1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2010 Robert Milkowski */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/systm.h> 30 #include <sys/sysmacros.h> 31 #include <sys/kmem.h> 32 #include <sys/pathname.h> 33 #include <sys/vnode.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/mntent.h> 37 #include <sys/mount.h> 38 #include <sys/cmn_err.h> 39 #include "fs/fs_subr.h" 40 #include <sys/zfs_znode.h> 41 #include <sys/zfs_dir.h> 42 #include <sys/zil.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/dmu.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dsl_dataset.h> 47 #include <sys/dsl_deleg.h> 48 #include <sys/spa.h> 49 #include <sys/zap.h> 50 #include <sys/sa.h> 51 #include <sys/varargs.h> 52 #include <sys/policy.h> 53 #include <sys/atomic.h> 54 #include <sys/mkdev.h> 55 #include <sys/modctl.h> 56 #include <sys/refstr.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/zfs_ctldir.h> 59 #include <sys/zfs_fuid.h> 60 #include <sys/bootconf.h> 61 #include <sys/sunddi.h> 62 #include <sys/dnlc.h> 63 #include <sys/dmu_objset.h> 64 #include <sys/spa_boot.h> 65 #include <sys/sa.h> 66 #include "zfs_comutil.h" 67 68 int zfsfstype; 69 vfsops_t *zfs_vfsops = NULL; 70 static major_t zfs_major; 71 static minor_t zfs_minor; 72 static kmutex_t zfs_dev_mtx; 73 74 extern int sys_shutdown; 75 76 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 77 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 78 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 79 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 80 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 81 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 82 static void zfs_freevfs(vfs_t *vfsp); 83 84 static const fs_operation_def_t zfs_vfsops_template[] = { 85 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 86 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 87 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 88 VFSNAME_ROOT, { .vfs_root = zfs_root }, 89 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 90 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 91 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 92 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 93 NULL, NULL 94 }; 95 96 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 97 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 98 NULL, NULL 99 }; 100 101 /* 102 * We need to keep a count of active fs's. 103 * This is necessary to prevent our module 104 * from being unloaded after a umount -f 105 */ 106 static uint32_t zfs_active_fs_count = 0; 107 108 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 109 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 110 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 111 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 112 113 /* 114 * MO_DEFAULT is not used since the default value is determined 115 * by the equivalent property. 116 */ 117 static mntopt_t mntopts[] = { 118 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 119 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 120 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 121 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 122 }; 123 124 static mntopts_t zfs_mntopts = { 125 sizeof (mntopts) / sizeof (mntopt_t), 126 mntopts 127 }; 128 129 /*ARGSUSED*/ 130 int 131 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 132 { 133 /* 134 * Data integrity is job one. We don't want a compromised kernel 135 * writing to the storage pool, so we never sync during panic. 136 */ 137 if (panicstr) 138 return (0); 139 140 /* 141 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 142 * to sync metadata, which they would otherwise cache indefinitely. 143 * Semantically, the only requirement is that the sync be initiated. 144 * The DMU syncs out txgs frequently, so there's nothing to do. 145 */ 146 if (flag & SYNC_ATTR) 147 return (0); 148 149 if (vfsp != NULL) { 150 /* 151 * Sync a specific filesystem. 152 */ 153 zfsvfs_t *zfsvfs = vfsp->vfs_data; 154 dsl_pool_t *dp; 155 156 ZFS_ENTER(zfsvfs); 157 dp = dmu_objset_pool(zfsvfs->z_os); 158 159 /* 160 * If the system is shutting down, then skip any 161 * filesystems which may exist on a suspended pool. 162 */ 163 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 164 ZFS_EXIT(zfsvfs); 165 return (0); 166 } 167 168 if (zfsvfs->z_log != NULL) 169 zil_commit(zfsvfs->z_log, 0); 170 171 ZFS_EXIT(zfsvfs); 172 } else { 173 /* 174 * Sync all ZFS filesystems. This is what happens when you 175 * run sync(1M). Unlike other filesystems, ZFS honors the 176 * request by waiting for all pools to commit all dirty data. 177 */ 178 spa_sync_allpools(); 179 } 180 181 return (0); 182 } 183 184 static int 185 zfs_create_unique_device(dev_t *dev) 186 { 187 major_t new_major; 188 189 do { 190 ASSERT3U(zfs_minor, <=, MAXMIN32); 191 minor_t start = zfs_minor; 192 do { 193 mutex_enter(&zfs_dev_mtx); 194 if (zfs_minor >= MAXMIN32) { 195 /* 196 * If we're still using the real major 197 * keep out of /dev/zfs and /dev/zvol minor 198 * number space. If we're using a getudev()'ed 199 * major number, we can use all of its minors. 200 */ 201 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 202 zfs_minor = ZFS_MIN_MINOR; 203 else 204 zfs_minor = 0; 205 } else { 206 zfs_minor++; 207 } 208 *dev = makedevice(zfs_major, zfs_minor); 209 mutex_exit(&zfs_dev_mtx); 210 } while (vfs_devismounted(*dev) && zfs_minor != start); 211 if (zfs_minor == start) { 212 /* 213 * We are using all ~262,000 minor numbers for the 214 * current major number. Create a new major number. 215 */ 216 if ((new_major = getudev()) == (major_t)-1) { 217 cmn_err(CE_WARN, 218 "zfs_mount: Can't get unique major " 219 "device number."); 220 return (-1); 221 } 222 mutex_enter(&zfs_dev_mtx); 223 zfs_major = new_major; 224 zfs_minor = 0; 225 226 mutex_exit(&zfs_dev_mtx); 227 } else { 228 break; 229 } 230 /* CONSTANTCONDITION */ 231 } while (1); 232 233 return (0); 234 } 235 236 static void 237 atime_changed_cb(void *arg, uint64_t newval) 238 { 239 zfsvfs_t *zfsvfs = arg; 240 241 if (newval == TRUE) { 242 zfsvfs->z_atime = TRUE; 243 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 244 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 245 } else { 246 zfsvfs->z_atime = FALSE; 247 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 248 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 249 } 250 } 251 252 static void 253 xattr_changed_cb(void *arg, uint64_t newval) 254 { 255 zfsvfs_t *zfsvfs = arg; 256 257 if (newval == TRUE) { 258 /* XXX locking on vfs_flag? */ 259 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 260 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 261 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 262 } else { 263 /* XXX locking on vfs_flag? */ 264 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 265 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 266 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 267 } 268 } 269 270 static void 271 blksz_changed_cb(void *arg, uint64_t newval) 272 { 273 zfsvfs_t *zfsvfs = arg; 274 275 if (newval < SPA_MINBLOCKSIZE || 276 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 277 newval = SPA_MAXBLOCKSIZE; 278 279 zfsvfs->z_max_blksz = newval; 280 zfsvfs->z_vfs->vfs_bsize = newval; 281 } 282 283 static void 284 readonly_changed_cb(void *arg, uint64_t newval) 285 { 286 zfsvfs_t *zfsvfs = arg; 287 288 if (newval) { 289 /* XXX locking on vfs_flag? */ 290 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 291 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 292 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 293 } else { 294 /* XXX locking on vfs_flag? */ 295 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 296 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 297 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 298 } 299 } 300 301 static void 302 devices_changed_cb(void *arg, uint64_t newval) 303 { 304 zfsvfs_t *zfsvfs = arg; 305 306 if (newval == FALSE) { 307 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 308 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 309 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 310 } else { 311 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 312 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 313 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 314 } 315 } 316 317 static void 318 setuid_changed_cb(void *arg, uint64_t newval) 319 { 320 zfsvfs_t *zfsvfs = arg; 321 322 if (newval == FALSE) { 323 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 324 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 325 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 326 } else { 327 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 328 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 329 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 330 } 331 } 332 333 static void 334 exec_changed_cb(void *arg, uint64_t newval) 335 { 336 zfsvfs_t *zfsvfs = arg; 337 338 if (newval == FALSE) { 339 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 340 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 341 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 342 } else { 343 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 344 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 345 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 346 } 347 } 348 349 /* 350 * The nbmand mount option can be changed at mount time. 351 * We can't allow it to be toggled on live file systems or incorrect 352 * behavior may be seen from cifs clients 353 * 354 * This property isn't registered via dsl_prop_register(), but this callback 355 * will be called when a file system is first mounted 356 */ 357 static void 358 nbmand_changed_cb(void *arg, uint64_t newval) 359 { 360 zfsvfs_t *zfsvfs = arg; 361 if (newval == FALSE) { 362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 364 } else { 365 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 366 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 367 } 368 } 369 370 static void 371 snapdir_changed_cb(void *arg, uint64_t newval) 372 { 373 zfsvfs_t *zfsvfs = arg; 374 375 zfsvfs->z_show_ctldir = newval; 376 } 377 378 static void 379 vscan_changed_cb(void *arg, uint64_t newval) 380 { 381 zfsvfs_t *zfsvfs = arg; 382 383 zfsvfs->z_vscan = newval; 384 } 385 386 static void 387 acl_inherit_changed_cb(void *arg, uint64_t newval) 388 { 389 zfsvfs_t *zfsvfs = arg; 390 391 zfsvfs->z_acl_inherit = newval; 392 } 393 394 static int 395 zfs_register_callbacks(vfs_t *vfsp) 396 { 397 struct dsl_dataset *ds = NULL; 398 objset_t *os = NULL; 399 zfsvfs_t *zfsvfs = NULL; 400 uint64_t nbmand; 401 int readonly, do_readonly = B_FALSE; 402 int setuid, do_setuid = B_FALSE; 403 int exec, do_exec = B_FALSE; 404 int devices, do_devices = B_FALSE; 405 int xattr, do_xattr = B_FALSE; 406 int atime, do_atime = B_FALSE; 407 int error = 0; 408 409 ASSERT(vfsp); 410 zfsvfs = vfsp->vfs_data; 411 ASSERT(zfsvfs); 412 os = zfsvfs->z_os; 413 414 /* 415 * The act of registering our callbacks will destroy any mount 416 * options we may have. In order to enable temporary overrides 417 * of mount options, we stash away the current values and 418 * restore them after we register the callbacks. 419 */ 420 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) || 421 !spa_writeable(dmu_objset_spa(os))) { 422 readonly = B_TRUE; 423 do_readonly = B_TRUE; 424 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 425 readonly = B_FALSE; 426 do_readonly = B_TRUE; 427 } 428 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 429 devices = B_FALSE; 430 setuid = B_FALSE; 431 do_devices = B_TRUE; 432 do_setuid = B_TRUE; 433 } else { 434 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 435 devices = B_FALSE; 436 do_devices = B_TRUE; 437 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 438 devices = B_TRUE; 439 do_devices = B_TRUE; 440 } 441 442 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 443 setuid = B_FALSE; 444 do_setuid = B_TRUE; 445 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 446 setuid = B_TRUE; 447 do_setuid = B_TRUE; 448 } 449 } 450 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 451 exec = B_FALSE; 452 do_exec = B_TRUE; 453 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 454 exec = B_TRUE; 455 do_exec = B_TRUE; 456 } 457 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 458 xattr = B_FALSE; 459 do_xattr = B_TRUE; 460 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 461 xattr = B_TRUE; 462 do_xattr = B_TRUE; 463 } 464 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 465 atime = B_FALSE; 466 do_atime = B_TRUE; 467 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 468 atime = B_TRUE; 469 do_atime = B_TRUE; 470 } 471 472 /* 473 * nbmand is a special property. It can only be changed at 474 * mount time. 475 * 476 * This is weird, but it is documented to only be changeable 477 * at mount time. 478 */ 479 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 480 nbmand = B_FALSE; 481 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 482 nbmand = B_TRUE; 483 } else { 484 char osname[MAXNAMELEN]; 485 486 dmu_objset_name(os, osname); 487 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 488 NULL)) { 489 return (error); 490 } 491 } 492 493 /* 494 * Register property callbacks. 495 * 496 * It would probably be fine to just check for i/o error from 497 * the first prop_register(), but I guess I like to go 498 * overboard... 499 */ 500 ds = dmu_objset_ds(os); 501 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 502 error = error ? error : dsl_prop_register(ds, 503 "xattr", xattr_changed_cb, zfsvfs); 504 error = error ? error : dsl_prop_register(ds, 505 "recordsize", blksz_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "readonly", readonly_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "devices", devices_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "setuid", setuid_changed_cb, zfsvfs); 512 error = error ? error : dsl_prop_register(ds, 513 "exec", exec_changed_cb, zfsvfs); 514 error = error ? error : dsl_prop_register(ds, 515 "snapdir", snapdir_changed_cb, zfsvfs); 516 error = error ? error : dsl_prop_register(ds, 517 "aclinherit", acl_inherit_changed_cb, zfsvfs); 518 error = error ? error : dsl_prop_register(ds, 519 "vscan", vscan_changed_cb, zfsvfs); 520 if (error) 521 goto unregister; 522 523 /* 524 * Invoke our callbacks to restore temporary mount options. 525 */ 526 if (do_readonly) 527 readonly_changed_cb(zfsvfs, readonly); 528 if (do_setuid) 529 setuid_changed_cb(zfsvfs, setuid); 530 if (do_exec) 531 exec_changed_cb(zfsvfs, exec); 532 if (do_devices) 533 devices_changed_cb(zfsvfs, devices); 534 if (do_xattr) 535 xattr_changed_cb(zfsvfs, xattr); 536 if (do_atime) 537 atime_changed_cb(zfsvfs, atime); 538 539 nbmand_changed_cb(zfsvfs, nbmand); 540 541 return (0); 542 543 unregister: 544 /* 545 * We may attempt to unregister some callbacks that are not 546 * registered, but this is OK; it will simply return ENOMSG, 547 * which we will ignore. 548 */ 549 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 550 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 551 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 552 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 553 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 554 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 555 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 556 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 557 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 558 zfsvfs); 559 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 560 return (error); 561 562 } 563 564 static int 565 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 566 uint64_t *userp, uint64_t *groupp) 567 { 568 znode_phys_t *znp = data; 569 int error = 0; 570 571 /* 572 * Is it a valid type of object to track? 573 */ 574 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 575 return (ENOENT); 576 577 /* 578 * If we have a NULL data pointer 579 * then assume the id's aren't changing and 580 * return EEXIST to the dmu to let it know to 581 * use the same ids 582 */ 583 if (data == NULL) 584 return (EEXIST); 585 586 if (bonustype == DMU_OT_ZNODE) { 587 *userp = znp->zp_uid; 588 *groupp = znp->zp_gid; 589 } else { 590 int hdrsize; 591 592 ASSERT(bonustype == DMU_OT_SA); 593 hdrsize = sa_hdrsize(data); 594 595 if (hdrsize != 0) { 596 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + 597 SA_UID_OFFSET)); 598 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + 599 SA_GID_OFFSET)); 600 } else { 601 /* 602 * This should only happen for newly created 603 * files that haven't had the znode data filled 604 * in yet. 605 */ 606 *userp = 0; 607 *groupp = 0; 608 } 609 } 610 return (error); 611 } 612 613 static void 614 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 615 char *domainbuf, int buflen, uid_t *ridp) 616 { 617 uint64_t fuid; 618 const char *domain; 619 620 fuid = strtonum(fuidstr, NULL); 621 622 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 623 if (domain) 624 (void) strlcpy(domainbuf, domain, buflen); 625 else 626 domainbuf[0] = '\0'; 627 *ridp = FUID_RID(fuid); 628 } 629 630 static uint64_t 631 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 632 { 633 switch (type) { 634 case ZFS_PROP_USERUSED: 635 return (DMU_USERUSED_OBJECT); 636 case ZFS_PROP_GROUPUSED: 637 return (DMU_GROUPUSED_OBJECT); 638 case ZFS_PROP_USERQUOTA: 639 return (zfsvfs->z_userquota_obj); 640 case ZFS_PROP_GROUPQUOTA: 641 return (zfsvfs->z_groupquota_obj); 642 } 643 return (0); 644 } 645 646 int 647 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 648 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 649 { 650 int error; 651 zap_cursor_t zc; 652 zap_attribute_t za; 653 zfs_useracct_t *buf = vbuf; 654 uint64_t obj; 655 656 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 657 return (ENOTSUP); 658 659 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 660 if (obj == 0) { 661 *bufsizep = 0; 662 return (0); 663 } 664 665 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 666 (error = zap_cursor_retrieve(&zc, &za)) == 0; 667 zap_cursor_advance(&zc)) { 668 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 669 *bufsizep) 670 break; 671 672 fuidstr_to_sid(zfsvfs, za.za_name, 673 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 674 675 buf->zu_space = za.za_first_integer; 676 buf++; 677 } 678 if (error == ENOENT) 679 error = 0; 680 681 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 682 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 683 *cookiep = zap_cursor_serialize(&zc); 684 zap_cursor_fini(&zc); 685 return (error); 686 } 687 688 /* 689 * buf must be big enough (eg, 32 bytes) 690 */ 691 static int 692 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 693 char *buf, boolean_t addok) 694 { 695 uint64_t fuid; 696 int domainid = 0; 697 698 if (domain && domain[0]) { 699 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 700 if (domainid == -1) 701 return (ENOENT); 702 } 703 fuid = FUID_ENCODE(domainid, rid); 704 (void) sprintf(buf, "%llx", (longlong_t)fuid); 705 return (0); 706 } 707 708 int 709 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 710 const char *domain, uint64_t rid, uint64_t *valp) 711 { 712 char buf[32]; 713 int err; 714 uint64_t obj; 715 716 *valp = 0; 717 718 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 719 return (ENOTSUP); 720 721 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 722 if (obj == 0) 723 return (0); 724 725 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 726 if (err) 727 return (err); 728 729 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 730 if (err == ENOENT) 731 err = 0; 732 return (err); 733 } 734 735 int 736 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 737 const char *domain, uint64_t rid, uint64_t quota) 738 { 739 char buf[32]; 740 int err; 741 dmu_tx_t *tx; 742 uint64_t *objp; 743 boolean_t fuid_dirtied; 744 745 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 746 return (EINVAL); 747 748 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 749 return (ENOTSUP); 750 751 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 752 &zfsvfs->z_groupquota_obj; 753 754 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 755 if (err) 756 return (err); 757 fuid_dirtied = zfsvfs->z_fuid_dirty; 758 759 tx = dmu_tx_create(zfsvfs->z_os); 760 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 761 if (*objp == 0) { 762 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 763 zfs_userquota_prop_prefixes[type]); 764 } 765 if (fuid_dirtied) 766 zfs_fuid_txhold(zfsvfs, tx); 767 err = dmu_tx_assign(tx, TXG_WAIT); 768 if (err) { 769 dmu_tx_abort(tx); 770 return (err); 771 } 772 773 mutex_enter(&zfsvfs->z_lock); 774 if (*objp == 0) { 775 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 776 DMU_OT_NONE, 0, tx); 777 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 778 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 779 } 780 mutex_exit(&zfsvfs->z_lock); 781 782 if (quota == 0) { 783 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 784 if (err == ENOENT) 785 err = 0; 786 } else { 787 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 788 } 789 ASSERT(err == 0); 790 if (fuid_dirtied) 791 zfs_fuid_sync(zfsvfs, tx); 792 dmu_tx_commit(tx); 793 return (err); 794 } 795 796 boolean_t 797 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 798 { 799 char buf[32]; 800 uint64_t used, quota, usedobj, quotaobj; 801 int err; 802 803 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 804 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 805 806 if (quotaobj == 0 || zfsvfs->z_replay) 807 return (B_FALSE); 808 809 (void) sprintf(buf, "%llx", (longlong_t)fuid); 810 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 811 if (err != 0) 812 return (B_FALSE); 813 814 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 815 if (err != 0) 816 return (B_FALSE); 817 return (used >= quota); 818 } 819 820 boolean_t 821 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) 822 { 823 uint64_t fuid; 824 uint64_t quotaobj; 825 826 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 827 828 fuid = isgroup ? zp->z_gid : zp->z_uid; 829 830 if (quotaobj == 0 || zfsvfs->z_replay) 831 return (B_FALSE); 832 833 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); 834 } 835 836 int 837 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 838 { 839 objset_t *os; 840 zfsvfs_t *zfsvfs; 841 uint64_t zval; 842 int i, error; 843 uint64_t sa_obj; 844 845 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 846 847 /* 848 * We claim to always be readonly so we can open snapshots; 849 * other ZPL code will prevent us from writing to snapshots. 850 */ 851 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 852 if (error) { 853 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 854 return (error); 855 } 856 857 /* 858 * Initialize the zfs-specific filesystem structure. 859 * Should probably make this a kmem cache, shuffle fields, 860 * and just bzero up to z_hold_mtx[]. 861 */ 862 zfsvfs->z_vfs = NULL; 863 zfsvfs->z_parent = zfsvfs; 864 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 865 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 866 zfsvfs->z_os = os; 867 868 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 869 if (error) { 870 goto out; 871 } else if (zfsvfs->z_version > 872 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 873 (void) printf("Can't mount a version %lld file system " 874 "on a version %lld pool\n. Pool must be upgraded to mount " 875 "this file system.", (u_longlong_t)zfsvfs->z_version, 876 (u_longlong_t)spa_version(dmu_objset_spa(os))); 877 error = ENOTSUP; 878 goto out; 879 } 880 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 881 goto out; 882 zfsvfs->z_norm = (int)zval; 883 884 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 885 goto out; 886 zfsvfs->z_utf8 = (zval != 0); 887 888 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 889 goto out; 890 zfsvfs->z_case = (uint_t)zval; 891 892 /* 893 * Fold case on file systems that are always or sometimes case 894 * insensitive. 895 */ 896 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 897 zfsvfs->z_case == ZFS_CASE_MIXED) 898 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 899 900 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 901 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 902 903 if (zfsvfs->z_use_sa) { 904 /* should either have both of these objects or none */ 905 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 906 &sa_obj); 907 if (error) 908 return (error); 909 } else { 910 /* 911 * Pre SA versions file systems should never touch 912 * either the attribute registration or layout objects. 913 */ 914 sa_obj = 0; 915 } 916 917 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 918 &zfsvfs->z_attr_table); 919 if (error) 920 goto out; 921 922 if (zfsvfs->z_version >= ZPL_VERSION_SA) 923 sa_register_update_callback(os, zfs_sa_upgrade); 924 925 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 926 &zfsvfs->z_root); 927 if (error) 928 goto out; 929 ASSERT(zfsvfs->z_root != 0); 930 931 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 932 &zfsvfs->z_unlinkedobj); 933 if (error) 934 goto out; 935 936 error = zap_lookup(os, MASTER_NODE_OBJ, 937 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 938 8, 1, &zfsvfs->z_userquota_obj); 939 if (error && error != ENOENT) 940 goto out; 941 942 error = zap_lookup(os, MASTER_NODE_OBJ, 943 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 944 8, 1, &zfsvfs->z_groupquota_obj); 945 if (error && error != ENOENT) 946 goto out; 947 948 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 949 &zfsvfs->z_fuid_obj); 950 if (error && error != ENOENT) 951 goto out; 952 953 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 954 &zfsvfs->z_shares_dir); 955 if (error && error != ENOENT) 956 goto out; 957 958 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 959 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 960 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 961 offsetof(znode_t, z_link_node)); 962 rrw_init(&zfsvfs->z_teardown_lock); 963 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 964 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 965 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 966 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 967 968 *zfvp = zfsvfs; 969 return (0); 970 971 out: 972 dmu_objset_disown(os, zfsvfs); 973 *zfvp = NULL; 974 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 975 return (error); 976 } 977 978 static int 979 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 980 { 981 int error; 982 983 error = zfs_register_callbacks(zfsvfs->z_vfs); 984 if (error) 985 return (error); 986 987 /* 988 * Set the objset user_ptr to track its zfsvfs. 989 */ 990 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 991 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 992 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 993 994 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 995 996 /* 997 * If we are not mounting (ie: online recv), then we don't 998 * have to worry about replaying the log as we blocked all 999 * operations out since we closed the ZIL. 1000 */ 1001 if (mounting) { 1002 boolean_t readonly; 1003 1004 /* 1005 * During replay we remove the read only flag to 1006 * allow replays to succeed. 1007 */ 1008 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1009 if (readonly != 0) 1010 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1011 else 1012 zfs_unlinked_drain(zfsvfs); 1013 1014 /* 1015 * Parse and replay the intent log. 1016 * 1017 * Because of ziltest, this must be done after 1018 * zfs_unlinked_drain(). (Further note: ziltest 1019 * doesn't use readonly mounts, where 1020 * zfs_unlinked_drain() isn't called.) This is because 1021 * ziltest causes spa_sync() to think it's committed, 1022 * but actually it is not, so the intent log contains 1023 * many txg's worth of changes. 1024 * 1025 * In particular, if object N is in the unlinked set in 1026 * the last txg to actually sync, then it could be 1027 * actually freed in a later txg and then reallocated 1028 * in a yet later txg. This would write a "create 1029 * object N" record to the intent log. Normally, this 1030 * would be fine because the spa_sync() would have 1031 * written out the fact that object N is free, before 1032 * we could write the "create object N" intent log 1033 * record. 1034 * 1035 * But when we are in ziltest mode, we advance the "open 1036 * txg" without actually spa_sync()-ing the changes to 1037 * disk. So we would see that object N is still 1038 * allocated and in the unlinked set, and there is an 1039 * intent log record saying to allocate it. 1040 */ 1041 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 1042 if (zil_replay_disable) { 1043 zil_destroy(zfsvfs->z_log, B_FALSE); 1044 } else { 1045 zfsvfs->z_replay = B_TRUE; 1046 zil_replay(zfsvfs->z_os, zfsvfs, 1047 zfs_replay_vector); 1048 zfsvfs->z_replay = B_FALSE; 1049 } 1050 } 1051 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1052 } 1053 1054 return (0); 1055 } 1056 1057 void 1058 zfsvfs_free(zfsvfs_t *zfsvfs) 1059 { 1060 int i; 1061 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1062 1063 /* 1064 * This is a barrier to prevent the filesystem from going away in 1065 * zfs_znode_move() until we can safely ensure that the filesystem is 1066 * not unmounted. We consider the filesystem valid before the barrier 1067 * and invalid after the barrier. 1068 */ 1069 rw_enter(&zfsvfs_lock, RW_READER); 1070 rw_exit(&zfsvfs_lock); 1071 1072 zfs_fuid_destroy(zfsvfs); 1073 1074 mutex_destroy(&zfsvfs->z_znodes_lock); 1075 mutex_destroy(&zfsvfs->z_lock); 1076 list_destroy(&zfsvfs->z_all_znodes); 1077 rrw_destroy(&zfsvfs->z_teardown_lock); 1078 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1079 rw_destroy(&zfsvfs->z_fuid_lock); 1080 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1081 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1082 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1083 } 1084 1085 static void 1086 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1087 { 1088 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1089 if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) { 1090 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1091 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1092 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1093 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1094 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1095 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1096 } 1097 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1098 } 1099 1100 static int 1101 zfs_domount(vfs_t *vfsp, char *osname) 1102 { 1103 dev_t mount_dev; 1104 uint64_t recordsize, fsid_guid; 1105 int error = 0; 1106 zfsvfs_t *zfsvfs; 1107 1108 ASSERT(vfsp); 1109 ASSERT(osname); 1110 1111 error = zfsvfs_create(osname, &zfsvfs); 1112 if (error) 1113 return (error); 1114 zfsvfs->z_vfs = vfsp; 1115 1116 /* Initialize the generic filesystem structure. */ 1117 vfsp->vfs_bcount = 0; 1118 vfsp->vfs_data = NULL; 1119 1120 if (zfs_create_unique_device(&mount_dev) == -1) { 1121 error = ENODEV; 1122 goto out; 1123 } 1124 ASSERT(vfs_devismounted(mount_dev) == 0); 1125 1126 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1127 NULL)) 1128 goto out; 1129 1130 vfsp->vfs_dev = mount_dev; 1131 vfsp->vfs_fstype = zfsfstype; 1132 vfsp->vfs_bsize = recordsize; 1133 vfsp->vfs_flag |= VFS_NOTRUNC; 1134 vfsp->vfs_data = zfsvfs; 1135 1136 /* 1137 * The fsid is 64 bits, composed of an 8-bit fs type, which 1138 * separates our fsid from any other filesystem types, and a 1139 * 56-bit objset unique ID. The objset unique ID is unique to 1140 * all objsets open on this system, provided by unique_create(). 1141 * The 8-bit fs type must be put in the low bits of fsid[1] 1142 * because that's where other Solaris filesystems put it. 1143 */ 1144 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1145 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1146 vfsp->vfs_fsid.val[0] = fsid_guid; 1147 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1148 zfsfstype & 0xFF; 1149 1150 /* 1151 * Set features for file system. 1152 */ 1153 zfs_set_fuid_feature(zfsvfs); 1154 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1155 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1156 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1157 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1158 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1159 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1160 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1161 } 1162 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1163 1164 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1165 uint64_t pval; 1166 1167 atime_changed_cb(zfsvfs, B_FALSE); 1168 readonly_changed_cb(zfsvfs, B_TRUE); 1169 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1170 goto out; 1171 xattr_changed_cb(zfsvfs, pval); 1172 zfsvfs->z_issnap = B_TRUE; 1173 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1174 1175 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1176 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1177 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1178 } else { 1179 error = zfsvfs_setup(zfsvfs, B_TRUE); 1180 } 1181 1182 if (!zfsvfs->z_issnap) 1183 zfsctl_create(zfsvfs); 1184 out: 1185 if (error) { 1186 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1187 zfsvfs_free(zfsvfs); 1188 } else { 1189 atomic_add_32(&zfs_active_fs_count, 1); 1190 } 1191 1192 return (error); 1193 } 1194 1195 void 1196 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1197 { 1198 objset_t *os = zfsvfs->z_os; 1199 struct dsl_dataset *ds; 1200 1201 /* 1202 * Unregister properties. 1203 */ 1204 if (!dmu_objset_is_snapshot(os)) { 1205 ds = dmu_objset_ds(os); 1206 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 1207 zfsvfs) == 0); 1208 1209 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 1210 zfsvfs) == 0); 1211 1212 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 1213 zfsvfs) == 0); 1214 1215 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 1216 zfsvfs) == 0); 1217 1218 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 1219 zfsvfs) == 0); 1220 1221 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 1222 zfsvfs) == 0); 1223 1224 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 1225 zfsvfs) == 0); 1226 1227 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 1228 zfsvfs) == 0); 1229 1230 VERIFY(dsl_prop_unregister(ds, "aclinherit", 1231 acl_inherit_changed_cb, zfsvfs) == 0); 1232 1233 VERIFY(dsl_prop_unregister(ds, "vscan", 1234 vscan_changed_cb, zfsvfs) == 0); 1235 } 1236 } 1237 1238 /* 1239 * Convert a decimal digit string to a uint64_t integer. 1240 */ 1241 static int 1242 str_to_uint64(char *str, uint64_t *objnum) 1243 { 1244 uint64_t num = 0; 1245 1246 while (*str) { 1247 if (*str < '0' || *str > '9') 1248 return (EINVAL); 1249 1250 num = num*10 + *str++ - '0'; 1251 } 1252 1253 *objnum = num; 1254 return (0); 1255 } 1256 1257 /* 1258 * The boot path passed from the boot loader is in the form of 1259 * "rootpool-name/root-filesystem-object-number'. Convert this 1260 * string to a dataset name: "rootpool-name/root-filesystem-name". 1261 */ 1262 static int 1263 zfs_parse_bootfs(char *bpath, char *outpath) 1264 { 1265 char *slashp; 1266 uint64_t objnum; 1267 int error; 1268 1269 if (*bpath == 0 || *bpath == '/') 1270 return (EINVAL); 1271 1272 (void) strcpy(outpath, bpath); 1273 1274 slashp = strchr(bpath, '/'); 1275 1276 /* if no '/', just return the pool name */ 1277 if (slashp == NULL) { 1278 return (0); 1279 } 1280 1281 /* if not a number, just return the root dataset name */ 1282 if (str_to_uint64(slashp+1, &objnum)) { 1283 return (0); 1284 } 1285 1286 *slashp = '\0'; 1287 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1288 *slashp = '/'; 1289 1290 return (error); 1291 } 1292 1293 /* 1294 * zfs_check_global_label: 1295 * Check that the hex label string is appropriate for the dataset 1296 * being mounted into the global_zone proper. 1297 * 1298 * Return an error if the hex label string is not default or 1299 * admin_low/admin_high. For admin_low labels, the corresponding 1300 * dataset must be readonly. 1301 */ 1302 int 1303 zfs_check_global_label(const char *dsname, const char *hexsl) 1304 { 1305 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1306 return (0); 1307 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1308 return (0); 1309 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1310 /* must be readonly */ 1311 uint64_t rdonly; 1312 1313 if (dsl_prop_get_integer(dsname, 1314 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1315 return (EACCES); 1316 return (rdonly ? 0 : EACCES); 1317 } 1318 return (EACCES); 1319 } 1320 1321 /* 1322 * zfs_mount_label_policy: 1323 * Determine whether the mount is allowed according to MAC check. 1324 * by comparing (where appropriate) label of the dataset against 1325 * the label of the zone being mounted into. If the dataset has 1326 * no label, create one. 1327 * 1328 * Returns: 1329 * 0 : access allowed 1330 * >0 : error code, such as EACCES 1331 */ 1332 static int 1333 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1334 { 1335 int error, retv; 1336 zone_t *mntzone = NULL; 1337 ts_label_t *mnt_tsl; 1338 bslabel_t *mnt_sl; 1339 bslabel_t ds_sl; 1340 char ds_hexsl[MAXNAMELEN]; 1341 1342 retv = EACCES; /* assume the worst */ 1343 1344 /* 1345 * Start by getting the dataset label if it exists. 1346 */ 1347 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1348 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1349 if (error) 1350 return (EACCES); 1351 1352 /* 1353 * If labeling is NOT enabled, then disallow the mount of datasets 1354 * which have a non-default label already. No other label checks 1355 * are needed. 1356 */ 1357 if (!is_system_labeled()) { 1358 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1359 return (0); 1360 return (EACCES); 1361 } 1362 1363 /* 1364 * Get the label of the mountpoint. If mounting into the global 1365 * zone (i.e. mountpoint is not within an active zone and the 1366 * zoned property is off), the label must be default or 1367 * admin_low/admin_high only; no other checks are needed. 1368 */ 1369 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1370 if (mntzone->zone_id == GLOBAL_ZONEID) { 1371 uint64_t zoned; 1372 1373 zone_rele(mntzone); 1374 1375 if (dsl_prop_get_integer(osname, 1376 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1377 return (EACCES); 1378 if (!zoned) 1379 return (zfs_check_global_label(osname, ds_hexsl)); 1380 else 1381 /* 1382 * This is the case of a zone dataset being mounted 1383 * initially, before the zone has been fully created; 1384 * allow this mount into global zone. 1385 */ 1386 return (0); 1387 } 1388 1389 mnt_tsl = mntzone->zone_slabel; 1390 ASSERT(mnt_tsl != NULL); 1391 label_hold(mnt_tsl); 1392 mnt_sl = label2bslabel(mnt_tsl); 1393 1394 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1395 /* 1396 * The dataset doesn't have a real label, so fabricate one. 1397 */ 1398 char *str = NULL; 1399 1400 if (l_to_str_internal(mnt_sl, &str) == 0 && 1401 dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1402 ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0) 1403 retv = 0; 1404 if (str != NULL) 1405 kmem_free(str, strlen(str) + 1); 1406 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1407 /* 1408 * Now compare labels to complete the MAC check. If the 1409 * labels are equal then allow access. If the mountpoint 1410 * label dominates the dataset label, allow readonly access. 1411 * Otherwise, access is denied. 1412 */ 1413 if (blequal(mnt_sl, &ds_sl)) 1414 retv = 0; 1415 else if (bldominates(mnt_sl, &ds_sl)) { 1416 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1417 retv = 0; 1418 } 1419 } 1420 1421 label_rele(mnt_tsl); 1422 zone_rele(mntzone); 1423 return (retv); 1424 } 1425 1426 static int 1427 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1428 { 1429 int error = 0; 1430 static int zfsrootdone = 0; 1431 zfsvfs_t *zfsvfs = NULL; 1432 znode_t *zp = NULL; 1433 vnode_t *vp = NULL; 1434 char *zfs_bootfs; 1435 char *zfs_devid; 1436 1437 ASSERT(vfsp); 1438 1439 /* 1440 * The filesystem that we mount as root is defined in the 1441 * boot property "zfs-bootfs" with a format of 1442 * "poolname/root-dataset-objnum". 1443 */ 1444 if (why == ROOT_INIT) { 1445 if (zfsrootdone++) 1446 return (EBUSY); 1447 /* 1448 * the process of doing a spa_load will require the 1449 * clock to be set before we could (for example) do 1450 * something better by looking at the timestamp on 1451 * an uberblock, so just set it to -1. 1452 */ 1453 clkset(-1); 1454 1455 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1456 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1457 "bootfs name"); 1458 return (EINVAL); 1459 } 1460 zfs_devid = spa_get_bootprop("diskdevid"); 1461 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1462 if (zfs_devid) 1463 spa_free_bootprop(zfs_devid); 1464 if (error) { 1465 spa_free_bootprop(zfs_bootfs); 1466 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1467 error); 1468 return (error); 1469 } 1470 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1471 spa_free_bootprop(zfs_bootfs); 1472 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1473 error); 1474 return (error); 1475 } 1476 1477 spa_free_bootprop(zfs_bootfs); 1478 1479 if (error = vfs_lock(vfsp)) 1480 return (error); 1481 1482 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1483 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1484 goto out; 1485 } 1486 1487 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1488 ASSERT(zfsvfs); 1489 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1490 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1491 goto out; 1492 } 1493 1494 vp = ZTOV(zp); 1495 mutex_enter(&vp->v_lock); 1496 vp->v_flag |= VROOT; 1497 mutex_exit(&vp->v_lock); 1498 rootvp = vp; 1499 1500 /* 1501 * Leave rootvp held. The root file system is never unmounted. 1502 */ 1503 1504 vfs_add((struct vnode *)0, vfsp, 1505 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1506 out: 1507 vfs_unlock(vfsp); 1508 return (error); 1509 } else if (why == ROOT_REMOUNT) { 1510 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1511 vfsp->vfs_flag |= VFS_REMOUNT; 1512 1513 /* refresh mount options */ 1514 zfs_unregister_callbacks(vfsp->vfs_data); 1515 return (zfs_register_callbacks(vfsp)); 1516 1517 } else if (why == ROOT_UNMOUNT) { 1518 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1519 (void) zfs_sync(vfsp, 0, 0); 1520 return (0); 1521 } 1522 1523 /* 1524 * if "why" is equal to anything else other than ROOT_INIT, 1525 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1526 */ 1527 return (ENOTSUP); 1528 } 1529 1530 /*ARGSUSED*/ 1531 static int 1532 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1533 { 1534 char *osname; 1535 pathname_t spn; 1536 int error = 0; 1537 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1538 UIO_SYSSPACE : UIO_USERSPACE; 1539 int canwrite; 1540 1541 if (mvp->v_type != VDIR) 1542 return (ENOTDIR); 1543 1544 mutex_enter(&mvp->v_lock); 1545 if ((uap->flags & MS_REMOUNT) == 0 && 1546 (uap->flags & MS_OVERLAY) == 0 && 1547 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1548 mutex_exit(&mvp->v_lock); 1549 return (EBUSY); 1550 } 1551 mutex_exit(&mvp->v_lock); 1552 1553 /* 1554 * ZFS does not support passing unparsed data in via MS_DATA. 1555 * Users should use the MS_OPTIONSTR interface; this means 1556 * that all option parsing is already done and the options struct 1557 * can be interrogated. 1558 */ 1559 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1560 return (EINVAL); 1561 1562 /* 1563 * Get the objset name (the "special" mount argument). 1564 */ 1565 if (error = pn_get(uap->spec, fromspace, &spn)) 1566 return (error); 1567 1568 osname = spn.pn_path; 1569 1570 /* 1571 * Check for mount privilege? 1572 * 1573 * If we don't have privilege then see if 1574 * we have local permission to allow it 1575 */ 1576 error = secpolicy_fs_mount(cr, mvp, vfsp); 1577 if (error) { 1578 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1579 vattr_t vattr; 1580 1581 /* 1582 * Make sure user is the owner of the mount point 1583 * or has sufficient privileges. 1584 */ 1585 1586 vattr.va_mask = AT_UID; 1587 1588 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1589 goto out; 1590 } 1591 1592 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1593 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1594 goto out; 1595 } 1596 secpolicy_fs_mount_clearopts(cr, vfsp); 1597 } else { 1598 goto out; 1599 } 1600 } 1601 1602 /* 1603 * Refuse to mount a filesystem if we are in a local zone and the 1604 * dataset is not visible. 1605 */ 1606 if (!INGLOBALZONE(curproc) && 1607 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1608 error = EPERM; 1609 goto out; 1610 } 1611 1612 error = zfs_mount_label_policy(vfsp, osname); 1613 if (error) 1614 goto out; 1615 1616 /* 1617 * When doing a remount, we simply refresh our temporary properties 1618 * according to those options set in the current VFS options. 1619 */ 1620 if (uap->flags & MS_REMOUNT) { 1621 /* refresh mount options */ 1622 zfs_unregister_callbacks(vfsp->vfs_data); 1623 error = zfs_register_callbacks(vfsp); 1624 goto out; 1625 } 1626 1627 error = zfs_domount(vfsp, osname); 1628 1629 /* 1630 * Add an extra VFS_HOLD on our parent vfs so that it can't 1631 * disappear due to a forced unmount. 1632 */ 1633 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1634 VFS_HOLD(mvp->v_vfsp); 1635 1636 out: 1637 pn_free(&spn); 1638 return (error); 1639 } 1640 1641 static int 1642 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1643 { 1644 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1645 dev32_t d32; 1646 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1647 1648 ZFS_ENTER(zfsvfs); 1649 1650 dmu_objset_space(zfsvfs->z_os, 1651 &refdbytes, &availbytes, &usedobjs, &availobjs); 1652 1653 /* 1654 * The underlying storage pool actually uses multiple block sizes. 1655 * We report the fragsize as the smallest block size we support, 1656 * and we report our blocksize as the filesystem's maximum blocksize. 1657 */ 1658 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1659 statp->f_bsize = zfsvfs->z_max_blksz; 1660 1661 /* 1662 * The following report "total" blocks of various kinds in the 1663 * file system, but reported in terms of f_frsize - the 1664 * "fragment" size. 1665 */ 1666 1667 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1668 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1669 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1670 1671 /* 1672 * statvfs() should really be called statufs(), because it assumes 1673 * static metadata. ZFS doesn't preallocate files, so the best 1674 * we can do is report the max that could possibly fit in f_files, 1675 * and that minus the number actually used in f_ffree. 1676 * For f_ffree, report the smaller of the number of object available 1677 * and the number of blocks (each object will take at least a block). 1678 */ 1679 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1680 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1681 statp->f_files = statp->f_ffree + usedobjs; 1682 1683 (void) cmpldev(&d32, vfsp->vfs_dev); 1684 statp->f_fsid = d32; 1685 1686 /* 1687 * We're a zfs filesystem. 1688 */ 1689 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1690 1691 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1692 1693 statp->f_namemax = ZFS_MAXNAMELEN; 1694 1695 /* 1696 * We have all of 32 characters to stuff a string here. 1697 * Is there anything useful we could/should provide? 1698 */ 1699 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1700 1701 ZFS_EXIT(zfsvfs); 1702 return (0); 1703 } 1704 1705 static int 1706 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1707 { 1708 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1709 znode_t *rootzp; 1710 int error; 1711 1712 ZFS_ENTER(zfsvfs); 1713 1714 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1715 if (error == 0) 1716 *vpp = ZTOV(rootzp); 1717 1718 ZFS_EXIT(zfsvfs); 1719 return (error); 1720 } 1721 1722 /* 1723 * Teardown the zfsvfs::z_os. 1724 * 1725 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1726 * and 'z_teardown_inactive_lock' held. 1727 */ 1728 static int 1729 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1730 { 1731 znode_t *zp; 1732 1733 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1734 1735 if (!unmounting) { 1736 /* 1737 * We purge the parent filesystem's vfsp as the parent 1738 * filesystem and all of its snapshots have their vnode's 1739 * v_vfsp set to the parent's filesystem's vfsp. Note, 1740 * 'z_parent' is self referential for non-snapshots. 1741 */ 1742 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1743 } 1744 1745 /* 1746 * Close the zil. NB: Can't close the zil while zfs_inactive 1747 * threads are blocked as zil_close can call zfs_inactive. 1748 */ 1749 if (zfsvfs->z_log) { 1750 zil_close(zfsvfs->z_log); 1751 zfsvfs->z_log = NULL; 1752 } 1753 1754 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1755 1756 /* 1757 * If we are not unmounting (ie: online recv) and someone already 1758 * unmounted this file system while we were doing the switcheroo, 1759 * or a reopen of z_os failed then just bail out now. 1760 */ 1761 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1762 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1763 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1764 return (EIO); 1765 } 1766 1767 /* 1768 * At this point there are no vops active, and any new vops will 1769 * fail with EIO since we have z_teardown_lock for writer (only 1770 * relavent for forced unmount). 1771 * 1772 * Release all holds on dbufs. 1773 */ 1774 mutex_enter(&zfsvfs->z_znodes_lock); 1775 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1776 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1777 if (zp->z_sa_hdl) { 1778 ASSERT(ZTOV(zp)->v_count > 0); 1779 zfs_znode_dmu_fini(zp); 1780 } 1781 mutex_exit(&zfsvfs->z_znodes_lock); 1782 1783 /* 1784 * If we are unmounting, set the unmounted flag and let new vops 1785 * unblock. zfs_inactive will have the unmounted behavior, and all 1786 * other vops will fail with EIO. 1787 */ 1788 if (unmounting) { 1789 zfsvfs->z_unmounted = B_TRUE; 1790 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1791 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1792 } 1793 1794 /* 1795 * z_os will be NULL if there was an error in attempting to reopen 1796 * zfsvfs, so just return as the properties had already been 1797 * unregistered and cached data had been evicted before. 1798 */ 1799 if (zfsvfs->z_os == NULL) 1800 return (0); 1801 1802 /* 1803 * Unregister properties. 1804 */ 1805 zfs_unregister_callbacks(zfsvfs); 1806 1807 /* 1808 * Evict cached data 1809 */ 1810 if (dmu_objset_is_dirty_anywhere(zfsvfs->z_os)) 1811 if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) 1812 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1813 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1814 1815 return (0); 1816 } 1817 1818 /*ARGSUSED*/ 1819 static int 1820 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1821 { 1822 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1823 objset_t *os; 1824 int ret; 1825 1826 ret = secpolicy_fs_unmount(cr, vfsp); 1827 if (ret) { 1828 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1829 ZFS_DELEG_PERM_MOUNT, cr)) 1830 return (ret); 1831 } 1832 1833 /* 1834 * We purge the parent filesystem's vfsp as the parent filesystem 1835 * and all of its snapshots have their vnode's v_vfsp set to the 1836 * parent's filesystem's vfsp. Note, 'z_parent' is self 1837 * referential for non-snapshots. 1838 */ 1839 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1840 1841 /* 1842 * Unmount any snapshots mounted under .zfs before unmounting the 1843 * dataset itself. 1844 */ 1845 if (zfsvfs->z_ctldir != NULL && 1846 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1847 return (ret); 1848 } 1849 1850 if (!(fflag & MS_FORCE)) { 1851 /* 1852 * Check the number of active vnodes in the file system. 1853 * Our count is maintained in the vfs structure, but the 1854 * number is off by 1 to indicate a hold on the vfs 1855 * structure itself. 1856 * 1857 * The '.zfs' directory maintains a reference of its 1858 * own, and any active references underneath are 1859 * reflected in the vnode count. 1860 */ 1861 if (zfsvfs->z_ctldir == NULL) { 1862 if (vfsp->vfs_count > 1) 1863 return (EBUSY); 1864 } else { 1865 if (vfsp->vfs_count > 2 || 1866 zfsvfs->z_ctldir->v_count > 1) 1867 return (EBUSY); 1868 } 1869 } 1870 1871 vfsp->vfs_flag |= VFS_UNMOUNTED; 1872 1873 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1874 os = zfsvfs->z_os; 1875 1876 /* 1877 * z_os will be NULL if there was an error in 1878 * attempting to reopen zfsvfs. 1879 */ 1880 if (os != NULL) { 1881 /* 1882 * Unset the objset user_ptr. 1883 */ 1884 mutex_enter(&os->os_user_ptr_lock); 1885 dmu_objset_set_user(os, NULL); 1886 mutex_exit(&os->os_user_ptr_lock); 1887 1888 /* 1889 * Finally release the objset 1890 */ 1891 dmu_objset_disown(os, zfsvfs); 1892 } 1893 1894 /* 1895 * We can now safely destroy the '.zfs' directory node. 1896 */ 1897 if (zfsvfs->z_ctldir != NULL) 1898 zfsctl_destroy(zfsvfs); 1899 1900 return (0); 1901 } 1902 1903 static int 1904 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1905 { 1906 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1907 znode_t *zp; 1908 uint64_t object = 0; 1909 uint64_t fid_gen = 0; 1910 uint64_t gen_mask; 1911 uint64_t zp_gen; 1912 int i, err; 1913 1914 *vpp = NULL; 1915 1916 ZFS_ENTER(zfsvfs); 1917 1918 if (fidp->fid_len == LONG_FID_LEN) { 1919 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1920 uint64_t objsetid = 0; 1921 uint64_t setgen = 0; 1922 1923 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1924 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1925 1926 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1927 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1928 1929 ZFS_EXIT(zfsvfs); 1930 1931 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1932 if (err) 1933 return (EINVAL); 1934 ZFS_ENTER(zfsvfs); 1935 } 1936 1937 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1938 zfid_short_t *zfid = (zfid_short_t *)fidp; 1939 1940 for (i = 0; i < sizeof (zfid->zf_object); i++) 1941 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1942 1943 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1944 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1945 } else { 1946 ZFS_EXIT(zfsvfs); 1947 return (EINVAL); 1948 } 1949 1950 /* A zero fid_gen means we are in the .zfs control directories */ 1951 if (fid_gen == 0 && 1952 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1953 *vpp = zfsvfs->z_ctldir; 1954 ASSERT(*vpp != NULL); 1955 if (object == ZFSCTL_INO_SNAPDIR) { 1956 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1957 0, NULL, NULL, NULL, NULL, NULL) == 0); 1958 } else { 1959 VN_HOLD(*vpp); 1960 } 1961 ZFS_EXIT(zfsvfs); 1962 return (0); 1963 } 1964 1965 gen_mask = -1ULL >> (64 - 8 * i); 1966 1967 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1968 if (err = zfs_zget(zfsvfs, object, &zp)) { 1969 ZFS_EXIT(zfsvfs); 1970 return (err); 1971 } 1972 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 1973 sizeof (uint64_t)); 1974 zp_gen = zp_gen & gen_mask; 1975 if (zp_gen == 0) 1976 zp_gen = 1; 1977 if (zp->z_unlinked || zp_gen != fid_gen) { 1978 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1979 VN_RELE(ZTOV(zp)); 1980 ZFS_EXIT(zfsvfs); 1981 return (EINVAL); 1982 } 1983 1984 *vpp = ZTOV(zp); 1985 ZFS_EXIT(zfsvfs); 1986 return (0); 1987 } 1988 1989 /* 1990 * Block out VOPs and close zfsvfs_t::z_os 1991 * 1992 * Note, if successful, then we return with the 'z_teardown_lock' and 1993 * 'z_teardown_inactive_lock' write held. 1994 */ 1995 int 1996 zfs_suspend_fs(zfsvfs_t *zfsvfs) 1997 { 1998 int error; 1999 2000 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 2001 return (error); 2002 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 2003 2004 return (0); 2005 } 2006 2007 /* 2008 * Reopen zfsvfs_t::z_os and release VOPs. 2009 */ 2010 int 2011 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 2012 { 2013 int err, err2; 2014 2015 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2016 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2017 2018 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs, 2019 &zfsvfs->z_os); 2020 if (err) { 2021 zfsvfs->z_os = NULL; 2022 } else { 2023 znode_t *zp; 2024 uint64_t sa_obj = 0; 2025 2026 err2 = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 2027 ZFS_SA_ATTRS, 8, 1, &sa_obj); 2028 2029 if ((err || err2) && zfsvfs->z_version >= ZPL_VERSION_SA) 2030 goto bail; 2031 2032 2033 if ((err = sa_setup(zfsvfs->z_os, sa_obj, 2034 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0) 2035 goto bail; 2036 2037 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2038 2039 /* 2040 * Attempt to re-establish all the active znodes with 2041 * their dbufs. If a zfs_rezget() fails, then we'll let 2042 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2043 * when they try to use their znode. 2044 */ 2045 mutex_enter(&zfsvfs->z_znodes_lock); 2046 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2047 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2048 (void) zfs_rezget(zp); 2049 } 2050 mutex_exit(&zfsvfs->z_znodes_lock); 2051 2052 } 2053 2054 bail: 2055 /* release the VOPs */ 2056 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2057 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 2058 2059 if (err) { 2060 /* 2061 * Since we couldn't reopen zfsvfs::z_os, force 2062 * unmount this file system. 2063 */ 2064 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2065 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2066 } 2067 return (err); 2068 } 2069 2070 static void 2071 zfs_freevfs(vfs_t *vfsp) 2072 { 2073 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2074 2075 /* 2076 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2077 * from zfs_mount(). Release it here. If we came through 2078 * zfs_mountroot() instead, we didn't grab an extra hold, so 2079 * skip the VFS_RELE for rootvfs. 2080 */ 2081 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2082 VFS_RELE(zfsvfs->z_parent->z_vfs); 2083 2084 zfsvfs_free(zfsvfs); 2085 2086 atomic_add_32(&zfs_active_fs_count, -1); 2087 } 2088 2089 /* 2090 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2091 * so we can't safely do any non-idempotent initialization here. 2092 * Leave that to zfs_init() and zfs_fini(), which are called 2093 * from the module's _init() and _fini() entry points. 2094 */ 2095 /*ARGSUSED*/ 2096 static int 2097 zfs_vfsinit(int fstype, char *name) 2098 { 2099 int error; 2100 2101 zfsfstype = fstype; 2102 2103 /* 2104 * Setup vfsops and vnodeops tables. 2105 */ 2106 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2107 if (error != 0) { 2108 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2109 } 2110 2111 error = zfs_create_op_tables(); 2112 if (error) { 2113 zfs_remove_op_tables(); 2114 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2115 (void) vfs_freevfsops_by_type(zfsfstype); 2116 return (error); 2117 } 2118 2119 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2120 2121 /* 2122 * Unique major number for all zfs mounts. 2123 * If we run out of 32-bit minors, we'll getudev() another major. 2124 */ 2125 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2126 zfs_minor = ZFS_MIN_MINOR; 2127 2128 return (0); 2129 } 2130 2131 void 2132 zfs_init(void) 2133 { 2134 /* 2135 * Initialize .zfs directory structures 2136 */ 2137 zfsctl_init(); 2138 2139 /* 2140 * Initialize znode cache, vnode ops, etc... 2141 */ 2142 zfs_znode_init(); 2143 2144 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2145 } 2146 2147 void 2148 zfs_fini(void) 2149 { 2150 zfsctl_fini(); 2151 zfs_znode_fini(); 2152 } 2153 2154 int 2155 zfs_busy(void) 2156 { 2157 return (zfs_active_fs_count != 0); 2158 } 2159 2160 int 2161 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2162 { 2163 int error; 2164 objset_t *os = zfsvfs->z_os; 2165 dmu_tx_t *tx; 2166 2167 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2168 return (EINVAL); 2169 2170 if (newvers < zfsvfs->z_version) 2171 return (EINVAL); 2172 2173 if (zfs_spa_version_map(newvers) > 2174 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2175 return (ENOTSUP); 2176 2177 tx = dmu_tx_create(os); 2178 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2179 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2180 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2181 ZFS_SA_ATTRS); 2182 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2183 } 2184 error = dmu_tx_assign(tx, TXG_WAIT); 2185 if (error) { 2186 dmu_tx_abort(tx); 2187 return (error); 2188 } 2189 2190 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2191 8, 1, &newvers, tx); 2192 2193 if (error) { 2194 dmu_tx_commit(tx); 2195 return (error); 2196 } 2197 2198 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2199 uint64_t sa_obj; 2200 2201 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2202 SPA_VERSION_SA); 2203 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2204 DMU_OT_NONE, 0, tx); 2205 2206 error = zap_add(os, MASTER_NODE_OBJ, 2207 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2208 ASSERT3U(error, ==, 0); 2209 2210 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2211 sa_register_update_callback(os, zfs_sa_upgrade); 2212 } 2213 2214 spa_history_log_internal(LOG_DS_UPGRADE, 2215 dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu", 2216 zfsvfs->z_version, newvers, dmu_objset_id(os)); 2217 2218 dmu_tx_commit(tx); 2219 2220 zfsvfs->z_version = newvers; 2221 2222 if (zfsvfs->z_version >= ZPL_VERSION_FUID) 2223 zfs_set_fuid_feature(zfsvfs); 2224 2225 return (0); 2226 } 2227 2228 /* 2229 * Read a property stored within the master node. 2230 */ 2231 int 2232 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2233 { 2234 const char *pname; 2235 int error = ENOENT; 2236 2237 /* 2238 * Look up the file system's value for the property. For the 2239 * version property, we look up a slightly different string. 2240 */ 2241 if (prop == ZFS_PROP_VERSION) 2242 pname = ZPL_VERSION_STR; 2243 else 2244 pname = zfs_prop_to_name(prop); 2245 2246 if (os != NULL) 2247 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2248 2249 if (error == ENOENT) { 2250 /* No value set, use the default value */ 2251 switch (prop) { 2252 case ZFS_PROP_VERSION: 2253 *value = ZPL_VERSION; 2254 break; 2255 case ZFS_PROP_NORMALIZE: 2256 case ZFS_PROP_UTF8ONLY: 2257 *value = 0; 2258 break; 2259 case ZFS_PROP_CASE: 2260 *value = ZFS_CASE_SENSITIVE; 2261 break; 2262 default: 2263 return (error); 2264 } 2265 error = 0; 2266 } 2267 return (error); 2268 } 2269 2270 static vfsdef_t vfw = { 2271 VFSDEF_VERSION, 2272 MNTTYPE_ZFS, 2273 zfs_vfsinit, 2274 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2275 VSW_XID|VSW_ZMOUNT, 2276 &zfs_mntopts 2277 }; 2278 2279 struct modlfs zfs_modlfs = { 2280 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2281 }; 2282