xref: /titanic_41/usr/src/uts/common/fs/zfs/arc.c (revision c0c79a3f09914f35651895ffc111883455b7f62d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * DVA-based Adjustable Replacement Cache
30  *
31  * While much of the theory of operation used here is
32  * based on the self-tuning, low overhead replacement cache
33  * presented by Megiddo and Modha at FAST 2003, there are some
34  * significant differences:
35  *
36  * 1. The Megiddo and Modha model assumes any page is evictable.
37  * Pages in its cache cannot be "locked" into memory.  This makes
38  * the eviction algorithm simple: evict the last page in the list.
39  * This also make the performance characteristics easy to reason
40  * about.  Our cache is not so simple.  At any given moment, some
41  * subset of the blocks in the cache are un-evictable because we
42  * have handed out a reference to them.  Blocks are only evictable
43  * when there are no external references active.  This makes
44  * eviction far more problematic:  we choose to evict the evictable
45  * blocks that are the "lowest" in the list.
46  *
47  * There are times when it is not possible to evict the requested
48  * space.  In these circumstances we are unable to adjust the cache
49  * size.  To prevent the cache growing unbounded at these times we
50  * implement a "cache throttle" that slowes the flow of new data
51  * into the cache until we can make space avaiable.
52  *
53  * 2. The Megiddo and Modha model assumes a fixed cache size.
54  * Pages are evicted when the cache is full and there is a cache
55  * miss.  Our model has a variable sized cache.  It grows with
56  * high use, but also tries to react to memory preasure from the
57  * operating system: decreasing its size when system memory is
58  * tight.
59  *
60  * 3. The Megiddo and Modha model assumes a fixed page size. All
61  * elements of the cache are therefor exactly the same size.  So
62  * when adjusting the cache size following a cache miss, its simply
63  * a matter of choosing a single page to evict.  In our model, we
64  * have variable sized cache blocks (rangeing from 512 bytes to
65  * 128K bytes).  We therefor choose a set of blocks to evict to make
66  * space for a cache miss that approximates as closely as possible
67  * the space used by the new block.
68  *
69  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70  * by N. Megiddo & D. Modha, FAST 2003
71  */
72 
73 /*
74  * The locking model:
75  *
76  * A new reference to a cache buffer can be obtained in two
77  * ways: 1) via a hash table lookup using the DVA as a key,
78  * or 2) via one of the ARC lists.  The arc_read() inerface
79  * uses method 1, while the internal arc algorithms for
80  * adjusting the cache use method 2.  We therefor provide two
81  * types of locks: 1) the hash table lock array, and 2) the
82  * arc list locks.
83  *
84  * Buffers do not have their own mutexs, rather they rely on the
85  * hash table mutexs for the bulk of their protection (i.e. most
86  * fields in the arc_buf_hdr_t are protected by these mutexs).
87  *
88  * buf_hash_find() returns the appropriate mutex (held) when it
89  * locates the requested buffer in the hash table.  It returns
90  * NULL for the mutex if the buffer was not in the table.
91  *
92  * buf_hash_remove() expects the appropriate hash mutex to be
93  * already held before it is invoked.
94  *
95  * Each arc state also has a mutex which is used to protect the
96  * buffer list associated with the state.  When attempting to
97  * obtain a hash table lock while holding an arc list lock you
98  * must use: mutex_tryenter() to avoid deadlock.  Also note that
99  * the active state mutex must be held before the ghost state mutex.
100  *
101  * Arc buffers may have an associated eviction callback function.
102  * This function will be invoked prior to removing the buffer (e.g.
103  * in arc_do_user_evicts()).  Note however that the data associated
104  * with the buffer may be evicted prior to the callback.  The callback
105  * must be made with *no locks held* (to prevent deadlock).  Additionally,
106  * the users of callbacks must ensure that their private data is
107  * protected from simultaneous callbacks from arc_buf_evict()
108  * and arc_do_user_evicts().
109  *
110  * Note that the majority of the performance stats are manipulated
111  * with atomic operations.
112  */
113 
114 #include <sys/spa.h>
115 #include <sys/zio.h>
116 #include <sys/zio_checksum.h>
117 #include <sys/zfs_context.h>
118 #include <sys/arc.h>
119 #include <sys/refcount.h>
120 #ifdef _KERNEL
121 #include <sys/vmsystm.h>
122 #include <vm/anon.h>
123 #include <sys/fs/swapnode.h>
124 #include <sys/dnlc.h>
125 #endif
126 #include <sys/callb.h>
127 #include <sys/kstat.h>
128 
129 static kmutex_t		arc_reclaim_thr_lock;
130 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
131 static uint8_t		arc_thread_exit;
132 
133 #define	ARC_REDUCE_DNLC_PERCENT	3
134 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
135 
136 typedef enum arc_reclaim_strategy {
137 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
138 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
139 } arc_reclaim_strategy_t;
140 
141 /* number of seconds before growing cache again */
142 static int		arc_grow_retry = 60;
143 
144 /*
145  * minimum lifespan of a prefetch block in clock ticks
146  * (initialized in arc_init())
147  */
148 static int		arc_min_prefetch_lifespan;
149 
150 static int arc_dead;
151 
152 /*
153  * These tunables are for performance analysis.
154  */
155 uint64_t zfs_arc_max;
156 uint64_t zfs_arc_min;
157 
158 /*
159  * Note that buffers can be on one of 5 states:
160  *	ARC_anon	- anonymous (discussed below)
161  *	ARC_mru		- recently used, currently cached
162  *	ARC_mru_ghost	- recentely used, no longer in cache
163  *	ARC_mfu		- frequently used, currently cached
164  *	ARC_mfu_ghost	- frequently used, no longer in cache
165  * When there are no active references to the buffer, they
166  * are linked onto one of the lists in arc.  These are the
167  * only buffers that can be evicted or deleted.
168  *
169  * Anonymous buffers are buffers that are not associated with
170  * a DVA.  These are buffers that hold dirty block copies
171  * before they are written to stable storage.  By definition,
172  * they are "ref'd" and are considered part of arc_mru
173  * that cannot be freed.  Generally, they will aquire a DVA
174  * as they are written and migrate onto the arc_mru list.
175  */
176 
177 typedef struct arc_state {
178 	list_t	arcs_list;	/* linked list of evictable buffer in state */
179 	uint64_t arcs_lsize;	/* total size of buffers in the linked list */
180 	uint64_t arcs_size;	/* total size of all buffers in this state */
181 	kmutex_t arcs_mtx;
182 } arc_state_t;
183 
184 /* The 5 states: */
185 static arc_state_t ARC_anon;
186 static arc_state_t ARC_mru;
187 static arc_state_t ARC_mru_ghost;
188 static arc_state_t ARC_mfu;
189 static arc_state_t ARC_mfu_ghost;
190 
191 typedef struct arc_stats {
192 	kstat_named_t arcstat_hits;
193 	kstat_named_t arcstat_misses;
194 	kstat_named_t arcstat_demand_data_hits;
195 	kstat_named_t arcstat_demand_data_misses;
196 	kstat_named_t arcstat_demand_metadata_hits;
197 	kstat_named_t arcstat_demand_metadata_misses;
198 	kstat_named_t arcstat_prefetch_data_hits;
199 	kstat_named_t arcstat_prefetch_data_misses;
200 	kstat_named_t arcstat_prefetch_metadata_hits;
201 	kstat_named_t arcstat_prefetch_metadata_misses;
202 	kstat_named_t arcstat_mru_hits;
203 	kstat_named_t arcstat_mru_ghost_hits;
204 	kstat_named_t arcstat_mfu_hits;
205 	kstat_named_t arcstat_mfu_ghost_hits;
206 	kstat_named_t arcstat_deleted;
207 	kstat_named_t arcstat_recycle_miss;
208 	kstat_named_t arcstat_mutex_miss;
209 	kstat_named_t arcstat_evict_skip;
210 	kstat_named_t arcstat_hash_elements;
211 	kstat_named_t arcstat_hash_elements_max;
212 	kstat_named_t arcstat_hash_collisions;
213 	kstat_named_t arcstat_hash_chains;
214 	kstat_named_t arcstat_hash_chain_max;
215 	kstat_named_t arcstat_p;
216 	kstat_named_t arcstat_c;
217 	kstat_named_t arcstat_c_min;
218 	kstat_named_t arcstat_c_max;
219 	kstat_named_t arcstat_size;
220 } arc_stats_t;
221 
222 static arc_stats_t arc_stats = {
223 	{ "hits",			KSTAT_DATA_UINT64 },
224 	{ "misses",			KSTAT_DATA_UINT64 },
225 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
226 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
227 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
228 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
229 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
230 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
231 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
232 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
233 	{ "mru_hits",			KSTAT_DATA_UINT64 },
234 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
235 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
236 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
237 	{ "deleted",			KSTAT_DATA_UINT64 },
238 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
239 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
240 	{ "evict_skip",			KSTAT_DATA_UINT64 },
241 	{ "hash_elements",		KSTAT_DATA_UINT64 },
242 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
243 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
244 	{ "hash_chains",		KSTAT_DATA_UINT64 },
245 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
246 	{ "p",				KSTAT_DATA_UINT64 },
247 	{ "c",				KSTAT_DATA_UINT64 },
248 	{ "c_min",			KSTAT_DATA_UINT64 },
249 	{ "c_max",			KSTAT_DATA_UINT64 },
250 	{ "size",			KSTAT_DATA_UINT64 }
251 };
252 
253 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
254 
255 #define	ARCSTAT_INCR(stat, val) \
256 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
257 
258 #define	ARCSTAT_BUMP(stat) 	ARCSTAT_INCR(stat, 1)
259 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
260 
261 #define	ARCSTAT_MAX(stat, val) {					\
262 	uint64_t m;							\
263 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
264 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
265 		continue;						\
266 }
267 
268 #define	ARCSTAT_MAXSTAT(stat) \
269 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
270 
271 /*
272  * We define a macro to allow ARC hits/misses to be easily broken down by
273  * two separate conditions, giving a total of four different subtypes for
274  * each of hits and misses (so eight statistics total).
275  */
276 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
277 	if (cond1) {							\
278 		if (cond2) {						\
279 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
280 		} else {						\
281 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
282 		}							\
283 	} else {							\
284 		if (cond2) {						\
285 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
286 		} else {						\
287 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
288 		}							\
289 	}
290 
291 kstat_t			*arc_ksp;
292 static arc_state_t 	*arc_anon;
293 static arc_state_t	*arc_mru;
294 static arc_state_t	*arc_mru_ghost;
295 static arc_state_t	*arc_mfu;
296 static arc_state_t	*arc_mfu_ghost;
297 
298 /*
299  * There are several ARC variables that are critical to export as kstats --
300  * but we don't want to have to grovel around in the kstat whenever we wish to
301  * manipulate them.  For these variables, we therefore define them to be in
302  * terms of the statistic variable.  This assures that we are not introducing
303  * the possibility of inconsistency by having shadow copies of the variables,
304  * while still allowing the code to be readable.
305  */
306 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
307 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
308 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
309 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
310 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
311 
312 static int		arc_no_grow;	/* Don't try to grow cache size */
313 static uint64_t		arc_tempreserve;
314 
315 typedef struct arc_callback arc_callback_t;
316 
317 struct arc_callback {
318 	void			*acb_private;
319 	arc_done_func_t		*acb_done;
320 	arc_byteswap_func_t	*acb_byteswap;
321 	arc_buf_t		*acb_buf;
322 	zio_t			*acb_zio_dummy;
323 	arc_callback_t		*acb_next;
324 };
325 
326 typedef struct arc_write_callback arc_write_callback_t;
327 
328 struct arc_write_callback {
329 	void		*awcb_private;
330 	arc_done_func_t	*awcb_ready;
331 	arc_done_func_t	*awcb_done;
332 	arc_buf_t	*awcb_buf;
333 };
334 
335 struct arc_buf_hdr {
336 	/* protected by hash lock */
337 	dva_t			b_dva;
338 	uint64_t		b_birth;
339 	uint64_t		b_cksum0;
340 
341 	kmutex_t		b_freeze_lock;
342 	zio_cksum_t		*b_freeze_cksum;
343 
344 	arc_buf_hdr_t		*b_hash_next;
345 	arc_buf_t		*b_buf;
346 	uint32_t		b_flags;
347 	uint32_t		b_datacnt;
348 
349 	arc_callback_t		*b_acb;
350 	kcondvar_t		b_cv;
351 
352 	/* immutable */
353 	arc_buf_contents_t	b_type;
354 	uint64_t		b_size;
355 	spa_t			*b_spa;
356 
357 	/* protected by arc state mutex */
358 	arc_state_t		*b_state;
359 	list_node_t		b_arc_node;
360 
361 	/* updated atomically */
362 	clock_t			b_arc_access;
363 
364 	/* self protecting */
365 	refcount_t		b_refcnt;
366 };
367 
368 static arc_buf_t *arc_eviction_list;
369 static kmutex_t arc_eviction_mtx;
370 static arc_buf_hdr_t arc_eviction_hdr;
371 static void arc_get_data_buf(arc_buf_t *buf);
372 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
373 
374 #define	GHOST_STATE(state)	\
375 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost)
376 
377 /*
378  * Private ARC flags.  These flags are private ARC only flags that will show up
379  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
380  * be passed in as arc_flags in things like arc_read.  However, these flags
381  * should never be passed and should only be set by ARC code.  When adding new
382  * public flags, make sure not to smash the private ones.
383  */
384 
385 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
386 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
387 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
388 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
389 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
390 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
391 
392 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
393 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
394 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
395 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
396 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
397 
398 /*
399  * Hash table routines
400  */
401 
402 #define	HT_LOCK_PAD	64
403 
404 struct ht_lock {
405 	kmutex_t	ht_lock;
406 #ifdef _KERNEL
407 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
408 #endif
409 };
410 
411 #define	BUF_LOCKS 256
412 typedef struct buf_hash_table {
413 	uint64_t ht_mask;
414 	arc_buf_hdr_t **ht_table;
415 	struct ht_lock ht_locks[BUF_LOCKS];
416 } buf_hash_table_t;
417 
418 static buf_hash_table_t buf_hash_table;
419 
420 #define	BUF_HASH_INDEX(spa, dva, birth) \
421 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
422 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
423 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
424 #define	HDR_LOCK(buf) \
425 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
426 
427 uint64_t zfs_crc64_table[256];
428 
429 static uint64_t
430 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth)
431 {
432 	uintptr_t spav = (uintptr_t)spa;
433 	uint8_t *vdva = (uint8_t *)dva;
434 	uint64_t crc = -1ULL;
435 	int i;
436 
437 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
438 
439 	for (i = 0; i < sizeof (dva_t); i++)
440 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
441 
442 	crc ^= (spav>>8) ^ birth;
443 
444 	return (crc);
445 }
446 
447 #define	BUF_EMPTY(buf)						\
448 	((buf)->b_dva.dva_word[0] == 0 &&			\
449 	(buf)->b_dva.dva_word[1] == 0 &&			\
450 	(buf)->b_birth == 0)
451 
452 #define	BUF_EQUAL(spa, dva, birth, buf)				\
453 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
454 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
455 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
456 
457 static arc_buf_hdr_t *
458 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp)
459 {
460 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
461 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
462 	arc_buf_hdr_t *buf;
463 
464 	mutex_enter(hash_lock);
465 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
466 	    buf = buf->b_hash_next) {
467 		if (BUF_EQUAL(spa, dva, birth, buf)) {
468 			*lockp = hash_lock;
469 			return (buf);
470 		}
471 	}
472 	mutex_exit(hash_lock);
473 	*lockp = NULL;
474 	return (NULL);
475 }
476 
477 /*
478  * Insert an entry into the hash table.  If there is already an element
479  * equal to elem in the hash table, then the already existing element
480  * will be returned and the new element will not be inserted.
481  * Otherwise returns NULL.
482  */
483 static arc_buf_hdr_t *
484 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
485 {
486 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
487 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
488 	arc_buf_hdr_t *fbuf;
489 	uint32_t i;
490 
491 	ASSERT(!HDR_IN_HASH_TABLE(buf));
492 	*lockp = hash_lock;
493 	mutex_enter(hash_lock);
494 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
495 	    fbuf = fbuf->b_hash_next, i++) {
496 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
497 			return (fbuf);
498 	}
499 
500 	buf->b_hash_next = buf_hash_table.ht_table[idx];
501 	buf_hash_table.ht_table[idx] = buf;
502 	buf->b_flags |= ARC_IN_HASH_TABLE;
503 
504 	/* collect some hash table performance data */
505 	if (i > 0) {
506 		ARCSTAT_BUMP(arcstat_hash_collisions);
507 		if (i == 1)
508 			ARCSTAT_BUMP(arcstat_hash_chains);
509 
510 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
511 	}
512 
513 	ARCSTAT_BUMP(arcstat_hash_elements);
514 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
515 
516 	return (NULL);
517 }
518 
519 static void
520 buf_hash_remove(arc_buf_hdr_t *buf)
521 {
522 	arc_buf_hdr_t *fbuf, **bufp;
523 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
524 
525 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
526 	ASSERT(HDR_IN_HASH_TABLE(buf));
527 
528 	bufp = &buf_hash_table.ht_table[idx];
529 	while ((fbuf = *bufp) != buf) {
530 		ASSERT(fbuf != NULL);
531 		bufp = &fbuf->b_hash_next;
532 	}
533 	*bufp = buf->b_hash_next;
534 	buf->b_hash_next = NULL;
535 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
536 
537 	/* collect some hash table performance data */
538 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
539 
540 	if (buf_hash_table.ht_table[idx] &&
541 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
542 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
543 }
544 
545 /*
546  * Global data structures and functions for the buf kmem cache.
547  */
548 static kmem_cache_t *hdr_cache;
549 static kmem_cache_t *buf_cache;
550 
551 static void
552 buf_fini(void)
553 {
554 	int i;
555 
556 	kmem_free(buf_hash_table.ht_table,
557 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
558 	for (i = 0; i < BUF_LOCKS; i++)
559 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
560 	kmem_cache_destroy(hdr_cache);
561 	kmem_cache_destroy(buf_cache);
562 }
563 
564 /*
565  * Constructor callback - called when the cache is empty
566  * and a new buf is requested.
567  */
568 /* ARGSUSED */
569 static int
570 hdr_cons(void *vbuf, void *unused, int kmflag)
571 {
572 	arc_buf_hdr_t *buf = vbuf;
573 
574 	bzero(buf, sizeof (arc_buf_hdr_t));
575 	refcount_create(&buf->b_refcnt);
576 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
577 	return (0);
578 }
579 
580 /*
581  * Destructor callback - called when a cached buf is
582  * no longer required.
583  */
584 /* ARGSUSED */
585 static void
586 hdr_dest(void *vbuf, void *unused)
587 {
588 	arc_buf_hdr_t *buf = vbuf;
589 
590 	refcount_destroy(&buf->b_refcnt);
591 	cv_destroy(&buf->b_cv);
592 }
593 
594 /*
595  * Reclaim callback -- invoked when memory is low.
596  */
597 /* ARGSUSED */
598 static void
599 hdr_recl(void *unused)
600 {
601 	dprintf("hdr_recl called\n");
602 	/*
603 	 * umem calls the reclaim func when we destroy the buf cache,
604 	 * which is after we do arc_fini().
605 	 */
606 	if (!arc_dead)
607 		cv_signal(&arc_reclaim_thr_cv);
608 }
609 
610 static void
611 buf_init(void)
612 {
613 	uint64_t *ct;
614 	uint64_t hsize = 1ULL << 12;
615 	int i, j;
616 
617 	/*
618 	 * The hash table is big enough to fill all of physical memory
619 	 * with an average 64K block size.  The table will take up
620 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
621 	 */
622 	while (hsize * 65536 < physmem * PAGESIZE)
623 		hsize <<= 1;
624 retry:
625 	buf_hash_table.ht_mask = hsize - 1;
626 	buf_hash_table.ht_table =
627 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
628 	if (buf_hash_table.ht_table == NULL) {
629 		ASSERT(hsize > (1ULL << 8));
630 		hsize >>= 1;
631 		goto retry;
632 	}
633 
634 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
635 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
636 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
637 	    0, NULL, NULL, NULL, NULL, NULL, 0);
638 
639 	for (i = 0; i < 256; i++)
640 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
641 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
642 
643 	for (i = 0; i < BUF_LOCKS; i++) {
644 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
645 		    NULL, MUTEX_DEFAULT, NULL);
646 	}
647 }
648 
649 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
650 
651 static void
652 arc_cksum_verify(arc_buf_t *buf)
653 {
654 	zio_cksum_t zc;
655 
656 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
657 		return;
658 
659 	mutex_enter(&buf->b_hdr->b_freeze_lock);
660 	if (buf->b_hdr->b_freeze_cksum == NULL ||
661 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
662 		mutex_exit(&buf->b_hdr->b_freeze_lock);
663 		return;
664 	}
665 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
666 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
667 		panic("buffer modified while frozen!");
668 	mutex_exit(&buf->b_hdr->b_freeze_lock);
669 }
670 
671 static void
672 arc_cksum_compute(arc_buf_t *buf)
673 {
674 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
675 		return;
676 
677 	mutex_enter(&buf->b_hdr->b_freeze_lock);
678 	if (buf->b_hdr->b_freeze_cksum != NULL) {
679 		mutex_exit(&buf->b_hdr->b_freeze_lock);
680 		return;
681 	}
682 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
683 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
684 	    buf->b_hdr->b_freeze_cksum);
685 	mutex_exit(&buf->b_hdr->b_freeze_lock);
686 }
687 
688 void
689 arc_buf_thaw(arc_buf_t *buf)
690 {
691 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
692 		return;
693 
694 	if (buf->b_hdr->b_state != arc_anon)
695 		panic("modifying non-anon buffer!");
696 	if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
697 		panic("modifying buffer while i/o in progress!");
698 	arc_cksum_verify(buf);
699 	mutex_enter(&buf->b_hdr->b_freeze_lock);
700 	if (buf->b_hdr->b_freeze_cksum != NULL) {
701 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
702 		buf->b_hdr->b_freeze_cksum = NULL;
703 	}
704 	mutex_exit(&buf->b_hdr->b_freeze_lock);
705 }
706 
707 void
708 arc_buf_freeze(arc_buf_t *buf)
709 {
710 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
711 		return;
712 
713 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
714 	    buf->b_hdr->b_state == arc_anon);
715 	arc_cksum_compute(buf);
716 }
717 
718 static void
719 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
720 {
721 	ASSERT(MUTEX_HELD(hash_lock));
722 
723 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
724 	    (ab->b_state != arc_anon)) {
725 		uint64_t delta = ab->b_size * ab->b_datacnt;
726 
727 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
728 		mutex_enter(&ab->b_state->arcs_mtx);
729 		ASSERT(list_link_active(&ab->b_arc_node));
730 		list_remove(&ab->b_state->arcs_list, ab);
731 		if (GHOST_STATE(ab->b_state)) {
732 			ASSERT3U(ab->b_datacnt, ==, 0);
733 			ASSERT3P(ab->b_buf, ==, NULL);
734 			delta = ab->b_size;
735 		}
736 		ASSERT(delta > 0);
737 		ASSERT3U(ab->b_state->arcs_lsize, >=, delta);
738 		atomic_add_64(&ab->b_state->arcs_lsize, -delta);
739 		mutex_exit(&ab->b_state->arcs_mtx);
740 		/* remove the prefetch flag is we get a reference */
741 		if (ab->b_flags & ARC_PREFETCH)
742 			ab->b_flags &= ~ARC_PREFETCH;
743 	}
744 }
745 
746 static int
747 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
748 {
749 	int cnt;
750 	arc_state_t *state = ab->b_state;
751 
752 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
753 	ASSERT(!GHOST_STATE(state));
754 
755 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
756 	    (state != arc_anon)) {
757 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
758 		mutex_enter(&state->arcs_mtx);
759 		ASSERT(!list_link_active(&ab->b_arc_node));
760 		list_insert_head(&state->arcs_list, ab);
761 		ASSERT(ab->b_datacnt > 0);
762 		atomic_add_64(&state->arcs_lsize, ab->b_size * ab->b_datacnt);
763 		ASSERT3U(state->arcs_size, >=, state->arcs_lsize);
764 		mutex_exit(&state->arcs_mtx);
765 	}
766 	return (cnt);
767 }
768 
769 /*
770  * Move the supplied buffer to the indicated state.  The mutex
771  * for the buffer must be held by the caller.
772  */
773 static void
774 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
775 {
776 	arc_state_t *old_state = ab->b_state;
777 	int64_t refcnt = refcount_count(&ab->b_refcnt);
778 	uint64_t from_delta, to_delta;
779 
780 	ASSERT(MUTEX_HELD(hash_lock));
781 	ASSERT(new_state != old_state);
782 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
783 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
784 
785 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
786 
787 	/*
788 	 * If this buffer is evictable, transfer it from the
789 	 * old state list to the new state list.
790 	 */
791 	if (refcnt == 0) {
792 		if (old_state != arc_anon) {
793 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
794 
795 			if (use_mutex)
796 				mutex_enter(&old_state->arcs_mtx);
797 
798 			ASSERT(list_link_active(&ab->b_arc_node));
799 			list_remove(&old_state->arcs_list, ab);
800 
801 			/*
802 			 * If prefetching out of the ghost cache,
803 			 * we will have a non-null datacnt.
804 			 */
805 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
806 				/* ghost elements have a ghost size */
807 				ASSERT(ab->b_buf == NULL);
808 				from_delta = ab->b_size;
809 			}
810 			ASSERT3U(old_state->arcs_lsize, >=, from_delta);
811 			atomic_add_64(&old_state->arcs_lsize, -from_delta);
812 
813 			if (use_mutex)
814 				mutex_exit(&old_state->arcs_mtx);
815 		}
816 		if (new_state != arc_anon) {
817 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
818 
819 			if (use_mutex)
820 				mutex_enter(&new_state->arcs_mtx);
821 
822 			list_insert_head(&new_state->arcs_list, ab);
823 
824 			/* ghost elements have a ghost size */
825 			if (GHOST_STATE(new_state)) {
826 				ASSERT(ab->b_datacnt == 0);
827 				ASSERT(ab->b_buf == NULL);
828 				to_delta = ab->b_size;
829 			}
830 			atomic_add_64(&new_state->arcs_lsize, to_delta);
831 			ASSERT3U(new_state->arcs_size + to_delta, >=,
832 			    new_state->arcs_lsize);
833 
834 			if (use_mutex)
835 				mutex_exit(&new_state->arcs_mtx);
836 		}
837 	}
838 
839 	ASSERT(!BUF_EMPTY(ab));
840 	if (new_state == arc_anon && old_state != arc_anon) {
841 		buf_hash_remove(ab);
842 	}
843 
844 	/* adjust state sizes */
845 	if (to_delta)
846 		atomic_add_64(&new_state->arcs_size, to_delta);
847 	if (from_delta) {
848 		ASSERT3U(old_state->arcs_size, >=, from_delta);
849 		atomic_add_64(&old_state->arcs_size, -from_delta);
850 	}
851 	ab->b_state = new_state;
852 }
853 
854 arc_buf_t *
855 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
856 {
857 	arc_buf_hdr_t *hdr;
858 	arc_buf_t *buf;
859 
860 	ASSERT3U(size, >, 0);
861 	hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
862 	ASSERT(BUF_EMPTY(hdr));
863 	hdr->b_size = size;
864 	hdr->b_type = type;
865 	hdr->b_spa = spa;
866 	hdr->b_state = arc_anon;
867 	hdr->b_arc_access = 0;
868 	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
869 	buf->b_hdr = hdr;
870 	buf->b_data = NULL;
871 	buf->b_efunc = NULL;
872 	buf->b_private = NULL;
873 	buf->b_next = NULL;
874 	hdr->b_buf = buf;
875 	arc_get_data_buf(buf);
876 	hdr->b_datacnt = 1;
877 	hdr->b_flags = 0;
878 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
879 	(void) refcount_add(&hdr->b_refcnt, tag);
880 
881 	return (buf);
882 }
883 
884 static arc_buf_t *
885 arc_buf_clone(arc_buf_t *from)
886 {
887 	arc_buf_t *buf;
888 	arc_buf_hdr_t *hdr = from->b_hdr;
889 	uint64_t size = hdr->b_size;
890 
891 	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
892 	buf->b_hdr = hdr;
893 	buf->b_data = NULL;
894 	buf->b_efunc = NULL;
895 	buf->b_private = NULL;
896 	buf->b_next = hdr->b_buf;
897 	hdr->b_buf = buf;
898 	arc_get_data_buf(buf);
899 	bcopy(from->b_data, buf->b_data, size);
900 	hdr->b_datacnt += 1;
901 	return (buf);
902 }
903 
904 void
905 arc_buf_add_ref(arc_buf_t *buf, void* tag)
906 {
907 	arc_buf_hdr_t *hdr;
908 	kmutex_t *hash_lock;
909 
910 	/*
911 	 * Check to see if this buffer is currently being evicted via
912 	 * arc_do_user_evicts().
913 	 */
914 	mutex_enter(&arc_eviction_mtx);
915 	hdr = buf->b_hdr;
916 	if (hdr == NULL) {
917 		mutex_exit(&arc_eviction_mtx);
918 		return;
919 	}
920 	hash_lock = HDR_LOCK(hdr);
921 	mutex_exit(&arc_eviction_mtx);
922 
923 	mutex_enter(hash_lock);
924 	if (buf->b_data == NULL) {
925 		/*
926 		 * This buffer is evicted.
927 		 */
928 		mutex_exit(hash_lock);
929 		return;
930 	}
931 
932 	ASSERT(buf->b_hdr == hdr);
933 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
934 	add_reference(hdr, hash_lock, tag);
935 	arc_access(hdr, hash_lock);
936 	mutex_exit(hash_lock);
937 	ARCSTAT_BUMP(arcstat_hits);
938 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
939 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
940 	    data, metadata, hits);
941 }
942 
943 static void
944 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
945 {
946 	arc_buf_t **bufp;
947 
948 	/* free up data associated with the buf */
949 	if (buf->b_data) {
950 		arc_state_t *state = buf->b_hdr->b_state;
951 		uint64_t size = buf->b_hdr->b_size;
952 		arc_buf_contents_t type = buf->b_hdr->b_type;
953 
954 		arc_cksum_verify(buf);
955 		if (!recycle) {
956 			if (type == ARC_BUFC_METADATA) {
957 				zio_buf_free(buf->b_data, size);
958 			} else {
959 				ASSERT(type == ARC_BUFC_DATA);
960 				zio_data_buf_free(buf->b_data, size);
961 			}
962 			atomic_add_64(&arc_size, -size);
963 		}
964 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
965 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
966 			ASSERT(state != arc_anon);
967 			ASSERT3U(state->arcs_lsize, >=, size);
968 			atomic_add_64(&state->arcs_lsize, -size);
969 		}
970 		ASSERT3U(state->arcs_size, >=, size);
971 		atomic_add_64(&state->arcs_size, -size);
972 		buf->b_data = NULL;
973 		ASSERT(buf->b_hdr->b_datacnt > 0);
974 		buf->b_hdr->b_datacnt -= 1;
975 	}
976 
977 	/* only remove the buf if requested */
978 	if (!all)
979 		return;
980 
981 	/* remove the buf from the hdr list */
982 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
983 		continue;
984 	*bufp = buf->b_next;
985 
986 	ASSERT(buf->b_efunc == NULL);
987 
988 	/* clean up the buf */
989 	buf->b_hdr = NULL;
990 	kmem_cache_free(buf_cache, buf);
991 }
992 
993 static void
994 arc_hdr_destroy(arc_buf_hdr_t *hdr)
995 {
996 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
997 	ASSERT3P(hdr->b_state, ==, arc_anon);
998 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
999 
1000 	if (!BUF_EMPTY(hdr)) {
1001 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1002 		bzero(&hdr->b_dva, sizeof (dva_t));
1003 		hdr->b_birth = 0;
1004 		hdr->b_cksum0 = 0;
1005 	}
1006 	while (hdr->b_buf) {
1007 		arc_buf_t *buf = hdr->b_buf;
1008 
1009 		if (buf->b_efunc) {
1010 			mutex_enter(&arc_eviction_mtx);
1011 			ASSERT(buf->b_hdr != NULL);
1012 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1013 			hdr->b_buf = buf->b_next;
1014 			buf->b_hdr = &arc_eviction_hdr;
1015 			buf->b_next = arc_eviction_list;
1016 			arc_eviction_list = buf;
1017 			mutex_exit(&arc_eviction_mtx);
1018 		} else {
1019 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1020 		}
1021 	}
1022 	if (hdr->b_freeze_cksum != NULL) {
1023 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1024 		hdr->b_freeze_cksum = NULL;
1025 	}
1026 
1027 	ASSERT(!list_link_active(&hdr->b_arc_node));
1028 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1029 	ASSERT3P(hdr->b_acb, ==, NULL);
1030 	kmem_cache_free(hdr_cache, hdr);
1031 }
1032 
1033 void
1034 arc_buf_free(arc_buf_t *buf, void *tag)
1035 {
1036 	arc_buf_hdr_t *hdr = buf->b_hdr;
1037 	int hashed = hdr->b_state != arc_anon;
1038 
1039 	ASSERT(buf->b_efunc == NULL);
1040 	ASSERT(buf->b_data != NULL);
1041 
1042 	if (hashed) {
1043 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1044 
1045 		mutex_enter(hash_lock);
1046 		(void) remove_reference(hdr, hash_lock, tag);
1047 		if (hdr->b_datacnt > 1)
1048 			arc_buf_destroy(buf, FALSE, TRUE);
1049 		else
1050 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1051 		mutex_exit(hash_lock);
1052 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1053 		int destroy_hdr;
1054 		/*
1055 		 * We are in the middle of an async write.  Don't destroy
1056 		 * this buffer unless the write completes before we finish
1057 		 * decrementing the reference count.
1058 		 */
1059 		mutex_enter(&arc_eviction_mtx);
1060 		(void) remove_reference(hdr, NULL, tag);
1061 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1062 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1063 		mutex_exit(&arc_eviction_mtx);
1064 		if (destroy_hdr)
1065 			arc_hdr_destroy(hdr);
1066 	} else {
1067 		if (remove_reference(hdr, NULL, tag) > 0) {
1068 			ASSERT(HDR_IO_ERROR(hdr));
1069 			arc_buf_destroy(buf, FALSE, TRUE);
1070 		} else {
1071 			arc_hdr_destroy(hdr);
1072 		}
1073 	}
1074 }
1075 
1076 int
1077 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1078 {
1079 	arc_buf_hdr_t *hdr = buf->b_hdr;
1080 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1081 	int no_callback = (buf->b_efunc == NULL);
1082 
1083 	if (hdr->b_state == arc_anon) {
1084 		arc_buf_free(buf, tag);
1085 		return (no_callback);
1086 	}
1087 
1088 	mutex_enter(hash_lock);
1089 	ASSERT(hdr->b_state != arc_anon);
1090 	ASSERT(buf->b_data != NULL);
1091 
1092 	(void) remove_reference(hdr, hash_lock, tag);
1093 	if (hdr->b_datacnt > 1) {
1094 		if (no_callback)
1095 			arc_buf_destroy(buf, FALSE, TRUE);
1096 	} else if (no_callback) {
1097 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1098 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1099 	}
1100 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1101 	    refcount_is_zero(&hdr->b_refcnt));
1102 	mutex_exit(hash_lock);
1103 	return (no_callback);
1104 }
1105 
1106 int
1107 arc_buf_size(arc_buf_t *buf)
1108 {
1109 	return (buf->b_hdr->b_size);
1110 }
1111 
1112 /*
1113  * Evict buffers from list until we've removed the specified number of
1114  * bytes.  Move the removed buffers to the appropriate evict state.
1115  * If the recycle flag is set, then attempt to "recycle" a buffer:
1116  * - look for a buffer to evict that is `bytes' long.
1117  * - return the data block from this buffer rather than freeing it.
1118  * This flag is used by callers that are trying to make space for a
1119  * new buffer in a full arc cache.
1120  */
1121 static void *
1122 arc_evict(arc_state_t *state, int64_t bytes, boolean_t recycle,
1123     arc_buf_contents_t type)
1124 {
1125 	arc_state_t *evicted_state;
1126 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1127 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1128 	kmutex_t *hash_lock;
1129 	boolean_t have_lock;
1130 	void *stolen = NULL;
1131 
1132 	ASSERT(state == arc_mru || state == arc_mfu);
1133 
1134 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1135 
1136 	mutex_enter(&state->arcs_mtx);
1137 	mutex_enter(&evicted_state->arcs_mtx);
1138 
1139 	for (ab = list_tail(&state->arcs_list); ab; ab = ab_prev) {
1140 		ab_prev = list_prev(&state->arcs_list, ab);
1141 		/* prefetch buffers have a minimum lifespan */
1142 		if (HDR_IO_IN_PROGRESS(ab) ||
1143 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1144 		    lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1145 			skipped++;
1146 			continue;
1147 		}
1148 		/* "lookahead" for better eviction candidate */
1149 		if (recycle && ab->b_size != bytes &&
1150 		    ab_prev && ab_prev->b_size == bytes)
1151 			continue;
1152 		hash_lock = HDR_LOCK(ab);
1153 		have_lock = MUTEX_HELD(hash_lock);
1154 		if (have_lock || mutex_tryenter(hash_lock)) {
1155 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1156 			ASSERT(ab->b_datacnt > 0);
1157 			while (ab->b_buf) {
1158 				arc_buf_t *buf = ab->b_buf;
1159 				if (buf->b_data) {
1160 					bytes_evicted += ab->b_size;
1161 					if (recycle && ab->b_type == type &&
1162 					    ab->b_size == bytes) {
1163 						stolen = buf->b_data;
1164 						recycle = FALSE;
1165 					}
1166 				}
1167 				if (buf->b_efunc) {
1168 					mutex_enter(&arc_eviction_mtx);
1169 					arc_buf_destroy(buf,
1170 					    buf->b_data == stolen, FALSE);
1171 					ab->b_buf = buf->b_next;
1172 					buf->b_hdr = &arc_eviction_hdr;
1173 					buf->b_next = arc_eviction_list;
1174 					arc_eviction_list = buf;
1175 					mutex_exit(&arc_eviction_mtx);
1176 				} else {
1177 					arc_buf_destroy(buf,
1178 					    buf->b_data == stolen, TRUE);
1179 				}
1180 			}
1181 			ASSERT(ab->b_datacnt == 0);
1182 			arc_change_state(evicted_state, ab, hash_lock);
1183 			ASSERT(HDR_IN_HASH_TABLE(ab));
1184 			ab->b_flags = ARC_IN_HASH_TABLE;
1185 			DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1186 			if (!have_lock)
1187 				mutex_exit(hash_lock);
1188 			if (bytes >= 0 && bytes_evicted >= bytes)
1189 				break;
1190 		} else {
1191 			missed += 1;
1192 		}
1193 	}
1194 
1195 	mutex_exit(&evicted_state->arcs_mtx);
1196 	mutex_exit(&state->arcs_mtx);
1197 
1198 	if (bytes_evicted < bytes)
1199 		dprintf("only evicted %lld bytes from %x",
1200 		    (longlong_t)bytes_evicted, state);
1201 
1202 	if (skipped)
1203 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1204 
1205 	if (missed)
1206 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1207 
1208 	return (stolen);
1209 }
1210 
1211 /*
1212  * Remove buffers from list until we've removed the specified number of
1213  * bytes.  Destroy the buffers that are removed.
1214  */
1215 static void
1216 arc_evict_ghost(arc_state_t *state, int64_t bytes)
1217 {
1218 	arc_buf_hdr_t *ab, *ab_prev;
1219 	kmutex_t *hash_lock;
1220 	uint64_t bytes_deleted = 0;
1221 	uint64_t bufs_skipped = 0;
1222 
1223 	ASSERT(GHOST_STATE(state));
1224 top:
1225 	mutex_enter(&state->arcs_mtx);
1226 	for (ab = list_tail(&state->arcs_list); ab; ab = ab_prev) {
1227 		ab_prev = list_prev(&state->arcs_list, ab);
1228 		hash_lock = HDR_LOCK(ab);
1229 		if (mutex_tryenter(hash_lock)) {
1230 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1231 			ASSERT(ab->b_buf == NULL);
1232 			arc_change_state(arc_anon, ab, hash_lock);
1233 			mutex_exit(hash_lock);
1234 			ARCSTAT_BUMP(arcstat_deleted);
1235 			bytes_deleted += ab->b_size;
1236 			arc_hdr_destroy(ab);
1237 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1238 			if (bytes >= 0 && bytes_deleted >= bytes)
1239 				break;
1240 		} else {
1241 			if (bytes < 0) {
1242 				mutex_exit(&state->arcs_mtx);
1243 				mutex_enter(hash_lock);
1244 				mutex_exit(hash_lock);
1245 				goto top;
1246 			}
1247 			bufs_skipped += 1;
1248 		}
1249 	}
1250 	mutex_exit(&state->arcs_mtx);
1251 
1252 	if (bufs_skipped) {
1253 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1254 		ASSERT(bytes >= 0);
1255 	}
1256 
1257 	if (bytes_deleted < bytes)
1258 		dprintf("only deleted %lld bytes from %p",
1259 		    (longlong_t)bytes_deleted, state);
1260 }
1261 
1262 static void
1263 arc_adjust(void)
1264 {
1265 	int64_t top_sz, mru_over, arc_over, todelete;
1266 
1267 	top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1268 
1269 	if (top_sz > arc_p && arc_mru->arcs_lsize > 0) {
1270 		int64_t toevict = MIN(arc_mru->arcs_lsize, top_sz - arc_p);
1271 		(void) arc_evict(arc_mru, toevict, FALSE, ARC_BUFC_UNDEF);
1272 		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1273 	}
1274 
1275 	mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c;
1276 
1277 	if (mru_over > 0) {
1278 		if (arc_mru_ghost->arcs_lsize > 0) {
1279 			todelete = MIN(arc_mru_ghost->arcs_lsize, mru_over);
1280 			arc_evict_ghost(arc_mru_ghost, todelete);
1281 		}
1282 	}
1283 
1284 	if ((arc_over = arc_size - arc_c) > 0) {
1285 		int64_t tbl_over;
1286 
1287 		if (arc_mfu->arcs_lsize > 0) {
1288 			int64_t toevict = MIN(arc_mfu->arcs_lsize, arc_over);
1289 			(void) arc_evict(arc_mfu, toevict, FALSE,
1290 			    ARC_BUFC_UNDEF);
1291 		}
1292 
1293 		tbl_over = arc_size + arc_mru_ghost->arcs_lsize +
1294 		    arc_mfu_ghost->arcs_lsize - arc_c*2;
1295 
1296 		if (tbl_over > 0 && arc_mfu_ghost->arcs_lsize > 0) {
1297 			todelete = MIN(arc_mfu_ghost->arcs_lsize, tbl_over);
1298 			arc_evict_ghost(arc_mfu_ghost, todelete);
1299 		}
1300 	}
1301 }
1302 
1303 static void
1304 arc_do_user_evicts(void)
1305 {
1306 	mutex_enter(&arc_eviction_mtx);
1307 	while (arc_eviction_list != NULL) {
1308 		arc_buf_t *buf = arc_eviction_list;
1309 		arc_eviction_list = buf->b_next;
1310 		buf->b_hdr = NULL;
1311 		mutex_exit(&arc_eviction_mtx);
1312 
1313 		if (buf->b_efunc != NULL)
1314 			VERIFY(buf->b_efunc(buf) == 0);
1315 
1316 		buf->b_efunc = NULL;
1317 		buf->b_private = NULL;
1318 		kmem_cache_free(buf_cache, buf);
1319 		mutex_enter(&arc_eviction_mtx);
1320 	}
1321 	mutex_exit(&arc_eviction_mtx);
1322 }
1323 
1324 /*
1325  * Flush all *evictable* data from the cache.
1326  * NOTE: this will not touch "active" (i.e. referenced) data.
1327  */
1328 void
1329 arc_flush(void)
1330 {
1331 	while (list_head(&arc_mru->arcs_list))
1332 		(void) arc_evict(arc_mru, -1, FALSE, ARC_BUFC_UNDEF);
1333 	while (list_head(&arc_mfu->arcs_list))
1334 		(void) arc_evict(arc_mfu, -1, FALSE, ARC_BUFC_UNDEF);
1335 
1336 	arc_evict_ghost(arc_mru_ghost, -1);
1337 	arc_evict_ghost(arc_mfu_ghost, -1);
1338 
1339 	mutex_enter(&arc_reclaim_thr_lock);
1340 	arc_do_user_evicts();
1341 	mutex_exit(&arc_reclaim_thr_lock);
1342 	ASSERT(arc_eviction_list == NULL);
1343 }
1344 
1345 int arc_shrink_shift = 5;		/* log2(fraction of arc to reclaim) */
1346 
1347 void
1348 arc_shrink(void)
1349 {
1350 	if (arc_c > arc_c_min) {
1351 		uint64_t to_free;
1352 
1353 #ifdef _KERNEL
1354 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1355 #else
1356 		to_free = arc_c >> arc_shrink_shift;
1357 #endif
1358 		if (arc_c > arc_c_min + to_free)
1359 			atomic_add_64(&arc_c, -to_free);
1360 		else
1361 			arc_c = arc_c_min;
1362 
1363 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1364 		if (arc_c > arc_size)
1365 			arc_c = MAX(arc_size, arc_c_min);
1366 		if (arc_p > arc_c)
1367 			arc_p = (arc_c >> 1);
1368 		ASSERT(arc_c >= arc_c_min);
1369 		ASSERT((int64_t)arc_p >= 0);
1370 	}
1371 
1372 	if (arc_size > arc_c)
1373 		arc_adjust();
1374 }
1375 
1376 static int
1377 arc_reclaim_needed(void)
1378 {
1379 	uint64_t extra;
1380 
1381 #ifdef _KERNEL
1382 
1383 	if (needfree)
1384 		return (1);
1385 
1386 	/*
1387 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1388 	 */
1389 	extra = desfree;
1390 
1391 	/*
1392 	 * check that we're out of range of the pageout scanner.  It starts to
1393 	 * schedule paging if freemem is less than lotsfree and needfree.
1394 	 * lotsfree is the high-water mark for pageout, and needfree is the
1395 	 * number of needed free pages.  We add extra pages here to make sure
1396 	 * the scanner doesn't start up while we're freeing memory.
1397 	 */
1398 	if (freemem < lotsfree + needfree + extra)
1399 		return (1);
1400 
1401 	/*
1402 	 * check to make sure that swapfs has enough space so that anon
1403 	 * reservations can still succeeed. anon_resvmem() checks that the
1404 	 * availrmem is greater than swapfs_minfree, and the number of reserved
1405 	 * swap pages.  We also add a bit of extra here just to prevent
1406 	 * circumstances from getting really dire.
1407 	 */
1408 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1409 		return (1);
1410 
1411 	/*
1412 	 * If zio data pages are being allocated out of a separate heap segment,
1413 	 * then check that the size of available vmem for this area remains
1414 	 * above 1/4th free.  This needs to be done when the size of the
1415 	 * non-default segment is smaller than physical memory, so we could
1416 	 * conceivably run out of VA in that segment before running out of
1417 	 * physical memory.
1418 	 */
1419 	if (zio_arena != NULL) {
1420 		size_t arc_ziosize =
1421 		    btop(vmem_size(zio_arena, VMEM_FREE | VMEM_ALLOC));
1422 
1423 		if ((physmem > arc_ziosize) &&
1424 		    (btop(vmem_size(zio_arena, VMEM_FREE)) < arc_ziosize >> 2))
1425 			return (1);
1426 	}
1427 
1428 #if defined(__i386)
1429 	/*
1430 	 * If we're on an i386 platform, it's possible that we'll exhaust the
1431 	 * kernel heap space before we ever run out of available physical
1432 	 * memory.  Most checks of the size of the heap_area compare against
1433 	 * tune.t_minarmem, which is the minimum available real memory that we
1434 	 * can have in the system.  However, this is generally fixed at 25 pages
1435 	 * which is so low that it's useless.  In this comparison, we seek to
1436 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1437 	 * heap is allocated.  (Or, in the caclulation, if less than 1/4th is
1438 	 * free)
1439 	 */
1440 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1441 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1442 		return (1);
1443 #endif
1444 
1445 #else
1446 	if (spa_get_random(100) == 0)
1447 		return (1);
1448 #endif
1449 	return (0);
1450 }
1451 
1452 static void
1453 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1454 {
1455 	size_t			i;
1456 	kmem_cache_t		*prev_cache = NULL;
1457 	kmem_cache_t		*prev_data_cache = NULL;
1458 	extern kmem_cache_t	*zio_buf_cache[];
1459 	extern kmem_cache_t	*zio_data_buf_cache[];
1460 
1461 #ifdef _KERNEL
1462 	/*
1463 	 * First purge some DNLC entries, in case the DNLC is using
1464 	 * up too much memory.
1465 	 */
1466 	dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1467 
1468 #if defined(__i386)
1469 	/*
1470 	 * Reclaim unused memory from all kmem caches.
1471 	 */
1472 	kmem_reap();
1473 #endif
1474 #endif
1475 
1476 	/*
1477 	 * An agressive reclamation will shrink the cache size as well as
1478 	 * reap free buffers from the arc kmem caches.
1479 	 */
1480 	if (strat == ARC_RECLAIM_AGGR)
1481 		arc_shrink();
1482 
1483 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1484 		if (zio_buf_cache[i] != prev_cache) {
1485 			prev_cache = zio_buf_cache[i];
1486 			kmem_cache_reap_now(zio_buf_cache[i]);
1487 		}
1488 		if (zio_data_buf_cache[i] != prev_data_cache) {
1489 			prev_data_cache = zio_data_buf_cache[i];
1490 			kmem_cache_reap_now(zio_data_buf_cache[i]);
1491 		}
1492 	}
1493 	kmem_cache_reap_now(buf_cache);
1494 	kmem_cache_reap_now(hdr_cache);
1495 }
1496 
1497 static void
1498 arc_reclaim_thread(void)
1499 {
1500 	clock_t			growtime = 0;
1501 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
1502 	callb_cpr_t		cpr;
1503 
1504 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
1505 
1506 	mutex_enter(&arc_reclaim_thr_lock);
1507 	while (arc_thread_exit == 0) {
1508 		if (arc_reclaim_needed()) {
1509 
1510 			if (arc_no_grow) {
1511 				if (last_reclaim == ARC_RECLAIM_CONS) {
1512 					last_reclaim = ARC_RECLAIM_AGGR;
1513 				} else {
1514 					last_reclaim = ARC_RECLAIM_CONS;
1515 				}
1516 			} else {
1517 				arc_no_grow = TRUE;
1518 				last_reclaim = ARC_RECLAIM_AGGR;
1519 				membar_producer();
1520 			}
1521 
1522 			/* reset the growth delay for every reclaim */
1523 			growtime = lbolt + (arc_grow_retry * hz);
1524 			ASSERT(growtime > 0);
1525 
1526 			arc_kmem_reap_now(last_reclaim);
1527 
1528 		} else if ((growtime > 0) && ((growtime - lbolt) <= 0)) {
1529 			arc_no_grow = FALSE;
1530 		}
1531 
1532 		if (2 * arc_c < arc_size +
1533 		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
1534 			arc_adjust();
1535 
1536 		if (arc_eviction_list != NULL)
1537 			arc_do_user_evicts();
1538 
1539 		/* block until needed, or one second, whichever is shorter */
1540 		CALLB_CPR_SAFE_BEGIN(&cpr);
1541 		(void) cv_timedwait(&arc_reclaim_thr_cv,
1542 		    &arc_reclaim_thr_lock, (lbolt + hz));
1543 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
1544 	}
1545 
1546 	arc_thread_exit = 0;
1547 	cv_broadcast(&arc_reclaim_thr_cv);
1548 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
1549 	thread_exit();
1550 }
1551 
1552 /*
1553  * Adapt arc info given the number of bytes we are trying to add and
1554  * the state that we are comming from.  This function is only called
1555  * when we are adding new content to the cache.
1556  */
1557 static void
1558 arc_adapt(int bytes, arc_state_t *state)
1559 {
1560 	int mult;
1561 
1562 	ASSERT(bytes > 0);
1563 	/*
1564 	 * Adapt the target size of the MRU list:
1565 	 *	- if we just hit in the MRU ghost list, then increase
1566 	 *	  the target size of the MRU list.
1567 	 *	- if we just hit in the MFU ghost list, then increase
1568 	 *	  the target size of the MFU list by decreasing the
1569 	 *	  target size of the MRU list.
1570 	 */
1571 	if (state == arc_mru_ghost) {
1572 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
1573 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
1574 
1575 		arc_p = MIN(arc_c, arc_p + bytes * mult);
1576 	} else if (state == arc_mfu_ghost) {
1577 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
1578 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
1579 
1580 		arc_p = MAX(0, (int64_t)arc_p - bytes * mult);
1581 	}
1582 	ASSERT((int64_t)arc_p >= 0);
1583 
1584 	if (arc_reclaim_needed()) {
1585 		cv_signal(&arc_reclaim_thr_cv);
1586 		return;
1587 	}
1588 
1589 	if (arc_no_grow)
1590 		return;
1591 
1592 	if (arc_c >= arc_c_max)
1593 		return;
1594 
1595 	/*
1596 	 * If we're within (2 * maxblocksize) bytes of the target
1597 	 * cache size, increment the target cache size
1598 	 */
1599 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
1600 		atomic_add_64(&arc_c, (int64_t)bytes);
1601 		if (arc_c > arc_c_max)
1602 			arc_c = arc_c_max;
1603 		else if (state == arc_anon)
1604 			atomic_add_64(&arc_p, (int64_t)bytes);
1605 		if (arc_p > arc_c)
1606 			arc_p = arc_c;
1607 	}
1608 	ASSERT((int64_t)arc_p >= 0);
1609 }
1610 
1611 /*
1612  * Check if the cache has reached its limits and eviction is required
1613  * prior to insert.
1614  */
1615 static int
1616 arc_evict_needed()
1617 {
1618 	if (arc_reclaim_needed())
1619 		return (1);
1620 
1621 	return (arc_size > arc_c);
1622 }
1623 
1624 /*
1625  * The buffer, supplied as the first argument, needs a data block.
1626  * So, if we are at cache max, determine which cache should be victimized.
1627  * We have the following cases:
1628  *
1629  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
1630  * In this situation if we're out of space, but the resident size of the MFU is
1631  * under the limit, victimize the MFU cache to satisfy this insertion request.
1632  *
1633  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
1634  * Here, we've used up all of the available space for the MRU, so we need to
1635  * evict from our own cache instead.  Evict from the set of resident MRU
1636  * entries.
1637  *
1638  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
1639  * c minus p represents the MFU space in the cache, since p is the size of the
1640  * cache that is dedicated to the MRU.  In this situation there's still space on
1641  * the MFU side, so the MRU side needs to be victimized.
1642  *
1643  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
1644  * MFU's resident set is consuming more space than it has been allotted.  In
1645  * this situation, we must victimize our own cache, the MFU, for this insertion.
1646  */
1647 static void
1648 arc_get_data_buf(arc_buf_t *buf)
1649 {
1650 	arc_state_t		*state = buf->b_hdr->b_state;
1651 	uint64_t		size = buf->b_hdr->b_size;
1652 	arc_buf_contents_t	type = buf->b_hdr->b_type;
1653 
1654 	arc_adapt(size, state);
1655 
1656 	/*
1657 	 * We have not yet reached cache maximum size,
1658 	 * just allocate a new buffer.
1659 	 */
1660 	if (!arc_evict_needed()) {
1661 		if (type == ARC_BUFC_METADATA) {
1662 			buf->b_data = zio_buf_alloc(size);
1663 		} else {
1664 			ASSERT(type == ARC_BUFC_DATA);
1665 			buf->b_data = zio_data_buf_alloc(size);
1666 		}
1667 		atomic_add_64(&arc_size, size);
1668 		goto out;
1669 	}
1670 
1671 	/*
1672 	 * If we are prefetching from the mfu ghost list, this buffer
1673 	 * will end up on the mru list; so steal space from there.
1674 	 */
1675 	if (state == arc_mfu_ghost)
1676 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
1677 	else if (state == arc_mru_ghost)
1678 		state = arc_mru;
1679 
1680 	if (state == arc_mru || state == arc_anon) {
1681 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
1682 		state = (arc_p > mru_used) ? arc_mfu : arc_mru;
1683 	} else {
1684 		/* MFU cases */
1685 		uint64_t mfu_space = arc_c - arc_p;
1686 		state =  (mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
1687 	}
1688 	if ((buf->b_data = arc_evict(state, size, TRUE, type)) == NULL) {
1689 		if (type == ARC_BUFC_METADATA) {
1690 			buf->b_data = zio_buf_alloc(size);
1691 		} else {
1692 			ASSERT(type == ARC_BUFC_DATA);
1693 			buf->b_data = zio_data_buf_alloc(size);
1694 		}
1695 		atomic_add_64(&arc_size, size);
1696 		ARCSTAT_BUMP(arcstat_recycle_miss);
1697 	}
1698 	ASSERT(buf->b_data != NULL);
1699 out:
1700 	/*
1701 	 * Update the state size.  Note that ghost states have a
1702 	 * "ghost size" and so don't need to be updated.
1703 	 */
1704 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
1705 		arc_buf_hdr_t *hdr = buf->b_hdr;
1706 
1707 		atomic_add_64(&hdr->b_state->arcs_size, size);
1708 		if (list_link_active(&hdr->b_arc_node)) {
1709 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
1710 			atomic_add_64(&hdr->b_state->arcs_lsize, size);
1711 		}
1712 		/*
1713 		 * If we are growing the cache, and we are adding anonymous
1714 		 * data, and we have outgrown arc_p, update arc_p
1715 		 */
1716 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
1717 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
1718 			arc_p = MIN(arc_c, arc_p + size);
1719 	}
1720 }
1721 
1722 /*
1723  * This routine is called whenever a buffer is accessed.
1724  * NOTE: the hash lock is dropped in this function.
1725  */
1726 static void
1727 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
1728 {
1729 	ASSERT(MUTEX_HELD(hash_lock));
1730 
1731 	if (buf->b_state == arc_anon) {
1732 		/*
1733 		 * This buffer is not in the cache, and does not
1734 		 * appear in our "ghost" list.  Add the new buffer
1735 		 * to the MRU state.
1736 		 */
1737 
1738 		ASSERT(buf->b_arc_access == 0);
1739 		buf->b_arc_access = lbolt;
1740 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
1741 		arc_change_state(arc_mru, buf, hash_lock);
1742 
1743 	} else if (buf->b_state == arc_mru) {
1744 		/*
1745 		 * If this buffer is here because of a prefetch, then either:
1746 		 * - clear the flag if this is a "referencing" read
1747 		 *   (any subsequent access will bump this into the MFU state).
1748 		 * or
1749 		 * - move the buffer to the head of the list if this is
1750 		 *   another prefetch (to make it less likely to be evicted).
1751 		 */
1752 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
1753 			if (refcount_count(&buf->b_refcnt) == 0) {
1754 				ASSERT(list_link_active(&buf->b_arc_node));
1755 				mutex_enter(&arc_mru->arcs_mtx);
1756 				list_remove(&arc_mru->arcs_list, buf);
1757 				list_insert_head(&arc_mru->arcs_list, buf);
1758 				mutex_exit(&arc_mru->arcs_mtx);
1759 			} else {
1760 				buf->b_flags &= ~ARC_PREFETCH;
1761 				ARCSTAT_BUMP(arcstat_mru_hits);
1762 			}
1763 			buf->b_arc_access = lbolt;
1764 			return;
1765 		}
1766 
1767 		/*
1768 		 * This buffer has been "accessed" only once so far,
1769 		 * but it is still in the cache. Move it to the MFU
1770 		 * state.
1771 		 */
1772 		if (lbolt > buf->b_arc_access + ARC_MINTIME) {
1773 			/*
1774 			 * More than 125ms have passed since we
1775 			 * instantiated this buffer.  Move it to the
1776 			 * most frequently used state.
1777 			 */
1778 			buf->b_arc_access = lbolt;
1779 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1780 			arc_change_state(arc_mfu, buf, hash_lock);
1781 		}
1782 		ARCSTAT_BUMP(arcstat_mru_hits);
1783 	} else if (buf->b_state == arc_mru_ghost) {
1784 		arc_state_t	*new_state;
1785 		/*
1786 		 * This buffer has been "accessed" recently, but
1787 		 * was evicted from the cache.  Move it to the
1788 		 * MFU state.
1789 		 */
1790 
1791 		if (buf->b_flags & ARC_PREFETCH) {
1792 			new_state = arc_mru;
1793 			if (refcount_count(&buf->b_refcnt) > 0)
1794 				buf->b_flags &= ~ARC_PREFETCH;
1795 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
1796 		} else {
1797 			new_state = arc_mfu;
1798 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1799 		}
1800 
1801 		buf->b_arc_access = lbolt;
1802 		arc_change_state(new_state, buf, hash_lock);
1803 
1804 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
1805 	} else if (buf->b_state == arc_mfu) {
1806 		/*
1807 		 * This buffer has been accessed more than once and is
1808 		 * still in the cache.  Keep it in the MFU state.
1809 		 *
1810 		 * NOTE: an add_reference() that occurred when we did
1811 		 * the arc_read() will have kicked this off the list.
1812 		 * If it was a prefetch, we will explicitly move it to
1813 		 * the head of the list now.
1814 		 */
1815 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
1816 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
1817 			ASSERT(list_link_active(&buf->b_arc_node));
1818 			mutex_enter(&arc_mfu->arcs_mtx);
1819 			list_remove(&arc_mfu->arcs_list, buf);
1820 			list_insert_head(&arc_mfu->arcs_list, buf);
1821 			mutex_exit(&arc_mfu->arcs_mtx);
1822 		}
1823 		ARCSTAT_BUMP(arcstat_mfu_hits);
1824 		buf->b_arc_access = lbolt;
1825 	} else if (buf->b_state == arc_mfu_ghost) {
1826 		arc_state_t	*new_state = arc_mfu;
1827 		/*
1828 		 * This buffer has been accessed more than once but has
1829 		 * been evicted from the cache.  Move it back to the
1830 		 * MFU state.
1831 		 */
1832 
1833 		if (buf->b_flags & ARC_PREFETCH) {
1834 			/*
1835 			 * This is a prefetch access...
1836 			 * move this block back to the MRU state.
1837 			 */
1838 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
1839 			new_state = arc_mru;
1840 		}
1841 
1842 		buf->b_arc_access = lbolt;
1843 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1844 		arc_change_state(new_state, buf, hash_lock);
1845 
1846 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
1847 	} else {
1848 		ASSERT(!"invalid arc state");
1849 	}
1850 }
1851 
1852 /* a generic arc_done_func_t which you can use */
1853 /* ARGSUSED */
1854 void
1855 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
1856 {
1857 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
1858 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
1859 }
1860 
1861 /* a generic arc_done_func_t which you can use */
1862 void
1863 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
1864 {
1865 	arc_buf_t **bufp = arg;
1866 	if (zio && zio->io_error) {
1867 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
1868 		*bufp = NULL;
1869 	} else {
1870 		*bufp = buf;
1871 	}
1872 }
1873 
1874 static void
1875 arc_read_done(zio_t *zio)
1876 {
1877 	arc_buf_hdr_t	*hdr, *found;
1878 	arc_buf_t	*buf;
1879 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
1880 	kmutex_t	*hash_lock;
1881 	arc_callback_t	*callback_list, *acb;
1882 	int		freeable = FALSE;
1883 
1884 	buf = zio->io_private;
1885 	hdr = buf->b_hdr;
1886 
1887 	/*
1888 	 * The hdr was inserted into hash-table and removed from lists
1889 	 * prior to starting I/O.  We should find this header, since
1890 	 * it's in the hash table, and it should be legit since it's
1891 	 * not possible to evict it during the I/O.  The only possible
1892 	 * reason for it not to be found is if we were freed during the
1893 	 * read.
1894 	 */
1895 	found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth,
1896 	    &hash_lock);
1897 
1898 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
1899 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))));
1900 
1901 	/* byteswap if necessary */
1902 	callback_list = hdr->b_acb;
1903 	ASSERT(callback_list != NULL);
1904 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap)
1905 		callback_list->acb_byteswap(buf->b_data, hdr->b_size);
1906 
1907 	arc_cksum_compute(buf);
1908 
1909 	/* create copies of the data buffer for the callers */
1910 	abuf = buf;
1911 	for (acb = callback_list; acb; acb = acb->acb_next) {
1912 		if (acb->acb_done) {
1913 			if (abuf == NULL)
1914 				abuf = arc_buf_clone(buf);
1915 			acb->acb_buf = abuf;
1916 			abuf = NULL;
1917 		}
1918 	}
1919 	hdr->b_acb = NULL;
1920 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
1921 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
1922 	if (abuf == buf)
1923 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1924 
1925 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
1926 
1927 	if (zio->io_error != 0) {
1928 		hdr->b_flags |= ARC_IO_ERROR;
1929 		if (hdr->b_state != arc_anon)
1930 			arc_change_state(arc_anon, hdr, hash_lock);
1931 		if (HDR_IN_HASH_TABLE(hdr))
1932 			buf_hash_remove(hdr);
1933 		freeable = refcount_is_zero(&hdr->b_refcnt);
1934 		/* convert checksum errors into IO errors */
1935 		if (zio->io_error == ECKSUM)
1936 			zio->io_error = EIO;
1937 	}
1938 
1939 	/*
1940 	 * Broadcast before we drop the hash_lock to avoid the possibility
1941 	 * that the hdr (and hence the cv) might be freed before we get to
1942 	 * the cv_broadcast().
1943 	 */
1944 	cv_broadcast(&hdr->b_cv);
1945 
1946 	if (hash_lock) {
1947 		/*
1948 		 * Only call arc_access on anonymous buffers.  This is because
1949 		 * if we've issued an I/O for an evicted buffer, we've already
1950 		 * called arc_access (to prevent any simultaneous readers from
1951 		 * getting confused).
1952 		 */
1953 		if (zio->io_error == 0 && hdr->b_state == arc_anon)
1954 			arc_access(hdr, hash_lock);
1955 		mutex_exit(hash_lock);
1956 	} else {
1957 		/*
1958 		 * This block was freed while we waited for the read to
1959 		 * complete.  It has been removed from the hash table and
1960 		 * moved to the anonymous state (so that it won't show up
1961 		 * in the cache).
1962 		 */
1963 		ASSERT3P(hdr->b_state, ==, arc_anon);
1964 		freeable = refcount_is_zero(&hdr->b_refcnt);
1965 	}
1966 
1967 	/* execute each callback and free its structure */
1968 	while ((acb = callback_list) != NULL) {
1969 		if (acb->acb_done)
1970 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
1971 
1972 		if (acb->acb_zio_dummy != NULL) {
1973 			acb->acb_zio_dummy->io_error = zio->io_error;
1974 			zio_nowait(acb->acb_zio_dummy);
1975 		}
1976 
1977 		callback_list = acb->acb_next;
1978 		kmem_free(acb, sizeof (arc_callback_t));
1979 	}
1980 
1981 	if (freeable)
1982 		arc_hdr_destroy(hdr);
1983 }
1984 
1985 /*
1986  * "Read" the block block at the specified DVA (in bp) via the
1987  * cache.  If the block is found in the cache, invoke the provided
1988  * callback immediately and return.  Note that the `zio' parameter
1989  * in the callback will be NULL in this case, since no IO was
1990  * required.  If the block is not in the cache pass the read request
1991  * on to the spa with a substitute callback function, so that the
1992  * requested block will be added to the cache.
1993  *
1994  * If a read request arrives for a block that has a read in-progress,
1995  * either wait for the in-progress read to complete (and return the
1996  * results); or, if this is a read with a "done" func, add a record
1997  * to the read to invoke the "done" func when the read completes,
1998  * and return; or just return.
1999  *
2000  * arc_read_done() will invoke all the requested "done" functions
2001  * for readers of this block.
2002  */
2003 int
2004 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap,
2005     arc_done_func_t *done, void *private, int priority, int flags,
2006     uint32_t *arc_flags, zbookmark_t *zb)
2007 {
2008 	arc_buf_hdr_t *hdr;
2009 	arc_buf_t *buf;
2010 	kmutex_t *hash_lock;
2011 	zio_t	*rzio;
2012 
2013 top:
2014 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2015 	if (hdr && hdr->b_datacnt > 0) {
2016 
2017 		*arc_flags |= ARC_CACHED;
2018 
2019 		if (HDR_IO_IN_PROGRESS(hdr)) {
2020 
2021 			if (*arc_flags & ARC_WAIT) {
2022 				cv_wait(&hdr->b_cv, hash_lock);
2023 				mutex_exit(hash_lock);
2024 				goto top;
2025 			}
2026 			ASSERT(*arc_flags & ARC_NOWAIT);
2027 
2028 			if (done) {
2029 				arc_callback_t	*acb = NULL;
2030 
2031 				acb = kmem_zalloc(sizeof (arc_callback_t),
2032 				    KM_SLEEP);
2033 				acb->acb_done = done;
2034 				acb->acb_private = private;
2035 				acb->acb_byteswap = swap;
2036 				if (pio != NULL)
2037 					acb->acb_zio_dummy = zio_null(pio,
2038 					    spa, NULL, NULL, flags);
2039 
2040 				ASSERT(acb->acb_done != NULL);
2041 				acb->acb_next = hdr->b_acb;
2042 				hdr->b_acb = acb;
2043 				add_reference(hdr, hash_lock, private);
2044 				mutex_exit(hash_lock);
2045 				return (0);
2046 			}
2047 			mutex_exit(hash_lock);
2048 			return (0);
2049 		}
2050 
2051 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2052 
2053 		if (done) {
2054 			add_reference(hdr, hash_lock, private);
2055 			/*
2056 			 * If this block is already in use, create a new
2057 			 * copy of the data so that we will be guaranteed
2058 			 * that arc_release() will always succeed.
2059 			 */
2060 			buf = hdr->b_buf;
2061 			ASSERT(buf);
2062 			ASSERT(buf->b_data);
2063 			if (HDR_BUF_AVAILABLE(hdr)) {
2064 				ASSERT(buf->b_efunc == NULL);
2065 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2066 			} else {
2067 				buf = arc_buf_clone(buf);
2068 			}
2069 		} else if (*arc_flags & ARC_PREFETCH &&
2070 		    refcount_count(&hdr->b_refcnt) == 0) {
2071 			hdr->b_flags |= ARC_PREFETCH;
2072 		}
2073 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2074 		arc_access(hdr, hash_lock);
2075 		mutex_exit(hash_lock);
2076 		ARCSTAT_BUMP(arcstat_hits);
2077 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2078 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2079 		    data, metadata, hits);
2080 
2081 		if (done)
2082 			done(NULL, buf, private);
2083 	} else {
2084 		uint64_t size = BP_GET_LSIZE(bp);
2085 		arc_callback_t	*acb;
2086 
2087 		if (hdr == NULL) {
2088 			/* this block is not in the cache */
2089 			arc_buf_hdr_t	*exists;
2090 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2091 			buf = arc_buf_alloc(spa, size, private, type);
2092 			hdr = buf->b_hdr;
2093 			hdr->b_dva = *BP_IDENTITY(bp);
2094 			hdr->b_birth = bp->blk_birth;
2095 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2096 			exists = buf_hash_insert(hdr, &hash_lock);
2097 			if (exists) {
2098 				/* somebody beat us to the hash insert */
2099 				mutex_exit(hash_lock);
2100 				bzero(&hdr->b_dva, sizeof (dva_t));
2101 				hdr->b_birth = 0;
2102 				hdr->b_cksum0 = 0;
2103 				(void) arc_buf_remove_ref(buf, private);
2104 				goto top; /* restart the IO request */
2105 			}
2106 			/* if this is a prefetch, we don't have a reference */
2107 			if (*arc_flags & ARC_PREFETCH) {
2108 				(void) remove_reference(hdr, hash_lock,
2109 				    private);
2110 				hdr->b_flags |= ARC_PREFETCH;
2111 			}
2112 			if (BP_GET_LEVEL(bp) > 0)
2113 				hdr->b_flags |= ARC_INDIRECT;
2114 		} else {
2115 			/* this block is in the ghost cache */
2116 			ASSERT(GHOST_STATE(hdr->b_state));
2117 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2118 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2119 			ASSERT(hdr->b_buf == NULL);
2120 
2121 			/* if this is a prefetch, we don't have a reference */
2122 			if (*arc_flags & ARC_PREFETCH)
2123 				hdr->b_flags |= ARC_PREFETCH;
2124 			else
2125 				add_reference(hdr, hash_lock, private);
2126 			buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
2127 			buf->b_hdr = hdr;
2128 			buf->b_data = NULL;
2129 			buf->b_efunc = NULL;
2130 			buf->b_private = NULL;
2131 			buf->b_next = NULL;
2132 			hdr->b_buf = buf;
2133 			arc_get_data_buf(buf);
2134 			ASSERT(hdr->b_datacnt == 0);
2135 			hdr->b_datacnt = 1;
2136 
2137 		}
2138 
2139 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2140 		acb->acb_done = done;
2141 		acb->acb_private = private;
2142 		acb->acb_byteswap = swap;
2143 
2144 		ASSERT(hdr->b_acb == NULL);
2145 		hdr->b_acb = acb;
2146 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2147 
2148 		/*
2149 		 * If the buffer has been evicted, migrate it to a present state
2150 		 * before issuing the I/O.  Once we drop the hash-table lock,
2151 		 * the header will be marked as I/O in progress and have an
2152 		 * attached buffer.  At this point, anybody who finds this
2153 		 * buffer ought to notice that it's legit but has a pending I/O.
2154 		 */
2155 
2156 		if (GHOST_STATE(hdr->b_state))
2157 			arc_access(hdr, hash_lock);
2158 		mutex_exit(hash_lock);
2159 
2160 		ASSERT3U(hdr->b_size, ==, size);
2161 		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
2162 		    zbookmark_t *, zb);
2163 		ARCSTAT_BUMP(arcstat_misses);
2164 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2165 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2166 		    data, metadata, misses);
2167 
2168 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2169 		    arc_read_done, buf, priority, flags, zb);
2170 
2171 		if (*arc_flags & ARC_WAIT)
2172 			return (zio_wait(rzio));
2173 
2174 		ASSERT(*arc_flags & ARC_NOWAIT);
2175 		zio_nowait(rzio);
2176 	}
2177 	return (0);
2178 }
2179 
2180 /*
2181  * arc_read() variant to support pool traversal.  If the block is already
2182  * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
2183  * The idea is that we don't want pool traversal filling up memory, but
2184  * if the ARC already has the data anyway, we shouldn't pay for the I/O.
2185  */
2186 int
2187 arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
2188 {
2189 	arc_buf_hdr_t *hdr;
2190 	kmutex_t *hash_mtx;
2191 	int rc = 0;
2192 
2193 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
2194 
2195 	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
2196 		arc_buf_t *buf = hdr->b_buf;
2197 
2198 		ASSERT(buf);
2199 		while (buf->b_data == NULL) {
2200 			buf = buf->b_next;
2201 			ASSERT(buf);
2202 		}
2203 		bcopy(buf->b_data, data, hdr->b_size);
2204 	} else {
2205 		rc = ENOENT;
2206 	}
2207 
2208 	if (hash_mtx)
2209 		mutex_exit(hash_mtx);
2210 
2211 	return (rc);
2212 }
2213 
2214 void
2215 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2216 {
2217 	ASSERT(buf->b_hdr != NULL);
2218 	ASSERT(buf->b_hdr->b_state != arc_anon);
2219 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2220 	buf->b_efunc = func;
2221 	buf->b_private = private;
2222 }
2223 
2224 /*
2225  * This is used by the DMU to let the ARC know that a buffer is
2226  * being evicted, so the ARC should clean up.  If this arc buf
2227  * is not yet in the evicted state, it will be put there.
2228  */
2229 int
2230 arc_buf_evict(arc_buf_t *buf)
2231 {
2232 	arc_buf_hdr_t *hdr;
2233 	kmutex_t *hash_lock;
2234 	arc_buf_t **bufp;
2235 
2236 	mutex_enter(&arc_eviction_mtx);
2237 	hdr = buf->b_hdr;
2238 	if (hdr == NULL) {
2239 		/*
2240 		 * We are in arc_do_user_evicts().
2241 		 */
2242 		ASSERT(buf->b_data == NULL);
2243 		mutex_exit(&arc_eviction_mtx);
2244 		return (0);
2245 	}
2246 	hash_lock = HDR_LOCK(hdr);
2247 	mutex_exit(&arc_eviction_mtx);
2248 
2249 	mutex_enter(hash_lock);
2250 
2251 	if (buf->b_data == NULL) {
2252 		/*
2253 		 * We are on the eviction list.
2254 		 */
2255 		mutex_exit(hash_lock);
2256 		mutex_enter(&arc_eviction_mtx);
2257 		if (buf->b_hdr == NULL) {
2258 			/*
2259 			 * We are already in arc_do_user_evicts().
2260 			 */
2261 			mutex_exit(&arc_eviction_mtx);
2262 			return (0);
2263 		} else {
2264 			arc_buf_t copy = *buf; /* structure assignment */
2265 			/*
2266 			 * Process this buffer now
2267 			 * but let arc_do_user_evicts() do the reaping.
2268 			 */
2269 			buf->b_efunc = NULL;
2270 			mutex_exit(&arc_eviction_mtx);
2271 			VERIFY(copy.b_efunc(&copy) == 0);
2272 			return (1);
2273 		}
2274 	}
2275 
2276 	ASSERT(buf->b_hdr == hdr);
2277 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2278 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2279 
2280 	/*
2281 	 * Pull this buffer off of the hdr
2282 	 */
2283 	bufp = &hdr->b_buf;
2284 	while (*bufp != buf)
2285 		bufp = &(*bufp)->b_next;
2286 	*bufp = buf->b_next;
2287 
2288 	ASSERT(buf->b_data != NULL);
2289 	arc_buf_destroy(buf, FALSE, FALSE);
2290 
2291 	if (hdr->b_datacnt == 0) {
2292 		arc_state_t *old_state = hdr->b_state;
2293 		arc_state_t *evicted_state;
2294 
2295 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2296 
2297 		evicted_state =
2298 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2299 
2300 		mutex_enter(&old_state->arcs_mtx);
2301 		mutex_enter(&evicted_state->arcs_mtx);
2302 
2303 		arc_change_state(evicted_state, hdr, hash_lock);
2304 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2305 		hdr->b_flags = ARC_IN_HASH_TABLE;
2306 
2307 		mutex_exit(&evicted_state->arcs_mtx);
2308 		mutex_exit(&old_state->arcs_mtx);
2309 	}
2310 	mutex_exit(hash_lock);
2311 
2312 	VERIFY(buf->b_efunc(buf) == 0);
2313 	buf->b_efunc = NULL;
2314 	buf->b_private = NULL;
2315 	buf->b_hdr = NULL;
2316 	kmem_cache_free(buf_cache, buf);
2317 	return (1);
2318 }
2319 
2320 /*
2321  * Release this buffer from the cache.  This must be done
2322  * after a read and prior to modifying the buffer contents.
2323  * If the buffer has more than one reference, we must make
2324  * make a new hdr for the buffer.
2325  */
2326 void
2327 arc_release(arc_buf_t *buf, void *tag)
2328 {
2329 	arc_buf_hdr_t *hdr = buf->b_hdr;
2330 	kmutex_t *hash_lock = HDR_LOCK(hdr);
2331 
2332 	/* this buffer is not on any list */
2333 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2334 
2335 	if (hdr->b_state == arc_anon) {
2336 		/* this buffer is already released */
2337 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2338 		ASSERT(BUF_EMPTY(hdr));
2339 		ASSERT(buf->b_efunc == NULL);
2340 		arc_buf_thaw(buf);
2341 		return;
2342 	}
2343 
2344 	mutex_enter(hash_lock);
2345 
2346 	/*
2347 	 * Do we have more than one buf?
2348 	 */
2349 	if (hdr->b_buf != buf || buf->b_next != NULL) {
2350 		arc_buf_hdr_t *nhdr;
2351 		arc_buf_t **bufp;
2352 		uint64_t blksz = hdr->b_size;
2353 		spa_t *spa = hdr->b_spa;
2354 		arc_buf_contents_t type = hdr->b_type;
2355 
2356 		ASSERT(hdr->b_datacnt > 1);
2357 		/*
2358 		 * Pull the data off of this buf and attach it to
2359 		 * a new anonymous buf.
2360 		 */
2361 		(void) remove_reference(hdr, hash_lock, tag);
2362 		bufp = &hdr->b_buf;
2363 		while (*bufp != buf)
2364 			bufp = &(*bufp)->b_next;
2365 		*bufp = (*bufp)->b_next;
2366 		buf->b_next = NULL;
2367 
2368 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
2369 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
2370 		if (refcount_is_zero(&hdr->b_refcnt)) {
2371 			ASSERT3U(hdr->b_state->arcs_lsize, >=, hdr->b_size);
2372 			atomic_add_64(&hdr->b_state->arcs_lsize, -hdr->b_size);
2373 		}
2374 		hdr->b_datacnt -= 1;
2375 		arc_cksum_verify(buf);
2376 
2377 		mutex_exit(hash_lock);
2378 
2379 		nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
2380 		nhdr->b_size = blksz;
2381 		nhdr->b_spa = spa;
2382 		nhdr->b_type = type;
2383 		nhdr->b_buf = buf;
2384 		nhdr->b_state = arc_anon;
2385 		nhdr->b_arc_access = 0;
2386 		nhdr->b_flags = 0;
2387 		nhdr->b_datacnt = 1;
2388 		nhdr->b_freeze_cksum = NULL;
2389 		(void) refcount_add(&nhdr->b_refcnt, tag);
2390 		buf->b_hdr = nhdr;
2391 		atomic_add_64(&arc_anon->arcs_size, blksz);
2392 
2393 		hdr = nhdr;
2394 	} else {
2395 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
2396 		ASSERT(!list_link_active(&hdr->b_arc_node));
2397 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2398 		arc_change_state(arc_anon, hdr, hash_lock);
2399 		hdr->b_arc_access = 0;
2400 		mutex_exit(hash_lock);
2401 		bzero(&hdr->b_dva, sizeof (dva_t));
2402 		hdr->b_birth = 0;
2403 		hdr->b_cksum0 = 0;
2404 		arc_buf_thaw(buf);
2405 	}
2406 	buf->b_efunc = NULL;
2407 	buf->b_private = NULL;
2408 }
2409 
2410 int
2411 arc_released(arc_buf_t *buf)
2412 {
2413 	return (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
2414 }
2415 
2416 int
2417 arc_has_callback(arc_buf_t *buf)
2418 {
2419 	return (buf->b_efunc != NULL);
2420 }
2421 
2422 #ifdef ZFS_DEBUG
2423 int
2424 arc_referenced(arc_buf_t *buf)
2425 {
2426 	return (refcount_count(&buf->b_hdr->b_refcnt));
2427 }
2428 #endif
2429 
2430 static void
2431 arc_write_ready(zio_t *zio)
2432 {
2433 	arc_write_callback_t *callback = zio->io_private;
2434 	arc_buf_t *buf = callback->awcb_buf;
2435 
2436 	if (callback->awcb_ready) {
2437 		ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
2438 		callback->awcb_ready(zio, buf, callback->awcb_private);
2439 	}
2440 	arc_cksum_compute(buf);
2441 }
2442 
2443 static void
2444 arc_write_done(zio_t *zio)
2445 {
2446 	arc_write_callback_t *callback = zio->io_private;
2447 	arc_buf_t *buf = callback->awcb_buf;
2448 	arc_buf_hdr_t *hdr = buf->b_hdr;
2449 
2450 	hdr->b_acb = NULL;
2451 
2452 	/* this buffer is on no lists and is not in the hash table */
2453 	ASSERT3P(hdr->b_state, ==, arc_anon);
2454 
2455 	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
2456 	hdr->b_birth = zio->io_bp->blk_birth;
2457 	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
2458 	/*
2459 	 * If the block to be written was all-zero, we may have
2460 	 * compressed it away.  In this case no write was performed
2461 	 * so there will be no dva/birth-date/checksum.  The buffer
2462 	 * must therefor remain anonymous (and uncached).
2463 	 */
2464 	if (!BUF_EMPTY(hdr)) {
2465 		arc_buf_hdr_t *exists;
2466 		kmutex_t *hash_lock;
2467 
2468 		arc_cksum_verify(buf);
2469 
2470 		exists = buf_hash_insert(hdr, &hash_lock);
2471 		if (exists) {
2472 			/*
2473 			 * This can only happen if we overwrite for
2474 			 * sync-to-convergence, because we remove
2475 			 * buffers from the hash table when we arc_free().
2476 			 */
2477 			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
2478 			    BP_IDENTITY(zio->io_bp)));
2479 			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
2480 			    zio->io_bp->blk_birth);
2481 
2482 			ASSERT(refcount_is_zero(&exists->b_refcnt));
2483 			arc_change_state(arc_anon, exists, hash_lock);
2484 			mutex_exit(hash_lock);
2485 			arc_hdr_destroy(exists);
2486 			exists = buf_hash_insert(hdr, &hash_lock);
2487 			ASSERT3P(exists, ==, NULL);
2488 		}
2489 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2490 		arc_access(hdr, hash_lock);
2491 		mutex_exit(hash_lock);
2492 	} else if (callback->awcb_done == NULL) {
2493 		int destroy_hdr;
2494 		/*
2495 		 * This is an anonymous buffer with no user callback,
2496 		 * destroy it if there are no active references.
2497 		 */
2498 		mutex_enter(&arc_eviction_mtx);
2499 		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
2500 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2501 		mutex_exit(&arc_eviction_mtx);
2502 		if (destroy_hdr)
2503 			arc_hdr_destroy(hdr);
2504 	} else {
2505 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2506 	}
2507 
2508 	if (callback->awcb_done) {
2509 		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
2510 		callback->awcb_done(zio, buf, callback->awcb_private);
2511 	}
2512 
2513 	kmem_free(callback, sizeof (arc_write_callback_t));
2514 }
2515 
2516 zio_t *
2517 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies,
2518     uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
2519     arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority,
2520     int flags, zbookmark_t *zb)
2521 {
2522 	arc_buf_hdr_t *hdr = buf->b_hdr;
2523 	arc_write_callback_t *callback;
2524 	zio_t	*zio;
2525 
2526 	/* this is a private buffer - no locking required */
2527 	ASSERT3P(hdr->b_state, ==, arc_anon);
2528 	ASSERT(BUF_EMPTY(hdr));
2529 	ASSERT(!HDR_IO_ERROR(hdr));
2530 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
2531 	ASSERT(hdr->b_acb == 0);
2532 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
2533 	callback->awcb_ready = ready;
2534 	callback->awcb_done = done;
2535 	callback->awcb_private = private;
2536 	callback->awcb_buf = buf;
2537 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
2538 	zio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp,
2539 	    buf->b_data, hdr->b_size, arc_write_ready, arc_write_done, callback,
2540 	    priority, flags, zb);
2541 
2542 	return (zio);
2543 }
2544 
2545 int
2546 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
2547     zio_done_func_t *done, void *private, uint32_t arc_flags)
2548 {
2549 	arc_buf_hdr_t *ab;
2550 	kmutex_t *hash_lock;
2551 	zio_t	*zio;
2552 
2553 	/*
2554 	 * If this buffer is in the cache, release it, so it
2555 	 * can be re-used.
2556 	 */
2557 	ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2558 	if (ab != NULL) {
2559 		/*
2560 		 * The checksum of blocks to free is not always
2561 		 * preserved (eg. on the deadlist).  However, if it is
2562 		 * nonzero, it should match what we have in the cache.
2563 		 */
2564 		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
2565 		    ab->b_cksum0 == bp->blk_cksum.zc_word[0]);
2566 		if (ab->b_state != arc_anon)
2567 			arc_change_state(arc_anon, ab, hash_lock);
2568 		if (HDR_IO_IN_PROGRESS(ab)) {
2569 			/*
2570 			 * This should only happen when we prefetch.
2571 			 */
2572 			ASSERT(ab->b_flags & ARC_PREFETCH);
2573 			ASSERT3U(ab->b_datacnt, ==, 1);
2574 			ab->b_flags |= ARC_FREED_IN_READ;
2575 			if (HDR_IN_HASH_TABLE(ab))
2576 				buf_hash_remove(ab);
2577 			ab->b_arc_access = 0;
2578 			bzero(&ab->b_dva, sizeof (dva_t));
2579 			ab->b_birth = 0;
2580 			ab->b_cksum0 = 0;
2581 			ab->b_buf->b_efunc = NULL;
2582 			ab->b_buf->b_private = NULL;
2583 			mutex_exit(hash_lock);
2584 		} else if (refcount_is_zero(&ab->b_refcnt)) {
2585 			mutex_exit(hash_lock);
2586 			arc_hdr_destroy(ab);
2587 			ARCSTAT_BUMP(arcstat_deleted);
2588 		} else {
2589 			/*
2590 			 * We still have an active reference on this
2591 			 * buffer.  This can happen, e.g., from
2592 			 * dbuf_unoverride().
2593 			 */
2594 			ASSERT(!HDR_IN_HASH_TABLE(ab));
2595 			ab->b_arc_access = 0;
2596 			bzero(&ab->b_dva, sizeof (dva_t));
2597 			ab->b_birth = 0;
2598 			ab->b_cksum0 = 0;
2599 			ab->b_buf->b_efunc = NULL;
2600 			ab->b_buf->b_private = NULL;
2601 			mutex_exit(hash_lock);
2602 		}
2603 	}
2604 
2605 	zio = zio_free(pio, spa, txg, bp, done, private);
2606 
2607 	if (arc_flags & ARC_WAIT)
2608 		return (zio_wait(zio));
2609 
2610 	ASSERT(arc_flags & ARC_NOWAIT);
2611 	zio_nowait(zio);
2612 
2613 	return (0);
2614 }
2615 
2616 void
2617 arc_tempreserve_clear(uint64_t tempreserve)
2618 {
2619 	atomic_add_64(&arc_tempreserve, -tempreserve);
2620 	ASSERT((int64_t)arc_tempreserve >= 0);
2621 }
2622 
2623 int
2624 arc_tempreserve_space(uint64_t tempreserve)
2625 {
2626 #ifdef ZFS_DEBUG
2627 	/*
2628 	 * Once in a while, fail for no reason.  Everything should cope.
2629 	 */
2630 	if (spa_get_random(10000) == 0) {
2631 		dprintf("forcing random failure\n");
2632 		return (ERESTART);
2633 	}
2634 #endif
2635 	if (tempreserve > arc_c/4 && !arc_no_grow)
2636 		arc_c = MIN(arc_c_max, tempreserve * 4);
2637 	if (tempreserve > arc_c)
2638 		return (ENOMEM);
2639 
2640 	/*
2641 	 * Throttle writes when the amount of dirty data in the cache
2642 	 * gets too large.  We try to keep the cache less than half full
2643 	 * of dirty blocks so that our sync times don't grow too large.
2644 	 * Note: if two requests come in concurrently, we might let them
2645 	 * both succeed, when one of them should fail.  Not a huge deal.
2646 	 *
2647 	 * XXX The limit should be adjusted dynamically to keep the time
2648 	 * to sync a dataset fixed (around 1-5 seconds?).
2649 	 */
2650 
2651 	if (tempreserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 &&
2652 	    arc_tempreserve + arc_anon->arcs_size > arc_c / 4) {
2653 		dprintf("failing, arc_tempreserve=%lluK anon=%lluK "
2654 		    "tempreserve=%lluK arc_c=%lluK\n",
2655 		    arc_tempreserve>>10, arc_anon->arcs_lsize>>10,
2656 		    tempreserve>>10, arc_c>>10);
2657 		return (ERESTART);
2658 	}
2659 	atomic_add_64(&arc_tempreserve, tempreserve);
2660 	return (0);
2661 }
2662 
2663 void
2664 arc_init(void)
2665 {
2666 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
2667 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
2668 
2669 	/* Convert seconds to clock ticks */
2670 	arc_min_prefetch_lifespan = 1 * hz;
2671 
2672 	/* Start out with 1/8 of all memory */
2673 	arc_c = physmem * PAGESIZE / 8;
2674 
2675 #ifdef _KERNEL
2676 	/*
2677 	 * On architectures where the physical memory can be larger
2678 	 * than the addressable space (intel in 32-bit mode), we may
2679 	 * need to limit the cache to 1/8 of VM size.
2680 	 */
2681 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
2682 #endif
2683 
2684 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
2685 	arc_c_min = MAX(arc_c / 4, 64<<20);
2686 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
2687 	if (arc_c * 8 >= 1<<30)
2688 		arc_c_max = (arc_c * 8) - (1<<30);
2689 	else
2690 		arc_c_max = arc_c_min;
2691 	arc_c_max = MAX(arc_c * 6, arc_c_max);
2692 
2693 	/*
2694 	 * Allow the tunables to override our calculations if they are
2695 	 * reasonable (ie. over 64MB)
2696 	 */
2697 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
2698 		arc_c_max = zfs_arc_max;
2699 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
2700 		arc_c_min = zfs_arc_min;
2701 
2702 	arc_c = arc_c_max;
2703 	arc_p = (arc_c >> 1);
2704 
2705 	/* if kmem_flags are set, lets try to use less memory */
2706 	if (kmem_debugging())
2707 		arc_c = arc_c / 2;
2708 	if (arc_c < arc_c_min)
2709 		arc_c = arc_c_min;
2710 
2711 	arc_anon = &ARC_anon;
2712 	arc_mru = &ARC_mru;
2713 	arc_mru_ghost = &ARC_mru_ghost;
2714 	arc_mfu = &ARC_mfu;
2715 	arc_mfu_ghost = &ARC_mfu_ghost;
2716 	arc_size = 0;
2717 
2718 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2719 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2720 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2721 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2722 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2723 
2724 	list_create(&arc_mru->arcs_list, sizeof (arc_buf_hdr_t),
2725 	    offsetof(arc_buf_hdr_t, b_arc_node));
2726 	list_create(&arc_mru_ghost->arcs_list, sizeof (arc_buf_hdr_t),
2727 	    offsetof(arc_buf_hdr_t, b_arc_node));
2728 	list_create(&arc_mfu->arcs_list, sizeof (arc_buf_hdr_t),
2729 	    offsetof(arc_buf_hdr_t, b_arc_node));
2730 	list_create(&arc_mfu_ghost->arcs_list, sizeof (arc_buf_hdr_t),
2731 	    offsetof(arc_buf_hdr_t, b_arc_node));
2732 
2733 	buf_init();
2734 
2735 	arc_thread_exit = 0;
2736 	arc_eviction_list = NULL;
2737 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
2738 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
2739 
2740 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
2741 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
2742 
2743 	if (arc_ksp != NULL) {
2744 		arc_ksp->ks_data = &arc_stats;
2745 		kstat_install(arc_ksp);
2746 	}
2747 
2748 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
2749 	    TS_RUN, minclsyspri);
2750 
2751 	arc_dead = FALSE;
2752 }
2753 
2754 void
2755 arc_fini(void)
2756 {
2757 	mutex_enter(&arc_reclaim_thr_lock);
2758 	arc_thread_exit = 1;
2759 	while (arc_thread_exit != 0)
2760 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
2761 	mutex_exit(&arc_reclaim_thr_lock);
2762 
2763 	arc_flush();
2764 
2765 	arc_dead = TRUE;
2766 
2767 	if (arc_ksp != NULL) {
2768 		kstat_delete(arc_ksp);
2769 		arc_ksp = NULL;
2770 	}
2771 
2772 	mutex_destroy(&arc_eviction_mtx);
2773 	mutex_destroy(&arc_reclaim_thr_lock);
2774 	cv_destroy(&arc_reclaim_thr_cv);
2775 
2776 	list_destroy(&arc_mru->arcs_list);
2777 	list_destroy(&arc_mru_ghost->arcs_list);
2778 	list_destroy(&arc_mfu->arcs_list);
2779 	list_destroy(&arc_mfu_ghost->arcs_list);
2780 
2781 	mutex_destroy(&arc_anon->arcs_mtx);
2782 	mutex_destroy(&arc_mru->arcs_mtx);
2783 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
2784 	mutex_destroy(&arc_mfu->arcs_mtx);
2785 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
2786 
2787 	buf_fini();
2788 }
2789