1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/fm/fs/zfs.h> 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/uberblock_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/space_map.h> 38 #include <sys/zio.h> 39 #include <sys/zap.h> 40 #include <sys/fs/zfs.h> 41 #include <sys/arc.h> 42 43 /* 44 * Virtual device management. 45 */ 46 47 static vdev_ops_t *vdev_ops_table[] = { 48 &vdev_root_ops, 49 &vdev_raidz_ops, 50 &vdev_mirror_ops, 51 &vdev_replacing_ops, 52 &vdev_spare_ops, 53 &vdev_disk_ops, 54 &vdev_file_ops, 55 &vdev_missing_ops, 56 NULL 57 }; 58 59 /* maximum scrub/resilver I/O queue per leaf vdev */ 60 int zfs_scrub_limit = 10; 61 62 /* 63 * Given a vdev type, return the appropriate ops vector. 64 */ 65 static vdev_ops_t * 66 vdev_getops(const char *type) 67 { 68 vdev_ops_t *ops, **opspp; 69 70 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 71 if (strcmp(ops->vdev_op_type, type) == 0) 72 break; 73 74 return (ops); 75 } 76 77 /* 78 * Default asize function: return the MAX of psize with the asize of 79 * all children. This is what's used by anything other than RAID-Z. 80 */ 81 uint64_t 82 vdev_default_asize(vdev_t *vd, uint64_t psize) 83 { 84 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 85 uint64_t csize; 86 uint64_t c; 87 88 for (c = 0; c < vd->vdev_children; c++) { 89 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 90 asize = MAX(asize, csize); 91 } 92 93 return (asize); 94 } 95 96 /* 97 * Get the replaceable or attachable device size. 98 * If the parent is a mirror or raidz, the replaceable size is the minimum 99 * psize of all its children. For the rest, just return our own psize. 100 * 101 * e.g. 102 * psize rsize 103 * root - - 104 * mirror/raidz - - 105 * disk1 20g 20g 106 * disk2 40g 20g 107 * disk3 80g 80g 108 */ 109 uint64_t 110 vdev_get_rsize(vdev_t *vd) 111 { 112 vdev_t *pvd, *cvd; 113 uint64_t c, rsize; 114 115 pvd = vd->vdev_parent; 116 117 /* 118 * If our parent is NULL or the root, just return our own psize. 119 */ 120 if (pvd == NULL || pvd->vdev_parent == NULL) 121 return (vd->vdev_psize); 122 123 rsize = 0; 124 125 for (c = 0; c < pvd->vdev_children; c++) { 126 cvd = pvd->vdev_child[c]; 127 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; 128 } 129 130 return (rsize); 131 } 132 133 vdev_t * 134 vdev_lookup_top(spa_t *spa, uint64_t vdev) 135 { 136 vdev_t *rvd = spa->spa_root_vdev; 137 138 ASSERT(spa_config_held(spa, RW_READER)); 139 140 if (vdev < rvd->vdev_children) { 141 ASSERT(rvd->vdev_child[vdev] != NULL); 142 return (rvd->vdev_child[vdev]); 143 } 144 145 return (NULL); 146 } 147 148 vdev_t * 149 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 150 { 151 int c; 152 vdev_t *mvd; 153 154 if (vd->vdev_guid == guid) 155 return (vd); 156 157 for (c = 0; c < vd->vdev_children; c++) 158 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 159 NULL) 160 return (mvd); 161 162 return (NULL); 163 } 164 165 void 166 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 167 { 168 size_t oldsize, newsize; 169 uint64_t id = cvd->vdev_id; 170 vdev_t **newchild; 171 172 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 173 ASSERT(cvd->vdev_parent == NULL); 174 175 cvd->vdev_parent = pvd; 176 177 if (pvd == NULL) 178 return; 179 180 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 181 182 oldsize = pvd->vdev_children * sizeof (vdev_t *); 183 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 184 newsize = pvd->vdev_children * sizeof (vdev_t *); 185 186 newchild = kmem_zalloc(newsize, KM_SLEEP); 187 if (pvd->vdev_child != NULL) { 188 bcopy(pvd->vdev_child, newchild, oldsize); 189 kmem_free(pvd->vdev_child, oldsize); 190 } 191 192 pvd->vdev_child = newchild; 193 pvd->vdev_child[id] = cvd; 194 195 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 196 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 197 198 /* 199 * Walk up all ancestors to update guid sum. 200 */ 201 for (; pvd != NULL; pvd = pvd->vdev_parent) 202 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 203 204 if (cvd->vdev_ops->vdev_op_leaf) 205 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 206 } 207 208 void 209 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 210 { 211 int c; 212 uint_t id = cvd->vdev_id; 213 214 ASSERT(cvd->vdev_parent == pvd); 215 216 if (pvd == NULL) 217 return; 218 219 ASSERT(id < pvd->vdev_children); 220 ASSERT(pvd->vdev_child[id] == cvd); 221 222 pvd->vdev_child[id] = NULL; 223 cvd->vdev_parent = NULL; 224 225 for (c = 0; c < pvd->vdev_children; c++) 226 if (pvd->vdev_child[c]) 227 break; 228 229 if (c == pvd->vdev_children) { 230 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 231 pvd->vdev_child = NULL; 232 pvd->vdev_children = 0; 233 } 234 235 /* 236 * Walk up all ancestors to update guid sum. 237 */ 238 for (; pvd != NULL; pvd = pvd->vdev_parent) 239 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 240 241 if (cvd->vdev_ops->vdev_op_leaf) 242 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 243 } 244 245 /* 246 * Remove any holes in the child array. 247 */ 248 void 249 vdev_compact_children(vdev_t *pvd) 250 { 251 vdev_t **newchild, *cvd; 252 int oldc = pvd->vdev_children; 253 int newc, c; 254 255 ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER)); 256 257 for (c = newc = 0; c < oldc; c++) 258 if (pvd->vdev_child[c]) 259 newc++; 260 261 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 262 263 for (c = newc = 0; c < oldc; c++) { 264 if ((cvd = pvd->vdev_child[c]) != NULL) { 265 newchild[newc] = cvd; 266 cvd->vdev_id = newc++; 267 } 268 } 269 270 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 271 pvd->vdev_child = newchild; 272 pvd->vdev_children = newc; 273 } 274 275 /* 276 * Allocate and minimally initialize a vdev_t. 277 */ 278 static vdev_t * 279 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 280 { 281 vdev_t *vd; 282 283 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 284 285 if (spa->spa_root_vdev == NULL) { 286 ASSERT(ops == &vdev_root_ops); 287 spa->spa_root_vdev = vd; 288 } 289 290 if (guid == 0) { 291 if (spa->spa_root_vdev == vd) { 292 /* 293 * The root vdev's guid will also be the pool guid, 294 * which must be unique among all pools. 295 */ 296 while (guid == 0 || spa_guid_exists(guid, 0)) 297 guid = spa_get_random(-1ULL); 298 } else { 299 /* 300 * Any other vdev's guid must be unique within the pool. 301 */ 302 while (guid == 0 || 303 spa_guid_exists(spa_guid(spa), guid)) 304 guid = spa_get_random(-1ULL); 305 } 306 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 307 } 308 309 vd->vdev_spa = spa; 310 vd->vdev_id = id; 311 vd->vdev_guid = guid; 312 vd->vdev_guid_sum = guid; 313 vd->vdev_ops = ops; 314 vd->vdev_state = VDEV_STATE_CLOSED; 315 316 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 317 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 318 space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock); 319 space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock); 320 txg_list_create(&vd->vdev_ms_list, 321 offsetof(struct metaslab, ms_txg_node)); 322 txg_list_create(&vd->vdev_dtl_list, 323 offsetof(struct vdev, vdev_dtl_node)); 324 vd->vdev_stat.vs_timestamp = gethrtime(); 325 vdev_queue_init(vd); 326 vdev_cache_init(vd); 327 328 return (vd); 329 } 330 331 /* 332 * Allocate a new vdev. The 'alloctype' is used to control whether we are 333 * creating a new vdev or loading an existing one - the behavior is slightly 334 * different for each case. 335 */ 336 int 337 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 338 int alloctype) 339 { 340 vdev_ops_t *ops; 341 char *type; 342 uint64_t guid = 0, islog, nparity; 343 vdev_t *vd; 344 345 ASSERT(spa_config_held(spa, RW_WRITER)); 346 347 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 348 return (EINVAL); 349 350 if ((ops = vdev_getops(type)) == NULL) 351 return (EINVAL); 352 353 /* 354 * If this is a load, get the vdev guid from the nvlist. 355 * Otherwise, vdev_alloc_common() will generate one for us. 356 */ 357 if (alloctype == VDEV_ALLOC_LOAD) { 358 uint64_t label_id; 359 360 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 361 label_id != id) 362 return (EINVAL); 363 364 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 365 return (EINVAL); 366 } else if (alloctype == VDEV_ALLOC_SPARE) { 367 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 368 return (EINVAL); 369 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 370 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 371 return (EINVAL); 372 } 373 374 /* 375 * The first allocated vdev must be of type 'root'. 376 */ 377 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 378 return (EINVAL); 379 380 /* 381 * Determine whether we're a log vdev. 382 */ 383 islog = 0; 384 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 385 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 386 return (ENOTSUP); 387 388 /* 389 * Set the nparity property for RAID-Z vdevs. 390 */ 391 nparity = -1ULL; 392 if (ops == &vdev_raidz_ops) { 393 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 394 &nparity) == 0) { 395 /* 396 * Currently, we can only support 2 parity devices. 397 */ 398 if (nparity == 0 || nparity > 2) 399 return (EINVAL); 400 /* 401 * Older versions can only support 1 parity device. 402 */ 403 if (nparity == 2 && 404 spa_version(spa) < SPA_VERSION_RAID6) 405 return (ENOTSUP); 406 } else { 407 /* 408 * We require the parity to be specified for SPAs that 409 * support multiple parity levels. 410 */ 411 if (spa_version(spa) >= SPA_VERSION_RAID6) 412 return (EINVAL); 413 /* 414 * Otherwise, we default to 1 parity device for RAID-Z. 415 */ 416 nparity = 1; 417 } 418 } else { 419 nparity = 0; 420 } 421 ASSERT(nparity != -1ULL); 422 423 vd = vdev_alloc_common(spa, id, guid, ops); 424 425 vd->vdev_islog = islog; 426 vd->vdev_nparity = nparity; 427 428 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 429 vd->vdev_path = spa_strdup(vd->vdev_path); 430 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 431 vd->vdev_devid = spa_strdup(vd->vdev_devid); 432 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 433 &vd->vdev_physpath) == 0) 434 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 435 436 /* 437 * Set the whole_disk property. If it's not specified, leave the value 438 * as -1. 439 */ 440 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 441 &vd->vdev_wholedisk) != 0) 442 vd->vdev_wholedisk = -1ULL; 443 444 /* 445 * Look for the 'not present' flag. This will only be set if the device 446 * was not present at the time of import. 447 */ 448 if (!spa->spa_import_faulted) 449 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 450 &vd->vdev_not_present); 451 452 /* 453 * Get the alignment requirement. 454 */ 455 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 456 457 /* 458 * If we're a top-level vdev, try to load the allocation parameters. 459 */ 460 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 461 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 462 &vd->vdev_ms_array); 463 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 464 &vd->vdev_ms_shift); 465 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 466 &vd->vdev_asize); 467 } 468 469 /* 470 * If we're a leaf vdev, try to load the DTL object and other state. 471 */ 472 if (vd->vdev_ops->vdev_op_leaf && 473 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) { 474 if (alloctype == VDEV_ALLOC_LOAD) { 475 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 476 &vd->vdev_dtl.smo_object); 477 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 478 &vd->vdev_unspare); 479 } 480 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 481 &vd->vdev_offline); 482 483 /* 484 * When importing a pool, we want to ignore the persistent fault 485 * state, as the diagnosis made on another system may not be 486 * valid in the current context. 487 */ 488 if (spa->spa_load_state == SPA_LOAD_OPEN) { 489 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 490 &vd->vdev_faulted); 491 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 492 &vd->vdev_degraded); 493 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 494 &vd->vdev_removed); 495 } 496 } 497 498 /* 499 * Add ourselves to the parent's list of children. 500 */ 501 vdev_add_child(parent, vd); 502 503 *vdp = vd; 504 505 return (0); 506 } 507 508 void 509 vdev_free(vdev_t *vd) 510 { 511 int c; 512 spa_t *spa = vd->vdev_spa; 513 514 /* 515 * vdev_free() implies closing the vdev first. This is simpler than 516 * trying to ensure complicated semantics for all callers. 517 */ 518 vdev_close(vd); 519 520 521 ASSERT(!list_link_active(&vd->vdev_dirty_node)); 522 523 /* 524 * Free all children. 525 */ 526 for (c = 0; c < vd->vdev_children; c++) 527 vdev_free(vd->vdev_child[c]); 528 529 ASSERT(vd->vdev_child == NULL); 530 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 531 532 /* 533 * Discard allocation state. 534 */ 535 if (vd == vd->vdev_top) 536 vdev_metaslab_fini(vd); 537 538 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 539 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 540 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 541 542 /* 543 * Remove this vdev from its parent's child list. 544 */ 545 vdev_remove_child(vd->vdev_parent, vd); 546 547 ASSERT(vd->vdev_parent == NULL); 548 549 /* 550 * Clean up vdev structure. 551 */ 552 vdev_queue_fini(vd); 553 vdev_cache_fini(vd); 554 555 if (vd->vdev_path) 556 spa_strfree(vd->vdev_path); 557 if (vd->vdev_devid) 558 spa_strfree(vd->vdev_devid); 559 if (vd->vdev_physpath) 560 spa_strfree(vd->vdev_physpath); 561 562 if (vd->vdev_isspare) 563 spa_spare_remove(vd); 564 if (vd->vdev_isl2cache) 565 spa_l2cache_remove(vd); 566 567 txg_list_destroy(&vd->vdev_ms_list); 568 txg_list_destroy(&vd->vdev_dtl_list); 569 mutex_enter(&vd->vdev_dtl_lock); 570 space_map_unload(&vd->vdev_dtl_map); 571 space_map_destroy(&vd->vdev_dtl_map); 572 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 573 space_map_destroy(&vd->vdev_dtl_scrub); 574 mutex_exit(&vd->vdev_dtl_lock); 575 mutex_destroy(&vd->vdev_dtl_lock); 576 mutex_destroy(&vd->vdev_stat_lock); 577 578 if (vd == spa->spa_root_vdev) 579 spa->spa_root_vdev = NULL; 580 581 kmem_free(vd, sizeof (vdev_t)); 582 } 583 584 /* 585 * Transfer top-level vdev state from svd to tvd. 586 */ 587 static void 588 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 589 { 590 spa_t *spa = svd->vdev_spa; 591 metaslab_t *msp; 592 vdev_t *vd; 593 int t; 594 595 ASSERT(tvd == tvd->vdev_top); 596 597 tvd->vdev_ms_array = svd->vdev_ms_array; 598 tvd->vdev_ms_shift = svd->vdev_ms_shift; 599 tvd->vdev_ms_count = svd->vdev_ms_count; 600 601 svd->vdev_ms_array = 0; 602 svd->vdev_ms_shift = 0; 603 svd->vdev_ms_count = 0; 604 605 tvd->vdev_mg = svd->vdev_mg; 606 tvd->vdev_ms = svd->vdev_ms; 607 608 svd->vdev_mg = NULL; 609 svd->vdev_ms = NULL; 610 611 if (tvd->vdev_mg != NULL) 612 tvd->vdev_mg->mg_vd = tvd; 613 614 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 615 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 616 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 617 618 svd->vdev_stat.vs_alloc = 0; 619 svd->vdev_stat.vs_space = 0; 620 svd->vdev_stat.vs_dspace = 0; 621 622 for (t = 0; t < TXG_SIZE; t++) { 623 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 624 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 625 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 626 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 627 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 628 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 629 } 630 631 if (list_link_active(&svd->vdev_dirty_node)) { 632 vdev_config_clean(svd); 633 vdev_config_dirty(tvd); 634 } 635 636 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 637 svd->vdev_deflate_ratio = 0; 638 639 tvd->vdev_islog = svd->vdev_islog; 640 svd->vdev_islog = 0; 641 } 642 643 static void 644 vdev_top_update(vdev_t *tvd, vdev_t *vd) 645 { 646 int c; 647 648 if (vd == NULL) 649 return; 650 651 vd->vdev_top = tvd; 652 653 for (c = 0; c < vd->vdev_children; c++) 654 vdev_top_update(tvd, vd->vdev_child[c]); 655 } 656 657 /* 658 * Add a mirror/replacing vdev above an existing vdev. 659 */ 660 vdev_t * 661 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 662 { 663 spa_t *spa = cvd->vdev_spa; 664 vdev_t *pvd = cvd->vdev_parent; 665 vdev_t *mvd; 666 667 ASSERT(spa_config_held(spa, RW_WRITER)); 668 669 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 670 671 mvd->vdev_asize = cvd->vdev_asize; 672 mvd->vdev_ashift = cvd->vdev_ashift; 673 mvd->vdev_state = cvd->vdev_state; 674 675 vdev_remove_child(pvd, cvd); 676 vdev_add_child(pvd, mvd); 677 cvd->vdev_id = mvd->vdev_children; 678 vdev_add_child(mvd, cvd); 679 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 680 681 if (mvd == mvd->vdev_top) 682 vdev_top_transfer(cvd, mvd); 683 684 return (mvd); 685 } 686 687 /* 688 * Remove a 1-way mirror/replacing vdev from the tree. 689 */ 690 void 691 vdev_remove_parent(vdev_t *cvd) 692 { 693 vdev_t *mvd = cvd->vdev_parent; 694 vdev_t *pvd = mvd->vdev_parent; 695 696 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 697 698 ASSERT(mvd->vdev_children == 1); 699 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 700 mvd->vdev_ops == &vdev_replacing_ops || 701 mvd->vdev_ops == &vdev_spare_ops); 702 cvd->vdev_ashift = mvd->vdev_ashift; 703 704 vdev_remove_child(mvd, cvd); 705 vdev_remove_child(pvd, mvd); 706 cvd->vdev_id = mvd->vdev_id; 707 vdev_add_child(pvd, cvd); 708 /* 709 * If we created a new toplevel vdev, then we need to change the child's 710 * vdev GUID to match the old toplevel vdev. Otherwise, we could have 711 * detached an offline device, and when we go to import the pool we'll 712 * think we have two toplevel vdevs, instead of a different version of 713 * the same toplevel vdev. 714 */ 715 if (cvd->vdev_top == cvd) { 716 pvd->vdev_guid_sum -= cvd->vdev_guid; 717 cvd->vdev_guid_sum -= cvd->vdev_guid; 718 cvd->vdev_guid = mvd->vdev_guid; 719 cvd->vdev_guid_sum += mvd->vdev_guid; 720 pvd->vdev_guid_sum += cvd->vdev_guid; 721 } 722 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 723 724 if (cvd == cvd->vdev_top) 725 vdev_top_transfer(mvd, cvd); 726 727 ASSERT(mvd->vdev_children == 0); 728 vdev_free(mvd); 729 } 730 731 int 732 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 733 { 734 spa_t *spa = vd->vdev_spa; 735 objset_t *mos = spa->spa_meta_objset; 736 metaslab_class_t *mc; 737 uint64_t m; 738 uint64_t oldc = vd->vdev_ms_count; 739 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 740 metaslab_t **mspp; 741 int error; 742 743 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 744 return (0); 745 746 dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc); 747 748 ASSERT(oldc <= newc); 749 750 if (vd->vdev_islog) 751 mc = spa->spa_log_class; 752 else 753 mc = spa->spa_normal_class; 754 755 if (vd->vdev_mg == NULL) 756 vd->vdev_mg = metaslab_group_create(mc, vd); 757 758 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 759 760 if (oldc != 0) { 761 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 762 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 763 } 764 765 vd->vdev_ms = mspp; 766 vd->vdev_ms_count = newc; 767 768 for (m = oldc; m < newc; m++) { 769 space_map_obj_t smo = { 0, 0, 0 }; 770 if (txg == 0) { 771 uint64_t object = 0; 772 error = dmu_read(mos, vd->vdev_ms_array, 773 m * sizeof (uint64_t), sizeof (uint64_t), &object); 774 if (error) 775 return (error); 776 if (object != 0) { 777 dmu_buf_t *db; 778 error = dmu_bonus_hold(mos, object, FTAG, &db); 779 if (error) 780 return (error); 781 ASSERT3U(db->db_size, >=, sizeof (smo)); 782 bcopy(db->db_data, &smo, sizeof (smo)); 783 ASSERT3U(smo.smo_object, ==, object); 784 dmu_buf_rele(db, FTAG); 785 } 786 } 787 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 788 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 789 } 790 791 return (0); 792 } 793 794 void 795 vdev_metaslab_fini(vdev_t *vd) 796 { 797 uint64_t m; 798 uint64_t count = vd->vdev_ms_count; 799 800 if (vd->vdev_ms != NULL) { 801 for (m = 0; m < count; m++) 802 if (vd->vdev_ms[m] != NULL) 803 metaslab_fini(vd->vdev_ms[m]); 804 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 805 vd->vdev_ms = NULL; 806 } 807 } 808 809 int 810 vdev_probe(vdev_t *vd) 811 { 812 if (vd == NULL) 813 return (EINVAL); 814 815 /* 816 * Right now we only support status checks on the leaf vdevs. 817 */ 818 if (vd->vdev_ops->vdev_op_leaf) 819 return (vd->vdev_ops->vdev_op_probe(vd)); 820 821 return (0); 822 } 823 824 /* 825 * Prepare a virtual device for access. 826 */ 827 int 828 vdev_open(vdev_t *vd) 829 { 830 int error; 831 int c; 832 uint64_t osize = 0; 833 uint64_t asize, psize; 834 uint64_t ashift = 0; 835 836 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 837 vd->vdev_state == VDEV_STATE_CANT_OPEN || 838 vd->vdev_state == VDEV_STATE_OFFLINE); 839 840 if (vd->vdev_fault_mode == VDEV_FAULT_COUNT) 841 vd->vdev_fault_arg >>= 1; 842 else 843 vd->vdev_fault_mode = VDEV_FAULT_NONE; 844 845 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 846 847 if (!vd->vdev_removed && vd->vdev_faulted) { 848 ASSERT(vd->vdev_children == 0); 849 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 850 VDEV_AUX_ERR_EXCEEDED); 851 return (ENXIO); 852 } else if (vd->vdev_offline) { 853 ASSERT(vd->vdev_children == 0); 854 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 855 return (ENXIO); 856 } 857 858 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 859 860 if (zio_injection_enabled && error == 0) 861 error = zio_handle_device_injection(vd, ENXIO); 862 863 if (error) { 864 if (vd->vdev_removed && 865 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 866 vd->vdev_removed = B_FALSE; 867 868 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 869 vd->vdev_stat.vs_aux); 870 return (error); 871 } 872 873 vd->vdev_removed = B_FALSE; 874 875 if (vd->vdev_degraded) { 876 ASSERT(vd->vdev_children == 0); 877 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 878 VDEV_AUX_ERR_EXCEEDED); 879 } else { 880 vd->vdev_state = VDEV_STATE_HEALTHY; 881 } 882 883 for (c = 0; c < vd->vdev_children; c++) 884 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 885 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 886 VDEV_AUX_NONE); 887 break; 888 } 889 890 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 891 892 if (vd->vdev_children == 0) { 893 if (osize < SPA_MINDEVSIZE) { 894 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 895 VDEV_AUX_TOO_SMALL); 896 return (EOVERFLOW); 897 } 898 psize = osize; 899 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 900 } else { 901 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 902 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 903 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 904 VDEV_AUX_TOO_SMALL); 905 return (EOVERFLOW); 906 } 907 psize = 0; 908 asize = osize; 909 } 910 911 vd->vdev_psize = psize; 912 913 if (vd->vdev_asize == 0) { 914 /* 915 * This is the first-ever open, so use the computed values. 916 * For testing purposes, a higher ashift can be requested. 917 */ 918 vd->vdev_asize = asize; 919 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 920 } else { 921 /* 922 * Make sure the alignment requirement hasn't increased. 923 */ 924 if (ashift > vd->vdev_top->vdev_ashift) { 925 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 926 VDEV_AUX_BAD_LABEL); 927 return (EINVAL); 928 } 929 930 /* 931 * Make sure the device hasn't shrunk. 932 */ 933 if (asize < vd->vdev_asize) { 934 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 935 VDEV_AUX_BAD_LABEL); 936 return (EINVAL); 937 } 938 939 /* 940 * If all children are healthy and the asize has increased, 941 * then we've experienced dynamic LUN growth. 942 */ 943 if (vd->vdev_state == VDEV_STATE_HEALTHY && 944 asize > vd->vdev_asize) { 945 vd->vdev_asize = asize; 946 } 947 } 948 949 /* 950 * Ensure we can issue some IO before declaring the 951 * vdev open for business. 952 */ 953 error = vdev_probe(vd); 954 if (error) { 955 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 956 VDEV_AUX_OPEN_FAILED); 957 return (error); 958 } 959 960 /* 961 * If this is a top-level vdev, compute the raidz-deflation 962 * ratio. Note, we hard-code in 128k (1<<17) because it is the 963 * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE 964 * changes, this algorithm must never change, or we will 965 * inconsistently account for existing bp's. 966 */ 967 if (vd->vdev_top == vd) { 968 vd->vdev_deflate_ratio = (1<<17) / 969 (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT); 970 } 971 972 /* 973 * If a leaf vdev has a DTL, and seems healthy, then kick off a 974 * resilver. But don't do this if we are doing a reopen for a 975 * scrub, since this would just restart the scrub we are already 976 * doing. 977 */ 978 if (vd->vdev_children == 0 && !vd->vdev_spa->spa_scrub_reopen) { 979 mutex_enter(&vd->vdev_dtl_lock); 980 if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd)) 981 spa_async_request(vd->vdev_spa, SPA_ASYNC_RESILVER); 982 mutex_exit(&vd->vdev_dtl_lock); 983 } 984 985 return (0); 986 } 987 988 /* 989 * Called once the vdevs are all opened, this routine validates the label 990 * contents. This needs to be done before vdev_load() so that we don't 991 * inadvertently do repair I/Os to the wrong device. 992 * 993 * This function will only return failure if one of the vdevs indicates that it 994 * has since been destroyed or exported. This is only possible if 995 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 996 * will be updated but the function will return 0. 997 */ 998 int 999 vdev_validate(vdev_t *vd) 1000 { 1001 spa_t *spa = vd->vdev_spa; 1002 int c; 1003 nvlist_t *label; 1004 uint64_t guid; 1005 uint64_t state; 1006 1007 for (c = 0; c < vd->vdev_children; c++) 1008 if (vdev_validate(vd->vdev_child[c]) != 0) 1009 return (EBADF); 1010 1011 /* 1012 * If the device has already failed, or was marked offline, don't do 1013 * any further validation. Otherwise, label I/O will fail and we will 1014 * overwrite the previous state. 1015 */ 1016 if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) { 1017 1018 if ((label = vdev_label_read_config(vd)) == NULL) { 1019 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1020 VDEV_AUX_BAD_LABEL); 1021 return (0); 1022 } 1023 1024 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1025 &guid) != 0 || guid != spa_guid(spa)) { 1026 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1027 VDEV_AUX_CORRUPT_DATA); 1028 nvlist_free(label); 1029 return (0); 1030 } 1031 1032 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1033 &guid) != 0 || guid != vd->vdev_guid) { 1034 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1035 VDEV_AUX_CORRUPT_DATA); 1036 nvlist_free(label); 1037 return (0); 1038 } 1039 1040 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1041 &state) != 0) { 1042 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1043 VDEV_AUX_CORRUPT_DATA); 1044 nvlist_free(label); 1045 return (0); 1046 } 1047 1048 nvlist_free(label); 1049 1050 if (spa->spa_load_state == SPA_LOAD_OPEN && 1051 state != POOL_STATE_ACTIVE) 1052 return (EBADF); 1053 1054 /* 1055 * If we were able to open and validate a vdev that was 1056 * previously marked permanently unavailable, clear that state 1057 * now. 1058 */ 1059 if (vd->vdev_not_present) 1060 vd->vdev_not_present = 0; 1061 } 1062 1063 return (0); 1064 } 1065 1066 /* 1067 * Close a virtual device. 1068 */ 1069 void 1070 vdev_close(vdev_t *vd) 1071 { 1072 vd->vdev_ops->vdev_op_close(vd); 1073 1074 vdev_cache_purge(vd); 1075 1076 /* 1077 * We record the previous state before we close it, so that if we are 1078 * doing a reopen(), we don't generate FMA ereports if we notice that 1079 * it's still faulted. 1080 */ 1081 vd->vdev_prevstate = vd->vdev_state; 1082 1083 if (vd->vdev_offline) 1084 vd->vdev_state = VDEV_STATE_OFFLINE; 1085 else 1086 vd->vdev_state = VDEV_STATE_CLOSED; 1087 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1088 } 1089 1090 void 1091 vdev_reopen(vdev_t *vd) 1092 { 1093 spa_t *spa = vd->vdev_spa; 1094 1095 ASSERT(spa_config_held(spa, RW_WRITER)); 1096 1097 vdev_close(vd); 1098 (void) vdev_open(vd); 1099 1100 /* 1101 * Call vdev_validate() here to make sure we have the same device. 1102 * Otherwise, a device with an invalid label could be successfully 1103 * opened in response to vdev_reopen(). 1104 */ 1105 if (vd->vdev_aux) { 1106 (void) vdev_validate_aux(vd); 1107 if (!vdev_is_dead(vd) && 1108 !l2arc_vdev_present(vd)) { 1109 uint64_t size = vdev_get_rsize(vd); 1110 l2arc_add_vdev(spa, vd, 1111 VDEV_LABEL_START_SIZE, 1112 size - VDEV_LABEL_START_SIZE); 1113 } 1114 } else { 1115 (void) vdev_validate(vd); 1116 } 1117 1118 /* 1119 * Reassess parent vdev's health. 1120 */ 1121 vdev_propagate_state(vd); 1122 } 1123 1124 int 1125 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1126 { 1127 int error; 1128 1129 /* 1130 * Normally, partial opens (e.g. of a mirror) are allowed. 1131 * For a create, however, we want to fail the request if 1132 * there are any components we can't open. 1133 */ 1134 error = vdev_open(vd); 1135 1136 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1137 vdev_close(vd); 1138 return (error ? error : ENXIO); 1139 } 1140 1141 /* 1142 * Recursively initialize all labels. 1143 */ 1144 if ((error = vdev_label_init(vd, txg, isreplacing ? 1145 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1146 vdev_close(vd); 1147 return (error); 1148 } 1149 1150 return (0); 1151 } 1152 1153 /* 1154 * The is the latter half of vdev_create(). It is distinct because it 1155 * involves initiating transactions in order to do metaslab creation. 1156 * For creation, we want to try to create all vdevs at once and then undo it 1157 * if anything fails; this is much harder if we have pending transactions. 1158 */ 1159 void 1160 vdev_init(vdev_t *vd, uint64_t txg) 1161 { 1162 /* 1163 * Aim for roughly 200 metaslabs per vdev. 1164 */ 1165 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1166 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1167 1168 /* 1169 * Initialize the vdev's metaslabs. This can't fail because 1170 * there's nothing to read when creating all new metaslabs. 1171 */ 1172 VERIFY(vdev_metaslab_init(vd, txg) == 0); 1173 } 1174 1175 void 1176 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1177 { 1178 ASSERT(vd == vd->vdev_top); 1179 ASSERT(ISP2(flags)); 1180 1181 if (flags & VDD_METASLAB) 1182 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1183 1184 if (flags & VDD_DTL) 1185 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1186 1187 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1188 } 1189 1190 void 1191 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size) 1192 { 1193 mutex_enter(sm->sm_lock); 1194 if (!space_map_contains(sm, txg, size)) 1195 space_map_add(sm, txg, size); 1196 mutex_exit(sm->sm_lock); 1197 } 1198 1199 int 1200 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size) 1201 { 1202 int dirty; 1203 1204 /* 1205 * Quick test without the lock -- covers the common case that 1206 * there are no dirty time segments. 1207 */ 1208 if (sm->sm_space == 0) 1209 return (0); 1210 1211 mutex_enter(sm->sm_lock); 1212 dirty = space_map_contains(sm, txg, size); 1213 mutex_exit(sm->sm_lock); 1214 1215 return (dirty); 1216 } 1217 1218 /* 1219 * Reassess DTLs after a config change or scrub completion. 1220 */ 1221 void 1222 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1223 { 1224 spa_t *spa = vd->vdev_spa; 1225 int c; 1226 1227 ASSERT(spa_config_held(spa, RW_READER)); 1228 1229 if (vd->vdev_children == 0) { 1230 mutex_enter(&vd->vdev_dtl_lock); 1231 if (scrub_txg != 0 && 1232 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) { 1233 /* XXX should check scrub_done? */ 1234 /* 1235 * We completed a scrub up to scrub_txg. If we 1236 * did it without rebooting, then the scrub dtl 1237 * will be valid, so excise the old region and 1238 * fold in the scrub dtl. Otherwise, leave the 1239 * dtl as-is if there was an error. 1240 */ 1241 space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg); 1242 space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub); 1243 } 1244 if (scrub_done) 1245 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1246 mutex_exit(&vd->vdev_dtl_lock); 1247 1248 if (txg != 0) 1249 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1250 return; 1251 } 1252 1253 /* 1254 * Make sure the DTLs are always correct under the scrub lock. 1255 */ 1256 if (vd == spa->spa_root_vdev) 1257 mutex_enter(&spa->spa_scrub_lock); 1258 1259 mutex_enter(&vd->vdev_dtl_lock); 1260 space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 1261 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1262 mutex_exit(&vd->vdev_dtl_lock); 1263 1264 for (c = 0; c < vd->vdev_children; c++) { 1265 vdev_t *cvd = vd->vdev_child[c]; 1266 vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done); 1267 mutex_enter(&vd->vdev_dtl_lock); 1268 space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map); 1269 space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub); 1270 mutex_exit(&vd->vdev_dtl_lock); 1271 } 1272 1273 if (vd == spa->spa_root_vdev) 1274 mutex_exit(&spa->spa_scrub_lock); 1275 } 1276 1277 static int 1278 vdev_dtl_load(vdev_t *vd) 1279 { 1280 spa_t *spa = vd->vdev_spa; 1281 space_map_obj_t *smo = &vd->vdev_dtl; 1282 objset_t *mos = spa->spa_meta_objset; 1283 dmu_buf_t *db; 1284 int error; 1285 1286 ASSERT(vd->vdev_children == 0); 1287 1288 if (smo->smo_object == 0) 1289 return (0); 1290 1291 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1292 return (error); 1293 1294 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1295 bcopy(db->db_data, smo, sizeof (*smo)); 1296 dmu_buf_rele(db, FTAG); 1297 1298 mutex_enter(&vd->vdev_dtl_lock); 1299 error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos); 1300 mutex_exit(&vd->vdev_dtl_lock); 1301 1302 return (error); 1303 } 1304 1305 void 1306 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1307 { 1308 spa_t *spa = vd->vdev_spa; 1309 space_map_obj_t *smo = &vd->vdev_dtl; 1310 space_map_t *sm = &vd->vdev_dtl_map; 1311 objset_t *mos = spa->spa_meta_objset; 1312 space_map_t smsync; 1313 kmutex_t smlock; 1314 dmu_buf_t *db; 1315 dmu_tx_t *tx; 1316 1317 dprintf("%s in txg %llu pass %d\n", 1318 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1319 1320 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1321 1322 if (vd->vdev_detached) { 1323 if (smo->smo_object != 0) { 1324 int err = dmu_object_free(mos, smo->smo_object, tx); 1325 ASSERT3U(err, ==, 0); 1326 smo->smo_object = 0; 1327 } 1328 dmu_tx_commit(tx); 1329 dprintf("detach %s committed in txg %llu\n", 1330 vdev_description(vd), txg); 1331 return; 1332 } 1333 1334 if (smo->smo_object == 0) { 1335 ASSERT(smo->smo_objsize == 0); 1336 ASSERT(smo->smo_alloc == 0); 1337 smo->smo_object = dmu_object_alloc(mos, 1338 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1339 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1340 ASSERT(smo->smo_object != 0); 1341 vdev_config_dirty(vd->vdev_top); 1342 } 1343 1344 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1345 1346 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1347 &smlock); 1348 1349 mutex_enter(&smlock); 1350 1351 mutex_enter(&vd->vdev_dtl_lock); 1352 space_map_walk(sm, space_map_add, &smsync); 1353 mutex_exit(&vd->vdev_dtl_lock); 1354 1355 space_map_truncate(smo, mos, tx); 1356 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1357 1358 space_map_destroy(&smsync); 1359 1360 mutex_exit(&smlock); 1361 mutex_destroy(&smlock); 1362 1363 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1364 dmu_buf_will_dirty(db, tx); 1365 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1366 bcopy(smo, db->db_data, sizeof (*smo)); 1367 dmu_buf_rele(db, FTAG); 1368 1369 dmu_tx_commit(tx); 1370 } 1371 1372 /* 1373 * Determine if resilver is needed, and if so the txg range. 1374 */ 1375 boolean_t 1376 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1377 { 1378 boolean_t needed = B_FALSE; 1379 uint64_t thismin = UINT64_MAX; 1380 uint64_t thismax = 0; 1381 1382 if (vd->vdev_children == 0) { 1383 mutex_enter(&vd->vdev_dtl_lock); 1384 if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd)) { 1385 space_seg_t *ss; 1386 1387 ss = avl_first(&vd->vdev_dtl_map.sm_root); 1388 thismin = ss->ss_start - 1; 1389 ss = avl_last(&vd->vdev_dtl_map.sm_root); 1390 thismax = ss->ss_end; 1391 needed = B_TRUE; 1392 } 1393 mutex_exit(&vd->vdev_dtl_lock); 1394 } else { 1395 int c; 1396 for (c = 0; c < vd->vdev_children; c++) { 1397 vdev_t *cvd = vd->vdev_child[c]; 1398 uint64_t cmin, cmax; 1399 1400 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1401 thismin = MIN(thismin, cmin); 1402 thismax = MAX(thismax, cmax); 1403 needed = B_TRUE; 1404 } 1405 } 1406 } 1407 1408 if (needed && minp) { 1409 *minp = thismin; 1410 *maxp = thismax; 1411 } 1412 return (needed); 1413 } 1414 1415 void 1416 vdev_load(vdev_t *vd) 1417 { 1418 int c; 1419 1420 /* 1421 * Recursively load all children. 1422 */ 1423 for (c = 0; c < vd->vdev_children; c++) 1424 vdev_load(vd->vdev_child[c]); 1425 1426 /* 1427 * If this is a top-level vdev, initialize its metaslabs. 1428 */ 1429 if (vd == vd->vdev_top && 1430 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1431 vdev_metaslab_init(vd, 0) != 0)) 1432 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1433 VDEV_AUX_CORRUPT_DATA); 1434 1435 /* 1436 * If this is a leaf vdev, load its DTL. 1437 */ 1438 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1439 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1440 VDEV_AUX_CORRUPT_DATA); 1441 } 1442 1443 /* 1444 * The special vdev case is used for hot spares and l2cache devices. Its 1445 * sole purpose it to set the vdev state for the associated vdev. To do this, 1446 * we make sure that we can open the underlying device, then try to read the 1447 * label, and make sure that the label is sane and that it hasn't been 1448 * repurposed to another pool. 1449 */ 1450 int 1451 vdev_validate_aux(vdev_t *vd) 1452 { 1453 nvlist_t *label; 1454 uint64_t guid, version; 1455 uint64_t state; 1456 1457 if (vdev_is_dead(vd)) 1458 return (0); 1459 1460 if ((label = vdev_label_read_config(vd)) == NULL) { 1461 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1462 VDEV_AUX_CORRUPT_DATA); 1463 return (-1); 1464 } 1465 1466 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1467 version > SPA_VERSION || 1468 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1469 guid != vd->vdev_guid || 1470 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1471 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1472 VDEV_AUX_CORRUPT_DATA); 1473 nvlist_free(label); 1474 return (-1); 1475 } 1476 1477 /* 1478 * We don't actually check the pool state here. If it's in fact in 1479 * use by another pool, we update this fact on the fly when requested. 1480 */ 1481 nvlist_free(label); 1482 return (0); 1483 } 1484 1485 void 1486 vdev_sync_done(vdev_t *vd, uint64_t txg) 1487 { 1488 metaslab_t *msp; 1489 1490 dprintf("%s txg %llu\n", vdev_description(vd), txg); 1491 1492 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1493 metaslab_sync_done(msp, txg); 1494 } 1495 1496 void 1497 vdev_sync(vdev_t *vd, uint64_t txg) 1498 { 1499 spa_t *spa = vd->vdev_spa; 1500 vdev_t *lvd; 1501 metaslab_t *msp; 1502 dmu_tx_t *tx; 1503 1504 dprintf("%s txg %llu pass %d\n", 1505 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1506 1507 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1508 ASSERT(vd == vd->vdev_top); 1509 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1510 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1511 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1512 ASSERT(vd->vdev_ms_array != 0); 1513 vdev_config_dirty(vd); 1514 dmu_tx_commit(tx); 1515 } 1516 1517 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1518 metaslab_sync(msp, txg); 1519 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1520 } 1521 1522 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1523 vdev_dtl_sync(lvd, txg); 1524 1525 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1526 } 1527 1528 uint64_t 1529 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1530 { 1531 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1532 } 1533 1534 const char * 1535 vdev_description(vdev_t *vd) 1536 { 1537 if (vd == NULL || vd->vdev_ops == NULL) 1538 return ("<unknown>"); 1539 1540 if (vd->vdev_path != NULL) 1541 return (vd->vdev_path); 1542 1543 if (vd->vdev_physpath != NULL) 1544 return (vd->vdev_physpath); 1545 1546 if (vd->vdev_devid != NULL) 1547 return (vd->vdev_devid); 1548 1549 if (vd->vdev_parent == NULL) 1550 return (spa_name(vd->vdev_spa)); 1551 1552 return (vd->vdev_ops->vdev_op_type); 1553 } 1554 1555 /* 1556 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 1557 * not be opened, and no I/O is attempted. 1558 */ 1559 int 1560 vdev_fault(spa_t *spa, uint64_t guid) 1561 { 1562 vdev_t *vd; 1563 uint64_t txg; 1564 1565 /* 1566 * Disregard a vdev fault request if the pool has 1567 * experienced a complete failure. 1568 * 1569 * XXX - We do this here so that we don't hold the 1570 * spa_namespace_lock in the event that we can't get 1571 * the RW_WRITER spa_config_lock. 1572 */ 1573 if (spa_state(spa) == POOL_STATE_IO_FAILURE) 1574 return (EIO); 1575 1576 txg = spa_vdev_enter(spa); 1577 1578 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1579 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1580 if (!vd->vdev_ops->vdev_op_leaf) 1581 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1582 1583 /* 1584 * Faulted state takes precedence over degraded. 1585 */ 1586 vd->vdev_faulted = 1ULL; 1587 vd->vdev_degraded = 0ULL; 1588 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, 1589 VDEV_AUX_ERR_EXCEEDED); 1590 1591 /* 1592 * If marking the vdev as faulted cause the toplevel vdev to become 1593 * unavailable, then back off and simply mark the vdev as degraded 1594 * instead. 1595 */ 1596 if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) { 1597 vd->vdev_degraded = 1ULL; 1598 vd->vdev_faulted = 0ULL; 1599 1600 /* 1601 * If we reopen the device and it's not dead, only then do we 1602 * mark it degraded. 1603 */ 1604 vdev_reopen(vd); 1605 1606 if (vdev_readable(vd)) { 1607 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1608 VDEV_AUX_ERR_EXCEEDED); 1609 } 1610 } 1611 1612 vdev_config_dirty(vd->vdev_top); 1613 1614 (void) spa_vdev_exit(spa, NULL, txg, 0); 1615 1616 return (0); 1617 } 1618 1619 /* 1620 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 1621 * user that something is wrong. The vdev continues to operate as normal as far 1622 * as I/O is concerned. 1623 */ 1624 int 1625 vdev_degrade(spa_t *spa, uint64_t guid) 1626 { 1627 vdev_t *vd; 1628 uint64_t txg; 1629 1630 /* 1631 * Disregard a vdev fault request if the pool has 1632 * experienced a complete failure. 1633 * 1634 * XXX - We do this here so that we don't hold the 1635 * spa_namespace_lock in the event that we can't get 1636 * the RW_WRITER spa_config_lock. 1637 */ 1638 if (spa_state(spa) == POOL_STATE_IO_FAILURE) 1639 return (EIO); 1640 1641 txg = spa_vdev_enter(spa); 1642 1643 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1644 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1645 if (!vd->vdev_ops->vdev_op_leaf) 1646 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1647 1648 /* 1649 * If the vdev is already faulted, then don't do anything. 1650 */ 1651 if (vd->vdev_faulted || vd->vdev_degraded) { 1652 (void) spa_vdev_exit(spa, NULL, txg, 0); 1653 return (0); 1654 } 1655 1656 vd->vdev_degraded = 1ULL; 1657 if (!vdev_is_dead(vd)) 1658 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1659 VDEV_AUX_ERR_EXCEEDED); 1660 vdev_config_dirty(vd->vdev_top); 1661 1662 (void) spa_vdev_exit(spa, NULL, txg, 0); 1663 1664 return (0); 1665 } 1666 1667 /* 1668 * Online the given vdev. If 'unspare' is set, it implies two things. First, 1669 * any attached spare device should be detached when the device finishes 1670 * resilvering. Second, the online should be treated like a 'test' online case, 1671 * so no FMA events are generated if the device fails to open. 1672 */ 1673 int 1674 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, 1675 vdev_state_t *newstate) 1676 { 1677 vdev_t *vd; 1678 uint64_t txg; 1679 1680 /* 1681 * Disregard a vdev fault request if the pool has 1682 * experienced a complete failure. 1683 * 1684 * XXX - We do this here so that we don't hold the 1685 * spa_namespace_lock in the event that we can't get 1686 * the RW_WRITER spa_config_lock. 1687 */ 1688 if (spa_state(spa) == POOL_STATE_IO_FAILURE) 1689 return (EIO); 1690 1691 txg = spa_vdev_enter(spa); 1692 1693 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1694 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1695 1696 if (!vd->vdev_ops->vdev_op_leaf) 1697 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1698 1699 vd->vdev_offline = B_FALSE; 1700 vd->vdev_tmpoffline = B_FALSE; 1701 vd->vdev_checkremove = (flags & ZFS_ONLINE_CHECKREMOVE) ? 1702 B_TRUE : B_FALSE; 1703 vd->vdev_forcefault = (flags & ZFS_ONLINE_FORCEFAULT) ? 1704 B_TRUE : B_FALSE; 1705 vdev_reopen(vd->vdev_top); 1706 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 1707 1708 if (newstate) 1709 *newstate = vd->vdev_state; 1710 if ((flags & ZFS_ONLINE_UNSPARE) && 1711 !vdev_is_dead(vd) && vd->vdev_parent && 1712 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 1713 vd->vdev_parent->vdev_child[0] == vd) 1714 vd->vdev_unspare = B_TRUE; 1715 1716 vdev_config_dirty(vd->vdev_top); 1717 1718 (void) spa_vdev_exit(spa, NULL, txg, 0); 1719 1720 /* 1721 * Must hold spa_namespace_lock in order to post resilver sysevent 1722 * w/pool name. 1723 */ 1724 mutex_enter(&spa_namespace_lock); 1725 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0); 1726 mutex_exit(&spa_namespace_lock); 1727 1728 return (0); 1729 } 1730 1731 int 1732 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 1733 { 1734 vdev_t *vd; 1735 uint64_t txg; 1736 1737 /* 1738 * Disregard a vdev fault request if the pool has 1739 * experienced a complete failure. 1740 * 1741 * XXX - We do this here so that we don't hold the 1742 * spa_namespace_lock in the event that we can't get 1743 * the RW_WRITER spa_config_lock. 1744 */ 1745 if (spa_state(spa) == POOL_STATE_IO_FAILURE) 1746 return (EIO); 1747 1748 txg = spa_vdev_enter(spa); 1749 1750 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1751 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1752 1753 if (!vd->vdev_ops->vdev_op_leaf) 1754 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1755 1756 /* 1757 * If the device isn't already offline, try to offline it. 1758 */ 1759 if (!vd->vdev_offline) { 1760 /* 1761 * If this device's top-level vdev has a non-empty DTL, 1762 * don't allow the device to be offlined. 1763 * 1764 * XXX -- make this more precise by allowing the offline 1765 * as long as the remaining devices don't have any DTL holes. 1766 */ 1767 if (vd->vdev_top->vdev_dtl_map.sm_space != 0) 1768 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1769 1770 /* 1771 * Offline this device and reopen its top-level vdev. 1772 * If this action results in the top-level vdev becoming 1773 * unusable, undo it and fail the request. 1774 */ 1775 vd->vdev_offline = B_TRUE; 1776 vdev_reopen(vd->vdev_top); 1777 if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) { 1778 vd->vdev_offline = B_FALSE; 1779 vdev_reopen(vd->vdev_top); 1780 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1781 } 1782 } 1783 1784 vd->vdev_tmpoffline = (flags & ZFS_OFFLINE_TEMPORARY) ? 1785 B_TRUE : B_FALSE; 1786 1787 vdev_config_dirty(vd->vdev_top); 1788 1789 return (spa_vdev_exit(spa, NULL, txg, 0)); 1790 } 1791 1792 /* 1793 * Clear the error counts associated with this vdev. Unlike vdev_online() and 1794 * vdev_offline(), we assume the spa config is locked. We also clear all 1795 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 1796 * If reopen is specified then attempt to reopen the vdev if the vdev is 1797 * faulted or degraded. 1798 */ 1799 void 1800 vdev_clear(spa_t *spa, vdev_t *vd, boolean_t reopen_wanted) 1801 { 1802 int c; 1803 1804 if (vd == NULL) 1805 vd = spa->spa_root_vdev; 1806 1807 vd->vdev_stat.vs_read_errors = 0; 1808 vd->vdev_stat.vs_write_errors = 0; 1809 vd->vdev_stat.vs_checksum_errors = 0; 1810 vd->vdev_is_failing = B_FALSE; 1811 1812 for (c = 0; c < vd->vdev_children; c++) 1813 vdev_clear(spa, vd->vdev_child[c], reopen_wanted); 1814 1815 /* 1816 * If we're in the FAULTED state or have experienced failed I/O, then 1817 * clear the persistent state and attempt to reopen the device. We 1818 * also mark the vdev config dirty, so that the new faulted state is 1819 * written out to disk. 1820 */ 1821 if (reopen_wanted && (vd->vdev_faulted || vd->vdev_degraded || 1822 vd->vdev_stat.vs_aux == VDEV_AUX_IO_FAILURE)) { 1823 boolean_t resilver = (vd->vdev_faulted || vd->vdev_degraded); 1824 1825 vd->vdev_faulted = vd->vdev_degraded = 0; 1826 vdev_reopen(vd); 1827 vdev_config_dirty(vd->vdev_top); 1828 1829 if (resilver && vd->vdev_aux == NULL && !vdev_is_dead(vd)) 1830 spa_async_request(spa, SPA_ASYNC_RESILVER); 1831 1832 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 1833 } 1834 } 1835 1836 int 1837 vdev_readable(vdev_t *vd) 1838 { 1839 /* XXPOLICY */ 1840 return (!vdev_is_dead(vd)); 1841 } 1842 1843 int 1844 vdev_writeable(vdev_t *vd) 1845 { 1846 return (!vdev_is_dead(vd) && !vd->vdev_is_failing); 1847 } 1848 1849 int 1850 vdev_is_dead(vdev_t *vd) 1851 { 1852 /* 1853 * If the vdev experienced I/O failures, then the vdev is marked 1854 * as faulted (VDEV_STATE_FAULTED) for status output and FMA; however, 1855 * we need to allow access to the vdev for resumed I/Os (see 1856 * zio_vdev_resume_io() ). 1857 */ 1858 return (vd->vdev_state < VDEV_STATE_DEGRADED && 1859 vd->vdev_stat.vs_aux != VDEV_AUX_IO_FAILURE); 1860 } 1861 1862 int 1863 vdev_error_inject(vdev_t *vd, zio_t *zio) 1864 { 1865 int error = 0; 1866 1867 if (vd->vdev_fault_mode == VDEV_FAULT_NONE) 1868 return (0); 1869 1870 if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0) 1871 return (0); 1872 1873 switch (vd->vdev_fault_mode) { 1874 case VDEV_FAULT_RANDOM: 1875 if (spa_get_random(vd->vdev_fault_arg) == 0) 1876 error = EIO; 1877 break; 1878 1879 case VDEV_FAULT_COUNT: 1880 if ((int64_t)--vd->vdev_fault_arg <= 0) 1881 vd->vdev_fault_mode = VDEV_FAULT_NONE; 1882 error = EIO; 1883 break; 1884 } 1885 1886 return (error); 1887 } 1888 1889 /* 1890 * Get statistics for the given vdev. 1891 */ 1892 void 1893 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 1894 { 1895 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1896 int c, t; 1897 1898 mutex_enter(&vd->vdev_stat_lock); 1899 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 1900 vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors; 1901 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 1902 vs->vs_state = vd->vdev_state; 1903 vs->vs_rsize = vdev_get_rsize(vd); 1904 mutex_exit(&vd->vdev_stat_lock); 1905 1906 /* 1907 * If we're getting stats on the root vdev, aggregate the I/O counts 1908 * over all top-level vdevs (i.e. the direct children of the root). 1909 */ 1910 if (vd == rvd) { 1911 for (c = 0; c < rvd->vdev_children; c++) { 1912 vdev_t *cvd = rvd->vdev_child[c]; 1913 vdev_stat_t *cvs = &cvd->vdev_stat; 1914 1915 mutex_enter(&vd->vdev_stat_lock); 1916 for (t = 0; t < ZIO_TYPES; t++) { 1917 vs->vs_ops[t] += cvs->vs_ops[t]; 1918 vs->vs_bytes[t] += cvs->vs_bytes[t]; 1919 } 1920 vs->vs_read_errors += cvs->vs_read_errors; 1921 vs->vs_write_errors += cvs->vs_write_errors; 1922 vs->vs_checksum_errors += cvs->vs_checksum_errors; 1923 vs->vs_scrub_examined += cvs->vs_scrub_examined; 1924 mutex_exit(&vd->vdev_stat_lock); 1925 } 1926 } 1927 } 1928 1929 void 1930 vdev_clear_stats(vdev_t *vd) 1931 { 1932 mutex_enter(&vd->vdev_stat_lock); 1933 vd->vdev_stat.vs_space = 0; 1934 vd->vdev_stat.vs_dspace = 0; 1935 vd->vdev_stat.vs_alloc = 0; 1936 mutex_exit(&vd->vdev_stat_lock); 1937 } 1938 1939 void 1940 vdev_stat_update(zio_t *zio) 1941 { 1942 vdev_t *vd = zio->io_vd; 1943 vdev_t *pvd; 1944 uint64_t txg = zio->io_txg; 1945 vdev_stat_t *vs = &vd->vdev_stat; 1946 zio_type_t type = zio->io_type; 1947 int flags = zio->io_flags; 1948 1949 if (zio->io_error == 0) { 1950 if (!(flags & ZIO_FLAG_IO_BYPASS)) { 1951 mutex_enter(&vd->vdev_stat_lock); 1952 vs->vs_ops[type]++; 1953 vs->vs_bytes[type] += zio->io_size; 1954 mutex_exit(&vd->vdev_stat_lock); 1955 } 1956 if ((flags & ZIO_FLAG_IO_REPAIR) && 1957 zio->io_delegate_list == NULL) { 1958 mutex_enter(&vd->vdev_stat_lock); 1959 if (flags & ZIO_FLAG_SCRUB_THREAD) 1960 vs->vs_scrub_repaired += zio->io_size; 1961 else 1962 vs->vs_self_healed += zio->io_size; 1963 mutex_exit(&vd->vdev_stat_lock); 1964 } 1965 return; 1966 } 1967 1968 if (flags & ZIO_FLAG_SPECULATIVE) 1969 return; 1970 1971 if (vdev_readable(vd)) { 1972 mutex_enter(&vd->vdev_stat_lock); 1973 if (type == ZIO_TYPE_READ) { 1974 if (zio->io_error == ECKSUM) 1975 vs->vs_checksum_errors++; 1976 else 1977 vs->vs_read_errors++; 1978 } 1979 if (type == ZIO_TYPE_WRITE) 1980 vs->vs_write_errors++; 1981 mutex_exit(&vd->vdev_stat_lock); 1982 } 1983 1984 if (type == ZIO_TYPE_WRITE) { 1985 if (txg == 0 || vd->vdev_children != 0) 1986 return; 1987 if (flags & ZIO_FLAG_SCRUB_THREAD) { 1988 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 1989 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1990 vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1); 1991 } 1992 if (!(flags & ZIO_FLAG_IO_REPAIR)) { 1993 if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1)) 1994 return; 1995 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1996 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1997 vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1); 1998 } 1999 } 2000 } 2001 2002 void 2003 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 2004 { 2005 int c; 2006 vdev_stat_t *vs = &vd->vdev_stat; 2007 2008 for (c = 0; c < vd->vdev_children; c++) 2009 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 2010 2011 mutex_enter(&vd->vdev_stat_lock); 2012 2013 if (type == POOL_SCRUB_NONE) { 2014 /* 2015 * Update completion and end time. Leave everything else alone 2016 * so we can report what happened during the previous scrub. 2017 */ 2018 vs->vs_scrub_complete = complete; 2019 vs->vs_scrub_end = gethrestime_sec(); 2020 } else { 2021 vs->vs_scrub_type = type; 2022 vs->vs_scrub_complete = 0; 2023 vs->vs_scrub_examined = 0; 2024 vs->vs_scrub_repaired = 0; 2025 vs->vs_scrub_start = gethrestime_sec(); 2026 vs->vs_scrub_end = 0; 2027 } 2028 2029 mutex_exit(&vd->vdev_stat_lock); 2030 } 2031 2032 /* 2033 * Update the in-core space usage stats for this vdev and the root vdev. 2034 */ 2035 void 2036 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta, 2037 boolean_t update_root) 2038 { 2039 int64_t dspace_delta = space_delta; 2040 spa_t *spa = vd->vdev_spa; 2041 vdev_t *rvd = spa->spa_root_vdev; 2042 2043 ASSERT(vd == vd->vdev_top); 2044 2045 /* 2046 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2047 * factor. We must calculate this here and not at the root vdev 2048 * because the root vdev's psize-to-asize is simply the max of its 2049 * childrens', thus not accurate enough for us. 2050 */ 2051 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2052 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2053 vd->vdev_deflate_ratio; 2054 2055 mutex_enter(&vd->vdev_stat_lock); 2056 vd->vdev_stat.vs_space += space_delta; 2057 vd->vdev_stat.vs_alloc += alloc_delta; 2058 vd->vdev_stat.vs_dspace += dspace_delta; 2059 mutex_exit(&vd->vdev_stat_lock); 2060 2061 if (update_root) { 2062 ASSERT(rvd == vd->vdev_parent); 2063 ASSERT(vd->vdev_ms_count != 0); 2064 2065 /* 2066 * Don't count non-normal (e.g. intent log) space as part of 2067 * the pool's capacity. 2068 */ 2069 if (vd->vdev_mg->mg_class != spa->spa_normal_class) 2070 return; 2071 2072 mutex_enter(&rvd->vdev_stat_lock); 2073 rvd->vdev_stat.vs_space += space_delta; 2074 rvd->vdev_stat.vs_alloc += alloc_delta; 2075 rvd->vdev_stat.vs_dspace += dspace_delta; 2076 mutex_exit(&rvd->vdev_stat_lock); 2077 } 2078 } 2079 2080 /* 2081 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2082 * so that it will be written out next time the vdev configuration is synced. 2083 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2084 */ 2085 void 2086 vdev_config_dirty(vdev_t *vd) 2087 { 2088 spa_t *spa = vd->vdev_spa; 2089 vdev_t *rvd = spa->spa_root_vdev; 2090 int c; 2091 2092 /* 2093 * If this is an aux vdev (as with l2cache devices), then we update the 2094 * vdev config manually and set the sync flag. 2095 */ 2096 if (vd->vdev_aux != NULL) { 2097 spa_aux_vdev_t *sav = vd->vdev_aux; 2098 nvlist_t **aux; 2099 uint_t naux; 2100 2101 for (c = 0; c < sav->sav_count; c++) { 2102 if (sav->sav_vdevs[c] == vd) 2103 break; 2104 } 2105 2106 ASSERT(c < sav->sav_count); 2107 sav->sav_sync = B_TRUE; 2108 2109 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2110 ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0); 2111 2112 ASSERT(c < naux); 2113 2114 /* 2115 * Setting the nvlist in the middle if the array is a little 2116 * sketchy, but it will work. 2117 */ 2118 nvlist_free(aux[c]); 2119 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE); 2120 2121 return; 2122 } 2123 2124 /* 2125 * The dirty list is protected by the config lock. The caller must 2126 * either hold the config lock as writer, or must be the sync thread 2127 * (which holds the lock as reader). There's only one sync thread, 2128 * so this is sufficient to ensure mutual exclusion. 2129 */ 2130 ASSERT(spa_config_held(spa, RW_WRITER) || 2131 dsl_pool_sync_context(spa_get_dsl(spa))); 2132 2133 if (vd == rvd) { 2134 for (c = 0; c < rvd->vdev_children; c++) 2135 vdev_config_dirty(rvd->vdev_child[c]); 2136 } else { 2137 ASSERT(vd == vd->vdev_top); 2138 2139 if (!list_link_active(&vd->vdev_dirty_node)) 2140 list_insert_head(&spa->spa_dirty_list, vd); 2141 } 2142 } 2143 2144 void 2145 vdev_config_clean(vdev_t *vd) 2146 { 2147 spa_t *spa = vd->vdev_spa; 2148 2149 ASSERT(spa_config_held(spa, RW_WRITER) || 2150 dsl_pool_sync_context(spa_get_dsl(spa))); 2151 2152 ASSERT(list_link_active(&vd->vdev_dirty_node)); 2153 list_remove(&spa->spa_dirty_list, vd); 2154 } 2155 2156 /* 2157 * Propagate vdev state up from children to parent. 2158 */ 2159 void 2160 vdev_propagate_state(vdev_t *vd) 2161 { 2162 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2163 int degraded = 0, faulted = 0; 2164 int corrupted = 0; 2165 int c; 2166 vdev_t *child; 2167 2168 if (vd->vdev_children > 0) { 2169 for (c = 0; c < vd->vdev_children; c++) { 2170 child = vd->vdev_child[c]; 2171 2172 if ((vdev_is_dead(child) && !vdev_readable(child)) || 2173 child->vdev_stat.vs_aux == VDEV_AUX_IO_FAILURE) { 2174 /* 2175 * Root special: if there is a top-level log 2176 * device, treat the root vdev as if it were 2177 * degraded. 2178 */ 2179 if (child->vdev_islog && vd == rvd) 2180 degraded++; 2181 else 2182 faulted++; 2183 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2184 degraded++; 2185 } 2186 2187 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2188 corrupted++; 2189 } 2190 2191 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2192 2193 /* 2194 * Root special: if there is a toplevel vdev that cannot be 2195 * opened due to corrupted metadata, then propagate the root 2196 * vdev's aux state as 'corrupt' rather than 'insufficient 2197 * replicas'. 2198 */ 2199 if (corrupted && vd == rvd && 2200 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2201 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2202 VDEV_AUX_CORRUPT_DATA); 2203 } 2204 2205 if (vd->vdev_parent) 2206 vdev_propagate_state(vd->vdev_parent); 2207 } 2208 2209 /* 2210 * Set a vdev's state. If this is during an open, we don't update the parent 2211 * state, because we're in the process of opening children depth-first. 2212 * Otherwise, we propagate the change to the parent. 2213 * 2214 * If this routine places a device in a faulted state, an appropriate ereport is 2215 * generated. 2216 */ 2217 void 2218 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2219 { 2220 uint64_t save_state; 2221 spa_t *spa = vd->vdev_spa; 2222 2223 if (state == vd->vdev_state) { 2224 vd->vdev_stat.vs_aux = aux; 2225 return; 2226 } 2227 2228 save_state = vd->vdev_state; 2229 2230 vd->vdev_state = state; 2231 vd->vdev_stat.vs_aux = aux; 2232 2233 /* 2234 * If we are setting the vdev state to anything but an open state, then 2235 * always close the underlying device. Otherwise, we keep accessible 2236 * but invalid devices open forever. We don't call vdev_close() itself, 2237 * because that implies some extra checks (offline, etc) that we don't 2238 * want here. This is limited to leaf devices, because otherwise 2239 * closing the device will affect other children. 2240 */ 2241 if (!vdev_readable(vd) && vd->vdev_ops->vdev_op_leaf) 2242 vd->vdev_ops->vdev_op_close(vd); 2243 2244 if (vd->vdev_removed && 2245 state == VDEV_STATE_CANT_OPEN && 2246 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2247 /* 2248 * If the previous state is set to VDEV_STATE_REMOVED, then this 2249 * device was previously marked removed and someone attempted to 2250 * reopen it. If this failed due to a nonexistent device, then 2251 * keep the device in the REMOVED state. We also let this be if 2252 * it is one of our special test online cases, which is only 2253 * attempting to online the device and shouldn't generate an FMA 2254 * fault. 2255 */ 2256 vd->vdev_state = VDEV_STATE_REMOVED; 2257 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2258 } else if (state == VDEV_STATE_REMOVED) { 2259 /* 2260 * Indicate to the ZFS DE that this device has been removed, and 2261 * any recent errors should be ignored. 2262 */ 2263 zfs_post_remove(spa, vd); 2264 vd->vdev_removed = B_TRUE; 2265 } else if (state == VDEV_STATE_CANT_OPEN) { 2266 /* 2267 * If we fail to open a vdev during an import, we mark it as 2268 * "not available", which signifies that it was never there to 2269 * begin with. Failure to open such a device is not considered 2270 * an error. 2271 */ 2272 if (spa->spa_load_state == SPA_LOAD_IMPORT && 2273 !spa->spa_import_faulted && 2274 vd->vdev_ops->vdev_op_leaf) 2275 vd->vdev_not_present = 1; 2276 2277 /* 2278 * Post the appropriate ereport. If the 'prevstate' field is 2279 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2280 * that this is part of a vdev_reopen(). In this case, we don't 2281 * want to post the ereport if the device was already in the 2282 * CANT_OPEN state beforehand. 2283 * 2284 * If the 'checkremove' flag is set, then this is an attempt to 2285 * online the device in response to an insertion event. If we 2286 * hit this case, then we have detected an insertion event for a 2287 * faulted or offline device that wasn't in the removed state. 2288 * In this scenario, we don't post an ereport because we are 2289 * about to replace the device, or attempt an online with 2290 * vdev_forcefault, which will generate the fault for us. 2291 */ 2292 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2293 !vd->vdev_not_present && !vd->vdev_checkremove && 2294 vd != spa->spa_root_vdev) { 2295 const char *class; 2296 2297 switch (aux) { 2298 case VDEV_AUX_OPEN_FAILED: 2299 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2300 break; 2301 case VDEV_AUX_CORRUPT_DATA: 2302 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2303 break; 2304 case VDEV_AUX_NO_REPLICAS: 2305 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2306 break; 2307 case VDEV_AUX_BAD_GUID_SUM: 2308 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2309 break; 2310 case VDEV_AUX_TOO_SMALL: 2311 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2312 break; 2313 case VDEV_AUX_BAD_LABEL: 2314 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2315 break; 2316 default: 2317 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2318 } 2319 2320 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 2321 } 2322 2323 /* Erase any notion of persistent removed state */ 2324 vd->vdev_removed = B_FALSE; 2325 } else { 2326 vd->vdev_removed = B_FALSE; 2327 } 2328 2329 if (!isopen) 2330 vdev_propagate_state(vd); 2331 } 2332 2333 /* 2334 * Check the vdev configuration to ensure that it's capable of supporting 2335 * a root pool. Currently, we do not support RAID-Z or partial configuration. 2336 * In addition, only a single top-level vdev is allowed and none of the leaves 2337 * can be wholedisks. 2338 */ 2339 boolean_t 2340 vdev_is_bootable(vdev_t *vd) 2341 { 2342 int c; 2343 2344 if (!vd->vdev_ops->vdev_op_leaf) { 2345 char *vdev_type = vd->vdev_ops->vdev_op_type; 2346 2347 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 2348 vd->vdev_children > 1) { 2349 return (B_FALSE); 2350 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 2351 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 2352 return (B_FALSE); 2353 } 2354 } else if (vd->vdev_wholedisk == 1) { 2355 return (B_FALSE); 2356 } 2357 2358 for (c = 0; c < vd->vdev_children; c++) { 2359 if (!vdev_is_bootable(vd->vdev_child[c])) 2360 return (B_FALSE); 2361 } 2362 return (B_TRUE); 2363 } 2364