xref: /titanic_41/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision d969baeedf6f52b55fa6a4652dc3ffcece71d8ac)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 /* Portions Copyright 2007 Jeremy Teo */
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/taskq.h>
43 #include <sys/uio.h>
44 #include <sys/vmsystm.h>
45 #include <sys/atomic.h>
46 #include <sys/vm.h>
47 #include <vm/seg_vn.h>
48 #include <vm/pvn.h>
49 #include <vm/as.h>
50 #include <vm/kpm.h>
51 #include <vm/seg_kpm.h>
52 #include <sys/mman.h>
53 #include <sys/pathname.h>
54 #include <sys/cmn_err.h>
55 #include <sys/errno.h>
56 #include <sys/unistd.h>
57 #include <sys/zfs_dir.h>
58 #include <sys/zfs_acl.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/dmu.h>
62 #include <sys/dmu_objset.h>
63 #include <sys/spa.h>
64 #include <sys/txg.h>
65 #include <sys/dbuf.h>
66 #include <sys/zap.h>
67 #include <sys/sa.h>
68 #include <sys/dirent.h>
69 #include <sys/policy.h>
70 #include <sys/sunddi.h>
71 #include <sys/filio.h>
72 #include <sys/sid.h>
73 #include "fs/fs_subr.h"
74 #include <sys/zfs_ctldir.h>
75 #include <sys/zfs_fuid.h>
76 #include <sys/zfs_sa.h>
77 #include <sys/dnlc.h>
78 #include <sys/zfs_rlock.h>
79 #include <sys/extdirent.h>
80 #include <sys/kidmap.h>
81 #include <sys/cred.h>
82 #include <sys/attr.h>
83 #include <sys/zfs_events.h>
84 #include <sys/fs/zev.h>
85 
86 /*
87  * Programming rules.
88  *
89  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
90  * properly lock its in-core state, create a DMU transaction, do the work,
91  * record this work in the intent log (ZIL), commit the DMU transaction,
92  * and wait for the intent log to commit if it is a synchronous operation.
93  * Moreover, the vnode ops must work in both normal and log replay context.
94  * The ordering of events is important to avoid deadlocks and references
95  * to freed memory.  The example below illustrates the following Big Rules:
96  *
97  *  (1)	A check must be made in each zfs thread for a mounted file system.
98  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
99  *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
100  *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
101  *	can return EIO from the calling function.
102  *
103  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
104  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
105  *	First, if it's the last reference, the vnode/znode
106  *	can be freed, so the zp may point to freed memory.  Second, the last
107  *	reference will call zfs_zinactive(), which may induce a lot of work --
108  *	pushing cached pages (which acquires range locks) and syncing out
109  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
110  *	which could deadlock the system if you were already holding one.
111  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
112  *
113  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
114  *	as they can span dmu_tx_assign() calls.
115  *
116  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
117  *      dmu_tx_assign().  This is critical because we don't want to block
118  *      while holding locks.
119  *
120  *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
121  *	reduces lock contention and CPU usage when we must wait (note that if
122  *	throughput is constrained by the storage, nearly every transaction
123  *	must wait).
124  *
125  *      Note, in particular, that if a lock is sometimes acquired before
126  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
127  *      to use a non-blocking assign can deadlock the system.  The scenario:
128  *
129  *	Thread A has grabbed a lock before calling dmu_tx_assign().
130  *	Thread B is in an already-assigned tx, and blocks for this lock.
131  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
132  *	forever, because the previous txg can't quiesce until B's tx commits.
133  *
134  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
135  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
136  *	calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
137  *	to indicate that this operation has already called dmu_tx_wait().
138  *	This will ensure that we don't retry forever, waiting a short bit
139  *	each time.
140  *
141  *  (5)	If the operation succeeded, generate the intent log entry for it
142  *	before dropping locks.  This ensures that the ordering of events
143  *	in the intent log matches the order in which they actually occurred.
144  *	During ZIL replay the zfs_log_* functions will update the sequence
145  *	number to indicate the zil transaction has replayed.
146  *
147  *  (6)	At the end of each vnode op, the DMU tx must always commit,
148  *	regardless of whether there were any errors.
149  *
150  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
151  *	to ensure that synchronous semantics are provided when necessary.
152  *
153  * In general, this is how things should be ordered in each vnode op:
154  *
155  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
156  * top:
157  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
158  *	rw_enter(...);			// grab any other locks you need
159  *	tx = dmu_tx_create(...);	// get DMU tx
160  *	dmu_tx_hold_*();		// hold each object you might modify
161  *	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
162  *	if (error) {
163  *		rw_exit(...);		// drop locks
164  *		zfs_dirent_unlock(dl);	// unlock directory entry
165  *		VN_RELE(...);		// release held vnodes
166  *		if (error == ERESTART) {
167  *			waited = B_TRUE;
168  *			dmu_tx_wait(tx);
169  *			dmu_tx_abort(tx);
170  *			goto top;
171  *		}
172  *		dmu_tx_abort(tx);	// abort DMU tx
173  *		ZFS_EXIT(zfsvfs);	// finished in zfs
174  *		return (error);		// really out of space
175  *	}
176  *	error = do_real_work();		// do whatever this VOP does
177  *	if (error == 0)
178  *		zfs_log_*(...);		// on success, make ZIL entry
179  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
180  *	rw_exit(...);			// drop locks
181  *	zfs_dirent_unlock(dl);		// unlock directory entry
182  *	VN_RELE(...);			// release held vnodes
183  *	zil_commit(zilog, foid);	// synchronous when necessary
184  *	ZFS_EXIT(zfsvfs);		// finished in zfs
185  *	return (error);			// done, report error
186  */
187 
188 /* ARGSUSED */
189 static int
190 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
191 {
192 	znode_t	*zp = VTOZ(*vpp);
193 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
194 
195 	ZFS_ENTER(zfsvfs);
196 	ZFS_VERIFY_ZP(zp);
197 
198 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
199 	    ((flag & FAPPEND) == 0)) {
200 		ZFS_EXIT(zfsvfs);
201 		return (SET_ERROR(EPERM));
202 	}
203 
204 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
205 	    ZTOV(zp)->v_type == VREG &&
206 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
207 		if (fs_vscan(*vpp, cr, 0) != 0) {
208 			ZFS_EXIT(zfsvfs);
209 			return (SET_ERROR(EACCES));
210 		}
211 	}
212 
213 	/* Keep a count of the synchronous opens in the znode */
214 	if (flag & (FSYNC | FDSYNC))
215 		atomic_inc_32(&zp->z_sync_cnt);
216 
217 	ZFS_EXIT(zfsvfs);
218 	return (0);
219 }
220 
221 /* ARGSUSED */
222 static int
223 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
224     caller_context_t *ct)
225 {
226 	znode_t	*zp = VTOZ(vp);
227 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
228 
229 	/*
230 	 * Clean up any locks held by this process on the vp.
231 	 */
232 	cleanlocks(vp, ddi_get_pid(), 0);
233 	cleanshares(vp, ddi_get_pid());
234 
235 	ZFS_ENTER(zfsvfs);
236 	ZFS_VERIFY_ZP(zp);
237 
238 	/* Decrement the synchronous opens in the znode */
239 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
240 		atomic_dec_32(&zp->z_sync_cnt);
241 
242 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
243 	    ZTOV(zp)->v_type == VREG &&
244 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
245 		VERIFY(fs_vscan(vp, cr, 1) == 0);
246 
247 	if (ZTOV(zp)->v_type == VREG && zp->z_new_content) {
248 		zp->z_new_content = 0;
249 		rw_enter(&rz_zev_rwlock, RW_READER);
250 		if (rz_zev_callbacks &&
251 		    rz_zev_callbacks->rz_zev_znode_close_after_update)
252 			rz_zev_callbacks->rz_zev_znode_close_after_update(zp);
253 		rw_exit(&rz_zev_rwlock);
254 	}
255 
256 	ZFS_EXIT(zfsvfs);
257 	return (0);
258 }
259 
260 /*
261  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
262  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
263  */
264 static int
265 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
266 {
267 	znode_t	*zp = VTOZ(vp);
268 	uint64_t noff = (uint64_t)*off; /* new offset */
269 	uint64_t file_sz;
270 	int error;
271 	boolean_t hole;
272 
273 	file_sz = zp->z_size;
274 	if (noff >= file_sz)  {
275 		return (SET_ERROR(ENXIO));
276 	}
277 
278 	if (cmd == _FIO_SEEK_HOLE)
279 		hole = B_TRUE;
280 	else
281 		hole = B_FALSE;
282 
283 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
284 
285 	/* end of file? */
286 	if ((error == ESRCH) || (noff > file_sz)) {
287 		/*
288 		 * Handle the virtual hole at the end of file.
289 		 */
290 		if (hole) {
291 			*off = file_sz;
292 			return (0);
293 		}
294 		return (SET_ERROR(ENXIO));
295 	}
296 
297 	if (noff < *off)
298 		return (error);
299 	*off = noff;
300 	return (error);
301 }
302 
303 /* ARGSUSED */
304 static int
305 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
306     int *rvalp, caller_context_t *ct)
307 {
308 	offset_t off;
309 	int error;
310 	zfsvfs_t *zfsvfs;
311 	znode_t *zp;
312 
313 	switch (com) {
314 	case _FIOFFS:
315 		return (zfs_sync(vp->v_vfsp, 0, cred));
316 
317 		/*
318 		 * The following two ioctls are used by bfu.  Faking out,
319 		 * necessary to avoid bfu errors.
320 		 */
321 	case _FIOGDIO:
322 	case _FIOSDIO:
323 		return (0);
324 
325 	case _FIO_SEEK_DATA:
326 	case _FIO_SEEK_HOLE:
327 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
328 			return (SET_ERROR(EFAULT));
329 
330 		zp = VTOZ(vp);
331 		zfsvfs = zp->z_zfsvfs;
332 		ZFS_ENTER(zfsvfs);
333 		ZFS_VERIFY_ZP(zp);
334 
335 		/* offset parameter is in/out */
336 		error = zfs_holey(vp, com, &off);
337 		ZFS_EXIT(zfsvfs);
338 		if (error)
339 			return (error);
340 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
341 			return (SET_ERROR(EFAULT));
342 		return (0);
343 	}
344 	return (SET_ERROR(ENOTTY));
345 }
346 
347 /*
348  * Utility functions to map and unmap a single physical page.  These
349  * are used to manage the mappable copies of ZFS file data, and therefore
350  * do not update ref/mod bits.
351  */
352 caddr_t
353 zfs_map_page(page_t *pp, enum seg_rw rw)
354 {
355 	if (kpm_enable)
356 		return (hat_kpm_mapin(pp, 0));
357 	ASSERT(rw == S_READ || rw == S_WRITE);
358 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
359 	    (caddr_t)-1));
360 }
361 
362 void
363 zfs_unmap_page(page_t *pp, caddr_t addr)
364 {
365 	if (kpm_enable) {
366 		hat_kpm_mapout(pp, 0, addr);
367 	} else {
368 		ppmapout(addr);
369 	}
370 }
371 
372 /*
373  * When a file is memory mapped, we must keep the IO data synchronized
374  * between the DMU cache and the memory mapped pages.  What this means:
375  *
376  * On Write:	If we find a memory mapped page, we write to *both*
377  *		the page and the dmu buffer.
378  */
379 static void
380 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
381 {
382 	int64_t	off;
383 
384 	off = start & PAGEOFFSET;
385 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
386 		page_t *pp;
387 		uint64_t nbytes = MIN(PAGESIZE - off, len);
388 
389 		if (pp = page_lookup(vp, start, SE_SHARED)) {
390 			caddr_t va;
391 
392 			va = zfs_map_page(pp, S_WRITE);
393 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
394 			    DMU_READ_PREFETCH);
395 			zfs_unmap_page(pp, va);
396 			page_unlock(pp);
397 		}
398 		len -= nbytes;
399 		off = 0;
400 	}
401 }
402 
403 /*
404  * When a file is memory mapped, we must keep the IO data synchronized
405  * between the DMU cache and the memory mapped pages.  What this means:
406  *
407  * On Read:	We "read" preferentially from memory mapped pages,
408  *		else we default from the dmu buffer.
409  *
410  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
411  *	 the file is memory mapped.
412  */
413 static int
414 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
415 {
416 	znode_t *zp = VTOZ(vp);
417 	objset_t *os = zp->z_zfsvfs->z_os;
418 	int64_t	start, off;
419 	int len = nbytes;
420 	int error = 0;
421 
422 	start = uio->uio_loffset;
423 	off = start & PAGEOFFSET;
424 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
425 		page_t *pp;
426 		uint64_t bytes = MIN(PAGESIZE - off, len);
427 
428 		if (pp = page_lookup(vp, start, SE_SHARED)) {
429 			caddr_t va;
430 
431 			va = zfs_map_page(pp, S_READ);
432 			error = uiomove(va + off, bytes, UIO_READ, uio);
433 			zfs_unmap_page(pp, va);
434 			page_unlock(pp);
435 		} else {
436 			error = dmu_read_uio(os, zp->z_id, uio, bytes);
437 		}
438 		len -= bytes;
439 		off = 0;
440 		if (error)
441 			break;
442 	}
443 	return (error);
444 }
445 
446 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
447 
448 /*
449  * Read bytes from specified file into supplied buffer.
450  *
451  *	IN:	vp	- vnode of file to be read from.
452  *		uio	- structure supplying read location, range info,
453  *			  and return buffer.
454  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
455  *		cr	- credentials of caller.
456  *		ct	- caller context
457  *
458  *	OUT:	uio	- updated offset and range, buffer filled.
459  *
460  *	RETURN:	0 on success, error code on failure.
461  *
462  * Side Effects:
463  *	vp - atime updated if byte count > 0
464  */
465 /* ARGSUSED */
466 static int
467 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
468 {
469 	znode_t		*zp = VTOZ(vp);
470 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
471 	objset_t	*os;
472 	ssize_t		n, nbytes;
473 	int		error = 0;
474 	rl_t		*rl;
475 	xuio_t		*xuio = NULL;
476 
477 	ZFS_ENTER(zfsvfs);
478 	ZFS_VERIFY_ZP(zp);
479 	os = zfsvfs->z_os;
480 
481 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
482 		ZFS_EXIT(zfsvfs);
483 		return (SET_ERROR(EACCES));
484 	}
485 
486 	/*
487 	 * Validate file offset
488 	 */
489 	if (uio->uio_loffset < (offset_t)0) {
490 		ZFS_EXIT(zfsvfs);
491 		return (SET_ERROR(EINVAL));
492 	}
493 
494 	/*
495 	 * Fasttrack empty reads
496 	 */
497 	if (uio->uio_resid == 0) {
498 		ZFS_EXIT(zfsvfs);
499 		return (0);
500 	}
501 
502 	/*
503 	 * Check for mandatory locks
504 	 */
505 	if (MANDMODE(zp->z_mode)) {
506 		if (error = chklock(vp, FREAD,
507 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
508 			ZFS_EXIT(zfsvfs);
509 			return (error);
510 		}
511 	}
512 
513 	/*
514 	 * If we're in FRSYNC mode, sync out this znode before reading it.
515 	 */
516 	if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
517 		zil_commit(zfsvfs->z_log, zp->z_id);
518 
519 	/*
520 	 * Lock the range against changes.
521 	 */
522 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
523 
524 	/*
525 	 * If we are reading past end-of-file we can skip
526 	 * to the end; but we might still need to set atime.
527 	 */
528 	if (uio->uio_loffset >= zp->z_size) {
529 		error = 0;
530 		goto out;
531 	}
532 
533 	ASSERT(uio->uio_loffset < zp->z_size);
534 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
535 
536 	if ((uio->uio_extflg == UIO_XUIO) &&
537 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
538 		int nblk;
539 		int blksz = zp->z_blksz;
540 		uint64_t offset = uio->uio_loffset;
541 
542 		xuio = (xuio_t *)uio;
543 		if ((ISP2(blksz))) {
544 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
545 			    blksz)) / blksz;
546 		} else {
547 			ASSERT(offset + n <= blksz);
548 			nblk = 1;
549 		}
550 		(void) dmu_xuio_init(xuio, nblk);
551 
552 		if (vn_has_cached_data(vp)) {
553 			/*
554 			 * For simplicity, we always allocate a full buffer
555 			 * even if we only expect to read a portion of a block.
556 			 */
557 			while (--nblk >= 0) {
558 				(void) dmu_xuio_add(xuio,
559 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
560 				    blksz), 0, blksz);
561 			}
562 		}
563 	}
564 
565 	while (n > 0) {
566 		nbytes = MIN(n, zfs_read_chunk_size -
567 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
568 
569 		if (vn_has_cached_data(vp))
570 			error = mappedread(vp, nbytes, uio);
571 		else
572 			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
573 		if (error) {
574 			/* convert checksum errors into IO errors */
575 			if (error == ECKSUM)
576 				error = SET_ERROR(EIO);
577 			break;
578 		}
579 
580 		n -= nbytes;
581 	}
582 out:
583 	zfs_range_unlock(rl);
584 
585 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
586 	ZFS_EXIT(zfsvfs);
587 	return (error);
588 }
589 
590 /*
591  * Write the bytes to a file.
592  *
593  *	IN:	vp	- vnode of file to be written to.
594  *		uio	- structure supplying write location, range info,
595  *			  and data buffer.
596  *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
597  *			  set if in append mode.
598  *		cr	- credentials of caller.
599  *		ct	- caller context (NFS/CIFS fem monitor only)
600  *
601  *	OUT:	uio	- updated offset and range.
602  *
603  *	RETURN:	0 on success, error code on failure.
604  *
605  * Timestamps:
606  *	vp - ctime|mtime updated if byte count > 0
607  */
608 
609 /* ARGSUSED */
610 static int
611 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
612 {
613 	znode_t		*zp = VTOZ(vp);
614 	rlim64_t	limit = uio->uio_llimit;
615 	ssize_t		start_resid = uio->uio_resid;
616 	ssize_t		tx_bytes;
617 	uint64_t	end_size;
618 	dmu_tx_t	*tx;
619 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
620 	zilog_t		*zilog;
621 	offset_t	woff;
622 	ssize_t		n, nbytes;
623 	rl_t		*rl;
624 	int		max_blksz = zfsvfs->z_max_blksz;
625 	int		error = 0;
626 	arc_buf_t	*abuf;
627 	iovec_t		*aiov = NULL;
628 	xuio_t		*xuio = NULL;
629 	int		i_iov = 0;
630 	int		iovcnt = uio->uio_iovcnt;
631 	iovec_t		*iovp = uio->uio_iov;
632 	int		write_eof;
633 	int		count = 0;
634 	sa_bulk_attr_t	bulk[4];
635 	uint64_t	mtime[2], ctime[2];
636 	ssize_t		lock_off, lock_len;
637 
638 	/*
639 	 * Fasttrack empty write
640 	 */
641 	n = start_resid;
642 	if (n == 0)
643 		return (0);
644 
645 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
646 		limit = MAXOFFSET_T;
647 
648 	ZFS_ENTER(zfsvfs);
649 	ZFS_VERIFY_ZP(zp);
650 
651 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
652 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
653 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
654 	    &zp->z_size, 8);
655 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
656 	    &zp->z_pflags, 8);
657 
658 	/*
659 	 * If immutable or not appending then return EPERM
660 	 */
661 	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
662 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
663 	    (uio->uio_loffset < zp->z_size))) {
664 		ZFS_EXIT(zfsvfs);
665 		return (SET_ERROR(EPERM));
666 	}
667 
668 	zilog = zfsvfs->z_log;
669 
670 	/*
671 	 * Validate file offset
672 	 */
673 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
674 	if (woff < 0) {
675 		ZFS_EXIT(zfsvfs);
676 		return (SET_ERROR(EINVAL));
677 	}
678 
679 	/*
680 	 * Check for mandatory locks before calling zfs_range_lock()
681 	 * in order to prevent a deadlock with locks set via fcntl().
682 	 */
683 	if (MANDMODE((mode_t)zp->z_mode) &&
684 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
685 		ZFS_EXIT(zfsvfs);
686 		return (error);
687 	}
688 
689 	/*
690 	 * Pre-fault the pages to ensure slow (eg NFS) pages
691 	 * don't hold up txg.
692 	 * Skip this if uio contains loaned arc_buf.
693 	 */
694 	if ((uio->uio_extflg == UIO_XUIO) &&
695 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
696 		xuio = (xuio_t *)uio;
697 	else
698 		uio_prefaultpages(MIN(n, max_blksz), uio);
699 
700 	/*
701 	 * If in append mode, set the io offset pointer to eof.
702 	 */
703 	if (ioflag & FAPPEND) {
704 		/*
705 		 * Obtain an appending range lock to guarantee file append
706 		 * semantics.  We reset the write offset once we have the lock.
707 		 */
708 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
709 		woff = rl->r_off;
710 		if (rl->r_len == UINT64_MAX) {
711 			/*
712 			 * We overlocked the file because this write will cause
713 			 * the file block size to increase.
714 			 * Note that zp_size cannot change with this lock held.
715 			 */
716 			woff = zp->z_size;
717 		}
718 		uio->uio_loffset = woff;
719 	} else {
720 		/*
721 		 * Note that if the file block size will change as a result of
722 		 * this write, then this range lock will lock the entire file
723 		 * so that we can re-write the block safely.
724 		 */
725 
726 		/*
727 		 * If in zev mode, lock offsets are quantized to 1MB chunks
728 		 * so that we can calculate level 1 checksums later on.
729 		 */
730 		if (rz_zev_active()) {
731 			/* start of this megabyte */
732 			lock_off = P2ALIGN(woff, ZEV_L1_SIZE);
733 			/* full megabytes */
734 			lock_len = n + (woff - lock_off);
735 			lock_len = P2ROUNDUP(lock_len, ZEV_L1_SIZE);
736 		} else {
737 			lock_off = woff;
738 			lock_len = n;
739 		}
740 
741 		rl = zfs_range_lock(zp, lock_off, lock_len, RL_WRITER);
742 	}
743 
744 	if (woff >= limit) {
745 		zfs_range_unlock(rl);
746 		ZFS_EXIT(zfsvfs);
747 		return (SET_ERROR(EFBIG));
748 	}
749 
750 	if ((woff + n) > limit || woff > (limit - n))
751 		n = limit - woff;
752 
753 	/* Will this write extend the file length? */
754 	write_eof = (woff + n > zp->z_size);
755 
756 	end_size = MAX(zp->z_size, woff + n);
757 
758 	/*
759 	 * Write the file in reasonable size chunks.  Each chunk is written
760 	 * in a separate transaction; this keeps the intent log records small
761 	 * and allows us to do more fine-grained space accounting.
762 	 */
763 	while (n > 0) {
764 		abuf = NULL;
765 		woff = uio->uio_loffset;
766 		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
767 		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
768 			if (abuf != NULL)
769 				dmu_return_arcbuf(abuf);
770 			error = SET_ERROR(EDQUOT);
771 			break;
772 		}
773 
774 		if (xuio && abuf == NULL) {
775 			ASSERT(i_iov < iovcnt);
776 			aiov = &iovp[i_iov];
777 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
778 			dmu_xuio_clear(xuio, i_iov);
779 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
780 			    iovec_t *, aiov, arc_buf_t *, abuf);
781 			ASSERT((aiov->iov_base == abuf->b_data) ||
782 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
783 			    aiov->iov_len == arc_buf_size(abuf)));
784 			i_iov++;
785 		} else if (abuf == NULL && n >= max_blksz &&
786 		    woff >= zp->z_size &&
787 		    P2PHASE(woff, max_blksz) == 0 &&
788 		    zp->z_blksz == max_blksz) {
789 			/*
790 			 * This write covers a full block.  "Borrow" a buffer
791 			 * from the dmu so that we can fill it before we enter
792 			 * a transaction.  This avoids the possibility of
793 			 * holding up the transaction if the data copy hangs
794 			 * up on a pagefault (e.g., from an NFS server mapping).
795 			 */
796 			size_t cbytes;
797 
798 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
799 			    max_blksz);
800 			ASSERT(abuf != NULL);
801 			ASSERT(arc_buf_size(abuf) == max_blksz);
802 			if (error = uiocopy(abuf->b_data, max_blksz,
803 			    UIO_WRITE, uio, &cbytes)) {
804 				dmu_return_arcbuf(abuf);
805 				break;
806 			}
807 			ASSERT(cbytes == max_blksz);
808 		}
809 
810 		/*
811 		 * Start a transaction.
812 		 */
813 		tx = dmu_tx_create(zfsvfs->z_os);
814 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
815 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
816 		zfs_sa_upgrade_txholds(tx, zp);
817 		error = dmu_tx_assign(tx, TXG_WAIT);
818 		if (error) {
819 			dmu_tx_abort(tx);
820 			if (abuf != NULL)
821 				dmu_return_arcbuf(abuf);
822 			break;
823 		}
824 
825 		/*
826 		 * If zfs_range_lock() over-locked we grow the blocksize
827 		 * and then reduce the lock range.  This will only happen
828 		 * on the first iteration since zfs_range_reduce() will
829 		 * shrink down r_len to the appropriate size.
830 		 */
831 		if (rl->r_len == UINT64_MAX) {
832 			uint64_t new_blksz;
833 
834 			if (zp->z_blksz > max_blksz) {
835 				ASSERT(!ISP2(zp->z_blksz));
836 				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
837 			} else {
838 				new_blksz = MIN(end_size, max_blksz);
839 			}
840 			zfs_grow_blocksize(zp, new_blksz, tx);
841 			zfs_range_reduce(rl, woff, n);
842 		}
843 
844 		/*
845 		 * XXX - should we really limit each write to z_max_blksz?
846 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
847 		 */
848 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
849 
850 		if (abuf == NULL) {
851 			tx_bytes = uio->uio_resid;
852 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
853 			    uio, nbytes, tx);
854 			tx_bytes -= uio->uio_resid;
855 		} else {
856 			tx_bytes = nbytes;
857 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
858 			/*
859 			 * If this is not a full block write, but we are
860 			 * extending the file past EOF and this data starts
861 			 * block-aligned, use assign_arcbuf().  Otherwise,
862 			 * write via dmu_write().
863 			 */
864 			if (tx_bytes < max_blksz && (!write_eof ||
865 			    aiov->iov_base != abuf->b_data)) {
866 				ASSERT(xuio);
867 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
868 				    aiov->iov_len, aiov->iov_base, tx);
869 				dmu_return_arcbuf(abuf);
870 				xuio_stat_wbuf_copied();
871 			} else {
872 				ASSERT(xuio || tx_bytes == max_blksz);
873 				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
874 				    woff, abuf, tx);
875 			}
876 			ASSERT(tx_bytes <= uio->uio_resid);
877 			uioskip(uio, tx_bytes);
878 		}
879 		if (tx_bytes && vn_has_cached_data(vp)) {
880 			update_pages(vp, woff,
881 			    tx_bytes, zfsvfs->z_os, zp->z_id);
882 		}
883 
884 		/*
885 		 * If we made no progress, we're done.  If we made even
886 		 * partial progress, update the znode and ZIL accordingly.
887 		 */
888 		if (tx_bytes == 0) {
889 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
890 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
891 			dmu_tx_commit(tx);
892 			ASSERT(error != 0);
893 			break;
894 		}
895 
896 		/*
897 		 * Clear Set-UID/Set-GID bits on successful write if not
898 		 * privileged and at least one of the excute bits is set.
899 		 *
900 		 * It would be nice to to this after all writes have
901 		 * been done, but that would still expose the ISUID/ISGID
902 		 * to another app after the partial write is committed.
903 		 *
904 		 * Note: we don't call zfs_fuid_map_id() here because
905 		 * user 0 is not an ephemeral uid.
906 		 */
907 		mutex_enter(&zp->z_acl_lock);
908 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
909 		    (S_IXUSR >> 6))) != 0 &&
910 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
911 		    secpolicy_vnode_setid_retain(cr,
912 		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
913 			uint64_t newmode;
914 			zp->z_mode &= ~(S_ISUID | S_ISGID);
915 			newmode = zp->z_mode;
916 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
917 			    (void *)&newmode, sizeof (uint64_t), tx);
918 		}
919 		mutex_exit(&zp->z_acl_lock);
920 
921 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
922 		    B_TRUE);
923 
924 		/*
925 		 * Update the file size (zp_size) if it has changed;
926 		 * account for possible concurrent updates.
927 		 */
928 		while ((end_size = zp->z_size) < uio->uio_loffset) {
929 			(void) atomic_cas_64(&zp->z_size, end_size,
930 			    uio->uio_loffset);
931 			ASSERT(error == 0);
932 		}
933 		/*
934 		 * If we are replaying and eof is non zero then force
935 		 * the file size to the specified eof. Note, there's no
936 		 * concurrency during replay.
937 		 */
938 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
939 			zp->z_size = zfsvfs->z_replay_eof;
940 
941 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
942 
943 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
944 		dmu_tx_commit(tx);
945 
946 		if (error != 0)
947 			break;
948 		ASSERT(tx_bytes == nbytes);
949 		n -= nbytes;
950 
951 		if (!xuio && n > 0)
952 			uio_prefaultpages(MIN(n, max_blksz), uio);
953 	}
954 
955 	zfs_range_unlock(rl);
956 
957 	/*
958 	 * If we're in replay mode, or we made no progress, return error.
959 	 * Otherwise, it's at least a partial write, so it's successful.
960 	 */
961 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
962 		ZFS_EXIT(zfsvfs);
963 		return (error);
964 	}
965 
966 	if (ioflag & (FSYNC | FDSYNC) ||
967 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
968 		zil_commit(zilog, zp->z_id);
969 
970 	ZFS_EXIT(zfsvfs);
971 	return (0);
972 }
973 
974 void
975 zfs_get_done(zgd_t *zgd, int error)
976 {
977 	znode_t *zp = zgd->zgd_private;
978 	objset_t *os = zp->z_zfsvfs->z_os;
979 
980 	if (zgd->zgd_db)
981 		dmu_buf_rele(zgd->zgd_db, zgd);
982 
983 	zfs_range_unlock(zgd->zgd_rl);
984 
985 	/*
986 	 * Release the vnode asynchronously as we currently have the
987 	 * txg stopped from syncing.
988 	 */
989 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
990 
991 	if (error == 0 && zgd->zgd_bp)
992 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
993 
994 	kmem_free(zgd, sizeof (zgd_t));
995 }
996 
997 #ifdef DEBUG
998 static int zil_fault_io = 0;
999 #endif
1000 
1001 /*
1002  * Get data to generate a TX_WRITE intent log record.
1003  */
1004 int
1005 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1006 {
1007 	zfsvfs_t *zfsvfs = arg;
1008 	objset_t *os = zfsvfs->z_os;
1009 	znode_t *zp;
1010 	uint64_t object = lr->lr_foid;
1011 	uint64_t offset = lr->lr_offset;
1012 	uint64_t size = lr->lr_length;
1013 	blkptr_t *bp = &lr->lr_blkptr;
1014 	dmu_buf_t *db;
1015 	zgd_t *zgd;
1016 	int error = 0;
1017 
1018 	ASSERT(zio != NULL);
1019 	ASSERT(size != 0);
1020 
1021 	/*
1022 	 * Nothing to do if the file has been removed
1023 	 */
1024 	if (zfs_zget(zfsvfs, object, &zp) != 0)
1025 		return (SET_ERROR(ENOENT));
1026 	if (zp->z_unlinked) {
1027 		/*
1028 		 * Release the vnode asynchronously as we currently have the
1029 		 * txg stopped from syncing.
1030 		 */
1031 		VN_RELE_ASYNC(ZTOV(zp),
1032 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1033 		return (SET_ERROR(ENOENT));
1034 	}
1035 
1036 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1037 	zgd->zgd_zilog = zfsvfs->z_log;
1038 	zgd->zgd_private = zp;
1039 
1040 	/*
1041 	 * Write records come in two flavors: immediate and indirect.
1042 	 * For small writes it's cheaper to store the data with the
1043 	 * log record (immediate); for large writes it's cheaper to
1044 	 * sync the data and get a pointer to it (indirect) so that
1045 	 * we don't have to write the data twice.
1046 	 */
1047 	if (buf != NULL) { /* immediate write */
1048 		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1049 		/* test for truncation needs to be done while range locked */
1050 		if (offset >= zp->z_size) {
1051 			error = SET_ERROR(ENOENT);
1052 		} else {
1053 			error = dmu_read(os, object, offset, size, buf,
1054 			    DMU_READ_NO_PREFETCH);
1055 		}
1056 		ASSERT(error == 0 || error == ENOENT);
1057 	} else { /* indirect write */
1058 		/*
1059 		 * Have to lock the whole block to ensure when it's
1060 		 * written out and it's checksum is being calculated
1061 		 * that no one can change the data. We need to re-check
1062 		 * blocksize after we get the lock in case it's changed!
1063 		 */
1064 		for (;;) {
1065 			uint64_t blkoff;
1066 			size = zp->z_blksz;
1067 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1068 			offset -= blkoff;
1069 			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1070 			    RL_READER);
1071 			if (zp->z_blksz == size)
1072 				break;
1073 			offset += blkoff;
1074 			zfs_range_unlock(zgd->zgd_rl);
1075 		}
1076 		/* test for truncation needs to be done while range locked */
1077 		if (lr->lr_offset >= zp->z_size)
1078 			error = SET_ERROR(ENOENT);
1079 #ifdef DEBUG
1080 		if (zil_fault_io) {
1081 			error = SET_ERROR(EIO);
1082 			zil_fault_io = 0;
1083 		}
1084 #endif
1085 		if (error == 0)
1086 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1087 			    DMU_READ_NO_PREFETCH);
1088 
1089 		if (error == 0) {
1090 			blkptr_t *obp = dmu_buf_get_blkptr(db);
1091 			if (obp) {
1092 				ASSERT(BP_IS_HOLE(bp));
1093 				*bp = *obp;
1094 			}
1095 
1096 			zgd->zgd_db = db;
1097 			zgd->zgd_bp = bp;
1098 
1099 			ASSERT(db->db_offset == offset);
1100 			ASSERT(db->db_size == size);
1101 
1102 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1103 			    zfs_get_done, zgd);
1104 			ASSERT(error || lr->lr_length <= zp->z_blksz);
1105 
1106 			/*
1107 			 * On success, we need to wait for the write I/O
1108 			 * initiated by dmu_sync() to complete before we can
1109 			 * release this dbuf.  We will finish everything up
1110 			 * in the zfs_get_done() callback.
1111 			 */
1112 			if (error == 0)
1113 				return (0);
1114 
1115 			if (error == EALREADY) {
1116 				lr->lr_common.lrc_txtype = TX_WRITE2;
1117 				error = 0;
1118 			}
1119 		}
1120 	}
1121 
1122 	zfs_get_done(zgd, error);
1123 
1124 	return (error);
1125 }
1126 
1127 /*ARGSUSED*/
1128 static int
1129 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1130     caller_context_t *ct)
1131 {
1132 	znode_t *zp = VTOZ(vp);
1133 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1134 	int error;
1135 
1136 	ZFS_ENTER(zfsvfs);
1137 	ZFS_VERIFY_ZP(zp);
1138 
1139 	if (flag & V_ACE_MASK)
1140 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1141 	else
1142 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1143 
1144 	ZFS_EXIT(zfsvfs);
1145 	return (error);
1146 }
1147 
1148 /*
1149  * If vnode is for a device return a specfs vnode instead.
1150  */
1151 static int
1152 specvp_check(vnode_t **vpp, cred_t *cr)
1153 {
1154 	int error = 0;
1155 
1156 	if (IS_DEVVP(*vpp)) {
1157 		struct vnode *svp;
1158 
1159 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1160 		VN_RELE(*vpp);
1161 		if (svp == NULL)
1162 			error = SET_ERROR(ENOSYS);
1163 		*vpp = svp;
1164 	}
1165 	return (error);
1166 }
1167 
1168 
1169 /*
1170  * Lookup an entry in a directory, or an extended attribute directory.
1171  * If it exists, return a held vnode reference for it.
1172  *
1173  *	IN:	dvp	- vnode of directory to search.
1174  *		nm	- name of entry to lookup.
1175  *		pnp	- full pathname to lookup [UNUSED].
1176  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1177  *		rdir	- root directory vnode [UNUSED].
1178  *		cr	- credentials of caller.
1179  *		ct	- caller context
1180  *		direntflags - directory lookup flags
1181  *		realpnp - returned pathname.
1182  *
1183  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1184  *
1185  *	RETURN:	0 on success, error code on failure.
1186  *
1187  * Timestamps:
1188  *	NA
1189  */
1190 /* ARGSUSED */
1191 static int
1192 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1193     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1194     int *direntflags, pathname_t *realpnp)
1195 {
1196 	znode_t *zdp = VTOZ(dvp);
1197 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1198 	int	error = 0;
1199 
1200 	/* fast path */
1201 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1202 
1203 		if (dvp->v_type != VDIR) {
1204 			return (SET_ERROR(ENOTDIR));
1205 		} else if (zdp->z_sa_hdl == NULL) {
1206 			return (SET_ERROR(EIO));
1207 		}
1208 
1209 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1210 			error = zfs_fastaccesschk_execute(zdp, cr);
1211 			if (!error) {
1212 				*vpp = dvp;
1213 				VN_HOLD(*vpp);
1214 				return (0);
1215 			}
1216 			return (error);
1217 		} else {
1218 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1219 
1220 			if (tvp) {
1221 				error = zfs_fastaccesschk_execute(zdp, cr);
1222 				if (error) {
1223 					VN_RELE(tvp);
1224 					return (error);
1225 				}
1226 				if (tvp == DNLC_NO_VNODE) {
1227 					VN_RELE(tvp);
1228 					return (SET_ERROR(ENOENT));
1229 				} else {
1230 					*vpp = tvp;
1231 					return (specvp_check(vpp, cr));
1232 				}
1233 			}
1234 		}
1235 	}
1236 
1237 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1238 
1239 	ZFS_ENTER(zfsvfs);
1240 	ZFS_VERIFY_ZP(zdp);
1241 
1242 	*vpp = NULL;
1243 
1244 	if (flags & LOOKUP_XATTR) {
1245 		/*
1246 		 * If the xattr property is off, refuse the lookup request.
1247 		 */
1248 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1249 			ZFS_EXIT(zfsvfs);
1250 			return (SET_ERROR(EINVAL));
1251 		}
1252 
1253 		/*
1254 		 * We don't allow recursive attributes..
1255 		 * Maybe someday we will.
1256 		 */
1257 		if (zdp->z_pflags & ZFS_XATTR) {
1258 			ZFS_EXIT(zfsvfs);
1259 			return (SET_ERROR(EINVAL));
1260 		}
1261 
1262 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1263 			ZFS_EXIT(zfsvfs);
1264 			return (error);
1265 		}
1266 
1267 		/*
1268 		 * Do we have permission to get into attribute directory?
1269 		 */
1270 
1271 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1272 		    B_FALSE, cr)) {
1273 			VN_RELE(*vpp);
1274 			*vpp = NULL;
1275 		}
1276 
1277 		ZFS_EXIT(zfsvfs);
1278 		return (error);
1279 	}
1280 
1281 	if (dvp->v_type != VDIR) {
1282 		ZFS_EXIT(zfsvfs);
1283 		return (SET_ERROR(ENOTDIR));
1284 	}
1285 
1286 	/*
1287 	 * Check accessibility of directory.
1288 	 */
1289 
1290 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1291 		ZFS_EXIT(zfsvfs);
1292 		return (error);
1293 	}
1294 
1295 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1296 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1297 		ZFS_EXIT(zfsvfs);
1298 		return (SET_ERROR(EILSEQ));
1299 	}
1300 
1301 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1302 	if (error == 0)
1303 		error = specvp_check(vpp, cr);
1304 
1305 	ZFS_EXIT(zfsvfs);
1306 	return (error);
1307 }
1308 
1309 /*
1310  * Attempt to create a new entry in a directory.  If the entry
1311  * already exists, truncate the file if permissible, else return
1312  * an error.  Return the vp of the created or trunc'd file.
1313  *
1314  *	IN:	dvp	- vnode of directory to put new file entry in.
1315  *		name	- name of new file entry.
1316  *		vap	- attributes of new file.
1317  *		excl	- flag indicating exclusive or non-exclusive mode.
1318  *		mode	- mode to open file with.
1319  *		cr	- credentials of caller.
1320  *		flag	- large file flag [UNUSED].
1321  *		ct	- caller context
1322  *		vsecp 	- ACL to be set
1323  *
1324  *	OUT:	vpp	- vnode of created or trunc'd entry.
1325  *
1326  *	RETURN:	0 on success, error code on failure.
1327  *
1328  * Timestamps:
1329  *	dvp - ctime|mtime updated if new entry created
1330  *	 vp - ctime|mtime always, atime if new
1331  */
1332 
1333 /* ARGSUSED */
1334 static int
1335 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1336     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1337     vsecattr_t *vsecp)
1338 {
1339 	znode_t		*zp, *dzp = VTOZ(dvp);
1340 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1341 	zilog_t		*zilog;
1342 	objset_t	*os;
1343 	zfs_dirlock_t	*dl;
1344 	dmu_tx_t	*tx;
1345 	int		error;
1346 	ksid_t		*ksid;
1347 	uid_t		uid;
1348 	gid_t		gid = crgetgid(cr);
1349 	zfs_acl_ids_t   acl_ids;
1350 	boolean_t	fuid_dirtied;
1351 	boolean_t	have_acl = B_FALSE;
1352 	boolean_t	waited = B_FALSE;
1353 
1354 	/*
1355 	 * If we have an ephemeral id, ACL, or XVATTR then
1356 	 * make sure file system is at proper version
1357 	 */
1358 
1359 	ksid = crgetsid(cr, KSID_OWNER);
1360 	if (ksid)
1361 		uid = ksid_getid(ksid);
1362 	else
1363 		uid = crgetuid(cr);
1364 
1365 	if (zfsvfs->z_use_fuids == B_FALSE &&
1366 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1367 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1368 		return (SET_ERROR(EINVAL));
1369 
1370 	ZFS_ENTER(zfsvfs);
1371 	ZFS_VERIFY_ZP(dzp);
1372 	os = zfsvfs->z_os;
1373 	zilog = zfsvfs->z_log;
1374 
1375 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1376 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1377 		ZFS_EXIT(zfsvfs);
1378 		return (SET_ERROR(EILSEQ));
1379 	}
1380 
1381 	if (vap->va_mask & AT_XVATTR) {
1382 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1383 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1384 			ZFS_EXIT(zfsvfs);
1385 			return (error);
1386 		}
1387 	}
1388 top:
1389 	*vpp = NULL;
1390 
1391 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1392 		vap->va_mode &= ~VSVTX;
1393 
1394 	if (*name == '\0') {
1395 		/*
1396 		 * Null component name refers to the directory itself.
1397 		 */
1398 		VN_HOLD(dvp);
1399 		zp = dzp;
1400 		dl = NULL;
1401 		error = 0;
1402 	} else {
1403 		/* possible VN_HOLD(zp) */
1404 		int zflg = 0;
1405 
1406 		if (flag & FIGNORECASE)
1407 			zflg |= ZCILOOK;
1408 
1409 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1410 		    NULL, NULL);
1411 		if (error) {
1412 			if (have_acl)
1413 				zfs_acl_ids_free(&acl_ids);
1414 			if (strcmp(name, "..") == 0)
1415 				error = SET_ERROR(EISDIR);
1416 			ZFS_EXIT(zfsvfs);
1417 			return (error);
1418 		}
1419 	}
1420 
1421 	if (zp == NULL) {
1422 		uint64_t txtype;
1423 
1424 		/*
1425 		 * Create a new file object and update the directory
1426 		 * to reference it.
1427 		 */
1428 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1429 			if (have_acl)
1430 				zfs_acl_ids_free(&acl_ids);
1431 			goto out;
1432 		}
1433 
1434 		/*
1435 		 * We only support the creation of regular files in
1436 		 * extended attribute directories.
1437 		 */
1438 
1439 		if ((dzp->z_pflags & ZFS_XATTR) &&
1440 		    (vap->va_type != VREG)) {
1441 			if (have_acl)
1442 				zfs_acl_ids_free(&acl_ids);
1443 			error = SET_ERROR(EINVAL);
1444 			goto out;
1445 		}
1446 
1447 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1448 		    cr, vsecp, &acl_ids)) != 0)
1449 			goto out;
1450 		have_acl = B_TRUE;
1451 
1452 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1453 			zfs_acl_ids_free(&acl_ids);
1454 			error = SET_ERROR(EDQUOT);
1455 			goto out;
1456 		}
1457 
1458 		tx = dmu_tx_create(os);
1459 
1460 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1461 		    ZFS_SA_BASE_ATTR_SIZE);
1462 
1463 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1464 		if (fuid_dirtied)
1465 			zfs_fuid_txhold(zfsvfs, tx);
1466 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1467 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1468 		if (!zfsvfs->z_use_sa &&
1469 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1470 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1471 			    0, acl_ids.z_aclp->z_acl_bytes);
1472 		}
1473 		error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1474 		if (error) {
1475 			zfs_dirent_unlock(dl);
1476 			if (error == ERESTART) {
1477 				waited = B_TRUE;
1478 				dmu_tx_wait(tx);
1479 				dmu_tx_abort(tx);
1480 				goto top;
1481 			}
1482 			zfs_acl_ids_free(&acl_ids);
1483 			dmu_tx_abort(tx);
1484 			ZFS_EXIT(zfsvfs);
1485 			return (error);
1486 		}
1487 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1488 
1489 		if (fuid_dirtied)
1490 			zfs_fuid_sync(zfsvfs, tx);
1491 
1492 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1493 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1494 		if (flag & FIGNORECASE)
1495 			txtype |= TX_CI;
1496 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1497 		    vsecp, acl_ids.z_fuidp, vap);
1498 		zfs_acl_ids_free(&acl_ids);
1499 		dmu_tx_commit(tx);
1500 	} else {
1501 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1502 
1503 		if (have_acl)
1504 			zfs_acl_ids_free(&acl_ids);
1505 		have_acl = B_FALSE;
1506 
1507 		/*
1508 		 * A directory entry already exists for this name.
1509 		 */
1510 		/*
1511 		 * Can't truncate an existing file if in exclusive mode.
1512 		 */
1513 		if (excl == EXCL) {
1514 			error = SET_ERROR(EEXIST);
1515 			goto out;
1516 		}
1517 		/*
1518 		 * Can't open a directory for writing.
1519 		 */
1520 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1521 			error = SET_ERROR(EISDIR);
1522 			goto out;
1523 		}
1524 		/*
1525 		 * Verify requested access to file.
1526 		 */
1527 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1528 			goto out;
1529 		}
1530 
1531 		mutex_enter(&dzp->z_lock);
1532 		dzp->z_seq++;
1533 		mutex_exit(&dzp->z_lock);
1534 
1535 		/*
1536 		 * Truncate regular files if requested.
1537 		 */
1538 		if ((ZTOV(zp)->v_type == VREG) &&
1539 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1540 			/* we can't hold any locks when calling zfs_freesp() */
1541 			zfs_dirent_unlock(dl);
1542 			dl = NULL;
1543 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1544 			if (error == 0) {
1545 				vnevent_create(ZTOV(zp), ct);
1546 			}
1547 		}
1548 	}
1549 out:
1550 
1551 	if (dl)
1552 		zfs_dirent_unlock(dl);
1553 
1554 	if (error) {
1555 		if (zp)
1556 			VN_RELE(ZTOV(zp));
1557 	} else {
1558 		*vpp = ZTOV(zp);
1559 		error = specvp_check(vpp, cr);
1560 	}
1561 
1562 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1563 		zil_commit(zilog, 0);
1564 
1565 	ZFS_EXIT(zfsvfs);
1566 	return (error);
1567 }
1568 
1569 /*
1570  * Remove an entry from a directory.
1571  *
1572  *	IN:	dvp	- vnode of directory to remove entry from.
1573  *		name	- name of entry to remove.
1574  *		cr	- credentials of caller.
1575  *		ct	- caller context
1576  *		flags	- case flags
1577  *
1578  *	RETURN:	0 on success, error code on failure.
1579  *
1580  * Timestamps:
1581  *	dvp - ctime|mtime
1582  *	 vp - ctime (if nlink > 0)
1583  */
1584 
1585 uint64_t null_xattr = 0;
1586 
1587 /*ARGSUSED*/
1588 static int
1589 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1590     int flags)
1591 {
1592 	znode_t		*zp, *dzp = VTOZ(dvp);
1593 	znode_t		*xzp;
1594 	vnode_t		*vp;
1595 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1596 	zilog_t		*zilog;
1597 	uint64_t	acl_obj, xattr_obj;
1598 	uint64_t 	xattr_obj_unlinked = 0;
1599 	uint64_t	obj = 0;
1600 	zfs_dirlock_t	*dl;
1601 	dmu_tx_t	*tx;
1602 	boolean_t	may_delete_now, delete_now = FALSE;
1603 	boolean_t	unlinked, toobig = FALSE;
1604 	uint64_t	txtype;
1605 	pathname_t	*realnmp = NULL;
1606 	pathname_t	realnm;
1607 	int		error;
1608 	int		zflg = ZEXISTS;
1609 	boolean_t	waited = B_FALSE;
1610 
1611 	ZFS_ENTER(zfsvfs);
1612 	ZFS_VERIFY_ZP(dzp);
1613 	zilog = zfsvfs->z_log;
1614 
1615 	if (flags & FIGNORECASE) {
1616 		zflg |= ZCILOOK;
1617 		pn_alloc(&realnm);
1618 		realnmp = &realnm;
1619 	}
1620 
1621 top:
1622 	xattr_obj = 0;
1623 	xzp = NULL;
1624 	/*
1625 	 * Attempt to lock directory; fail if entry doesn't exist.
1626 	 */
1627 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1628 	    NULL, realnmp)) {
1629 		if (realnmp)
1630 			pn_free(realnmp);
1631 		ZFS_EXIT(zfsvfs);
1632 		return (error);
1633 	}
1634 
1635 	vp = ZTOV(zp);
1636 
1637 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1638 		goto out;
1639 	}
1640 
1641 	/*
1642 	 * Need to use rmdir for removing directories.
1643 	 */
1644 	if (vp->v_type == VDIR) {
1645 		error = SET_ERROR(EPERM);
1646 		goto out;
1647 	}
1648 
1649 	vnevent_remove(vp, dvp, name, ct);
1650 
1651 	if (realnmp)
1652 		dnlc_remove(dvp, realnmp->pn_buf);
1653 	else
1654 		dnlc_remove(dvp, name);
1655 
1656 	mutex_enter(&vp->v_lock);
1657 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1658 	mutex_exit(&vp->v_lock);
1659 
1660 	/*
1661 	 * We may delete the znode now, or we may put it in the unlinked set;
1662 	 * it depends on whether we're the last link, and on whether there are
1663 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1664 	 * allow for either case.
1665 	 */
1666 	obj = zp->z_id;
1667 	tx = dmu_tx_create(zfsvfs->z_os);
1668 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1669 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1670 	zfs_sa_upgrade_txholds(tx, zp);
1671 	zfs_sa_upgrade_txholds(tx, dzp);
1672 	if (may_delete_now) {
1673 		toobig =
1674 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1675 		/* if the file is too big, only hold_free a token amount */
1676 		dmu_tx_hold_free(tx, zp->z_id, 0,
1677 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1678 	}
1679 
1680 	/* are there any extended attributes? */
1681 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1682 	    &xattr_obj, sizeof (xattr_obj));
1683 	if (error == 0 && xattr_obj) {
1684 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1685 		ASSERT0(error);
1686 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1687 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1688 	}
1689 
1690 	mutex_enter(&zp->z_lock);
1691 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1692 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1693 	mutex_exit(&zp->z_lock);
1694 
1695 	/* charge as an update -- would be nice not to charge at all */
1696 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1697 
1698 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1699 	if (error) {
1700 		zfs_dirent_unlock(dl);
1701 		VN_RELE(vp);
1702 		if (xzp)
1703 			VN_RELE(ZTOV(xzp));
1704 		if (error == ERESTART) {
1705 			waited = B_TRUE;
1706 			dmu_tx_wait(tx);
1707 			dmu_tx_abort(tx);
1708 			goto top;
1709 		}
1710 		if (realnmp)
1711 			pn_free(realnmp);
1712 		dmu_tx_abort(tx);
1713 		ZFS_EXIT(zfsvfs);
1714 		return (error);
1715 	}
1716 
1717 	/*
1718 	 * Remove the directory entry.
1719 	 */
1720 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1721 
1722 	if (error) {
1723 		dmu_tx_commit(tx);
1724 		goto out;
1725 	}
1726 
1727 	if (unlinked) {
1728 
1729 		/*
1730 		 * Hold z_lock so that we can make sure that the ACL obj
1731 		 * hasn't changed.  Could have been deleted due to
1732 		 * zfs_sa_upgrade().
1733 		 */
1734 		mutex_enter(&zp->z_lock);
1735 		mutex_enter(&vp->v_lock);
1736 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1737 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1738 		delete_now = may_delete_now && !toobig &&
1739 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1740 		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1741 		    acl_obj;
1742 		mutex_exit(&vp->v_lock);
1743 	}
1744 
1745 	txtype = TX_REMOVE;
1746 	if (flags & FIGNORECASE)
1747 		txtype |= TX_CI;
1748 	rw_enter(&rz_zev_rwlock, RW_READER);
1749 	if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_remove)
1750 		rz_zev_callbacks->rz_zev_znode_remove(dzp, zp, tx,
1751 		                                      name, txtype);
1752 	rw_exit(&rz_zev_rwlock);
1753 
1754 	if (delete_now) {
1755 		if (xattr_obj_unlinked) {
1756 			ASSERT3U(xzp->z_links, ==, 2);
1757 			mutex_enter(&xzp->z_lock);
1758 			xzp->z_unlinked = 1;
1759 			xzp->z_links = 0;
1760 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1761 			    &xzp->z_links, sizeof (xzp->z_links), tx);
1762 			ASSERT3U(error,  ==,  0);
1763 			mutex_exit(&xzp->z_lock);
1764 			zfs_unlinked_add(xzp, tx);
1765 
1766 			if (zp->z_is_sa)
1767 				error = sa_remove(zp->z_sa_hdl,
1768 				    SA_ZPL_XATTR(zfsvfs), tx);
1769 			else
1770 				error = sa_update(zp->z_sa_hdl,
1771 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1772 				    sizeof (uint64_t), tx);
1773 			ASSERT0(error);
1774 		}
1775 		mutex_enter(&vp->v_lock);
1776 		vp->v_count--;
1777 		ASSERT0(vp->v_count);
1778 		mutex_exit(&vp->v_lock);
1779 		mutex_exit(&zp->z_lock);
1780 		zfs_znode_delete(zp, tx);
1781 	} else if (unlinked) {
1782 		mutex_exit(&zp->z_lock);
1783 		zfs_unlinked_add(zp, tx);
1784 	}
1785 
1786 	txtype = TX_REMOVE;
1787 	if (flags & FIGNORECASE)
1788 		txtype |= TX_CI;
1789 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1790 
1791 	dmu_tx_commit(tx);
1792 out:
1793 	if (realnmp)
1794 		pn_free(realnmp);
1795 
1796 	zfs_dirent_unlock(dl);
1797 
1798 	if (!delete_now)
1799 		VN_RELE(vp);
1800 	if (xzp)
1801 		VN_RELE(ZTOV(xzp));
1802 
1803 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1804 		zil_commit(zilog, 0);
1805 
1806 	ZFS_EXIT(zfsvfs);
1807 	return (error);
1808 }
1809 
1810 /*
1811  * Create a new directory and insert it into dvp using the name
1812  * provided.  Return a pointer to the inserted directory.
1813  *
1814  *	IN:	dvp	- vnode of directory to add subdir to.
1815  *		dirname	- name of new directory.
1816  *		vap	- attributes of new directory.
1817  *		cr	- credentials of caller.
1818  *		ct	- caller context
1819  *		flags	- case flags
1820  *		vsecp	- ACL to be set
1821  *
1822  *	OUT:	vpp	- vnode of created directory.
1823  *
1824  *	RETURN:	0 on success, error code on failure.
1825  *
1826  * Timestamps:
1827  *	dvp - ctime|mtime updated
1828  *	 vp - ctime|mtime|atime updated
1829  */
1830 /*ARGSUSED*/
1831 static int
1832 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1833     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1834 {
1835 	znode_t		*zp, *dzp = VTOZ(dvp);
1836 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1837 	zilog_t		*zilog;
1838 	zfs_dirlock_t	*dl;
1839 	uint64_t	txtype;
1840 	dmu_tx_t	*tx;
1841 	int		error;
1842 	int		zf = ZNEW;
1843 	ksid_t		*ksid;
1844 	uid_t		uid;
1845 	gid_t		gid = crgetgid(cr);
1846 	zfs_acl_ids_t   acl_ids;
1847 	boolean_t	fuid_dirtied;
1848 	boolean_t	waited = B_FALSE;
1849 
1850 	ASSERT(vap->va_type == VDIR);
1851 
1852 	/*
1853 	 * If we have an ephemeral id, ACL, or XVATTR then
1854 	 * make sure file system is at proper version
1855 	 */
1856 
1857 	ksid = crgetsid(cr, KSID_OWNER);
1858 	if (ksid)
1859 		uid = ksid_getid(ksid);
1860 	else
1861 		uid = crgetuid(cr);
1862 	if (zfsvfs->z_use_fuids == B_FALSE &&
1863 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1864 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1865 		return (SET_ERROR(EINVAL));
1866 
1867 	ZFS_ENTER(zfsvfs);
1868 	ZFS_VERIFY_ZP(dzp);
1869 	zilog = zfsvfs->z_log;
1870 
1871 	if (dzp->z_pflags & ZFS_XATTR) {
1872 		ZFS_EXIT(zfsvfs);
1873 		return (SET_ERROR(EINVAL));
1874 	}
1875 
1876 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1877 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1878 		ZFS_EXIT(zfsvfs);
1879 		return (SET_ERROR(EILSEQ));
1880 	}
1881 	if (flags & FIGNORECASE)
1882 		zf |= ZCILOOK;
1883 
1884 	if (vap->va_mask & AT_XVATTR) {
1885 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1886 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1887 			ZFS_EXIT(zfsvfs);
1888 			return (error);
1889 		}
1890 	}
1891 
1892 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1893 	    vsecp, &acl_ids)) != 0) {
1894 		ZFS_EXIT(zfsvfs);
1895 		return (error);
1896 	}
1897 	/*
1898 	 * First make sure the new directory doesn't exist.
1899 	 *
1900 	 * Existence is checked first to make sure we don't return
1901 	 * EACCES instead of EEXIST which can cause some applications
1902 	 * to fail.
1903 	 */
1904 top:
1905 	*vpp = NULL;
1906 
1907 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1908 	    NULL, NULL)) {
1909 		zfs_acl_ids_free(&acl_ids);
1910 		ZFS_EXIT(zfsvfs);
1911 		return (error);
1912 	}
1913 
1914 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1915 		zfs_acl_ids_free(&acl_ids);
1916 		zfs_dirent_unlock(dl);
1917 		ZFS_EXIT(zfsvfs);
1918 		return (error);
1919 	}
1920 
1921 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1922 		zfs_acl_ids_free(&acl_ids);
1923 		zfs_dirent_unlock(dl);
1924 		ZFS_EXIT(zfsvfs);
1925 		return (SET_ERROR(EDQUOT));
1926 	}
1927 
1928 	/*
1929 	 * Add a new entry to the directory.
1930 	 */
1931 	tx = dmu_tx_create(zfsvfs->z_os);
1932 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1933 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1934 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1935 	if (fuid_dirtied)
1936 		zfs_fuid_txhold(zfsvfs, tx);
1937 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1938 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1939 		    acl_ids.z_aclp->z_acl_bytes);
1940 	}
1941 
1942 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1943 	    ZFS_SA_BASE_ATTR_SIZE);
1944 
1945 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1946 	if (error) {
1947 		zfs_dirent_unlock(dl);
1948 		if (error == ERESTART) {
1949 			waited = B_TRUE;
1950 			dmu_tx_wait(tx);
1951 			dmu_tx_abort(tx);
1952 			goto top;
1953 		}
1954 		zfs_acl_ids_free(&acl_ids);
1955 		dmu_tx_abort(tx);
1956 		ZFS_EXIT(zfsvfs);
1957 		return (error);
1958 	}
1959 
1960 	/*
1961 	 * Create new node.
1962 	 */
1963 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1964 
1965 	if (fuid_dirtied)
1966 		zfs_fuid_sync(zfsvfs, tx);
1967 
1968 	/*
1969 	 * Now put new name in parent dir.
1970 	 */
1971 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1972 
1973 	*vpp = ZTOV(zp);
1974 
1975 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1976 	if (flags & FIGNORECASE)
1977 		txtype |= TX_CI;
1978 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1979 	    acl_ids.z_fuidp, vap);
1980 
1981 	zfs_acl_ids_free(&acl_ids);
1982 
1983 	dmu_tx_commit(tx);
1984 
1985 	zfs_dirent_unlock(dl);
1986 
1987 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1988 		zil_commit(zilog, 0);
1989 
1990 	ZFS_EXIT(zfsvfs);
1991 	return (0);
1992 }
1993 
1994 /*
1995  * Remove a directory subdir entry.  If the current working
1996  * directory is the same as the subdir to be removed, the
1997  * remove will fail.
1998  *
1999  *	IN:	dvp	- vnode of directory to remove from.
2000  *		name	- name of directory to be removed.
2001  *		cwd	- vnode of current working directory.
2002  *		cr	- credentials of caller.
2003  *		ct	- caller context
2004  *		flags	- case flags
2005  *
2006  *	RETURN:	0 on success, error code on failure.
2007  *
2008  * Timestamps:
2009  *	dvp - ctime|mtime updated
2010  */
2011 /*ARGSUSED*/
2012 static int
2013 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2014     caller_context_t *ct, int flags)
2015 {
2016 	znode_t		*dzp = VTOZ(dvp);
2017 	znode_t		*zp;
2018 	vnode_t		*vp;
2019 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2020 	zilog_t		*zilog;
2021 	zfs_dirlock_t	*dl;
2022 	dmu_tx_t	*tx;
2023 	int		error;
2024 	int		zflg = ZEXISTS;
2025 	boolean_t	waited = B_FALSE;
2026 
2027 	ZFS_ENTER(zfsvfs);
2028 	ZFS_VERIFY_ZP(dzp);
2029 	zilog = zfsvfs->z_log;
2030 
2031 	if (flags & FIGNORECASE)
2032 		zflg |= ZCILOOK;
2033 top:
2034 	zp = NULL;
2035 
2036 	/*
2037 	 * Attempt to lock directory; fail if entry doesn't exist.
2038 	 */
2039 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2040 	    NULL, NULL)) {
2041 		ZFS_EXIT(zfsvfs);
2042 		return (error);
2043 	}
2044 
2045 	vp = ZTOV(zp);
2046 
2047 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2048 		goto out;
2049 	}
2050 
2051 	if (vp->v_type != VDIR) {
2052 		error = SET_ERROR(ENOTDIR);
2053 		goto out;
2054 	}
2055 
2056 	if (vp == cwd) {
2057 		error = SET_ERROR(EINVAL);
2058 		goto out;
2059 	}
2060 
2061 	vnevent_rmdir(vp, dvp, name, ct);
2062 
2063 	/*
2064 	 * Grab a lock on the directory to make sure that noone is
2065 	 * trying to add (or lookup) entries while we are removing it.
2066 	 */
2067 	rw_enter(&zp->z_name_lock, RW_WRITER);
2068 
2069 	/*
2070 	 * Grab a lock on the parent pointer to make sure we play well
2071 	 * with the treewalk and directory rename code.
2072 	 */
2073 	rw_enter(&zp->z_parent_lock, RW_WRITER);
2074 
2075 	tx = dmu_tx_create(zfsvfs->z_os);
2076 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2077 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2078 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2079 	zfs_sa_upgrade_txholds(tx, zp);
2080 	zfs_sa_upgrade_txholds(tx, dzp);
2081 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2082 	if (error) {
2083 		rw_exit(&zp->z_parent_lock);
2084 		rw_exit(&zp->z_name_lock);
2085 		zfs_dirent_unlock(dl);
2086 		VN_RELE(vp);
2087 		if (error == ERESTART) {
2088 			waited = B_TRUE;
2089 			dmu_tx_wait(tx);
2090 			dmu_tx_abort(tx);
2091 			goto top;
2092 		}
2093 		dmu_tx_abort(tx);
2094 		ZFS_EXIT(zfsvfs);
2095 		return (error);
2096 	}
2097 
2098 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2099 
2100 	if (error == 0) {
2101 		uint64_t txtype = TX_RMDIR;
2102 		if (flags & FIGNORECASE)
2103 			txtype |= TX_CI;
2104 
2105 		rw_enter(&rz_zev_rwlock, RW_READER);
2106 		if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_remove)
2107 			rz_zev_callbacks->rz_zev_znode_remove(dzp, zp, tx,
2108 			                                      name, txtype);
2109 		rw_exit(&rz_zev_rwlock);
2110 
2111 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2112 	}
2113 
2114 	dmu_tx_commit(tx);
2115 
2116 	rw_exit(&zp->z_parent_lock);
2117 	rw_exit(&zp->z_name_lock);
2118 out:
2119 	zfs_dirent_unlock(dl);
2120 
2121 	VN_RELE(vp);
2122 
2123 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2124 		zil_commit(zilog, 0);
2125 
2126 	ZFS_EXIT(zfsvfs);
2127 	return (error);
2128 }
2129 
2130 /*
2131  * Read as many directory entries as will fit into the provided
2132  * buffer from the given directory cursor position (specified in
2133  * the uio structure).
2134  *
2135  *	IN:	vp	- vnode of directory to read.
2136  *		uio	- structure supplying read location, range info,
2137  *			  and return buffer.
2138  *		cr	- credentials of caller.
2139  *		ct	- caller context
2140  *		flags	- case flags
2141  *
2142  *	OUT:	uio	- updated offset and range, buffer filled.
2143  *		eofp	- set to true if end-of-file detected.
2144  *
2145  *	RETURN:	0 on success, error code on failure.
2146  *
2147  * Timestamps:
2148  *	vp - atime updated
2149  *
2150  * Note that the low 4 bits of the cookie returned by zap is always zero.
2151  * This allows us to use the low range for "special" directory entries:
2152  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2153  * we use the offset 2 for the '.zfs' directory.
2154  */
2155 /* ARGSUSED */
2156 static int
2157 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2158     caller_context_t *ct, int flags)
2159 {
2160 	znode_t		*zp = VTOZ(vp);
2161 	iovec_t		*iovp;
2162 	edirent_t	*eodp;
2163 	dirent64_t	*odp;
2164 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2165 	objset_t	*os;
2166 	caddr_t		outbuf;
2167 	size_t		bufsize;
2168 	zap_cursor_t	zc;
2169 	zap_attribute_t	zap;
2170 	uint_t		bytes_wanted;
2171 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2172 	uint64_t	parent;
2173 	int		local_eof;
2174 	int		outcount;
2175 	int		error;
2176 	uint8_t		prefetch;
2177 	boolean_t	check_sysattrs;
2178 
2179 	ZFS_ENTER(zfsvfs);
2180 	ZFS_VERIFY_ZP(zp);
2181 
2182 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2183 	    &parent, sizeof (parent))) != 0) {
2184 		ZFS_EXIT(zfsvfs);
2185 		return (error);
2186 	}
2187 
2188 	/*
2189 	 * If we are not given an eof variable,
2190 	 * use a local one.
2191 	 */
2192 	if (eofp == NULL)
2193 		eofp = &local_eof;
2194 
2195 	/*
2196 	 * Check for valid iov_len.
2197 	 */
2198 	if (uio->uio_iov->iov_len <= 0) {
2199 		ZFS_EXIT(zfsvfs);
2200 		return (SET_ERROR(EINVAL));
2201 	}
2202 
2203 	/*
2204 	 * Quit if directory has been removed (posix)
2205 	 */
2206 	if ((*eofp = zp->z_unlinked) != 0) {
2207 		ZFS_EXIT(zfsvfs);
2208 		return (0);
2209 	}
2210 
2211 	error = 0;
2212 	os = zfsvfs->z_os;
2213 	offset = uio->uio_loffset;
2214 	prefetch = zp->z_zn_prefetch;
2215 
2216 	/*
2217 	 * Initialize the iterator cursor.
2218 	 */
2219 	if (offset <= 3) {
2220 		/*
2221 		 * Start iteration from the beginning of the directory.
2222 		 */
2223 		zap_cursor_init(&zc, os, zp->z_id);
2224 	} else {
2225 		/*
2226 		 * The offset is a serialized cursor.
2227 		 */
2228 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2229 	}
2230 
2231 	/*
2232 	 * Get space to change directory entries into fs independent format.
2233 	 */
2234 	iovp = uio->uio_iov;
2235 	bytes_wanted = iovp->iov_len;
2236 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2237 		bufsize = bytes_wanted;
2238 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2239 		odp = (struct dirent64 *)outbuf;
2240 	} else {
2241 		bufsize = bytes_wanted;
2242 		outbuf = NULL;
2243 		odp = (struct dirent64 *)iovp->iov_base;
2244 	}
2245 	eodp = (struct edirent *)odp;
2246 
2247 	/*
2248 	 * If this VFS supports the system attribute view interface; and
2249 	 * we're looking at an extended attribute directory; and we care
2250 	 * about normalization conflicts on this vfs; then we must check
2251 	 * for normalization conflicts with the sysattr name space.
2252 	 */
2253 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2254 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2255 	    (flags & V_RDDIR_ENTFLAGS);
2256 
2257 	/*
2258 	 * Transform to file-system independent format
2259 	 */
2260 	outcount = 0;
2261 	while (outcount < bytes_wanted) {
2262 		ino64_t objnum;
2263 		ushort_t reclen;
2264 		off64_t *next = NULL;
2265 
2266 		/*
2267 		 * Special case `.', `..', and `.zfs'.
2268 		 */
2269 		if (offset == 0) {
2270 			(void) strcpy(zap.za_name, ".");
2271 			zap.za_normalization_conflict = 0;
2272 			objnum = zp->z_id;
2273 		} else if (offset == 1) {
2274 			(void) strcpy(zap.za_name, "..");
2275 			zap.za_normalization_conflict = 0;
2276 			objnum = parent;
2277 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2278 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2279 			zap.za_normalization_conflict = 0;
2280 			objnum = ZFSCTL_INO_ROOT;
2281 		} else {
2282 			/*
2283 			 * Grab next entry.
2284 			 */
2285 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2286 				if ((*eofp = (error == ENOENT)) != 0)
2287 					break;
2288 				else
2289 					goto update;
2290 			}
2291 
2292 			if (zap.za_integer_length != 8 ||
2293 			    zap.za_num_integers != 1) {
2294 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2295 				    "entry, obj = %lld, offset = %lld\n",
2296 				    (u_longlong_t)zp->z_id,
2297 				    (u_longlong_t)offset);
2298 				error = SET_ERROR(ENXIO);
2299 				goto update;
2300 			}
2301 
2302 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2303 			/*
2304 			 * MacOS X can extract the object type here such as:
2305 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2306 			 */
2307 
2308 			if (check_sysattrs && !zap.za_normalization_conflict) {
2309 				zap.za_normalization_conflict =
2310 				    xattr_sysattr_casechk(zap.za_name);
2311 			}
2312 		}
2313 
2314 		if (flags & V_RDDIR_ACCFILTER) {
2315 			/*
2316 			 * If we have no access at all, don't include
2317 			 * this entry in the returned information
2318 			 */
2319 			znode_t	*ezp;
2320 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2321 				goto skip_entry;
2322 			if (!zfs_has_access(ezp, cr)) {
2323 				VN_RELE(ZTOV(ezp));
2324 				goto skip_entry;
2325 			}
2326 			VN_RELE(ZTOV(ezp));
2327 		}
2328 
2329 		if (flags & V_RDDIR_ENTFLAGS)
2330 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2331 		else
2332 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2333 
2334 		/*
2335 		 * Will this entry fit in the buffer?
2336 		 */
2337 		if (outcount + reclen > bufsize) {
2338 			/*
2339 			 * Did we manage to fit anything in the buffer?
2340 			 */
2341 			if (!outcount) {
2342 				error = SET_ERROR(EINVAL);
2343 				goto update;
2344 			}
2345 			break;
2346 		}
2347 		if (flags & V_RDDIR_ENTFLAGS) {
2348 			/*
2349 			 * Add extended flag entry:
2350 			 */
2351 			eodp->ed_ino = objnum;
2352 			eodp->ed_reclen = reclen;
2353 			/* NOTE: ed_off is the offset for the *next* entry */
2354 			next = &(eodp->ed_off);
2355 			eodp->ed_eflags = zap.za_normalization_conflict ?
2356 			    ED_CASE_CONFLICT : 0;
2357 			(void) strncpy(eodp->ed_name, zap.za_name,
2358 			    EDIRENT_NAMELEN(reclen));
2359 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2360 		} else {
2361 			/*
2362 			 * Add normal entry:
2363 			 */
2364 			odp->d_ino = objnum;
2365 			odp->d_reclen = reclen;
2366 			/* NOTE: d_off is the offset for the *next* entry */
2367 			next = &(odp->d_off);
2368 			(void) strncpy(odp->d_name, zap.za_name,
2369 			    DIRENT64_NAMELEN(reclen));
2370 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2371 		}
2372 		outcount += reclen;
2373 
2374 		ASSERT(outcount <= bufsize);
2375 
2376 		/* Prefetch znode */
2377 		if (prefetch)
2378 			dmu_prefetch(os, objnum, 0, 0);
2379 
2380 	skip_entry:
2381 		/*
2382 		 * Move to the next entry, fill in the previous offset.
2383 		 */
2384 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2385 			zap_cursor_advance(&zc);
2386 			offset = zap_cursor_serialize(&zc);
2387 		} else {
2388 			offset += 1;
2389 		}
2390 		if (next)
2391 			*next = offset;
2392 	}
2393 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2394 
2395 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2396 		iovp->iov_base += outcount;
2397 		iovp->iov_len -= outcount;
2398 		uio->uio_resid -= outcount;
2399 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2400 		/*
2401 		 * Reset the pointer.
2402 		 */
2403 		offset = uio->uio_loffset;
2404 	}
2405 
2406 update:
2407 	zap_cursor_fini(&zc);
2408 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2409 		kmem_free(outbuf, bufsize);
2410 
2411 	if (error == ENOENT)
2412 		error = 0;
2413 
2414 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2415 
2416 	uio->uio_loffset = offset;
2417 	ZFS_EXIT(zfsvfs);
2418 	return (error);
2419 }
2420 
2421 ulong_t zfs_fsync_sync_cnt = 4;
2422 
2423 static int
2424 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2425 {
2426 	znode_t	*zp = VTOZ(vp);
2427 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2428 
2429 	/*
2430 	 * Regardless of whether this is required for standards conformance,
2431 	 * this is the logical behavior when fsync() is called on a file with
2432 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2433 	 * going to be pushed out as part of the zil_commit().
2434 	 */
2435 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2436 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2437 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2438 
2439 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2440 
2441 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2442 		ZFS_ENTER(zfsvfs);
2443 		ZFS_VERIFY_ZP(zp);
2444 		zil_commit(zfsvfs->z_log, zp->z_id);
2445 		ZFS_EXIT(zfsvfs);
2446 	}
2447 	return (0);
2448 }
2449 
2450 
2451 /*
2452  * Get the requested file attributes and place them in the provided
2453  * vattr structure.
2454  *
2455  *	IN:	vp	- vnode of file.
2456  *		vap	- va_mask identifies requested attributes.
2457  *			  If AT_XVATTR set, then optional attrs are requested
2458  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2459  *		cr	- credentials of caller.
2460  *		ct	- caller context
2461  *
2462  *	OUT:	vap	- attribute values.
2463  *
2464  *	RETURN:	0 (always succeeds).
2465  */
2466 /* ARGSUSED */
2467 static int
2468 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2469     caller_context_t *ct)
2470 {
2471 	znode_t *zp = VTOZ(vp);
2472 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2473 	int	error = 0;
2474 	uint64_t links;
2475 	uint64_t mtime[2], ctime[2];
2476 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2477 	xoptattr_t *xoap = NULL;
2478 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2479 	sa_bulk_attr_t bulk[2];
2480 	int count = 0;
2481 
2482 	ZFS_ENTER(zfsvfs);
2483 	ZFS_VERIFY_ZP(zp);
2484 
2485 	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2486 
2487 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2488 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2489 
2490 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2491 		ZFS_EXIT(zfsvfs);
2492 		return (error);
2493 	}
2494 
2495 	/*
2496 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2497 	 * Also, if we are the owner don't bother, since owner should
2498 	 * always be allowed to read basic attributes of file.
2499 	 */
2500 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2501 	    (vap->va_uid != crgetuid(cr))) {
2502 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2503 		    skipaclchk, cr)) {
2504 			ZFS_EXIT(zfsvfs);
2505 			return (error);
2506 		}
2507 	}
2508 
2509 	/*
2510 	 * Return all attributes.  It's cheaper to provide the answer
2511 	 * than to determine whether we were asked the question.
2512 	 */
2513 
2514 	mutex_enter(&zp->z_lock);
2515 	vap->va_type = vp->v_type;
2516 	vap->va_mode = zp->z_mode & MODEMASK;
2517 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2518 	vap->va_nodeid = zp->z_id;
2519 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2520 		links = zp->z_links + 1;
2521 	else
2522 		links = zp->z_links;
2523 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2524 	vap->va_size = zp->z_size;
2525 	vap->va_rdev = vp->v_rdev;
2526 	vap->va_seq = zp->z_seq;
2527 
2528 	/*
2529 	 * Add in any requested optional attributes and the create time.
2530 	 * Also set the corresponding bits in the returned attribute bitmap.
2531 	 */
2532 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2533 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2534 			xoap->xoa_archive =
2535 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2536 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2537 		}
2538 
2539 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2540 			xoap->xoa_readonly =
2541 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2542 			XVA_SET_RTN(xvap, XAT_READONLY);
2543 		}
2544 
2545 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2546 			xoap->xoa_system =
2547 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2548 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2549 		}
2550 
2551 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2552 			xoap->xoa_hidden =
2553 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2554 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2555 		}
2556 
2557 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2558 			xoap->xoa_nounlink =
2559 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2560 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2561 		}
2562 
2563 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2564 			xoap->xoa_immutable =
2565 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2566 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2567 		}
2568 
2569 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2570 			xoap->xoa_appendonly =
2571 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2572 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2573 		}
2574 
2575 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2576 			xoap->xoa_nodump =
2577 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2578 			XVA_SET_RTN(xvap, XAT_NODUMP);
2579 		}
2580 
2581 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2582 			xoap->xoa_opaque =
2583 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2584 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2585 		}
2586 
2587 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2588 			xoap->xoa_av_quarantined =
2589 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2590 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2591 		}
2592 
2593 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2594 			xoap->xoa_av_modified =
2595 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2596 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2597 		}
2598 
2599 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2600 		    vp->v_type == VREG) {
2601 			zfs_sa_get_scanstamp(zp, xvap);
2602 		}
2603 
2604 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2605 			uint64_t times[2];
2606 
2607 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2608 			    times, sizeof (times));
2609 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2610 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2611 		}
2612 
2613 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2614 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2615 			XVA_SET_RTN(xvap, XAT_REPARSE);
2616 		}
2617 		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2618 			xoap->xoa_generation = zp->z_gen;
2619 			XVA_SET_RTN(xvap, XAT_GEN);
2620 		}
2621 
2622 		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2623 			xoap->xoa_offline =
2624 			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2625 			XVA_SET_RTN(xvap, XAT_OFFLINE);
2626 		}
2627 
2628 		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2629 			xoap->xoa_sparse =
2630 			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2631 			XVA_SET_RTN(xvap, XAT_SPARSE);
2632 		}
2633 	}
2634 
2635 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2636 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2637 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2638 
2639 	mutex_exit(&zp->z_lock);
2640 
2641 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2642 
2643 	if (zp->z_blksz == 0) {
2644 		/*
2645 		 * Block size hasn't been set; suggest maximal I/O transfers.
2646 		 */
2647 		vap->va_blksize = zfsvfs->z_max_blksz;
2648 	}
2649 
2650 	ZFS_EXIT(zfsvfs);
2651 	return (0);
2652 }
2653 
2654 /*
2655  * Set the file attributes to the values contained in the
2656  * vattr structure.
2657  *
2658  *	IN:	vp	- vnode of file to be modified.
2659  *		vap	- new attribute values.
2660  *			  If AT_XVATTR set, then optional attrs are being set
2661  *		flags	- ATTR_UTIME set if non-default time values provided.
2662  *			- ATTR_NOACLCHECK (CIFS context only).
2663  *		cr	- credentials of caller.
2664  *		ct	- caller context
2665  *
2666  *	RETURN:	0 on success, error code on failure.
2667  *
2668  * Timestamps:
2669  *	vp - ctime updated, mtime updated if size changed.
2670  */
2671 /* ARGSUSED */
2672 static int
2673 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2674     caller_context_t *ct)
2675 {
2676 	znode_t		*zp = VTOZ(vp);
2677 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2678 	zilog_t		*zilog;
2679 	dmu_tx_t	*tx;
2680 	vattr_t		oldva;
2681 	xvattr_t	tmpxvattr;
2682 	uint_t		mask = vap->va_mask;
2683 	uint_t		saved_mask = 0;
2684 	int		trim_mask = 0;
2685 	uint64_t	new_mode;
2686 	uint64_t	new_uid, new_gid;
2687 	uint64_t	xattr_obj;
2688 	uint64_t	mtime[2], ctime[2];
2689 	znode_t		*attrzp;
2690 	int		need_policy = FALSE;
2691 	int		err, err2;
2692 	zfs_fuid_info_t *fuidp = NULL;
2693 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2694 	xoptattr_t	*xoap;
2695 	zfs_acl_t	*aclp;
2696 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2697 	boolean_t	fuid_dirtied = B_FALSE;
2698 	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2699 	int		count = 0, xattr_count = 0;
2700 
2701 	if (mask == 0)
2702 		return (0);
2703 
2704 	if (mask & AT_NOSET)
2705 		return (SET_ERROR(EINVAL));
2706 
2707 	ZFS_ENTER(zfsvfs);
2708 	ZFS_VERIFY_ZP(zp);
2709 
2710 	zilog = zfsvfs->z_log;
2711 
2712 	/*
2713 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2714 	 * that file system is at proper version level
2715 	 */
2716 
2717 	if (zfsvfs->z_use_fuids == B_FALSE &&
2718 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2719 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2720 	    (mask & AT_XVATTR))) {
2721 		ZFS_EXIT(zfsvfs);
2722 		return (SET_ERROR(EINVAL));
2723 	}
2724 
2725 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2726 		ZFS_EXIT(zfsvfs);
2727 		return (SET_ERROR(EISDIR));
2728 	}
2729 
2730 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2731 		ZFS_EXIT(zfsvfs);
2732 		return (SET_ERROR(EINVAL));
2733 	}
2734 
2735 	/*
2736 	 * If this is an xvattr_t, then get a pointer to the structure of
2737 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2738 	 */
2739 	xoap = xva_getxoptattr(xvap);
2740 
2741 	xva_init(&tmpxvattr);
2742 
2743 	/*
2744 	 * Immutable files can only alter immutable bit and atime
2745 	 */
2746 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2747 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2748 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2749 		ZFS_EXIT(zfsvfs);
2750 		return (SET_ERROR(EPERM));
2751 	}
2752 
2753 	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2754 		ZFS_EXIT(zfsvfs);
2755 		return (SET_ERROR(EPERM));
2756 	}
2757 
2758 	/*
2759 	 * Verify timestamps doesn't overflow 32 bits.
2760 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2761 	 * handle times greater than 2039.  This check should be removed
2762 	 * once large timestamps are fully supported.
2763 	 */
2764 	if (mask & (AT_ATIME | AT_MTIME)) {
2765 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2766 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2767 			ZFS_EXIT(zfsvfs);
2768 			return (SET_ERROR(EOVERFLOW));
2769 		}
2770 	}
2771 
2772 top:
2773 	attrzp = NULL;
2774 	aclp = NULL;
2775 
2776 	/* Can this be moved to before the top label? */
2777 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2778 		ZFS_EXIT(zfsvfs);
2779 		return (SET_ERROR(EROFS));
2780 	}
2781 
2782 	/*
2783 	 * First validate permissions
2784 	 */
2785 
2786 	if (mask & AT_SIZE) {
2787 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2788 		if (err) {
2789 			ZFS_EXIT(zfsvfs);
2790 			return (err);
2791 		}
2792 		/*
2793 		 * XXX - Note, we are not providing any open
2794 		 * mode flags here (like FNDELAY), so we may
2795 		 * block if there are locks present... this
2796 		 * should be addressed in openat().
2797 		 */
2798 		/* XXX - would it be OK to generate a log record here? */
2799 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2800 		if (err) {
2801 			ZFS_EXIT(zfsvfs);
2802 			return (err);
2803 		}
2804 
2805 		if (vap->va_size == 0)
2806 			vnevent_truncate(ZTOV(zp), ct);
2807 	}
2808 
2809 	if (mask & (AT_ATIME|AT_MTIME) ||
2810 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2811 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2812 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2813 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2814 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2815 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2816 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2817 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2818 		    skipaclchk, cr);
2819 	}
2820 
2821 	if (mask & (AT_UID|AT_GID)) {
2822 		int	idmask = (mask & (AT_UID|AT_GID));
2823 		int	take_owner;
2824 		int	take_group;
2825 
2826 		/*
2827 		 * NOTE: even if a new mode is being set,
2828 		 * we may clear S_ISUID/S_ISGID bits.
2829 		 */
2830 
2831 		if (!(mask & AT_MODE))
2832 			vap->va_mode = zp->z_mode;
2833 
2834 		/*
2835 		 * Take ownership or chgrp to group we are a member of
2836 		 */
2837 
2838 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2839 		take_group = (mask & AT_GID) &&
2840 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2841 
2842 		/*
2843 		 * If both AT_UID and AT_GID are set then take_owner and
2844 		 * take_group must both be set in order to allow taking
2845 		 * ownership.
2846 		 *
2847 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2848 		 *
2849 		 */
2850 
2851 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2852 		    ((idmask == AT_UID) && take_owner) ||
2853 		    ((idmask == AT_GID) && take_group)) {
2854 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2855 			    skipaclchk, cr) == 0) {
2856 				/*
2857 				 * Remove setuid/setgid for non-privileged users
2858 				 */
2859 				secpolicy_setid_clear(vap, cr);
2860 				trim_mask = (mask & (AT_UID|AT_GID));
2861 			} else {
2862 				need_policy =  TRUE;
2863 			}
2864 		} else {
2865 			need_policy =  TRUE;
2866 		}
2867 	}
2868 
2869 	mutex_enter(&zp->z_lock);
2870 	oldva.va_mode = zp->z_mode;
2871 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2872 	if (mask & AT_XVATTR) {
2873 		/*
2874 		 * Update xvattr mask to include only those attributes
2875 		 * that are actually changing.
2876 		 *
2877 		 * the bits will be restored prior to actually setting
2878 		 * the attributes so the caller thinks they were set.
2879 		 */
2880 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2881 			if (xoap->xoa_appendonly !=
2882 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2883 				need_policy = TRUE;
2884 			} else {
2885 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2886 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2887 			}
2888 		}
2889 
2890 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2891 			if (xoap->xoa_nounlink !=
2892 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2893 				need_policy = TRUE;
2894 			} else {
2895 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2896 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2897 			}
2898 		}
2899 
2900 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2901 			if (xoap->xoa_immutable !=
2902 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2903 				need_policy = TRUE;
2904 			} else {
2905 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2906 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2907 			}
2908 		}
2909 
2910 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2911 			if (xoap->xoa_nodump !=
2912 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2913 				need_policy = TRUE;
2914 			} else {
2915 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2916 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2917 			}
2918 		}
2919 
2920 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2921 			if (xoap->xoa_av_modified !=
2922 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2923 				need_policy = TRUE;
2924 			} else {
2925 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2926 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2927 			}
2928 		}
2929 
2930 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2931 			if ((vp->v_type != VREG &&
2932 			    xoap->xoa_av_quarantined) ||
2933 			    xoap->xoa_av_quarantined !=
2934 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2935 				need_policy = TRUE;
2936 			} else {
2937 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2938 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2939 			}
2940 		}
2941 
2942 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2943 			mutex_exit(&zp->z_lock);
2944 			ZFS_EXIT(zfsvfs);
2945 			return (SET_ERROR(EPERM));
2946 		}
2947 
2948 		if (need_policy == FALSE &&
2949 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2950 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2951 			need_policy = TRUE;
2952 		}
2953 	}
2954 
2955 	mutex_exit(&zp->z_lock);
2956 
2957 	if (mask & AT_MODE) {
2958 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2959 			err = secpolicy_setid_setsticky_clear(vp, vap,
2960 			    &oldva, cr);
2961 			if (err) {
2962 				ZFS_EXIT(zfsvfs);
2963 				return (err);
2964 			}
2965 			trim_mask |= AT_MODE;
2966 		} else {
2967 			need_policy = TRUE;
2968 		}
2969 	}
2970 
2971 	if (need_policy) {
2972 		/*
2973 		 * If trim_mask is set then take ownership
2974 		 * has been granted or write_acl is present and user
2975 		 * has the ability to modify mode.  In that case remove
2976 		 * UID|GID and or MODE from mask so that
2977 		 * secpolicy_vnode_setattr() doesn't revoke it.
2978 		 */
2979 
2980 		if (trim_mask) {
2981 			saved_mask = vap->va_mask;
2982 			vap->va_mask &= ~trim_mask;
2983 		}
2984 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2985 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2986 		if (err) {
2987 			ZFS_EXIT(zfsvfs);
2988 			return (err);
2989 		}
2990 
2991 		if (trim_mask)
2992 			vap->va_mask |= saved_mask;
2993 	}
2994 
2995 	/*
2996 	 * secpolicy_vnode_setattr, or take ownership may have
2997 	 * changed va_mask
2998 	 */
2999 	mask = vap->va_mask;
3000 
3001 	if ((mask & (AT_UID | AT_GID))) {
3002 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3003 		    &xattr_obj, sizeof (xattr_obj));
3004 
3005 		if (err == 0 && xattr_obj) {
3006 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3007 			if (err)
3008 				goto out2;
3009 		}
3010 		if (mask & AT_UID) {
3011 			new_uid = zfs_fuid_create(zfsvfs,
3012 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3013 			if (new_uid != zp->z_uid &&
3014 			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3015 				if (attrzp)
3016 					VN_RELE(ZTOV(attrzp));
3017 				err = SET_ERROR(EDQUOT);
3018 				goto out2;
3019 			}
3020 		}
3021 
3022 		if (mask & AT_GID) {
3023 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3024 			    cr, ZFS_GROUP, &fuidp);
3025 			if (new_gid != zp->z_gid &&
3026 			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3027 				if (attrzp)
3028 					VN_RELE(ZTOV(attrzp));
3029 				err = SET_ERROR(EDQUOT);
3030 				goto out2;
3031 			}
3032 		}
3033 	}
3034 	tx = dmu_tx_create(zfsvfs->z_os);
3035 
3036 	if (mask & AT_MODE) {
3037 		uint64_t pmode = zp->z_mode;
3038 		uint64_t acl_obj;
3039 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3040 
3041 		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3042 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3043 			err = SET_ERROR(EPERM);
3044 			goto out;
3045 		}
3046 
3047 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3048 			goto out;
3049 
3050 		mutex_enter(&zp->z_lock);
3051 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3052 			/*
3053 			 * Are we upgrading ACL from old V0 format
3054 			 * to V1 format?
3055 			 */
3056 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3057 			    zfs_znode_acl_version(zp) ==
3058 			    ZFS_ACL_VERSION_INITIAL) {
3059 				dmu_tx_hold_free(tx, acl_obj, 0,
3060 				    DMU_OBJECT_END);
3061 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3062 				    0, aclp->z_acl_bytes);
3063 			} else {
3064 				dmu_tx_hold_write(tx, acl_obj, 0,
3065 				    aclp->z_acl_bytes);
3066 			}
3067 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3068 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3069 			    0, aclp->z_acl_bytes);
3070 		}
3071 		mutex_exit(&zp->z_lock);
3072 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3073 	} else {
3074 		if ((mask & AT_XVATTR) &&
3075 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3076 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3077 		else
3078 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3079 	}
3080 
3081 	if (attrzp) {
3082 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3083 	}
3084 
3085 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3086 	if (fuid_dirtied)
3087 		zfs_fuid_txhold(zfsvfs, tx);
3088 
3089 	zfs_sa_upgrade_txholds(tx, zp);
3090 
3091 	err = dmu_tx_assign(tx, TXG_WAIT);
3092 	if (err)
3093 		goto out;
3094 
3095 	count = 0;
3096 	/*
3097 	 * Set each attribute requested.
3098 	 * We group settings according to the locks they need to acquire.
3099 	 *
3100 	 * Note: you cannot set ctime directly, although it will be
3101 	 * updated as a side-effect of calling this function.
3102 	 */
3103 
3104 
3105 	if (mask & (AT_UID|AT_GID|AT_MODE))
3106 		mutex_enter(&zp->z_acl_lock);
3107 	mutex_enter(&zp->z_lock);
3108 
3109 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3110 	    &zp->z_pflags, sizeof (zp->z_pflags));
3111 
3112 	if (attrzp) {
3113 		if (mask & (AT_UID|AT_GID|AT_MODE))
3114 			mutex_enter(&attrzp->z_acl_lock);
3115 		mutex_enter(&attrzp->z_lock);
3116 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3117 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3118 		    sizeof (attrzp->z_pflags));
3119 	}
3120 
3121 	if (mask & (AT_UID|AT_GID)) {
3122 
3123 		if (mask & AT_UID) {
3124 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3125 			    &new_uid, sizeof (new_uid));
3126 			zp->z_uid = new_uid;
3127 			if (attrzp) {
3128 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3129 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3130 				    sizeof (new_uid));
3131 				attrzp->z_uid = new_uid;
3132 			}
3133 		}
3134 
3135 		if (mask & AT_GID) {
3136 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3137 			    NULL, &new_gid, sizeof (new_gid));
3138 			zp->z_gid = new_gid;
3139 			if (attrzp) {
3140 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3141 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3142 				    sizeof (new_gid));
3143 				attrzp->z_gid = new_gid;
3144 			}
3145 		}
3146 		if (!(mask & AT_MODE)) {
3147 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3148 			    NULL, &new_mode, sizeof (new_mode));
3149 			new_mode = zp->z_mode;
3150 		}
3151 		err = zfs_acl_chown_setattr(zp);
3152 		ASSERT(err == 0);
3153 		if (attrzp) {
3154 			err = zfs_acl_chown_setattr(attrzp);
3155 			ASSERT(err == 0);
3156 		}
3157 	}
3158 
3159 	if (mask & AT_MODE) {
3160 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3161 		    &new_mode, sizeof (new_mode));
3162 		zp->z_mode = new_mode;
3163 		ASSERT3U((uintptr_t)aclp, !=, NULL);
3164 		err = zfs_aclset_common(zp, aclp, cr, tx);
3165 		ASSERT0(err);
3166 		if (zp->z_acl_cached)
3167 			zfs_acl_free(zp->z_acl_cached);
3168 		zp->z_acl_cached = aclp;
3169 		aclp = NULL;
3170 	}
3171 
3172 
3173 	if (mask & AT_ATIME) {
3174 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3175 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3176 		    &zp->z_atime, sizeof (zp->z_atime));
3177 	}
3178 
3179 	if (mask & AT_MTIME) {
3180 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3181 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3182 		    mtime, sizeof (mtime));
3183 	}
3184 
3185 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3186 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3187 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3188 		    NULL, mtime, sizeof (mtime));
3189 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3190 		    &ctime, sizeof (ctime));
3191 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3192 		    B_TRUE);
3193 	} else if (mask != 0) {
3194 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3195 		    &ctime, sizeof (ctime));
3196 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3197 		    B_TRUE);
3198 		if (attrzp) {
3199 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3200 			    SA_ZPL_CTIME(zfsvfs), NULL,
3201 			    &ctime, sizeof (ctime));
3202 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3203 			    mtime, ctime, B_TRUE);
3204 		}
3205 	}
3206 	/*
3207 	 * Do this after setting timestamps to prevent timestamp
3208 	 * update from toggling bit
3209 	 */
3210 
3211 	if (xoap && (mask & AT_XVATTR)) {
3212 
3213 		/*
3214 		 * restore trimmed off masks
3215 		 * so that return masks can be set for caller.
3216 		 */
3217 
3218 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3219 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3220 		}
3221 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3222 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3223 		}
3224 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3225 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3226 		}
3227 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3228 			XVA_SET_REQ(xvap, XAT_NODUMP);
3229 		}
3230 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3231 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3232 		}
3233 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3234 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3235 		}
3236 
3237 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3238 			ASSERT(vp->v_type == VREG);
3239 
3240 		zfs_xvattr_set(zp, xvap, tx);
3241 	}
3242 
3243 	if (fuid_dirtied)
3244 		zfs_fuid_sync(zfsvfs, tx);
3245 
3246 	if (mask != 0)
3247 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3248 
3249 	mutex_exit(&zp->z_lock);
3250 	if (mask & (AT_UID|AT_GID|AT_MODE))
3251 		mutex_exit(&zp->z_acl_lock);
3252 
3253 	if (attrzp) {
3254 		if (mask & (AT_UID|AT_GID|AT_MODE))
3255 			mutex_exit(&attrzp->z_acl_lock);
3256 		mutex_exit(&attrzp->z_lock);
3257 	}
3258 out:
3259 	if (err == 0 && attrzp) {
3260 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3261 		    xattr_count, tx);
3262 		ASSERT(err2 == 0);
3263 	}
3264 
3265 	if (attrzp)
3266 		VN_RELE(ZTOV(attrzp));
3267 
3268 	if (aclp)
3269 		zfs_acl_free(aclp);
3270 
3271 	if (fuidp) {
3272 		zfs_fuid_info_free(fuidp);
3273 		fuidp = NULL;
3274 	}
3275 
3276 	if (err) {
3277 		dmu_tx_abort(tx);
3278 		if (err == ERESTART)
3279 			goto top;
3280 	} else {
3281 		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3282 		rw_enter(&rz_zev_rwlock, RW_READER);
3283 		if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_setattr)
3284 			rz_zev_callbacks->rz_zev_znode_setattr(zp, tx);
3285 		rw_exit(&rz_zev_rwlock);
3286 		dmu_tx_commit(tx);
3287 	}
3288 
3289 out2:
3290 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3291 		zil_commit(zilog, 0);
3292 
3293 	ZFS_EXIT(zfsvfs);
3294 	return (err);
3295 }
3296 
3297 typedef struct zfs_zlock {
3298 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3299 	znode_t		*zl_znode;	/* znode we held */
3300 	struct zfs_zlock *zl_next;	/* next in list */
3301 } zfs_zlock_t;
3302 
3303 /*
3304  * Drop locks and release vnodes that were held by zfs_rename_lock().
3305  */
3306 static void
3307 zfs_rename_unlock(zfs_zlock_t **zlpp)
3308 {
3309 	zfs_zlock_t *zl;
3310 
3311 	while ((zl = *zlpp) != NULL) {
3312 		if (zl->zl_znode != NULL)
3313 			VN_RELE(ZTOV(zl->zl_znode));
3314 		rw_exit(zl->zl_rwlock);
3315 		*zlpp = zl->zl_next;
3316 		kmem_free(zl, sizeof (*zl));
3317 	}
3318 }
3319 
3320 /*
3321  * Search back through the directory tree, using the ".." entries.
3322  * Lock each directory in the chain to prevent concurrent renames.
3323  * Fail any attempt to move a directory into one of its own descendants.
3324  * XXX - z_parent_lock can overlap with map or grow locks
3325  */
3326 static int
3327 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3328 {
3329 	zfs_zlock_t	*zl;
3330 	znode_t		*zp = tdzp;
3331 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3332 	uint64_t	oidp = zp->z_id;
3333 	krwlock_t	*rwlp = &szp->z_parent_lock;
3334 	krw_t		rw = RW_WRITER;
3335 
3336 	/*
3337 	 * First pass write-locks szp and compares to zp->z_id.
3338 	 * Later passes read-lock zp and compare to zp->z_parent.
3339 	 */
3340 	do {
3341 		if (!rw_tryenter(rwlp, rw)) {
3342 			/*
3343 			 * Another thread is renaming in this path.
3344 			 * Note that if we are a WRITER, we don't have any
3345 			 * parent_locks held yet.
3346 			 */
3347 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3348 				/*
3349 				 * Drop our locks and restart
3350 				 */
3351 				zfs_rename_unlock(&zl);
3352 				*zlpp = NULL;
3353 				zp = tdzp;
3354 				oidp = zp->z_id;
3355 				rwlp = &szp->z_parent_lock;
3356 				rw = RW_WRITER;
3357 				continue;
3358 			} else {
3359 				/*
3360 				 * Wait for other thread to drop its locks
3361 				 */
3362 				rw_enter(rwlp, rw);
3363 			}
3364 		}
3365 
3366 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3367 		zl->zl_rwlock = rwlp;
3368 		zl->zl_znode = NULL;
3369 		zl->zl_next = *zlpp;
3370 		*zlpp = zl;
3371 
3372 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3373 			return (SET_ERROR(EINVAL));
3374 
3375 		if (oidp == rootid)		/* We've hit the top */
3376 			return (0);
3377 
3378 		if (rw == RW_READER) {		/* i.e. not the first pass */
3379 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3380 			if (error)
3381 				return (error);
3382 			zl->zl_znode = zp;
3383 		}
3384 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3385 		    &oidp, sizeof (oidp));
3386 		rwlp = &zp->z_parent_lock;
3387 		rw = RW_READER;
3388 
3389 	} while (zp->z_id != sdzp->z_id);
3390 
3391 	return (0);
3392 }
3393 
3394 /*
3395  * Move an entry from the provided source directory to the target
3396  * directory.  Change the entry name as indicated.
3397  *
3398  *	IN:	sdvp	- Source directory containing the "old entry".
3399  *		snm	- Old entry name.
3400  *		tdvp	- Target directory to contain the "new entry".
3401  *		tnm	- New entry name.
3402  *		cr	- credentials of caller.
3403  *		ct	- caller context
3404  *		flags	- case flags
3405  *
3406  *	RETURN:	0 on success, error code on failure.
3407  *
3408  * Timestamps:
3409  *	sdvp,tdvp - ctime|mtime updated
3410  */
3411 /*ARGSUSED*/
3412 static int
3413 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3414     caller_context_t *ct, int flags)
3415 {
3416 	znode_t		*tdzp, *szp, *tzp;
3417 	znode_t		*sdzp = VTOZ(sdvp);
3418 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3419 	zilog_t		*zilog;
3420 	vnode_t		*realvp;
3421 	zfs_dirlock_t	*sdl, *tdl;
3422 	dmu_tx_t	*tx;
3423 	zfs_zlock_t	*zl;
3424 	int		cmp, serr, terr;
3425 	int		error = 0;
3426 	int		zflg = 0;
3427 	boolean_t	waited = B_FALSE;
3428 
3429 	ZFS_ENTER(zfsvfs);
3430 	ZFS_VERIFY_ZP(sdzp);
3431 	zilog = zfsvfs->z_log;
3432 
3433 	/*
3434 	 * Make sure we have the real vp for the target directory.
3435 	 */
3436 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3437 		tdvp = realvp;
3438 
3439 	tdzp = VTOZ(tdvp);
3440 	ZFS_VERIFY_ZP(tdzp);
3441 
3442 	/*
3443 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3444 	 * ctldir appear to have the same v_vfsp.
3445 	 */
3446 	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3447 		ZFS_EXIT(zfsvfs);
3448 		return (SET_ERROR(EXDEV));
3449 	}
3450 
3451 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3452 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3453 		ZFS_EXIT(zfsvfs);
3454 		return (SET_ERROR(EILSEQ));
3455 	}
3456 
3457 	if (flags & FIGNORECASE)
3458 		zflg |= ZCILOOK;
3459 
3460 top:
3461 	szp = NULL;
3462 	tzp = NULL;
3463 	zl = NULL;
3464 
3465 	/*
3466 	 * This is to prevent the creation of links into attribute space
3467 	 * by renaming a linked file into/outof an attribute directory.
3468 	 * See the comment in zfs_link() for why this is considered bad.
3469 	 */
3470 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3471 		ZFS_EXIT(zfsvfs);
3472 		return (SET_ERROR(EINVAL));
3473 	}
3474 
3475 	/*
3476 	 * Lock source and target directory entries.  To prevent deadlock,
3477 	 * a lock ordering must be defined.  We lock the directory with
3478 	 * the smallest object id first, or if it's a tie, the one with
3479 	 * the lexically first name.
3480 	 */
3481 	if (sdzp->z_id < tdzp->z_id) {
3482 		cmp = -1;
3483 	} else if (sdzp->z_id > tdzp->z_id) {
3484 		cmp = 1;
3485 	} else {
3486 		/*
3487 		 * First compare the two name arguments without
3488 		 * considering any case folding.
3489 		 */
3490 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3491 
3492 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3493 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3494 		if (cmp == 0) {
3495 			/*
3496 			 * POSIX: "If the old argument and the new argument
3497 			 * both refer to links to the same existing file,
3498 			 * the rename() function shall return successfully
3499 			 * and perform no other action."
3500 			 */
3501 			ZFS_EXIT(zfsvfs);
3502 			return (0);
3503 		}
3504 		/*
3505 		 * If the file system is case-folding, then we may
3506 		 * have some more checking to do.  A case-folding file
3507 		 * system is either supporting mixed case sensitivity
3508 		 * access or is completely case-insensitive.  Note
3509 		 * that the file system is always case preserving.
3510 		 *
3511 		 * In mixed sensitivity mode case sensitive behavior
3512 		 * is the default.  FIGNORECASE must be used to
3513 		 * explicitly request case insensitive behavior.
3514 		 *
3515 		 * If the source and target names provided differ only
3516 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3517 		 * we will treat this as a special case in the
3518 		 * case-insensitive mode: as long as the source name
3519 		 * is an exact match, we will allow this to proceed as
3520 		 * a name-change request.
3521 		 */
3522 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3523 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3524 		    flags & FIGNORECASE)) &&
3525 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3526 		    &error) == 0) {
3527 			/*
3528 			 * case preserving rename request, require exact
3529 			 * name matches
3530 			 */
3531 			zflg |= ZCIEXACT;
3532 			zflg &= ~ZCILOOK;
3533 		}
3534 	}
3535 
3536 	/*
3537 	 * If the source and destination directories are the same, we should
3538 	 * grab the z_name_lock of that directory only once.
3539 	 */
3540 	if (sdzp == tdzp) {
3541 		zflg |= ZHAVELOCK;
3542 		rw_enter(&sdzp->z_name_lock, RW_READER);
3543 	}
3544 
3545 	if (cmp < 0) {
3546 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3547 		    ZEXISTS | zflg, NULL, NULL);
3548 		terr = zfs_dirent_lock(&tdl,
3549 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3550 	} else {
3551 		terr = zfs_dirent_lock(&tdl,
3552 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3553 		serr = zfs_dirent_lock(&sdl,
3554 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3555 		    NULL, NULL);
3556 	}
3557 
3558 	if (serr) {
3559 		/*
3560 		 * Source entry invalid or not there.
3561 		 */
3562 		if (!terr) {
3563 			zfs_dirent_unlock(tdl);
3564 			if (tzp)
3565 				VN_RELE(ZTOV(tzp));
3566 		}
3567 
3568 		if (sdzp == tdzp)
3569 			rw_exit(&sdzp->z_name_lock);
3570 
3571 		if (strcmp(snm, "..") == 0)
3572 			serr = SET_ERROR(EINVAL);
3573 		ZFS_EXIT(zfsvfs);
3574 		return (serr);
3575 	}
3576 	if (terr) {
3577 		zfs_dirent_unlock(sdl);
3578 		VN_RELE(ZTOV(szp));
3579 
3580 		if (sdzp == tdzp)
3581 			rw_exit(&sdzp->z_name_lock);
3582 
3583 		if (strcmp(tnm, "..") == 0)
3584 			terr = SET_ERROR(EINVAL);
3585 		ZFS_EXIT(zfsvfs);
3586 		return (terr);
3587 	}
3588 
3589 	/*
3590 	 * Must have write access at the source to remove the old entry
3591 	 * and write access at the target to create the new entry.
3592 	 * Note that if target and source are the same, this can be
3593 	 * done in a single check.
3594 	 */
3595 
3596 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3597 		goto out;
3598 
3599 	if (ZTOV(szp)->v_type == VDIR) {
3600 		/*
3601 		 * Check to make sure rename is valid.
3602 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3603 		 */
3604 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3605 			goto out;
3606 	}
3607 
3608 	/*
3609 	 * Does target exist?
3610 	 */
3611 	if (tzp) {
3612 		/*
3613 		 * Source and target must be the same type.
3614 		 */
3615 		if (ZTOV(szp)->v_type == VDIR) {
3616 			if (ZTOV(tzp)->v_type != VDIR) {
3617 				error = SET_ERROR(ENOTDIR);
3618 				goto out;
3619 			}
3620 		} else {
3621 			if (ZTOV(tzp)->v_type == VDIR) {
3622 				error = SET_ERROR(EISDIR);
3623 				goto out;
3624 			}
3625 		}
3626 		/*
3627 		 * POSIX dictates that when the source and target
3628 		 * entries refer to the same file object, rename
3629 		 * must do nothing and exit without error.
3630 		 */
3631 		if (szp->z_id == tzp->z_id) {
3632 			error = 0;
3633 			goto out;
3634 		}
3635 	}
3636 
3637 	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3638 	if (tzp)
3639 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3640 
3641 	/*
3642 	 * notify the target directory if it is not the same
3643 	 * as source directory.
3644 	 */
3645 	if (tdvp != sdvp) {
3646 		vnevent_rename_dest_dir(tdvp, ct);
3647 	}
3648 
3649 	tx = dmu_tx_create(zfsvfs->z_os);
3650 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3651 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3652 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3653 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3654 	if (sdzp != tdzp) {
3655 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3656 		zfs_sa_upgrade_txholds(tx, tdzp);
3657 	}
3658 	if (tzp) {
3659 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3660 		zfs_sa_upgrade_txholds(tx, tzp);
3661 	}
3662 
3663 	zfs_sa_upgrade_txholds(tx, szp);
3664 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3665 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3666 	if (error) {
3667 		if (zl != NULL)
3668 			zfs_rename_unlock(&zl);
3669 		zfs_dirent_unlock(sdl);
3670 		zfs_dirent_unlock(tdl);
3671 
3672 		if (sdzp == tdzp)
3673 			rw_exit(&sdzp->z_name_lock);
3674 
3675 		VN_RELE(ZTOV(szp));
3676 		if (tzp)
3677 			VN_RELE(ZTOV(tzp));
3678 		if (error == ERESTART) {
3679 			waited = B_TRUE;
3680 			dmu_tx_wait(tx);
3681 			dmu_tx_abort(tx);
3682 			goto top;
3683 		}
3684 		dmu_tx_abort(tx);
3685 		ZFS_EXIT(zfsvfs);
3686 		return (error);
3687 	}
3688 
3689 	if (tzp)	/* Attempt to remove the existing target */
3690 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3691 
3692 	if (error == 0) {
3693 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3694 		if (error == 0) {
3695 			szp->z_pflags |= ZFS_AV_MODIFIED;
3696 
3697 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3698 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3699 			ASSERT0(error);
3700 
3701 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3702 			if (error == 0) {
3703 				zfs_log_rename(zilog, tx, TX_RENAME |
3704 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3705 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
3706 
3707 				/*
3708 				 * Update path information for the target vnode
3709 				 */
3710 				vn_renamepath(tdvp, ZTOV(szp), tnm,
3711 				    strlen(tnm));
3712 			} else {
3713 				/*
3714 				 * At this point, we have successfully created
3715 				 * the target name, but have failed to remove
3716 				 * the source name.  Since the create was done
3717 				 * with the ZRENAMING flag, there are
3718 				 * complications; for one, the link count is
3719 				 * wrong.  The easiest way to deal with this
3720 				 * is to remove the newly created target, and
3721 				 * return the original error.  This must
3722 				 * succeed; fortunately, it is very unlikely to
3723 				 * fail, since we just created it.
3724 				 */
3725 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3726 				    ZRENAMING, NULL), ==, 0);
3727 			}
3728 		}
3729 	}
3730 
3731 	dmu_tx_commit(tx);
3732 out:
3733 	if (zl != NULL)
3734 		zfs_rename_unlock(&zl);
3735 
3736 	zfs_dirent_unlock(sdl);
3737 	zfs_dirent_unlock(tdl);
3738 
3739 	if (sdzp == tdzp)
3740 		rw_exit(&sdzp->z_name_lock);
3741 
3742 
3743 	VN_RELE(ZTOV(szp));
3744 	if (tzp)
3745 		VN_RELE(ZTOV(tzp));
3746 
3747 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3748 		zil_commit(zilog, 0);
3749 
3750 	ZFS_EXIT(zfsvfs);
3751 	return (error);
3752 }
3753 
3754 /*
3755  * Insert the indicated symbolic reference entry into the directory.
3756  *
3757  *	IN:	dvp	- Directory to contain new symbolic link.
3758  *		link	- Name for new symlink entry.
3759  *		vap	- Attributes of new entry.
3760  *		cr	- credentials of caller.
3761  *		ct	- caller context
3762  *		flags	- case flags
3763  *
3764  *	RETURN:	0 on success, error code on failure.
3765  *
3766  * Timestamps:
3767  *	dvp - ctime|mtime updated
3768  */
3769 /*ARGSUSED*/
3770 static int
3771 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3772     caller_context_t *ct, int flags)
3773 {
3774 	znode_t		*zp, *dzp = VTOZ(dvp);
3775 	zfs_dirlock_t	*dl;
3776 	dmu_tx_t	*tx;
3777 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3778 	zilog_t		*zilog;
3779 	uint64_t	len = strlen(link);
3780 	int		error;
3781 	int		zflg = ZNEW;
3782 	zfs_acl_ids_t	acl_ids;
3783 	boolean_t	fuid_dirtied;
3784 	uint64_t	txtype = TX_SYMLINK;
3785 	boolean_t	waited = B_FALSE;
3786 
3787 	ASSERT(vap->va_type == VLNK);
3788 
3789 	ZFS_ENTER(zfsvfs);
3790 	ZFS_VERIFY_ZP(dzp);
3791 	zilog = zfsvfs->z_log;
3792 
3793 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3794 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3795 		ZFS_EXIT(zfsvfs);
3796 		return (SET_ERROR(EILSEQ));
3797 	}
3798 	if (flags & FIGNORECASE)
3799 		zflg |= ZCILOOK;
3800 
3801 	if (len > MAXPATHLEN) {
3802 		ZFS_EXIT(zfsvfs);
3803 		return (SET_ERROR(ENAMETOOLONG));
3804 	}
3805 
3806 	if ((error = zfs_acl_ids_create(dzp, 0,
3807 	    vap, cr, NULL, &acl_ids)) != 0) {
3808 		ZFS_EXIT(zfsvfs);
3809 		return (error);
3810 	}
3811 top:
3812 	/*
3813 	 * Attempt to lock directory; fail if entry already exists.
3814 	 */
3815 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3816 	if (error) {
3817 		zfs_acl_ids_free(&acl_ids);
3818 		ZFS_EXIT(zfsvfs);
3819 		return (error);
3820 	}
3821 
3822 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3823 		zfs_acl_ids_free(&acl_ids);
3824 		zfs_dirent_unlock(dl);
3825 		ZFS_EXIT(zfsvfs);
3826 		return (error);
3827 	}
3828 
3829 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3830 		zfs_acl_ids_free(&acl_ids);
3831 		zfs_dirent_unlock(dl);
3832 		ZFS_EXIT(zfsvfs);
3833 		return (SET_ERROR(EDQUOT));
3834 	}
3835 	tx = dmu_tx_create(zfsvfs->z_os);
3836 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3837 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3838 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3839 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3840 	    ZFS_SA_BASE_ATTR_SIZE + len);
3841 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3842 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3843 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3844 		    acl_ids.z_aclp->z_acl_bytes);
3845 	}
3846 	if (fuid_dirtied)
3847 		zfs_fuid_txhold(zfsvfs, tx);
3848 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3849 	if (error) {
3850 		zfs_dirent_unlock(dl);
3851 		if (error == ERESTART) {
3852 			waited = B_TRUE;
3853 			dmu_tx_wait(tx);
3854 			dmu_tx_abort(tx);
3855 			goto top;
3856 		}
3857 		zfs_acl_ids_free(&acl_ids);
3858 		dmu_tx_abort(tx);
3859 		ZFS_EXIT(zfsvfs);
3860 		return (error);
3861 	}
3862 
3863 	/*
3864 	 * Create a new object for the symlink.
3865 	 * for version 4 ZPL datsets the symlink will be an SA attribute
3866 	 */
3867 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3868 
3869 	if (fuid_dirtied)
3870 		zfs_fuid_sync(zfsvfs, tx);
3871 
3872 	mutex_enter(&zp->z_lock);
3873 	if (zp->z_is_sa)
3874 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3875 		    link, len, tx);
3876 	else
3877 		zfs_sa_symlink(zp, link, len, tx);
3878 	mutex_exit(&zp->z_lock);
3879 
3880 	zp->z_size = len;
3881 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3882 	    &zp->z_size, sizeof (zp->z_size), tx);
3883 	/*
3884 	 * Insert the new object into the directory.
3885 	 */
3886 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3887 
3888 	if (flags & FIGNORECASE)
3889 		txtype |= TX_CI;
3890 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3891 
3892 	zfs_acl_ids_free(&acl_ids);
3893 
3894 	dmu_tx_commit(tx);
3895 
3896 	zfs_dirent_unlock(dl);
3897 
3898 	VN_RELE(ZTOV(zp));
3899 
3900 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3901 		zil_commit(zilog, 0);
3902 
3903 	ZFS_EXIT(zfsvfs);
3904 	return (error);
3905 }
3906 
3907 /*
3908  * Return, in the buffer contained in the provided uio structure,
3909  * the symbolic path referred to by vp.
3910  *
3911  *	IN:	vp	- vnode of symbolic link.
3912  *		uio	- structure to contain the link path.
3913  *		cr	- credentials of caller.
3914  *		ct	- caller context
3915  *
3916  *	OUT:	uio	- structure containing the link path.
3917  *
3918  *	RETURN:	0 on success, error code on failure.
3919  *
3920  * Timestamps:
3921  *	vp - atime updated
3922  */
3923 /* ARGSUSED */
3924 static int
3925 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3926 {
3927 	znode_t		*zp = VTOZ(vp);
3928 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3929 	int		error;
3930 
3931 	ZFS_ENTER(zfsvfs);
3932 	ZFS_VERIFY_ZP(zp);
3933 
3934 	mutex_enter(&zp->z_lock);
3935 	if (zp->z_is_sa)
3936 		error = sa_lookup_uio(zp->z_sa_hdl,
3937 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3938 	else
3939 		error = zfs_sa_readlink(zp, uio);
3940 	mutex_exit(&zp->z_lock);
3941 
3942 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3943 
3944 	ZFS_EXIT(zfsvfs);
3945 	return (error);
3946 }
3947 
3948 /*
3949  * Insert a new entry into directory tdvp referencing svp.
3950  *
3951  *	IN:	tdvp	- Directory to contain new entry.
3952  *		svp	- vnode of new entry.
3953  *		name	- name of new entry.
3954  *		cr	- credentials of caller.
3955  *		ct	- caller context
3956  *
3957  *	RETURN:	0 on success, error code on failure.
3958  *
3959  * Timestamps:
3960  *	tdvp - ctime|mtime updated
3961  *	 svp - ctime updated
3962  */
3963 /* ARGSUSED */
3964 static int
3965 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3966     caller_context_t *ct, int flags)
3967 {
3968 	znode_t		*dzp = VTOZ(tdvp);
3969 	znode_t		*tzp, *szp;
3970 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3971 	zilog_t		*zilog;
3972 	zfs_dirlock_t	*dl;
3973 	dmu_tx_t	*tx;
3974 	vnode_t		*realvp;
3975 	int		error;
3976 	int		zf = ZNEW;
3977 	uint64_t	parent;
3978 	uid_t		owner;
3979 	boolean_t	waited = B_FALSE;
3980 
3981 	ASSERT(tdvp->v_type == VDIR);
3982 
3983 	ZFS_ENTER(zfsvfs);
3984 	ZFS_VERIFY_ZP(dzp);
3985 	zilog = zfsvfs->z_log;
3986 
3987 	if (VOP_REALVP(svp, &realvp, ct) == 0)
3988 		svp = realvp;
3989 
3990 	/*
3991 	 * POSIX dictates that we return EPERM here.
3992 	 * Better choices include ENOTSUP or EISDIR.
3993 	 */
3994 	if (svp->v_type == VDIR) {
3995 		ZFS_EXIT(zfsvfs);
3996 		return (SET_ERROR(EPERM));
3997 	}
3998 
3999 	szp = VTOZ(svp);
4000 	ZFS_VERIFY_ZP(szp);
4001 
4002 	/*
4003 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4004 	 * ctldir appear to have the same v_vfsp.
4005 	 */
4006 	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4007 		ZFS_EXIT(zfsvfs);
4008 		return (SET_ERROR(EXDEV));
4009 	}
4010 
4011 	/* Prevent links to .zfs/shares files */
4012 
4013 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4014 	    &parent, sizeof (uint64_t))) != 0) {
4015 		ZFS_EXIT(zfsvfs);
4016 		return (error);
4017 	}
4018 	if (parent == zfsvfs->z_shares_dir) {
4019 		ZFS_EXIT(zfsvfs);
4020 		return (SET_ERROR(EPERM));
4021 	}
4022 
4023 	if (zfsvfs->z_utf8 && u8_validate(name,
4024 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4025 		ZFS_EXIT(zfsvfs);
4026 		return (SET_ERROR(EILSEQ));
4027 	}
4028 	if (flags & FIGNORECASE)
4029 		zf |= ZCILOOK;
4030 
4031 	/*
4032 	 * We do not support links between attributes and non-attributes
4033 	 * because of the potential security risk of creating links
4034 	 * into "normal" file space in order to circumvent restrictions
4035 	 * imposed in attribute space.
4036 	 */
4037 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4038 		ZFS_EXIT(zfsvfs);
4039 		return (SET_ERROR(EINVAL));
4040 	}
4041 
4042 
4043 	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4044 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4045 		ZFS_EXIT(zfsvfs);
4046 		return (SET_ERROR(EPERM));
4047 	}
4048 
4049 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4050 		ZFS_EXIT(zfsvfs);
4051 		return (error);
4052 	}
4053 
4054 top:
4055 	/*
4056 	 * Attempt to lock directory; fail if entry already exists.
4057 	 */
4058 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4059 	if (error) {
4060 		ZFS_EXIT(zfsvfs);
4061 		return (error);
4062 	}
4063 
4064 	tx = dmu_tx_create(zfsvfs->z_os);
4065 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4066 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4067 	zfs_sa_upgrade_txholds(tx, szp);
4068 	zfs_sa_upgrade_txholds(tx, dzp);
4069 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4070 	if (error) {
4071 		zfs_dirent_unlock(dl);
4072 		if (error == ERESTART) {
4073 			waited = B_TRUE;
4074 			dmu_tx_wait(tx);
4075 			dmu_tx_abort(tx);
4076 			goto top;
4077 		}
4078 		dmu_tx_abort(tx);
4079 		ZFS_EXIT(zfsvfs);
4080 		return (error);
4081 	}
4082 
4083 	error = zfs_link_create(dl, szp, tx, 0);
4084 
4085 	if (error == 0) {
4086 		uint64_t txtype = TX_LINK;
4087 		if (flags & FIGNORECASE)
4088 			txtype |= TX_CI;
4089 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4090 	}
4091 
4092 	dmu_tx_commit(tx);
4093 
4094 	zfs_dirent_unlock(dl);
4095 
4096 	if (error == 0) {
4097 		vnevent_link(svp, ct);
4098 	}
4099 
4100 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4101 		zil_commit(zilog, 0);
4102 
4103 	ZFS_EXIT(zfsvfs);
4104 	return (error);
4105 }
4106 
4107 /*
4108  * zfs_null_putapage() is used when the file system has been force
4109  * unmounted. It just drops the pages.
4110  */
4111 /* ARGSUSED */
4112 static int
4113 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4114 		size_t *lenp, int flags, cred_t *cr)
4115 {
4116 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4117 	return (0);
4118 }
4119 
4120 /*
4121  * Push a page out to disk, klustering if possible.
4122  *
4123  *	IN:	vp	- file to push page to.
4124  *		pp	- page to push.
4125  *		flags	- additional flags.
4126  *		cr	- credentials of caller.
4127  *
4128  *	OUT:	offp	- start of range pushed.
4129  *		lenp	- len of range pushed.
4130  *
4131  *	RETURN:	0 on success, error code on failure.
4132  *
4133  * NOTE: callers must have locked the page to be pushed.  On
4134  * exit, the page (and all other pages in the kluster) must be
4135  * unlocked.
4136  */
4137 /* ARGSUSED */
4138 static int
4139 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4140 		size_t *lenp, int flags, cred_t *cr)
4141 {
4142 	znode_t		*zp = VTOZ(vp);
4143 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4144 	dmu_tx_t	*tx;
4145 	u_offset_t	off, koff;
4146 	size_t		len, klen;
4147 	int		err;
4148 
4149 	off = pp->p_offset;
4150 	len = PAGESIZE;
4151 	/*
4152 	 * If our blocksize is bigger than the page size, try to kluster
4153 	 * multiple pages so that we write a full block (thus avoiding
4154 	 * a read-modify-write).
4155 	 */
4156 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4157 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4158 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4159 		ASSERT(koff <= zp->z_size);
4160 		if (koff + klen > zp->z_size)
4161 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4162 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4163 	}
4164 	ASSERT3U(btop(len), ==, btopr(len));
4165 
4166 	/*
4167 	 * Can't push pages past end-of-file.
4168 	 */
4169 	if (off >= zp->z_size) {
4170 		/* ignore all pages */
4171 		err = 0;
4172 		goto out;
4173 	} else if (off + len > zp->z_size) {
4174 		int npages = btopr(zp->z_size - off);
4175 		page_t *trunc;
4176 
4177 		page_list_break(&pp, &trunc, npages);
4178 		/* ignore pages past end of file */
4179 		if (trunc)
4180 			pvn_write_done(trunc, flags);
4181 		len = zp->z_size - off;
4182 	}
4183 
4184 	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4185 	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4186 		err = SET_ERROR(EDQUOT);
4187 		goto out;
4188 	}
4189 	tx = dmu_tx_create(zfsvfs->z_os);
4190 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4191 
4192 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4193 	zfs_sa_upgrade_txholds(tx, zp);
4194 	err = dmu_tx_assign(tx, TXG_WAIT);
4195 	if (err != 0) {
4196 		dmu_tx_abort(tx);
4197 		goto out;
4198 	}
4199 
4200 	if (zp->z_blksz <= PAGESIZE) {
4201 		caddr_t va = zfs_map_page(pp, S_READ);
4202 		ASSERT3U(len, <=, PAGESIZE);
4203 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4204 		zfs_unmap_page(pp, va);
4205 	} else {
4206 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4207 	}
4208 
4209 	if (err == 0) {
4210 		uint64_t mtime[2], ctime[2];
4211 		sa_bulk_attr_t bulk[3];
4212 		int count = 0;
4213 
4214 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4215 		    &mtime, 16);
4216 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4217 		    &ctime, 16);
4218 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4219 		    &zp->z_pflags, 8);
4220 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4221 		    B_TRUE);
4222 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4223 	}
4224 	dmu_tx_commit(tx);
4225 
4226 out:
4227 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4228 	if (offp)
4229 		*offp = off;
4230 	if (lenp)
4231 		*lenp = len;
4232 
4233 	return (err);
4234 }
4235 
4236 /*
4237  * Copy the portion of the file indicated from pages into the file.
4238  * The pages are stored in a page list attached to the files vnode.
4239  *
4240  *	IN:	vp	- vnode of file to push page data to.
4241  *		off	- position in file to put data.
4242  *		len	- amount of data to write.
4243  *		flags	- flags to control the operation.
4244  *		cr	- credentials of caller.
4245  *		ct	- caller context.
4246  *
4247  *	RETURN:	0 on success, error code on failure.
4248  *
4249  * Timestamps:
4250  *	vp - ctime|mtime updated
4251  */
4252 /*ARGSUSED*/
4253 static int
4254 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4255     caller_context_t *ct)
4256 {
4257 	znode_t		*zp = VTOZ(vp);
4258 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4259 	page_t		*pp;
4260 	size_t		io_len;
4261 	u_offset_t	io_off;
4262 	uint_t		blksz;
4263 	rl_t		*rl;
4264 	int		error = 0;
4265 
4266 	ZFS_ENTER(zfsvfs);
4267 	ZFS_VERIFY_ZP(zp);
4268 
4269 	/*
4270 	 * There's nothing to do if no data is cached.
4271 	 */
4272 	if (!vn_has_cached_data(vp)) {
4273 		ZFS_EXIT(zfsvfs);
4274 		return (0);
4275 	}
4276 
4277 	/*
4278 	 * Align this request to the file block size in case we kluster.
4279 	 * XXX - this can result in pretty aggresive locking, which can
4280 	 * impact simultanious read/write access.  One option might be
4281 	 * to break up long requests (len == 0) into block-by-block
4282 	 * operations to get narrower locking.
4283 	 */
4284 	blksz = zp->z_blksz;
4285 	if (ISP2(blksz))
4286 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4287 	else
4288 		io_off = 0;
4289 	if (len > 0 && ISP2(blksz))
4290 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4291 	else
4292 		io_len = 0;
4293 
4294 	if (io_len == 0) {
4295 		/*
4296 		 * Search the entire vp list for pages >= io_off.
4297 		 */
4298 		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4299 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4300 		goto out;
4301 	}
4302 	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4303 
4304 	if (off > zp->z_size) {
4305 		/* past end of file */
4306 		zfs_range_unlock(rl);
4307 		ZFS_EXIT(zfsvfs);
4308 		return (0);
4309 	}
4310 
4311 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4312 
4313 	for (off = io_off; io_off < off + len; io_off += io_len) {
4314 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4315 			pp = page_lookup(vp, io_off,
4316 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4317 		} else {
4318 			pp = page_lookup_nowait(vp, io_off,
4319 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4320 		}
4321 
4322 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4323 			int err;
4324 
4325 			/*
4326 			 * Found a dirty page to push
4327 			 */
4328 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4329 			if (err)
4330 				error = err;
4331 		} else {
4332 			io_len = PAGESIZE;
4333 		}
4334 	}
4335 out:
4336 	zfs_range_unlock(rl);
4337 	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4338 		zil_commit(zfsvfs->z_log, zp->z_id);
4339 	ZFS_EXIT(zfsvfs);
4340 	return (error);
4341 }
4342 
4343 /*ARGSUSED*/
4344 void
4345 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4346 {
4347 	znode_t	*zp = VTOZ(vp);
4348 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4349 	int error;
4350 
4351 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4352 	if (zp->z_sa_hdl == NULL) {
4353 		/*
4354 		 * The fs has been unmounted, or we did a
4355 		 * suspend/resume and this file no longer exists.
4356 		 */
4357 		if (vn_has_cached_data(vp)) {
4358 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4359 			    B_INVAL, cr);
4360 		}
4361 
4362 		mutex_enter(&zp->z_lock);
4363 		mutex_enter(&vp->v_lock);
4364 		ASSERT(vp->v_count == 1);
4365 		vp->v_count = 0;
4366 		mutex_exit(&vp->v_lock);
4367 		mutex_exit(&zp->z_lock);
4368 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4369 		zfs_znode_free(zp);
4370 		return;
4371 	}
4372 
4373 	/*
4374 	 * Attempt to push any data in the page cache.  If this fails
4375 	 * we will get kicked out later in zfs_zinactive().
4376 	 */
4377 	if (vn_has_cached_data(vp)) {
4378 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4379 		    cr);
4380 	}
4381 
4382 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4383 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4384 
4385 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4386 		zfs_sa_upgrade_txholds(tx, zp);
4387 		error = dmu_tx_assign(tx, TXG_WAIT);
4388 		if (error) {
4389 			dmu_tx_abort(tx);
4390 		} else {
4391 			mutex_enter(&zp->z_lock);
4392 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4393 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4394 			zp->z_atime_dirty = 0;
4395 			mutex_exit(&zp->z_lock);
4396 			dmu_tx_commit(tx);
4397 		}
4398 	}
4399 
4400 	zfs_zinactive(zp);
4401 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4402 }
4403 
4404 /*
4405  * Bounds-check the seek operation.
4406  *
4407  *	IN:	vp	- vnode seeking within
4408  *		ooff	- old file offset
4409  *		noffp	- pointer to new file offset
4410  *		ct	- caller context
4411  *
4412  *	RETURN:	0 on success, EINVAL if new offset invalid.
4413  */
4414 /* ARGSUSED */
4415 static int
4416 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4417     caller_context_t *ct)
4418 {
4419 	if (vp->v_type == VDIR)
4420 		return (0);
4421 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4422 }
4423 
4424 /*
4425  * Pre-filter the generic locking function to trap attempts to place
4426  * a mandatory lock on a memory mapped file.
4427  */
4428 static int
4429 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4430     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4431 {
4432 	znode_t *zp = VTOZ(vp);
4433 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4434 
4435 	ZFS_ENTER(zfsvfs);
4436 	ZFS_VERIFY_ZP(zp);
4437 
4438 	/*
4439 	 * We are following the UFS semantics with respect to mapcnt
4440 	 * here: If we see that the file is mapped already, then we will
4441 	 * return an error, but we don't worry about races between this
4442 	 * function and zfs_map().
4443 	 */
4444 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4445 		ZFS_EXIT(zfsvfs);
4446 		return (SET_ERROR(EAGAIN));
4447 	}
4448 	ZFS_EXIT(zfsvfs);
4449 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4450 }
4451 
4452 /*
4453  * If we can't find a page in the cache, we will create a new page
4454  * and fill it with file data.  For efficiency, we may try to fill
4455  * multiple pages at once (klustering) to fill up the supplied page
4456  * list.  Note that the pages to be filled are held with an exclusive
4457  * lock to prevent access by other threads while they are being filled.
4458  */
4459 static int
4460 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4461     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4462 {
4463 	znode_t *zp = VTOZ(vp);
4464 	page_t *pp, *cur_pp;
4465 	objset_t *os = zp->z_zfsvfs->z_os;
4466 	u_offset_t io_off, total;
4467 	size_t io_len;
4468 	int err;
4469 
4470 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4471 		/*
4472 		 * We only have a single page, don't bother klustering
4473 		 */
4474 		io_off = off;
4475 		io_len = PAGESIZE;
4476 		pp = page_create_va(vp, io_off, io_len,
4477 		    PG_EXCL | PG_WAIT, seg, addr);
4478 	} else {
4479 		/*
4480 		 * Try to find enough pages to fill the page list
4481 		 */
4482 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4483 		    &io_len, off, plsz, 0);
4484 	}
4485 	if (pp == NULL) {
4486 		/*
4487 		 * The page already exists, nothing to do here.
4488 		 */
4489 		*pl = NULL;
4490 		return (0);
4491 	}
4492 
4493 	/*
4494 	 * Fill the pages in the kluster.
4495 	 */
4496 	cur_pp = pp;
4497 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4498 		caddr_t va;
4499 
4500 		ASSERT3U(io_off, ==, cur_pp->p_offset);
4501 		va = zfs_map_page(cur_pp, S_WRITE);
4502 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4503 		    DMU_READ_PREFETCH);
4504 		zfs_unmap_page(cur_pp, va);
4505 		if (err) {
4506 			/* On error, toss the entire kluster */
4507 			pvn_read_done(pp, B_ERROR);
4508 			/* convert checksum errors into IO errors */
4509 			if (err == ECKSUM)
4510 				err = SET_ERROR(EIO);
4511 			return (err);
4512 		}
4513 		cur_pp = cur_pp->p_next;
4514 	}
4515 
4516 	/*
4517 	 * Fill in the page list array from the kluster starting
4518 	 * from the desired offset `off'.
4519 	 * NOTE: the page list will always be null terminated.
4520 	 */
4521 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4522 	ASSERT(pl == NULL || (*pl)->p_offset == off);
4523 
4524 	return (0);
4525 }
4526 
4527 /*
4528  * Return pointers to the pages for the file region [off, off + len]
4529  * in the pl array.  If plsz is greater than len, this function may
4530  * also return page pointers from after the specified region
4531  * (i.e. the region [off, off + plsz]).  These additional pages are
4532  * only returned if they are already in the cache, or were created as
4533  * part of a klustered read.
4534  *
4535  *	IN:	vp	- vnode of file to get data from.
4536  *		off	- position in file to get data from.
4537  *		len	- amount of data to retrieve.
4538  *		plsz	- length of provided page list.
4539  *		seg	- segment to obtain pages for.
4540  *		addr	- virtual address of fault.
4541  *		rw	- mode of created pages.
4542  *		cr	- credentials of caller.
4543  *		ct	- caller context.
4544  *
4545  *	OUT:	protp	- protection mode of created pages.
4546  *		pl	- list of pages created.
4547  *
4548  *	RETURN:	0 on success, error code on failure.
4549  *
4550  * Timestamps:
4551  *	vp - atime updated
4552  */
4553 /* ARGSUSED */
4554 static int
4555 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4556     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4557     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4558 {
4559 	znode_t		*zp = VTOZ(vp);
4560 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4561 	page_t		**pl0 = pl;
4562 	int		err = 0;
4563 
4564 	/* we do our own caching, faultahead is unnecessary */
4565 	if (pl == NULL)
4566 		return (0);
4567 	else if (len > plsz)
4568 		len = plsz;
4569 	else
4570 		len = P2ROUNDUP(len, PAGESIZE);
4571 	ASSERT(plsz >= len);
4572 
4573 	ZFS_ENTER(zfsvfs);
4574 	ZFS_VERIFY_ZP(zp);
4575 
4576 	if (protp)
4577 		*protp = PROT_ALL;
4578 
4579 	/*
4580 	 * Loop through the requested range [off, off + len) looking
4581 	 * for pages.  If we don't find a page, we will need to create
4582 	 * a new page and fill it with data from the file.
4583 	 */
4584 	while (len > 0) {
4585 		if (*pl = page_lookup(vp, off, SE_SHARED))
4586 			*(pl+1) = NULL;
4587 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4588 			goto out;
4589 		while (*pl) {
4590 			ASSERT3U((*pl)->p_offset, ==, off);
4591 			off += PAGESIZE;
4592 			addr += PAGESIZE;
4593 			if (len > 0) {
4594 				ASSERT3U(len, >=, PAGESIZE);
4595 				len -= PAGESIZE;
4596 			}
4597 			ASSERT3U(plsz, >=, PAGESIZE);
4598 			plsz -= PAGESIZE;
4599 			pl++;
4600 		}
4601 	}
4602 
4603 	/*
4604 	 * Fill out the page array with any pages already in the cache.
4605 	 */
4606 	while (plsz > 0 &&
4607 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4608 			off += PAGESIZE;
4609 			plsz -= PAGESIZE;
4610 	}
4611 out:
4612 	if (err) {
4613 		/*
4614 		 * Release any pages we have previously locked.
4615 		 */
4616 		while (pl > pl0)
4617 			page_unlock(*--pl);
4618 	} else {
4619 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4620 	}
4621 
4622 	*pl = NULL;
4623 
4624 	ZFS_EXIT(zfsvfs);
4625 	return (err);
4626 }
4627 
4628 /*
4629  * Request a memory map for a section of a file.  This code interacts
4630  * with common code and the VM system as follows:
4631  *
4632  * - common code calls mmap(), which ends up in smmap_common()
4633  * - this calls VOP_MAP(), which takes you into (say) zfs
4634  * - zfs_map() calls as_map(), passing segvn_create() as the callback
4635  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4636  * - zfs_addmap() updates z_mapcnt
4637  */
4638 /*ARGSUSED*/
4639 static int
4640 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4641     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4642     caller_context_t *ct)
4643 {
4644 	znode_t *zp = VTOZ(vp);
4645 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4646 	segvn_crargs_t	vn_a;
4647 	int		error;
4648 
4649 	ZFS_ENTER(zfsvfs);
4650 	ZFS_VERIFY_ZP(zp);
4651 
4652 	if ((prot & PROT_WRITE) && (zp->z_pflags &
4653 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4654 		ZFS_EXIT(zfsvfs);
4655 		return (SET_ERROR(EPERM));
4656 	}
4657 
4658 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4659 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4660 		ZFS_EXIT(zfsvfs);
4661 		return (SET_ERROR(EACCES));
4662 	}
4663 
4664 	if (vp->v_flag & VNOMAP) {
4665 		ZFS_EXIT(zfsvfs);
4666 		return (SET_ERROR(ENOSYS));
4667 	}
4668 
4669 	if (off < 0 || len > MAXOFFSET_T - off) {
4670 		ZFS_EXIT(zfsvfs);
4671 		return (SET_ERROR(ENXIO));
4672 	}
4673 
4674 	if (vp->v_type != VREG) {
4675 		ZFS_EXIT(zfsvfs);
4676 		return (SET_ERROR(ENODEV));
4677 	}
4678 
4679 	/*
4680 	 * If file is locked, disallow mapping.
4681 	 */
4682 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4683 		ZFS_EXIT(zfsvfs);
4684 		return (SET_ERROR(EAGAIN));
4685 	}
4686 
4687 	as_rangelock(as);
4688 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4689 	if (error != 0) {
4690 		as_rangeunlock(as);
4691 		ZFS_EXIT(zfsvfs);
4692 		return (error);
4693 	}
4694 
4695 	vn_a.vp = vp;
4696 	vn_a.offset = (u_offset_t)off;
4697 	vn_a.type = flags & MAP_TYPE;
4698 	vn_a.prot = prot;
4699 	vn_a.maxprot = maxprot;
4700 	vn_a.cred = cr;
4701 	vn_a.amp = NULL;
4702 	vn_a.flags = flags & ~MAP_TYPE;
4703 	vn_a.szc = 0;
4704 	vn_a.lgrp_mem_policy_flags = 0;
4705 
4706 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4707 
4708 	as_rangeunlock(as);
4709 	ZFS_EXIT(zfsvfs);
4710 	return (error);
4711 }
4712 
4713 /* ARGSUSED */
4714 static int
4715 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4716     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4717     caller_context_t *ct)
4718 {
4719 	uint64_t pages = btopr(len);
4720 
4721 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4722 	return (0);
4723 }
4724 
4725 /*
4726  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4727  * more accurate mtime for the associated file.  Since we don't have a way of
4728  * detecting when the data was actually modified, we have to resort to
4729  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4730  * last page is pushed.  The problem occurs when the msync() call is omitted,
4731  * which by far the most common case:
4732  *
4733  * 	open()
4734  * 	mmap()
4735  * 	<modify memory>
4736  * 	munmap()
4737  * 	close()
4738  * 	<time lapse>
4739  * 	putpage() via fsflush
4740  *
4741  * If we wait until fsflush to come along, we can have a modification time that
4742  * is some arbitrary point in the future.  In order to prevent this in the
4743  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4744  * torn down.
4745  */
4746 /* ARGSUSED */
4747 static int
4748 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4749     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4750     caller_context_t *ct)
4751 {
4752 	uint64_t pages = btopr(len);
4753 
4754 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4755 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4756 
4757 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4758 	    vn_has_cached_data(vp))
4759 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4760 
4761 	return (0);
4762 }
4763 
4764 /*
4765  * Free or allocate space in a file.  Currently, this function only
4766  * supports the `F_FREESP' command.  However, this command is somewhat
4767  * misnamed, as its functionality includes the ability to allocate as
4768  * well as free space.
4769  *
4770  *	IN:	vp	- vnode of file to free data in.
4771  *		cmd	- action to take (only F_FREESP supported).
4772  *		bfp	- section of file to free/alloc.
4773  *		flag	- current file open mode flags.
4774  *		offset	- current file offset.
4775  *		cr	- credentials of caller [UNUSED].
4776  *		ct	- caller context.
4777  *
4778  *	RETURN:	0 on success, error code on failure.
4779  *
4780  * Timestamps:
4781  *	vp - ctime|mtime updated
4782  */
4783 /* ARGSUSED */
4784 static int
4785 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4786     offset_t offset, cred_t *cr, caller_context_t *ct)
4787 {
4788 	znode_t		*zp = VTOZ(vp);
4789 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4790 	uint64_t	off, len;
4791 	int		error;
4792 
4793 	ZFS_ENTER(zfsvfs);
4794 	ZFS_VERIFY_ZP(zp);
4795 
4796 	if (cmd != F_FREESP) {
4797 		ZFS_EXIT(zfsvfs);
4798 		return (SET_ERROR(EINVAL));
4799 	}
4800 
4801 	if (error = convoff(vp, bfp, 0, offset)) {
4802 		ZFS_EXIT(zfsvfs);
4803 		return (error);
4804 	}
4805 
4806 	if (bfp->l_len < 0) {
4807 		ZFS_EXIT(zfsvfs);
4808 		return (SET_ERROR(EINVAL));
4809 	}
4810 
4811 	off = bfp->l_start;
4812 	len = bfp->l_len; /* 0 means from off to end of file */
4813 
4814 	error = zfs_freesp(zp, off, len, flag, TRUE);
4815 
4816 	if (error == 0 && off == 0 && len == 0)
4817 		vnevent_truncate(ZTOV(zp), ct);
4818 
4819 	ZFS_EXIT(zfsvfs);
4820 	return (error);
4821 }
4822 
4823 /*ARGSUSED*/
4824 static int
4825 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4826 {
4827 	znode_t		*zp = VTOZ(vp);
4828 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4829 	uint32_t	gen;
4830 	uint64_t	gen64;
4831 	uint64_t	object = zp->z_id;
4832 	zfid_short_t	*zfid;
4833 	int		size, i, error;
4834 
4835 	ZFS_ENTER(zfsvfs);
4836 	ZFS_VERIFY_ZP(zp);
4837 
4838 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4839 	    &gen64, sizeof (uint64_t))) != 0) {
4840 		ZFS_EXIT(zfsvfs);
4841 		return (error);
4842 	}
4843 
4844 	gen = (uint32_t)gen64;
4845 
4846 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4847 	if (fidp->fid_len < size) {
4848 		fidp->fid_len = size;
4849 		ZFS_EXIT(zfsvfs);
4850 		return (SET_ERROR(ENOSPC));
4851 	}
4852 
4853 	zfid = (zfid_short_t *)fidp;
4854 
4855 	zfid->zf_len = size;
4856 
4857 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4858 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4859 
4860 	/* Must have a non-zero generation number to distinguish from .zfs */
4861 	if (gen == 0)
4862 		gen = 1;
4863 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4864 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4865 
4866 	if (size == LONG_FID_LEN) {
4867 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4868 		zfid_long_t	*zlfid;
4869 
4870 		zlfid = (zfid_long_t *)fidp;
4871 
4872 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4873 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4874 
4875 		/* XXX - this should be the generation number for the objset */
4876 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4877 			zlfid->zf_setgen[i] = 0;
4878 	}
4879 
4880 	ZFS_EXIT(zfsvfs);
4881 	return (0);
4882 }
4883 
4884 static int
4885 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4886     caller_context_t *ct)
4887 {
4888 	znode_t		*zp, *xzp;
4889 	zfsvfs_t	*zfsvfs;
4890 	zfs_dirlock_t	*dl;
4891 	int		error;
4892 
4893 	switch (cmd) {
4894 	case _PC_LINK_MAX:
4895 		*valp = ULONG_MAX;
4896 		return (0);
4897 
4898 	case _PC_FILESIZEBITS:
4899 		*valp = 64;
4900 		return (0);
4901 
4902 	case _PC_XATTR_EXISTS:
4903 		zp = VTOZ(vp);
4904 		zfsvfs = zp->z_zfsvfs;
4905 		ZFS_ENTER(zfsvfs);
4906 		ZFS_VERIFY_ZP(zp);
4907 		*valp = 0;
4908 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4909 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4910 		if (error == 0) {
4911 			zfs_dirent_unlock(dl);
4912 			if (!zfs_dirempty(xzp))
4913 				*valp = 1;
4914 			VN_RELE(ZTOV(xzp));
4915 		} else if (error == ENOENT) {
4916 			/*
4917 			 * If there aren't extended attributes, it's the
4918 			 * same as having zero of them.
4919 			 */
4920 			error = 0;
4921 		}
4922 		ZFS_EXIT(zfsvfs);
4923 		return (error);
4924 
4925 	case _PC_SATTR_ENABLED:
4926 	case _PC_SATTR_EXISTS:
4927 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4928 		    (vp->v_type == VREG || vp->v_type == VDIR);
4929 		return (0);
4930 
4931 	case _PC_ACCESS_FILTERING:
4932 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4933 		    vp->v_type == VDIR;
4934 		return (0);
4935 
4936 	case _PC_ACL_ENABLED:
4937 		*valp = _ACL_ACE_ENABLED;
4938 		return (0);
4939 
4940 	case _PC_MIN_HOLE_SIZE:
4941 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4942 		return (0);
4943 
4944 	case _PC_TIMESTAMP_RESOLUTION:
4945 		/* nanosecond timestamp resolution */
4946 		*valp = 1L;
4947 		return (0);
4948 
4949 	default:
4950 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4951 	}
4952 }
4953 
4954 /*ARGSUSED*/
4955 static int
4956 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4957     caller_context_t *ct)
4958 {
4959 	znode_t *zp = VTOZ(vp);
4960 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4961 	int error;
4962 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4963 
4964 	ZFS_ENTER(zfsvfs);
4965 	ZFS_VERIFY_ZP(zp);
4966 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4967 	ZFS_EXIT(zfsvfs);
4968 
4969 	return (error);
4970 }
4971 
4972 /*ARGSUSED*/
4973 static int
4974 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4975     caller_context_t *ct)
4976 {
4977 	znode_t *zp = VTOZ(vp);
4978 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4979 	int error;
4980 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4981 	zilog_t	*zilog = zfsvfs->z_log;
4982 
4983 	ZFS_ENTER(zfsvfs);
4984 	ZFS_VERIFY_ZP(zp);
4985 
4986 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4987 
4988 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4989 		zil_commit(zilog, 0);
4990 
4991 	ZFS_EXIT(zfsvfs);
4992 	return (error);
4993 }
4994 
4995 /*
4996  * The smallest read we may consider to loan out an arcbuf.
4997  * This must be a power of 2.
4998  */
4999 int zcr_blksz_min = (1 << 10);	/* 1K */
5000 /*
5001  * If set to less than the file block size, allow loaning out of an
5002  * arcbuf for a partial block read.  This must be a power of 2.
5003  */
5004 int zcr_blksz_max = (1 << 17);	/* 128K */
5005 
5006 /*ARGSUSED*/
5007 static int
5008 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5009     caller_context_t *ct)
5010 {
5011 	znode_t	*zp = VTOZ(vp);
5012 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5013 	int max_blksz = zfsvfs->z_max_blksz;
5014 	uio_t *uio = &xuio->xu_uio;
5015 	ssize_t size = uio->uio_resid;
5016 	offset_t offset = uio->uio_loffset;
5017 	int blksz;
5018 	int fullblk, i;
5019 	arc_buf_t *abuf;
5020 	ssize_t maxsize;
5021 	int preamble, postamble;
5022 
5023 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5024 		return (SET_ERROR(EINVAL));
5025 
5026 	ZFS_ENTER(zfsvfs);
5027 	ZFS_VERIFY_ZP(zp);
5028 	switch (ioflag) {
5029 	case UIO_WRITE:
5030 		/*
5031 		 * Loan out an arc_buf for write if write size is bigger than
5032 		 * max_blksz, and the file's block size is also max_blksz.
5033 		 */
5034 		blksz = max_blksz;
5035 		if (size < blksz || zp->z_blksz != blksz) {
5036 			ZFS_EXIT(zfsvfs);
5037 			return (SET_ERROR(EINVAL));
5038 		}
5039 		/*
5040 		 * Caller requests buffers for write before knowing where the
5041 		 * write offset might be (e.g. NFS TCP write).
5042 		 */
5043 		if (offset == -1) {
5044 			preamble = 0;
5045 		} else {
5046 			preamble = P2PHASE(offset, blksz);
5047 			if (preamble) {
5048 				preamble = blksz - preamble;
5049 				size -= preamble;
5050 			}
5051 		}
5052 
5053 		postamble = P2PHASE(size, blksz);
5054 		size -= postamble;
5055 
5056 		fullblk = size / blksz;
5057 		(void) dmu_xuio_init(xuio,
5058 		    (preamble != 0) + fullblk + (postamble != 0));
5059 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5060 		    int, postamble, int,
5061 		    (preamble != 0) + fullblk + (postamble != 0));
5062 
5063 		/*
5064 		 * Have to fix iov base/len for partial buffers.  They
5065 		 * currently represent full arc_buf's.
5066 		 */
5067 		if (preamble) {
5068 			/* data begins in the middle of the arc_buf */
5069 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5070 			    blksz);
5071 			ASSERT(abuf);
5072 			(void) dmu_xuio_add(xuio, abuf,
5073 			    blksz - preamble, preamble);
5074 		}
5075 
5076 		for (i = 0; i < fullblk; i++) {
5077 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5078 			    blksz);
5079 			ASSERT(abuf);
5080 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5081 		}
5082 
5083 		if (postamble) {
5084 			/* data ends in the middle of the arc_buf */
5085 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5086 			    blksz);
5087 			ASSERT(abuf);
5088 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5089 		}
5090 		break;
5091 	case UIO_READ:
5092 		/*
5093 		 * Loan out an arc_buf for read if the read size is larger than
5094 		 * the current file block size.  Block alignment is not
5095 		 * considered.  Partial arc_buf will be loaned out for read.
5096 		 */
5097 		blksz = zp->z_blksz;
5098 		if (blksz < zcr_blksz_min)
5099 			blksz = zcr_blksz_min;
5100 		if (blksz > zcr_blksz_max)
5101 			blksz = zcr_blksz_max;
5102 		/* avoid potential complexity of dealing with it */
5103 		if (blksz > max_blksz) {
5104 			ZFS_EXIT(zfsvfs);
5105 			return (SET_ERROR(EINVAL));
5106 		}
5107 
5108 		maxsize = zp->z_size - uio->uio_loffset;
5109 		if (size > maxsize)
5110 			size = maxsize;
5111 
5112 		if (size < blksz || vn_has_cached_data(vp)) {
5113 			ZFS_EXIT(zfsvfs);
5114 			return (SET_ERROR(EINVAL));
5115 		}
5116 		break;
5117 	default:
5118 		ZFS_EXIT(zfsvfs);
5119 		return (SET_ERROR(EINVAL));
5120 	}
5121 
5122 	uio->uio_extflg = UIO_XUIO;
5123 	XUIO_XUZC_RW(xuio) = ioflag;
5124 	ZFS_EXIT(zfsvfs);
5125 	return (0);
5126 }
5127 
5128 /*ARGSUSED*/
5129 static int
5130 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5131 {
5132 	int i;
5133 	arc_buf_t *abuf;
5134 	int ioflag = XUIO_XUZC_RW(xuio);
5135 
5136 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5137 
5138 	i = dmu_xuio_cnt(xuio);
5139 	while (i-- > 0) {
5140 		abuf = dmu_xuio_arcbuf(xuio, i);
5141 		/*
5142 		 * if abuf == NULL, it must be a write buffer
5143 		 * that has been returned in zfs_write().
5144 		 */
5145 		if (abuf)
5146 			dmu_return_arcbuf(abuf);
5147 		ASSERT(abuf || ioflag == UIO_WRITE);
5148 	}
5149 
5150 	dmu_xuio_fini(xuio);
5151 	return (0);
5152 }
5153 
5154 /*
5155  * Predeclare these here so that the compiler assumes that
5156  * this is an "old style" function declaration that does
5157  * not include arguments => we won't get type mismatch errors
5158  * in the initializations that follow.
5159  */
5160 static int zfs_inval();
5161 static int zfs_isdir();
5162 
5163 static int
5164 zfs_inval()
5165 {
5166 	return (SET_ERROR(EINVAL));
5167 }
5168 
5169 static int
5170 zfs_isdir()
5171 {
5172 	return (SET_ERROR(EISDIR));
5173 }
5174 /*
5175  * Directory vnode operations template
5176  */
5177 vnodeops_t *zfs_dvnodeops;
5178 const fs_operation_def_t zfs_dvnodeops_template[] = {
5179 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5180 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5181 	VOPNAME_READ,		{ .error = zfs_isdir },
5182 	VOPNAME_WRITE,		{ .error = zfs_isdir },
5183 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5184 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5185 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5186 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5187 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5188 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5189 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5190 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5191 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5192 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5193 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5194 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5195 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5196 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5197 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5198 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5199 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5200 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5201 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5202 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5203 	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
5204 	NULL,			NULL
5205 };
5206 
5207 /*
5208  * Regular file vnode operations template
5209  */
5210 vnodeops_t *zfs_fvnodeops;
5211 const fs_operation_def_t zfs_fvnodeops_template[] = {
5212 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5213 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5214 	VOPNAME_READ,		{ .vop_read = zfs_read },
5215 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5216 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5217 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5218 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5219 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5220 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5221 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5222 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5223 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5224 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5225 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5226 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5227 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5228 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5229 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5230 	VOPNAME_MAP,		{ .vop_map = zfs_map },
5231 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5232 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5233 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5234 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5235 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5236 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5237 	VOPNAME_REQZCBUF, 	{ .vop_reqzcbuf = zfs_reqzcbuf },
5238 	VOPNAME_RETZCBUF, 	{ .vop_retzcbuf = zfs_retzcbuf },
5239 	NULL,			NULL
5240 };
5241 
5242 /*
5243  * Symbolic link vnode operations template
5244  */
5245 vnodeops_t *zfs_symvnodeops;
5246 const fs_operation_def_t zfs_symvnodeops_template[] = {
5247 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5248 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5249 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5250 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5251 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5252 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5253 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5254 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5255 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5256 	NULL,			NULL
5257 };
5258 
5259 /*
5260  * special share hidden files vnode operations template
5261  */
5262 vnodeops_t *zfs_sharevnodeops;
5263 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5264 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5265 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5266 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5267 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5268 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5269 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5270 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5271 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5272 	NULL,			NULL
5273 };
5274 
5275 /*
5276  * Extended attribute directory vnode operations template
5277  *
5278  * This template is identical to the directory vnodes
5279  * operation template except for restricted operations:
5280  *	VOP_MKDIR()
5281  *	VOP_SYMLINK()
5282  *
5283  * Note that there are other restrictions embedded in:
5284  *	zfs_create()	- restrict type to VREG
5285  *	zfs_link()	- no links into/out of attribute space
5286  *	zfs_rename()	- no moves into/out of attribute space
5287  */
5288 vnodeops_t *zfs_xdvnodeops;
5289 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5290 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5291 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5292 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5293 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5294 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5295 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5296 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5297 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5298 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5299 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5300 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5301 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5302 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5303 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5304 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5305 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5306 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5307 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5308 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5309 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5310 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5311 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5312 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5313 	NULL,			NULL
5314 };
5315 
5316 /*
5317  * Error vnode operations template
5318  */
5319 vnodeops_t *zfs_evnodeops;
5320 const fs_operation_def_t zfs_evnodeops_template[] = {
5321 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5322 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5323 	NULL,			NULL
5324 };
5325