xref: /linux/virt/kvm/kvm_main.c (revision 662fa3d6099374c4615bf64d06895e3573b935b2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 #include <linux/kvm_dirty_ring.h>
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75 
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80 
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85 
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90 
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95 
96 /*
97  * Ordering of locks:
98  *
99  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101 
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105 
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109 
110 static struct kmem_cache *kvm_vcpu_cache;
111 
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114 
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117 
118 static const struct file_operations stat_fops_per_vm;
119 
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 			   unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 				  unsigned long arg);
125 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 				unsigned long arg) { return -EINVAL; }
136 
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 	return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
142 			.open		= kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146 
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157 
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 						   unsigned long start, unsigned long end)
160 {
161 }
162 
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165 	/*
166 	 * The metadata used by is_zone_device_page() to determine whether or
167 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
169 	 * page_count() is zero to help detect bad usage of this helper.
170 	 */
171 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172 		return false;
173 
174 	return is_zone_device_page(pfn_to_page(pfn));
175 }
176 
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179 	/*
180 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181 	 * perspective they are "normal" pages, albeit with slightly different
182 	 * usage rules.
183 	 */
184 	if (pfn_valid(pfn))
185 		return PageReserved(pfn_to_page(pfn)) &&
186 		       !is_zero_pfn(pfn) &&
187 		       !kvm_is_zone_device_pfn(pfn);
188 
189 	return true;
190 }
191 
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 {
194 	struct page *page = pfn_to_page(pfn);
195 
196 	if (!PageTransCompoundMap(page))
197 		return false;
198 
199 	return is_transparent_hugepage(compound_head(page));
200 }
201 
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207 	int cpu = get_cpu();
208 
209 	__this_cpu_write(kvm_running_vcpu, vcpu);
210 	preempt_notifier_register(&vcpu->preempt_notifier);
211 	kvm_arch_vcpu_load(vcpu, cpu);
212 	put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215 
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218 	preempt_disable();
219 	kvm_arch_vcpu_put(vcpu);
220 	preempt_notifier_unregister(&vcpu->preempt_notifier);
221 	__this_cpu_write(kvm_running_vcpu, NULL);
222 	preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225 
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230 
231 	/*
232 	 * We need to wait for the VCPU to reenable interrupts and get out of
233 	 * READING_SHADOW_PAGE_TABLES mode.
234 	 */
235 	if (req & KVM_REQUEST_WAIT)
236 		return mode != OUTSIDE_GUEST_MODE;
237 
238 	/*
239 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
240 	 */
241 	return mode == IN_GUEST_MODE;
242 }
243 
244 static void ack_flush(void *_completed)
245 {
246 }
247 
248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249 {
250 	if (unlikely(!cpus))
251 		cpus = cpu_online_mask;
252 
253 	if (cpumask_empty(cpus))
254 		return false;
255 
256 	smp_call_function_many(cpus, ack_flush, NULL, wait);
257 	return true;
258 }
259 
260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
261 				 struct kvm_vcpu *except,
262 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264 	int i, cpu, me;
265 	struct kvm_vcpu *vcpu;
266 	bool called;
267 
268 	me = get_cpu();
269 
270 	kvm_for_each_vcpu(i, vcpu, kvm) {
271 		if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272 		    vcpu == except)
273 			continue;
274 
275 		kvm_make_request(req, vcpu);
276 		cpu = vcpu->cpu;
277 
278 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279 			continue;
280 
281 		if (tmp != NULL && cpu != -1 && cpu != me &&
282 		    kvm_request_needs_ipi(vcpu, req))
283 			__cpumask_set_cpu(cpu, tmp);
284 	}
285 
286 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
287 	put_cpu();
288 
289 	return called;
290 }
291 
292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293 				      struct kvm_vcpu *except)
294 {
295 	cpumask_var_t cpus;
296 	bool called;
297 
298 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299 
300 	called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301 
302 	free_cpumask_var(cpus);
303 	return called;
304 }
305 
306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 {
308 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
309 }
310 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
311 
312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
313 void kvm_flush_remote_tlbs(struct kvm *kvm)
314 {
315 	/*
316 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317 	 * kvm_make_all_cpus_request.
318 	 */
319 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320 
321 	/*
322 	 * We want to publish modifications to the page tables before reading
323 	 * mode. Pairs with a memory barrier in arch-specific code.
324 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
325 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
326 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
327 	 *
328 	 * There is already an smp_mb__after_atomic() before
329 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330 	 * barrier here.
331 	 */
332 	if (!kvm_arch_flush_remote_tlb(kvm)
333 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
334 		++kvm->stat.generic.remote_tlb_flush;
335 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
336 }
337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
338 #endif
339 
340 void kvm_reload_remote_mmus(struct kvm *kvm)
341 {
342 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
343 }
344 
345 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
346 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
347 					       gfp_t gfp_flags)
348 {
349 	gfp_flags |= mc->gfp_zero;
350 
351 	if (mc->kmem_cache)
352 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
353 	else
354 		return (void *)__get_free_page(gfp_flags);
355 }
356 
357 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
358 {
359 	void *obj;
360 
361 	if (mc->nobjs >= min)
362 		return 0;
363 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
364 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
365 		if (!obj)
366 			return mc->nobjs >= min ? 0 : -ENOMEM;
367 		mc->objects[mc->nobjs++] = obj;
368 	}
369 	return 0;
370 }
371 
372 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
373 {
374 	return mc->nobjs;
375 }
376 
377 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
378 {
379 	while (mc->nobjs) {
380 		if (mc->kmem_cache)
381 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
382 		else
383 			free_page((unsigned long)mc->objects[--mc->nobjs]);
384 	}
385 }
386 
387 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
388 {
389 	void *p;
390 
391 	if (WARN_ON(!mc->nobjs))
392 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
393 	else
394 		p = mc->objects[--mc->nobjs];
395 	BUG_ON(!p);
396 	return p;
397 }
398 #endif
399 
400 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
401 {
402 	mutex_init(&vcpu->mutex);
403 	vcpu->cpu = -1;
404 	vcpu->kvm = kvm;
405 	vcpu->vcpu_id = id;
406 	vcpu->pid = NULL;
407 	rcuwait_init(&vcpu->wait);
408 	kvm_async_pf_vcpu_init(vcpu);
409 
410 	vcpu->pre_pcpu = -1;
411 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
412 
413 	kvm_vcpu_set_in_spin_loop(vcpu, false);
414 	kvm_vcpu_set_dy_eligible(vcpu, false);
415 	vcpu->preempted = false;
416 	vcpu->ready = false;
417 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
418 }
419 
420 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
421 {
422 	kvm_dirty_ring_free(&vcpu->dirty_ring);
423 	kvm_arch_vcpu_destroy(vcpu);
424 
425 	/*
426 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
427 	 * the vcpu->pid pointer, and at destruction time all file descriptors
428 	 * are already gone.
429 	 */
430 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
431 
432 	free_page((unsigned long)vcpu->run);
433 	kmem_cache_free(kvm_vcpu_cache, vcpu);
434 }
435 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
436 
437 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
438 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
439 {
440 	return container_of(mn, struct kvm, mmu_notifier);
441 }
442 
443 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
444 					      struct mm_struct *mm,
445 					      unsigned long start, unsigned long end)
446 {
447 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
448 	int idx;
449 
450 	idx = srcu_read_lock(&kvm->srcu);
451 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
452 	srcu_read_unlock(&kvm->srcu, idx);
453 }
454 
455 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
456 
457 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
458 			     unsigned long end);
459 
460 struct kvm_hva_range {
461 	unsigned long start;
462 	unsigned long end;
463 	pte_t pte;
464 	hva_handler_t handler;
465 	on_lock_fn_t on_lock;
466 	bool flush_on_ret;
467 	bool may_block;
468 };
469 
470 /*
471  * Use a dedicated stub instead of NULL to indicate that there is no callback
472  * function/handler.  The compiler technically can't guarantee that a real
473  * function will have a non-zero address, and so it will generate code to
474  * check for !NULL, whereas comparing against a stub will be elided at compile
475  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
476  */
477 static void kvm_null_fn(void)
478 {
479 
480 }
481 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
482 
483 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
484 						  const struct kvm_hva_range *range)
485 {
486 	bool ret = false, locked = false;
487 	struct kvm_gfn_range gfn_range;
488 	struct kvm_memory_slot *slot;
489 	struct kvm_memslots *slots;
490 	int i, idx;
491 
492 	/* A null handler is allowed if and only if on_lock() is provided. */
493 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
494 			 IS_KVM_NULL_FN(range->handler)))
495 		return 0;
496 
497 	idx = srcu_read_lock(&kvm->srcu);
498 
499 	/* The on_lock() path does not yet support lock elision. */
500 	if (!IS_KVM_NULL_FN(range->on_lock)) {
501 		locked = true;
502 		KVM_MMU_LOCK(kvm);
503 
504 		range->on_lock(kvm, range->start, range->end);
505 
506 		if (IS_KVM_NULL_FN(range->handler))
507 			goto out_unlock;
508 	}
509 
510 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
511 		slots = __kvm_memslots(kvm, i);
512 		kvm_for_each_memslot(slot, slots) {
513 			unsigned long hva_start, hva_end;
514 
515 			hva_start = max(range->start, slot->userspace_addr);
516 			hva_end = min(range->end, slot->userspace_addr +
517 						  (slot->npages << PAGE_SHIFT));
518 			if (hva_start >= hva_end)
519 				continue;
520 
521 			/*
522 			 * To optimize for the likely case where the address
523 			 * range is covered by zero or one memslots, don't
524 			 * bother making these conditional (to avoid writes on
525 			 * the second or later invocation of the handler).
526 			 */
527 			gfn_range.pte = range->pte;
528 			gfn_range.may_block = range->may_block;
529 
530 			/*
531 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
532 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
533 			 */
534 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
535 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
536 			gfn_range.slot = slot;
537 
538 			if (!locked) {
539 				locked = true;
540 				KVM_MMU_LOCK(kvm);
541 			}
542 			ret |= range->handler(kvm, &gfn_range);
543 		}
544 	}
545 
546 	if (range->flush_on_ret && (ret || kvm->tlbs_dirty))
547 		kvm_flush_remote_tlbs(kvm);
548 
549 out_unlock:
550 	if (locked)
551 		KVM_MMU_UNLOCK(kvm);
552 
553 	srcu_read_unlock(&kvm->srcu, idx);
554 
555 	/* The notifiers are averse to booleans. :-( */
556 	return (int)ret;
557 }
558 
559 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
560 						unsigned long start,
561 						unsigned long end,
562 						pte_t pte,
563 						hva_handler_t handler)
564 {
565 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
566 	const struct kvm_hva_range range = {
567 		.start		= start,
568 		.end		= end,
569 		.pte		= pte,
570 		.handler	= handler,
571 		.on_lock	= (void *)kvm_null_fn,
572 		.flush_on_ret	= true,
573 		.may_block	= false,
574 	};
575 
576 	return __kvm_handle_hva_range(kvm, &range);
577 }
578 
579 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
580 							 unsigned long start,
581 							 unsigned long end,
582 							 hva_handler_t handler)
583 {
584 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
585 	const struct kvm_hva_range range = {
586 		.start		= start,
587 		.end		= end,
588 		.pte		= __pte(0),
589 		.handler	= handler,
590 		.on_lock	= (void *)kvm_null_fn,
591 		.flush_on_ret	= false,
592 		.may_block	= false,
593 	};
594 
595 	return __kvm_handle_hva_range(kvm, &range);
596 }
597 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
598 					struct mm_struct *mm,
599 					unsigned long address,
600 					pte_t pte)
601 {
602 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
603 
604 	trace_kvm_set_spte_hva(address);
605 
606 	/*
607 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}(),
608 	 * and so always runs with an elevated notifier count.  This obviates
609 	 * the need to bump the sequence count.
610 	 */
611 	WARN_ON_ONCE(!kvm->mmu_notifier_count);
612 
613 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
614 }
615 
616 static void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
617 				   unsigned long end)
618 {
619 	/*
620 	 * The count increase must become visible at unlock time as no
621 	 * spte can be established without taking the mmu_lock and
622 	 * count is also read inside the mmu_lock critical section.
623 	 */
624 	kvm->mmu_notifier_count++;
625 	if (likely(kvm->mmu_notifier_count == 1)) {
626 		kvm->mmu_notifier_range_start = start;
627 		kvm->mmu_notifier_range_end = end;
628 	} else {
629 		/*
630 		 * Fully tracking multiple concurrent ranges has dimishing
631 		 * returns. Keep things simple and just find the minimal range
632 		 * which includes the current and new ranges. As there won't be
633 		 * enough information to subtract a range after its invalidate
634 		 * completes, any ranges invalidated concurrently will
635 		 * accumulate and persist until all outstanding invalidates
636 		 * complete.
637 		 */
638 		kvm->mmu_notifier_range_start =
639 			min(kvm->mmu_notifier_range_start, start);
640 		kvm->mmu_notifier_range_end =
641 			max(kvm->mmu_notifier_range_end, end);
642 	}
643 }
644 
645 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
646 					const struct mmu_notifier_range *range)
647 {
648 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
649 	const struct kvm_hva_range hva_range = {
650 		.start		= range->start,
651 		.end		= range->end,
652 		.pte		= __pte(0),
653 		.handler	= kvm_unmap_gfn_range,
654 		.on_lock	= kvm_inc_notifier_count,
655 		.flush_on_ret	= true,
656 		.may_block	= mmu_notifier_range_blockable(range),
657 	};
658 
659 	trace_kvm_unmap_hva_range(range->start, range->end);
660 
661 	__kvm_handle_hva_range(kvm, &hva_range);
662 
663 	return 0;
664 }
665 
666 static void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
667 				   unsigned long end)
668 {
669 	/*
670 	 * This sequence increase will notify the kvm page fault that
671 	 * the page that is going to be mapped in the spte could have
672 	 * been freed.
673 	 */
674 	kvm->mmu_notifier_seq++;
675 	smp_wmb();
676 	/*
677 	 * The above sequence increase must be visible before the
678 	 * below count decrease, which is ensured by the smp_wmb above
679 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
680 	 */
681 	kvm->mmu_notifier_count--;
682 }
683 
684 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
685 					const struct mmu_notifier_range *range)
686 {
687 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
688 	const struct kvm_hva_range hva_range = {
689 		.start		= range->start,
690 		.end		= range->end,
691 		.pte		= __pte(0),
692 		.handler	= (void *)kvm_null_fn,
693 		.on_lock	= kvm_dec_notifier_count,
694 		.flush_on_ret	= false,
695 		.may_block	= mmu_notifier_range_blockable(range),
696 	};
697 
698 	__kvm_handle_hva_range(kvm, &hva_range);
699 
700 	BUG_ON(kvm->mmu_notifier_count < 0);
701 }
702 
703 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
704 					      struct mm_struct *mm,
705 					      unsigned long start,
706 					      unsigned long end)
707 {
708 	trace_kvm_age_hva(start, end);
709 
710 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
711 }
712 
713 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
714 					struct mm_struct *mm,
715 					unsigned long start,
716 					unsigned long end)
717 {
718 	trace_kvm_age_hva(start, end);
719 
720 	/*
721 	 * Even though we do not flush TLB, this will still adversely
722 	 * affect performance on pre-Haswell Intel EPT, where there is
723 	 * no EPT Access Bit to clear so that we have to tear down EPT
724 	 * tables instead. If we find this unacceptable, we can always
725 	 * add a parameter to kvm_age_hva so that it effectively doesn't
726 	 * do anything on clear_young.
727 	 *
728 	 * Also note that currently we never issue secondary TLB flushes
729 	 * from clear_young, leaving this job up to the regular system
730 	 * cadence. If we find this inaccurate, we might come up with a
731 	 * more sophisticated heuristic later.
732 	 */
733 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
734 }
735 
736 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
737 				       struct mm_struct *mm,
738 				       unsigned long address)
739 {
740 	trace_kvm_test_age_hva(address);
741 
742 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
743 					     kvm_test_age_gfn);
744 }
745 
746 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
747 				     struct mm_struct *mm)
748 {
749 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
750 	int idx;
751 
752 	idx = srcu_read_lock(&kvm->srcu);
753 	kvm_arch_flush_shadow_all(kvm);
754 	srcu_read_unlock(&kvm->srcu, idx);
755 }
756 
757 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
758 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
759 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
760 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
761 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
762 	.clear_young		= kvm_mmu_notifier_clear_young,
763 	.test_young		= kvm_mmu_notifier_test_young,
764 	.change_pte		= kvm_mmu_notifier_change_pte,
765 	.release		= kvm_mmu_notifier_release,
766 };
767 
768 static int kvm_init_mmu_notifier(struct kvm *kvm)
769 {
770 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
771 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
772 }
773 
774 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
775 
776 static int kvm_init_mmu_notifier(struct kvm *kvm)
777 {
778 	return 0;
779 }
780 
781 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
782 
783 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
784 static int kvm_pm_notifier_call(struct notifier_block *bl,
785 				unsigned long state,
786 				void *unused)
787 {
788 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
789 
790 	return kvm_arch_pm_notifier(kvm, state);
791 }
792 
793 static void kvm_init_pm_notifier(struct kvm *kvm)
794 {
795 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
796 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
797 	kvm->pm_notifier.priority = INT_MAX;
798 	register_pm_notifier(&kvm->pm_notifier);
799 }
800 
801 static void kvm_destroy_pm_notifier(struct kvm *kvm)
802 {
803 	unregister_pm_notifier(&kvm->pm_notifier);
804 }
805 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
806 static void kvm_init_pm_notifier(struct kvm *kvm)
807 {
808 }
809 
810 static void kvm_destroy_pm_notifier(struct kvm *kvm)
811 {
812 }
813 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
814 
815 static struct kvm_memslots *kvm_alloc_memslots(void)
816 {
817 	int i;
818 	struct kvm_memslots *slots;
819 
820 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
821 	if (!slots)
822 		return NULL;
823 
824 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
825 		slots->id_to_index[i] = -1;
826 
827 	return slots;
828 }
829 
830 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
831 {
832 	if (!memslot->dirty_bitmap)
833 		return;
834 
835 	kvfree(memslot->dirty_bitmap);
836 	memslot->dirty_bitmap = NULL;
837 }
838 
839 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
840 {
841 	kvm_destroy_dirty_bitmap(slot);
842 
843 	kvm_arch_free_memslot(kvm, slot);
844 
845 	slot->flags = 0;
846 	slot->npages = 0;
847 }
848 
849 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
850 {
851 	struct kvm_memory_slot *memslot;
852 
853 	if (!slots)
854 		return;
855 
856 	kvm_for_each_memslot(memslot, slots)
857 		kvm_free_memslot(kvm, memslot);
858 
859 	kvfree(slots);
860 }
861 
862 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
863 {
864 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
865 	case KVM_STATS_TYPE_INSTANT:
866 		return 0444;
867 	case KVM_STATS_TYPE_CUMULATIVE:
868 	case KVM_STATS_TYPE_PEAK:
869 	default:
870 		return 0644;
871 	}
872 }
873 
874 
875 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
876 {
877 	int i;
878 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
879 				      kvm_vcpu_stats_header.num_desc;
880 
881 	if (!kvm->debugfs_dentry)
882 		return;
883 
884 	debugfs_remove_recursive(kvm->debugfs_dentry);
885 
886 	if (kvm->debugfs_stat_data) {
887 		for (i = 0; i < kvm_debugfs_num_entries; i++)
888 			kfree(kvm->debugfs_stat_data[i]);
889 		kfree(kvm->debugfs_stat_data);
890 	}
891 }
892 
893 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
894 {
895 	char dir_name[ITOA_MAX_LEN * 2];
896 	struct kvm_stat_data *stat_data;
897 	const struct _kvm_stats_desc *pdesc;
898 	int i;
899 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
900 				      kvm_vcpu_stats_header.num_desc;
901 
902 	if (!debugfs_initialized())
903 		return 0;
904 
905 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
906 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
907 
908 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
909 					 sizeof(*kvm->debugfs_stat_data),
910 					 GFP_KERNEL_ACCOUNT);
911 	if (!kvm->debugfs_stat_data)
912 		return -ENOMEM;
913 
914 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
915 		pdesc = &kvm_vm_stats_desc[i];
916 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
917 		if (!stat_data)
918 			return -ENOMEM;
919 
920 		stat_data->kvm = kvm;
921 		stat_data->desc = pdesc;
922 		stat_data->kind = KVM_STAT_VM;
923 		kvm->debugfs_stat_data[i] = stat_data;
924 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
925 				    kvm->debugfs_dentry, stat_data,
926 				    &stat_fops_per_vm);
927 	}
928 
929 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
930 		pdesc = &kvm_vcpu_stats_desc[i];
931 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
932 		if (!stat_data)
933 			return -ENOMEM;
934 
935 		stat_data->kvm = kvm;
936 		stat_data->desc = pdesc;
937 		stat_data->kind = KVM_STAT_VCPU;
938 		kvm->debugfs_stat_data[i] = stat_data;
939 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
940 				    kvm->debugfs_dentry, stat_data,
941 				    &stat_fops_per_vm);
942 	}
943 	return 0;
944 }
945 
946 /*
947  * Called after the VM is otherwise initialized, but just before adding it to
948  * the vm_list.
949  */
950 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
951 {
952 	return 0;
953 }
954 
955 /*
956  * Called just after removing the VM from the vm_list, but before doing any
957  * other destruction.
958  */
959 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
960 {
961 }
962 
963 static struct kvm *kvm_create_vm(unsigned long type)
964 {
965 	struct kvm *kvm = kvm_arch_alloc_vm();
966 	int r = -ENOMEM;
967 	int i;
968 
969 	if (!kvm)
970 		return ERR_PTR(-ENOMEM);
971 
972 	KVM_MMU_LOCK_INIT(kvm);
973 	mmgrab(current->mm);
974 	kvm->mm = current->mm;
975 	kvm_eventfd_init(kvm);
976 	mutex_init(&kvm->lock);
977 	mutex_init(&kvm->irq_lock);
978 	mutex_init(&kvm->slots_lock);
979 	mutex_init(&kvm->slots_arch_lock);
980 	INIT_LIST_HEAD(&kvm->devices);
981 
982 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
983 
984 	if (init_srcu_struct(&kvm->srcu))
985 		goto out_err_no_srcu;
986 	if (init_srcu_struct(&kvm->irq_srcu))
987 		goto out_err_no_irq_srcu;
988 
989 	refcount_set(&kvm->users_count, 1);
990 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
991 		struct kvm_memslots *slots = kvm_alloc_memslots();
992 
993 		if (!slots)
994 			goto out_err_no_arch_destroy_vm;
995 		/* Generations must be different for each address space. */
996 		slots->generation = i;
997 		rcu_assign_pointer(kvm->memslots[i], slots);
998 	}
999 
1000 	for (i = 0; i < KVM_NR_BUSES; i++) {
1001 		rcu_assign_pointer(kvm->buses[i],
1002 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1003 		if (!kvm->buses[i])
1004 			goto out_err_no_arch_destroy_vm;
1005 	}
1006 
1007 	kvm->max_halt_poll_ns = halt_poll_ns;
1008 
1009 	r = kvm_arch_init_vm(kvm, type);
1010 	if (r)
1011 		goto out_err_no_arch_destroy_vm;
1012 
1013 	r = hardware_enable_all();
1014 	if (r)
1015 		goto out_err_no_disable;
1016 
1017 #ifdef CONFIG_HAVE_KVM_IRQFD
1018 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1019 #endif
1020 
1021 	r = kvm_init_mmu_notifier(kvm);
1022 	if (r)
1023 		goto out_err_no_mmu_notifier;
1024 
1025 	r = kvm_arch_post_init_vm(kvm);
1026 	if (r)
1027 		goto out_err;
1028 
1029 	mutex_lock(&kvm_lock);
1030 	list_add(&kvm->vm_list, &vm_list);
1031 	mutex_unlock(&kvm_lock);
1032 
1033 	preempt_notifier_inc();
1034 	kvm_init_pm_notifier(kvm);
1035 
1036 	return kvm;
1037 
1038 out_err:
1039 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1040 	if (kvm->mmu_notifier.ops)
1041 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1042 #endif
1043 out_err_no_mmu_notifier:
1044 	hardware_disable_all();
1045 out_err_no_disable:
1046 	kvm_arch_destroy_vm(kvm);
1047 out_err_no_arch_destroy_vm:
1048 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1049 	for (i = 0; i < KVM_NR_BUSES; i++)
1050 		kfree(kvm_get_bus(kvm, i));
1051 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1052 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1053 	cleanup_srcu_struct(&kvm->irq_srcu);
1054 out_err_no_irq_srcu:
1055 	cleanup_srcu_struct(&kvm->srcu);
1056 out_err_no_srcu:
1057 	kvm_arch_free_vm(kvm);
1058 	mmdrop(current->mm);
1059 	return ERR_PTR(r);
1060 }
1061 
1062 static void kvm_destroy_devices(struct kvm *kvm)
1063 {
1064 	struct kvm_device *dev, *tmp;
1065 
1066 	/*
1067 	 * We do not need to take the kvm->lock here, because nobody else
1068 	 * has a reference to the struct kvm at this point and therefore
1069 	 * cannot access the devices list anyhow.
1070 	 */
1071 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1072 		list_del(&dev->vm_node);
1073 		dev->ops->destroy(dev);
1074 	}
1075 }
1076 
1077 static void kvm_destroy_vm(struct kvm *kvm)
1078 {
1079 	int i;
1080 	struct mm_struct *mm = kvm->mm;
1081 
1082 	kvm_destroy_pm_notifier(kvm);
1083 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1084 	kvm_destroy_vm_debugfs(kvm);
1085 	kvm_arch_sync_events(kvm);
1086 	mutex_lock(&kvm_lock);
1087 	list_del(&kvm->vm_list);
1088 	mutex_unlock(&kvm_lock);
1089 	kvm_arch_pre_destroy_vm(kvm);
1090 
1091 	kvm_free_irq_routing(kvm);
1092 	for (i = 0; i < KVM_NR_BUSES; i++) {
1093 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1094 
1095 		if (bus)
1096 			kvm_io_bus_destroy(bus);
1097 		kvm->buses[i] = NULL;
1098 	}
1099 	kvm_coalesced_mmio_free(kvm);
1100 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1101 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1102 #else
1103 	kvm_arch_flush_shadow_all(kvm);
1104 #endif
1105 	kvm_arch_destroy_vm(kvm);
1106 	kvm_destroy_devices(kvm);
1107 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1108 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1109 	cleanup_srcu_struct(&kvm->irq_srcu);
1110 	cleanup_srcu_struct(&kvm->srcu);
1111 	kvm_arch_free_vm(kvm);
1112 	preempt_notifier_dec();
1113 	hardware_disable_all();
1114 	mmdrop(mm);
1115 }
1116 
1117 void kvm_get_kvm(struct kvm *kvm)
1118 {
1119 	refcount_inc(&kvm->users_count);
1120 }
1121 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1122 
1123 void kvm_put_kvm(struct kvm *kvm)
1124 {
1125 	if (refcount_dec_and_test(&kvm->users_count))
1126 		kvm_destroy_vm(kvm);
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1129 
1130 /*
1131  * Used to put a reference that was taken on behalf of an object associated
1132  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1133  * of the new file descriptor fails and the reference cannot be transferred to
1134  * its final owner.  In such cases, the caller is still actively using @kvm and
1135  * will fail miserably if the refcount unexpectedly hits zero.
1136  */
1137 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1138 {
1139 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1140 }
1141 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1142 
1143 static int kvm_vm_release(struct inode *inode, struct file *filp)
1144 {
1145 	struct kvm *kvm = filp->private_data;
1146 
1147 	kvm_irqfd_release(kvm);
1148 
1149 	kvm_put_kvm(kvm);
1150 	return 0;
1151 }
1152 
1153 /*
1154  * Allocation size is twice as large as the actual dirty bitmap size.
1155  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1156  */
1157 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1158 {
1159 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1160 
1161 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1162 	if (!memslot->dirty_bitmap)
1163 		return -ENOMEM;
1164 
1165 	return 0;
1166 }
1167 
1168 /*
1169  * Delete a memslot by decrementing the number of used slots and shifting all
1170  * other entries in the array forward one spot.
1171  */
1172 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1173 				      struct kvm_memory_slot *memslot)
1174 {
1175 	struct kvm_memory_slot *mslots = slots->memslots;
1176 	int i;
1177 
1178 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1179 		return;
1180 
1181 	slots->used_slots--;
1182 
1183 	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
1184 		atomic_set(&slots->lru_slot, 0);
1185 
1186 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1187 		mslots[i] = mslots[i + 1];
1188 		slots->id_to_index[mslots[i].id] = i;
1189 	}
1190 	mslots[i] = *memslot;
1191 	slots->id_to_index[memslot->id] = -1;
1192 }
1193 
1194 /*
1195  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1196  * the new slot's initial index into the memslots array.
1197  */
1198 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1199 {
1200 	return slots->used_slots++;
1201 }
1202 
1203 /*
1204  * Move a changed memslot backwards in the array by shifting existing slots
1205  * with a higher GFN toward the front of the array.  Note, the changed memslot
1206  * itself is not preserved in the array, i.e. not swapped at this time, only
1207  * its new index into the array is tracked.  Returns the changed memslot's
1208  * current index into the memslots array.
1209  */
1210 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1211 					    struct kvm_memory_slot *memslot)
1212 {
1213 	struct kvm_memory_slot *mslots = slots->memslots;
1214 	int i;
1215 
1216 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1217 	    WARN_ON_ONCE(!slots->used_slots))
1218 		return -1;
1219 
1220 	/*
1221 	 * Move the target memslot backward in the array by shifting existing
1222 	 * memslots with a higher GFN (than the target memslot) towards the
1223 	 * front of the array.
1224 	 */
1225 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1226 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
1227 			break;
1228 
1229 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1230 
1231 		/* Shift the next memslot forward one and update its index. */
1232 		mslots[i] = mslots[i + 1];
1233 		slots->id_to_index[mslots[i].id] = i;
1234 	}
1235 	return i;
1236 }
1237 
1238 /*
1239  * Move a changed memslot forwards in the array by shifting existing slots with
1240  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1241  * is not preserved in the array, i.e. not swapped at this time, only its new
1242  * index into the array is tracked.  Returns the changed memslot's final index
1243  * into the memslots array.
1244  */
1245 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1246 					   struct kvm_memory_slot *memslot,
1247 					   int start)
1248 {
1249 	struct kvm_memory_slot *mslots = slots->memslots;
1250 	int i;
1251 
1252 	for (i = start; i > 0; i--) {
1253 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1254 			break;
1255 
1256 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1257 
1258 		/* Shift the next memslot back one and update its index. */
1259 		mslots[i] = mslots[i - 1];
1260 		slots->id_to_index[mslots[i].id] = i;
1261 	}
1262 	return i;
1263 }
1264 
1265 /*
1266  * Re-sort memslots based on their GFN to account for an added, deleted, or
1267  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1268  * memslot lookup.
1269  *
1270  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1271  * at memslots[0] has the highest GFN.
1272  *
1273  * The sorting algorithm takes advantage of having initially sorted memslots
1274  * and knowing the position of the changed memslot.  Sorting is also optimized
1275  * by not swapping the updated memslot and instead only shifting other memslots
1276  * and tracking the new index for the update memslot.  Only once its final
1277  * index is known is the updated memslot copied into its position in the array.
1278  *
1279  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1280  *    the end of the array.
1281  *
1282  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1283  *    end of the array and then it forward to its correct location.
1284  *
1285  *  - When moving a memslot, the algorithm first moves the updated memslot
1286  *    backward to handle the scenario where the memslot's GFN was changed to a
1287  *    lower value.  update_memslots() then falls through and runs the same flow
1288  *    as creating a memslot to move the memslot forward to handle the scenario
1289  *    where its GFN was changed to a higher value.
1290  *
1291  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1292  * historical reasons.  Originally, invalid memslots where denoted by having
1293  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1294  * to the end of the array.  The current algorithm uses dedicated logic to
1295  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1296  *
1297  * The other historical motiviation for highest->lowest was to improve the
1298  * performance of memslot lookup.  KVM originally used a linear search starting
1299  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1300  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1301  * single memslot above the 4gb boundary.  As the largest memslot is also the
1302  * most likely to be referenced, sorting it to the front of the array was
1303  * advantageous.  The current binary search starts from the middle of the array
1304  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1305  */
1306 static void update_memslots(struct kvm_memslots *slots,
1307 			    struct kvm_memory_slot *memslot,
1308 			    enum kvm_mr_change change)
1309 {
1310 	int i;
1311 
1312 	if (change == KVM_MR_DELETE) {
1313 		kvm_memslot_delete(slots, memslot);
1314 	} else {
1315 		if (change == KVM_MR_CREATE)
1316 			i = kvm_memslot_insert_back(slots);
1317 		else
1318 			i = kvm_memslot_move_backward(slots, memslot);
1319 		i = kvm_memslot_move_forward(slots, memslot, i);
1320 
1321 		/*
1322 		 * Copy the memslot to its new position in memslots and update
1323 		 * its index accordingly.
1324 		 */
1325 		slots->memslots[i] = *memslot;
1326 		slots->id_to_index[memslot->id] = i;
1327 	}
1328 }
1329 
1330 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1331 {
1332 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1333 
1334 #ifdef __KVM_HAVE_READONLY_MEM
1335 	valid_flags |= KVM_MEM_READONLY;
1336 #endif
1337 
1338 	if (mem->flags & ~valid_flags)
1339 		return -EINVAL;
1340 
1341 	return 0;
1342 }
1343 
1344 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1345 		int as_id, struct kvm_memslots *slots)
1346 {
1347 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1348 	u64 gen = old_memslots->generation;
1349 
1350 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1351 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1352 
1353 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1354 
1355 	/*
1356 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1357 	 * SRCU below in order to avoid deadlock with another thread
1358 	 * acquiring the slots_arch_lock in an srcu critical section.
1359 	 */
1360 	mutex_unlock(&kvm->slots_arch_lock);
1361 
1362 	synchronize_srcu_expedited(&kvm->srcu);
1363 
1364 	/*
1365 	 * Increment the new memslot generation a second time, dropping the
1366 	 * update in-progress flag and incrementing the generation based on
1367 	 * the number of address spaces.  This provides a unique and easily
1368 	 * identifiable generation number while the memslots are in flux.
1369 	 */
1370 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1371 
1372 	/*
1373 	 * Generations must be unique even across address spaces.  We do not need
1374 	 * a global counter for that, instead the generation space is evenly split
1375 	 * across address spaces.  For example, with two address spaces, address
1376 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1377 	 * use generations 1, 3, 5, ...
1378 	 */
1379 	gen += KVM_ADDRESS_SPACE_NUM;
1380 
1381 	kvm_arch_memslots_updated(kvm, gen);
1382 
1383 	slots->generation = gen;
1384 
1385 	return old_memslots;
1386 }
1387 
1388 static size_t kvm_memslots_size(int slots)
1389 {
1390 	return sizeof(struct kvm_memslots) +
1391 	       (sizeof(struct kvm_memory_slot) * slots);
1392 }
1393 
1394 static void kvm_copy_memslots(struct kvm_memslots *to,
1395 			      struct kvm_memslots *from)
1396 {
1397 	memcpy(to, from, kvm_memslots_size(from->used_slots));
1398 }
1399 
1400 /*
1401  * Note, at a minimum, the current number of used slots must be allocated, even
1402  * when deleting a memslot, as we need a complete duplicate of the memslots for
1403  * use when invalidating a memslot prior to deleting/moving the memslot.
1404  */
1405 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1406 					     enum kvm_mr_change change)
1407 {
1408 	struct kvm_memslots *slots;
1409 	size_t new_size;
1410 
1411 	if (change == KVM_MR_CREATE)
1412 		new_size = kvm_memslots_size(old->used_slots + 1);
1413 	else
1414 		new_size = kvm_memslots_size(old->used_slots);
1415 
1416 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1417 	if (likely(slots))
1418 		kvm_copy_memslots(slots, old);
1419 
1420 	return slots;
1421 }
1422 
1423 static int kvm_set_memslot(struct kvm *kvm,
1424 			   const struct kvm_userspace_memory_region *mem,
1425 			   struct kvm_memory_slot *old,
1426 			   struct kvm_memory_slot *new, int as_id,
1427 			   enum kvm_mr_change change)
1428 {
1429 	struct kvm_memory_slot *slot;
1430 	struct kvm_memslots *slots;
1431 	int r;
1432 
1433 	/*
1434 	 * Released in install_new_memslots.
1435 	 *
1436 	 * Must be held from before the current memslots are copied until
1437 	 * after the new memslots are installed with rcu_assign_pointer,
1438 	 * then released before the synchronize srcu in install_new_memslots.
1439 	 *
1440 	 * When modifying memslots outside of the slots_lock, must be held
1441 	 * before reading the pointer to the current memslots until after all
1442 	 * changes to those memslots are complete.
1443 	 *
1444 	 * These rules ensure that installing new memslots does not lose
1445 	 * changes made to the previous memslots.
1446 	 */
1447 	mutex_lock(&kvm->slots_arch_lock);
1448 
1449 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1450 	if (!slots) {
1451 		mutex_unlock(&kvm->slots_arch_lock);
1452 		return -ENOMEM;
1453 	}
1454 
1455 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1456 		/*
1457 		 * Note, the INVALID flag needs to be in the appropriate entry
1458 		 * in the freshly allocated memslots, not in @old or @new.
1459 		 */
1460 		slot = id_to_memslot(slots, old->id);
1461 		slot->flags |= KVM_MEMSLOT_INVALID;
1462 
1463 		/*
1464 		 * We can re-use the memory from the old memslots.
1465 		 * It will be overwritten with a copy of the new memslots
1466 		 * after reacquiring the slots_arch_lock below.
1467 		 */
1468 		slots = install_new_memslots(kvm, as_id, slots);
1469 
1470 		/* From this point no new shadow pages pointing to a deleted,
1471 		 * or moved, memslot will be created.
1472 		 *
1473 		 * validation of sp->gfn happens in:
1474 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1475 		 *	- kvm_is_visible_gfn (mmu_check_root)
1476 		 */
1477 		kvm_arch_flush_shadow_memslot(kvm, slot);
1478 
1479 		/* Released in install_new_memslots. */
1480 		mutex_lock(&kvm->slots_arch_lock);
1481 
1482 		/*
1483 		 * The arch-specific fields of the memslots could have changed
1484 		 * between releasing the slots_arch_lock in
1485 		 * install_new_memslots and here, so get a fresh copy of the
1486 		 * slots.
1487 		 */
1488 		kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1489 	}
1490 
1491 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1492 	if (r)
1493 		goto out_slots;
1494 
1495 	update_memslots(slots, new, change);
1496 	slots = install_new_memslots(kvm, as_id, slots);
1497 
1498 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1499 
1500 	kvfree(slots);
1501 	return 0;
1502 
1503 out_slots:
1504 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1505 		slot = id_to_memslot(slots, old->id);
1506 		slot->flags &= ~KVM_MEMSLOT_INVALID;
1507 		slots = install_new_memslots(kvm, as_id, slots);
1508 	} else {
1509 		mutex_unlock(&kvm->slots_arch_lock);
1510 	}
1511 	kvfree(slots);
1512 	return r;
1513 }
1514 
1515 static int kvm_delete_memslot(struct kvm *kvm,
1516 			      const struct kvm_userspace_memory_region *mem,
1517 			      struct kvm_memory_slot *old, int as_id)
1518 {
1519 	struct kvm_memory_slot new;
1520 	int r;
1521 
1522 	if (!old->npages)
1523 		return -EINVAL;
1524 
1525 	memset(&new, 0, sizeof(new));
1526 	new.id = old->id;
1527 	/*
1528 	 * This is only for debugging purpose; it should never be referenced
1529 	 * for a removed memslot.
1530 	 */
1531 	new.as_id = as_id;
1532 
1533 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1534 	if (r)
1535 		return r;
1536 
1537 	kvm_free_memslot(kvm, old);
1538 	return 0;
1539 }
1540 
1541 /*
1542  * Allocate some memory and give it an address in the guest physical address
1543  * space.
1544  *
1545  * Discontiguous memory is allowed, mostly for framebuffers.
1546  *
1547  * Must be called holding kvm->slots_lock for write.
1548  */
1549 int __kvm_set_memory_region(struct kvm *kvm,
1550 			    const struct kvm_userspace_memory_region *mem)
1551 {
1552 	struct kvm_memory_slot old, new;
1553 	struct kvm_memory_slot *tmp;
1554 	enum kvm_mr_change change;
1555 	int as_id, id;
1556 	int r;
1557 
1558 	r = check_memory_region_flags(mem);
1559 	if (r)
1560 		return r;
1561 
1562 	as_id = mem->slot >> 16;
1563 	id = (u16)mem->slot;
1564 
1565 	/* General sanity checks */
1566 	if (mem->memory_size & (PAGE_SIZE - 1))
1567 		return -EINVAL;
1568 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1569 		return -EINVAL;
1570 	/* We can read the guest memory with __xxx_user() later on. */
1571 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1572 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1573 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1574 			mem->memory_size))
1575 		return -EINVAL;
1576 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1577 		return -EINVAL;
1578 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1579 		return -EINVAL;
1580 
1581 	/*
1582 	 * Make a full copy of the old memslot, the pointer will become stale
1583 	 * when the memslots are re-sorted by update_memslots(), and the old
1584 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1585 	 * to free its resources and for arch specific behavior.
1586 	 */
1587 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1588 	if (tmp) {
1589 		old = *tmp;
1590 		tmp = NULL;
1591 	} else {
1592 		memset(&old, 0, sizeof(old));
1593 		old.id = id;
1594 	}
1595 
1596 	if (!mem->memory_size)
1597 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1598 
1599 	new.as_id = as_id;
1600 	new.id = id;
1601 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1602 	new.npages = mem->memory_size >> PAGE_SHIFT;
1603 	new.flags = mem->flags;
1604 	new.userspace_addr = mem->userspace_addr;
1605 
1606 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1607 		return -EINVAL;
1608 
1609 	if (!old.npages) {
1610 		change = KVM_MR_CREATE;
1611 		new.dirty_bitmap = NULL;
1612 		memset(&new.arch, 0, sizeof(new.arch));
1613 	} else { /* Modify an existing slot. */
1614 		if ((new.userspace_addr != old.userspace_addr) ||
1615 		    (new.npages != old.npages) ||
1616 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1617 			return -EINVAL;
1618 
1619 		if (new.base_gfn != old.base_gfn)
1620 			change = KVM_MR_MOVE;
1621 		else if (new.flags != old.flags)
1622 			change = KVM_MR_FLAGS_ONLY;
1623 		else /* Nothing to change. */
1624 			return 0;
1625 
1626 		/* Copy dirty_bitmap and arch from the current memslot. */
1627 		new.dirty_bitmap = old.dirty_bitmap;
1628 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1629 	}
1630 
1631 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1632 		/* Check for overlaps */
1633 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1634 			if (tmp->id == id)
1635 				continue;
1636 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1637 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1638 				return -EEXIST;
1639 		}
1640 	}
1641 
1642 	/* Allocate/free page dirty bitmap as needed */
1643 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1644 		new.dirty_bitmap = NULL;
1645 	else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1646 		r = kvm_alloc_dirty_bitmap(&new);
1647 		if (r)
1648 			return r;
1649 
1650 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1651 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1652 	}
1653 
1654 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1655 	if (r)
1656 		goto out_bitmap;
1657 
1658 	if (old.dirty_bitmap && !new.dirty_bitmap)
1659 		kvm_destroy_dirty_bitmap(&old);
1660 	return 0;
1661 
1662 out_bitmap:
1663 	if (new.dirty_bitmap && !old.dirty_bitmap)
1664 		kvm_destroy_dirty_bitmap(&new);
1665 	return r;
1666 }
1667 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1668 
1669 int kvm_set_memory_region(struct kvm *kvm,
1670 			  const struct kvm_userspace_memory_region *mem)
1671 {
1672 	int r;
1673 
1674 	mutex_lock(&kvm->slots_lock);
1675 	r = __kvm_set_memory_region(kvm, mem);
1676 	mutex_unlock(&kvm->slots_lock);
1677 	return r;
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1680 
1681 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1682 					  struct kvm_userspace_memory_region *mem)
1683 {
1684 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1685 		return -EINVAL;
1686 
1687 	return kvm_set_memory_region(kvm, mem);
1688 }
1689 
1690 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1691 /**
1692  * kvm_get_dirty_log - get a snapshot of dirty pages
1693  * @kvm:	pointer to kvm instance
1694  * @log:	slot id and address to which we copy the log
1695  * @is_dirty:	set to '1' if any dirty pages were found
1696  * @memslot:	set to the associated memslot, always valid on success
1697  */
1698 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1699 		      int *is_dirty, struct kvm_memory_slot **memslot)
1700 {
1701 	struct kvm_memslots *slots;
1702 	int i, as_id, id;
1703 	unsigned long n;
1704 	unsigned long any = 0;
1705 
1706 	/* Dirty ring tracking is exclusive to dirty log tracking */
1707 	if (kvm->dirty_ring_size)
1708 		return -ENXIO;
1709 
1710 	*memslot = NULL;
1711 	*is_dirty = 0;
1712 
1713 	as_id = log->slot >> 16;
1714 	id = (u16)log->slot;
1715 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1716 		return -EINVAL;
1717 
1718 	slots = __kvm_memslots(kvm, as_id);
1719 	*memslot = id_to_memslot(slots, id);
1720 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1721 		return -ENOENT;
1722 
1723 	kvm_arch_sync_dirty_log(kvm, *memslot);
1724 
1725 	n = kvm_dirty_bitmap_bytes(*memslot);
1726 
1727 	for (i = 0; !any && i < n/sizeof(long); ++i)
1728 		any = (*memslot)->dirty_bitmap[i];
1729 
1730 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1731 		return -EFAULT;
1732 
1733 	if (any)
1734 		*is_dirty = 1;
1735 	return 0;
1736 }
1737 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1738 
1739 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1740 /**
1741  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1742  *	and reenable dirty page tracking for the corresponding pages.
1743  * @kvm:	pointer to kvm instance
1744  * @log:	slot id and address to which we copy the log
1745  *
1746  * We need to keep it in mind that VCPU threads can write to the bitmap
1747  * concurrently. So, to avoid losing track of dirty pages we keep the
1748  * following order:
1749  *
1750  *    1. Take a snapshot of the bit and clear it if needed.
1751  *    2. Write protect the corresponding page.
1752  *    3. Copy the snapshot to the userspace.
1753  *    4. Upon return caller flushes TLB's if needed.
1754  *
1755  * Between 2 and 4, the guest may write to the page using the remaining TLB
1756  * entry.  This is not a problem because the page is reported dirty using
1757  * the snapshot taken before and step 4 ensures that writes done after
1758  * exiting to userspace will be logged for the next call.
1759  *
1760  */
1761 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1762 {
1763 	struct kvm_memslots *slots;
1764 	struct kvm_memory_slot *memslot;
1765 	int i, as_id, id;
1766 	unsigned long n;
1767 	unsigned long *dirty_bitmap;
1768 	unsigned long *dirty_bitmap_buffer;
1769 	bool flush;
1770 
1771 	/* Dirty ring tracking is exclusive to dirty log tracking */
1772 	if (kvm->dirty_ring_size)
1773 		return -ENXIO;
1774 
1775 	as_id = log->slot >> 16;
1776 	id = (u16)log->slot;
1777 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1778 		return -EINVAL;
1779 
1780 	slots = __kvm_memslots(kvm, as_id);
1781 	memslot = id_to_memslot(slots, id);
1782 	if (!memslot || !memslot->dirty_bitmap)
1783 		return -ENOENT;
1784 
1785 	dirty_bitmap = memslot->dirty_bitmap;
1786 
1787 	kvm_arch_sync_dirty_log(kvm, memslot);
1788 
1789 	n = kvm_dirty_bitmap_bytes(memslot);
1790 	flush = false;
1791 	if (kvm->manual_dirty_log_protect) {
1792 		/*
1793 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1794 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1795 		 * is some code duplication between this function and
1796 		 * kvm_get_dirty_log, but hopefully all architecture
1797 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1798 		 * can be eliminated.
1799 		 */
1800 		dirty_bitmap_buffer = dirty_bitmap;
1801 	} else {
1802 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1803 		memset(dirty_bitmap_buffer, 0, n);
1804 
1805 		KVM_MMU_LOCK(kvm);
1806 		for (i = 0; i < n / sizeof(long); i++) {
1807 			unsigned long mask;
1808 			gfn_t offset;
1809 
1810 			if (!dirty_bitmap[i])
1811 				continue;
1812 
1813 			flush = true;
1814 			mask = xchg(&dirty_bitmap[i], 0);
1815 			dirty_bitmap_buffer[i] = mask;
1816 
1817 			offset = i * BITS_PER_LONG;
1818 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1819 								offset, mask);
1820 		}
1821 		KVM_MMU_UNLOCK(kvm);
1822 	}
1823 
1824 	if (flush)
1825 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1826 
1827 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1828 		return -EFAULT;
1829 	return 0;
1830 }
1831 
1832 
1833 /**
1834  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1835  * @kvm: kvm instance
1836  * @log: slot id and address to which we copy the log
1837  *
1838  * Steps 1-4 below provide general overview of dirty page logging. See
1839  * kvm_get_dirty_log_protect() function description for additional details.
1840  *
1841  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1842  * always flush the TLB (step 4) even if previous step failed  and the dirty
1843  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1844  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1845  * writes will be marked dirty for next log read.
1846  *
1847  *   1. Take a snapshot of the bit and clear it if needed.
1848  *   2. Write protect the corresponding page.
1849  *   3. Copy the snapshot to the userspace.
1850  *   4. Flush TLB's if needed.
1851  */
1852 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1853 				      struct kvm_dirty_log *log)
1854 {
1855 	int r;
1856 
1857 	mutex_lock(&kvm->slots_lock);
1858 
1859 	r = kvm_get_dirty_log_protect(kvm, log);
1860 
1861 	mutex_unlock(&kvm->slots_lock);
1862 	return r;
1863 }
1864 
1865 /**
1866  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1867  *	and reenable dirty page tracking for the corresponding pages.
1868  * @kvm:	pointer to kvm instance
1869  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1870  */
1871 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1872 				       struct kvm_clear_dirty_log *log)
1873 {
1874 	struct kvm_memslots *slots;
1875 	struct kvm_memory_slot *memslot;
1876 	int as_id, id;
1877 	gfn_t offset;
1878 	unsigned long i, n;
1879 	unsigned long *dirty_bitmap;
1880 	unsigned long *dirty_bitmap_buffer;
1881 	bool flush;
1882 
1883 	/* Dirty ring tracking is exclusive to dirty log tracking */
1884 	if (kvm->dirty_ring_size)
1885 		return -ENXIO;
1886 
1887 	as_id = log->slot >> 16;
1888 	id = (u16)log->slot;
1889 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1890 		return -EINVAL;
1891 
1892 	if (log->first_page & 63)
1893 		return -EINVAL;
1894 
1895 	slots = __kvm_memslots(kvm, as_id);
1896 	memslot = id_to_memslot(slots, id);
1897 	if (!memslot || !memslot->dirty_bitmap)
1898 		return -ENOENT;
1899 
1900 	dirty_bitmap = memslot->dirty_bitmap;
1901 
1902 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1903 
1904 	if (log->first_page > memslot->npages ||
1905 	    log->num_pages > memslot->npages - log->first_page ||
1906 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1907 	    return -EINVAL;
1908 
1909 	kvm_arch_sync_dirty_log(kvm, memslot);
1910 
1911 	flush = false;
1912 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1913 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1914 		return -EFAULT;
1915 
1916 	KVM_MMU_LOCK(kvm);
1917 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1918 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1919 	     i++, offset += BITS_PER_LONG) {
1920 		unsigned long mask = *dirty_bitmap_buffer++;
1921 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1922 		if (!mask)
1923 			continue;
1924 
1925 		mask &= atomic_long_fetch_andnot(mask, p);
1926 
1927 		/*
1928 		 * mask contains the bits that really have been cleared.  This
1929 		 * never includes any bits beyond the length of the memslot (if
1930 		 * the length is not aligned to 64 pages), therefore it is not
1931 		 * a problem if userspace sets them in log->dirty_bitmap.
1932 		*/
1933 		if (mask) {
1934 			flush = true;
1935 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1936 								offset, mask);
1937 		}
1938 	}
1939 	KVM_MMU_UNLOCK(kvm);
1940 
1941 	if (flush)
1942 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1943 
1944 	return 0;
1945 }
1946 
1947 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1948 					struct kvm_clear_dirty_log *log)
1949 {
1950 	int r;
1951 
1952 	mutex_lock(&kvm->slots_lock);
1953 
1954 	r = kvm_clear_dirty_log_protect(kvm, log);
1955 
1956 	mutex_unlock(&kvm->slots_lock);
1957 	return r;
1958 }
1959 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1960 
1961 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1962 {
1963 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1964 }
1965 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1966 
1967 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1968 {
1969 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1970 }
1971 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1972 
1973 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1974 {
1975 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1976 
1977 	return kvm_is_visible_memslot(memslot);
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1980 
1981 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1982 {
1983 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1984 
1985 	return kvm_is_visible_memslot(memslot);
1986 }
1987 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1988 
1989 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1990 {
1991 	struct vm_area_struct *vma;
1992 	unsigned long addr, size;
1993 
1994 	size = PAGE_SIZE;
1995 
1996 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1997 	if (kvm_is_error_hva(addr))
1998 		return PAGE_SIZE;
1999 
2000 	mmap_read_lock(current->mm);
2001 	vma = find_vma(current->mm, addr);
2002 	if (!vma)
2003 		goto out;
2004 
2005 	size = vma_kernel_pagesize(vma);
2006 
2007 out:
2008 	mmap_read_unlock(current->mm);
2009 
2010 	return size;
2011 }
2012 
2013 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2014 {
2015 	return slot->flags & KVM_MEM_READONLY;
2016 }
2017 
2018 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2019 				       gfn_t *nr_pages, bool write)
2020 {
2021 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2022 		return KVM_HVA_ERR_BAD;
2023 
2024 	if (memslot_is_readonly(slot) && write)
2025 		return KVM_HVA_ERR_RO_BAD;
2026 
2027 	if (nr_pages)
2028 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2029 
2030 	return __gfn_to_hva_memslot(slot, gfn);
2031 }
2032 
2033 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2034 				     gfn_t *nr_pages)
2035 {
2036 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2037 }
2038 
2039 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2040 					gfn_t gfn)
2041 {
2042 	return gfn_to_hva_many(slot, gfn, NULL);
2043 }
2044 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2045 
2046 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2047 {
2048 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2049 }
2050 EXPORT_SYMBOL_GPL(gfn_to_hva);
2051 
2052 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2053 {
2054 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2055 }
2056 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2057 
2058 /*
2059  * Return the hva of a @gfn and the R/W attribute if possible.
2060  *
2061  * @slot: the kvm_memory_slot which contains @gfn
2062  * @gfn: the gfn to be translated
2063  * @writable: used to return the read/write attribute of the @slot if the hva
2064  * is valid and @writable is not NULL
2065  */
2066 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2067 				      gfn_t gfn, bool *writable)
2068 {
2069 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2070 
2071 	if (!kvm_is_error_hva(hva) && writable)
2072 		*writable = !memslot_is_readonly(slot);
2073 
2074 	return hva;
2075 }
2076 
2077 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2078 {
2079 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2080 
2081 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2082 }
2083 
2084 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2085 {
2086 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2087 
2088 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2089 }
2090 
2091 static inline int check_user_page_hwpoison(unsigned long addr)
2092 {
2093 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2094 
2095 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
2096 	return rc == -EHWPOISON;
2097 }
2098 
2099 /*
2100  * The fast path to get the writable pfn which will be stored in @pfn,
2101  * true indicates success, otherwise false is returned.  It's also the
2102  * only part that runs if we can in atomic context.
2103  */
2104 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2105 			    bool *writable, kvm_pfn_t *pfn)
2106 {
2107 	struct page *page[1];
2108 
2109 	/*
2110 	 * Fast pin a writable pfn only if it is a write fault request
2111 	 * or the caller allows to map a writable pfn for a read fault
2112 	 * request.
2113 	 */
2114 	if (!(write_fault || writable))
2115 		return false;
2116 
2117 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2118 		*pfn = page_to_pfn(page[0]);
2119 
2120 		if (writable)
2121 			*writable = true;
2122 		return true;
2123 	}
2124 
2125 	return false;
2126 }
2127 
2128 /*
2129  * The slow path to get the pfn of the specified host virtual address,
2130  * 1 indicates success, -errno is returned if error is detected.
2131  */
2132 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2133 			   bool *writable, kvm_pfn_t *pfn)
2134 {
2135 	unsigned int flags = FOLL_HWPOISON;
2136 	struct page *page;
2137 	int npages = 0;
2138 
2139 	might_sleep();
2140 
2141 	if (writable)
2142 		*writable = write_fault;
2143 
2144 	if (write_fault)
2145 		flags |= FOLL_WRITE;
2146 	if (async)
2147 		flags |= FOLL_NOWAIT;
2148 
2149 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2150 	if (npages != 1)
2151 		return npages;
2152 
2153 	/* map read fault as writable if possible */
2154 	if (unlikely(!write_fault) && writable) {
2155 		struct page *wpage;
2156 
2157 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2158 			*writable = true;
2159 			put_page(page);
2160 			page = wpage;
2161 		}
2162 	}
2163 	*pfn = page_to_pfn(page);
2164 	return npages;
2165 }
2166 
2167 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2168 {
2169 	if (unlikely(!(vma->vm_flags & VM_READ)))
2170 		return false;
2171 
2172 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2173 		return false;
2174 
2175 	return true;
2176 }
2177 
2178 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2179 {
2180 	if (kvm_is_reserved_pfn(pfn))
2181 		return 1;
2182 	return get_page_unless_zero(pfn_to_page(pfn));
2183 }
2184 
2185 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2186 			       unsigned long addr, bool *async,
2187 			       bool write_fault, bool *writable,
2188 			       kvm_pfn_t *p_pfn)
2189 {
2190 	kvm_pfn_t pfn;
2191 	pte_t *ptep;
2192 	spinlock_t *ptl;
2193 	int r;
2194 
2195 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2196 	if (r) {
2197 		/*
2198 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2199 		 * not call the fault handler, so do it here.
2200 		 */
2201 		bool unlocked = false;
2202 		r = fixup_user_fault(current->mm, addr,
2203 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2204 				     &unlocked);
2205 		if (unlocked)
2206 			return -EAGAIN;
2207 		if (r)
2208 			return r;
2209 
2210 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2211 		if (r)
2212 			return r;
2213 	}
2214 
2215 	if (write_fault && !pte_write(*ptep)) {
2216 		pfn = KVM_PFN_ERR_RO_FAULT;
2217 		goto out;
2218 	}
2219 
2220 	if (writable)
2221 		*writable = pte_write(*ptep);
2222 	pfn = pte_pfn(*ptep);
2223 
2224 	/*
2225 	 * Get a reference here because callers of *hva_to_pfn* and
2226 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2227 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2228 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2229 	 * simply do nothing for reserved pfns.
2230 	 *
2231 	 * Whoever called remap_pfn_range is also going to call e.g.
2232 	 * unmap_mapping_range before the underlying pages are freed,
2233 	 * causing a call to our MMU notifier.
2234 	 *
2235 	 * Certain IO or PFNMAP mappings can be backed with valid
2236 	 * struct pages, but be allocated without refcounting e.g.,
2237 	 * tail pages of non-compound higher order allocations, which
2238 	 * would then underflow the refcount when the caller does the
2239 	 * required put_page. Don't allow those pages here.
2240 	 */
2241 	if (!kvm_try_get_pfn(pfn))
2242 		r = -EFAULT;
2243 
2244 out:
2245 	pte_unmap_unlock(ptep, ptl);
2246 	*p_pfn = pfn;
2247 
2248 	return r;
2249 }
2250 
2251 /*
2252  * Pin guest page in memory and return its pfn.
2253  * @addr: host virtual address which maps memory to the guest
2254  * @atomic: whether this function can sleep
2255  * @async: whether this function need to wait IO complete if the
2256  *         host page is not in the memory
2257  * @write_fault: whether we should get a writable host page
2258  * @writable: whether it allows to map a writable host page for !@write_fault
2259  *
2260  * The function will map a writable host page for these two cases:
2261  * 1): @write_fault = true
2262  * 2): @write_fault = false && @writable, @writable will tell the caller
2263  *     whether the mapping is writable.
2264  */
2265 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2266 			bool write_fault, bool *writable)
2267 {
2268 	struct vm_area_struct *vma;
2269 	kvm_pfn_t pfn = 0;
2270 	int npages, r;
2271 
2272 	/* we can do it either atomically or asynchronously, not both */
2273 	BUG_ON(atomic && async);
2274 
2275 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2276 		return pfn;
2277 
2278 	if (atomic)
2279 		return KVM_PFN_ERR_FAULT;
2280 
2281 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2282 	if (npages == 1)
2283 		return pfn;
2284 
2285 	mmap_read_lock(current->mm);
2286 	if (npages == -EHWPOISON ||
2287 	      (!async && check_user_page_hwpoison(addr))) {
2288 		pfn = KVM_PFN_ERR_HWPOISON;
2289 		goto exit;
2290 	}
2291 
2292 retry:
2293 	vma = vma_lookup(current->mm, addr);
2294 
2295 	if (vma == NULL)
2296 		pfn = KVM_PFN_ERR_FAULT;
2297 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2298 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2299 		if (r == -EAGAIN)
2300 			goto retry;
2301 		if (r < 0)
2302 			pfn = KVM_PFN_ERR_FAULT;
2303 	} else {
2304 		if (async && vma_is_valid(vma, write_fault))
2305 			*async = true;
2306 		pfn = KVM_PFN_ERR_FAULT;
2307 	}
2308 exit:
2309 	mmap_read_unlock(current->mm);
2310 	return pfn;
2311 }
2312 
2313 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2314 			       bool atomic, bool *async, bool write_fault,
2315 			       bool *writable, hva_t *hva)
2316 {
2317 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2318 
2319 	if (hva)
2320 		*hva = addr;
2321 
2322 	if (addr == KVM_HVA_ERR_RO_BAD) {
2323 		if (writable)
2324 			*writable = false;
2325 		return KVM_PFN_ERR_RO_FAULT;
2326 	}
2327 
2328 	if (kvm_is_error_hva(addr)) {
2329 		if (writable)
2330 			*writable = false;
2331 		return KVM_PFN_NOSLOT;
2332 	}
2333 
2334 	/* Do not map writable pfn in the readonly memslot. */
2335 	if (writable && memslot_is_readonly(slot)) {
2336 		*writable = false;
2337 		writable = NULL;
2338 	}
2339 
2340 	return hva_to_pfn(addr, atomic, async, write_fault,
2341 			  writable);
2342 }
2343 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2344 
2345 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2346 		      bool *writable)
2347 {
2348 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2349 				    write_fault, writable, NULL);
2350 }
2351 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2352 
2353 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2354 {
2355 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2356 }
2357 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2358 
2359 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2360 {
2361 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2362 }
2363 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2364 
2365 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2366 {
2367 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2370 
2371 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2372 {
2373 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2374 }
2375 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2376 
2377 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2378 {
2379 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2380 }
2381 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2382 
2383 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2384 			    struct page **pages, int nr_pages)
2385 {
2386 	unsigned long addr;
2387 	gfn_t entry = 0;
2388 
2389 	addr = gfn_to_hva_many(slot, gfn, &entry);
2390 	if (kvm_is_error_hva(addr))
2391 		return -1;
2392 
2393 	if (entry < nr_pages)
2394 		return 0;
2395 
2396 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2397 }
2398 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2399 
2400 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2401 {
2402 	if (is_error_noslot_pfn(pfn))
2403 		return KVM_ERR_PTR_BAD_PAGE;
2404 
2405 	if (kvm_is_reserved_pfn(pfn)) {
2406 		WARN_ON(1);
2407 		return KVM_ERR_PTR_BAD_PAGE;
2408 	}
2409 
2410 	return pfn_to_page(pfn);
2411 }
2412 
2413 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2414 {
2415 	kvm_pfn_t pfn;
2416 
2417 	pfn = gfn_to_pfn(kvm, gfn);
2418 
2419 	return kvm_pfn_to_page(pfn);
2420 }
2421 EXPORT_SYMBOL_GPL(gfn_to_page);
2422 
2423 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2424 {
2425 	if (pfn == 0)
2426 		return;
2427 
2428 	if (cache)
2429 		cache->pfn = cache->gfn = 0;
2430 
2431 	if (dirty)
2432 		kvm_release_pfn_dirty(pfn);
2433 	else
2434 		kvm_release_pfn_clean(pfn);
2435 }
2436 
2437 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2438 				 struct gfn_to_pfn_cache *cache, u64 gen)
2439 {
2440 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2441 
2442 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2443 	cache->gfn = gfn;
2444 	cache->dirty = false;
2445 	cache->generation = gen;
2446 }
2447 
2448 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2449 			 struct kvm_host_map *map,
2450 			 struct gfn_to_pfn_cache *cache,
2451 			 bool atomic)
2452 {
2453 	kvm_pfn_t pfn;
2454 	void *hva = NULL;
2455 	struct page *page = KVM_UNMAPPED_PAGE;
2456 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2457 	u64 gen = slots->generation;
2458 
2459 	if (!map)
2460 		return -EINVAL;
2461 
2462 	if (cache) {
2463 		if (!cache->pfn || cache->gfn != gfn ||
2464 			cache->generation != gen) {
2465 			if (atomic)
2466 				return -EAGAIN;
2467 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2468 		}
2469 		pfn = cache->pfn;
2470 	} else {
2471 		if (atomic)
2472 			return -EAGAIN;
2473 		pfn = gfn_to_pfn_memslot(slot, gfn);
2474 	}
2475 	if (is_error_noslot_pfn(pfn))
2476 		return -EINVAL;
2477 
2478 	if (pfn_valid(pfn)) {
2479 		page = pfn_to_page(pfn);
2480 		if (atomic)
2481 			hva = kmap_atomic(page);
2482 		else
2483 			hva = kmap(page);
2484 #ifdef CONFIG_HAS_IOMEM
2485 	} else if (!atomic) {
2486 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2487 	} else {
2488 		return -EINVAL;
2489 #endif
2490 	}
2491 
2492 	if (!hva)
2493 		return -EFAULT;
2494 
2495 	map->page = page;
2496 	map->hva = hva;
2497 	map->pfn = pfn;
2498 	map->gfn = gfn;
2499 
2500 	return 0;
2501 }
2502 
2503 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2504 		struct gfn_to_pfn_cache *cache, bool atomic)
2505 {
2506 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2507 			cache, atomic);
2508 }
2509 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2510 
2511 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2512 {
2513 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2514 		NULL, false);
2515 }
2516 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2517 
2518 static void __kvm_unmap_gfn(struct kvm *kvm,
2519 			struct kvm_memory_slot *memslot,
2520 			struct kvm_host_map *map,
2521 			struct gfn_to_pfn_cache *cache,
2522 			bool dirty, bool atomic)
2523 {
2524 	if (!map)
2525 		return;
2526 
2527 	if (!map->hva)
2528 		return;
2529 
2530 	if (map->page != KVM_UNMAPPED_PAGE) {
2531 		if (atomic)
2532 			kunmap_atomic(map->hva);
2533 		else
2534 			kunmap(map->page);
2535 	}
2536 #ifdef CONFIG_HAS_IOMEM
2537 	else if (!atomic)
2538 		memunmap(map->hva);
2539 	else
2540 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2541 #endif
2542 
2543 	if (dirty)
2544 		mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2545 
2546 	if (cache)
2547 		cache->dirty |= dirty;
2548 	else
2549 		kvm_release_pfn(map->pfn, dirty, NULL);
2550 
2551 	map->hva = NULL;
2552 	map->page = NULL;
2553 }
2554 
2555 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2556 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2557 {
2558 	__kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2559 			cache, dirty, atomic);
2560 	return 0;
2561 }
2562 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2563 
2564 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2565 {
2566 	__kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2567 			map, NULL, dirty, false);
2568 }
2569 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2570 
2571 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2572 {
2573 	kvm_pfn_t pfn;
2574 
2575 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2576 
2577 	return kvm_pfn_to_page(pfn);
2578 }
2579 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2580 
2581 void kvm_release_page_clean(struct page *page)
2582 {
2583 	WARN_ON(is_error_page(page));
2584 
2585 	kvm_release_pfn_clean(page_to_pfn(page));
2586 }
2587 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2588 
2589 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2590 {
2591 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2592 		put_page(pfn_to_page(pfn));
2593 }
2594 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2595 
2596 void kvm_release_page_dirty(struct page *page)
2597 {
2598 	WARN_ON(is_error_page(page));
2599 
2600 	kvm_release_pfn_dirty(page_to_pfn(page));
2601 }
2602 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2603 
2604 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2605 {
2606 	kvm_set_pfn_dirty(pfn);
2607 	kvm_release_pfn_clean(pfn);
2608 }
2609 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2610 
2611 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2612 {
2613 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2614 		SetPageDirty(pfn_to_page(pfn));
2615 }
2616 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2617 
2618 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2619 {
2620 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2621 		mark_page_accessed(pfn_to_page(pfn));
2622 }
2623 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2624 
2625 void kvm_get_pfn(kvm_pfn_t pfn)
2626 {
2627 	if (!kvm_is_reserved_pfn(pfn))
2628 		get_page(pfn_to_page(pfn));
2629 }
2630 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2631 
2632 static int next_segment(unsigned long len, int offset)
2633 {
2634 	if (len > PAGE_SIZE - offset)
2635 		return PAGE_SIZE - offset;
2636 	else
2637 		return len;
2638 }
2639 
2640 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2641 				 void *data, int offset, int len)
2642 {
2643 	int r;
2644 	unsigned long addr;
2645 
2646 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2647 	if (kvm_is_error_hva(addr))
2648 		return -EFAULT;
2649 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2650 	if (r)
2651 		return -EFAULT;
2652 	return 0;
2653 }
2654 
2655 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2656 			int len)
2657 {
2658 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2659 
2660 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2661 }
2662 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2663 
2664 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2665 			     int offset, int len)
2666 {
2667 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2668 
2669 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2670 }
2671 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2672 
2673 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2674 {
2675 	gfn_t gfn = gpa >> PAGE_SHIFT;
2676 	int seg;
2677 	int offset = offset_in_page(gpa);
2678 	int ret;
2679 
2680 	while ((seg = next_segment(len, offset)) != 0) {
2681 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2682 		if (ret < 0)
2683 			return ret;
2684 		offset = 0;
2685 		len -= seg;
2686 		data += seg;
2687 		++gfn;
2688 	}
2689 	return 0;
2690 }
2691 EXPORT_SYMBOL_GPL(kvm_read_guest);
2692 
2693 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2694 {
2695 	gfn_t gfn = gpa >> PAGE_SHIFT;
2696 	int seg;
2697 	int offset = offset_in_page(gpa);
2698 	int ret;
2699 
2700 	while ((seg = next_segment(len, offset)) != 0) {
2701 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2702 		if (ret < 0)
2703 			return ret;
2704 		offset = 0;
2705 		len -= seg;
2706 		data += seg;
2707 		++gfn;
2708 	}
2709 	return 0;
2710 }
2711 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2712 
2713 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2714 			           void *data, int offset, unsigned long len)
2715 {
2716 	int r;
2717 	unsigned long addr;
2718 
2719 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2720 	if (kvm_is_error_hva(addr))
2721 		return -EFAULT;
2722 	pagefault_disable();
2723 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2724 	pagefault_enable();
2725 	if (r)
2726 		return -EFAULT;
2727 	return 0;
2728 }
2729 
2730 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2731 			       void *data, unsigned long len)
2732 {
2733 	gfn_t gfn = gpa >> PAGE_SHIFT;
2734 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2735 	int offset = offset_in_page(gpa);
2736 
2737 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2738 }
2739 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2740 
2741 static int __kvm_write_guest_page(struct kvm *kvm,
2742 				  struct kvm_memory_slot *memslot, gfn_t gfn,
2743 			          const void *data, int offset, int len)
2744 {
2745 	int r;
2746 	unsigned long addr;
2747 
2748 	addr = gfn_to_hva_memslot(memslot, gfn);
2749 	if (kvm_is_error_hva(addr))
2750 		return -EFAULT;
2751 	r = __copy_to_user((void __user *)addr + offset, data, len);
2752 	if (r)
2753 		return -EFAULT;
2754 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2755 	return 0;
2756 }
2757 
2758 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2759 			 const void *data, int offset, int len)
2760 {
2761 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2762 
2763 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2764 }
2765 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2766 
2767 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2768 			      const void *data, int offset, int len)
2769 {
2770 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2771 
2772 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2773 }
2774 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2775 
2776 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2777 		    unsigned long len)
2778 {
2779 	gfn_t gfn = gpa >> PAGE_SHIFT;
2780 	int seg;
2781 	int offset = offset_in_page(gpa);
2782 	int ret;
2783 
2784 	while ((seg = next_segment(len, offset)) != 0) {
2785 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2786 		if (ret < 0)
2787 			return ret;
2788 		offset = 0;
2789 		len -= seg;
2790 		data += seg;
2791 		++gfn;
2792 	}
2793 	return 0;
2794 }
2795 EXPORT_SYMBOL_GPL(kvm_write_guest);
2796 
2797 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2798 		         unsigned long len)
2799 {
2800 	gfn_t gfn = gpa >> PAGE_SHIFT;
2801 	int seg;
2802 	int offset = offset_in_page(gpa);
2803 	int ret;
2804 
2805 	while ((seg = next_segment(len, offset)) != 0) {
2806 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2807 		if (ret < 0)
2808 			return ret;
2809 		offset = 0;
2810 		len -= seg;
2811 		data += seg;
2812 		++gfn;
2813 	}
2814 	return 0;
2815 }
2816 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2817 
2818 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2819 				       struct gfn_to_hva_cache *ghc,
2820 				       gpa_t gpa, unsigned long len)
2821 {
2822 	int offset = offset_in_page(gpa);
2823 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2824 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2825 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2826 	gfn_t nr_pages_avail;
2827 
2828 	/* Update ghc->generation before performing any error checks. */
2829 	ghc->generation = slots->generation;
2830 
2831 	if (start_gfn > end_gfn) {
2832 		ghc->hva = KVM_HVA_ERR_BAD;
2833 		return -EINVAL;
2834 	}
2835 
2836 	/*
2837 	 * If the requested region crosses two memslots, we still
2838 	 * verify that the entire region is valid here.
2839 	 */
2840 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2841 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2842 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2843 					   &nr_pages_avail);
2844 		if (kvm_is_error_hva(ghc->hva))
2845 			return -EFAULT;
2846 	}
2847 
2848 	/* Use the slow path for cross page reads and writes. */
2849 	if (nr_pages_needed == 1)
2850 		ghc->hva += offset;
2851 	else
2852 		ghc->memslot = NULL;
2853 
2854 	ghc->gpa = gpa;
2855 	ghc->len = len;
2856 	return 0;
2857 }
2858 
2859 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2860 			      gpa_t gpa, unsigned long len)
2861 {
2862 	struct kvm_memslots *slots = kvm_memslots(kvm);
2863 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2864 }
2865 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2866 
2867 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2868 				  void *data, unsigned int offset,
2869 				  unsigned long len)
2870 {
2871 	struct kvm_memslots *slots = kvm_memslots(kvm);
2872 	int r;
2873 	gpa_t gpa = ghc->gpa + offset;
2874 
2875 	BUG_ON(len + offset > ghc->len);
2876 
2877 	if (slots->generation != ghc->generation) {
2878 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2879 			return -EFAULT;
2880 	}
2881 
2882 	if (kvm_is_error_hva(ghc->hva))
2883 		return -EFAULT;
2884 
2885 	if (unlikely(!ghc->memslot))
2886 		return kvm_write_guest(kvm, gpa, data, len);
2887 
2888 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2889 	if (r)
2890 		return -EFAULT;
2891 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2892 
2893 	return 0;
2894 }
2895 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2896 
2897 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2898 			   void *data, unsigned long len)
2899 {
2900 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2901 }
2902 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2903 
2904 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2905 				 void *data, unsigned int offset,
2906 				 unsigned long len)
2907 {
2908 	struct kvm_memslots *slots = kvm_memslots(kvm);
2909 	int r;
2910 	gpa_t gpa = ghc->gpa + offset;
2911 
2912 	BUG_ON(len + offset > ghc->len);
2913 
2914 	if (slots->generation != ghc->generation) {
2915 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2916 			return -EFAULT;
2917 	}
2918 
2919 	if (kvm_is_error_hva(ghc->hva))
2920 		return -EFAULT;
2921 
2922 	if (unlikely(!ghc->memslot))
2923 		return kvm_read_guest(kvm, gpa, data, len);
2924 
2925 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2926 	if (r)
2927 		return -EFAULT;
2928 
2929 	return 0;
2930 }
2931 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2932 
2933 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2934 			  void *data, unsigned long len)
2935 {
2936 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2937 }
2938 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2939 
2940 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2941 {
2942 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2943 	gfn_t gfn = gpa >> PAGE_SHIFT;
2944 	int seg;
2945 	int offset = offset_in_page(gpa);
2946 	int ret;
2947 
2948 	while ((seg = next_segment(len, offset)) != 0) {
2949 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2950 		if (ret < 0)
2951 			return ret;
2952 		offset = 0;
2953 		len -= seg;
2954 		++gfn;
2955 	}
2956 	return 0;
2957 }
2958 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2959 
2960 void mark_page_dirty_in_slot(struct kvm *kvm,
2961 			     struct kvm_memory_slot *memslot,
2962 		 	     gfn_t gfn)
2963 {
2964 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2965 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2966 		u32 slot = (memslot->as_id << 16) | memslot->id;
2967 
2968 		if (kvm->dirty_ring_size)
2969 			kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2970 					    slot, rel_gfn);
2971 		else
2972 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
2973 	}
2974 }
2975 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2976 
2977 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2978 {
2979 	struct kvm_memory_slot *memslot;
2980 
2981 	memslot = gfn_to_memslot(kvm, gfn);
2982 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2983 }
2984 EXPORT_SYMBOL_GPL(mark_page_dirty);
2985 
2986 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2987 {
2988 	struct kvm_memory_slot *memslot;
2989 
2990 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2991 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
2992 }
2993 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2994 
2995 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2996 {
2997 	if (!vcpu->sigset_active)
2998 		return;
2999 
3000 	/*
3001 	 * This does a lockless modification of ->real_blocked, which is fine
3002 	 * because, only current can change ->real_blocked and all readers of
3003 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3004 	 * of ->blocked.
3005 	 */
3006 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3007 }
3008 
3009 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3010 {
3011 	if (!vcpu->sigset_active)
3012 		return;
3013 
3014 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3015 	sigemptyset(&current->real_blocked);
3016 }
3017 
3018 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3019 {
3020 	unsigned int old, val, grow, grow_start;
3021 
3022 	old = val = vcpu->halt_poll_ns;
3023 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3024 	grow = READ_ONCE(halt_poll_ns_grow);
3025 	if (!grow)
3026 		goto out;
3027 
3028 	val *= grow;
3029 	if (val < grow_start)
3030 		val = grow_start;
3031 
3032 	if (val > vcpu->kvm->max_halt_poll_ns)
3033 		val = vcpu->kvm->max_halt_poll_ns;
3034 
3035 	vcpu->halt_poll_ns = val;
3036 out:
3037 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3038 }
3039 
3040 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3041 {
3042 	unsigned int old, val, shrink;
3043 
3044 	old = val = vcpu->halt_poll_ns;
3045 	shrink = READ_ONCE(halt_poll_ns_shrink);
3046 	if (shrink == 0)
3047 		val = 0;
3048 	else
3049 		val /= shrink;
3050 
3051 	vcpu->halt_poll_ns = val;
3052 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3053 }
3054 
3055 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3056 {
3057 	int ret = -EINTR;
3058 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3059 
3060 	if (kvm_arch_vcpu_runnable(vcpu)) {
3061 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
3062 		goto out;
3063 	}
3064 	if (kvm_cpu_has_pending_timer(vcpu))
3065 		goto out;
3066 	if (signal_pending(current))
3067 		goto out;
3068 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3069 		goto out;
3070 
3071 	ret = 0;
3072 out:
3073 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3074 	return ret;
3075 }
3076 
3077 static inline void
3078 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3079 {
3080 	if (waited)
3081 		vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3082 	else
3083 		vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3084 }
3085 
3086 /*
3087  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3088  */
3089 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3090 {
3091 	ktime_t start, cur, poll_end;
3092 	bool waited = false;
3093 	u64 block_ns;
3094 
3095 	kvm_arch_vcpu_blocking(vcpu);
3096 
3097 	start = cur = poll_end = ktime_get();
3098 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3099 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3100 
3101 		++vcpu->stat.generic.halt_attempted_poll;
3102 		do {
3103 			/*
3104 			 * This sets KVM_REQ_UNHALT if an interrupt
3105 			 * arrives.
3106 			 */
3107 			if (kvm_vcpu_check_block(vcpu) < 0) {
3108 				++vcpu->stat.generic.halt_successful_poll;
3109 				if (!vcpu_valid_wakeup(vcpu))
3110 					++vcpu->stat.generic.halt_poll_invalid;
3111 				goto out;
3112 			}
3113 			poll_end = cur = ktime_get();
3114 		} while (kvm_vcpu_can_poll(cur, stop));
3115 	}
3116 
3117 	prepare_to_rcuwait(&vcpu->wait);
3118 	for (;;) {
3119 		set_current_state(TASK_INTERRUPTIBLE);
3120 
3121 		if (kvm_vcpu_check_block(vcpu) < 0)
3122 			break;
3123 
3124 		waited = true;
3125 		schedule();
3126 	}
3127 	finish_rcuwait(&vcpu->wait);
3128 	cur = ktime_get();
3129 out:
3130 	kvm_arch_vcpu_unblocking(vcpu);
3131 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3132 
3133 	update_halt_poll_stats(
3134 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3135 
3136 	if (!kvm_arch_no_poll(vcpu)) {
3137 		if (!vcpu_valid_wakeup(vcpu)) {
3138 			shrink_halt_poll_ns(vcpu);
3139 		} else if (vcpu->kvm->max_halt_poll_ns) {
3140 			if (block_ns <= vcpu->halt_poll_ns)
3141 				;
3142 			/* we had a long block, shrink polling */
3143 			else if (vcpu->halt_poll_ns &&
3144 					block_ns > vcpu->kvm->max_halt_poll_ns)
3145 				shrink_halt_poll_ns(vcpu);
3146 			/* we had a short halt and our poll time is too small */
3147 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3148 					block_ns < vcpu->kvm->max_halt_poll_ns)
3149 				grow_halt_poll_ns(vcpu);
3150 		} else {
3151 			vcpu->halt_poll_ns = 0;
3152 		}
3153 	}
3154 
3155 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3156 	kvm_arch_vcpu_block_finish(vcpu);
3157 }
3158 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3159 
3160 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3161 {
3162 	struct rcuwait *waitp;
3163 
3164 	waitp = kvm_arch_vcpu_get_wait(vcpu);
3165 	if (rcuwait_wake_up(waitp)) {
3166 		WRITE_ONCE(vcpu->ready, true);
3167 		++vcpu->stat.generic.halt_wakeup;
3168 		return true;
3169 	}
3170 
3171 	return false;
3172 }
3173 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3174 
3175 #ifndef CONFIG_S390
3176 /*
3177  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3178  */
3179 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3180 {
3181 	int me;
3182 	int cpu = vcpu->cpu;
3183 
3184 	if (kvm_vcpu_wake_up(vcpu))
3185 		return;
3186 
3187 	me = get_cpu();
3188 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3189 		if (kvm_arch_vcpu_should_kick(vcpu))
3190 			smp_send_reschedule(cpu);
3191 	put_cpu();
3192 }
3193 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3194 #endif /* !CONFIG_S390 */
3195 
3196 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3197 {
3198 	struct pid *pid;
3199 	struct task_struct *task = NULL;
3200 	int ret = 0;
3201 
3202 	rcu_read_lock();
3203 	pid = rcu_dereference(target->pid);
3204 	if (pid)
3205 		task = get_pid_task(pid, PIDTYPE_PID);
3206 	rcu_read_unlock();
3207 	if (!task)
3208 		return ret;
3209 	ret = yield_to(task, 1);
3210 	put_task_struct(task);
3211 
3212 	return ret;
3213 }
3214 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3215 
3216 /*
3217  * Helper that checks whether a VCPU is eligible for directed yield.
3218  * Most eligible candidate to yield is decided by following heuristics:
3219  *
3220  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3221  *  (preempted lock holder), indicated by @in_spin_loop.
3222  *  Set at the beginning and cleared at the end of interception/PLE handler.
3223  *
3224  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3225  *  chance last time (mostly it has become eligible now since we have probably
3226  *  yielded to lockholder in last iteration. This is done by toggling
3227  *  @dy_eligible each time a VCPU checked for eligibility.)
3228  *
3229  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3230  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3231  *  burning. Giving priority for a potential lock-holder increases lock
3232  *  progress.
3233  *
3234  *  Since algorithm is based on heuristics, accessing another VCPU data without
3235  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3236  *  and continue with next VCPU and so on.
3237  */
3238 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3239 {
3240 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3241 	bool eligible;
3242 
3243 	eligible = !vcpu->spin_loop.in_spin_loop ||
3244 		    vcpu->spin_loop.dy_eligible;
3245 
3246 	if (vcpu->spin_loop.in_spin_loop)
3247 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3248 
3249 	return eligible;
3250 #else
3251 	return true;
3252 #endif
3253 }
3254 
3255 /*
3256  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3257  * a vcpu_load/vcpu_put pair.  However, for most architectures
3258  * kvm_arch_vcpu_runnable does not require vcpu_load.
3259  */
3260 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3261 {
3262 	return kvm_arch_vcpu_runnable(vcpu);
3263 }
3264 
3265 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3266 {
3267 	if (kvm_arch_dy_runnable(vcpu))
3268 		return true;
3269 
3270 #ifdef CONFIG_KVM_ASYNC_PF
3271 	if (!list_empty_careful(&vcpu->async_pf.done))
3272 		return true;
3273 #endif
3274 
3275 	return false;
3276 }
3277 
3278 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3279 {
3280 	return false;
3281 }
3282 
3283 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3284 {
3285 	struct kvm *kvm = me->kvm;
3286 	struct kvm_vcpu *vcpu;
3287 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3288 	int yielded = 0;
3289 	int try = 3;
3290 	int pass;
3291 	int i;
3292 
3293 	kvm_vcpu_set_in_spin_loop(me, true);
3294 	/*
3295 	 * We boost the priority of a VCPU that is runnable but not
3296 	 * currently running, because it got preempted by something
3297 	 * else and called schedule in __vcpu_run.  Hopefully that
3298 	 * VCPU is holding the lock that we need and will release it.
3299 	 * We approximate round-robin by starting at the last boosted VCPU.
3300 	 */
3301 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3302 		kvm_for_each_vcpu(i, vcpu, kvm) {
3303 			if (!pass && i <= last_boosted_vcpu) {
3304 				i = last_boosted_vcpu;
3305 				continue;
3306 			} else if (pass && i > last_boosted_vcpu)
3307 				break;
3308 			if (!READ_ONCE(vcpu->ready))
3309 				continue;
3310 			if (vcpu == me)
3311 				continue;
3312 			if (rcuwait_active(&vcpu->wait) &&
3313 			    !vcpu_dy_runnable(vcpu))
3314 				continue;
3315 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3316 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3317 			    !kvm_arch_vcpu_in_kernel(vcpu))
3318 				continue;
3319 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3320 				continue;
3321 
3322 			yielded = kvm_vcpu_yield_to(vcpu);
3323 			if (yielded > 0) {
3324 				kvm->last_boosted_vcpu = i;
3325 				break;
3326 			} else if (yielded < 0) {
3327 				try--;
3328 				if (!try)
3329 					break;
3330 			}
3331 		}
3332 	}
3333 	kvm_vcpu_set_in_spin_loop(me, false);
3334 
3335 	/* Ensure vcpu is not eligible during next spinloop */
3336 	kvm_vcpu_set_dy_eligible(me, false);
3337 }
3338 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3339 
3340 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3341 {
3342 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3343 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3344 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3345 	     kvm->dirty_ring_size / PAGE_SIZE);
3346 #else
3347 	return false;
3348 #endif
3349 }
3350 
3351 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3352 {
3353 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3354 	struct page *page;
3355 
3356 	if (vmf->pgoff == 0)
3357 		page = virt_to_page(vcpu->run);
3358 #ifdef CONFIG_X86
3359 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3360 		page = virt_to_page(vcpu->arch.pio_data);
3361 #endif
3362 #ifdef CONFIG_KVM_MMIO
3363 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3364 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3365 #endif
3366 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3367 		page = kvm_dirty_ring_get_page(
3368 		    &vcpu->dirty_ring,
3369 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3370 	else
3371 		return kvm_arch_vcpu_fault(vcpu, vmf);
3372 	get_page(page);
3373 	vmf->page = page;
3374 	return 0;
3375 }
3376 
3377 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3378 	.fault = kvm_vcpu_fault,
3379 };
3380 
3381 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3382 {
3383 	struct kvm_vcpu *vcpu = file->private_data;
3384 	unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3385 
3386 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3387 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3388 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3389 		return -EINVAL;
3390 
3391 	vma->vm_ops = &kvm_vcpu_vm_ops;
3392 	return 0;
3393 }
3394 
3395 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3396 {
3397 	struct kvm_vcpu *vcpu = filp->private_data;
3398 
3399 	kvm_put_kvm(vcpu->kvm);
3400 	return 0;
3401 }
3402 
3403 static struct file_operations kvm_vcpu_fops = {
3404 	.release        = kvm_vcpu_release,
3405 	.unlocked_ioctl = kvm_vcpu_ioctl,
3406 	.mmap           = kvm_vcpu_mmap,
3407 	.llseek		= noop_llseek,
3408 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3409 };
3410 
3411 /*
3412  * Allocates an inode for the vcpu.
3413  */
3414 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3415 {
3416 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3417 
3418 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3419 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3420 }
3421 
3422 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3423 {
3424 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3425 	struct dentry *debugfs_dentry;
3426 	char dir_name[ITOA_MAX_LEN * 2];
3427 
3428 	if (!debugfs_initialized())
3429 		return;
3430 
3431 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3432 	debugfs_dentry = debugfs_create_dir(dir_name,
3433 					    vcpu->kvm->debugfs_dentry);
3434 
3435 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3436 #endif
3437 }
3438 
3439 /*
3440  * Creates some virtual cpus.  Good luck creating more than one.
3441  */
3442 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3443 {
3444 	int r;
3445 	struct kvm_vcpu *vcpu;
3446 	struct page *page;
3447 
3448 	if (id >= KVM_MAX_VCPU_ID)
3449 		return -EINVAL;
3450 
3451 	mutex_lock(&kvm->lock);
3452 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3453 		mutex_unlock(&kvm->lock);
3454 		return -EINVAL;
3455 	}
3456 
3457 	kvm->created_vcpus++;
3458 	mutex_unlock(&kvm->lock);
3459 
3460 	r = kvm_arch_vcpu_precreate(kvm, id);
3461 	if (r)
3462 		goto vcpu_decrement;
3463 
3464 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3465 	if (!vcpu) {
3466 		r = -ENOMEM;
3467 		goto vcpu_decrement;
3468 	}
3469 
3470 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3471 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3472 	if (!page) {
3473 		r = -ENOMEM;
3474 		goto vcpu_free;
3475 	}
3476 	vcpu->run = page_address(page);
3477 
3478 	kvm_vcpu_init(vcpu, kvm, id);
3479 
3480 	r = kvm_arch_vcpu_create(vcpu);
3481 	if (r)
3482 		goto vcpu_free_run_page;
3483 
3484 	if (kvm->dirty_ring_size) {
3485 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3486 					 id, kvm->dirty_ring_size);
3487 		if (r)
3488 			goto arch_vcpu_destroy;
3489 	}
3490 
3491 	mutex_lock(&kvm->lock);
3492 	if (kvm_get_vcpu_by_id(kvm, id)) {
3493 		r = -EEXIST;
3494 		goto unlock_vcpu_destroy;
3495 	}
3496 
3497 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3498 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3499 
3500 	/* Fill the stats id string for the vcpu */
3501 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3502 		 task_pid_nr(current), id);
3503 
3504 	/* Now it's all set up, let userspace reach it */
3505 	kvm_get_kvm(kvm);
3506 	r = create_vcpu_fd(vcpu);
3507 	if (r < 0) {
3508 		kvm_put_kvm_no_destroy(kvm);
3509 		goto unlock_vcpu_destroy;
3510 	}
3511 
3512 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3513 
3514 	/*
3515 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3516 	 * before kvm->online_vcpu's incremented value.
3517 	 */
3518 	smp_wmb();
3519 	atomic_inc(&kvm->online_vcpus);
3520 
3521 	mutex_unlock(&kvm->lock);
3522 	kvm_arch_vcpu_postcreate(vcpu);
3523 	kvm_create_vcpu_debugfs(vcpu);
3524 	return r;
3525 
3526 unlock_vcpu_destroy:
3527 	mutex_unlock(&kvm->lock);
3528 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3529 arch_vcpu_destroy:
3530 	kvm_arch_vcpu_destroy(vcpu);
3531 vcpu_free_run_page:
3532 	free_page((unsigned long)vcpu->run);
3533 vcpu_free:
3534 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3535 vcpu_decrement:
3536 	mutex_lock(&kvm->lock);
3537 	kvm->created_vcpus--;
3538 	mutex_unlock(&kvm->lock);
3539 	return r;
3540 }
3541 
3542 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3543 {
3544 	if (sigset) {
3545 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3546 		vcpu->sigset_active = 1;
3547 		vcpu->sigset = *sigset;
3548 	} else
3549 		vcpu->sigset_active = 0;
3550 	return 0;
3551 }
3552 
3553 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3554 			      size_t size, loff_t *offset)
3555 {
3556 	struct kvm_vcpu *vcpu = file->private_data;
3557 
3558 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3559 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
3560 			sizeof(vcpu->stat), user_buffer, size, offset);
3561 }
3562 
3563 static const struct file_operations kvm_vcpu_stats_fops = {
3564 	.read = kvm_vcpu_stats_read,
3565 	.llseek = noop_llseek,
3566 };
3567 
3568 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3569 {
3570 	int fd;
3571 	struct file *file;
3572 	char name[15 + ITOA_MAX_LEN + 1];
3573 
3574 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3575 
3576 	fd = get_unused_fd_flags(O_CLOEXEC);
3577 	if (fd < 0)
3578 		return fd;
3579 
3580 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3581 	if (IS_ERR(file)) {
3582 		put_unused_fd(fd);
3583 		return PTR_ERR(file);
3584 	}
3585 	file->f_mode |= FMODE_PREAD;
3586 	fd_install(fd, file);
3587 
3588 	return fd;
3589 }
3590 
3591 static long kvm_vcpu_ioctl(struct file *filp,
3592 			   unsigned int ioctl, unsigned long arg)
3593 {
3594 	struct kvm_vcpu *vcpu = filp->private_data;
3595 	void __user *argp = (void __user *)arg;
3596 	int r;
3597 	struct kvm_fpu *fpu = NULL;
3598 	struct kvm_sregs *kvm_sregs = NULL;
3599 
3600 	if (vcpu->kvm->mm != current->mm)
3601 		return -EIO;
3602 
3603 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3604 		return -EINVAL;
3605 
3606 	/*
3607 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3608 	 * execution; mutex_lock() would break them.
3609 	 */
3610 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3611 	if (r != -ENOIOCTLCMD)
3612 		return r;
3613 
3614 	if (mutex_lock_killable(&vcpu->mutex))
3615 		return -EINTR;
3616 	switch (ioctl) {
3617 	case KVM_RUN: {
3618 		struct pid *oldpid;
3619 		r = -EINVAL;
3620 		if (arg)
3621 			goto out;
3622 		oldpid = rcu_access_pointer(vcpu->pid);
3623 		if (unlikely(oldpid != task_pid(current))) {
3624 			/* The thread running this VCPU changed. */
3625 			struct pid *newpid;
3626 
3627 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3628 			if (r)
3629 				break;
3630 
3631 			newpid = get_task_pid(current, PIDTYPE_PID);
3632 			rcu_assign_pointer(vcpu->pid, newpid);
3633 			if (oldpid)
3634 				synchronize_rcu();
3635 			put_pid(oldpid);
3636 		}
3637 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3638 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3639 		break;
3640 	}
3641 	case KVM_GET_REGS: {
3642 		struct kvm_regs *kvm_regs;
3643 
3644 		r = -ENOMEM;
3645 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3646 		if (!kvm_regs)
3647 			goto out;
3648 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3649 		if (r)
3650 			goto out_free1;
3651 		r = -EFAULT;
3652 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3653 			goto out_free1;
3654 		r = 0;
3655 out_free1:
3656 		kfree(kvm_regs);
3657 		break;
3658 	}
3659 	case KVM_SET_REGS: {
3660 		struct kvm_regs *kvm_regs;
3661 
3662 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3663 		if (IS_ERR(kvm_regs)) {
3664 			r = PTR_ERR(kvm_regs);
3665 			goto out;
3666 		}
3667 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3668 		kfree(kvm_regs);
3669 		break;
3670 	}
3671 	case KVM_GET_SREGS: {
3672 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3673 				    GFP_KERNEL_ACCOUNT);
3674 		r = -ENOMEM;
3675 		if (!kvm_sregs)
3676 			goto out;
3677 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3678 		if (r)
3679 			goto out;
3680 		r = -EFAULT;
3681 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3682 			goto out;
3683 		r = 0;
3684 		break;
3685 	}
3686 	case KVM_SET_SREGS: {
3687 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3688 		if (IS_ERR(kvm_sregs)) {
3689 			r = PTR_ERR(kvm_sregs);
3690 			kvm_sregs = NULL;
3691 			goto out;
3692 		}
3693 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3694 		break;
3695 	}
3696 	case KVM_GET_MP_STATE: {
3697 		struct kvm_mp_state mp_state;
3698 
3699 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3700 		if (r)
3701 			goto out;
3702 		r = -EFAULT;
3703 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3704 			goto out;
3705 		r = 0;
3706 		break;
3707 	}
3708 	case KVM_SET_MP_STATE: {
3709 		struct kvm_mp_state mp_state;
3710 
3711 		r = -EFAULT;
3712 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3713 			goto out;
3714 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3715 		break;
3716 	}
3717 	case KVM_TRANSLATE: {
3718 		struct kvm_translation tr;
3719 
3720 		r = -EFAULT;
3721 		if (copy_from_user(&tr, argp, sizeof(tr)))
3722 			goto out;
3723 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3724 		if (r)
3725 			goto out;
3726 		r = -EFAULT;
3727 		if (copy_to_user(argp, &tr, sizeof(tr)))
3728 			goto out;
3729 		r = 0;
3730 		break;
3731 	}
3732 	case KVM_SET_GUEST_DEBUG: {
3733 		struct kvm_guest_debug dbg;
3734 
3735 		r = -EFAULT;
3736 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3737 			goto out;
3738 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3739 		break;
3740 	}
3741 	case KVM_SET_SIGNAL_MASK: {
3742 		struct kvm_signal_mask __user *sigmask_arg = argp;
3743 		struct kvm_signal_mask kvm_sigmask;
3744 		sigset_t sigset, *p;
3745 
3746 		p = NULL;
3747 		if (argp) {
3748 			r = -EFAULT;
3749 			if (copy_from_user(&kvm_sigmask, argp,
3750 					   sizeof(kvm_sigmask)))
3751 				goto out;
3752 			r = -EINVAL;
3753 			if (kvm_sigmask.len != sizeof(sigset))
3754 				goto out;
3755 			r = -EFAULT;
3756 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3757 					   sizeof(sigset)))
3758 				goto out;
3759 			p = &sigset;
3760 		}
3761 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3762 		break;
3763 	}
3764 	case KVM_GET_FPU: {
3765 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3766 		r = -ENOMEM;
3767 		if (!fpu)
3768 			goto out;
3769 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3770 		if (r)
3771 			goto out;
3772 		r = -EFAULT;
3773 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3774 			goto out;
3775 		r = 0;
3776 		break;
3777 	}
3778 	case KVM_SET_FPU: {
3779 		fpu = memdup_user(argp, sizeof(*fpu));
3780 		if (IS_ERR(fpu)) {
3781 			r = PTR_ERR(fpu);
3782 			fpu = NULL;
3783 			goto out;
3784 		}
3785 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3786 		break;
3787 	}
3788 	case KVM_GET_STATS_FD: {
3789 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3790 		break;
3791 	}
3792 	default:
3793 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3794 	}
3795 out:
3796 	mutex_unlock(&vcpu->mutex);
3797 	kfree(fpu);
3798 	kfree(kvm_sregs);
3799 	return r;
3800 }
3801 
3802 #ifdef CONFIG_KVM_COMPAT
3803 static long kvm_vcpu_compat_ioctl(struct file *filp,
3804 				  unsigned int ioctl, unsigned long arg)
3805 {
3806 	struct kvm_vcpu *vcpu = filp->private_data;
3807 	void __user *argp = compat_ptr(arg);
3808 	int r;
3809 
3810 	if (vcpu->kvm->mm != current->mm)
3811 		return -EIO;
3812 
3813 	switch (ioctl) {
3814 	case KVM_SET_SIGNAL_MASK: {
3815 		struct kvm_signal_mask __user *sigmask_arg = argp;
3816 		struct kvm_signal_mask kvm_sigmask;
3817 		sigset_t sigset;
3818 
3819 		if (argp) {
3820 			r = -EFAULT;
3821 			if (copy_from_user(&kvm_sigmask, argp,
3822 					   sizeof(kvm_sigmask)))
3823 				goto out;
3824 			r = -EINVAL;
3825 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3826 				goto out;
3827 			r = -EFAULT;
3828 			if (get_compat_sigset(&sigset,
3829 					      (compat_sigset_t __user *)sigmask_arg->sigset))
3830 				goto out;
3831 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3832 		} else
3833 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3834 		break;
3835 	}
3836 	default:
3837 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3838 	}
3839 
3840 out:
3841 	return r;
3842 }
3843 #endif
3844 
3845 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3846 {
3847 	struct kvm_device *dev = filp->private_data;
3848 
3849 	if (dev->ops->mmap)
3850 		return dev->ops->mmap(dev, vma);
3851 
3852 	return -ENODEV;
3853 }
3854 
3855 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3856 				 int (*accessor)(struct kvm_device *dev,
3857 						 struct kvm_device_attr *attr),
3858 				 unsigned long arg)
3859 {
3860 	struct kvm_device_attr attr;
3861 
3862 	if (!accessor)
3863 		return -EPERM;
3864 
3865 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3866 		return -EFAULT;
3867 
3868 	return accessor(dev, &attr);
3869 }
3870 
3871 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3872 			     unsigned long arg)
3873 {
3874 	struct kvm_device *dev = filp->private_data;
3875 
3876 	if (dev->kvm->mm != current->mm)
3877 		return -EIO;
3878 
3879 	switch (ioctl) {
3880 	case KVM_SET_DEVICE_ATTR:
3881 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3882 	case KVM_GET_DEVICE_ATTR:
3883 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3884 	case KVM_HAS_DEVICE_ATTR:
3885 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3886 	default:
3887 		if (dev->ops->ioctl)
3888 			return dev->ops->ioctl(dev, ioctl, arg);
3889 
3890 		return -ENOTTY;
3891 	}
3892 }
3893 
3894 static int kvm_device_release(struct inode *inode, struct file *filp)
3895 {
3896 	struct kvm_device *dev = filp->private_data;
3897 	struct kvm *kvm = dev->kvm;
3898 
3899 	if (dev->ops->release) {
3900 		mutex_lock(&kvm->lock);
3901 		list_del(&dev->vm_node);
3902 		dev->ops->release(dev);
3903 		mutex_unlock(&kvm->lock);
3904 	}
3905 
3906 	kvm_put_kvm(kvm);
3907 	return 0;
3908 }
3909 
3910 static const struct file_operations kvm_device_fops = {
3911 	.unlocked_ioctl = kvm_device_ioctl,
3912 	.release = kvm_device_release,
3913 	KVM_COMPAT(kvm_device_ioctl),
3914 	.mmap = kvm_device_mmap,
3915 };
3916 
3917 struct kvm_device *kvm_device_from_filp(struct file *filp)
3918 {
3919 	if (filp->f_op != &kvm_device_fops)
3920 		return NULL;
3921 
3922 	return filp->private_data;
3923 }
3924 
3925 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3926 #ifdef CONFIG_KVM_MPIC
3927 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3928 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3929 #endif
3930 };
3931 
3932 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3933 {
3934 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3935 		return -ENOSPC;
3936 
3937 	if (kvm_device_ops_table[type] != NULL)
3938 		return -EEXIST;
3939 
3940 	kvm_device_ops_table[type] = ops;
3941 	return 0;
3942 }
3943 
3944 void kvm_unregister_device_ops(u32 type)
3945 {
3946 	if (kvm_device_ops_table[type] != NULL)
3947 		kvm_device_ops_table[type] = NULL;
3948 }
3949 
3950 static int kvm_ioctl_create_device(struct kvm *kvm,
3951 				   struct kvm_create_device *cd)
3952 {
3953 	const struct kvm_device_ops *ops = NULL;
3954 	struct kvm_device *dev;
3955 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3956 	int type;
3957 	int ret;
3958 
3959 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3960 		return -ENODEV;
3961 
3962 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3963 	ops = kvm_device_ops_table[type];
3964 	if (ops == NULL)
3965 		return -ENODEV;
3966 
3967 	if (test)
3968 		return 0;
3969 
3970 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3971 	if (!dev)
3972 		return -ENOMEM;
3973 
3974 	dev->ops = ops;
3975 	dev->kvm = kvm;
3976 
3977 	mutex_lock(&kvm->lock);
3978 	ret = ops->create(dev, type);
3979 	if (ret < 0) {
3980 		mutex_unlock(&kvm->lock);
3981 		kfree(dev);
3982 		return ret;
3983 	}
3984 	list_add(&dev->vm_node, &kvm->devices);
3985 	mutex_unlock(&kvm->lock);
3986 
3987 	if (ops->init)
3988 		ops->init(dev);
3989 
3990 	kvm_get_kvm(kvm);
3991 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3992 	if (ret < 0) {
3993 		kvm_put_kvm_no_destroy(kvm);
3994 		mutex_lock(&kvm->lock);
3995 		list_del(&dev->vm_node);
3996 		mutex_unlock(&kvm->lock);
3997 		ops->destroy(dev);
3998 		return ret;
3999 	}
4000 
4001 	cd->fd = ret;
4002 	return 0;
4003 }
4004 
4005 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4006 {
4007 	switch (arg) {
4008 	case KVM_CAP_USER_MEMORY:
4009 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4010 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4011 	case KVM_CAP_INTERNAL_ERROR_DATA:
4012 #ifdef CONFIG_HAVE_KVM_MSI
4013 	case KVM_CAP_SIGNAL_MSI:
4014 #endif
4015 #ifdef CONFIG_HAVE_KVM_IRQFD
4016 	case KVM_CAP_IRQFD:
4017 	case KVM_CAP_IRQFD_RESAMPLE:
4018 #endif
4019 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4020 	case KVM_CAP_CHECK_EXTENSION_VM:
4021 	case KVM_CAP_ENABLE_CAP_VM:
4022 	case KVM_CAP_HALT_POLL:
4023 		return 1;
4024 #ifdef CONFIG_KVM_MMIO
4025 	case KVM_CAP_COALESCED_MMIO:
4026 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4027 	case KVM_CAP_COALESCED_PIO:
4028 		return 1;
4029 #endif
4030 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4031 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4032 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4033 #endif
4034 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4035 	case KVM_CAP_IRQ_ROUTING:
4036 		return KVM_MAX_IRQ_ROUTES;
4037 #endif
4038 #if KVM_ADDRESS_SPACE_NUM > 1
4039 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4040 		return KVM_ADDRESS_SPACE_NUM;
4041 #endif
4042 	case KVM_CAP_NR_MEMSLOTS:
4043 		return KVM_USER_MEM_SLOTS;
4044 	case KVM_CAP_DIRTY_LOG_RING:
4045 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4046 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4047 #else
4048 		return 0;
4049 #endif
4050 	case KVM_CAP_BINARY_STATS_FD:
4051 		return 1;
4052 	default:
4053 		break;
4054 	}
4055 	return kvm_vm_ioctl_check_extension(kvm, arg);
4056 }
4057 
4058 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4059 {
4060 	int r;
4061 
4062 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4063 		return -EINVAL;
4064 
4065 	/* the size should be power of 2 */
4066 	if (!size || (size & (size - 1)))
4067 		return -EINVAL;
4068 
4069 	/* Should be bigger to keep the reserved entries, or a page */
4070 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4071 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4072 		return -EINVAL;
4073 
4074 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4075 	    sizeof(struct kvm_dirty_gfn))
4076 		return -E2BIG;
4077 
4078 	/* We only allow it to set once */
4079 	if (kvm->dirty_ring_size)
4080 		return -EINVAL;
4081 
4082 	mutex_lock(&kvm->lock);
4083 
4084 	if (kvm->created_vcpus) {
4085 		/* We don't allow to change this value after vcpu created */
4086 		r = -EINVAL;
4087 	} else {
4088 		kvm->dirty_ring_size = size;
4089 		r = 0;
4090 	}
4091 
4092 	mutex_unlock(&kvm->lock);
4093 	return r;
4094 }
4095 
4096 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4097 {
4098 	int i;
4099 	struct kvm_vcpu *vcpu;
4100 	int cleared = 0;
4101 
4102 	if (!kvm->dirty_ring_size)
4103 		return -EINVAL;
4104 
4105 	mutex_lock(&kvm->slots_lock);
4106 
4107 	kvm_for_each_vcpu(i, vcpu, kvm)
4108 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4109 
4110 	mutex_unlock(&kvm->slots_lock);
4111 
4112 	if (cleared)
4113 		kvm_flush_remote_tlbs(kvm);
4114 
4115 	return cleared;
4116 }
4117 
4118 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4119 						  struct kvm_enable_cap *cap)
4120 {
4121 	return -EINVAL;
4122 }
4123 
4124 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4125 					   struct kvm_enable_cap *cap)
4126 {
4127 	switch (cap->cap) {
4128 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4129 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4130 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4131 
4132 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4133 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4134 
4135 		if (cap->flags || (cap->args[0] & ~allowed_options))
4136 			return -EINVAL;
4137 		kvm->manual_dirty_log_protect = cap->args[0];
4138 		return 0;
4139 	}
4140 #endif
4141 	case KVM_CAP_HALT_POLL: {
4142 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4143 			return -EINVAL;
4144 
4145 		kvm->max_halt_poll_ns = cap->args[0];
4146 		return 0;
4147 	}
4148 	case KVM_CAP_DIRTY_LOG_RING:
4149 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4150 	default:
4151 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4152 	}
4153 }
4154 
4155 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4156 			      size_t size, loff_t *offset)
4157 {
4158 	struct kvm *kvm = file->private_data;
4159 
4160 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4161 				&kvm_vm_stats_desc[0], &kvm->stat,
4162 				sizeof(kvm->stat), user_buffer, size, offset);
4163 }
4164 
4165 static const struct file_operations kvm_vm_stats_fops = {
4166 	.read = kvm_vm_stats_read,
4167 	.llseek = noop_llseek,
4168 };
4169 
4170 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4171 {
4172 	int fd;
4173 	struct file *file;
4174 
4175 	fd = get_unused_fd_flags(O_CLOEXEC);
4176 	if (fd < 0)
4177 		return fd;
4178 
4179 	file = anon_inode_getfile("kvm-vm-stats",
4180 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4181 	if (IS_ERR(file)) {
4182 		put_unused_fd(fd);
4183 		return PTR_ERR(file);
4184 	}
4185 	file->f_mode |= FMODE_PREAD;
4186 	fd_install(fd, file);
4187 
4188 	return fd;
4189 }
4190 
4191 static long kvm_vm_ioctl(struct file *filp,
4192 			   unsigned int ioctl, unsigned long arg)
4193 {
4194 	struct kvm *kvm = filp->private_data;
4195 	void __user *argp = (void __user *)arg;
4196 	int r;
4197 
4198 	if (kvm->mm != current->mm)
4199 		return -EIO;
4200 	switch (ioctl) {
4201 	case KVM_CREATE_VCPU:
4202 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4203 		break;
4204 	case KVM_ENABLE_CAP: {
4205 		struct kvm_enable_cap cap;
4206 
4207 		r = -EFAULT;
4208 		if (copy_from_user(&cap, argp, sizeof(cap)))
4209 			goto out;
4210 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4211 		break;
4212 	}
4213 	case KVM_SET_USER_MEMORY_REGION: {
4214 		struct kvm_userspace_memory_region kvm_userspace_mem;
4215 
4216 		r = -EFAULT;
4217 		if (copy_from_user(&kvm_userspace_mem, argp,
4218 						sizeof(kvm_userspace_mem)))
4219 			goto out;
4220 
4221 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4222 		break;
4223 	}
4224 	case KVM_GET_DIRTY_LOG: {
4225 		struct kvm_dirty_log log;
4226 
4227 		r = -EFAULT;
4228 		if (copy_from_user(&log, argp, sizeof(log)))
4229 			goto out;
4230 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4231 		break;
4232 	}
4233 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4234 	case KVM_CLEAR_DIRTY_LOG: {
4235 		struct kvm_clear_dirty_log log;
4236 
4237 		r = -EFAULT;
4238 		if (copy_from_user(&log, argp, sizeof(log)))
4239 			goto out;
4240 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4241 		break;
4242 	}
4243 #endif
4244 #ifdef CONFIG_KVM_MMIO
4245 	case KVM_REGISTER_COALESCED_MMIO: {
4246 		struct kvm_coalesced_mmio_zone zone;
4247 
4248 		r = -EFAULT;
4249 		if (copy_from_user(&zone, argp, sizeof(zone)))
4250 			goto out;
4251 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4252 		break;
4253 	}
4254 	case KVM_UNREGISTER_COALESCED_MMIO: {
4255 		struct kvm_coalesced_mmio_zone zone;
4256 
4257 		r = -EFAULT;
4258 		if (copy_from_user(&zone, argp, sizeof(zone)))
4259 			goto out;
4260 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4261 		break;
4262 	}
4263 #endif
4264 	case KVM_IRQFD: {
4265 		struct kvm_irqfd data;
4266 
4267 		r = -EFAULT;
4268 		if (copy_from_user(&data, argp, sizeof(data)))
4269 			goto out;
4270 		r = kvm_irqfd(kvm, &data);
4271 		break;
4272 	}
4273 	case KVM_IOEVENTFD: {
4274 		struct kvm_ioeventfd data;
4275 
4276 		r = -EFAULT;
4277 		if (copy_from_user(&data, argp, sizeof(data)))
4278 			goto out;
4279 		r = kvm_ioeventfd(kvm, &data);
4280 		break;
4281 	}
4282 #ifdef CONFIG_HAVE_KVM_MSI
4283 	case KVM_SIGNAL_MSI: {
4284 		struct kvm_msi msi;
4285 
4286 		r = -EFAULT;
4287 		if (copy_from_user(&msi, argp, sizeof(msi)))
4288 			goto out;
4289 		r = kvm_send_userspace_msi(kvm, &msi);
4290 		break;
4291 	}
4292 #endif
4293 #ifdef __KVM_HAVE_IRQ_LINE
4294 	case KVM_IRQ_LINE_STATUS:
4295 	case KVM_IRQ_LINE: {
4296 		struct kvm_irq_level irq_event;
4297 
4298 		r = -EFAULT;
4299 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4300 			goto out;
4301 
4302 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4303 					ioctl == KVM_IRQ_LINE_STATUS);
4304 		if (r)
4305 			goto out;
4306 
4307 		r = -EFAULT;
4308 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4309 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4310 				goto out;
4311 		}
4312 
4313 		r = 0;
4314 		break;
4315 	}
4316 #endif
4317 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4318 	case KVM_SET_GSI_ROUTING: {
4319 		struct kvm_irq_routing routing;
4320 		struct kvm_irq_routing __user *urouting;
4321 		struct kvm_irq_routing_entry *entries = NULL;
4322 
4323 		r = -EFAULT;
4324 		if (copy_from_user(&routing, argp, sizeof(routing)))
4325 			goto out;
4326 		r = -EINVAL;
4327 		if (!kvm_arch_can_set_irq_routing(kvm))
4328 			goto out;
4329 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4330 			goto out;
4331 		if (routing.flags)
4332 			goto out;
4333 		if (routing.nr) {
4334 			urouting = argp;
4335 			entries = vmemdup_user(urouting->entries,
4336 					       array_size(sizeof(*entries),
4337 							  routing.nr));
4338 			if (IS_ERR(entries)) {
4339 				r = PTR_ERR(entries);
4340 				goto out;
4341 			}
4342 		}
4343 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4344 					routing.flags);
4345 		kvfree(entries);
4346 		break;
4347 	}
4348 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4349 	case KVM_CREATE_DEVICE: {
4350 		struct kvm_create_device cd;
4351 
4352 		r = -EFAULT;
4353 		if (copy_from_user(&cd, argp, sizeof(cd)))
4354 			goto out;
4355 
4356 		r = kvm_ioctl_create_device(kvm, &cd);
4357 		if (r)
4358 			goto out;
4359 
4360 		r = -EFAULT;
4361 		if (copy_to_user(argp, &cd, sizeof(cd)))
4362 			goto out;
4363 
4364 		r = 0;
4365 		break;
4366 	}
4367 	case KVM_CHECK_EXTENSION:
4368 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4369 		break;
4370 	case KVM_RESET_DIRTY_RINGS:
4371 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4372 		break;
4373 	case KVM_GET_STATS_FD:
4374 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4375 		break;
4376 	default:
4377 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4378 	}
4379 out:
4380 	return r;
4381 }
4382 
4383 #ifdef CONFIG_KVM_COMPAT
4384 struct compat_kvm_dirty_log {
4385 	__u32 slot;
4386 	__u32 padding1;
4387 	union {
4388 		compat_uptr_t dirty_bitmap; /* one bit per page */
4389 		__u64 padding2;
4390 	};
4391 };
4392 
4393 static long kvm_vm_compat_ioctl(struct file *filp,
4394 			   unsigned int ioctl, unsigned long arg)
4395 {
4396 	struct kvm *kvm = filp->private_data;
4397 	int r;
4398 
4399 	if (kvm->mm != current->mm)
4400 		return -EIO;
4401 	switch (ioctl) {
4402 	case KVM_GET_DIRTY_LOG: {
4403 		struct compat_kvm_dirty_log compat_log;
4404 		struct kvm_dirty_log log;
4405 
4406 		if (copy_from_user(&compat_log, (void __user *)arg,
4407 				   sizeof(compat_log)))
4408 			return -EFAULT;
4409 		log.slot	 = compat_log.slot;
4410 		log.padding1	 = compat_log.padding1;
4411 		log.padding2	 = compat_log.padding2;
4412 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4413 
4414 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4415 		break;
4416 	}
4417 	default:
4418 		r = kvm_vm_ioctl(filp, ioctl, arg);
4419 	}
4420 	return r;
4421 }
4422 #endif
4423 
4424 static struct file_operations kvm_vm_fops = {
4425 	.release        = kvm_vm_release,
4426 	.unlocked_ioctl = kvm_vm_ioctl,
4427 	.llseek		= noop_llseek,
4428 	KVM_COMPAT(kvm_vm_compat_ioctl),
4429 };
4430 
4431 bool file_is_kvm(struct file *file)
4432 {
4433 	return file && file->f_op == &kvm_vm_fops;
4434 }
4435 EXPORT_SYMBOL_GPL(file_is_kvm);
4436 
4437 static int kvm_dev_ioctl_create_vm(unsigned long type)
4438 {
4439 	int r;
4440 	struct kvm *kvm;
4441 	struct file *file;
4442 
4443 	kvm = kvm_create_vm(type);
4444 	if (IS_ERR(kvm))
4445 		return PTR_ERR(kvm);
4446 #ifdef CONFIG_KVM_MMIO
4447 	r = kvm_coalesced_mmio_init(kvm);
4448 	if (r < 0)
4449 		goto put_kvm;
4450 #endif
4451 	r = get_unused_fd_flags(O_CLOEXEC);
4452 	if (r < 0)
4453 		goto put_kvm;
4454 
4455 	snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4456 			"kvm-%d", task_pid_nr(current));
4457 
4458 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4459 	if (IS_ERR(file)) {
4460 		put_unused_fd(r);
4461 		r = PTR_ERR(file);
4462 		goto put_kvm;
4463 	}
4464 
4465 	/*
4466 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4467 	 * already set, with ->release() being kvm_vm_release().  In error
4468 	 * cases it will be called by the final fput(file) and will take
4469 	 * care of doing kvm_put_kvm(kvm).
4470 	 */
4471 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
4472 		put_unused_fd(r);
4473 		fput(file);
4474 		return -ENOMEM;
4475 	}
4476 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4477 
4478 	fd_install(r, file);
4479 	return r;
4480 
4481 put_kvm:
4482 	kvm_put_kvm(kvm);
4483 	return r;
4484 }
4485 
4486 static long kvm_dev_ioctl(struct file *filp,
4487 			  unsigned int ioctl, unsigned long arg)
4488 {
4489 	long r = -EINVAL;
4490 
4491 	switch (ioctl) {
4492 	case KVM_GET_API_VERSION:
4493 		if (arg)
4494 			goto out;
4495 		r = KVM_API_VERSION;
4496 		break;
4497 	case KVM_CREATE_VM:
4498 		r = kvm_dev_ioctl_create_vm(arg);
4499 		break;
4500 	case KVM_CHECK_EXTENSION:
4501 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4502 		break;
4503 	case KVM_GET_VCPU_MMAP_SIZE:
4504 		if (arg)
4505 			goto out;
4506 		r = PAGE_SIZE;     /* struct kvm_run */
4507 #ifdef CONFIG_X86
4508 		r += PAGE_SIZE;    /* pio data page */
4509 #endif
4510 #ifdef CONFIG_KVM_MMIO
4511 		r += PAGE_SIZE;    /* coalesced mmio ring page */
4512 #endif
4513 		break;
4514 	case KVM_TRACE_ENABLE:
4515 	case KVM_TRACE_PAUSE:
4516 	case KVM_TRACE_DISABLE:
4517 		r = -EOPNOTSUPP;
4518 		break;
4519 	default:
4520 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4521 	}
4522 out:
4523 	return r;
4524 }
4525 
4526 static struct file_operations kvm_chardev_ops = {
4527 	.unlocked_ioctl = kvm_dev_ioctl,
4528 	.llseek		= noop_llseek,
4529 	KVM_COMPAT(kvm_dev_ioctl),
4530 };
4531 
4532 static struct miscdevice kvm_dev = {
4533 	KVM_MINOR,
4534 	"kvm",
4535 	&kvm_chardev_ops,
4536 };
4537 
4538 static void hardware_enable_nolock(void *junk)
4539 {
4540 	int cpu = raw_smp_processor_id();
4541 	int r;
4542 
4543 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4544 		return;
4545 
4546 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4547 
4548 	r = kvm_arch_hardware_enable();
4549 
4550 	if (r) {
4551 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4552 		atomic_inc(&hardware_enable_failed);
4553 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4554 	}
4555 }
4556 
4557 static int kvm_starting_cpu(unsigned int cpu)
4558 {
4559 	raw_spin_lock(&kvm_count_lock);
4560 	if (kvm_usage_count)
4561 		hardware_enable_nolock(NULL);
4562 	raw_spin_unlock(&kvm_count_lock);
4563 	return 0;
4564 }
4565 
4566 static void hardware_disable_nolock(void *junk)
4567 {
4568 	int cpu = raw_smp_processor_id();
4569 
4570 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4571 		return;
4572 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4573 	kvm_arch_hardware_disable();
4574 }
4575 
4576 static int kvm_dying_cpu(unsigned int cpu)
4577 {
4578 	raw_spin_lock(&kvm_count_lock);
4579 	if (kvm_usage_count)
4580 		hardware_disable_nolock(NULL);
4581 	raw_spin_unlock(&kvm_count_lock);
4582 	return 0;
4583 }
4584 
4585 static void hardware_disable_all_nolock(void)
4586 {
4587 	BUG_ON(!kvm_usage_count);
4588 
4589 	kvm_usage_count--;
4590 	if (!kvm_usage_count)
4591 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4592 }
4593 
4594 static void hardware_disable_all(void)
4595 {
4596 	raw_spin_lock(&kvm_count_lock);
4597 	hardware_disable_all_nolock();
4598 	raw_spin_unlock(&kvm_count_lock);
4599 }
4600 
4601 static int hardware_enable_all(void)
4602 {
4603 	int r = 0;
4604 
4605 	raw_spin_lock(&kvm_count_lock);
4606 
4607 	kvm_usage_count++;
4608 	if (kvm_usage_count == 1) {
4609 		atomic_set(&hardware_enable_failed, 0);
4610 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4611 
4612 		if (atomic_read(&hardware_enable_failed)) {
4613 			hardware_disable_all_nolock();
4614 			r = -EBUSY;
4615 		}
4616 	}
4617 
4618 	raw_spin_unlock(&kvm_count_lock);
4619 
4620 	return r;
4621 }
4622 
4623 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4624 		      void *v)
4625 {
4626 	/*
4627 	 * Some (well, at least mine) BIOSes hang on reboot if
4628 	 * in vmx root mode.
4629 	 *
4630 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4631 	 */
4632 	pr_info("kvm: exiting hardware virtualization\n");
4633 	kvm_rebooting = true;
4634 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4635 	return NOTIFY_OK;
4636 }
4637 
4638 static struct notifier_block kvm_reboot_notifier = {
4639 	.notifier_call = kvm_reboot,
4640 	.priority = 0,
4641 };
4642 
4643 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4644 {
4645 	int i;
4646 
4647 	for (i = 0; i < bus->dev_count; i++) {
4648 		struct kvm_io_device *pos = bus->range[i].dev;
4649 
4650 		kvm_iodevice_destructor(pos);
4651 	}
4652 	kfree(bus);
4653 }
4654 
4655 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4656 				 const struct kvm_io_range *r2)
4657 {
4658 	gpa_t addr1 = r1->addr;
4659 	gpa_t addr2 = r2->addr;
4660 
4661 	if (addr1 < addr2)
4662 		return -1;
4663 
4664 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4665 	 * accept any overlapping write.  Any order is acceptable for
4666 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4667 	 * we process all of them.
4668 	 */
4669 	if (r2->len) {
4670 		addr1 += r1->len;
4671 		addr2 += r2->len;
4672 	}
4673 
4674 	if (addr1 > addr2)
4675 		return 1;
4676 
4677 	return 0;
4678 }
4679 
4680 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4681 {
4682 	return kvm_io_bus_cmp(p1, p2);
4683 }
4684 
4685 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4686 			     gpa_t addr, int len)
4687 {
4688 	struct kvm_io_range *range, key;
4689 	int off;
4690 
4691 	key = (struct kvm_io_range) {
4692 		.addr = addr,
4693 		.len = len,
4694 	};
4695 
4696 	range = bsearch(&key, bus->range, bus->dev_count,
4697 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4698 	if (range == NULL)
4699 		return -ENOENT;
4700 
4701 	off = range - bus->range;
4702 
4703 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4704 		off--;
4705 
4706 	return off;
4707 }
4708 
4709 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4710 			      struct kvm_io_range *range, const void *val)
4711 {
4712 	int idx;
4713 
4714 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4715 	if (idx < 0)
4716 		return -EOPNOTSUPP;
4717 
4718 	while (idx < bus->dev_count &&
4719 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4720 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4721 					range->len, val))
4722 			return idx;
4723 		idx++;
4724 	}
4725 
4726 	return -EOPNOTSUPP;
4727 }
4728 
4729 /* kvm_io_bus_write - called under kvm->slots_lock */
4730 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4731 		     int len, const void *val)
4732 {
4733 	struct kvm_io_bus *bus;
4734 	struct kvm_io_range range;
4735 	int r;
4736 
4737 	range = (struct kvm_io_range) {
4738 		.addr = addr,
4739 		.len = len,
4740 	};
4741 
4742 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4743 	if (!bus)
4744 		return -ENOMEM;
4745 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4746 	return r < 0 ? r : 0;
4747 }
4748 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4749 
4750 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4751 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4752 			    gpa_t addr, int len, const void *val, long cookie)
4753 {
4754 	struct kvm_io_bus *bus;
4755 	struct kvm_io_range range;
4756 
4757 	range = (struct kvm_io_range) {
4758 		.addr = addr,
4759 		.len = len,
4760 	};
4761 
4762 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4763 	if (!bus)
4764 		return -ENOMEM;
4765 
4766 	/* First try the device referenced by cookie. */
4767 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4768 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4769 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4770 					val))
4771 			return cookie;
4772 
4773 	/*
4774 	 * cookie contained garbage; fall back to search and return the
4775 	 * correct cookie value.
4776 	 */
4777 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4778 }
4779 
4780 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4781 			     struct kvm_io_range *range, void *val)
4782 {
4783 	int idx;
4784 
4785 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4786 	if (idx < 0)
4787 		return -EOPNOTSUPP;
4788 
4789 	while (idx < bus->dev_count &&
4790 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4791 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4792 				       range->len, val))
4793 			return idx;
4794 		idx++;
4795 	}
4796 
4797 	return -EOPNOTSUPP;
4798 }
4799 
4800 /* kvm_io_bus_read - called under kvm->slots_lock */
4801 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4802 		    int len, void *val)
4803 {
4804 	struct kvm_io_bus *bus;
4805 	struct kvm_io_range range;
4806 	int r;
4807 
4808 	range = (struct kvm_io_range) {
4809 		.addr = addr,
4810 		.len = len,
4811 	};
4812 
4813 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4814 	if (!bus)
4815 		return -ENOMEM;
4816 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4817 	return r < 0 ? r : 0;
4818 }
4819 
4820 /* Caller must hold slots_lock. */
4821 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4822 			    int len, struct kvm_io_device *dev)
4823 {
4824 	int i;
4825 	struct kvm_io_bus *new_bus, *bus;
4826 	struct kvm_io_range range;
4827 
4828 	bus = kvm_get_bus(kvm, bus_idx);
4829 	if (!bus)
4830 		return -ENOMEM;
4831 
4832 	/* exclude ioeventfd which is limited by maximum fd */
4833 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4834 		return -ENOSPC;
4835 
4836 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4837 			  GFP_KERNEL_ACCOUNT);
4838 	if (!new_bus)
4839 		return -ENOMEM;
4840 
4841 	range = (struct kvm_io_range) {
4842 		.addr = addr,
4843 		.len = len,
4844 		.dev = dev,
4845 	};
4846 
4847 	for (i = 0; i < bus->dev_count; i++)
4848 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4849 			break;
4850 
4851 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4852 	new_bus->dev_count++;
4853 	new_bus->range[i] = range;
4854 	memcpy(new_bus->range + i + 1, bus->range + i,
4855 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4856 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4857 	synchronize_srcu_expedited(&kvm->srcu);
4858 	kfree(bus);
4859 
4860 	return 0;
4861 }
4862 
4863 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4864 			      struct kvm_io_device *dev)
4865 {
4866 	int i, j;
4867 	struct kvm_io_bus *new_bus, *bus;
4868 
4869 	lockdep_assert_held(&kvm->slots_lock);
4870 
4871 	bus = kvm_get_bus(kvm, bus_idx);
4872 	if (!bus)
4873 		return 0;
4874 
4875 	for (i = 0; i < bus->dev_count; i++) {
4876 		if (bus->range[i].dev == dev) {
4877 			break;
4878 		}
4879 	}
4880 
4881 	if (i == bus->dev_count)
4882 		return 0;
4883 
4884 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4885 			  GFP_KERNEL_ACCOUNT);
4886 	if (new_bus) {
4887 		memcpy(new_bus, bus, struct_size(bus, range, i));
4888 		new_bus->dev_count--;
4889 		memcpy(new_bus->range + i, bus->range + i + 1,
4890 				flex_array_size(new_bus, range, new_bus->dev_count - i));
4891 	}
4892 
4893 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4894 	synchronize_srcu_expedited(&kvm->srcu);
4895 
4896 	/* Destroy the old bus _after_ installing the (null) bus. */
4897 	if (!new_bus) {
4898 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4899 		for (j = 0; j < bus->dev_count; j++) {
4900 			if (j == i)
4901 				continue;
4902 			kvm_iodevice_destructor(bus->range[j].dev);
4903 		}
4904 	}
4905 
4906 	kfree(bus);
4907 	return new_bus ? 0 : -ENOMEM;
4908 }
4909 
4910 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4911 					 gpa_t addr)
4912 {
4913 	struct kvm_io_bus *bus;
4914 	int dev_idx, srcu_idx;
4915 	struct kvm_io_device *iodev = NULL;
4916 
4917 	srcu_idx = srcu_read_lock(&kvm->srcu);
4918 
4919 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4920 	if (!bus)
4921 		goto out_unlock;
4922 
4923 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4924 	if (dev_idx < 0)
4925 		goto out_unlock;
4926 
4927 	iodev = bus->range[dev_idx].dev;
4928 
4929 out_unlock:
4930 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4931 
4932 	return iodev;
4933 }
4934 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4935 
4936 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4937 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4938 			   const char *fmt)
4939 {
4940 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4941 					  inode->i_private;
4942 
4943 	/* The debugfs files are a reference to the kvm struct which
4944 	 * is still valid when kvm_destroy_vm is called.
4945 	 * To avoid the race between open and the removal of the debugfs
4946 	 * directory we test against the users count.
4947 	 */
4948 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4949 		return -ENOENT;
4950 
4951 	if (simple_attr_open(inode, file, get,
4952 		    kvm_stats_debugfs_mode(stat_data->desc) & 0222
4953 		    ? set : NULL,
4954 		    fmt)) {
4955 		kvm_put_kvm(stat_data->kvm);
4956 		return -ENOMEM;
4957 	}
4958 
4959 	return 0;
4960 }
4961 
4962 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4963 {
4964 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4965 					  inode->i_private;
4966 
4967 	simple_attr_release(inode, file);
4968 	kvm_put_kvm(stat_data->kvm);
4969 
4970 	return 0;
4971 }
4972 
4973 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4974 {
4975 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
4976 
4977 	return 0;
4978 }
4979 
4980 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4981 {
4982 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
4983 
4984 	return 0;
4985 }
4986 
4987 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4988 {
4989 	int i;
4990 	struct kvm_vcpu *vcpu;
4991 
4992 	*val = 0;
4993 
4994 	kvm_for_each_vcpu(i, vcpu, kvm)
4995 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
4996 
4997 	return 0;
4998 }
4999 
5000 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5001 {
5002 	int i;
5003 	struct kvm_vcpu *vcpu;
5004 
5005 	kvm_for_each_vcpu(i, vcpu, kvm)
5006 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5007 
5008 	return 0;
5009 }
5010 
5011 static int kvm_stat_data_get(void *data, u64 *val)
5012 {
5013 	int r = -EFAULT;
5014 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5015 
5016 	switch (stat_data->kind) {
5017 	case KVM_STAT_VM:
5018 		r = kvm_get_stat_per_vm(stat_data->kvm,
5019 					stat_data->desc->desc.offset, val);
5020 		break;
5021 	case KVM_STAT_VCPU:
5022 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5023 					  stat_data->desc->desc.offset, val);
5024 		break;
5025 	}
5026 
5027 	return r;
5028 }
5029 
5030 static int kvm_stat_data_clear(void *data, u64 val)
5031 {
5032 	int r = -EFAULT;
5033 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5034 
5035 	if (val)
5036 		return -EINVAL;
5037 
5038 	switch (stat_data->kind) {
5039 	case KVM_STAT_VM:
5040 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5041 					  stat_data->desc->desc.offset);
5042 		break;
5043 	case KVM_STAT_VCPU:
5044 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5045 					    stat_data->desc->desc.offset);
5046 		break;
5047 	}
5048 
5049 	return r;
5050 }
5051 
5052 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5053 {
5054 	__simple_attr_check_format("%llu\n", 0ull);
5055 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5056 				kvm_stat_data_clear, "%llu\n");
5057 }
5058 
5059 static const struct file_operations stat_fops_per_vm = {
5060 	.owner = THIS_MODULE,
5061 	.open = kvm_stat_data_open,
5062 	.release = kvm_debugfs_release,
5063 	.read = simple_attr_read,
5064 	.write = simple_attr_write,
5065 	.llseek = no_llseek,
5066 };
5067 
5068 static int vm_stat_get(void *_offset, u64 *val)
5069 {
5070 	unsigned offset = (long)_offset;
5071 	struct kvm *kvm;
5072 	u64 tmp_val;
5073 
5074 	*val = 0;
5075 	mutex_lock(&kvm_lock);
5076 	list_for_each_entry(kvm, &vm_list, vm_list) {
5077 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5078 		*val += tmp_val;
5079 	}
5080 	mutex_unlock(&kvm_lock);
5081 	return 0;
5082 }
5083 
5084 static int vm_stat_clear(void *_offset, u64 val)
5085 {
5086 	unsigned offset = (long)_offset;
5087 	struct kvm *kvm;
5088 
5089 	if (val)
5090 		return -EINVAL;
5091 
5092 	mutex_lock(&kvm_lock);
5093 	list_for_each_entry(kvm, &vm_list, vm_list) {
5094 		kvm_clear_stat_per_vm(kvm, offset);
5095 	}
5096 	mutex_unlock(&kvm_lock);
5097 
5098 	return 0;
5099 }
5100 
5101 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5102 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5103 
5104 static int vcpu_stat_get(void *_offset, u64 *val)
5105 {
5106 	unsigned offset = (long)_offset;
5107 	struct kvm *kvm;
5108 	u64 tmp_val;
5109 
5110 	*val = 0;
5111 	mutex_lock(&kvm_lock);
5112 	list_for_each_entry(kvm, &vm_list, vm_list) {
5113 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5114 		*val += tmp_val;
5115 	}
5116 	mutex_unlock(&kvm_lock);
5117 	return 0;
5118 }
5119 
5120 static int vcpu_stat_clear(void *_offset, u64 val)
5121 {
5122 	unsigned offset = (long)_offset;
5123 	struct kvm *kvm;
5124 
5125 	if (val)
5126 		return -EINVAL;
5127 
5128 	mutex_lock(&kvm_lock);
5129 	list_for_each_entry(kvm, &vm_list, vm_list) {
5130 		kvm_clear_stat_per_vcpu(kvm, offset);
5131 	}
5132 	mutex_unlock(&kvm_lock);
5133 
5134 	return 0;
5135 }
5136 
5137 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5138 			"%llu\n");
5139 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5140 
5141 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5142 {
5143 	struct kobj_uevent_env *env;
5144 	unsigned long long created, active;
5145 
5146 	if (!kvm_dev.this_device || !kvm)
5147 		return;
5148 
5149 	mutex_lock(&kvm_lock);
5150 	if (type == KVM_EVENT_CREATE_VM) {
5151 		kvm_createvm_count++;
5152 		kvm_active_vms++;
5153 	} else if (type == KVM_EVENT_DESTROY_VM) {
5154 		kvm_active_vms--;
5155 	}
5156 	created = kvm_createvm_count;
5157 	active = kvm_active_vms;
5158 	mutex_unlock(&kvm_lock);
5159 
5160 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5161 	if (!env)
5162 		return;
5163 
5164 	add_uevent_var(env, "CREATED=%llu", created);
5165 	add_uevent_var(env, "COUNT=%llu", active);
5166 
5167 	if (type == KVM_EVENT_CREATE_VM) {
5168 		add_uevent_var(env, "EVENT=create");
5169 		kvm->userspace_pid = task_pid_nr(current);
5170 	} else if (type == KVM_EVENT_DESTROY_VM) {
5171 		add_uevent_var(env, "EVENT=destroy");
5172 	}
5173 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5174 
5175 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
5176 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5177 
5178 		if (p) {
5179 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5180 			if (!IS_ERR(tmp))
5181 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5182 			kfree(p);
5183 		}
5184 	}
5185 	/* no need for checks, since we are adding at most only 5 keys */
5186 	env->envp[env->envp_idx++] = NULL;
5187 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5188 	kfree(env);
5189 }
5190 
5191 static void kvm_init_debug(void)
5192 {
5193 	const struct file_operations *fops;
5194 	const struct _kvm_stats_desc *pdesc;
5195 	int i;
5196 
5197 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5198 
5199 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5200 		pdesc = &kvm_vm_stats_desc[i];
5201 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5202 			fops = &vm_stat_fops;
5203 		else
5204 			fops = &vm_stat_readonly_fops;
5205 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5206 				kvm_debugfs_dir,
5207 				(void *)(long)pdesc->desc.offset, fops);
5208 	}
5209 
5210 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5211 		pdesc = &kvm_vcpu_stats_desc[i];
5212 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5213 			fops = &vcpu_stat_fops;
5214 		else
5215 			fops = &vcpu_stat_readonly_fops;
5216 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5217 				kvm_debugfs_dir,
5218 				(void *)(long)pdesc->desc.offset, fops);
5219 	}
5220 }
5221 
5222 static int kvm_suspend(void)
5223 {
5224 	if (kvm_usage_count)
5225 		hardware_disable_nolock(NULL);
5226 	return 0;
5227 }
5228 
5229 static void kvm_resume(void)
5230 {
5231 	if (kvm_usage_count) {
5232 #ifdef CONFIG_LOCKDEP
5233 		WARN_ON(lockdep_is_held(&kvm_count_lock));
5234 #endif
5235 		hardware_enable_nolock(NULL);
5236 	}
5237 }
5238 
5239 static struct syscore_ops kvm_syscore_ops = {
5240 	.suspend = kvm_suspend,
5241 	.resume = kvm_resume,
5242 };
5243 
5244 static inline
5245 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5246 {
5247 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5248 }
5249 
5250 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5251 {
5252 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5253 
5254 	WRITE_ONCE(vcpu->preempted, false);
5255 	WRITE_ONCE(vcpu->ready, false);
5256 
5257 	__this_cpu_write(kvm_running_vcpu, vcpu);
5258 	kvm_arch_sched_in(vcpu, cpu);
5259 	kvm_arch_vcpu_load(vcpu, cpu);
5260 }
5261 
5262 static void kvm_sched_out(struct preempt_notifier *pn,
5263 			  struct task_struct *next)
5264 {
5265 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5266 
5267 	if (current->on_rq) {
5268 		WRITE_ONCE(vcpu->preempted, true);
5269 		WRITE_ONCE(vcpu->ready, true);
5270 	}
5271 	kvm_arch_vcpu_put(vcpu);
5272 	__this_cpu_write(kvm_running_vcpu, NULL);
5273 }
5274 
5275 /**
5276  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5277  *
5278  * We can disable preemption locally around accessing the per-CPU variable,
5279  * and use the resolved vcpu pointer after enabling preemption again,
5280  * because even if the current thread is migrated to another CPU, reading
5281  * the per-CPU value later will give us the same value as we update the
5282  * per-CPU variable in the preempt notifier handlers.
5283  */
5284 struct kvm_vcpu *kvm_get_running_vcpu(void)
5285 {
5286 	struct kvm_vcpu *vcpu;
5287 
5288 	preempt_disable();
5289 	vcpu = __this_cpu_read(kvm_running_vcpu);
5290 	preempt_enable();
5291 
5292 	return vcpu;
5293 }
5294 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5295 
5296 /**
5297  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5298  */
5299 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5300 {
5301         return &kvm_running_vcpu;
5302 }
5303 
5304 struct kvm_cpu_compat_check {
5305 	void *opaque;
5306 	int *ret;
5307 };
5308 
5309 static void check_processor_compat(void *data)
5310 {
5311 	struct kvm_cpu_compat_check *c = data;
5312 
5313 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
5314 }
5315 
5316 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5317 		  struct module *module)
5318 {
5319 	struct kvm_cpu_compat_check c;
5320 	int r;
5321 	int cpu;
5322 
5323 	r = kvm_arch_init(opaque);
5324 	if (r)
5325 		goto out_fail;
5326 
5327 	/*
5328 	 * kvm_arch_init makes sure there's at most one caller
5329 	 * for architectures that support multiple implementations,
5330 	 * like intel and amd on x86.
5331 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5332 	 * conflicts in case kvm is already setup for another implementation.
5333 	 */
5334 	r = kvm_irqfd_init();
5335 	if (r)
5336 		goto out_irqfd;
5337 
5338 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5339 		r = -ENOMEM;
5340 		goto out_free_0;
5341 	}
5342 
5343 	r = kvm_arch_hardware_setup(opaque);
5344 	if (r < 0)
5345 		goto out_free_1;
5346 
5347 	c.ret = &r;
5348 	c.opaque = opaque;
5349 	for_each_online_cpu(cpu) {
5350 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
5351 		if (r < 0)
5352 			goto out_free_2;
5353 	}
5354 
5355 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5356 				      kvm_starting_cpu, kvm_dying_cpu);
5357 	if (r)
5358 		goto out_free_2;
5359 	register_reboot_notifier(&kvm_reboot_notifier);
5360 
5361 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5362 	if (!vcpu_align)
5363 		vcpu_align = __alignof__(struct kvm_vcpu);
5364 	kvm_vcpu_cache =
5365 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5366 					   SLAB_ACCOUNT,
5367 					   offsetof(struct kvm_vcpu, arch),
5368 					   offsetofend(struct kvm_vcpu, stats_id)
5369 					   - offsetof(struct kvm_vcpu, arch),
5370 					   NULL);
5371 	if (!kvm_vcpu_cache) {
5372 		r = -ENOMEM;
5373 		goto out_free_3;
5374 	}
5375 
5376 	r = kvm_async_pf_init();
5377 	if (r)
5378 		goto out_free;
5379 
5380 	kvm_chardev_ops.owner = module;
5381 	kvm_vm_fops.owner = module;
5382 	kvm_vcpu_fops.owner = module;
5383 
5384 	r = misc_register(&kvm_dev);
5385 	if (r) {
5386 		pr_err("kvm: misc device register failed\n");
5387 		goto out_unreg;
5388 	}
5389 
5390 	register_syscore_ops(&kvm_syscore_ops);
5391 
5392 	kvm_preempt_ops.sched_in = kvm_sched_in;
5393 	kvm_preempt_ops.sched_out = kvm_sched_out;
5394 
5395 	kvm_init_debug();
5396 
5397 	r = kvm_vfio_ops_init();
5398 	WARN_ON(r);
5399 
5400 	return 0;
5401 
5402 out_unreg:
5403 	kvm_async_pf_deinit();
5404 out_free:
5405 	kmem_cache_destroy(kvm_vcpu_cache);
5406 out_free_3:
5407 	unregister_reboot_notifier(&kvm_reboot_notifier);
5408 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5409 out_free_2:
5410 	kvm_arch_hardware_unsetup();
5411 out_free_1:
5412 	free_cpumask_var(cpus_hardware_enabled);
5413 out_free_0:
5414 	kvm_irqfd_exit();
5415 out_irqfd:
5416 	kvm_arch_exit();
5417 out_fail:
5418 	return r;
5419 }
5420 EXPORT_SYMBOL_GPL(kvm_init);
5421 
5422 void kvm_exit(void)
5423 {
5424 	debugfs_remove_recursive(kvm_debugfs_dir);
5425 	misc_deregister(&kvm_dev);
5426 	kmem_cache_destroy(kvm_vcpu_cache);
5427 	kvm_async_pf_deinit();
5428 	unregister_syscore_ops(&kvm_syscore_ops);
5429 	unregister_reboot_notifier(&kvm_reboot_notifier);
5430 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5431 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5432 	kvm_arch_hardware_unsetup();
5433 	kvm_arch_exit();
5434 	kvm_irqfd_exit();
5435 	free_cpumask_var(cpus_hardware_enabled);
5436 	kvm_vfio_ops_exit();
5437 }
5438 EXPORT_SYMBOL_GPL(kvm_exit);
5439 
5440 struct kvm_vm_worker_thread_context {
5441 	struct kvm *kvm;
5442 	struct task_struct *parent;
5443 	struct completion init_done;
5444 	kvm_vm_thread_fn_t thread_fn;
5445 	uintptr_t data;
5446 	int err;
5447 };
5448 
5449 static int kvm_vm_worker_thread(void *context)
5450 {
5451 	/*
5452 	 * The init_context is allocated on the stack of the parent thread, so
5453 	 * we have to locally copy anything that is needed beyond initialization
5454 	 */
5455 	struct kvm_vm_worker_thread_context *init_context = context;
5456 	struct kvm *kvm = init_context->kvm;
5457 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5458 	uintptr_t data = init_context->data;
5459 	int err;
5460 
5461 	err = kthread_park(current);
5462 	/* kthread_park(current) is never supposed to return an error */
5463 	WARN_ON(err != 0);
5464 	if (err)
5465 		goto init_complete;
5466 
5467 	err = cgroup_attach_task_all(init_context->parent, current);
5468 	if (err) {
5469 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5470 			__func__, err);
5471 		goto init_complete;
5472 	}
5473 
5474 	set_user_nice(current, task_nice(init_context->parent));
5475 
5476 init_complete:
5477 	init_context->err = err;
5478 	complete(&init_context->init_done);
5479 	init_context = NULL;
5480 
5481 	if (err)
5482 		return err;
5483 
5484 	/* Wait to be woken up by the spawner before proceeding. */
5485 	kthread_parkme();
5486 
5487 	if (!kthread_should_stop())
5488 		err = thread_fn(kvm, data);
5489 
5490 	return err;
5491 }
5492 
5493 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5494 				uintptr_t data, const char *name,
5495 				struct task_struct **thread_ptr)
5496 {
5497 	struct kvm_vm_worker_thread_context init_context = {};
5498 	struct task_struct *thread;
5499 
5500 	*thread_ptr = NULL;
5501 	init_context.kvm = kvm;
5502 	init_context.parent = current;
5503 	init_context.thread_fn = thread_fn;
5504 	init_context.data = data;
5505 	init_completion(&init_context.init_done);
5506 
5507 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
5508 			     "%s-%d", name, task_pid_nr(current));
5509 	if (IS_ERR(thread))
5510 		return PTR_ERR(thread);
5511 
5512 	/* kthread_run is never supposed to return NULL */
5513 	WARN_ON(thread == NULL);
5514 
5515 	wait_for_completion(&init_context.init_done);
5516 
5517 	if (!init_context.err)
5518 		*thread_ptr = thread;
5519 
5520 	return init_context.err;
5521 }
5522