); 1134 if (hdl != NULL) { 1135 zp = sa_get_userdata(hdl); 1136 1137 1138 /* 1139 * Since "SA" does immediate eviction we 1140 * should never find a sa handle that doesn't 1141 * know about the znode. 1142 */ 1143 1144 ASSERT3P(zp, !=, NULL); 1145 1146 mutex_enter(&zp->z_lock); 1147 ASSERT3U(zp->z_id, ==, obj_num); 1148 if (zp->z_unlinked) { 1149 err = SET_ERROR(ENOENT); 1150 } else { 1151 VN_HOLD(ZTOV(zp)); 1152 *zpp = zp; 1153 err = 0; 1154 } 1155 sa_buf_rele(db, NULL); 1156 mutex_exit(&zp->z_lock); 1157 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1158 return (err); 1159 } 1160 1161 /* 1162 * Not found create new znode/vnode 1163 * but only if file exists. 1164 * 1165 * There is a small window where zfs_vget() could 1166 * find this object while a file create is still in 1167 * progress. This is checked for in zfs_znode_alloc() 1168 * 1169 * if zfs_znode_alloc() fails it will drop the hold on the 1170 * bonus buffer. 1171 */ 1172 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, 1173 doi.doi_bonus_type, NULL); 1174 if (zp == NULL) { 1175 err = SET_ERROR(ENOENT); 1176 } else { 1177 *zpp = zp; 1178 } 1179 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1180 return (err); 1181 } 1182 1183 int 1184 zfs_rezget(znode_t *zp) 1185 { 1186 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1187 dmu_object_info_t doi; 1188 dmu_buf_t *db; 1189 uint64_t obj_num = zp->z_id; 1190 uint64_t mode; 1191 sa_bulk_attr_t bulk[8]; 1192 int err; 1193 int count = 0; 1194 uint64_t gen; 1195 1196 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1197 1198 mutex_enter(&zp->z_acl_lock); 1199 if (zp->z_acl_cached) { 1200 zfs_acl_free(zp->z_acl_cached); 1201 zp->z_acl_cached = NULL; 1202 } 1203 1204 mutex_exit(&zp->z_acl_lock); 1205 ASSERT(zp->z_sa_hdl == NULL); 1206 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1207 if (err) { 1208 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1209 return (err); 1210 } 1211 1212 dmu_object_info_from_db(db, &doi); 1213 if (doi.doi_bonus_type != DMU_OT_SA && 1214 (doi.doi_bonus_type != DMU_OT_ZNODE || 1215 (doi.doi_bonus_type == DMU_OT_ZNODE && 1216 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1217 sa_buf_rele(db, NULL); 1218 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1219 return (SET_ERROR(EINVAL)); 1220 } 1221 1222 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); 1223 1224 /* reload cached values */ 1225 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, 1226 &gen, sizeof (gen)); 1227 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1228 &zp->z_size, sizeof (zp->z_size)); 1229 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 1230 &zp->z_links, sizeof (zp->z_links)); 1231 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 1232 &zp->z_pflags, sizeof (zp->z_pflags)); 1233 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 1234 &zp->z_atime, sizeof (zp->z_atime)); 1235 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 1236 &zp->z_uid, sizeof (zp->z_uid)); 1237 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 1238 &zp->z_gid, sizeof (zp->z_gid)); 1239 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 1240 &mode, sizeof (mode)); 1241 1242 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { 1243 zfs_znode_dmu_fini(zp); 1244 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1245 return (SET_ERROR(EIO)); 1246 } 1247 1248 zp->z_mode = mode; 1249 1250 if (gen != zp->z_gen) { 1251 zfs_znode_dmu_fini(zp); 1252 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1253 return (SET_ERROR(EIO)); 1254 } 1255 1256 zp->z_unlinked = (zp->z_links == 0); 1257 zp->z_blksz = doi.doi_data_block_size; 1258 1259 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1260 1261 return (0); 1262 } 1263 1264 void 1265 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1266 { 1267 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1268 objset_t *os = zfsvfs->z_os; 1269 uint64_t obj = zp->z_id; 1270 uint64_t acl_obj = zfs_external_acl(zp); 1271 1272 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1273 if (acl_obj) { 1274 VERIFY(!zp->z_is_sa); 1275 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1276 } 1277 VERIFY(0 == dmu_object_free(os, obj, tx)); 1278 zfs_znode_dmu_fini(zp); 1279 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1280 zfs_znode_free(zp); 1281 } 1282 1283 void 1284 zfs_zinactive(znode_t *zp) 1285 { 1286 vnode_t *vp = ZTOV(zp); 1287 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1288 uint64_t z_id = zp->z_id; 1289 1290 ASSERT(zp->z_sa_hdl); 1291 1292 /* 1293 * Don't allow a zfs_zget() while were trying to release this znode 1294 */ 1295 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1296 1297 mutex_enter(&zp->z_lock); 1298 mutex_enter(&vp->v_lock); 1299 vp->v_count--; 1300 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1301 /* 1302 * If the hold count is greater than zero, somebody has 1303 * obtained a new reference on this znode while we were 1304 * processing it here, so we are done. If we still have 1305 * mapped pages then we are also done, since we don't 1306 * want to inactivate the znode until the pages get pushed. 1307 * 1308 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1309 * this seems like it would leave the znode hanging with 1310 * no chance to go inactive... 1311 */ 1312 mutex_exit(&vp->v_lock); 1313 mutex_exit(&zp->z_lock); 1314 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1315 return; 1316 } 1317 mutex_exit(&vp->v_lock); 1318 1319 /* 1320 * If this was the last reference to a file with no links, 1321 * remove the file from the file system. 1322 */ 1323 if (zp->z_unlinked) { 1324 mutex_exit(&zp->z_lock); 1325 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1326 zfs_rmnode(zp); 1327 return; 1328 } 1329 1330 mutex_exit(&zp->z_lock); 1331 zfs_znode_dmu_fini(zp); 1332 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1333 zfs_znode_free(zp); 1334 } 1335 1336 void 1337 zfs_znode_free(znode_t *zp) 1338 { 1339 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1340 1341 vn_invalid(ZTOV(zp)); 1342 1343 ASSERT(ZTOV(zp)->v_count == 0); 1344 1345 mutex_enter(&zfsvfs->z_znodes_lock); 1346 POINTER_INVALIDATE(&zp->z_zfsvfs); 1347 list_remove(&zfsvfs->z_all_znodes, zp); 1348 mutex_exit(&zfsvfs->z_znodes_lock); 1349 1350 if (zp->z_acl_cached) { 1351 zfs_acl_free(zp->z_acl_cached); 1352 zp->z_acl_cached = NULL; 1353 } 1354 1355 kmem_cache_free(znode_cache, zp); 1356 1357 VFS_RELE(zfsvfs->z_vfs); 1358 } 1359 1360 void 1361 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], 1362 uint64_t ctime[2], boolean_t have_tx) 1363 { 1364 timestruc_t now; 1365 1366 gethrestime(&now); 1367 1368 if (have_tx) { /* will sa_bulk_update happen really soon? */ 1369 zp->z_atime_dirty = 0; 1370 zp->z_seq++; 1371 } else { 1372 zp->z_atime_dirty = 1; 1373 } 1374 1375 if (flag & AT_ATIME) { 1376 ZFS_TIME_ENCODE(&now, zp->z_atime); 1377 } 1378 1379 if (flag & AT_MTIME) { 1380 ZFS_TIME_ENCODE(&now, mtime); 1381 if (zp->z_zfsvfs->z_use_fuids) { 1382 zp->z_pflags |= (ZFS_ARCHIVE | 1383 ZFS_AV_MODIFIED); 1384 } 1385 } 1386 1387 if (flag & AT_CTIME) { 1388 ZFS_TIME_ENCODE(&now, ctime); 1389 if (zp->z_zfsvfs->z_use_fuids) 1390 zp->z_pflags |= ZFS_ARCHIVE; 1391 } 1392 } 1393 1394 /* 1395 * Grow the block size for a file. 1396 * 1397 * IN: zp - znode of file to free data in. 1398 * size - requested block size 1399 * tx - open transaction. 1400 * 1401 * NOTE: this function assumes that the znode is write locked. 1402 */ 1403 void 1404 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1405 { 1406 int error; 1407 u_longlong_t dummy; 1408 1409 if (size <= zp->z_blksz) 1410 return; 1411 /* 1412 * If the file size is already greater than the current blocksize, 1413 * we will not grow. If there is more than one block in a file, 1414 * the blocksize cannot change. 1415 */ 1416 if (zp->z_blksz && zp->z_size > zp->z_blksz) 1417 return; 1418 1419 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1420 size, 0, tx); 1421 1422 if (error == ENOTSUP) 1423 return; 1424 ASSERT0(error); 1425 1426 /* What blocksize did we actually get? */ 1427 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); 1428 } 1429 1430 /* 1431 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1432 * be calling back into the fs for a putpage(). E.g.: when truncating 1433 * a file, the pages being "thrown away* don't need to be written out. 1434 */ 1435 /* ARGSUSED */ 1436 static int 1437 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1438 int flags, cred_t *cr) 1439 { 1440 ASSERT(0); 1441 return (0); 1442 } 1443 1444 /* 1445 * Increase the file length 1446 * 1447 * IN: zp - znode of file to free data in. 1448 * end - new end-of-file 1449 * 1450 * RETURN: 0 on success, error code on failure 1451 */ 1452 static int 1453 zfs_extend(znode_t *zp, uint64_t end) 1454 { 1455 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1456 dmu_tx_t *tx; 1457 rl_t *rl; 1458 uint64_t newblksz; 1459 int error; 1460 1461 /* 1462 * We will change zp_size, lock the whole file. 1463 */ 1464 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1465 1466 /* 1467 * Nothing to do if file already at desired length. 1468 */ 1469 if (end <= zp->z_size) { 1470 zfs_range_unlock(rl); 1471 return (0); 1472 } 1473 tx = dmu_tx_create(zfsvfs->z_os); 1474 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1475 zfs_sa_upgrade_txholds(tx, zp); 1476 if (end > zp->z_blksz && 1477 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1478 /* 1479 * We are growing the file past the current block size. 1480 */ 1481 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1482 /* 1483 * File's blocksize is already larger than the 1484 * "recordsize" property. Only let it grow to 1485 * the next power of 2. 1486 */ 1487 ASSERT(!ISP2(zp->z_blksz)); 1488 newblksz = MIN(end, 1 << highbit64(zp->z_blksz)); 1489 } else { 1490 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1491 } 1492 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1493 } else { 1494 newblksz = 0; 1495 } 1496 1497 error = dmu_tx_assign(tx, TXG_WAIT); 1498 if (error) { 1499 dmu_tx_abort(tx); 1500 zfs_range_unlock(rl); 1501 return (error); 1502 } 1503 1504 if (newblksz) 1505 zfs_grow_blocksize(zp, newblksz, tx); 1506 1507 zp->z_size = end; 1508 1509 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1510 &zp->z_size, sizeof (zp->z_size), tx)); 1511 1512 zfs_range_unlock(rl); 1513 1514 dmu_tx_commit(tx); 1515 1516 return (0); 1517 } 1518 1519 /* 1520 * Free space in a file. 1521 * 1522 * IN: zp - znode of file to free data in. 1523 * off - start of section to free. 1524 * len - length of section to free. 1525 * 1526 * RETURN: 0 on success, error code on failure 1527 */ 1528 static int 1529 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1530 { 1531 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1532 rl_t *rl; 1533 int error; 1534 ssize_t lock_off; 1535 ssize_t lock_len; 1536 1537 #ifdef _KERNEL 1538 /* 1539 * Lock the range being freed. 1540 */ 1541 if (rz_zev_active()) { 1542 /* start of this megabyte */ 1543 lock_off = P2ALIGN(off, ZEV_L1_SIZE); 1544 /* full megabytes */ 1545 lock_len = len + (off - lock_off); 1546 lock_len = P2ROUNDUP(lock_len, ZEV_L1_SIZE); 1547 } else { 1548 lock_off = off; 1549 lock_len = len; 1550 } 1551 #else 1552 lock_off = off; 1553 lock_len = len; 1554 #endif 1555 rl = zfs_range_lock(zp, lock_off, lock_len, RL_WRITER); 1556 1557 /* 1558 * Nothing to do if file already at desired length. 1559 */ 1560 if (off >= zp->z_size) { 1561 zfs_range_unlock(rl); 1562 return (0); 1563 } 1564 1565 if (off + len > zp->z_size) 1566 len = zp->z_size - off; 1567 1568 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1569 1570 zfs_range_unlock(rl); 1571 1572 return (error); 1573 } 1574 1575 /* 1576 * Truncate a file 1577 * 1578 * IN: zp - znode of file to free data in. 1579 * end - new end-of-file. 1580 * 1581 * RETURN: 0 on success, error code on failure 1582 */ 1583 static int 1584 zfs_trunc(znode_t *zp, uint64_t end) 1585 { 1586 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1587 vnode_t *vp = ZTOV(zp); 1588 dmu_tx_t *tx; 1589 rl_t *rl; 1590 int error; 1591 sa_bulk_attr_t bulk[2]; 1592 int count = 0; 1593 1594 /* 1595 * We will change zp_size, lock the whole file. 1596 */ 1597 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1598 1599 /* 1600 * Nothing to do if file already at desired length. 1601 */ 1602 if (end >= zp->z_size) { 1603 zfs_range_unlock(rl); 1604 return (0); 1605 } 1606 1607 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1608 if (error) { 1609 zfs_range_unlock(rl); 1610 return (error); 1611 } 1612 tx = dmu_tx_create(zfsvfs->z_os); 1613 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1614 zfs_sa_upgrade_txholds(tx, zp); 1615 dmu_tx_mark_netfree(tx); 1616 error = dmu_tx_assign(tx, TXG_WAIT); 1617 if (error) { 1618 dmu_tx_abort(tx); 1619 zfs_range_unlock(rl); 1620 return (error); 1621 } 1622 1623 zp->z_size = end; 1624 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), 1625 NULL, &zp->z_size, sizeof (zp->z_size)); 1626 1627 if (end == 0) { 1628 zp->z_pflags &= ~ZFS_SPARSE; 1629 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1630 NULL, &zp->z_pflags, 8); 1631 } 1632 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0); 1633 1634 dmu_tx_commit(tx); 1635 1636 /* 1637 * Clear any mapped pages in the truncated region. This has to 1638 * happen outside of the transaction to avoid the possibility of 1639 * a deadlock with someone trying to push a page that we are 1640 * about to invalidate. 1641 */ 1642 if (vn_has_cached_data(vp)) { 1643 page_t *pp; 1644 uint64_t start = end & PAGEMASK; 1645 int poff = end & PAGEOFFSET; 1646 1647 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1648 /* 1649 * We need to zero a partial page. 1650 */ 1651 pagezero(pp, poff, PAGESIZE - poff); 1652 start += PAGESIZE; 1653 page_unlock(pp); 1654 } 1655 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1656 B_INVAL | B_TRUNC, NULL); 1657 ASSERT(error == 0); 1658 } 1659 1660 zfs_range_unlock(rl); 1661 1662 return (0); 1663 } 1664 1665 /* 1666 * Free space in a file 1667 * 1668 * IN: zp - znode of file to free data in. 1669 * off - start of range 1670 * len - end of range (0 => EOF) 1671 * flag - current file open mode flags. 1672 * log - TRUE if this action should be logged 1673 * 1674 * RETURN: 0 on success, error code on failure 1675 */ 1676 int 1677 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1678 { 1679 vnode_t *vp = ZTOV(zp); 1680 dmu_tx_t *tx; 1681 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1682 zilog_t *zilog = zfsvfs->z_log; 1683 uint64_t mode; 1684 uint64_t mtime[2], ctime[2]; 1685 sa_bulk_attr_t bulk[3]; 1686 int count = 0; 1687 int error; 1688 1689 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, 1690 sizeof (mode))) != 0) 1691 return (error); 1692 1693 if (off > zp->z_size) { 1694 error = zfs_extend(zp, off+len); 1695 if (error == 0 && log) 1696 goto log; 1697 else 1698 return (error); 1699 } 1700 1701 /* 1702 * Check for any locks in the region to be freed. 1703 */ 1704 1705 if (MANDLOCK(vp, (mode_t)mode)) { 1706 uint64_t length = (len ? len : zp->z_size - off); 1707 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1708 return (error); 1709 } 1710 1711 if (len == 0) { 1712 error = zfs_trunc(zp, off); 1713 } else { 1714 if ((error = zfs_free_range(zp, off, len)) == 0 && 1715 off + len > zp->z_size) 1716 error = zfs_extend(zp, off+len); 1717 } 1718 if (error || !log) 1719 return (error); 1720 log: 1721 tx = dmu_tx_create(zfsvfs->z_os); 1722 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1723 zfs_sa_upgrade_txholds(tx, zp); 1724 error = dmu_tx_assign(tx, TXG_WAIT); 1725 if (error) { 1726 dmu_tx_abort(tx); 1727 return (error); 1728 } 1729 1730 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); 1731 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); 1732 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1733 NULL, &zp->z_pflags, 8); 1734 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); 1735 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1736 ASSERT(error == 0); 1737 1738 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1739 1740 dmu_tx_commit(tx); 1741 return (0); 1742 } 1743 1744 void 1745 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1746 { 1747 uint64_t moid, obj, sa_obj, version; 1748 uint64_t sense = ZFS_CASE_SENSITIVE; 1749 uint64_t norm = 0; 1750 nvpair_t *elem; 1751 int error; 1752 int i; 1753 znode_t *rootzp = NULL; 1754 zfsvfs_t *zfsvfs; 1755 vnode_t *vp; 1756 vattr_t vattr; 1757 znode_t *zp; 1758 zfs_acl_ids_t acl_ids; 1759 1760 /* 1761 * First attempt to create master node. 1762 */ 1763 /* 1764 * In an empty objset, there are no blocks to read and thus 1765 * there can be no i/o errors (which we assert below). 1766 */ 1767 moid = MASTER_NODE_OBJ; 1768 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1769 DMU_OT_NONE, 0, tx); 1770 ASSERT(error == 0); 1771 1772 /* 1773 * Set starting attributes. 1774 */ 1775 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); 1776 elem = NULL; 1777 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1778 /* For the moment we expect all zpl props to be uint64_ts */ 1779 uint64_t val; 1780 char *name; 1781 1782 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1783 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1784 name = nvpair_name(elem); 1785 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1786 if (val < version) 1787 version = val; 1788 } else { 1789 error = zap_update(os, moid, name, 8, 1, &val, tx); 1790 } 1791 ASSERT(error == 0); 1792 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1793 norm = val; 1794 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1795 sense = val; 1796 } 1797 ASSERT(version != 0); 1798 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1799 1800 /* 1801 * Create zap object used for SA attribute registration 1802 */ 1803 1804 if (version >= ZPL_VERSION_SA) { 1805 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 1806 DMU_OT_NONE, 0, tx); 1807 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 1808 ASSERT(error == 0); 1809 } else { 1810 sa_obj = 0; 1811 } 1812 /* 1813 * Create a delete queue. 1814 */ 1815 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1816 1817 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1818 ASSERT(error == 0); 1819 1820 /* 1821 * Create root znode. Create minimal znode/vnode/zfsvfs 1822 * to allow zfs_mknode to work. 1823 */ 1824 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1825 vattr.va_type = VDIR; 1826 vattr.va_mode = S_IFDIR|0755; 1827 vattr.va_uid = crgetuid(cr); 1828 vattr.va_gid = crgetgid(cr); 1829 1830 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1831 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1832 rootzp->z_moved = 0; 1833 rootzp->z_unlinked = 0; 1834 rootzp->z_atime_dirty = 0; 1835 rootzp->z_is_sa = USE_SA(version, os); 1836 1837 vp = ZTOV(rootzp); 1838 vn_reinit(vp); 1839 vp->v_type = VDIR; 1840 1841 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 1842 zfsvfs->z_os = os; 1843 zfsvfs->z_parent = zfsvfs; 1844 zfsvfs->z_version = version; 1845 zfsvfs->z_use_fuids = USE_FUIDS(version, os); 1846 zfsvfs->z_use_sa = USE_SA(version, os); 1847 zfsvfs->z_norm = norm; 1848 1849 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 1850 &zfsvfs->z_attr_table); 1851 1852 ASSERT(error == 0); 1853 1854 /* 1855 * Fold case on file systems that are always or sometimes case 1856 * insensitive. 1857 */ 1858 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1859 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 1860 1861 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1862 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 1863 offsetof(znode_t, z_link_node)); 1864 1865 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1866 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1867 1868 rootzp->z_zfsvfs = zfsvfs; 1869 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1870 cr, NULL, &acl_ids)); 1871 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); 1872 ASSERT3P(zp, ==, rootzp); 1873 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1874 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1875 ASSERT(error == 0); 1876 zfs_acl_ids_free(&acl_ids); 1877 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1878 1879 ZTOV(rootzp)->v_count = 0; 1880 sa_handle_destroy(rootzp->z_sa_hdl); 1881 kmem_cache_free(znode_cache, rootzp); 1882 1883 /* 1884 * Create shares directory 1885 */ 1886 1887 error = zfs_create_share_dir(zfsvfs, tx); 1888 1889 ASSERT(error == 0); 1890 1891 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1892 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1893 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1894 } 1895 1896 #endif /* _KERNEL */ 1897 1898 static int 1899 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table) 1900 { 1901 uint64_t sa_obj = 0; 1902 int error; 1903 1904 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); 1905 if (error != 0 && error != ENOENT) 1906 return (error); 1907 1908 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table); 1909 return (error); 1910 } 1911 1912 static int 1913 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp, 1914 dmu_buf_t **db, void *tag) 1915 { 1916 dmu_object_info_t doi; 1917 int error; 1918 1919 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0) 1920 return (error); 1921 1922 dmu_object_info_from_db(*db, &doi); 1923 if ((doi.doi_bonus_type != DMU_OT_SA && 1924 doi.doi_bonus_type != DMU_OT_ZNODE) || 1925 doi.doi_bonus_type == DMU_OT_ZNODE && 1926 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1927 sa_buf_rele(*db, tag); 1928 return (SET_ERROR(ENOTSUP)); 1929 } 1930 1931 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp); 1932 if (error != 0) { 1933 sa_buf_rele(*db, tag); 1934 return (error); 1935 } 1936 1937 return (0); 1938 } 1939 1940 void 1941 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag) 1942 { 1943 sa_handle_destroy(hdl); 1944 sa_buf_rele(db, tag); 1945 } 1946 1947 /* 1948 * Given an object number, return its parent object number and whether 1949 * or not the object is an extended attribute directory. 1950 */ 1951 static int 1952 zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table, 1953 uint64_t *pobjp, int *is_xattrdir) 1954 { 1955 uint64_t parent; 1956 uint64_t pflags; 1957 uint64_t mode; 1958 uint64_t parent_mode; 1959 sa_bulk_attr_t bulk[3]; 1960 sa_handle_t *sa_hdl; 1961 dmu_buf_t *sa_db; 1962 int count = 0; 1963 int error; 1964 1965 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL, 1966 &parent, sizeof (parent)); 1967 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, 1968 &pflags, sizeof (pflags)); 1969 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1970 &mode, sizeof (mode)); 1971 1972 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) 1973 return (error); 1974 1975 /* 1976 * When a link is removed its parent pointer is not changed and will 1977 * be invalid. There are two cases where a link is removed but the 1978 * file stays around, when it goes to the delete queue and when there 1979 * are additional links. 1980 */ 1981 error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG); 1982 if (error != 0) 1983 return (error); 1984 1985 error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode)); 1986 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 1987 if (error != 0) 1988 return (error); 1989 1990 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); 1991 1992 /* 1993 * Extended attributes can be applied to files, directories, etc. 1994 * Otherwise the parent must be a directory. 1995 */ 1996 if (!*is_xattrdir && !S_ISDIR(parent_mode)) 1997 return (SET_ERROR(EINVAL)); 1998 1999 *pobjp = parent; 2000 2001 return (0); 2002 } 2003 2004 /* 2005 * Given an object number, return some zpl level statistics 2006 */ 2007 static int 2008 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table, 2009 zfs_stat_t *sb) 2010 { 2011 sa_bulk_attr_t bulk[4]; 2012 int count = 0; 2013 2014 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 2015 &sb->zs_mode, sizeof (sb->zs_mode)); 2016 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL, 2017 &sb->zs_gen, sizeof (sb->zs_gen)); 2018 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL, 2019 &sb->zs_links, sizeof (sb->zs_links)); 2020 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL, 2021 &sb->zs_ctime, sizeof (sb->zs_ctime)); 2022 2023 return (sa_bulk_lookup(hdl, bulk, count)); 2024 } 2025 2026 static int 2027 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl, 2028 sa_attr_type_t *sa_table, char *buf, int len) 2029 { 2030 sa_handle_t *sa_hdl; 2031 sa_handle_t *prevhdl = NULL; 2032 dmu_buf_t *prevdb = NULL; 2033 dmu_buf_t *sa_db = NULL; 2034 char *path = buf + len - 1; 2035 int error; 2036 2037 *path = '\0'; 2038 sa_hdl = hdl; 2039 2040 for (;;) { 2041 uint64_t pobj; 2042 char component[MAXNAMELEN + 2]; 2043 size_t complen; 2044 int is_xattrdir; 2045 2046 if (prevdb) 2047 zfs_release_sa_handle(prevhdl, prevdb, FTAG); 2048 2049 if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj, 2050 &is_xattrdir)) != 0) 2051 break; 2052 2053 if (pobj == obj) { 2054 if (path[0] != '/') 2055 *--path = '/'; 2056 break; 2057 } 2058 2059 component[0] = '/'; 2060 if (is_xattrdir) { 2061 (void) sprintf(component + 1, "<xattrdir>"); 2062 } else { 2063 error = zap_value_search(osp, pobj, obj, 2064 ZFS_DIRENT_OBJ(-1ULL), component + 1); 2065 if (error != 0) 2066 break; 2067 } 2068 2069 complen = strlen(component); 2070 path -= complen; 2071 ASSERT(path >= buf); 2072 bcopy(component, path, complen); 2073 obj = pobj; 2074 2075 if (sa_hdl != hdl) { 2076 prevhdl = sa_hdl; 2077 prevdb = sa_db; 2078 } 2079 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG); 2080 if (error != 0) { 2081 sa_hdl = prevhdl; 2082 sa_db = prevdb; 2083 break; 2084 } 2085 } 2086 2087 if (sa_hdl != NULL && sa_hdl != hdl) { 2088 ASSERT(sa_db != NULL); 2089 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 2090 } 2091 2092 if (error == 0) 2093 (void) memmove(buf, path, buf + len - path); 2094 2095 return (error); 2096 } 2097 2098 int 2099 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 2100 { 2101 sa_attr_type_t *sa_table; 2102 sa_handle_t *hdl; 2103 dmu_buf_t *db; 2104 int error; 2105 2106 error = zfs_sa_setup(osp, &sa_table); 2107 if (error != 0) 2108 return (error); 2109 2110 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2111 if (error != 0) 2112 return (error); 2113 2114 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2115 2116 zfs_release_sa_handle(hdl, db, FTAG); 2117 return (error); 2118 } 2119 2120 int 2121 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb, 2122 char *buf, int len) 2123 { 2124 char *path = buf + len - 1; 2125 sa_attr_type_t *sa_table; 2126 sa_handle_t *hdl; 2127 dmu_buf_t *db; 2128 int error; 2129 2130 *path = '\0'; 2131 2132 error = zfs_sa_setup(osp, &sa_table); 2133 if (error != 0) 2134 return (error); 2135 2136 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2137 if (error != 0) 2138 return (error); 2139 2140 error = zfs_obj_to_stats_impl(hdl, sa_table, sb); 2141 if (error != 0) { 2142 zfs_release_sa_handle(hdl, db, FTAG); 2143 return (error); 2144 } 2145 2146 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2147 2148 zfs_release_sa_handle(hdl, db, FTAG); 2149 return (error); 2150 } 2151