1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * The objective of this program is to provide a DMU/ZAP/SPA stress test 30 * that runs entirely in userland, is easy to use, and easy to extend. 31 * 32 * The overall design of the ztest program is as follows: 33 * 34 * (1) For each major functional area (e.g. adding vdevs to a pool, 35 * creating and destroying datasets, reading and writing objects, etc) 36 * we have a simple routine to test that functionality. These 37 * individual routines do not have to do anything "stressful". 38 * 39 * (2) We turn these simple functionality tests into a stress test by 40 * running them all in parallel, with as many threads as desired, 41 * and spread across as many datasets, objects, and vdevs as desired. 42 * 43 * (3) While all this is happening, we inject faults into the pool to 44 * verify that self-healing data really works. 45 * 46 * (4) Every time we open a dataset, we change its checksum and compression 47 * functions. Thus even individual objects vary from block to block 48 * in which checksum they use and whether they're compressed. 49 * 50 * (5) To verify that we never lose on-disk consistency after a crash, 51 * we run the entire test in a child of the main process. 52 * At random times, the child self-immolates with a SIGKILL. 53 * This is the software equivalent of pulling the power cord. 54 * The parent then runs the test again, using the existing 55 * storage pool, as many times as desired. 56 * 57 * (6) To verify that we don't have future leaks or temporal incursions, 58 * many of the functional tests record the transaction group number 59 * as part of their data. When reading old data, they verify that 60 * the transaction group number is less than the current, open txg. 61 * If you add a new test, please do this if applicable. 62 * 63 * When run with no arguments, ztest runs for about five minutes and 64 * produces no output if successful. To get a little bit of information, 65 * specify -V. To get more information, specify -VV, and so on. 66 * 67 * To turn this into an overnight stress test, use -T to specify run time. 68 * 69 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 70 * to increase the pool capacity, fanout, and overall stress level. 71 * 72 * The -N(okill) option will suppress kills, so each child runs to completion. 73 * This can be useful when you're trying to distinguish temporal incursions 74 * from plain old race conditions. 75 */ 76 77 #include <sys/zfs_context.h> 78 #include <sys/spa.h> 79 #include <sys/dmu.h> 80 #include <sys/txg.h> 81 #include <sys/zap.h> 82 #include <sys/dmu_traverse.h> 83 #include <sys/dmu_objset.h> 84 #include <sys/poll.h> 85 #include <sys/stat.h> 86 #include <sys/time.h> 87 #include <sys/wait.h> 88 #include <sys/mman.h> 89 #include <sys/resource.h> 90 #include <sys/zio.h> 91 #include <sys/zio_checksum.h> 92 #include <sys/zio_compress.h> 93 #include <sys/zil.h> 94 #include <sys/vdev_impl.h> 95 #include <sys/spa_impl.h> 96 #include <sys/dsl_prop.h> 97 #include <sys/refcount.h> 98 #include <stdio.h> 99 #include <stdio_ext.h> 100 #include <stdlib.h> 101 #include <unistd.h> 102 #include <signal.h> 103 #include <umem.h> 104 #include <dlfcn.h> 105 #include <ctype.h> 106 #include <math.h> 107 #include <sys/fs/zfs.h> 108 109 static char cmdname[] = "ztest"; 110 static char *zopt_pool = cmdname; 111 112 static uint64_t zopt_vdevs = 5; 113 static uint64_t zopt_vdevtime; 114 static int zopt_ashift = SPA_MINBLOCKSHIFT; 115 static int zopt_mirrors = 2; 116 static int zopt_raidz = 4; 117 static int zopt_raidz_parity = 1; 118 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 119 static int zopt_datasets = 7; 120 static int zopt_threads = 23; 121 static uint64_t zopt_passtime = 60; /* 60 seconds */ 122 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 123 static int zopt_verbose = 0; 124 static int zopt_init = 1; 125 static char *zopt_dir = "/tmp"; 126 static uint64_t zopt_time = 300; /* 5 minutes */ 127 static int zopt_maxfaults; 128 129 typedef struct ztest_args { 130 char *za_pool; 131 objset_t *za_os; 132 zilog_t *za_zilog; 133 thread_t za_thread; 134 uint64_t za_instance; 135 uint64_t za_random; 136 uint64_t za_diroff; 137 uint64_t za_diroff_shared; 138 uint64_t za_zil_seq; 139 hrtime_t za_start; 140 hrtime_t za_stop; 141 hrtime_t za_kill; 142 traverse_handle_t *za_th; 143 } ztest_args_t; 144 145 typedef void ztest_func_t(ztest_args_t *); 146 147 /* 148 * Note: these aren't static because we want dladdr() to work. 149 */ 150 ztest_func_t ztest_dmu_read_write; 151 ztest_func_t ztest_dmu_write_parallel; 152 ztest_func_t ztest_dmu_object_alloc_free; 153 ztest_func_t ztest_zap; 154 ztest_func_t ztest_zap_parallel; 155 ztest_func_t ztest_traverse; 156 ztest_func_t ztest_dsl_prop_get_set; 157 ztest_func_t ztest_dmu_objset_create_destroy; 158 ztest_func_t ztest_dmu_snapshot_create_destroy; 159 ztest_func_t ztest_spa_create_destroy; 160 ztest_func_t ztest_fault_inject; 161 ztest_func_t ztest_vdev_attach_detach; 162 ztest_func_t ztest_vdev_LUN_growth; 163 ztest_func_t ztest_vdev_add_remove; 164 ztest_func_t ztest_scrub; 165 ztest_func_t ztest_spa_rename; 166 167 typedef struct ztest_info { 168 ztest_func_t *zi_func; /* test function */ 169 uint64_t *zi_interval; /* execute every <interval> seconds */ 170 uint64_t zi_calls; /* per-pass count */ 171 uint64_t zi_call_time; /* per-pass time */ 172 uint64_t zi_call_total; /* cumulative total */ 173 uint64_t zi_call_target; /* target cumulative total */ 174 } ztest_info_t; 175 176 uint64_t zopt_always = 0; /* all the time */ 177 uint64_t zopt_often = 1; /* every second */ 178 uint64_t zopt_sometimes = 10; /* every 10 seconds */ 179 uint64_t zopt_rarely = 60; /* every 60 seconds */ 180 181 ztest_info_t ztest_info[] = { 182 { ztest_dmu_read_write, &zopt_always }, 183 { ztest_dmu_write_parallel, &zopt_always }, 184 { ztest_dmu_object_alloc_free, &zopt_always }, 185 { ztest_zap, &zopt_always }, 186 { ztest_zap_parallel, &zopt_always }, 187 { ztest_traverse, &zopt_often }, 188 { ztest_dsl_prop_get_set, &zopt_sometimes }, 189 { ztest_dmu_objset_create_destroy, &zopt_sometimes }, 190 { ztest_dmu_snapshot_create_destroy, &zopt_rarely }, 191 { ztest_spa_create_destroy, &zopt_sometimes }, 192 { ztest_fault_inject, &zopt_sometimes }, 193 { ztest_spa_rename, &zopt_rarely }, 194 { ztest_vdev_attach_detach, &zopt_rarely }, 195 { ztest_vdev_LUN_growth, &zopt_rarely }, 196 { ztest_vdev_add_remove, &zopt_vdevtime }, 197 { ztest_scrub, &zopt_vdevtime }, 198 }; 199 200 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 201 202 #define ZTEST_SYNC_LOCKS 16 203 204 /* 205 * Stuff we need to share writably between parent and child. 206 */ 207 typedef struct ztest_shared { 208 mutex_t zs_vdev_lock; 209 rwlock_t zs_name_lock; 210 uint64_t zs_vdev_primaries; 211 uint64_t zs_enospc_count; 212 hrtime_t zs_start_time; 213 hrtime_t zs_stop_time; 214 uint64_t zs_alloc; 215 uint64_t zs_space; 216 ztest_info_t zs_info[ZTEST_FUNCS]; 217 mutex_t zs_sync_lock[ZTEST_SYNC_LOCKS]; 218 uint64_t zs_seq[ZTEST_SYNC_LOCKS]; 219 } ztest_shared_t; 220 221 typedef struct ztest_block_tag { 222 uint64_t bt_objset; 223 uint64_t bt_object; 224 uint64_t bt_offset; 225 uint64_t bt_txg; 226 uint64_t bt_thread; 227 uint64_t bt_seq; 228 } ztest_block_tag_t; 229 230 static char ztest_dev_template[] = "%s/%s.%llua"; 231 static ztest_shared_t *ztest_shared; 232 233 static int ztest_random_fd; 234 static int ztest_dump_core = 1; 235 236 extern uint64_t zio_gang_bang; 237 238 #define ZTEST_DIROBJ 1 239 #define ZTEST_MICROZAP_OBJ 2 240 #define ZTEST_FATZAP_OBJ 3 241 242 #define ZTEST_DIROBJ_BLOCKSIZE (1 << 10) 243 #define ZTEST_DIRSIZE 256 244 245 /* 246 * These libumem hooks provide a reasonable set of defaults for the allocator's 247 * debugging facilities. 248 */ 249 const char * 250 _umem_debug_init() 251 { 252 return ("default,verbose"); /* $UMEM_DEBUG setting */ 253 } 254 255 const char * 256 _umem_logging_init(void) 257 { 258 return ("fail,contents"); /* $UMEM_LOGGING setting */ 259 } 260 261 #define FATAL_MSG_SZ 1024 262 263 char *fatal_msg; 264 265 static void 266 fatal(int do_perror, char *message, ...) 267 { 268 va_list args; 269 int save_errno = errno; 270 char buf[FATAL_MSG_SZ]; 271 272 (void) fflush(stdout); 273 274 va_start(args, message); 275 (void) sprintf(buf, "ztest: "); 276 /* LINTED */ 277 (void) vsprintf(buf + strlen(buf), message, args); 278 va_end(args); 279 if (do_perror) { 280 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 281 ": %s", strerror(save_errno)); 282 } 283 (void) fprintf(stderr, "%s\n", buf); 284 fatal_msg = buf; /* to ease debugging */ 285 if (ztest_dump_core) 286 abort(); 287 exit(3); 288 } 289 290 static int 291 str2shift(const char *buf) 292 { 293 const char *ends = "BKMGTPEZ"; 294 int i; 295 296 if (buf[0] == '\0') 297 return (0); 298 for (i = 0; i < strlen(ends); i++) { 299 if (toupper(buf[0]) == ends[i]) 300 break; 301 } 302 if (i == strlen(ends)) 303 fatal(0, "invalid bytes suffix: %s", buf); 304 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 305 return (10*i); 306 } 307 fatal(0, "invalid bytes suffix: %s", buf); 308 return (-1); 309 } 310 311 static uint64_t 312 nicenumtoull(const char *buf) 313 { 314 char *end; 315 uint64_t val; 316 317 val = strtoull(buf, &end, 0); 318 if (end == buf) { 319 fatal(0, "bad numeric value: %s", buf); 320 } else if (end[0] == '.') { 321 double fval = strtod(buf, &end); 322 fval *= pow(2, str2shift(end)); 323 if (fval > UINT64_MAX) 324 fatal(0, "value too large: %s", buf); 325 val = (uint64_t)fval; 326 } else { 327 int shift = str2shift(end); 328 if (shift >= 64 || (val << shift) >> shift != val) 329 fatal(0, "value too large: %s", buf); 330 val <<= shift; 331 } 332 return (val); 333 } 334 335 static void 336 usage(void) 337 { 338 char nice_vdev_size[10]; 339 char nice_gang_bang[10]; 340 341 nicenum(zopt_vdev_size, nice_vdev_size); 342 nicenum(zio_gang_bang, nice_gang_bang); 343 344 (void) printf("Usage: %s\n" 345 "\t[-v vdevs (default: %llu)]\n" 346 "\t[-s size_of_each_vdev (default: %s)]\n" 347 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 348 "\t[-m mirror_copies (default: %d)]\n" 349 "\t[-r raidz_disks (default: %d)]\n" 350 "\t[-R raidz_parity (default: %d)]\n" 351 "\t[-d datasets (default: %d)]\n" 352 "\t[-t threads (default: %d)]\n" 353 "\t[-g gang_block_threshold (default: %s)]\n" 354 "\t[-i initialize pool i times (default: %d)]\n" 355 "\t[-k kill percentage (default: %llu%%)]\n" 356 "\t[-p pool_name (default: %s)]\n" 357 "\t[-f file directory for vdev files (default: %s)]\n" 358 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 359 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 360 "\t[-T time] total run time (default: %llu sec)\n" 361 "\t[-P passtime] time per pass (default: %llu sec)\n" 362 "", 363 cmdname, 364 (u_longlong_t)zopt_vdevs, /* -v */ 365 nice_vdev_size, /* -s */ 366 zopt_ashift, /* -a */ 367 zopt_mirrors, /* -m */ 368 zopt_raidz, /* -r */ 369 zopt_raidz_parity, /* -R */ 370 zopt_datasets, /* -d */ 371 zopt_threads, /* -t */ 372 nice_gang_bang, /* -g */ 373 zopt_init, /* -i */ 374 (u_longlong_t)zopt_killrate, /* -k */ 375 zopt_pool, /* -p */ 376 zopt_dir, /* -f */ 377 (u_longlong_t)zopt_time, /* -T */ 378 (u_longlong_t)zopt_passtime); /* -P */ 379 exit(1); 380 } 381 382 static uint64_t 383 ztest_random(uint64_t range) 384 { 385 uint64_t r; 386 387 if (range == 0) 388 return (0); 389 390 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 391 fatal(1, "short read from /dev/urandom"); 392 393 return (r % range); 394 } 395 396 static void 397 ztest_record_enospc(char *s) 398 { 399 dprintf("ENOSPC doing: %s\n", s ? s : "<unknown>"); 400 ztest_shared->zs_enospc_count++; 401 } 402 403 static void 404 process_options(int argc, char **argv) 405 { 406 int opt; 407 uint64_t value; 408 409 /* By default, test gang blocks for blocks 32K and greater */ 410 zio_gang_bang = 32 << 10; 411 412 while ((opt = getopt(argc, argv, 413 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:")) != EOF) { 414 value = 0; 415 switch (opt) { 416 case 'v': 417 case 's': 418 case 'a': 419 case 'm': 420 case 'r': 421 case 'R': 422 case 'd': 423 case 't': 424 case 'g': 425 case 'i': 426 case 'k': 427 case 'T': 428 case 'P': 429 value = nicenumtoull(optarg); 430 } 431 switch (opt) { 432 case 'v': 433 zopt_vdevs = value; 434 break; 435 case 's': 436 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 437 break; 438 case 'a': 439 zopt_ashift = value; 440 break; 441 case 'm': 442 zopt_mirrors = value; 443 break; 444 case 'r': 445 zopt_raidz = MAX(1, value); 446 break; 447 case 'R': 448 zopt_raidz_parity = MIN(MAX(value, 1), 2); 449 break; 450 case 'd': 451 zopt_datasets = MAX(1, value); 452 break; 453 case 't': 454 zopt_threads = MAX(1, value); 455 break; 456 case 'g': 457 zio_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 458 break; 459 case 'i': 460 zopt_init = value; 461 break; 462 case 'k': 463 zopt_killrate = value; 464 break; 465 case 'p': 466 zopt_pool = strdup(optarg); 467 break; 468 case 'f': 469 zopt_dir = strdup(optarg); 470 break; 471 case 'V': 472 zopt_verbose++; 473 break; 474 case 'E': 475 zopt_init = 0; 476 break; 477 case 'T': 478 zopt_time = value; 479 break; 480 case 'P': 481 zopt_passtime = MAX(1, value); 482 break; 483 case '?': 484 default: 485 usage(); 486 break; 487 } 488 } 489 490 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 491 492 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX); 493 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1; 494 } 495 496 static uint64_t 497 ztest_get_ashift(void) 498 { 499 if (zopt_ashift == 0) 500 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 501 return (zopt_ashift); 502 } 503 504 static nvlist_t * 505 make_vdev_file(size_t size) 506 { 507 char dev_name[MAXPATHLEN]; 508 uint64_t vdev; 509 uint64_t ashift = ztest_get_ashift(); 510 int fd; 511 nvlist_t *file; 512 513 if (size == 0) { 514 (void) snprintf(dev_name, sizeof (dev_name), "%s", 515 "/dev/bogus"); 516 } else { 517 vdev = ztest_shared->zs_vdev_primaries++; 518 (void) sprintf(dev_name, ztest_dev_template, 519 zopt_dir, zopt_pool, vdev); 520 521 fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666); 522 if (fd == -1) 523 fatal(1, "can't open %s", dev_name); 524 if (ftruncate(fd, size) != 0) 525 fatal(1, "can't ftruncate %s", dev_name); 526 (void) close(fd); 527 } 528 529 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 530 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 531 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, dev_name) == 0); 532 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 533 534 return (file); 535 } 536 537 static nvlist_t * 538 make_vdev_raidz(size_t size, int r) 539 { 540 nvlist_t *raidz, **child; 541 int c; 542 543 if (r < 2) 544 return (make_vdev_file(size)); 545 546 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 547 548 for (c = 0; c < r; c++) 549 child[c] = make_vdev_file(size); 550 551 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 552 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 553 VDEV_TYPE_RAIDZ) == 0); 554 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 555 zopt_raidz_parity) == 0); 556 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 557 child, r) == 0); 558 559 for (c = 0; c < r; c++) 560 nvlist_free(child[c]); 561 562 umem_free(child, r * sizeof (nvlist_t *)); 563 564 return (raidz); 565 } 566 567 static nvlist_t * 568 make_vdev_mirror(size_t size, int r, int m) 569 { 570 nvlist_t *mirror, **child; 571 int c; 572 573 if (m < 1) 574 return (make_vdev_raidz(size, r)); 575 576 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 577 578 for (c = 0; c < m; c++) 579 child[c] = make_vdev_raidz(size, r); 580 581 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 582 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 583 VDEV_TYPE_MIRROR) == 0); 584 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 585 child, m) == 0); 586 587 for (c = 0; c < m; c++) 588 nvlist_free(child[c]); 589 590 umem_free(child, m * sizeof (nvlist_t *)); 591 592 return (mirror); 593 } 594 595 static nvlist_t * 596 make_vdev_root(size_t size, int r, int m, int t) 597 { 598 nvlist_t *root, **child; 599 int c; 600 601 ASSERT(t > 0); 602 603 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 604 605 for (c = 0; c < t; c++) 606 child[c] = make_vdev_mirror(size, r, m); 607 608 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 609 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 610 VERIFY(nvlist_add_nvlist_array(root, ZPOOL_CONFIG_CHILDREN, 611 child, t) == 0); 612 613 for (c = 0; c < t; c++) 614 nvlist_free(child[c]); 615 616 umem_free(child, t * sizeof (nvlist_t *)); 617 618 return (root); 619 } 620 621 static void 622 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx) 623 { 624 int bs = SPA_MINBLOCKSHIFT + 625 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1); 626 int ibs = DN_MIN_INDBLKSHIFT + 627 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1); 628 int error; 629 630 error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx); 631 if (error) { 632 char osname[300]; 633 dmu_objset_name(os, osname); 634 fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d", 635 osname, object, 1 << bs, ibs, error); 636 } 637 } 638 639 static uint8_t 640 ztest_random_checksum(void) 641 { 642 uint8_t checksum; 643 644 do { 645 checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS); 646 } while (zio_checksum_table[checksum].ci_zbt); 647 648 if (checksum == ZIO_CHECKSUM_OFF) 649 checksum = ZIO_CHECKSUM_ON; 650 651 return (checksum); 652 } 653 654 static uint8_t 655 ztest_random_compress(void) 656 { 657 return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS)); 658 } 659 660 typedef struct ztest_replay { 661 objset_t *zr_os; 662 uint64_t zr_assign; 663 } ztest_replay_t; 664 665 static int 666 ztest_replay_create(ztest_replay_t *zr, lr_create_t *lr, boolean_t byteswap) 667 { 668 objset_t *os = zr->zr_os; 669 dmu_tx_t *tx; 670 int error; 671 672 if (byteswap) 673 byteswap_uint64_array(lr, sizeof (*lr)); 674 675 tx = dmu_tx_create(os); 676 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 677 error = dmu_tx_assign(tx, zr->zr_assign); 678 if (error) { 679 dmu_tx_abort(tx); 680 return (error); 681 } 682 683 error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0, 684 DMU_OT_NONE, 0, tx); 685 ASSERT3U(error, ==, 0); 686 dmu_tx_commit(tx); 687 688 if (zopt_verbose >= 5) { 689 char osname[MAXNAMELEN]; 690 dmu_objset_name(os, osname); 691 (void) printf("replay create of %s object %llu" 692 " in txg %llu = %d\n", 693 osname, (u_longlong_t)lr->lr_doid, 694 (u_longlong_t)zr->zr_assign, error); 695 } 696 697 return (error); 698 } 699 700 static int 701 ztest_replay_remove(ztest_replay_t *zr, lr_remove_t *lr, boolean_t byteswap) 702 { 703 objset_t *os = zr->zr_os; 704 dmu_tx_t *tx; 705 int error; 706 707 if (byteswap) 708 byteswap_uint64_array(lr, sizeof (*lr)); 709 710 tx = dmu_tx_create(os); 711 dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END); 712 error = dmu_tx_assign(tx, zr->zr_assign); 713 if (error) { 714 dmu_tx_abort(tx); 715 return (error); 716 } 717 718 error = dmu_object_free(os, lr->lr_doid, tx); 719 dmu_tx_commit(tx); 720 721 return (error); 722 } 723 724 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 725 NULL, /* 0 no such transaction type */ 726 ztest_replay_create, /* TX_CREATE */ 727 NULL, /* TX_MKDIR */ 728 NULL, /* TX_MKXATTR */ 729 NULL, /* TX_SYMLINK */ 730 ztest_replay_remove, /* TX_REMOVE */ 731 NULL, /* TX_RMDIR */ 732 NULL, /* TX_LINK */ 733 NULL, /* TX_RENAME */ 734 NULL, /* TX_WRITE */ 735 NULL, /* TX_TRUNCATE */ 736 NULL, /* TX_SETATTR */ 737 NULL, /* TX_ACL */ 738 }; 739 740 /* 741 * Verify that we can't destroy an active pool, create an existing pool, 742 * or create a pool with a bad vdev spec. 743 */ 744 void 745 ztest_spa_create_destroy(ztest_args_t *za) 746 { 747 int error; 748 spa_t *spa; 749 nvlist_t *nvroot; 750 751 /* 752 * Attempt to create using a bad file. 753 */ 754 nvroot = make_vdev_root(0, 0, 0, 1); 755 error = spa_create("ztest_bad_file", nvroot, NULL); 756 nvlist_free(nvroot); 757 if (error != ENOENT) 758 fatal(0, "spa_create(bad_file) = %d", error); 759 760 /* 761 * Attempt to create using a bad mirror. 762 */ 763 nvroot = make_vdev_root(0, 0, 2, 1); 764 error = spa_create("ztest_bad_mirror", nvroot, NULL); 765 nvlist_free(nvroot); 766 if (error != ENOENT) 767 fatal(0, "spa_create(bad_mirror) = %d", error); 768 769 /* 770 * Attempt to create an existing pool. It shouldn't matter 771 * what's in the nvroot; we should fail with EEXIST. 772 */ 773 (void) rw_rdlock(&ztest_shared->zs_name_lock); 774 nvroot = make_vdev_root(0, 0, 0, 1); 775 error = spa_create(za->za_pool, nvroot, NULL); 776 nvlist_free(nvroot); 777 if (error != EEXIST) 778 fatal(0, "spa_create(whatever) = %d", error); 779 780 error = spa_open(za->za_pool, &spa, FTAG); 781 if (error) 782 fatal(0, "spa_open() = %d", error); 783 784 error = spa_destroy(za->za_pool); 785 if (error != EBUSY) 786 fatal(0, "spa_destroy() = %d", error); 787 788 spa_close(spa, FTAG); 789 (void) rw_unlock(&ztest_shared->zs_name_lock); 790 } 791 792 /* 793 * Verify that vdev_add() works as expected. 794 */ 795 void 796 ztest_vdev_add_remove(ztest_args_t *za) 797 { 798 spa_t *spa = dmu_objset_spa(za->za_os); 799 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 800 nvlist_t *nvroot; 801 int error; 802 803 if (zopt_verbose >= 6) 804 (void) printf("adding vdev\n"); 805 806 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 807 808 spa_config_enter(spa, RW_READER, FTAG); 809 810 ztest_shared->zs_vdev_primaries = 811 spa->spa_root_vdev->vdev_children * leaves; 812 813 spa_config_exit(spa, FTAG); 814 815 nvroot = make_vdev_root(zopt_vdev_size, zopt_raidz, zopt_mirrors, 1); 816 error = spa_vdev_add(spa, nvroot); 817 nvlist_free(nvroot); 818 819 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 820 821 if (error == ENOSPC) 822 ztest_record_enospc("spa_vdev_add"); 823 else if (error != 0) 824 fatal(0, "spa_vdev_add() = %d", error); 825 826 if (zopt_verbose >= 6) 827 (void) printf("spa_vdev_add = %d, as expected\n", error); 828 } 829 830 static vdev_t * 831 vdev_lookup_by_path(vdev_t *vd, const char *path) 832 { 833 int c; 834 vdev_t *mvd; 835 836 if (vd->vdev_path != NULL) { 837 if (vd->vdev_wholedisk == 1) { 838 /* 839 * For whole disks, the internal path has 's0', but the 840 * path passed in by the user doesn't. 841 */ 842 if (strlen(path) == strlen(vd->vdev_path) - 2 && 843 strncmp(path, vd->vdev_path, strlen(path)) == 0) 844 return (vd); 845 } else if (strcmp(path, vd->vdev_path) == 0) { 846 return (vd); 847 } 848 } 849 850 for (c = 0; c < vd->vdev_children; c++) 851 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 852 NULL) 853 return (mvd); 854 855 return (NULL); 856 } 857 858 /* 859 * Verify that we can attach and detach devices. 860 */ 861 void 862 ztest_vdev_attach_detach(ztest_args_t *za) 863 { 864 spa_t *spa = dmu_objset_spa(za->za_os); 865 vdev_t *rvd = spa->spa_root_vdev; 866 vdev_t *oldvd, *newvd, *pvd; 867 nvlist_t *root, *file; 868 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 869 uint64_t leaf, top; 870 uint64_t ashift = ztest_get_ashift(); 871 size_t oldsize, newsize; 872 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 873 int replacing; 874 int error, expected_error; 875 int fd; 876 877 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 878 879 spa_config_enter(spa, RW_READER, FTAG); 880 881 /* 882 * Decide whether to do an attach or a replace. 883 */ 884 replacing = ztest_random(2); 885 886 /* 887 * Pick a random top-level vdev. 888 */ 889 top = ztest_random(rvd->vdev_children); 890 891 /* 892 * Pick a random leaf within it. 893 */ 894 leaf = ztest_random(leaves); 895 896 /* 897 * Generate the path to this leaf. The filename will end with 'a'. 898 * We'll alternate replacements with a filename that ends with 'b'. 899 */ 900 (void) snprintf(oldpath, sizeof (oldpath), 901 ztest_dev_template, zopt_dir, zopt_pool, top * leaves + leaf); 902 903 bcopy(oldpath, newpath, MAXPATHLEN); 904 905 /* 906 * If the 'a' file isn't part of the pool, the 'b' file must be. 907 */ 908 if (vdev_lookup_by_path(rvd, oldpath) == NULL) 909 oldpath[strlen(oldpath) - 1] = 'b'; 910 else 911 newpath[strlen(newpath) - 1] = 'b'; 912 913 /* 914 * Now oldpath represents something that's already in the pool, 915 * and newpath is the thing we'll try to attach. 916 */ 917 oldvd = vdev_lookup_by_path(rvd, oldpath); 918 newvd = vdev_lookup_by_path(rvd, newpath); 919 ASSERT(oldvd != NULL); 920 pvd = oldvd->vdev_parent; 921 922 /* 923 * Make newsize a little bigger or smaller than oldsize. 924 * If it's smaller, the attach should fail. 925 * If it's larger, and we're doing a replace, 926 * we should get dynamic LUN growth when we're done. 927 */ 928 oldsize = vdev_get_rsize(oldvd); 929 newsize = 10 * oldsize / (9 + ztest_random(3)); 930 931 /* 932 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 933 * unless it's a replace; in that case any non-replacing parent is OK. 934 * 935 * If newvd is already part of the pool, it should fail with EBUSY. 936 * 937 * If newvd is too small, it should fail with EOVERFLOW. 938 */ 939 if (newvd != NULL) 940 expected_error = EBUSY; 941 else if (pvd->vdev_ops != &vdev_mirror_ops && 942 pvd->vdev_ops != &vdev_root_ops && 943 (!replacing || pvd->vdev_ops == &vdev_replacing_ops)) 944 expected_error = ENOTSUP; 945 else if (newsize < oldsize) 946 expected_error = EOVERFLOW; 947 else if (ashift > oldvd->vdev_top->vdev_ashift) 948 expected_error = EDOM; 949 else 950 expected_error = 0; 951 952 /* 953 * If newvd isn't already part of the pool, create it. 954 */ 955 if (newvd == NULL) { 956 fd = open(newpath, O_RDWR | O_CREAT | O_TRUNC, 0666); 957 if (fd == -1) 958 fatal(1, "can't open %s", newpath); 959 if (ftruncate(fd, newsize) != 0) 960 fatal(1, "can't ftruncate %s", newpath); 961 (void) close(fd); 962 } 963 964 spa_config_exit(spa, FTAG); 965 966 /* 967 * Build the nvlist describing newpath. 968 */ 969 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 970 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 971 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, newpath) == 0); 972 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 973 974 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 975 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 976 VERIFY(nvlist_add_nvlist_array(root, ZPOOL_CONFIG_CHILDREN, 977 &file, 1) == 0); 978 979 error = spa_vdev_attach(spa, oldvd->vdev_guid, root, replacing); 980 981 nvlist_free(file); 982 nvlist_free(root); 983 984 /* 985 * If our parent was the replacing vdev, but the replace completed, 986 * then instead of failing with ENOTSUP we may either succeed, 987 * fail with ENODEV, or fail with EOVERFLOW. 988 */ 989 if (expected_error == ENOTSUP && 990 (error == 0 || error == ENODEV || error == EOVERFLOW)) 991 expected_error = error; 992 993 /* 994 * If someone grew the LUN, the replacement may be too small. 995 */ 996 if (error == EOVERFLOW) 997 expected_error = error; 998 999 if (error != expected_error) { 1000 fatal(0, "attach (%s, %s, %d) returned %d, expected %d", 1001 oldpath, newpath, replacing, error, expected_error); 1002 } 1003 1004 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1005 } 1006 1007 /* 1008 * Verify that dynamic LUN growth works as expected. 1009 */ 1010 /* ARGSUSED */ 1011 void 1012 ztest_vdev_LUN_growth(ztest_args_t *za) 1013 { 1014 spa_t *spa = dmu_objset_spa(za->za_os); 1015 char dev_name[MAXPATHLEN]; 1016 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 1017 uint64_t vdev; 1018 size_t fsize; 1019 int fd; 1020 1021 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 1022 1023 /* 1024 * Pick a random leaf vdev. 1025 */ 1026 spa_config_enter(spa, RW_READER, FTAG); 1027 vdev = ztest_random(spa->spa_root_vdev->vdev_children * leaves); 1028 spa_config_exit(spa, FTAG); 1029 1030 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 1031 1032 if ((fd = open(dev_name, O_RDWR)) != -1) { 1033 /* 1034 * Determine the size. 1035 */ 1036 fsize = lseek(fd, 0, SEEK_END); 1037 1038 /* 1039 * If it's less than 2x the original size, grow by around 3%. 1040 */ 1041 if (fsize < 2 * zopt_vdev_size) { 1042 size_t newsize = fsize + ztest_random(fsize / 32); 1043 (void) ftruncate(fd, newsize); 1044 if (zopt_verbose >= 6) { 1045 (void) printf("%s grew from %lu to %lu bytes\n", 1046 dev_name, (ulong_t)fsize, (ulong_t)newsize); 1047 } 1048 } 1049 (void) close(fd); 1050 } 1051 1052 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1053 } 1054 1055 /* ARGSUSED */ 1056 static void 1057 ztest_create_cb(objset_t *os, void *arg, dmu_tx_t *tx) 1058 { 1059 /* 1060 * Create the directory object. 1061 */ 1062 VERIFY(dmu_object_claim(os, ZTEST_DIROBJ, 1063 DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE, 1064 DMU_OT_UINT64_OTHER, sizeof (ztest_block_tag_t), tx) == 0); 1065 1066 VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ, 1067 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1068 1069 VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ, 1070 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1071 } 1072 1073 /* ARGSUSED */ 1074 static int 1075 ztest_destroy_cb(char *name, void *arg) 1076 { 1077 objset_t *os; 1078 dmu_object_info_t doi; 1079 int error; 1080 1081 /* 1082 * Verify that the dataset contains a directory object. 1083 */ 1084 error = dmu_objset_open(name, DMU_OST_OTHER, 1085 DS_MODE_STANDARD | DS_MODE_READONLY, &os); 1086 ASSERT3U(error, ==, 0); 1087 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 1088 if (error != ENOENT) { 1089 /* We could have crashed in the middle of destroying it */ 1090 ASSERT3U(error, ==, 0); 1091 ASSERT3U(doi.doi_type, ==, DMU_OT_UINT64_OTHER); 1092 ASSERT3S(doi.doi_physical_blks, >=, 0); 1093 } 1094 dmu_objset_close(os); 1095 1096 /* 1097 * Destroy the dataset. 1098 */ 1099 error = dmu_objset_destroy(name); 1100 ASSERT3U(error, ==, 0); 1101 return (0); 1102 } 1103 1104 /* 1105 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 1106 */ 1107 static uint64_t 1108 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode) 1109 { 1110 itx_t *itx; 1111 lr_create_t *lr; 1112 size_t namesize; 1113 char name[24]; 1114 1115 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); 1116 namesize = strlen(name) + 1; 1117 1118 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize + 1119 ztest_random(ZIL_MAX_BLKSZ)); 1120 lr = (lr_create_t *)&itx->itx_lr; 1121 bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr)); 1122 lr->lr_doid = object; 1123 lr->lr_foid = 0; 1124 lr->lr_mode = mode; 1125 lr->lr_uid = 0; 1126 lr->lr_gid = 0; 1127 lr->lr_gen = dmu_tx_get_txg(tx); 1128 lr->lr_crtime[0] = time(NULL); 1129 lr->lr_crtime[1] = 0; 1130 lr->lr_rdev = 0; 1131 bcopy(name, (char *)(lr + 1), namesize); 1132 1133 return (zil_itx_assign(zilog, itx, tx)); 1134 } 1135 1136 void 1137 ztest_dmu_objset_create_destroy(ztest_args_t *za) 1138 { 1139 int error; 1140 objset_t *os; 1141 char name[100]; 1142 int mode, basemode, expected_error; 1143 zilog_t *zilog; 1144 uint64_t seq; 1145 uint64_t objects; 1146 ztest_replay_t zr; 1147 1148 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1149 (void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool, 1150 (u_longlong_t)za->za_instance); 1151 1152 basemode = DS_MODE_LEVEL(za->za_instance); 1153 if (basemode == DS_MODE_NONE) 1154 basemode++; 1155 1156 /* 1157 * If this dataset exists from a previous run, process its replay log 1158 * half of the time. If we don't replay it, then dmu_objset_destroy() 1159 * (invoked from ztest_destroy_cb() below) should just throw it away. 1160 */ 1161 if (ztest_random(2) == 0 && 1162 dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_PRIMARY, &os) == 0) { 1163 zr.zr_os = os; 1164 zil_replay(os, &zr, &zr.zr_assign, ztest_replay_vector); 1165 dmu_objset_close(os); 1166 } 1167 1168 /* 1169 * There may be an old instance of the dataset we're about to 1170 * create lying around from a previous run. If so, destroy it 1171 * and all of its snapshots. 1172 */ 1173 (void) dmu_objset_find(name, ztest_destroy_cb, NULL, 1174 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1175 1176 /* 1177 * Verify that the destroyed dataset is no longer in the namespace. 1178 */ 1179 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1180 if (error != ENOENT) 1181 fatal(1, "dmu_objset_open(%s) found destroyed dataset %p", 1182 name, os); 1183 1184 /* 1185 * Verify that we can create a new dataset. 1186 */ 1187 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, ztest_create_cb, 1188 NULL); 1189 if (error) { 1190 if (error == ENOSPC) { 1191 ztest_record_enospc("dmu_objset_create"); 1192 (void) rw_unlock(&ztest_shared->zs_name_lock); 1193 return; 1194 } 1195 fatal(0, "dmu_objset_create(%s) = %d", name, error); 1196 } 1197 1198 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1199 if (error) { 1200 fatal(0, "dmu_objset_open(%s) = %d", name, error); 1201 } 1202 1203 /* 1204 * Open the intent log for it. 1205 */ 1206 zilog = zil_open(os, NULL); 1207 1208 /* 1209 * Put a random number of objects in there. 1210 */ 1211 objects = ztest_random(20); 1212 seq = 0; 1213 while (objects-- != 0) { 1214 uint64_t object; 1215 dmu_tx_t *tx = dmu_tx_create(os); 1216 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name)); 1217 error = dmu_tx_assign(tx, TXG_WAIT); 1218 if (error) { 1219 dmu_tx_abort(tx); 1220 } else { 1221 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1222 DMU_OT_NONE, 0, tx); 1223 ztest_set_random_blocksize(os, object, tx); 1224 seq = ztest_log_create(zilog, tx, object, 1225 DMU_OT_UINT64_OTHER); 1226 dmu_write(os, object, 0, sizeof (name), name, tx); 1227 dmu_tx_commit(tx); 1228 } 1229 if (ztest_random(5) == 0) { 1230 zil_commit(zilog, seq, object); 1231 } 1232 if (ztest_random(100) == 0) { 1233 error = zil_suspend(zilog); 1234 if (error == 0) { 1235 zil_resume(zilog); 1236 } 1237 } 1238 } 1239 1240 /* 1241 * Verify that we cannot create an existing dataset. 1242 */ 1243 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, NULL, NULL); 1244 if (error != EEXIST) 1245 fatal(0, "created existing dataset, error = %d", error); 1246 1247 /* 1248 * Verify that multiple dataset opens are allowed, but only when 1249 * the new access mode is compatible with the base mode. 1250 * We use a mixture of typed and typeless opens, and when the 1251 * open succeeds, verify that the discovered type is correct. 1252 */ 1253 for (mode = DS_MODE_STANDARD; mode < DS_MODE_LEVELS; mode++) { 1254 objset_t *os2; 1255 error = dmu_objset_open(name, DMU_OST_OTHER, mode, &os2); 1256 expected_error = (basemode + mode < DS_MODE_LEVELS) ? 0 : EBUSY; 1257 if (error != expected_error) 1258 fatal(0, "dmu_objset_open('%s') = %d, expected %d", 1259 name, error, expected_error); 1260 if (error == 0) 1261 dmu_objset_close(os2); 1262 } 1263 1264 zil_close(zilog); 1265 dmu_objset_close(os); 1266 1267 error = dmu_objset_destroy(name); 1268 if (error) 1269 fatal(0, "dmu_objset_destroy(%s) = %d", name, error); 1270 1271 (void) rw_unlock(&ztest_shared->zs_name_lock); 1272 } 1273 1274 /* 1275 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 1276 */ 1277 void 1278 ztest_dmu_snapshot_create_destroy(ztest_args_t *za) 1279 { 1280 int error; 1281 objset_t *os = za->za_os; 1282 char snapname[100]; 1283 char osname[MAXNAMELEN]; 1284 1285 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1286 dmu_objset_name(os, osname); 1287 (void) snprintf(snapname, 100, "%s@%llu", osname, 1288 (u_longlong_t)za->za_instance); 1289 1290 error = dmu_objset_destroy(snapname); 1291 if (error != 0 && error != ENOENT) 1292 fatal(0, "dmu_objset_destroy() = %d", error); 1293 error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, FALSE); 1294 if (error == ENOSPC) 1295 ztest_record_enospc("dmu_take_snapshot"); 1296 else if (error != 0 && error != EEXIST) 1297 fatal(0, "dmu_take_snapshot() = %d", error); 1298 (void) rw_unlock(&ztest_shared->zs_name_lock); 1299 } 1300 1301 #define ZTEST_TRAVERSE_BLOCKS 1000 1302 1303 static int 1304 ztest_blk_cb(traverse_blk_cache_t *bc, spa_t *spa, void *arg) 1305 { 1306 ztest_args_t *za = arg; 1307 zbookmark_t *zb = &bc->bc_bookmark; 1308 blkptr_t *bp = &bc->bc_blkptr; 1309 dnode_phys_t *dnp = bc->bc_dnode; 1310 traverse_handle_t *th = za->za_th; 1311 uint64_t size = BP_GET_LSIZE(bp); 1312 1313 /* 1314 * Level -1 indicates the objset_phys_t or something in its intent log. 1315 */ 1316 if (zb->zb_level == -1) { 1317 if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1318 ASSERT3U(zb->zb_object, ==, 0); 1319 ASSERT3U(zb->zb_blkid, ==, 0); 1320 ASSERT3U(size, ==, sizeof (objset_phys_t)); 1321 za->za_zil_seq = 0; 1322 } else if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 1323 ASSERT3U(zb->zb_object, ==, 0); 1324 ASSERT3U(zb->zb_blkid, >, za->za_zil_seq); 1325 za->za_zil_seq = zb->zb_blkid; 1326 } else { 1327 ASSERT3U(zb->zb_object, !=, 0); /* lr_write_t */ 1328 } 1329 1330 return (0); 1331 } 1332 1333 ASSERT(dnp != NULL); 1334 1335 if (bc->bc_errno) 1336 return (ERESTART); 1337 1338 /* 1339 * Once in a while, abort the traverse. We only do this to odd 1340 * instance numbers to ensure that even ones can run to completion. 1341 */ 1342 if ((za->za_instance & 1) && ztest_random(10000) == 0) 1343 return (EINTR); 1344 1345 if (bp->blk_birth == 0) { 1346 ASSERT(th->th_advance & ADVANCE_HOLES); 1347 return (0); 1348 } 1349 1350 if (zb->zb_level == 0 && !(th->th_advance & ADVANCE_DATA) && 1351 bc == &th->th_cache[ZB_DN_CACHE][0]) { 1352 ASSERT(bc->bc_data == NULL); 1353 return (0); 1354 } 1355 1356 ASSERT(bc->bc_data != NULL); 1357 1358 /* 1359 * This is an expensive question, so don't ask it too often. 1360 */ 1361 if (((za->za_random ^ th->th_callbacks) & 0xff) == 0) { 1362 void *xbuf = umem_alloc(size, UMEM_NOFAIL); 1363 if (arc_tryread(spa, bp, xbuf) == 0) { 1364 ASSERT(bcmp(bc->bc_data, xbuf, size) == 0); 1365 } 1366 umem_free(xbuf, size); 1367 } 1368 1369 if (zb->zb_level > 0) { 1370 ASSERT3U(size, ==, 1ULL << dnp->dn_indblkshift); 1371 return (0); 1372 } 1373 1374 ASSERT(zb->zb_level == 0); 1375 ASSERT3U(size, ==, dnp->dn_datablkszsec << DEV_BSHIFT); 1376 1377 return (0); 1378 } 1379 1380 /* 1381 * Verify that live pool traversal works. 1382 */ 1383 void 1384 ztest_traverse(ztest_args_t *za) 1385 { 1386 spa_t *spa = dmu_objset_spa(za->za_os); 1387 traverse_handle_t *th = za->za_th; 1388 int rc, advance; 1389 uint64_t cbstart, cblimit; 1390 1391 if (th == NULL) { 1392 advance = 0; 1393 1394 if (ztest_random(2) == 0) 1395 advance |= ADVANCE_PRE; 1396 1397 if (ztest_random(2) == 0) 1398 advance |= ADVANCE_PRUNE; 1399 1400 if (ztest_random(2) == 0) 1401 advance |= ADVANCE_DATA; 1402 1403 if (ztest_random(2) == 0) 1404 advance |= ADVANCE_HOLES; 1405 1406 if (ztest_random(2) == 0) 1407 advance |= ADVANCE_ZIL; 1408 1409 th = za->za_th = traverse_init(spa, ztest_blk_cb, za, advance, 1410 ZIO_FLAG_CANFAIL); 1411 1412 traverse_add_pool(th, 0, -1ULL); 1413 } 1414 1415 advance = th->th_advance; 1416 cbstart = th->th_callbacks; 1417 cblimit = cbstart + ((advance & ADVANCE_DATA) ? 100 : 1000); 1418 1419 while ((rc = traverse_more(th)) == EAGAIN && th->th_callbacks < cblimit) 1420 continue; 1421 1422 if (zopt_verbose >= 5) 1423 (void) printf("traverse %s%s%s%s %llu blocks to " 1424 "<%llu, %llu, %lld, %llx>%s\n", 1425 (advance & ADVANCE_PRE) ? "pre" : "post", 1426 (advance & ADVANCE_PRUNE) ? "|prune" : "", 1427 (advance & ADVANCE_DATA) ? "|data" : "", 1428 (advance & ADVANCE_HOLES) ? "|holes" : "", 1429 (u_longlong_t)(th->th_callbacks - cbstart), 1430 (u_longlong_t)th->th_lastcb.zb_objset, 1431 (u_longlong_t)th->th_lastcb.zb_object, 1432 (u_longlong_t)th->th_lastcb.zb_level, 1433 (u_longlong_t)th->th_lastcb.zb_blkid, 1434 rc == 0 ? " [done]" : 1435 rc == EINTR ? " [aborted]" : 1436 rc == EAGAIN ? "" : 1437 strerror(rc)); 1438 1439 if (rc != EAGAIN) { 1440 if (rc != 0 && rc != EINTR) 1441 fatal(0, "traverse_more(%p) = %d", th, rc); 1442 traverse_fini(th); 1443 za->za_th = NULL; 1444 } 1445 } 1446 1447 /* 1448 * Verify that dmu_object_{alloc,free} work as expected. 1449 */ 1450 void 1451 ztest_dmu_object_alloc_free(ztest_args_t *za) 1452 { 1453 objset_t *os = za->za_os; 1454 dmu_buf_t *db; 1455 dmu_tx_t *tx; 1456 uint64_t batchobj, object, batchsize, endoff, temp; 1457 int b, c, error, bonuslen; 1458 dmu_object_info_t doi; 1459 char osname[MAXNAMELEN]; 1460 1461 dmu_objset_name(os, osname); 1462 1463 endoff = -8ULL; 1464 batchsize = 2; 1465 1466 /* 1467 * Create a batch object if necessary, and record it in the directory. 1468 */ 1469 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1470 sizeof (uint64_t), &batchobj)); 1471 if (batchobj == 0) { 1472 tx = dmu_tx_create(os); 1473 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 1474 sizeof (uint64_t)); 1475 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1476 error = dmu_tx_assign(tx, TXG_WAIT); 1477 if (error) { 1478 ztest_record_enospc("create a batch object"); 1479 dmu_tx_abort(tx); 1480 return; 1481 } 1482 batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1483 DMU_OT_NONE, 0, tx); 1484 ztest_set_random_blocksize(os, batchobj, tx); 1485 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 1486 sizeof (uint64_t), &batchobj, tx); 1487 dmu_tx_commit(tx); 1488 } 1489 1490 /* 1491 * Destroy the previous batch of objects. 1492 */ 1493 for (b = 0; b < batchsize; b++) { 1494 VERIFY(0 == dmu_read(os, batchobj, b * sizeof (uint64_t), 1495 sizeof (uint64_t), &object)); 1496 if (object == 0) 1497 continue; 1498 /* 1499 * Read and validate contents. 1500 * We expect the nth byte of the bonus buffer to be n. 1501 */ 1502 VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db)); 1503 1504 dmu_object_info_from_db(db, &doi); 1505 ASSERT(doi.doi_type == DMU_OT_UINT64_OTHER); 1506 ASSERT(doi.doi_bonus_type == DMU_OT_PLAIN_OTHER); 1507 ASSERT3S(doi.doi_physical_blks, >=, 0); 1508 1509 bonuslen = db->db_size; 1510 1511 for (c = 0; c < bonuslen; c++) { 1512 if (((uint8_t *)db->db_data)[c] != 1513 (uint8_t)(c + bonuslen)) { 1514 fatal(0, 1515 "bad bonus: %s, obj %llu, off %d: %u != %u", 1516 osname, object, c, 1517 ((uint8_t *)db->db_data)[c], 1518 (uint8_t)(c + bonuslen)); 1519 } 1520 } 1521 1522 dmu_buf_rele(db, FTAG); 1523 1524 /* 1525 * We expect the word at endoff to be our object number. 1526 */ 1527 VERIFY(0 == dmu_read(os, object, endoff, 1528 sizeof (uint64_t), &temp)); 1529 1530 if (temp != object) { 1531 fatal(0, "bad data in %s, got %llu, expected %llu", 1532 osname, temp, object); 1533 } 1534 1535 /* 1536 * Destroy old object and clear batch entry. 1537 */ 1538 tx = dmu_tx_create(os); 1539 dmu_tx_hold_write(tx, batchobj, 1540 b * sizeof (uint64_t), sizeof (uint64_t)); 1541 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1542 error = dmu_tx_assign(tx, TXG_WAIT); 1543 if (error) { 1544 ztest_record_enospc("free object"); 1545 dmu_tx_abort(tx); 1546 return; 1547 } 1548 error = dmu_object_free(os, object, tx); 1549 if (error) { 1550 fatal(0, "dmu_object_free('%s', %llu) = %d", 1551 osname, object, error); 1552 } 1553 object = 0; 1554 1555 dmu_object_set_checksum(os, batchobj, 1556 ztest_random_checksum(), tx); 1557 dmu_object_set_compress(os, batchobj, 1558 ztest_random_compress(), tx); 1559 1560 dmu_write(os, batchobj, b * sizeof (uint64_t), 1561 sizeof (uint64_t), &object, tx); 1562 1563 dmu_tx_commit(tx); 1564 } 1565 1566 /* 1567 * Before creating the new batch of objects, generate a bunch of churn. 1568 */ 1569 for (b = ztest_random(100); b > 0; b--) { 1570 tx = dmu_tx_create(os); 1571 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1572 error = dmu_tx_assign(tx, TXG_WAIT); 1573 if (error) { 1574 ztest_record_enospc("churn objects"); 1575 dmu_tx_abort(tx); 1576 return; 1577 } 1578 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1579 DMU_OT_NONE, 0, tx); 1580 ztest_set_random_blocksize(os, object, tx); 1581 error = dmu_object_free(os, object, tx); 1582 if (error) { 1583 fatal(0, "dmu_object_free('%s', %llu) = %d", 1584 osname, object, error); 1585 } 1586 dmu_tx_commit(tx); 1587 } 1588 1589 /* 1590 * Create a new batch of objects with randomly chosen 1591 * blocksizes and record them in the batch directory. 1592 */ 1593 for (b = 0; b < batchsize; b++) { 1594 uint32_t va_blksize; 1595 u_longlong_t va_nblocks; 1596 1597 tx = dmu_tx_create(os); 1598 dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t), 1599 sizeof (uint64_t)); 1600 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1601 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff, 1602 sizeof (uint64_t)); 1603 error = dmu_tx_assign(tx, TXG_WAIT); 1604 if (error) { 1605 ztest_record_enospc("create batchobj"); 1606 dmu_tx_abort(tx); 1607 return; 1608 } 1609 bonuslen = (int)ztest_random(dmu_bonus_max()) + 1; 1610 1611 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1612 DMU_OT_PLAIN_OTHER, bonuslen, tx); 1613 1614 ztest_set_random_blocksize(os, object, tx); 1615 1616 dmu_object_set_checksum(os, object, 1617 ztest_random_checksum(), tx); 1618 dmu_object_set_compress(os, object, 1619 ztest_random_compress(), tx); 1620 1621 dmu_write(os, batchobj, b * sizeof (uint64_t), 1622 sizeof (uint64_t), &object, tx); 1623 1624 /* 1625 * Write to both the bonus buffer and the regular data. 1626 */ 1627 VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db)); 1628 ASSERT3U(bonuslen, ==, db->db_size); 1629 1630 dmu_object_size_from_db(db, &va_blksize, &va_nblocks); 1631 ASSERT3S(va_nblocks, >=, 0); 1632 1633 dmu_buf_will_dirty(db, tx); 1634 1635 /* 1636 * See comments above regarding the contents of 1637 * the bonus buffer and the word at endoff. 1638 */ 1639 for (c = 0; c < db->db_size; c++) 1640 ((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen); 1641 1642 dmu_buf_rele(db, FTAG); 1643 1644 /* 1645 * Write to a large offset to increase indirection. 1646 */ 1647 dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx); 1648 1649 dmu_tx_commit(tx); 1650 } 1651 } 1652 1653 /* 1654 * Verify that dmu_{read,write} work as expected. 1655 */ 1656 typedef struct bufwad { 1657 uint64_t bw_index; 1658 uint64_t bw_txg; 1659 uint64_t bw_data; 1660 } bufwad_t; 1661 1662 typedef struct dmu_read_write_dir { 1663 uint64_t dd_packobj; 1664 uint64_t dd_bigobj; 1665 uint64_t dd_chunk; 1666 } dmu_read_write_dir_t; 1667 1668 void 1669 ztest_dmu_read_write(ztest_args_t *za) 1670 { 1671 objset_t *os = za->za_os; 1672 dmu_read_write_dir_t dd; 1673 dmu_tx_t *tx; 1674 int i, freeit, error; 1675 uint64_t n, s, txg; 1676 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 1677 uint64_t packoff, packsize, bigoff, bigsize; 1678 uint64_t regions = 997; 1679 uint64_t stride = 123456789ULL; 1680 uint64_t width = 40; 1681 int free_percent = 5; 1682 1683 /* 1684 * This test uses two objects, packobj and bigobj, that are always 1685 * updated together (i.e. in the same tx) so that their contents are 1686 * in sync and can be compared. Their contents relate to each other 1687 * in a simple way: packobj is a dense array of 'bufwad' structures, 1688 * while bigobj is a sparse array of the same bufwads. Specifically, 1689 * for any index n, there are three bufwads that should be identical: 1690 * 1691 * packobj, at offset n * sizeof (bufwad_t) 1692 * bigobj, at the head of the nth chunk 1693 * bigobj, at the tail of the nth chunk 1694 * 1695 * The chunk size is arbitrary. It doesn't have to be a power of two, 1696 * and it doesn't have any relation to the object blocksize. 1697 * The only requirement is that it can hold at least two bufwads. 1698 * 1699 * Normally, we write the bufwad to each of these locations. 1700 * However, free_percent of the time we instead write zeroes to 1701 * packobj and perform a dmu_free_range() on bigobj. By comparing 1702 * bigobj to packobj, we can verify that the DMU is correctly 1703 * tracking which parts of an object are allocated and free, 1704 * and that the contents of the allocated blocks are correct. 1705 */ 1706 1707 /* 1708 * Read the directory info. If it's the first time, set things up. 1709 */ 1710 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1711 sizeof (dd), &dd)); 1712 if (dd.dd_chunk == 0) { 1713 ASSERT(dd.dd_packobj == 0); 1714 ASSERT(dd.dd_bigobj == 0); 1715 tx = dmu_tx_create(os); 1716 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 1717 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1718 error = dmu_tx_assign(tx, TXG_WAIT); 1719 if (error) { 1720 ztest_record_enospc("create r/w directory"); 1721 dmu_tx_abort(tx); 1722 return; 1723 } 1724 1725 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1726 DMU_OT_NONE, 0, tx); 1727 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1728 DMU_OT_NONE, 0, tx); 1729 dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t); 1730 1731 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 1732 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 1733 1734 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 1735 tx); 1736 dmu_tx_commit(tx); 1737 } 1738 1739 /* 1740 * Prefetch a random chunk of the big object. 1741 * Our aim here is to get some async reads in flight 1742 * for blocks that we may free below; the DMU should 1743 * handle this race correctly. 1744 */ 1745 n = ztest_random(regions) * stride + ztest_random(width); 1746 s = 1 + ztest_random(2 * width - 1); 1747 dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk); 1748 1749 /* 1750 * Pick a random index and compute the offsets into packobj and bigobj. 1751 */ 1752 n = ztest_random(regions) * stride + ztest_random(width); 1753 s = 1 + ztest_random(width - 1); 1754 1755 packoff = n * sizeof (bufwad_t); 1756 packsize = s * sizeof (bufwad_t); 1757 1758 bigoff = n * dd.dd_chunk; 1759 bigsize = s * dd.dd_chunk; 1760 1761 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 1762 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 1763 1764 /* 1765 * free_percent of the time, free a range of bigobj rather than 1766 * overwriting it. 1767 */ 1768 freeit = (ztest_random(100) < free_percent); 1769 1770 /* 1771 * Read the current contents of our objects. 1772 */ 1773 error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf); 1774 ASSERT3U(error, ==, 0); 1775 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf); 1776 ASSERT3U(error, ==, 0); 1777 1778 /* 1779 * Get a tx for the mods to both packobj and bigobj. 1780 */ 1781 tx = dmu_tx_create(os); 1782 1783 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 1784 1785 if (freeit) 1786 dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize); 1787 else 1788 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 1789 1790 error = dmu_tx_assign(tx, TXG_WAIT); 1791 1792 if (error) { 1793 ztest_record_enospc("dmu r/w range"); 1794 dmu_tx_abort(tx); 1795 umem_free(packbuf, packsize); 1796 umem_free(bigbuf, bigsize); 1797 return; 1798 } 1799 1800 txg = dmu_tx_get_txg(tx); 1801 1802 /* 1803 * For each index from n to n + s, verify that the existing bufwad 1804 * in packobj matches the bufwads at the head and tail of the 1805 * corresponding chunk in bigobj. Then update all three bufwads 1806 * with the new values we want to write out. 1807 */ 1808 for (i = 0; i < s; i++) { 1809 /* LINTED */ 1810 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 1811 /* LINTED */ 1812 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 1813 /* LINTED */ 1814 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 1815 1816 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 1817 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 1818 1819 if (pack->bw_txg > txg) 1820 fatal(0, "future leak: got %llx, open txg is %llx", 1821 pack->bw_txg, txg); 1822 1823 if (pack->bw_data != 0 && pack->bw_index != n + i) 1824 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 1825 pack->bw_index, n, i); 1826 1827 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 1828 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 1829 1830 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 1831 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 1832 1833 if (freeit) { 1834 bzero(pack, sizeof (bufwad_t)); 1835 } else { 1836 pack->bw_index = n + i; 1837 pack->bw_txg = txg; 1838 pack->bw_data = 1 + ztest_random(-2ULL); 1839 } 1840 *bigH = *pack; 1841 *bigT = *pack; 1842 } 1843 1844 /* 1845 * We've verified all the old bufwads, and made new ones. 1846 * Now write them out. 1847 */ 1848 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 1849 1850 if (freeit) { 1851 if (zopt_verbose >= 6) { 1852 (void) printf("freeing offset %llx size %llx" 1853 " txg %llx\n", 1854 (u_longlong_t)bigoff, 1855 (u_longlong_t)bigsize, 1856 (u_longlong_t)txg); 1857 } 1858 VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff, 1859 bigsize, tx)); 1860 } else { 1861 if (zopt_verbose >= 6) { 1862 (void) printf("writing offset %llx size %llx" 1863 " txg %llx\n", 1864 (u_longlong_t)bigoff, 1865 (u_longlong_t)bigsize, 1866 (u_longlong_t)txg); 1867 } 1868 dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx); 1869 } 1870 1871 dmu_tx_commit(tx); 1872 1873 /* 1874 * Sanity check the stuff we just wrote. 1875 */ 1876 { 1877 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 1878 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 1879 1880 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 1881 packsize, packcheck)); 1882 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 1883 bigsize, bigcheck)); 1884 1885 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 1886 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 1887 1888 umem_free(packcheck, packsize); 1889 umem_free(bigcheck, bigsize); 1890 } 1891 1892 umem_free(packbuf, packsize); 1893 umem_free(bigbuf, bigsize); 1894 } 1895 1896 void 1897 ztest_dmu_write_parallel(ztest_args_t *za) 1898 { 1899 objset_t *os = za->za_os; 1900 dmu_tx_t *tx; 1901 dmu_buf_t *db; 1902 int i, b, error, do_free, bs; 1903 uint64_t off, txg_how, txg; 1904 mutex_t *lp; 1905 char osname[MAXNAMELEN]; 1906 char iobuf[SPA_MAXBLOCKSIZE]; 1907 ztest_block_tag_t rbt, wbt; 1908 1909 dmu_objset_name(os, osname); 1910 bs = ZTEST_DIROBJ_BLOCKSIZE; 1911 1912 /* 1913 * Have multiple threads write to large offsets in ZTEST_DIROBJ 1914 * to verify that having multiple threads writing to the same object 1915 * in parallel doesn't cause any trouble. 1916 * Also do parallel writes to the bonus buffer on occasion. 1917 */ 1918 for (i = 0; i < 50; i++) { 1919 b = ztest_random(ZTEST_SYNC_LOCKS); 1920 lp = &ztest_shared->zs_sync_lock[b]; 1921 1922 do_free = (ztest_random(4) == 0); 1923 1924 off = za->za_diroff_shared + ((uint64_t)b << SPA_MAXBLOCKSHIFT); 1925 1926 if (ztest_random(4) == 0) { 1927 /* 1928 * Do the bonus buffer instead of a regular block. 1929 */ 1930 do_free = 0; 1931 off = -1ULL; 1932 } 1933 1934 tx = dmu_tx_create(os); 1935 1936 if (off == -1ULL) 1937 dmu_tx_hold_bonus(tx, ZTEST_DIROBJ); 1938 else if (do_free) 1939 dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs); 1940 else 1941 dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs); 1942 1943 txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT; 1944 error = dmu_tx_assign(tx, txg_how); 1945 if (error) { 1946 if (error == ERESTART) { 1947 ASSERT(txg_how == TXG_NOWAIT); 1948 dmu_tx_wait(tx); 1949 dmu_tx_abort(tx); 1950 continue; 1951 } 1952 dmu_tx_abort(tx); 1953 ztest_record_enospc("dmu write parallel"); 1954 return; 1955 } 1956 txg = dmu_tx_get_txg(tx); 1957 1958 if (do_free) { 1959 (void) mutex_lock(lp); 1960 VERIFY(0 == dmu_free_range(os, ZTEST_DIROBJ, off, 1961 bs, tx)); 1962 (void) mutex_unlock(lp); 1963 dmu_tx_commit(tx); 1964 continue; 1965 } 1966 1967 wbt.bt_objset = dmu_objset_id(os); 1968 wbt.bt_object = ZTEST_DIROBJ; 1969 wbt.bt_offset = off; 1970 wbt.bt_txg = txg; 1971 wbt.bt_thread = za->za_instance; 1972 1973 if (off == -1ULL) { 1974 wbt.bt_seq = 0; 1975 VERIFY(0 == dmu_bonus_hold(os, ZTEST_DIROBJ, 1976 FTAG, &db)); 1977 ASSERT3U(db->db_size, ==, sizeof (wbt)); 1978 bcopy(db->db_data, &rbt, db->db_size); 1979 if (rbt.bt_objset != 0) { 1980 ASSERT3U(rbt.bt_objset, ==, wbt.bt_objset); 1981 ASSERT3U(rbt.bt_object, ==, wbt.bt_object); 1982 ASSERT3U(rbt.bt_offset, ==, wbt.bt_offset); 1983 ASSERT3U(rbt.bt_txg, <=, wbt.bt_txg); 1984 } 1985 dmu_buf_will_dirty(db, tx); 1986 bcopy(&wbt, db->db_data, db->db_size); 1987 dmu_buf_rele(db, FTAG); 1988 dmu_tx_commit(tx); 1989 continue; 1990 } 1991 1992 (void) mutex_lock(lp); 1993 1994 wbt.bt_seq = ztest_shared->zs_seq[b]++; 1995 1996 dmu_write(os, ZTEST_DIROBJ, off, sizeof (wbt), &wbt, tx); 1997 1998 (void) mutex_unlock(lp); 1999 2000 if (ztest_random(100) == 0) 2001 (void) poll(NULL, 0, 1); /* open dn_notxholds window */ 2002 2003 dmu_tx_commit(tx); 2004 2005 if (ztest_random(1000) == 0) 2006 txg_wait_synced(dmu_objset_pool(os), txg); 2007 2008 if (ztest_random(2) == 0) { 2009 blkptr_t blk = { 0 }; 2010 uint64_t blkoff; 2011 zbookmark_t zb; 2012 2013 (void) mutex_lock(lp); 2014 blkoff = P2ALIGN_TYPED(off, bs, uint64_t); 2015 error = dmu_buf_hold(os, 2016 ZTEST_DIROBJ, blkoff, FTAG, &db); 2017 if (error) { 2018 dprintf("dmu_buf_hold(%s, %d, %llx) = %d\n", 2019 osname, ZTEST_DIROBJ, blkoff, error); 2020 (void) mutex_unlock(lp); 2021 continue; 2022 } 2023 blkoff = off - blkoff; 2024 error = dmu_sync(NULL, db, &blk, txg, NULL, NULL); 2025 dmu_buf_rele(db, FTAG); 2026 (void) mutex_unlock(lp); 2027 if (error) { 2028 dprintf("dmu_sync(%s, %d, %llx) = %d\n", 2029 osname, ZTEST_DIROBJ, off, error); 2030 continue; 2031 } 2032 2033 if (blk.blk_birth == 0) { /* concurrent free */ 2034 continue; 2035 } 2036 txg_suspend(dmu_objset_pool(os)); 2037 2038 ASSERT(blk.blk_fill == 1); 2039 ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER); 2040 ASSERT3U(BP_GET_LEVEL(&blk), ==, 0); 2041 ASSERT3U(BP_GET_LSIZE(&blk), ==, bs); 2042 2043 /* 2044 * Read the block that dmu_sync() returned to 2045 * make sure its contents match what we wrote. 2046 * We do this while still txg_suspend()ed to ensure 2047 * that the block can't be reused before we read it. 2048 */ 2049 zb.zb_objset = dmu_objset_id(os); 2050 zb.zb_object = ZTEST_DIROBJ; 2051 zb.zb_level = 0; 2052 zb.zb_blkid = off / bs; 2053 error = zio_wait(zio_read(NULL, dmu_objset_spa(os), 2054 &blk, iobuf, bs, NULL, NULL, 2055 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb)); 2056 ASSERT(error == 0); 2057 2058 txg_resume(dmu_objset_pool(os)); 2059 2060 bcopy(&iobuf[blkoff], &rbt, sizeof (rbt)); 2061 2062 if (rbt.bt_objset == 0) /* concurrent free */ 2063 continue; 2064 2065 ASSERT3U(rbt.bt_objset, ==, wbt.bt_objset); 2066 ASSERT3U(rbt.bt_object, ==, wbt.bt_object); 2067 ASSERT3U(rbt.bt_offset, ==, wbt.bt_offset); 2068 2069 /* 2070 * The semantic of dmu_sync() is that we always 2071 * push the most recent version of the data, 2072 * so in the face of concurrent updates we may 2073 * see a newer version of the block. That's OK. 2074 */ 2075 ASSERT3U(rbt.bt_txg, >=, wbt.bt_txg); 2076 if (rbt.bt_thread == wbt.bt_thread) 2077 ASSERT3U(rbt.bt_seq, ==, wbt.bt_seq); 2078 else 2079 ASSERT3U(rbt.bt_seq, >, wbt.bt_seq); 2080 } 2081 } 2082 } 2083 2084 /* 2085 * Verify that zap_{create,destroy,add,remove,update} work as expected. 2086 */ 2087 #define ZTEST_ZAP_MIN_INTS 1 2088 #define ZTEST_ZAP_MAX_INTS 4 2089 #define ZTEST_ZAP_MAX_PROPS 1000 2090 2091 void 2092 ztest_zap(ztest_args_t *za) 2093 { 2094 objset_t *os = za->za_os; 2095 uint64_t object; 2096 uint64_t txg, last_txg; 2097 uint64_t value[ZTEST_ZAP_MAX_INTS]; 2098 uint64_t zl_ints, zl_intsize, prop; 2099 int i, ints; 2100 int iters = 100; 2101 dmu_tx_t *tx; 2102 char propname[100], txgname[100]; 2103 int error; 2104 char osname[MAXNAMELEN]; 2105 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 2106 2107 dmu_objset_name(os, osname); 2108 2109 /* 2110 * Create a new object if necessary, and record it in the directory. 2111 */ 2112 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2113 sizeof (uint64_t), &object)); 2114 2115 if (object == 0) { 2116 tx = dmu_tx_create(os); 2117 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 2118 sizeof (uint64_t)); 2119 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 2120 error = dmu_tx_assign(tx, TXG_WAIT); 2121 if (error) { 2122 ztest_record_enospc("create zap test obj"); 2123 dmu_tx_abort(tx); 2124 return; 2125 } 2126 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 2127 if (error) { 2128 fatal(0, "zap_create('%s', %llu) = %d", 2129 osname, object, error); 2130 } 2131 ASSERT(object != 0); 2132 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 2133 sizeof (uint64_t), &object, tx); 2134 /* 2135 * Generate a known hash collision, and verify that 2136 * we can lookup and remove both entries. 2137 */ 2138 for (i = 0; i < 2; i++) { 2139 value[i] = i; 2140 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2141 1, &value[i], tx); 2142 ASSERT3U(error, ==, 0); 2143 } 2144 for (i = 0; i < 2; i++) { 2145 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2146 1, &value[i], tx); 2147 ASSERT3U(error, ==, EEXIST); 2148 error = zap_length(os, object, hc[i], 2149 &zl_intsize, &zl_ints); 2150 ASSERT3U(error, ==, 0); 2151 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2152 ASSERT3U(zl_ints, ==, 1); 2153 } 2154 for (i = 0; i < 2; i++) { 2155 error = zap_remove(os, object, hc[i], tx); 2156 ASSERT3U(error, ==, 0); 2157 } 2158 2159 dmu_tx_commit(tx); 2160 } 2161 2162 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 2163 2164 while (--iters >= 0) { 2165 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2166 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2167 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2168 bzero(value, sizeof (value)); 2169 last_txg = 0; 2170 2171 /* 2172 * If these zap entries already exist, validate their contents. 2173 */ 2174 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2175 if (error == 0) { 2176 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2177 ASSERT3U(zl_ints, ==, 1); 2178 2179 error = zap_lookup(os, object, txgname, zl_intsize, 2180 zl_ints, &last_txg); 2181 2182 ASSERT3U(error, ==, 0); 2183 2184 error = zap_length(os, object, propname, &zl_intsize, 2185 &zl_ints); 2186 2187 ASSERT3U(error, ==, 0); 2188 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2189 ASSERT3U(zl_ints, ==, ints); 2190 2191 error = zap_lookup(os, object, propname, zl_intsize, 2192 zl_ints, value); 2193 2194 ASSERT3U(error, ==, 0); 2195 2196 for (i = 0; i < ints; i++) { 2197 ASSERT3U(value[i], ==, last_txg + object + i); 2198 } 2199 } else { 2200 ASSERT3U(error, ==, ENOENT); 2201 } 2202 2203 /* 2204 * Atomically update two entries in our zap object. 2205 * The first is named txg_%llu, and contains the txg 2206 * in which the property was last updated. The second 2207 * is named prop_%llu, and the nth element of its value 2208 * should be txg + object + n. 2209 */ 2210 tx = dmu_tx_create(os); 2211 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2212 error = dmu_tx_assign(tx, TXG_WAIT); 2213 if (error) { 2214 ztest_record_enospc("create zap entry"); 2215 dmu_tx_abort(tx); 2216 return; 2217 } 2218 txg = dmu_tx_get_txg(tx); 2219 2220 if (last_txg > txg) 2221 fatal(0, "zap future leak: old %llu new %llu", 2222 last_txg, txg); 2223 2224 for (i = 0; i < ints; i++) 2225 value[i] = txg + object + i; 2226 2227 error = zap_update(os, object, txgname, sizeof (uint64_t), 2228 1, &txg, tx); 2229 if (error) 2230 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2231 osname, object, txgname, error); 2232 2233 error = zap_update(os, object, propname, sizeof (uint64_t), 2234 ints, value, tx); 2235 if (error) 2236 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2237 osname, object, propname, error); 2238 2239 dmu_tx_commit(tx); 2240 2241 /* 2242 * Remove a random pair of entries. 2243 */ 2244 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2245 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2246 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2247 2248 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2249 2250 if (error == ENOENT) 2251 continue; 2252 2253 ASSERT3U(error, ==, 0); 2254 2255 tx = dmu_tx_create(os); 2256 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2257 error = dmu_tx_assign(tx, TXG_WAIT); 2258 if (error) { 2259 ztest_record_enospc("remove zap entry"); 2260 dmu_tx_abort(tx); 2261 return; 2262 } 2263 error = zap_remove(os, object, txgname, tx); 2264 if (error) 2265 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2266 osname, object, txgname, error); 2267 2268 error = zap_remove(os, object, propname, tx); 2269 if (error) 2270 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2271 osname, object, propname, error); 2272 2273 dmu_tx_commit(tx); 2274 } 2275 2276 /* 2277 * Once in a while, destroy the object. 2278 */ 2279 if (ztest_random(100) != 0) 2280 return; 2281 2282 tx = dmu_tx_create(os); 2283 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 2284 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 2285 error = dmu_tx_assign(tx, TXG_WAIT); 2286 if (error) { 2287 ztest_record_enospc("destroy zap object"); 2288 dmu_tx_abort(tx); 2289 return; 2290 } 2291 error = zap_destroy(os, object, tx); 2292 if (error) 2293 fatal(0, "zap_destroy('%s', %llu) = %d", 2294 osname, object, error); 2295 object = 0; 2296 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 2297 &object, tx); 2298 dmu_tx_commit(tx); 2299 } 2300 2301 void 2302 ztest_zap_parallel(ztest_args_t *za) 2303 { 2304 objset_t *os = za->za_os; 2305 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 2306 int iters = 100; 2307 dmu_tx_t *tx; 2308 int i, namelen, error; 2309 char name[20], string_value[20]; 2310 void *data; 2311 2312 while (--iters >= 0) { 2313 /* 2314 * Generate a random name of the form 'xxx.....' where each 2315 * x is a random printable character and the dots are dots. 2316 * There are 94 such characters, and the name length goes from 2317 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 2318 */ 2319 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 2320 2321 for (i = 0; i < 3; i++) 2322 name[i] = '!' + ztest_random('~' - '!' + 1); 2323 for (; i < namelen - 1; i++) 2324 name[i] = '.'; 2325 name[i] = '\0'; 2326 2327 if (ztest_random(2) == 0) 2328 object = ZTEST_MICROZAP_OBJ; 2329 else 2330 object = ZTEST_FATZAP_OBJ; 2331 2332 if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) { 2333 wsize = sizeof (txg); 2334 wc = 1; 2335 data = &txg; 2336 } else { 2337 wsize = 1; 2338 wc = namelen; 2339 data = string_value; 2340 } 2341 2342 count = -1ULL; 2343 VERIFY(zap_count(os, object, &count) == 0); 2344 ASSERT(count != -1ULL); 2345 2346 /* 2347 * Select an operation: length, lookup, add, update, remove. 2348 */ 2349 i = ztest_random(5); 2350 2351 if (i >= 2) { 2352 tx = dmu_tx_create(os); 2353 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2354 error = dmu_tx_assign(tx, TXG_WAIT); 2355 if (error) { 2356 ztest_record_enospc("zap parallel"); 2357 dmu_tx_abort(tx); 2358 return; 2359 } 2360 txg = dmu_tx_get_txg(tx); 2361 bcopy(name, string_value, namelen); 2362 } else { 2363 tx = NULL; 2364 txg = 0; 2365 bzero(string_value, namelen); 2366 } 2367 2368 switch (i) { 2369 2370 case 0: 2371 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 2372 if (error == 0) { 2373 ASSERT3U(wsize, ==, zl_wsize); 2374 ASSERT3U(wc, ==, zl_wc); 2375 } else { 2376 ASSERT3U(error, ==, ENOENT); 2377 } 2378 break; 2379 2380 case 1: 2381 error = zap_lookup(os, object, name, wsize, wc, data); 2382 if (error == 0) { 2383 if (data == string_value && 2384 bcmp(name, data, namelen) != 0) 2385 fatal(0, "name '%s' != val '%s' len %d", 2386 name, data, namelen); 2387 } else { 2388 ASSERT3U(error, ==, ENOENT); 2389 } 2390 break; 2391 2392 case 2: 2393 error = zap_add(os, object, name, wsize, wc, data, tx); 2394 ASSERT(error == 0 || error == EEXIST); 2395 break; 2396 2397 case 3: 2398 VERIFY(zap_update(os, object, name, wsize, wc, 2399 data, tx) == 0); 2400 break; 2401 2402 case 4: 2403 error = zap_remove(os, object, name, tx); 2404 ASSERT(error == 0 || error == ENOENT); 2405 break; 2406 } 2407 2408 if (tx != NULL) 2409 dmu_tx_commit(tx); 2410 } 2411 } 2412 2413 void 2414 ztest_dsl_prop_get_set(ztest_args_t *za) 2415 { 2416 objset_t *os = za->za_os; 2417 int i, inherit; 2418 uint64_t value; 2419 const char *prop, *valname; 2420 char setpoint[MAXPATHLEN]; 2421 char osname[MAXNAMELEN]; 2422 int error; 2423 2424 (void) rw_rdlock(&ztest_shared->zs_name_lock); 2425 2426 dmu_objset_name(os, osname); 2427 2428 for (i = 0; i < 2; i++) { 2429 if (i == 0) { 2430 prop = "checksum"; 2431 value = ztest_random_checksum(); 2432 inherit = (value == ZIO_CHECKSUM_INHERIT); 2433 } else { 2434 prop = "compression"; 2435 value = ztest_random_compress(); 2436 inherit = (value == ZIO_COMPRESS_INHERIT); 2437 } 2438 2439 error = dsl_prop_set(osname, prop, sizeof (value), 2440 !inherit, &value); 2441 2442 if (error == ENOSPC) { 2443 ztest_record_enospc("dsl_prop_set"); 2444 break; 2445 } 2446 2447 ASSERT3U(error, ==, 0); 2448 2449 VERIFY3U(dsl_prop_get(osname, prop, sizeof (value), 2450 1, &value, setpoint), ==, 0); 2451 2452 if (i == 0) 2453 valname = zio_checksum_table[value].ci_name; 2454 else 2455 valname = zio_compress_table[value].ci_name; 2456 2457 if (zopt_verbose >= 6) { 2458 (void) printf("%s %s = %s for '%s'\n", 2459 osname, prop, valname, setpoint); 2460 } 2461 } 2462 2463 (void) rw_unlock(&ztest_shared->zs_name_lock); 2464 } 2465 2466 static void 2467 ztest_error_setup(vdev_t *vd, int mode, int mask, uint64_t arg) 2468 { 2469 int c; 2470 2471 for (c = 0; c < vd->vdev_children; c++) 2472 ztest_error_setup(vd->vdev_child[c], mode, mask, arg); 2473 2474 if (vd->vdev_path != NULL) { 2475 vd->vdev_fault_mode = mode; 2476 vd->vdev_fault_mask = mask; 2477 vd->vdev_fault_arg = arg; 2478 } 2479 } 2480 2481 /* 2482 * Inject random faults into the on-disk data. 2483 */ 2484 void 2485 ztest_fault_inject(ztest_args_t *za) 2486 { 2487 int fd; 2488 uint64_t offset; 2489 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 2490 uint64_t bad = 0x1990c0ffeedecade; 2491 uint64_t top, leaf; 2492 char path0[MAXPATHLEN]; 2493 char pathrand[MAXPATHLEN]; 2494 size_t fsize; 2495 spa_t *spa = dmu_objset_spa(za->za_os); 2496 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 2497 int iters = 1000; 2498 vdev_t *vd0; 2499 uint64_t guid0 = 0; 2500 2501 /* 2502 * We can't inject faults when we have no fault tolerance. 2503 */ 2504 if (zopt_maxfaults == 0) 2505 return; 2506 2507 ASSERT(leaves >= 2); 2508 2509 /* 2510 * Pick a random top-level vdev. 2511 */ 2512 spa_config_enter(spa, RW_READER, FTAG); 2513 top = ztest_random(spa->spa_root_vdev->vdev_children); 2514 spa_config_exit(spa, FTAG); 2515 2516 /* 2517 * Pick a random leaf. 2518 */ 2519 leaf = ztest_random(leaves); 2520 2521 /* 2522 * Generate paths to the first two leaves in this top-level vdev, 2523 * and to the random leaf we selected. We'll induce transient 2524 * I/O errors and random online/offline activity on leaf 0, 2525 * and we'll write random garbage to the randomly chosen leaf. 2526 */ 2527 (void) snprintf(path0, sizeof (path0), 2528 ztest_dev_template, zopt_dir, zopt_pool, top * leaves + 0); 2529 (void) snprintf(pathrand, sizeof (pathrand), 2530 ztest_dev_template, zopt_dir, zopt_pool, top * leaves + leaf); 2531 2532 dprintf("damaging %s and %s\n", path0, pathrand); 2533 2534 spa_config_enter(spa, RW_READER, FTAG); 2535 2536 /* 2537 * If we can tolerate two or more faults, make vd0 fail randomly. 2538 */ 2539 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 2540 if (vd0 != NULL && zopt_maxfaults >= 2) { 2541 guid0 = vd0->vdev_guid; 2542 ztest_error_setup(vd0, VDEV_FAULT_COUNT, 2543 (1U << ZIO_TYPE_READ) | (1U << ZIO_TYPE_WRITE), 100); 2544 } 2545 2546 spa_config_exit(spa, FTAG); 2547 2548 /* 2549 * If we can tolerate two or more faults, randomly online/offline vd0. 2550 */ 2551 if (zopt_maxfaults >= 2 && guid0 != 0) { 2552 if (ztest_random(10) < 6) 2553 (void) vdev_offline(spa, guid0, B_TRUE); 2554 else 2555 (void) vdev_online(spa, guid0); 2556 } 2557 2558 /* 2559 * We have at least single-fault tolerance, so inject data corruption. 2560 */ 2561 fd = open(pathrand, O_RDWR); 2562 2563 if (fd == -1) /* we hit a gap in the device namespace */ 2564 return; 2565 2566 fsize = lseek(fd, 0, SEEK_END); 2567 2568 while (--iters != 0) { 2569 offset = ztest_random(fsize / (leaves << bshift)) * 2570 (leaves << bshift) + (leaf << bshift) + 2571 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 2572 2573 if (offset >= fsize) 2574 continue; 2575 2576 if (zopt_verbose >= 6) 2577 (void) printf("injecting bad word into %s," 2578 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 2579 2580 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 2581 fatal(1, "can't inject bad word at 0x%llx in %s", 2582 offset, pathrand); 2583 } 2584 2585 (void) close(fd); 2586 } 2587 2588 /* 2589 * Scrub the pool. 2590 */ 2591 void 2592 ztest_scrub(ztest_args_t *za) 2593 { 2594 spa_t *spa = dmu_objset_spa(za->za_os); 2595 2596 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_FALSE); 2597 (void) poll(NULL, 0, 1000); /* wait a second, then force a restart */ 2598 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_FALSE); 2599 } 2600 2601 /* 2602 * Rename the pool to a different name and then rename it back. 2603 */ 2604 void 2605 ztest_spa_rename(ztest_args_t *za) 2606 { 2607 char *oldname, *newname; 2608 int error; 2609 spa_t *spa; 2610 2611 (void) rw_wrlock(&ztest_shared->zs_name_lock); 2612 2613 oldname = za->za_pool; 2614 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 2615 (void) strcpy(newname, oldname); 2616 (void) strcat(newname, "_tmp"); 2617 2618 /* 2619 * Do the rename 2620 */ 2621 error = spa_rename(oldname, newname); 2622 if (error) 2623 fatal(0, "spa_rename('%s', '%s') = %d", oldname, 2624 newname, error); 2625 2626 /* 2627 * Try to open it under the old name, which shouldn't exist 2628 */ 2629 error = spa_open(oldname, &spa, FTAG); 2630 if (error != ENOENT) 2631 fatal(0, "spa_open('%s') = %d", oldname, error); 2632 2633 /* 2634 * Open it under the new name and make sure it's still the same spa_t. 2635 */ 2636 error = spa_open(newname, &spa, FTAG); 2637 if (error != 0) 2638 fatal(0, "spa_open('%s') = %d", newname, error); 2639 2640 ASSERT(spa == dmu_objset_spa(za->za_os)); 2641 spa_close(spa, FTAG); 2642 2643 /* 2644 * Rename it back to the original 2645 */ 2646 error = spa_rename(newname, oldname); 2647 if (error) 2648 fatal(0, "spa_rename('%s', '%s') = %d", newname, 2649 oldname, error); 2650 2651 /* 2652 * Make sure it can still be opened 2653 */ 2654 error = spa_open(oldname, &spa, FTAG); 2655 if (error != 0) 2656 fatal(0, "spa_open('%s') = %d", oldname, error); 2657 2658 ASSERT(spa == dmu_objset_spa(za->za_os)); 2659 spa_close(spa, FTAG); 2660 2661 umem_free(newname, strlen(newname) + 1); 2662 2663 (void) rw_unlock(&ztest_shared->zs_name_lock); 2664 } 2665 2666 2667 /* 2668 * Completely obliterate one disk. 2669 */ 2670 static void 2671 ztest_obliterate_one_disk(uint64_t vdev) 2672 { 2673 int fd; 2674 char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN]; 2675 size_t fsize; 2676 2677 if (zopt_maxfaults < 2) 2678 return; 2679 2680 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 2681 (void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name); 2682 2683 fd = open(dev_name, O_RDWR); 2684 2685 if (fd == -1) 2686 fatal(1, "can't open %s", dev_name); 2687 2688 /* 2689 * Determine the size. 2690 */ 2691 fsize = lseek(fd, 0, SEEK_END); 2692 2693 (void) close(fd); 2694 2695 /* 2696 * Rename the old device to dev_name.old (useful for debugging). 2697 */ 2698 VERIFY(rename(dev_name, copy_name) == 0); 2699 2700 /* 2701 * Create a new one. 2702 */ 2703 VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0); 2704 VERIFY(ftruncate(fd, fsize) == 0); 2705 (void) close(fd); 2706 } 2707 2708 static void 2709 ztest_replace_one_disk(spa_t *spa, uint64_t vdev) 2710 { 2711 char dev_name[MAXPATHLEN]; 2712 nvlist_t *file, *root; 2713 int error; 2714 uint64_t guid; 2715 uint64_t ashift = ztest_get_ashift(); 2716 vdev_t *vd; 2717 2718 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 2719 2720 /* 2721 * Build the nvlist describing dev_name. 2722 */ 2723 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 2724 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 2725 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, dev_name) == 0); 2726 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 2727 2728 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 2729 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 2730 VERIFY(nvlist_add_nvlist_array(root, ZPOOL_CONFIG_CHILDREN, 2731 &file, 1) == 0); 2732 2733 spa_config_enter(spa, RW_READER, FTAG); 2734 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL) 2735 guid = 0; 2736 else 2737 guid = vd->vdev_guid; 2738 spa_config_exit(spa, FTAG); 2739 error = spa_vdev_attach(spa, guid, root, B_TRUE); 2740 if (error != 0 && 2741 error != EBUSY && 2742 error != ENOTSUP && 2743 error != ENODEV && 2744 error != EDOM) 2745 fatal(0, "spa_vdev_attach(in-place) = %d", error); 2746 2747 nvlist_free(file); 2748 nvlist_free(root); 2749 } 2750 2751 static void 2752 ztest_verify_blocks(char *pool) 2753 { 2754 int status; 2755 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 2756 char zbuf[1024]; 2757 char *bin; 2758 FILE *fp; 2759 2760 (void) realpath(getexecname(), zdb); 2761 2762 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 2763 bin = strstr(zdb, "/usr/bin/"); 2764 /* LINTED */ 2765 (void) sprintf(bin, "/usr/sbin/zdb -bc%s%s -U -O %s %s", 2766 zopt_verbose >= 3 ? "s" : "", 2767 zopt_verbose >= 4 ? "v" : "", 2768 ztest_random(2) == 0 ? "pre" : "post", pool); 2769 2770 if (zopt_verbose >= 5) 2771 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 2772 2773 fp = popen(zdb, "r"); 2774 2775 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 2776 if (zopt_verbose >= 3) 2777 (void) printf("%s", zbuf); 2778 2779 status = pclose(fp); 2780 2781 if (status == 0) 2782 return; 2783 2784 ztest_dump_core = 0; 2785 if (WIFEXITED(status)) 2786 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 2787 else 2788 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 2789 } 2790 2791 static void 2792 ztest_walk_pool_directory(char *header) 2793 { 2794 spa_t *spa = NULL; 2795 2796 if (zopt_verbose >= 6) 2797 (void) printf("%s\n", header); 2798 2799 mutex_enter(&spa_namespace_lock); 2800 while ((spa = spa_next(spa)) != NULL) 2801 if (zopt_verbose >= 6) 2802 (void) printf("\t%s\n", spa_name(spa)); 2803 mutex_exit(&spa_namespace_lock); 2804 } 2805 2806 static void 2807 ztest_spa_import_export(char *oldname, char *newname) 2808 { 2809 nvlist_t *config; 2810 uint64_t pool_guid; 2811 spa_t *spa; 2812 int error; 2813 2814 if (zopt_verbose >= 4) { 2815 (void) printf("import/export: old = %s, new = %s\n", 2816 oldname, newname); 2817 } 2818 2819 /* 2820 * Clean up from previous runs. 2821 */ 2822 (void) spa_destroy(newname); 2823 2824 /* 2825 * Get the pool's configuration and guid. 2826 */ 2827 error = spa_open(oldname, &spa, FTAG); 2828 if (error) 2829 fatal(0, "spa_open('%s') = %d", oldname, error); 2830 2831 pool_guid = spa_guid(spa); 2832 spa_close(spa, FTAG); 2833 2834 ztest_walk_pool_directory("pools before export"); 2835 2836 /* 2837 * Export it. 2838 */ 2839 error = spa_export(oldname, &config); 2840 if (error) 2841 fatal(0, "spa_export('%s') = %d", oldname, error); 2842 2843 ztest_walk_pool_directory("pools after export"); 2844 2845 /* 2846 * Import it under the new name. 2847 */ 2848 error = spa_import(newname, config, NULL); 2849 if (error) 2850 fatal(0, "spa_import('%s') = %d", newname, error); 2851 2852 ztest_walk_pool_directory("pools after import"); 2853 2854 /* 2855 * Try to import it again -- should fail with EEXIST. 2856 */ 2857 error = spa_import(newname, config, NULL); 2858 if (error != EEXIST) 2859 fatal(0, "spa_import('%s') twice", newname); 2860 2861 /* 2862 * Try to import it under a different name -- should fail with EEXIST. 2863 */ 2864 error = spa_import(oldname, config, NULL); 2865 if (error != EEXIST) 2866 fatal(0, "spa_import('%s') under multiple names", newname); 2867 2868 /* 2869 * Verify that the pool is no longer visible under the old name. 2870 */ 2871 error = spa_open(oldname, &spa, FTAG); 2872 if (error != ENOENT) 2873 fatal(0, "spa_open('%s') = %d", newname, error); 2874 2875 /* 2876 * Verify that we can open and close the pool using the new name. 2877 */ 2878 error = spa_open(newname, &spa, FTAG); 2879 if (error) 2880 fatal(0, "spa_open('%s') = %d", newname, error); 2881 ASSERT(pool_guid == spa_guid(spa)); 2882 spa_close(spa, FTAG); 2883 2884 nvlist_free(config); 2885 } 2886 2887 static void * 2888 ztest_thread(void *arg) 2889 { 2890 ztest_args_t *za = arg; 2891 ztest_shared_t *zs = ztest_shared; 2892 hrtime_t now, functime; 2893 ztest_info_t *zi; 2894 int f; 2895 2896 while ((now = gethrtime()) < za->za_stop) { 2897 /* 2898 * See if it's time to force a crash. 2899 */ 2900 if (now > za->za_kill) { 2901 zs->zs_alloc = spa_get_alloc(dmu_objset_spa(za->za_os)); 2902 zs->zs_space = spa_get_space(dmu_objset_spa(za->za_os)); 2903 (void) kill(getpid(), SIGKILL); 2904 } 2905 2906 /* 2907 * Pick a random function. 2908 */ 2909 f = ztest_random(ZTEST_FUNCS); 2910 zi = &zs->zs_info[f]; 2911 2912 /* 2913 * Decide whether to call it, based on the requested frequency. 2914 */ 2915 if (zi->zi_call_target == 0 || 2916 (double)zi->zi_call_total / zi->zi_call_target > 2917 (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC)) 2918 continue; 2919 2920 atomic_add_64(&zi->zi_calls, 1); 2921 atomic_add_64(&zi->zi_call_total, 1); 2922 2923 za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) * 2924 ZTEST_DIRSIZE; 2925 za->za_diroff_shared = (1ULL << 63); 2926 2927 ztest_dmu_write_parallel(za); 2928 2929 zi->zi_func(za); 2930 2931 functime = gethrtime() - now; 2932 2933 atomic_add_64(&zi->zi_call_time, functime); 2934 2935 if (zopt_verbose >= 4) { 2936 Dl_info dli; 2937 (void) dladdr((void *)zi->zi_func, &dli); 2938 (void) printf("%6.2f sec in %s\n", 2939 (double)functime / NANOSEC, dli.dli_sname); 2940 } 2941 2942 /* 2943 * If we're getting ENOSPC with some regularity, stop. 2944 */ 2945 if (zs->zs_enospc_count > 10) 2946 break; 2947 } 2948 2949 return (NULL); 2950 } 2951 2952 /* 2953 * Kick off threads to run tests on all datasets in parallel. 2954 */ 2955 static void 2956 ztest_run(char *pool) 2957 { 2958 int t, d, error; 2959 ztest_shared_t *zs = ztest_shared; 2960 ztest_args_t *za; 2961 spa_t *spa; 2962 char name[100]; 2963 2964 (void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL); 2965 (void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL); 2966 2967 for (t = 0; t < ZTEST_SYNC_LOCKS; t++) 2968 (void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL); 2969 2970 /* 2971 * Destroy one disk before we even start. 2972 * It's mirrored, so everything should work just fine. 2973 * This makes us exercise fault handling very early in spa_load(). 2974 */ 2975 ztest_obliterate_one_disk(0); 2976 2977 /* 2978 * Verify that the sum of the sizes of all blocks in the pool 2979 * equals the SPA's allocated space total. 2980 */ 2981 ztest_verify_blocks(pool); 2982 2983 /* 2984 * Kick off a replacement of the disk we just obliterated. 2985 */ 2986 kernel_init(FREAD | FWRITE); 2987 error = spa_open(pool, &spa, FTAG); 2988 if (error) 2989 fatal(0, "spa_open(%s) = %d", pool, error); 2990 ztest_replace_one_disk(spa, 0); 2991 if (zopt_verbose >= 5) 2992 show_pool_stats(spa); 2993 spa_close(spa, FTAG); 2994 kernel_fini(); 2995 2996 kernel_init(FREAD | FWRITE); 2997 2998 /* 2999 * Verify that we can export the pool and reimport it under a 3000 * different name. 3001 */ 3002 if (ztest_random(2) == 0) { 3003 (void) snprintf(name, 100, "%s_import", pool); 3004 ztest_spa_import_export(pool, name); 3005 ztest_spa_import_export(name, pool); 3006 } 3007 3008 /* 3009 * Verify that we can loop over all pools. 3010 */ 3011 mutex_enter(&spa_namespace_lock); 3012 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) { 3013 if (zopt_verbose > 3) { 3014 (void) printf("spa_next: found %s\n", spa_name(spa)); 3015 } 3016 } 3017 mutex_exit(&spa_namespace_lock); 3018 3019 /* 3020 * Open our pool. 3021 */ 3022 error = spa_open(pool, &spa, FTAG); 3023 if (error) 3024 fatal(0, "spa_open() = %d", error); 3025 3026 /* 3027 * Verify that we can safely inquire about about any object, 3028 * whether it's allocated or not. To make it interesting, 3029 * we probe a 5-wide window around each power of two. 3030 * This hits all edge cases, including zero and the max. 3031 */ 3032 for (t = 0; t < 64; t++) { 3033 for (d = -5; d <= 5; d++) { 3034 error = dmu_object_info(spa->spa_meta_objset, 3035 (1ULL << t) + d, NULL); 3036 ASSERT(error == 0 || error == ENOENT || 3037 error == EINVAL); 3038 } 3039 } 3040 3041 /* 3042 * Now kick off all the tests that run in parallel. 3043 */ 3044 zs->zs_enospc_count = 0; 3045 3046 za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL); 3047 3048 if (zopt_verbose >= 4) 3049 (void) printf("starting main threads...\n"); 3050 3051 za[0].za_start = gethrtime(); 3052 za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC; 3053 za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time); 3054 za[0].za_kill = za[0].za_stop; 3055 if (ztest_random(100) < zopt_killrate) 3056 za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC); 3057 3058 for (t = 0; t < zopt_threads; t++) { 3059 d = t % zopt_datasets; 3060 if (t < zopt_datasets) { 3061 ztest_replay_t zr; 3062 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3063 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3064 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 3065 ztest_create_cb, NULL); 3066 if (error != 0 && error != EEXIST) { 3067 if (error == ENOSPC) { 3068 zs->zs_enospc_count++; 3069 (void) rw_unlock( 3070 &ztest_shared->zs_name_lock); 3071 break; 3072 } 3073 fatal(0, "dmu_objset_create(%s) = %d", 3074 name, error); 3075 } 3076 error = dmu_objset_open(name, DMU_OST_OTHER, 3077 DS_MODE_STANDARD, &za[d].za_os); 3078 if (error) 3079 fatal(0, "dmu_objset_open('%s') = %d", 3080 name, error); 3081 (void) rw_unlock(&ztest_shared->zs_name_lock); 3082 zr.zr_os = za[d].za_os; 3083 zil_replay(zr.zr_os, &zr, &zr.zr_assign, 3084 ztest_replay_vector); 3085 za[d].za_zilog = zil_open(za[d].za_os, NULL); 3086 } 3087 za[t].za_pool = spa_strdup(pool); 3088 za[t].za_os = za[d].za_os; 3089 za[t].za_zilog = za[d].za_zilog; 3090 za[t].za_instance = t; 3091 za[t].za_random = ztest_random(-1ULL); 3092 za[t].za_start = za[0].za_start; 3093 za[t].za_stop = za[0].za_stop; 3094 za[t].za_kill = za[0].za_kill; 3095 3096 error = thr_create(0, 0, ztest_thread, &za[t], THR_BOUND, 3097 &za[t].za_thread); 3098 if (error) 3099 fatal(0, "can't create thread %d: error %d", 3100 t, error); 3101 } 3102 3103 while (--t >= 0) { 3104 error = thr_join(za[t].za_thread, NULL, NULL); 3105 if (error) 3106 fatal(0, "thr_join(%d) = %d", t, error); 3107 if (za[t].za_th) 3108 traverse_fini(za[t].za_th); 3109 if (t < zopt_datasets) { 3110 zil_close(za[t].za_zilog); 3111 dmu_objset_close(za[t].za_os); 3112 } 3113 spa_strfree(za[t].za_pool); 3114 } 3115 3116 umem_free(za, zopt_threads * sizeof (ztest_args_t)); 3117 3118 if (zopt_verbose >= 3) 3119 show_pool_stats(spa); 3120 3121 txg_wait_synced(spa_get_dsl(spa), 0); 3122 3123 zs->zs_alloc = spa_get_alloc(spa); 3124 zs->zs_space = spa_get_space(spa); 3125 3126 /* 3127 * Did we have out-of-space errors? If so, destroy a random objset. 3128 */ 3129 if (zs->zs_enospc_count != 0) { 3130 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3131 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, 3132 (int)ztest_random(zopt_datasets)); 3133 if (zopt_verbose >= 3) 3134 (void) printf("Destroying %s to free up space\n", name); 3135 (void) dmu_objset_find(name, ztest_destroy_cb, NULL, 3136 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 3137 (void) rw_unlock(&ztest_shared->zs_name_lock); 3138 } 3139 3140 txg_wait_synced(spa_get_dsl(spa), 0); 3141 3142 /* 3143 * Right before closing the pool, kick off a bunch of async I/O; 3144 * spa_close() should wait for it to complete. 3145 */ 3146 for (t = 1; t < 50; t++) 3147 dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15); 3148 3149 spa_close(spa, FTAG); 3150 3151 kernel_fini(); 3152 } 3153 3154 void 3155 print_time(hrtime_t t, char *timebuf) 3156 { 3157 hrtime_t s = t / NANOSEC; 3158 hrtime_t m = s / 60; 3159 hrtime_t h = m / 60; 3160 hrtime_t d = h / 24; 3161 3162 s -= m * 60; 3163 m -= h * 60; 3164 h -= d * 24; 3165 3166 timebuf[0] = '\0'; 3167 3168 if (d) 3169 (void) sprintf(timebuf, 3170 "%llud%02lluh%02llum%02llus", d, h, m, s); 3171 else if (h) 3172 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 3173 else if (m) 3174 (void) sprintf(timebuf, "%llum%02llus", m, s); 3175 else 3176 (void) sprintf(timebuf, "%llus", s); 3177 } 3178 3179 /* 3180 * Create a storage pool with the given name and initial vdev size. 3181 * Then create the specified number of datasets in the pool. 3182 */ 3183 static void 3184 ztest_init(char *pool) 3185 { 3186 spa_t *spa; 3187 int error; 3188 nvlist_t *nvroot; 3189 3190 kernel_init(FREAD | FWRITE); 3191 3192 /* 3193 * Create the storage pool. 3194 */ 3195 (void) spa_destroy(pool); 3196 ztest_shared->zs_vdev_primaries = 0; 3197 nvroot = make_vdev_root(zopt_vdev_size, zopt_raidz, zopt_mirrors, 1); 3198 error = spa_create(pool, nvroot, NULL); 3199 nvlist_free(nvroot); 3200 3201 if (error) 3202 fatal(0, "spa_create() = %d", error); 3203 error = spa_open(pool, &spa, FTAG); 3204 if (error) 3205 fatal(0, "spa_open() = %d", error); 3206 3207 if (zopt_verbose >= 3) 3208 show_pool_stats(spa); 3209 3210 spa_close(spa, FTAG); 3211 3212 kernel_fini(); 3213 } 3214 3215 int 3216 main(int argc, char **argv) 3217 { 3218 int kills = 0; 3219 int iters = 0; 3220 int i, f; 3221 ztest_shared_t *zs; 3222 ztest_info_t *zi; 3223 char timebuf[100]; 3224 char numbuf[6]; 3225 3226 (void) setvbuf(stdout, NULL, _IOLBF, 0); 3227 3228 /* Override location of zpool.cache */ 3229 spa_config_dir = "/tmp"; 3230 3231 ztest_random_fd = open("/dev/urandom", O_RDONLY); 3232 3233 process_options(argc, argv); 3234 3235 argc -= optind; 3236 argv += optind; 3237 3238 dprintf_setup(&argc, argv); 3239 3240 /* 3241 * Blow away any existing copy of zpool.cache 3242 */ 3243 if (zopt_init != 0) 3244 (void) remove("/tmp/zpool.cache"); 3245 3246 zs = ztest_shared = (void *)mmap(0, 3247 P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()), 3248 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 3249 3250 if (zopt_verbose >= 1) { 3251 (void) printf("%llu vdevs, %d datasets, %d threads," 3252 " %llu seconds...\n", 3253 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 3254 (u_longlong_t)zopt_time); 3255 } 3256 3257 /* 3258 * Create and initialize our storage pool. 3259 */ 3260 for (i = 1; i <= zopt_init; i++) { 3261 bzero(zs, sizeof (ztest_shared_t)); 3262 if (zopt_verbose >= 3 && zopt_init != 1) 3263 (void) printf("ztest_init(), pass %d\n", i); 3264 ztest_init(zopt_pool); 3265 } 3266 3267 /* 3268 * Initialize the call targets for each function. 3269 */ 3270 for (f = 0; f < ZTEST_FUNCS; f++) { 3271 zi = &zs->zs_info[f]; 3272 3273 *zi = ztest_info[f]; 3274 3275 if (*zi->zi_interval == 0) 3276 zi->zi_call_target = UINT64_MAX; 3277 else 3278 zi->zi_call_target = zopt_time / *zi->zi_interval; 3279 } 3280 3281 zs->zs_start_time = gethrtime(); 3282 zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC; 3283 3284 /* 3285 * Run the tests in a loop. These tests include fault injection 3286 * to verify that self-healing data works, and forced crashes 3287 * to verify that we never lose on-disk consistency. 3288 */ 3289 while (gethrtime() < zs->zs_stop_time) { 3290 int status; 3291 pid_t pid; 3292 char *tmp; 3293 3294 /* 3295 * Initialize the workload counters for each function. 3296 */ 3297 for (f = 0; f < ZTEST_FUNCS; f++) { 3298 zi = &zs->zs_info[f]; 3299 zi->zi_calls = 0; 3300 zi->zi_call_time = 0; 3301 } 3302 3303 pid = fork(); 3304 3305 if (pid == -1) 3306 fatal(1, "fork failed"); 3307 3308 if (pid == 0) { /* child */ 3309 struct rlimit rl = { 1024, 1024 }; 3310 (void) setrlimit(RLIMIT_NOFILE, &rl); 3311 (void) enable_extended_FILE_stdio(-1, -1); 3312 ztest_run(zopt_pool); 3313 exit(0); 3314 } 3315 3316 while (waitpid(pid, &status, 0) != pid) 3317 continue; 3318 3319 if (WIFEXITED(status)) { 3320 if (WEXITSTATUS(status) != 0) { 3321 (void) fprintf(stderr, 3322 "child exited with code %d\n", 3323 WEXITSTATUS(status)); 3324 exit(2); 3325 } 3326 } else if (WIFSIGNALED(status)) { 3327 if (WTERMSIG(status) != SIGKILL) { 3328 (void) fprintf(stderr, 3329 "child died with signal %d\n", 3330 WTERMSIG(status)); 3331 exit(3); 3332 } 3333 kills++; 3334 } else { 3335 (void) fprintf(stderr, "something strange happened " 3336 "to child\n"); 3337 exit(4); 3338 } 3339 3340 iters++; 3341 3342 if (zopt_verbose >= 1) { 3343 hrtime_t now = gethrtime(); 3344 3345 now = MIN(now, zs->zs_stop_time); 3346 print_time(zs->zs_stop_time - now, timebuf); 3347 nicenum(zs->zs_space, numbuf); 3348 3349 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 3350 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 3351 iters, 3352 WIFEXITED(status) ? "Complete" : "SIGKILL", 3353 (u_longlong_t)zs->zs_enospc_count, 3354 100.0 * zs->zs_alloc / zs->zs_space, 3355 numbuf, 3356 100.0 * (now - zs->zs_start_time) / 3357 (zopt_time * NANOSEC), timebuf); 3358 } 3359 3360 if (zopt_verbose >= 2) { 3361 (void) printf("\nWorkload summary:\n\n"); 3362 (void) printf("%7s %9s %s\n", 3363 "Calls", "Time", "Function"); 3364 (void) printf("%7s %9s %s\n", 3365 "-----", "----", "--------"); 3366 for (f = 0; f < ZTEST_FUNCS; f++) { 3367 Dl_info dli; 3368 3369 zi = &zs->zs_info[f]; 3370 print_time(zi->zi_call_time, timebuf); 3371 (void) dladdr((void *)zi->zi_func, &dli); 3372 (void) printf("%7llu %9s %s\n", 3373 (u_longlong_t)zi->zi_calls, timebuf, 3374 dli.dli_sname); 3375 } 3376 (void) printf("\n"); 3377 } 3378 3379 /* 3380 * It's possible that we killed a child during a rename test, in 3381 * which case we'll have a 'ztest_tmp' pool lying around instead 3382 * of 'ztest'. Do a blind rename in case this happened. 3383 */ 3384 tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL); 3385 (void) strcpy(tmp, zopt_pool); 3386 (void) strcat(tmp, "_tmp"); 3387 kernel_init(FREAD | FWRITE); 3388 (void) spa_rename(tmp, zopt_pool); 3389 kernel_fini(); 3390 umem_free(tmp, strlen(tmp) + 1); 3391 } 3392 3393 ztest_verify_blocks(zopt_pool); 3394 3395 if (zopt_verbose >= 1) { 3396 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 3397 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 3398 } 3399 3400 return (0); 3401 } 3402