1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/ioctl.h> 56 #include <asm/uaccess.h> 57 #include <asm/pgtable.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 /* Worst case buffer size needed for holding an integer. */ 67 #define ITOA_MAX_LEN 12 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 /* Architectures should define their poll value according to the halt latency */ 73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); 75 EXPORT_SYMBOL_GPL(halt_poll_ns); 76 77 /* Default doubles per-vcpu halt_poll_ns. */ 78 unsigned int halt_poll_ns_grow = 2; 79 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR); 80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 81 82 /* Default resets per-vcpu halt_poll_ns . */ 83 unsigned int halt_poll_ns_shrink; 84 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR); 85 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 86 87 /* 88 * Ordering of locks: 89 * 90 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 91 */ 92 93 DEFINE_SPINLOCK(kvm_lock); 94 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 95 LIST_HEAD(vm_list); 96 97 static cpumask_var_t cpus_hardware_enabled; 98 static int kvm_usage_count; 99 static atomic_t hardware_enable_failed; 100 101 struct kmem_cache *kvm_vcpu_cache; 102 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 103 104 static __read_mostly struct preempt_ops kvm_preempt_ops; 105 106 struct dentry *kvm_debugfs_dir; 107 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 108 109 static int kvm_debugfs_num_entries; 110 static const struct file_operations *stat_fops_per_vm[]; 111 112 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 113 unsigned long arg); 114 #ifdef CONFIG_KVM_COMPAT 115 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 116 unsigned long arg); 117 #endif 118 static int hardware_enable_all(void); 119 static void hardware_disable_all(void); 120 121 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 122 123 static void kvm_release_pfn_dirty(kvm_pfn_t pfn); 124 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 125 126 __visible bool kvm_rebooting; 127 EXPORT_SYMBOL_GPL(kvm_rebooting); 128 129 static bool largepages_enabled = true; 130 131 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 132 { 133 if (pfn_valid(pfn)) 134 return PageReserved(pfn_to_page(pfn)); 135 136 return true; 137 } 138 139 /* 140 * Switches to specified vcpu, until a matching vcpu_put() 141 */ 142 int vcpu_load(struct kvm_vcpu *vcpu) 143 { 144 int cpu; 145 146 if (mutex_lock_killable(&vcpu->mutex)) 147 return -EINTR; 148 cpu = get_cpu(); 149 preempt_notifier_register(&vcpu->preempt_notifier); 150 kvm_arch_vcpu_load(vcpu, cpu); 151 put_cpu(); 152 return 0; 153 } 154 EXPORT_SYMBOL_GPL(vcpu_load); 155 156 void vcpu_put(struct kvm_vcpu *vcpu) 157 { 158 preempt_disable(); 159 kvm_arch_vcpu_put(vcpu); 160 preempt_notifier_unregister(&vcpu->preempt_notifier); 161 preempt_enable(); 162 mutex_unlock(&vcpu->mutex); 163 } 164 EXPORT_SYMBOL_GPL(vcpu_put); 165 166 static void ack_flush(void *_completed) 167 { 168 } 169 170 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 171 { 172 int i, cpu, me; 173 cpumask_var_t cpus; 174 bool called = true; 175 struct kvm_vcpu *vcpu; 176 177 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 178 179 me = get_cpu(); 180 kvm_for_each_vcpu(i, vcpu, kvm) { 181 kvm_make_request(req, vcpu); 182 cpu = vcpu->cpu; 183 184 /* Set ->requests bit before we read ->mode. */ 185 smp_mb__after_atomic(); 186 187 if (cpus != NULL && cpu != -1 && cpu != me && 188 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 189 cpumask_set_cpu(cpu, cpus); 190 } 191 if (unlikely(cpus == NULL)) 192 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 193 else if (!cpumask_empty(cpus)) 194 smp_call_function_many(cpus, ack_flush, NULL, 1); 195 else 196 called = false; 197 put_cpu(); 198 free_cpumask_var(cpus); 199 return called; 200 } 201 202 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 203 void kvm_flush_remote_tlbs(struct kvm *kvm) 204 { 205 /* 206 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 207 * kvm_make_all_cpus_request. 208 */ 209 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 210 211 /* 212 * We want to publish modifications to the page tables before reading 213 * mode. Pairs with a memory barrier in arch-specific code. 214 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 215 * and smp_mb in walk_shadow_page_lockless_begin/end. 216 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 217 * 218 * There is already an smp_mb__after_atomic() before 219 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 220 * barrier here. 221 */ 222 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 223 ++kvm->stat.remote_tlb_flush; 224 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 225 } 226 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 227 #endif 228 229 void kvm_reload_remote_mmus(struct kvm *kvm) 230 { 231 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 232 } 233 234 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 235 { 236 struct page *page; 237 int r; 238 239 mutex_init(&vcpu->mutex); 240 vcpu->cpu = -1; 241 vcpu->kvm = kvm; 242 vcpu->vcpu_id = id; 243 vcpu->pid = NULL; 244 init_swait_queue_head(&vcpu->wq); 245 kvm_async_pf_vcpu_init(vcpu); 246 247 vcpu->pre_pcpu = -1; 248 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 249 250 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 251 if (!page) { 252 r = -ENOMEM; 253 goto fail; 254 } 255 vcpu->run = page_address(page); 256 257 kvm_vcpu_set_in_spin_loop(vcpu, false); 258 kvm_vcpu_set_dy_eligible(vcpu, false); 259 vcpu->preempted = false; 260 261 r = kvm_arch_vcpu_init(vcpu); 262 if (r < 0) 263 goto fail_free_run; 264 return 0; 265 266 fail_free_run: 267 free_page((unsigned long)vcpu->run); 268 fail: 269 return r; 270 } 271 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 272 273 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 274 { 275 put_pid(vcpu->pid); 276 kvm_arch_vcpu_uninit(vcpu); 277 free_page((unsigned long)vcpu->run); 278 } 279 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 280 281 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 282 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 283 { 284 return container_of(mn, struct kvm, mmu_notifier); 285 } 286 287 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 288 struct mm_struct *mm, 289 unsigned long address) 290 { 291 struct kvm *kvm = mmu_notifier_to_kvm(mn); 292 int need_tlb_flush, idx; 293 294 /* 295 * When ->invalidate_page runs, the linux pte has been zapped 296 * already but the page is still allocated until 297 * ->invalidate_page returns. So if we increase the sequence 298 * here the kvm page fault will notice if the spte can't be 299 * established because the page is going to be freed. If 300 * instead the kvm page fault establishes the spte before 301 * ->invalidate_page runs, kvm_unmap_hva will release it 302 * before returning. 303 * 304 * The sequence increase only need to be seen at spin_unlock 305 * time, and not at spin_lock time. 306 * 307 * Increasing the sequence after the spin_unlock would be 308 * unsafe because the kvm page fault could then establish the 309 * pte after kvm_unmap_hva returned, without noticing the page 310 * is going to be freed. 311 */ 312 idx = srcu_read_lock(&kvm->srcu); 313 spin_lock(&kvm->mmu_lock); 314 315 kvm->mmu_notifier_seq++; 316 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 317 /* we've to flush the tlb before the pages can be freed */ 318 if (need_tlb_flush) 319 kvm_flush_remote_tlbs(kvm); 320 321 spin_unlock(&kvm->mmu_lock); 322 323 kvm_arch_mmu_notifier_invalidate_page(kvm, address); 324 325 srcu_read_unlock(&kvm->srcu, idx); 326 } 327 328 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 329 struct mm_struct *mm, 330 unsigned long address, 331 pte_t pte) 332 { 333 struct kvm *kvm = mmu_notifier_to_kvm(mn); 334 int idx; 335 336 idx = srcu_read_lock(&kvm->srcu); 337 spin_lock(&kvm->mmu_lock); 338 kvm->mmu_notifier_seq++; 339 kvm_set_spte_hva(kvm, address, pte); 340 spin_unlock(&kvm->mmu_lock); 341 srcu_read_unlock(&kvm->srcu, idx); 342 } 343 344 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 345 struct mm_struct *mm, 346 unsigned long start, 347 unsigned long end) 348 { 349 struct kvm *kvm = mmu_notifier_to_kvm(mn); 350 int need_tlb_flush = 0, idx; 351 352 idx = srcu_read_lock(&kvm->srcu); 353 spin_lock(&kvm->mmu_lock); 354 /* 355 * The count increase must become visible at unlock time as no 356 * spte can be established without taking the mmu_lock and 357 * count is also read inside the mmu_lock critical section. 358 */ 359 kvm->mmu_notifier_count++; 360 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 361 need_tlb_flush |= kvm->tlbs_dirty; 362 /* we've to flush the tlb before the pages can be freed */ 363 if (need_tlb_flush) 364 kvm_flush_remote_tlbs(kvm); 365 366 spin_unlock(&kvm->mmu_lock); 367 srcu_read_unlock(&kvm->srcu, idx); 368 } 369 370 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 371 struct mm_struct *mm, 372 unsigned long start, 373 unsigned long end) 374 { 375 struct kvm *kvm = mmu_notifier_to_kvm(mn); 376 377 spin_lock(&kvm->mmu_lock); 378 /* 379 * This sequence increase will notify the kvm page fault that 380 * the page that is going to be mapped in the spte could have 381 * been freed. 382 */ 383 kvm->mmu_notifier_seq++; 384 smp_wmb(); 385 /* 386 * The above sequence increase must be visible before the 387 * below count decrease, which is ensured by the smp_wmb above 388 * in conjunction with the smp_rmb in mmu_notifier_retry(). 389 */ 390 kvm->mmu_notifier_count--; 391 spin_unlock(&kvm->mmu_lock); 392 393 BUG_ON(kvm->mmu_notifier_count < 0); 394 } 395 396 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 397 struct mm_struct *mm, 398 unsigned long start, 399 unsigned long end) 400 { 401 struct kvm *kvm = mmu_notifier_to_kvm(mn); 402 int young, idx; 403 404 idx = srcu_read_lock(&kvm->srcu); 405 spin_lock(&kvm->mmu_lock); 406 407 young = kvm_age_hva(kvm, start, end); 408 if (young) 409 kvm_flush_remote_tlbs(kvm); 410 411 spin_unlock(&kvm->mmu_lock); 412 srcu_read_unlock(&kvm->srcu, idx); 413 414 return young; 415 } 416 417 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 418 struct mm_struct *mm, 419 unsigned long start, 420 unsigned long end) 421 { 422 struct kvm *kvm = mmu_notifier_to_kvm(mn); 423 int young, idx; 424 425 idx = srcu_read_lock(&kvm->srcu); 426 spin_lock(&kvm->mmu_lock); 427 /* 428 * Even though we do not flush TLB, this will still adversely 429 * affect performance on pre-Haswell Intel EPT, where there is 430 * no EPT Access Bit to clear so that we have to tear down EPT 431 * tables instead. If we find this unacceptable, we can always 432 * add a parameter to kvm_age_hva so that it effectively doesn't 433 * do anything on clear_young. 434 * 435 * Also note that currently we never issue secondary TLB flushes 436 * from clear_young, leaving this job up to the regular system 437 * cadence. If we find this inaccurate, we might come up with a 438 * more sophisticated heuristic later. 439 */ 440 young = kvm_age_hva(kvm, start, end); 441 spin_unlock(&kvm->mmu_lock); 442 srcu_read_unlock(&kvm->srcu, idx); 443 444 return young; 445 } 446 447 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 448 struct mm_struct *mm, 449 unsigned long address) 450 { 451 struct kvm *kvm = mmu_notifier_to_kvm(mn); 452 int young, idx; 453 454 idx = srcu_read_lock(&kvm->srcu); 455 spin_lock(&kvm->mmu_lock); 456 young = kvm_test_age_hva(kvm, address); 457 spin_unlock(&kvm->mmu_lock); 458 srcu_read_unlock(&kvm->srcu, idx); 459 460 return young; 461 } 462 463 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 464 struct mm_struct *mm) 465 { 466 struct kvm *kvm = mmu_notifier_to_kvm(mn); 467 int idx; 468 469 idx = srcu_read_lock(&kvm->srcu); 470 kvm_arch_flush_shadow_all(kvm); 471 srcu_read_unlock(&kvm->srcu, idx); 472 } 473 474 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 475 .invalidate_page = kvm_mmu_notifier_invalidate_page, 476 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 477 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 478 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 479 .clear_young = kvm_mmu_notifier_clear_young, 480 .test_young = kvm_mmu_notifier_test_young, 481 .change_pte = kvm_mmu_notifier_change_pte, 482 .release = kvm_mmu_notifier_release, 483 }; 484 485 static int kvm_init_mmu_notifier(struct kvm *kvm) 486 { 487 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 488 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 489 } 490 491 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 492 493 static int kvm_init_mmu_notifier(struct kvm *kvm) 494 { 495 return 0; 496 } 497 498 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 499 500 static struct kvm_memslots *kvm_alloc_memslots(void) 501 { 502 int i; 503 struct kvm_memslots *slots; 504 505 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 506 if (!slots) 507 return NULL; 508 509 /* 510 * Init kvm generation close to the maximum to easily test the 511 * code of handling generation number wrap-around. 512 */ 513 slots->generation = -150; 514 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 515 slots->id_to_index[i] = slots->memslots[i].id = i; 516 517 return slots; 518 } 519 520 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 521 { 522 if (!memslot->dirty_bitmap) 523 return; 524 525 kvfree(memslot->dirty_bitmap); 526 memslot->dirty_bitmap = NULL; 527 } 528 529 /* 530 * Free any memory in @free but not in @dont. 531 */ 532 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 533 struct kvm_memory_slot *dont) 534 { 535 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 536 kvm_destroy_dirty_bitmap(free); 537 538 kvm_arch_free_memslot(kvm, free, dont); 539 540 free->npages = 0; 541 } 542 543 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 544 { 545 struct kvm_memory_slot *memslot; 546 547 if (!slots) 548 return; 549 550 kvm_for_each_memslot(memslot, slots) 551 kvm_free_memslot(kvm, memslot, NULL); 552 553 kvfree(slots); 554 } 555 556 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 557 { 558 int i; 559 560 if (!kvm->debugfs_dentry) 561 return; 562 563 debugfs_remove_recursive(kvm->debugfs_dentry); 564 565 if (kvm->debugfs_stat_data) { 566 for (i = 0; i < kvm_debugfs_num_entries; i++) 567 kfree(kvm->debugfs_stat_data[i]); 568 kfree(kvm->debugfs_stat_data); 569 } 570 } 571 572 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 573 { 574 char dir_name[ITOA_MAX_LEN * 2]; 575 struct kvm_stat_data *stat_data; 576 struct kvm_stats_debugfs_item *p; 577 578 if (!debugfs_initialized()) 579 return 0; 580 581 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 582 kvm->debugfs_dentry = debugfs_create_dir(dir_name, 583 kvm_debugfs_dir); 584 if (!kvm->debugfs_dentry) 585 return -ENOMEM; 586 587 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 588 sizeof(*kvm->debugfs_stat_data), 589 GFP_KERNEL); 590 if (!kvm->debugfs_stat_data) 591 return -ENOMEM; 592 593 for (p = debugfs_entries; p->name; p++) { 594 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 595 if (!stat_data) 596 return -ENOMEM; 597 598 stat_data->kvm = kvm; 599 stat_data->offset = p->offset; 600 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 601 if (!debugfs_create_file(p->name, 0644, 602 kvm->debugfs_dentry, 603 stat_data, 604 stat_fops_per_vm[p->kind])) 605 return -ENOMEM; 606 } 607 return 0; 608 } 609 610 static struct kvm *kvm_create_vm(unsigned long type) 611 { 612 int r, i; 613 struct kvm *kvm = kvm_arch_alloc_vm(); 614 615 if (!kvm) 616 return ERR_PTR(-ENOMEM); 617 618 spin_lock_init(&kvm->mmu_lock); 619 atomic_inc(¤t->mm->mm_count); 620 kvm->mm = current->mm; 621 kvm_eventfd_init(kvm); 622 mutex_init(&kvm->lock); 623 mutex_init(&kvm->irq_lock); 624 mutex_init(&kvm->slots_lock); 625 atomic_set(&kvm->users_count, 1); 626 INIT_LIST_HEAD(&kvm->devices); 627 628 r = kvm_arch_init_vm(kvm, type); 629 if (r) 630 goto out_err_no_disable; 631 632 r = hardware_enable_all(); 633 if (r) 634 goto out_err_no_disable; 635 636 #ifdef CONFIG_HAVE_KVM_IRQFD 637 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 638 #endif 639 640 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 641 642 r = -ENOMEM; 643 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 644 kvm->memslots[i] = kvm_alloc_memslots(); 645 if (!kvm->memslots[i]) 646 goto out_err_no_srcu; 647 } 648 649 if (init_srcu_struct(&kvm->srcu)) 650 goto out_err_no_srcu; 651 if (init_srcu_struct(&kvm->irq_srcu)) 652 goto out_err_no_irq_srcu; 653 for (i = 0; i < KVM_NR_BUSES; i++) { 654 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 655 GFP_KERNEL); 656 if (!kvm->buses[i]) 657 goto out_err; 658 } 659 660 r = kvm_init_mmu_notifier(kvm); 661 if (r) 662 goto out_err; 663 664 spin_lock(&kvm_lock); 665 list_add(&kvm->vm_list, &vm_list); 666 spin_unlock(&kvm_lock); 667 668 preempt_notifier_inc(); 669 670 return kvm; 671 672 out_err: 673 cleanup_srcu_struct(&kvm->irq_srcu); 674 out_err_no_irq_srcu: 675 cleanup_srcu_struct(&kvm->srcu); 676 out_err_no_srcu: 677 hardware_disable_all(); 678 out_err_no_disable: 679 for (i = 0; i < KVM_NR_BUSES; i++) 680 kfree(kvm->buses[i]); 681 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 682 kvm_free_memslots(kvm, kvm->memslots[i]); 683 kvm_arch_free_vm(kvm); 684 mmdrop(current->mm); 685 return ERR_PTR(r); 686 } 687 688 /* 689 * Avoid using vmalloc for a small buffer. 690 * Should not be used when the size is statically known. 691 */ 692 void *kvm_kvzalloc(unsigned long size) 693 { 694 if (size > PAGE_SIZE) 695 return vzalloc(size); 696 else 697 return kzalloc(size, GFP_KERNEL); 698 } 699 700 static void kvm_destroy_devices(struct kvm *kvm) 701 { 702 struct kvm_device *dev, *tmp; 703 704 /* 705 * We do not need to take the kvm->lock here, because nobody else 706 * has a reference to the struct kvm at this point and therefore 707 * cannot access the devices list anyhow. 708 */ 709 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 710 list_del(&dev->vm_node); 711 dev->ops->destroy(dev); 712 } 713 } 714 715 static void kvm_destroy_vm(struct kvm *kvm) 716 { 717 int i; 718 struct mm_struct *mm = kvm->mm; 719 720 kvm_destroy_vm_debugfs(kvm); 721 kvm_arch_sync_events(kvm); 722 spin_lock(&kvm_lock); 723 list_del(&kvm->vm_list); 724 spin_unlock(&kvm_lock); 725 kvm_free_irq_routing(kvm); 726 for (i = 0; i < KVM_NR_BUSES; i++) 727 kvm_io_bus_destroy(kvm->buses[i]); 728 kvm_coalesced_mmio_free(kvm); 729 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 730 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 731 #else 732 kvm_arch_flush_shadow_all(kvm); 733 #endif 734 kvm_arch_destroy_vm(kvm); 735 kvm_destroy_devices(kvm); 736 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 737 kvm_free_memslots(kvm, kvm->memslots[i]); 738 cleanup_srcu_struct(&kvm->irq_srcu); 739 cleanup_srcu_struct(&kvm->srcu); 740 kvm_arch_free_vm(kvm); 741 preempt_notifier_dec(); 742 hardware_disable_all(); 743 mmdrop(mm); 744 } 745 746 void kvm_get_kvm(struct kvm *kvm) 747 { 748 atomic_inc(&kvm->users_count); 749 } 750 EXPORT_SYMBOL_GPL(kvm_get_kvm); 751 752 void kvm_put_kvm(struct kvm *kvm) 753 { 754 if (atomic_dec_and_test(&kvm->users_count)) 755 kvm_destroy_vm(kvm); 756 } 757 EXPORT_SYMBOL_GPL(kvm_put_kvm); 758 759 760 static int kvm_vm_release(struct inode *inode, struct file *filp) 761 { 762 struct kvm *kvm = filp->private_data; 763 764 kvm_irqfd_release(kvm); 765 766 kvm_put_kvm(kvm); 767 return 0; 768 } 769 770 /* 771 * Allocation size is twice as large as the actual dirty bitmap size. 772 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 773 */ 774 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 775 { 776 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 777 778 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 779 if (!memslot->dirty_bitmap) 780 return -ENOMEM; 781 782 return 0; 783 } 784 785 /* 786 * Insert memslot and re-sort memslots based on their GFN, 787 * so binary search could be used to lookup GFN. 788 * Sorting algorithm takes advantage of having initially 789 * sorted array and known changed memslot position. 790 */ 791 static void update_memslots(struct kvm_memslots *slots, 792 struct kvm_memory_slot *new) 793 { 794 int id = new->id; 795 int i = slots->id_to_index[id]; 796 struct kvm_memory_slot *mslots = slots->memslots; 797 798 WARN_ON(mslots[i].id != id); 799 if (!new->npages) { 800 WARN_ON(!mslots[i].npages); 801 if (mslots[i].npages) 802 slots->used_slots--; 803 } else { 804 if (!mslots[i].npages) 805 slots->used_slots++; 806 } 807 808 while (i < KVM_MEM_SLOTS_NUM - 1 && 809 new->base_gfn <= mslots[i + 1].base_gfn) { 810 if (!mslots[i + 1].npages) 811 break; 812 mslots[i] = mslots[i + 1]; 813 slots->id_to_index[mslots[i].id] = i; 814 i++; 815 } 816 817 /* 818 * The ">=" is needed when creating a slot with base_gfn == 0, 819 * so that it moves before all those with base_gfn == npages == 0. 820 * 821 * On the other hand, if new->npages is zero, the above loop has 822 * already left i pointing to the beginning of the empty part of 823 * mslots, and the ">=" would move the hole backwards in this 824 * case---which is wrong. So skip the loop when deleting a slot. 825 */ 826 if (new->npages) { 827 while (i > 0 && 828 new->base_gfn >= mslots[i - 1].base_gfn) { 829 mslots[i] = mslots[i - 1]; 830 slots->id_to_index[mslots[i].id] = i; 831 i--; 832 } 833 } else 834 WARN_ON_ONCE(i != slots->used_slots); 835 836 mslots[i] = *new; 837 slots->id_to_index[mslots[i].id] = i; 838 } 839 840 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 841 { 842 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 843 844 #ifdef __KVM_HAVE_READONLY_MEM 845 valid_flags |= KVM_MEM_READONLY; 846 #endif 847 848 if (mem->flags & ~valid_flags) 849 return -EINVAL; 850 851 return 0; 852 } 853 854 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 855 int as_id, struct kvm_memslots *slots) 856 { 857 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 858 859 /* 860 * Set the low bit in the generation, which disables SPTE caching 861 * until the end of synchronize_srcu_expedited. 862 */ 863 WARN_ON(old_memslots->generation & 1); 864 slots->generation = old_memslots->generation + 1; 865 866 rcu_assign_pointer(kvm->memslots[as_id], slots); 867 synchronize_srcu_expedited(&kvm->srcu); 868 869 /* 870 * Increment the new memslot generation a second time. This prevents 871 * vm exits that race with memslot updates from caching a memslot 872 * generation that will (potentially) be valid forever. 873 */ 874 slots->generation++; 875 876 kvm_arch_memslots_updated(kvm, slots); 877 878 return old_memslots; 879 } 880 881 /* 882 * Allocate some memory and give it an address in the guest physical address 883 * space. 884 * 885 * Discontiguous memory is allowed, mostly for framebuffers. 886 * 887 * Must be called holding kvm->slots_lock for write. 888 */ 889 int __kvm_set_memory_region(struct kvm *kvm, 890 const struct kvm_userspace_memory_region *mem) 891 { 892 int r; 893 gfn_t base_gfn; 894 unsigned long npages; 895 struct kvm_memory_slot *slot; 896 struct kvm_memory_slot old, new; 897 struct kvm_memslots *slots = NULL, *old_memslots; 898 int as_id, id; 899 enum kvm_mr_change change; 900 901 r = check_memory_region_flags(mem); 902 if (r) 903 goto out; 904 905 r = -EINVAL; 906 as_id = mem->slot >> 16; 907 id = (u16)mem->slot; 908 909 /* General sanity checks */ 910 if (mem->memory_size & (PAGE_SIZE - 1)) 911 goto out; 912 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 913 goto out; 914 /* We can read the guest memory with __xxx_user() later on. */ 915 if ((id < KVM_USER_MEM_SLOTS) && 916 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 917 !access_ok(VERIFY_WRITE, 918 (void __user *)(unsigned long)mem->userspace_addr, 919 mem->memory_size))) 920 goto out; 921 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 922 goto out; 923 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 924 goto out; 925 926 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 927 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 928 npages = mem->memory_size >> PAGE_SHIFT; 929 930 if (npages > KVM_MEM_MAX_NR_PAGES) 931 goto out; 932 933 new = old = *slot; 934 935 new.id = id; 936 new.base_gfn = base_gfn; 937 new.npages = npages; 938 new.flags = mem->flags; 939 940 if (npages) { 941 if (!old.npages) 942 change = KVM_MR_CREATE; 943 else { /* Modify an existing slot. */ 944 if ((mem->userspace_addr != old.userspace_addr) || 945 (npages != old.npages) || 946 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 947 goto out; 948 949 if (base_gfn != old.base_gfn) 950 change = KVM_MR_MOVE; 951 else if (new.flags != old.flags) 952 change = KVM_MR_FLAGS_ONLY; 953 else { /* Nothing to change. */ 954 r = 0; 955 goto out; 956 } 957 } 958 } else { 959 if (!old.npages) 960 goto out; 961 962 change = KVM_MR_DELETE; 963 new.base_gfn = 0; 964 new.flags = 0; 965 } 966 967 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 968 /* Check for overlaps */ 969 r = -EEXIST; 970 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 971 if ((slot->id >= KVM_USER_MEM_SLOTS) || 972 (slot->id == id)) 973 continue; 974 if (!((base_gfn + npages <= slot->base_gfn) || 975 (base_gfn >= slot->base_gfn + slot->npages))) 976 goto out; 977 } 978 } 979 980 /* Free page dirty bitmap if unneeded */ 981 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 982 new.dirty_bitmap = NULL; 983 984 r = -ENOMEM; 985 if (change == KVM_MR_CREATE) { 986 new.userspace_addr = mem->userspace_addr; 987 988 if (kvm_arch_create_memslot(kvm, &new, npages)) 989 goto out_free; 990 } 991 992 /* Allocate page dirty bitmap if needed */ 993 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 994 if (kvm_create_dirty_bitmap(&new) < 0) 995 goto out_free; 996 } 997 998 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 999 if (!slots) 1000 goto out_free; 1001 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1002 1003 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1004 slot = id_to_memslot(slots, id); 1005 slot->flags |= KVM_MEMSLOT_INVALID; 1006 1007 old_memslots = install_new_memslots(kvm, as_id, slots); 1008 1009 /* slot was deleted or moved, clear iommu mapping */ 1010 kvm_iommu_unmap_pages(kvm, &old); 1011 /* From this point no new shadow pages pointing to a deleted, 1012 * or moved, memslot will be created. 1013 * 1014 * validation of sp->gfn happens in: 1015 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1016 * - kvm_is_visible_gfn (mmu_check_roots) 1017 */ 1018 kvm_arch_flush_shadow_memslot(kvm, slot); 1019 1020 /* 1021 * We can re-use the old_memslots from above, the only difference 1022 * from the currently installed memslots is the invalid flag. This 1023 * will get overwritten by update_memslots anyway. 1024 */ 1025 slots = old_memslots; 1026 } 1027 1028 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1029 if (r) 1030 goto out_slots; 1031 1032 /* actual memory is freed via old in kvm_free_memslot below */ 1033 if (change == KVM_MR_DELETE) { 1034 new.dirty_bitmap = NULL; 1035 memset(&new.arch, 0, sizeof(new.arch)); 1036 } 1037 1038 update_memslots(slots, &new); 1039 old_memslots = install_new_memslots(kvm, as_id, slots); 1040 1041 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1042 1043 kvm_free_memslot(kvm, &old, &new); 1044 kvfree(old_memslots); 1045 1046 /* 1047 * IOMMU mapping: New slots need to be mapped. Old slots need to be 1048 * un-mapped and re-mapped if their base changes. Since base change 1049 * unmapping is handled above with slot deletion, mapping alone is 1050 * needed here. Anything else the iommu might care about for existing 1051 * slots (size changes, userspace addr changes and read-only flag 1052 * changes) is disallowed above, so any other attribute changes getting 1053 * here can be skipped. 1054 */ 1055 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1056 r = kvm_iommu_map_pages(kvm, &new); 1057 return r; 1058 } 1059 1060 return 0; 1061 1062 out_slots: 1063 kvfree(slots); 1064 out_free: 1065 kvm_free_memslot(kvm, &new, &old); 1066 out: 1067 return r; 1068 } 1069 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1070 1071 int kvm_set_memory_region(struct kvm *kvm, 1072 const struct kvm_userspace_memory_region *mem) 1073 { 1074 int r; 1075 1076 mutex_lock(&kvm->slots_lock); 1077 r = __kvm_set_memory_region(kvm, mem); 1078 mutex_unlock(&kvm->slots_lock); 1079 return r; 1080 } 1081 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1082 1083 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1084 struct kvm_userspace_memory_region *mem) 1085 { 1086 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1087 return -EINVAL; 1088 1089 return kvm_set_memory_region(kvm, mem); 1090 } 1091 1092 int kvm_get_dirty_log(struct kvm *kvm, 1093 struct kvm_dirty_log *log, int *is_dirty) 1094 { 1095 struct kvm_memslots *slots; 1096 struct kvm_memory_slot *memslot; 1097 int r, i, as_id, id; 1098 unsigned long n; 1099 unsigned long any = 0; 1100 1101 r = -EINVAL; 1102 as_id = log->slot >> 16; 1103 id = (u16)log->slot; 1104 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1105 goto out; 1106 1107 slots = __kvm_memslots(kvm, as_id); 1108 memslot = id_to_memslot(slots, id); 1109 r = -ENOENT; 1110 if (!memslot->dirty_bitmap) 1111 goto out; 1112 1113 n = kvm_dirty_bitmap_bytes(memslot); 1114 1115 for (i = 0; !any && i < n/sizeof(long); ++i) 1116 any = memslot->dirty_bitmap[i]; 1117 1118 r = -EFAULT; 1119 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1120 goto out; 1121 1122 if (any) 1123 *is_dirty = 1; 1124 1125 r = 0; 1126 out: 1127 return r; 1128 } 1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1130 1131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1132 /** 1133 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1134 * are dirty write protect them for next write. 1135 * @kvm: pointer to kvm instance 1136 * @log: slot id and address to which we copy the log 1137 * @is_dirty: flag set if any page is dirty 1138 * 1139 * We need to keep it in mind that VCPU threads can write to the bitmap 1140 * concurrently. So, to avoid losing track of dirty pages we keep the 1141 * following order: 1142 * 1143 * 1. Take a snapshot of the bit and clear it if needed. 1144 * 2. Write protect the corresponding page. 1145 * 3. Copy the snapshot to the userspace. 1146 * 4. Upon return caller flushes TLB's if needed. 1147 * 1148 * Between 2 and 4, the guest may write to the page using the remaining TLB 1149 * entry. This is not a problem because the page is reported dirty using 1150 * the snapshot taken before and step 4 ensures that writes done after 1151 * exiting to userspace will be logged for the next call. 1152 * 1153 */ 1154 int kvm_get_dirty_log_protect(struct kvm *kvm, 1155 struct kvm_dirty_log *log, bool *is_dirty) 1156 { 1157 struct kvm_memslots *slots; 1158 struct kvm_memory_slot *memslot; 1159 int r, i, as_id, id; 1160 unsigned long n; 1161 unsigned long *dirty_bitmap; 1162 unsigned long *dirty_bitmap_buffer; 1163 1164 r = -EINVAL; 1165 as_id = log->slot >> 16; 1166 id = (u16)log->slot; 1167 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1168 goto out; 1169 1170 slots = __kvm_memslots(kvm, as_id); 1171 memslot = id_to_memslot(slots, id); 1172 1173 dirty_bitmap = memslot->dirty_bitmap; 1174 r = -ENOENT; 1175 if (!dirty_bitmap) 1176 goto out; 1177 1178 n = kvm_dirty_bitmap_bytes(memslot); 1179 1180 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1181 memset(dirty_bitmap_buffer, 0, n); 1182 1183 spin_lock(&kvm->mmu_lock); 1184 *is_dirty = false; 1185 for (i = 0; i < n / sizeof(long); i++) { 1186 unsigned long mask; 1187 gfn_t offset; 1188 1189 if (!dirty_bitmap[i]) 1190 continue; 1191 1192 *is_dirty = true; 1193 1194 mask = xchg(&dirty_bitmap[i], 0); 1195 dirty_bitmap_buffer[i] = mask; 1196 1197 if (mask) { 1198 offset = i * BITS_PER_LONG; 1199 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1200 offset, mask); 1201 } 1202 } 1203 1204 spin_unlock(&kvm->mmu_lock); 1205 1206 r = -EFAULT; 1207 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1208 goto out; 1209 1210 r = 0; 1211 out: 1212 return r; 1213 } 1214 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1215 #endif 1216 1217 bool kvm_largepages_enabled(void) 1218 { 1219 return largepages_enabled; 1220 } 1221 1222 void kvm_disable_largepages(void) 1223 { 1224 largepages_enabled = false; 1225 } 1226 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1227 1228 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1229 { 1230 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1231 } 1232 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1233 1234 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1235 { 1236 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1237 } 1238 1239 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1240 { 1241 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1242 1243 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1244 memslot->flags & KVM_MEMSLOT_INVALID) 1245 return false; 1246 1247 return true; 1248 } 1249 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1250 1251 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1252 { 1253 struct vm_area_struct *vma; 1254 unsigned long addr, size; 1255 1256 size = PAGE_SIZE; 1257 1258 addr = gfn_to_hva(kvm, gfn); 1259 if (kvm_is_error_hva(addr)) 1260 return PAGE_SIZE; 1261 1262 down_read(¤t->mm->mmap_sem); 1263 vma = find_vma(current->mm, addr); 1264 if (!vma) 1265 goto out; 1266 1267 size = vma_kernel_pagesize(vma); 1268 1269 out: 1270 up_read(¤t->mm->mmap_sem); 1271 1272 return size; 1273 } 1274 1275 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1276 { 1277 return slot->flags & KVM_MEM_READONLY; 1278 } 1279 1280 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1281 gfn_t *nr_pages, bool write) 1282 { 1283 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1284 return KVM_HVA_ERR_BAD; 1285 1286 if (memslot_is_readonly(slot) && write) 1287 return KVM_HVA_ERR_RO_BAD; 1288 1289 if (nr_pages) 1290 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1291 1292 return __gfn_to_hva_memslot(slot, gfn); 1293 } 1294 1295 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1296 gfn_t *nr_pages) 1297 { 1298 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1299 } 1300 1301 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1302 gfn_t gfn) 1303 { 1304 return gfn_to_hva_many(slot, gfn, NULL); 1305 } 1306 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1307 1308 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1309 { 1310 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1311 } 1312 EXPORT_SYMBOL_GPL(gfn_to_hva); 1313 1314 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1315 { 1316 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1317 } 1318 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1319 1320 /* 1321 * If writable is set to false, the hva returned by this function is only 1322 * allowed to be read. 1323 */ 1324 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1325 gfn_t gfn, bool *writable) 1326 { 1327 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1328 1329 if (!kvm_is_error_hva(hva) && writable) 1330 *writable = !memslot_is_readonly(slot); 1331 1332 return hva; 1333 } 1334 1335 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1336 { 1337 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1338 1339 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1340 } 1341 1342 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1343 { 1344 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1345 1346 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1347 } 1348 1349 static int get_user_page_nowait(unsigned long start, int write, 1350 struct page **page) 1351 { 1352 int flags = FOLL_NOWAIT | FOLL_HWPOISON; 1353 1354 if (write) 1355 flags |= FOLL_WRITE; 1356 1357 return get_user_pages(start, 1, flags, page, NULL); 1358 } 1359 1360 static inline int check_user_page_hwpoison(unsigned long addr) 1361 { 1362 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1363 1364 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1365 return rc == -EHWPOISON; 1366 } 1367 1368 /* 1369 * The atomic path to get the writable pfn which will be stored in @pfn, 1370 * true indicates success, otherwise false is returned. 1371 */ 1372 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1373 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1374 { 1375 struct page *page[1]; 1376 int npages; 1377 1378 if (!(async || atomic)) 1379 return false; 1380 1381 /* 1382 * Fast pin a writable pfn only if it is a write fault request 1383 * or the caller allows to map a writable pfn for a read fault 1384 * request. 1385 */ 1386 if (!(write_fault || writable)) 1387 return false; 1388 1389 npages = __get_user_pages_fast(addr, 1, 1, page); 1390 if (npages == 1) { 1391 *pfn = page_to_pfn(page[0]); 1392 1393 if (writable) 1394 *writable = true; 1395 return true; 1396 } 1397 1398 return false; 1399 } 1400 1401 /* 1402 * The slow path to get the pfn of the specified host virtual address, 1403 * 1 indicates success, -errno is returned if error is detected. 1404 */ 1405 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1406 bool *writable, kvm_pfn_t *pfn) 1407 { 1408 struct page *page[1]; 1409 int npages = 0; 1410 1411 might_sleep(); 1412 1413 if (writable) 1414 *writable = write_fault; 1415 1416 if (async) { 1417 down_read(¤t->mm->mmap_sem); 1418 npages = get_user_page_nowait(addr, write_fault, page); 1419 up_read(¤t->mm->mmap_sem); 1420 } else { 1421 unsigned int flags = FOLL_TOUCH | FOLL_HWPOISON; 1422 1423 if (write_fault) 1424 flags |= FOLL_WRITE; 1425 1426 npages = __get_user_pages_unlocked(current, current->mm, addr, 1, 1427 page, flags); 1428 } 1429 if (npages != 1) 1430 return npages; 1431 1432 /* map read fault as writable if possible */ 1433 if (unlikely(!write_fault) && writable) { 1434 struct page *wpage[1]; 1435 1436 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1437 if (npages == 1) { 1438 *writable = true; 1439 put_page(page[0]); 1440 page[0] = wpage[0]; 1441 } 1442 1443 npages = 1; 1444 } 1445 *pfn = page_to_pfn(page[0]); 1446 return npages; 1447 } 1448 1449 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1450 { 1451 if (unlikely(!(vma->vm_flags & VM_READ))) 1452 return false; 1453 1454 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1455 return false; 1456 1457 return true; 1458 } 1459 1460 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1461 unsigned long addr, bool *async, 1462 bool write_fault, kvm_pfn_t *p_pfn) 1463 { 1464 unsigned long pfn; 1465 int r; 1466 1467 r = follow_pfn(vma, addr, &pfn); 1468 if (r) { 1469 /* 1470 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1471 * not call the fault handler, so do it here. 1472 */ 1473 bool unlocked = false; 1474 r = fixup_user_fault(current, current->mm, addr, 1475 (write_fault ? FAULT_FLAG_WRITE : 0), 1476 &unlocked); 1477 if (unlocked) 1478 return -EAGAIN; 1479 if (r) 1480 return r; 1481 1482 r = follow_pfn(vma, addr, &pfn); 1483 if (r) 1484 return r; 1485 1486 } 1487 1488 1489 /* 1490 * Get a reference here because callers of *hva_to_pfn* and 1491 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1492 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1493 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1494 * simply do nothing for reserved pfns. 1495 * 1496 * Whoever called remap_pfn_range is also going to call e.g. 1497 * unmap_mapping_range before the underlying pages are freed, 1498 * causing a call to our MMU notifier. 1499 */ 1500 kvm_get_pfn(pfn); 1501 1502 *p_pfn = pfn; 1503 return 0; 1504 } 1505 1506 /* 1507 * Pin guest page in memory and return its pfn. 1508 * @addr: host virtual address which maps memory to the guest 1509 * @atomic: whether this function can sleep 1510 * @async: whether this function need to wait IO complete if the 1511 * host page is not in the memory 1512 * @write_fault: whether we should get a writable host page 1513 * @writable: whether it allows to map a writable host page for !@write_fault 1514 * 1515 * The function will map a writable host page for these two cases: 1516 * 1): @write_fault = true 1517 * 2): @write_fault = false && @writable, @writable will tell the caller 1518 * whether the mapping is writable. 1519 */ 1520 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1521 bool write_fault, bool *writable) 1522 { 1523 struct vm_area_struct *vma; 1524 kvm_pfn_t pfn = 0; 1525 int npages, r; 1526 1527 /* we can do it either atomically or asynchronously, not both */ 1528 BUG_ON(atomic && async); 1529 1530 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1531 return pfn; 1532 1533 if (atomic) 1534 return KVM_PFN_ERR_FAULT; 1535 1536 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1537 if (npages == 1) 1538 return pfn; 1539 1540 down_read(¤t->mm->mmap_sem); 1541 if (npages == -EHWPOISON || 1542 (!async && check_user_page_hwpoison(addr))) { 1543 pfn = KVM_PFN_ERR_HWPOISON; 1544 goto exit; 1545 } 1546 1547 retry: 1548 vma = find_vma_intersection(current->mm, addr, addr + 1); 1549 1550 if (vma == NULL) 1551 pfn = KVM_PFN_ERR_FAULT; 1552 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1553 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn); 1554 if (r == -EAGAIN) 1555 goto retry; 1556 if (r < 0) 1557 pfn = KVM_PFN_ERR_FAULT; 1558 } else { 1559 if (async && vma_is_valid(vma, write_fault)) 1560 *async = true; 1561 pfn = KVM_PFN_ERR_FAULT; 1562 } 1563 exit: 1564 up_read(¤t->mm->mmap_sem); 1565 return pfn; 1566 } 1567 1568 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1569 bool atomic, bool *async, bool write_fault, 1570 bool *writable) 1571 { 1572 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1573 1574 if (addr == KVM_HVA_ERR_RO_BAD) { 1575 if (writable) 1576 *writable = false; 1577 return KVM_PFN_ERR_RO_FAULT; 1578 } 1579 1580 if (kvm_is_error_hva(addr)) { 1581 if (writable) 1582 *writable = false; 1583 return KVM_PFN_NOSLOT; 1584 } 1585 1586 /* Do not map writable pfn in the readonly memslot. */ 1587 if (writable && memslot_is_readonly(slot)) { 1588 *writable = false; 1589 writable = NULL; 1590 } 1591 1592 return hva_to_pfn(addr, atomic, async, write_fault, 1593 writable); 1594 } 1595 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1596 1597 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1598 bool *writable) 1599 { 1600 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1601 write_fault, writable); 1602 } 1603 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1604 1605 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1606 { 1607 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1608 } 1609 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1610 1611 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1612 { 1613 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1614 } 1615 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1616 1617 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1618 { 1619 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1620 } 1621 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1622 1623 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1624 { 1625 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1626 } 1627 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1628 1629 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1630 { 1631 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1632 } 1633 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1634 1635 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1636 { 1637 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1638 } 1639 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1640 1641 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1642 struct page **pages, int nr_pages) 1643 { 1644 unsigned long addr; 1645 gfn_t entry; 1646 1647 addr = gfn_to_hva_many(slot, gfn, &entry); 1648 if (kvm_is_error_hva(addr)) 1649 return -1; 1650 1651 if (entry < nr_pages) 1652 return 0; 1653 1654 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1655 } 1656 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1657 1658 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1659 { 1660 if (is_error_noslot_pfn(pfn)) 1661 return KVM_ERR_PTR_BAD_PAGE; 1662 1663 if (kvm_is_reserved_pfn(pfn)) { 1664 WARN_ON(1); 1665 return KVM_ERR_PTR_BAD_PAGE; 1666 } 1667 1668 return pfn_to_page(pfn); 1669 } 1670 1671 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1672 { 1673 kvm_pfn_t pfn; 1674 1675 pfn = gfn_to_pfn(kvm, gfn); 1676 1677 return kvm_pfn_to_page(pfn); 1678 } 1679 EXPORT_SYMBOL_GPL(gfn_to_page); 1680 1681 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1682 { 1683 kvm_pfn_t pfn; 1684 1685 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1686 1687 return kvm_pfn_to_page(pfn); 1688 } 1689 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1690 1691 void kvm_release_page_clean(struct page *page) 1692 { 1693 WARN_ON(is_error_page(page)); 1694 1695 kvm_release_pfn_clean(page_to_pfn(page)); 1696 } 1697 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1698 1699 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1700 { 1701 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1702 put_page(pfn_to_page(pfn)); 1703 } 1704 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1705 1706 void kvm_release_page_dirty(struct page *page) 1707 { 1708 WARN_ON(is_error_page(page)); 1709 1710 kvm_release_pfn_dirty(page_to_pfn(page)); 1711 } 1712 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1713 1714 static void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1715 { 1716 kvm_set_pfn_dirty(pfn); 1717 kvm_release_pfn_clean(pfn); 1718 } 1719 1720 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1721 { 1722 if (!kvm_is_reserved_pfn(pfn)) { 1723 struct page *page = pfn_to_page(pfn); 1724 1725 if (!PageReserved(page)) 1726 SetPageDirty(page); 1727 } 1728 } 1729 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1730 1731 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1732 { 1733 if (!kvm_is_reserved_pfn(pfn)) 1734 mark_page_accessed(pfn_to_page(pfn)); 1735 } 1736 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1737 1738 void kvm_get_pfn(kvm_pfn_t pfn) 1739 { 1740 if (!kvm_is_reserved_pfn(pfn)) 1741 get_page(pfn_to_page(pfn)); 1742 } 1743 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1744 1745 static int next_segment(unsigned long len, int offset) 1746 { 1747 if (len > PAGE_SIZE - offset) 1748 return PAGE_SIZE - offset; 1749 else 1750 return len; 1751 } 1752 1753 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1754 void *data, int offset, int len) 1755 { 1756 int r; 1757 unsigned long addr; 1758 1759 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1760 if (kvm_is_error_hva(addr)) 1761 return -EFAULT; 1762 r = __copy_from_user(data, (void __user *)addr + offset, len); 1763 if (r) 1764 return -EFAULT; 1765 return 0; 1766 } 1767 1768 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1769 int len) 1770 { 1771 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1772 1773 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1774 } 1775 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1776 1777 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1778 int offset, int len) 1779 { 1780 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1781 1782 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1783 } 1784 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1785 1786 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1787 { 1788 gfn_t gfn = gpa >> PAGE_SHIFT; 1789 int seg; 1790 int offset = offset_in_page(gpa); 1791 int ret; 1792 1793 while ((seg = next_segment(len, offset)) != 0) { 1794 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1795 if (ret < 0) 1796 return ret; 1797 offset = 0; 1798 len -= seg; 1799 data += seg; 1800 ++gfn; 1801 } 1802 return 0; 1803 } 1804 EXPORT_SYMBOL_GPL(kvm_read_guest); 1805 1806 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1807 { 1808 gfn_t gfn = gpa >> PAGE_SHIFT; 1809 int seg; 1810 int offset = offset_in_page(gpa); 1811 int ret; 1812 1813 while ((seg = next_segment(len, offset)) != 0) { 1814 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1815 if (ret < 0) 1816 return ret; 1817 offset = 0; 1818 len -= seg; 1819 data += seg; 1820 ++gfn; 1821 } 1822 return 0; 1823 } 1824 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1825 1826 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1827 void *data, int offset, unsigned long len) 1828 { 1829 int r; 1830 unsigned long addr; 1831 1832 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1833 if (kvm_is_error_hva(addr)) 1834 return -EFAULT; 1835 pagefault_disable(); 1836 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1837 pagefault_enable(); 1838 if (r) 1839 return -EFAULT; 1840 return 0; 1841 } 1842 1843 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1844 unsigned long len) 1845 { 1846 gfn_t gfn = gpa >> PAGE_SHIFT; 1847 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1848 int offset = offset_in_page(gpa); 1849 1850 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1851 } 1852 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1853 1854 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1855 void *data, unsigned long len) 1856 { 1857 gfn_t gfn = gpa >> PAGE_SHIFT; 1858 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1859 int offset = offset_in_page(gpa); 1860 1861 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1862 } 1863 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1864 1865 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1866 const void *data, int offset, int len) 1867 { 1868 int r; 1869 unsigned long addr; 1870 1871 addr = gfn_to_hva_memslot(memslot, gfn); 1872 if (kvm_is_error_hva(addr)) 1873 return -EFAULT; 1874 r = __copy_to_user((void __user *)addr + offset, data, len); 1875 if (r) 1876 return -EFAULT; 1877 mark_page_dirty_in_slot(memslot, gfn); 1878 return 0; 1879 } 1880 1881 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1882 const void *data, int offset, int len) 1883 { 1884 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1885 1886 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1887 } 1888 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1889 1890 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1891 const void *data, int offset, int len) 1892 { 1893 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1894 1895 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1896 } 1897 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1898 1899 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1900 unsigned long len) 1901 { 1902 gfn_t gfn = gpa >> PAGE_SHIFT; 1903 int seg; 1904 int offset = offset_in_page(gpa); 1905 int ret; 1906 1907 while ((seg = next_segment(len, offset)) != 0) { 1908 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1909 if (ret < 0) 1910 return ret; 1911 offset = 0; 1912 len -= seg; 1913 data += seg; 1914 ++gfn; 1915 } 1916 return 0; 1917 } 1918 EXPORT_SYMBOL_GPL(kvm_write_guest); 1919 1920 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1921 unsigned long len) 1922 { 1923 gfn_t gfn = gpa >> PAGE_SHIFT; 1924 int seg; 1925 int offset = offset_in_page(gpa); 1926 int ret; 1927 1928 while ((seg = next_segment(len, offset)) != 0) { 1929 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1930 if (ret < 0) 1931 return ret; 1932 offset = 0; 1933 len -= seg; 1934 data += seg; 1935 ++gfn; 1936 } 1937 return 0; 1938 } 1939 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1940 1941 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1942 gpa_t gpa, unsigned long len) 1943 { 1944 struct kvm_memslots *slots = kvm_memslots(kvm); 1945 int offset = offset_in_page(gpa); 1946 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1947 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1948 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1949 gfn_t nr_pages_avail; 1950 1951 ghc->gpa = gpa; 1952 ghc->generation = slots->generation; 1953 ghc->len = len; 1954 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1955 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1956 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1957 ghc->hva += offset; 1958 } else { 1959 /* 1960 * If the requested region crosses two memslots, we still 1961 * verify that the entire region is valid here. 1962 */ 1963 while (start_gfn <= end_gfn) { 1964 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1965 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1966 &nr_pages_avail); 1967 if (kvm_is_error_hva(ghc->hva)) 1968 return -EFAULT; 1969 start_gfn += nr_pages_avail; 1970 } 1971 /* Use the slow path for cross page reads and writes. */ 1972 ghc->memslot = NULL; 1973 } 1974 return 0; 1975 } 1976 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1977 1978 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1979 void *data, int offset, unsigned long len) 1980 { 1981 struct kvm_memslots *slots = kvm_memslots(kvm); 1982 int r; 1983 gpa_t gpa = ghc->gpa + offset; 1984 1985 BUG_ON(len + offset > ghc->len); 1986 1987 if (slots->generation != ghc->generation) 1988 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1989 1990 if (unlikely(!ghc->memslot)) 1991 return kvm_write_guest(kvm, gpa, data, len); 1992 1993 if (kvm_is_error_hva(ghc->hva)) 1994 return -EFAULT; 1995 1996 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 1997 if (r) 1998 return -EFAULT; 1999 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2000 2001 return 0; 2002 } 2003 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2004 2005 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2006 void *data, unsigned long len) 2007 { 2008 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2009 } 2010 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2011 2012 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2013 void *data, unsigned long len) 2014 { 2015 struct kvm_memslots *slots = kvm_memslots(kvm); 2016 int r; 2017 2018 BUG_ON(len > ghc->len); 2019 2020 if (slots->generation != ghc->generation) 2021 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 2022 2023 if (unlikely(!ghc->memslot)) 2024 return kvm_read_guest(kvm, ghc->gpa, data, len); 2025 2026 if (kvm_is_error_hva(ghc->hva)) 2027 return -EFAULT; 2028 2029 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2030 if (r) 2031 return -EFAULT; 2032 2033 return 0; 2034 } 2035 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2036 2037 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2038 { 2039 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2040 2041 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2042 } 2043 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2044 2045 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2046 { 2047 gfn_t gfn = gpa >> PAGE_SHIFT; 2048 int seg; 2049 int offset = offset_in_page(gpa); 2050 int ret; 2051 2052 while ((seg = next_segment(len, offset)) != 0) { 2053 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2054 if (ret < 0) 2055 return ret; 2056 offset = 0; 2057 len -= seg; 2058 ++gfn; 2059 } 2060 return 0; 2061 } 2062 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2063 2064 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2065 gfn_t gfn) 2066 { 2067 if (memslot && memslot->dirty_bitmap) { 2068 unsigned long rel_gfn = gfn - memslot->base_gfn; 2069 2070 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2071 } 2072 } 2073 2074 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2075 { 2076 struct kvm_memory_slot *memslot; 2077 2078 memslot = gfn_to_memslot(kvm, gfn); 2079 mark_page_dirty_in_slot(memslot, gfn); 2080 } 2081 EXPORT_SYMBOL_GPL(mark_page_dirty); 2082 2083 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2084 { 2085 struct kvm_memory_slot *memslot; 2086 2087 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2088 mark_page_dirty_in_slot(memslot, gfn); 2089 } 2090 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2091 2092 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2093 { 2094 unsigned int old, val, grow; 2095 2096 old = val = vcpu->halt_poll_ns; 2097 grow = READ_ONCE(halt_poll_ns_grow); 2098 /* 10us base */ 2099 if (val == 0 && grow) 2100 val = 10000; 2101 else 2102 val *= grow; 2103 2104 if (val > halt_poll_ns) 2105 val = halt_poll_ns; 2106 2107 vcpu->halt_poll_ns = val; 2108 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2109 } 2110 2111 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2112 { 2113 unsigned int old, val, shrink; 2114 2115 old = val = vcpu->halt_poll_ns; 2116 shrink = READ_ONCE(halt_poll_ns_shrink); 2117 if (shrink == 0) 2118 val = 0; 2119 else 2120 val /= shrink; 2121 2122 vcpu->halt_poll_ns = val; 2123 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2124 } 2125 2126 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2127 { 2128 if (kvm_arch_vcpu_runnable(vcpu)) { 2129 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2130 return -EINTR; 2131 } 2132 if (kvm_cpu_has_pending_timer(vcpu)) 2133 return -EINTR; 2134 if (signal_pending(current)) 2135 return -EINTR; 2136 2137 return 0; 2138 } 2139 2140 /* 2141 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2142 */ 2143 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2144 { 2145 ktime_t start, cur; 2146 DECLARE_SWAITQUEUE(wait); 2147 bool waited = false; 2148 u64 block_ns; 2149 2150 start = cur = ktime_get(); 2151 if (vcpu->halt_poll_ns) { 2152 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2153 2154 ++vcpu->stat.halt_attempted_poll; 2155 do { 2156 /* 2157 * This sets KVM_REQ_UNHALT if an interrupt 2158 * arrives. 2159 */ 2160 if (kvm_vcpu_check_block(vcpu) < 0) { 2161 ++vcpu->stat.halt_successful_poll; 2162 if (!vcpu_valid_wakeup(vcpu)) 2163 ++vcpu->stat.halt_poll_invalid; 2164 goto out; 2165 } 2166 cur = ktime_get(); 2167 } while (single_task_running() && ktime_before(cur, stop)); 2168 } 2169 2170 kvm_arch_vcpu_blocking(vcpu); 2171 2172 for (;;) { 2173 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2174 2175 if (kvm_vcpu_check_block(vcpu) < 0) 2176 break; 2177 2178 waited = true; 2179 schedule(); 2180 } 2181 2182 finish_swait(&vcpu->wq, &wait); 2183 cur = ktime_get(); 2184 2185 kvm_arch_vcpu_unblocking(vcpu); 2186 out: 2187 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2188 2189 if (!vcpu_valid_wakeup(vcpu)) 2190 shrink_halt_poll_ns(vcpu); 2191 else if (halt_poll_ns) { 2192 if (block_ns <= vcpu->halt_poll_ns) 2193 ; 2194 /* we had a long block, shrink polling */ 2195 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2196 shrink_halt_poll_ns(vcpu); 2197 /* we had a short halt and our poll time is too small */ 2198 else if (vcpu->halt_poll_ns < halt_poll_ns && 2199 block_ns < halt_poll_ns) 2200 grow_halt_poll_ns(vcpu); 2201 } else 2202 vcpu->halt_poll_ns = 0; 2203 2204 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2205 kvm_arch_vcpu_block_finish(vcpu); 2206 } 2207 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2208 2209 #ifndef CONFIG_S390 2210 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2211 { 2212 struct swait_queue_head *wqp; 2213 2214 wqp = kvm_arch_vcpu_wq(vcpu); 2215 if (swait_active(wqp)) { 2216 swake_up(wqp); 2217 ++vcpu->stat.halt_wakeup; 2218 } 2219 2220 } 2221 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2222 2223 /* 2224 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2225 */ 2226 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2227 { 2228 int me; 2229 int cpu = vcpu->cpu; 2230 2231 kvm_vcpu_wake_up(vcpu); 2232 me = get_cpu(); 2233 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2234 if (kvm_arch_vcpu_should_kick(vcpu)) 2235 smp_send_reschedule(cpu); 2236 put_cpu(); 2237 } 2238 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2239 #endif /* !CONFIG_S390 */ 2240 2241 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2242 { 2243 struct pid *pid; 2244 struct task_struct *task = NULL; 2245 int ret = 0; 2246 2247 rcu_read_lock(); 2248 pid = rcu_dereference(target->pid); 2249 if (pid) 2250 task = get_pid_task(pid, PIDTYPE_PID); 2251 rcu_read_unlock(); 2252 if (!task) 2253 return ret; 2254 ret = yield_to(task, 1); 2255 put_task_struct(task); 2256 2257 return ret; 2258 } 2259 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2260 2261 /* 2262 * Helper that checks whether a VCPU is eligible for directed yield. 2263 * Most eligible candidate to yield is decided by following heuristics: 2264 * 2265 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2266 * (preempted lock holder), indicated by @in_spin_loop. 2267 * Set at the beiginning and cleared at the end of interception/PLE handler. 2268 * 2269 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2270 * chance last time (mostly it has become eligible now since we have probably 2271 * yielded to lockholder in last iteration. This is done by toggling 2272 * @dy_eligible each time a VCPU checked for eligibility.) 2273 * 2274 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2275 * to preempted lock-holder could result in wrong VCPU selection and CPU 2276 * burning. Giving priority for a potential lock-holder increases lock 2277 * progress. 2278 * 2279 * Since algorithm is based on heuristics, accessing another VCPU data without 2280 * locking does not harm. It may result in trying to yield to same VCPU, fail 2281 * and continue with next VCPU and so on. 2282 */ 2283 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2284 { 2285 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2286 bool eligible; 2287 2288 eligible = !vcpu->spin_loop.in_spin_loop || 2289 vcpu->spin_loop.dy_eligible; 2290 2291 if (vcpu->spin_loop.in_spin_loop) 2292 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2293 2294 return eligible; 2295 #else 2296 return true; 2297 #endif 2298 } 2299 2300 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 2301 { 2302 struct kvm *kvm = me->kvm; 2303 struct kvm_vcpu *vcpu; 2304 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2305 int yielded = 0; 2306 int try = 3; 2307 int pass; 2308 int i; 2309 2310 kvm_vcpu_set_in_spin_loop(me, true); 2311 /* 2312 * We boost the priority of a VCPU that is runnable but not 2313 * currently running, because it got preempted by something 2314 * else and called schedule in __vcpu_run. Hopefully that 2315 * VCPU is holding the lock that we need and will release it. 2316 * We approximate round-robin by starting at the last boosted VCPU. 2317 */ 2318 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2319 kvm_for_each_vcpu(i, vcpu, kvm) { 2320 if (!pass && i <= last_boosted_vcpu) { 2321 i = last_boosted_vcpu; 2322 continue; 2323 } else if (pass && i > last_boosted_vcpu) 2324 break; 2325 if (!ACCESS_ONCE(vcpu->preempted)) 2326 continue; 2327 if (vcpu == me) 2328 continue; 2329 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2330 continue; 2331 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2332 continue; 2333 2334 yielded = kvm_vcpu_yield_to(vcpu); 2335 if (yielded > 0) { 2336 kvm->last_boosted_vcpu = i; 2337 break; 2338 } else if (yielded < 0) { 2339 try--; 2340 if (!try) 2341 break; 2342 } 2343 } 2344 } 2345 kvm_vcpu_set_in_spin_loop(me, false); 2346 2347 /* Ensure vcpu is not eligible during next spinloop */ 2348 kvm_vcpu_set_dy_eligible(me, false); 2349 } 2350 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2351 2352 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2353 { 2354 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 2355 struct page *page; 2356 2357 if (vmf->pgoff == 0) 2358 page = virt_to_page(vcpu->run); 2359 #ifdef CONFIG_X86 2360 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2361 page = virt_to_page(vcpu->arch.pio_data); 2362 #endif 2363 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2364 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2365 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2366 #endif 2367 else 2368 return kvm_arch_vcpu_fault(vcpu, vmf); 2369 get_page(page); 2370 vmf->page = page; 2371 return 0; 2372 } 2373 2374 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2375 .fault = kvm_vcpu_fault, 2376 }; 2377 2378 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2379 { 2380 vma->vm_ops = &kvm_vcpu_vm_ops; 2381 return 0; 2382 } 2383 2384 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2385 { 2386 struct kvm_vcpu *vcpu = filp->private_data; 2387 2388 debugfs_remove_recursive(vcpu->debugfs_dentry); 2389 kvm_put_kvm(vcpu->kvm); 2390 return 0; 2391 } 2392 2393 static struct file_operations kvm_vcpu_fops = { 2394 .release = kvm_vcpu_release, 2395 .unlocked_ioctl = kvm_vcpu_ioctl, 2396 #ifdef CONFIG_KVM_COMPAT 2397 .compat_ioctl = kvm_vcpu_compat_ioctl, 2398 #endif 2399 .mmap = kvm_vcpu_mmap, 2400 .llseek = noop_llseek, 2401 }; 2402 2403 /* 2404 * Allocates an inode for the vcpu. 2405 */ 2406 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2407 { 2408 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2409 } 2410 2411 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2412 { 2413 char dir_name[ITOA_MAX_LEN * 2]; 2414 int ret; 2415 2416 if (!kvm_arch_has_vcpu_debugfs()) 2417 return 0; 2418 2419 if (!debugfs_initialized()) 2420 return 0; 2421 2422 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2423 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2424 vcpu->kvm->debugfs_dentry); 2425 if (!vcpu->debugfs_dentry) 2426 return -ENOMEM; 2427 2428 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2429 if (ret < 0) { 2430 debugfs_remove_recursive(vcpu->debugfs_dentry); 2431 return ret; 2432 } 2433 2434 return 0; 2435 } 2436 2437 /* 2438 * Creates some virtual cpus. Good luck creating more than one. 2439 */ 2440 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2441 { 2442 int r; 2443 struct kvm_vcpu *vcpu; 2444 2445 if (id >= KVM_MAX_VCPU_ID) 2446 return -EINVAL; 2447 2448 mutex_lock(&kvm->lock); 2449 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2450 mutex_unlock(&kvm->lock); 2451 return -EINVAL; 2452 } 2453 2454 kvm->created_vcpus++; 2455 mutex_unlock(&kvm->lock); 2456 2457 vcpu = kvm_arch_vcpu_create(kvm, id); 2458 if (IS_ERR(vcpu)) { 2459 r = PTR_ERR(vcpu); 2460 goto vcpu_decrement; 2461 } 2462 2463 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2464 2465 r = kvm_arch_vcpu_setup(vcpu); 2466 if (r) 2467 goto vcpu_destroy; 2468 2469 r = kvm_create_vcpu_debugfs(vcpu); 2470 if (r) 2471 goto vcpu_destroy; 2472 2473 mutex_lock(&kvm->lock); 2474 if (kvm_get_vcpu_by_id(kvm, id)) { 2475 r = -EEXIST; 2476 goto unlock_vcpu_destroy; 2477 } 2478 2479 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2480 2481 /* Now it's all set up, let userspace reach it */ 2482 kvm_get_kvm(kvm); 2483 r = create_vcpu_fd(vcpu); 2484 if (r < 0) { 2485 kvm_put_kvm(kvm); 2486 goto unlock_vcpu_destroy; 2487 } 2488 2489 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2490 2491 /* 2492 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2493 * before kvm->online_vcpu's incremented value. 2494 */ 2495 smp_wmb(); 2496 atomic_inc(&kvm->online_vcpus); 2497 2498 mutex_unlock(&kvm->lock); 2499 kvm_arch_vcpu_postcreate(vcpu); 2500 return r; 2501 2502 unlock_vcpu_destroy: 2503 mutex_unlock(&kvm->lock); 2504 debugfs_remove_recursive(vcpu->debugfs_dentry); 2505 vcpu_destroy: 2506 kvm_arch_vcpu_destroy(vcpu); 2507 vcpu_decrement: 2508 mutex_lock(&kvm->lock); 2509 kvm->created_vcpus--; 2510 mutex_unlock(&kvm->lock); 2511 return r; 2512 } 2513 2514 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2515 { 2516 if (sigset) { 2517 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2518 vcpu->sigset_active = 1; 2519 vcpu->sigset = *sigset; 2520 } else 2521 vcpu->sigset_active = 0; 2522 return 0; 2523 } 2524 2525 static long kvm_vcpu_ioctl(struct file *filp, 2526 unsigned int ioctl, unsigned long arg) 2527 { 2528 struct kvm_vcpu *vcpu = filp->private_data; 2529 void __user *argp = (void __user *)arg; 2530 int r; 2531 struct kvm_fpu *fpu = NULL; 2532 struct kvm_sregs *kvm_sregs = NULL; 2533 2534 if (vcpu->kvm->mm != current->mm) 2535 return -EIO; 2536 2537 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2538 return -EINVAL; 2539 2540 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2541 /* 2542 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2543 * so vcpu_load() would break it. 2544 */ 2545 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2546 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2547 #endif 2548 2549 2550 r = vcpu_load(vcpu); 2551 if (r) 2552 return r; 2553 switch (ioctl) { 2554 case KVM_RUN: 2555 r = -EINVAL; 2556 if (arg) 2557 goto out; 2558 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 2559 /* The thread running this VCPU changed. */ 2560 struct pid *oldpid = vcpu->pid; 2561 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2562 2563 rcu_assign_pointer(vcpu->pid, newpid); 2564 if (oldpid) 2565 synchronize_rcu(); 2566 put_pid(oldpid); 2567 } 2568 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2569 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2570 break; 2571 case KVM_GET_REGS: { 2572 struct kvm_regs *kvm_regs; 2573 2574 r = -ENOMEM; 2575 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2576 if (!kvm_regs) 2577 goto out; 2578 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2579 if (r) 2580 goto out_free1; 2581 r = -EFAULT; 2582 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2583 goto out_free1; 2584 r = 0; 2585 out_free1: 2586 kfree(kvm_regs); 2587 break; 2588 } 2589 case KVM_SET_REGS: { 2590 struct kvm_regs *kvm_regs; 2591 2592 r = -ENOMEM; 2593 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2594 if (IS_ERR(kvm_regs)) { 2595 r = PTR_ERR(kvm_regs); 2596 goto out; 2597 } 2598 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2599 kfree(kvm_regs); 2600 break; 2601 } 2602 case KVM_GET_SREGS: { 2603 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2604 r = -ENOMEM; 2605 if (!kvm_sregs) 2606 goto out; 2607 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2608 if (r) 2609 goto out; 2610 r = -EFAULT; 2611 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2612 goto out; 2613 r = 0; 2614 break; 2615 } 2616 case KVM_SET_SREGS: { 2617 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2618 if (IS_ERR(kvm_sregs)) { 2619 r = PTR_ERR(kvm_sregs); 2620 kvm_sregs = NULL; 2621 goto out; 2622 } 2623 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2624 break; 2625 } 2626 case KVM_GET_MP_STATE: { 2627 struct kvm_mp_state mp_state; 2628 2629 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2630 if (r) 2631 goto out; 2632 r = -EFAULT; 2633 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2634 goto out; 2635 r = 0; 2636 break; 2637 } 2638 case KVM_SET_MP_STATE: { 2639 struct kvm_mp_state mp_state; 2640 2641 r = -EFAULT; 2642 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2643 goto out; 2644 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2645 break; 2646 } 2647 case KVM_TRANSLATE: { 2648 struct kvm_translation tr; 2649 2650 r = -EFAULT; 2651 if (copy_from_user(&tr, argp, sizeof(tr))) 2652 goto out; 2653 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2654 if (r) 2655 goto out; 2656 r = -EFAULT; 2657 if (copy_to_user(argp, &tr, sizeof(tr))) 2658 goto out; 2659 r = 0; 2660 break; 2661 } 2662 case KVM_SET_GUEST_DEBUG: { 2663 struct kvm_guest_debug dbg; 2664 2665 r = -EFAULT; 2666 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2667 goto out; 2668 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2669 break; 2670 } 2671 case KVM_SET_SIGNAL_MASK: { 2672 struct kvm_signal_mask __user *sigmask_arg = argp; 2673 struct kvm_signal_mask kvm_sigmask; 2674 sigset_t sigset, *p; 2675 2676 p = NULL; 2677 if (argp) { 2678 r = -EFAULT; 2679 if (copy_from_user(&kvm_sigmask, argp, 2680 sizeof(kvm_sigmask))) 2681 goto out; 2682 r = -EINVAL; 2683 if (kvm_sigmask.len != sizeof(sigset)) 2684 goto out; 2685 r = -EFAULT; 2686 if (copy_from_user(&sigset, sigmask_arg->sigset, 2687 sizeof(sigset))) 2688 goto out; 2689 p = &sigset; 2690 } 2691 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2692 break; 2693 } 2694 case KVM_GET_FPU: { 2695 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2696 r = -ENOMEM; 2697 if (!fpu) 2698 goto out; 2699 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2700 if (r) 2701 goto out; 2702 r = -EFAULT; 2703 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2704 goto out; 2705 r = 0; 2706 break; 2707 } 2708 case KVM_SET_FPU: { 2709 fpu = memdup_user(argp, sizeof(*fpu)); 2710 if (IS_ERR(fpu)) { 2711 r = PTR_ERR(fpu); 2712 fpu = NULL; 2713 goto out; 2714 } 2715 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2716 break; 2717 } 2718 default: 2719 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2720 } 2721 out: 2722 vcpu_put(vcpu); 2723 kfree(fpu); 2724 kfree(kvm_sregs); 2725 return r; 2726 } 2727 2728 #ifdef CONFIG_KVM_COMPAT 2729 static long kvm_vcpu_compat_ioctl(struct file *filp, 2730 unsigned int ioctl, unsigned long arg) 2731 { 2732 struct kvm_vcpu *vcpu = filp->private_data; 2733 void __user *argp = compat_ptr(arg); 2734 int r; 2735 2736 if (vcpu->kvm->mm != current->mm) 2737 return -EIO; 2738 2739 switch (ioctl) { 2740 case KVM_SET_SIGNAL_MASK: { 2741 struct kvm_signal_mask __user *sigmask_arg = argp; 2742 struct kvm_signal_mask kvm_sigmask; 2743 compat_sigset_t csigset; 2744 sigset_t sigset; 2745 2746 if (argp) { 2747 r = -EFAULT; 2748 if (copy_from_user(&kvm_sigmask, argp, 2749 sizeof(kvm_sigmask))) 2750 goto out; 2751 r = -EINVAL; 2752 if (kvm_sigmask.len != sizeof(csigset)) 2753 goto out; 2754 r = -EFAULT; 2755 if (copy_from_user(&csigset, sigmask_arg->sigset, 2756 sizeof(csigset))) 2757 goto out; 2758 sigset_from_compat(&sigset, &csigset); 2759 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2760 } else 2761 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2762 break; 2763 } 2764 default: 2765 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2766 } 2767 2768 out: 2769 return r; 2770 } 2771 #endif 2772 2773 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2774 int (*accessor)(struct kvm_device *dev, 2775 struct kvm_device_attr *attr), 2776 unsigned long arg) 2777 { 2778 struct kvm_device_attr attr; 2779 2780 if (!accessor) 2781 return -EPERM; 2782 2783 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2784 return -EFAULT; 2785 2786 return accessor(dev, &attr); 2787 } 2788 2789 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2790 unsigned long arg) 2791 { 2792 struct kvm_device *dev = filp->private_data; 2793 2794 switch (ioctl) { 2795 case KVM_SET_DEVICE_ATTR: 2796 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2797 case KVM_GET_DEVICE_ATTR: 2798 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2799 case KVM_HAS_DEVICE_ATTR: 2800 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2801 default: 2802 if (dev->ops->ioctl) 2803 return dev->ops->ioctl(dev, ioctl, arg); 2804 2805 return -ENOTTY; 2806 } 2807 } 2808 2809 static int kvm_device_release(struct inode *inode, struct file *filp) 2810 { 2811 struct kvm_device *dev = filp->private_data; 2812 struct kvm *kvm = dev->kvm; 2813 2814 kvm_put_kvm(kvm); 2815 return 0; 2816 } 2817 2818 static const struct file_operations kvm_device_fops = { 2819 .unlocked_ioctl = kvm_device_ioctl, 2820 #ifdef CONFIG_KVM_COMPAT 2821 .compat_ioctl = kvm_device_ioctl, 2822 #endif 2823 .release = kvm_device_release, 2824 }; 2825 2826 struct kvm_device *kvm_device_from_filp(struct file *filp) 2827 { 2828 if (filp->f_op != &kvm_device_fops) 2829 return NULL; 2830 2831 return filp->private_data; 2832 } 2833 2834 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2835 #ifdef CONFIG_KVM_MPIC 2836 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2837 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2838 #endif 2839 2840 #ifdef CONFIG_KVM_XICS 2841 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops, 2842 #endif 2843 }; 2844 2845 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2846 { 2847 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2848 return -ENOSPC; 2849 2850 if (kvm_device_ops_table[type] != NULL) 2851 return -EEXIST; 2852 2853 kvm_device_ops_table[type] = ops; 2854 return 0; 2855 } 2856 2857 void kvm_unregister_device_ops(u32 type) 2858 { 2859 if (kvm_device_ops_table[type] != NULL) 2860 kvm_device_ops_table[type] = NULL; 2861 } 2862 2863 static int kvm_ioctl_create_device(struct kvm *kvm, 2864 struct kvm_create_device *cd) 2865 { 2866 struct kvm_device_ops *ops = NULL; 2867 struct kvm_device *dev; 2868 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2869 int ret; 2870 2871 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2872 return -ENODEV; 2873 2874 ops = kvm_device_ops_table[cd->type]; 2875 if (ops == NULL) 2876 return -ENODEV; 2877 2878 if (test) 2879 return 0; 2880 2881 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2882 if (!dev) 2883 return -ENOMEM; 2884 2885 dev->ops = ops; 2886 dev->kvm = kvm; 2887 2888 mutex_lock(&kvm->lock); 2889 ret = ops->create(dev, cd->type); 2890 if (ret < 0) { 2891 mutex_unlock(&kvm->lock); 2892 kfree(dev); 2893 return ret; 2894 } 2895 list_add(&dev->vm_node, &kvm->devices); 2896 mutex_unlock(&kvm->lock); 2897 2898 if (ops->init) 2899 ops->init(dev); 2900 2901 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2902 if (ret < 0) { 2903 mutex_lock(&kvm->lock); 2904 list_del(&dev->vm_node); 2905 mutex_unlock(&kvm->lock); 2906 ops->destroy(dev); 2907 return ret; 2908 } 2909 2910 kvm_get_kvm(kvm); 2911 cd->fd = ret; 2912 return 0; 2913 } 2914 2915 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2916 { 2917 switch (arg) { 2918 case KVM_CAP_USER_MEMORY: 2919 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2920 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2921 case KVM_CAP_INTERNAL_ERROR_DATA: 2922 #ifdef CONFIG_HAVE_KVM_MSI 2923 case KVM_CAP_SIGNAL_MSI: 2924 #endif 2925 #ifdef CONFIG_HAVE_KVM_IRQFD 2926 case KVM_CAP_IRQFD: 2927 case KVM_CAP_IRQFD_RESAMPLE: 2928 #endif 2929 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2930 case KVM_CAP_CHECK_EXTENSION_VM: 2931 return 1; 2932 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2933 case KVM_CAP_IRQ_ROUTING: 2934 return KVM_MAX_IRQ_ROUTES; 2935 #endif 2936 #if KVM_ADDRESS_SPACE_NUM > 1 2937 case KVM_CAP_MULTI_ADDRESS_SPACE: 2938 return KVM_ADDRESS_SPACE_NUM; 2939 #endif 2940 case KVM_CAP_MAX_VCPU_ID: 2941 return KVM_MAX_VCPU_ID; 2942 default: 2943 break; 2944 } 2945 return kvm_vm_ioctl_check_extension(kvm, arg); 2946 } 2947 2948 static long kvm_vm_ioctl(struct file *filp, 2949 unsigned int ioctl, unsigned long arg) 2950 { 2951 struct kvm *kvm = filp->private_data; 2952 void __user *argp = (void __user *)arg; 2953 int r; 2954 2955 if (kvm->mm != current->mm) 2956 return -EIO; 2957 switch (ioctl) { 2958 case KVM_CREATE_VCPU: 2959 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2960 break; 2961 case KVM_SET_USER_MEMORY_REGION: { 2962 struct kvm_userspace_memory_region kvm_userspace_mem; 2963 2964 r = -EFAULT; 2965 if (copy_from_user(&kvm_userspace_mem, argp, 2966 sizeof(kvm_userspace_mem))) 2967 goto out; 2968 2969 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2970 break; 2971 } 2972 case KVM_GET_DIRTY_LOG: { 2973 struct kvm_dirty_log log; 2974 2975 r = -EFAULT; 2976 if (copy_from_user(&log, argp, sizeof(log))) 2977 goto out; 2978 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2979 break; 2980 } 2981 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2982 case KVM_REGISTER_COALESCED_MMIO: { 2983 struct kvm_coalesced_mmio_zone zone; 2984 2985 r = -EFAULT; 2986 if (copy_from_user(&zone, argp, sizeof(zone))) 2987 goto out; 2988 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2989 break; 2990 } 2991 case KVM_UNREGISTER_COALESCED_MMIO: { 2992 struct kvm_coalesced_mmio_zone zone; 2993 2994 r = -EFAULT; 2995 if (copy_from_user(&zone, argp, sizeof(zone))) 2996 goto out; 2997 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2998 break; 2999 } 3000 #endif 3001 case KVM_IRQFD: { 3002 struct kvm_irqfd data; 3003 3004 r = -EFAULT; 3005 if (copy_from_user(&data, argp, sizeof(data))) 3006 goto out; 3007 r = kvm_irqfd(kvm, &data); 3008 break; 3009 } 3010 case KVM_IOEVENTFD: { 3011 struct kvm_ioeventfd data; 3012 3013 r = -EFAULT; 3014 if (copy_from_user(&data, argp, sizeof(data))) 3015 goto out; 3016 r = kvm_ioeventfd(kvm, &data); 3017 break; 3018 } 3019 #ifdef CONFIG_HAVE_KVM_MSI 3020 case KVM_SIGNAL_MSI: { 3021 struct kvm_msi msi; 3022 3023 r = -EFAULT; 3024 if (copy_from_user(&msi, argp, sizeof(msi))) 3025 goto out; 3026 r = kvm_send_userspace_msi(kvm, &msi); 3027 break; 3028 } 3029 #endif 3030 #ifdef __KVM_HAVE_IRQ_LINE 3031 case KVM_IRQ_LINE_STATUS: 3032 case KVM_IRQ_LINE: { 3033 struct kvm_irq_level irq_event; 3034 3035 r = -EFAULT; 3036 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3037 goto out; 3038 3039 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3040 ioctl == KVM_IRQ_LINE_STATUS); 3041 if (r) 3042 goto out; 3043 3044 r = -EFAULT; 3045 if (ioctl == KVM_IRQ_LINE_STATUS) { 3046 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3047 goto out; 3048 } 3049 3050 r = 0; 3051 break; 3052 } 3053 #endif 3054 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3055 case KVM_SET_GSI_ROUTING: { 3056 struct kvm_irq_routing routing; 3057 struct kvm_irq_routing __user *urouting; 3058 struct kvm_irq_routing_entry *entries = NULL; 3059 3060 r = -EFAULT; 3061 if (copy_from_user(&routing, argp, sizeof(routing))) 3062 goto out; 3063 r = -EINVAL; 3064 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3065 goto out; 3066 if (routing.flags) 3067 goto out; 3068 if (routing.nr) { 3069 r = -ENOMEM; 3070 entries = vmalloc(routing.nr * sizeof(*entries)); 3071 if (!entries) 3072 goto out; 3073 r = -EFAULT; 3074 urouting = argp; 3075 if (copy_from_user(entries, urouting->entries, 3076 routing.nr * sizeof(*entries))) 3077 goto out_free_irq_routing; 3078 } 3079 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3080 routing.flags); 3081 out_free_irq_routing: 3082 vfree(entries); 3083 break; 3084 } 3085 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3086 case KVM_CREATE_DEVICE: { 3087 struct kvm_create_device cd; 3088 3089 r = -EFAULT; 3090 if (copy_from_user(&cd, argp, sizeof(cd))) 3091 goto out; 3092 3093 r = kvm_ioctl_create_device(kvm, &cd); 3094 if (r) 3095 goto out; 3096 3097 r = -EFAULT; 3098 if (copy_to_user(argp, &cd, sizeof(cd))) 3099 goto out; 3100 3101 r = 0; 3102 break; 3103 } 3104 case KVM_CHECK_EXTENSION: 3105 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3106 break; 3107 default: 3108 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3109 } 3110 out: 3111 return r; 3112 } 3113 3114 #ifdef CONFIG_KVM_COMPAT 3115 struct compat_kvm_dirty_log { 3116 __u32 slot; 3117 __u32 padding1; 3118 union { 3119 compat_uptr_t dirty_bitmap; /* one bit per page */ 3120 __u64 padding2; 3121 }; 3122 }; 3123 3124 static long kvm_vm_compat_ioctl(struct file *filp, 3125 unsigned int ioctl, unsigned long arg) 3126 { 3127 struct kvm *kvm = filp->private_data; 3128 int r; 3129 3130 if (kvm->mm != current->mm) 3131 return -EIO; 3132 switch (ioctl) { 3133 case KVM_GET_DIRTY_LOG: { 3134 struct compat_kvm_dirty_log compat_log; 3135 struct kvm_dirty_log log; 3136 3137 r = -EFAULT; 3138 if (copy_from_user(&compat_log, (void __user *)arg, 3139 sizeof(compat_log))) 3140 goto out; 3141 log.slot = compat_log.slot; 3142 log.padding1 = compat_log.padding1; 3143 log.padding2 = compat_log.padding2; 3144 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3145 3146 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3147 break; 3148 } 3149 default: 3150 r = kvm_vm_ioctl(filp, ioctl, arg); 3151 } 3152 3153 out: 3154 return r; 3155 } 3156 #endif 3157 3158 static struct file_operations kvm_vm_fops = { 3159 .release = kvm_vm_release, 3160 .unlocked_ioctl = kvm_vm_ioctl, 3161 #ifdef CONFIG_KVM_COMPAT 3162 .compat_ioctl = kvm_vm_compat_ioctl, 3163 #endif 3164 .llseek = noop_llseek, 3165 }; 3166 3167 static int kvm_dev_ioctl_create_vm(unsigned long type) 3168 { 3169 int r; 3170 struct kvm *kvm; 3171 struct file *file; 3172 3173 kvm = kvm_create_vm(type); 3174 if (IS_ERR(kvm)) 3175 return PTR_ERR(kvm); 3176 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3177 r = kvm_coalesced_mmio_init(kvm); 3178 if (r < 0) { 3179 kvm_put_kvm(kvm); 3180 return r; 3181 } 3182 #endif 3183 r = get_unused_fd_flags(O_CLOEXEC); 3184 if (r < 0) { 3185 kvm_put_kvm(kvm); 3186 return r; 3187 } 3188 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3189 if (IS_ERR(file)) { 3190 put_unused_fd(r); 3191 kvm_put_kvm(kvm); 3192 return PTR_ERR(file); 3193 } 3194 3195 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3196 put_unused_fd(r); 3197 fput(file); 3198 return -ENOMEM; 3199 } 3200 3201 fd_install(r, file); 3202 return r; 3203 } 3204 3205 static long kvm_dev_ioctl(struct file *filp, 3206 unsigned int ioctl, unsigned long arg) 3207 { 3208 long r = -EINVAL; 3209 3210 switch (ioctl) { 3211 case KVM_GET_API_VERSION: 3212 if (arg) 3213 goto out; 3214 r = KVM_API_VERSION; 3215 break; 3216 case KVM_CREATE_VM: 3217 r = kvm_dev_ioctl_create_vm(arg); 3218 break; 3219 case KVM_CHECK_EXTENSION: 3220 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3221 break; 3222 case KVM_GET_VCPU_MMAP_SIZE: 3223 if (arg) 3224 goto out; 3225 r = PAGE_SIZE; /* struct kvm_run */ 3226 #ifdef CONFIG_X86 3227 r += PAGE_SIZE; /* pio data page */ 3228 #endif 3229 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3230 r += PAGE_SIZE; /* coalesced mmio ring page */ 3231 #endif 3232 break; 3233 case KVM_TRACE_ENABLE: 3234 case KVM_TRACE_PAUSE: 3235 case KVM_TRACE_DISABLE: 3236 r = -EOPNOTSUPP; 3237 break; 3238 default: 3239 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3240 } 3241 out: 3242 return r; 3243 } 3244 3245 static struct file_operations kvm_chardev_ops = { 3246 .unlocked_ioctl = kvm_dev_ioctl, 3247 .compat_ioctl = kvm_dev_ioctl, 3248 .llseek = noop_llseek, 3249 }; 3250 3251 static struct miscdevice kvm_dev = { 3252 KVM_MINOR, 3253 "kvm", 3254 &kvm_chardev_ops, 3255 }; 3256 3257 static void hardware_enable_nolock(void *junk) 3258 { 3259 int cpu = raw_smp_processor_id(); 3260 int r; 3261 3262 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3263 return; 3264 3265 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3266 3267 r = kvm_arch_hardware_enable(); 3268 3269 if (r) { 3270 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3271 atomic_inc(&hardware_enable_failed); 3272 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3273 } 3274 } 3275 3276 static int kvm_starting_cpu(unsigned int cpu) 3277 { 3278 raw_spin_lock(&kvm_count_lock); 3279 if (kvm_usage_count) 3280 hardware_enable_nolock(NULL); 3281 raw_spin_unlock(&kvm_count_lock); 3282 return 0; 3283 } 3284 3285 static void hardware_disable_nolock(void *junk) 3286 { 3287 int cpu = raw_smp_processor_id(); 3288 3289 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3290 return; 3291 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3292 kvm_arch_hardware_disable(); 3293 } 3294 3295 static int kvm_dying_cpu(unsigned int cpu) 3296 { 3297 raw_spin_lock(&kvm_count_lock); 3298 if (kvm_usage_count) 3299 hardware_disable_nolock(NULL); 3300 raw_spin_unlock(&kvm_count_lock); 3301 return 0; 3302 } 3303 3304 static void hardware_disable_all_nolock(void) 3305 { 3306 BUG_ON(!kvm_usage_count); 3307 3308 kvm_usage_count--; 3309 if (!kvm_usage_count) 3310 on_each_cpu(hardware_disable_nolock, NULL, 1); 3311 } 3312 3313 static void hardware_disable_all(void) 3314 { 3315 raw_spin_lock(&kvm_count_lock); 3316 hardware_disable_all_nolock(); 3317 raw_spin_unlock(&kvm_count_lock); 3318 } 3319 3320 static int hardware_enable_all(void) 3321 { 3322 int r = 0; 3323 3324 raw_spin_lock(&kvm_count_lock); 3325 3326 kvm_usage_count++; 3327 if (kvm_usage_count == 1) { 3328 atomic_set(&hardware_enable_failed, 0); 3329 on_each_cpu(hardware_enable_nolock, NULL, 1); 3330 3331 if (atomic_read(&hardware_enable_failed)) { 3332 hardware_disable_all_nolock(); 3333 r = -EBUSY; 3334 } 3335 } 3336 3337 raw_spin_unlock(&kvm_count_lock); 3338 3339 return r; 3340 } 3341 3342 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3343 void *v) 3344 { 3345 /* 3346 * Some (well, at least mine) BIOSes hang on reboot if 3347 * in vmx root mode. 3348 * 3349 * And Intel TXT required VMX off for all cpu when system shutdown. 3350 */ 3351 pr_info("kvm: exiting hardware virtualization\n"); 3352 kvm_rebooting = true; 3353 on_each_cpu(hardware_disable_nolock, NULL, 1); 3354 return NOTIFY_OK; 3355 } 3356 3357 static struct notifier_block kvm_reboot_notifier = { 3358 .notifier_call = kvm_reboot, 3359 .priority = 0, 3360 }; 3361 3362 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3363 { 3364 int i; 3365 3366 for (i = 0; i < bus->dev_count; i++) { 3367 struct kvm_io_device *pos = bus->range[i].dev; 3368 3369 kvm_iodevice_destructor(pos); 3370 } 3371 kfree(bus); 3372 } 3373 3374 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3375 const struct kvm_io_range *r2) 3376 { 3377 gpa_t addr1 = r1->addr; 3378 gpa_t addr2 = r2->addr; 3379 3380 if (addr1 < addr2) 3381 return -1; 3382 3383 /* If r2->len == 0, match the exact address. If r2->len != 0, 3384 * accept any overlapping write. Any order is acceptable for 3385 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3386 * we process all of them. 3387 */ 3388 if (r2->len) { 3389 addr1 += r1->len; 3390 addr2 += r2->len; 3391 } 3392 3393 if (addr1 > addr2) 3394 return 1; 3395 3396 return 0; 3397 } 3398 3399 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3400 { 3401 return kvm_io_bus_cmp(p1, p2); 3402 } 3403 3404 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3405 gpa_t addr, int len) 3406 { 3407 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3408 .addr = addr, 3409 .len = len, 3410 .dev = dev, 3411 }; 3412 3413 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3414 kvm_io_bus_sort_cmp, NULL); 3415 3416 return 0; 3417 } 3418 3419 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3420 gpa_t addr, int len) 3421 { 3422 struct kvm_io_range *range, key; 3423 int off; 3424 3425 key = (struct kvm_io_range) { 3426 .addr = addr, 3427 .len = len, 3428 }; 3429 3430 range = bsearch(&key, bus->range, bus->dev_count, 3431 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3432 if (range == NULL) 3433 return -ENOENT; 3434 3435 off = range - bus->range; 3436 3437 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3438 off--; 3439 3440 return off; 3441 } 3442 3443 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3444 struct kvm_io_range *range, const void *val) 3445 { 3446 int idx; 3447 3448 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3449 if (idx < 0) 3450 return -EOPNOTSUPP; 3451 3452 while (idx < bus->dev_count && 3453 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3454 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3455 range->len, val)) 3456 return idx; 3457 idx++; 3458 } 3459 3460 return -EOPNOTSUPP; 3461 } 3462 3463 /* kvm_io_bus_write - called under kvm->slots_lock */ 3464 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3465 int len, const void *val) 3466 { 3467 struct kvm_io_bus *bus; 3468 struct kvm_io_range range; 3469 int r; 3470 3471 range = (struct kvm_io_range) { 3472 .addr = addr, 3473 .len = len, 3474 }; 3475 3476 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3477 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3478 return r < 0 ? r : 0; 3479 } 3480 3481 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3482 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3483 gpa_t addr, int len, const void *val, long cookie) 3484 { 3485 struct kvm_io_bus *bus; 3486 struct kvm_io_range range; 3487 3488 range = (struct kvm_io_range) { 3489 .addr = addr, 3490 .len = len, 3491 }; 3492 3493 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3494 3495 /* First try the device referenced by cookie. */ 3496 if ((cookie >= 0) && (cookie < bus->dev_count) && 3497 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3498 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3499 val)) 3500 return cookie; 3501 3502 /* 3503 * cookie contained garbage; fall back to search and return the 3504 * correct cookie value. 3505 */ 3506 return __kvm_io_bus_write(vcpu, bus, &range, val); 3507 } 3508 3509 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3510 struct kvm_io_range *range, void *val) 3511 { 3512 int idx; 3513 3514 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3515 if (idx < 0) 3516 return -EOPNOTSUPP; 3517 3518 while (idx < bus->dev_count && 3519 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3520 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3521 range->len, val)) 3522 return idx; 3523 idx++; 3524 } 3525 3526 return -EOPNOTSUPP; 3527 } 3528 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3529 3530 /* kvm_io_bus_read - called under kvm->slots_lock */ 3531 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3532 int len, void *val) 3533 { 3534 struct kvm_io_bus *bus; 3535 struct kvm_io_range range; 3536 int r; 3537 3538 range = (struct kvm_io_range) { 3539 .addr = addr, 3540 .len = len, 3541 }; 3542 3543 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3544 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3545 return r < 0 ? r : 0; 3546 } 3547 3548 3549 /* Caller must hold slots_lock. */ 3550 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3551 int len, struct kvm_io_device *dev) 3552 { 3553 struct kvm_io_bus *new_bus, *bus; 3554 3555 bus = kvm->buses[bus_idx]; 3556 /* exclude ioeventfd which is limited by maximum fd */ 3557 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3558 return -ENOSPC; 3559 3560 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3561 sizeof(struct kvm_io_range)), GFP_KERNEL); 3562 if (!new_bus) 3563 return -ENOMEM; 3564 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3565 sizeof(struct kvm_io_range))); 3566 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3567 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3568 synchronize_srcu_expedited(&kvm->srcu); 3569 kfree(bus); 3570 3571 return 0; 3572 } 3573 3574 /* Caller must hold slots_lock. */ 3575 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3576 struct kvm_io_device *dev) 3577 { 3578 int i, r; 3579 struct kvm_io_bus *new_bus, *bus; 3580 3581 bus = kvm->buses[bus_idx]; 3582 r = -ENOENT; 3583 for (i = 0; i < bus->dev_count; i++) 3584 if (bus->range[i].dev == dev) { 3585 r = 0; 3586 break; 3587 } 3588 3589 if (r) 3590 return r; 3591 3592 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3593 sizeof(struct kvm_io_range)), GFP_KERNEL); 3594 if (!new_bus) 3595 return -ENOMEM; 3596 3597 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3598 new_bus->dev_count--; 3599 memcpy(new_bus->range + i, bus->range + i + 1, 3600 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3601 3602 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3603 synchronize_srcu_expedited(&kvm->srcu); 3604 kfree(bus); 3605 return r; 3606 } 3607 3608 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3609 gpa_t addr) 3610 { 3611 struct kvm_io_bus *bus; 3612 int dev_idx, srcu_idx; 3613 struct kvm_io_device *iodev = NULL; 3614 3615 srcu_idx = srcu_read_lock(&kvm->srcu); 3616 3617 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3618 3619 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3620 if (dev_idx < 0) 3621 goto out_unlock; 3622 3623 iodev = bus->range[dev_idx].dev; 3624 3625 out_unlock: 3626 srcu_read_unlock(&kvm->srcu, srcu_idx); 3627 3628 return iodev; 3629 } 3630 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3631 3632 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3633 int (*get)(void *, u64 *), int (*set)(void *, u64), 3634 const char *fmt) 3635 { 3636 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3637 inode->i_private; 3638 3639 /* The debugfs files are a reference to the kvm struct which 3640 * is still valid when kvm_destroy_vm is called. 3641 * To avoid the race between open and the removal of the debugfs 3642 * directory we test against the users count. 3643 */ 3644 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0)) 3645 return -ENOENT; 3646 3647 if (simple_attr_open(inode, file, get, set, fmt)) { 3648 kvm_put_kvm(stat_data->kvm); 3649 return -ENOMEM; 3650 } 3651 3652 return 0; 3653 } 3654 3655 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3656 { 3657 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3658 inode->i_private; 3659 3660 simple_attr_release(inode, file); 3661 kvm_put_kvm(stat_data->kvm); 3662 3663 return 0; 3664 } 3665 3666 static int vm_stat_get_per_vm(void *data, u64 *val) 3667 { 3668 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3669 3670 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3671 3672 return 0; 3673 } 3674 3675 static int vm_stat_clear_per_vm(void *data, u64 val) 3676 { 3677 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3678 3679 if (val) 3680 return -EINVAL; 3681 3682 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3683 3684 return 0; 3685 } 3686 3687 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3688 { 3689 __simple_attr_check_format("%llu\n", 0ull); 3690 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3691 vm_stat_clear_per_vm, "%llu\n"); 3692 } 3693 3694 static const struct file_operations vm_stat_get_per_vm_fops = { 3695 .owner = THIS_MODULE, 3696 .open = vm_stat_get_per_vm_open, 3697 .release = kvm_debugfs_release, 3698 .read = simple_attr_read, 3699 .write = simple_attr_write, 3700 .llseek = generic_file_llseek, 3701 }; 3702 3703 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3704 { 3705 int i; 3706 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3707 struct kvm_vcpu *vcpu; 3708 3709 *val = 0; 3710 3711 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3712 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3713 3714 return 0; 3715 } 3716 3717 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3718 { 3719 int i; 3720 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3721 struct kvm_vcpu *vcpu; 3722 3723 if (val) 3724 return -EINVAL; 3725 3726 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3727 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3728 3729 return 0; 3730 } 3731 3732 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3733 { 3734 __simple_attr_check_format("%llu\n", 0ull); 3735 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3736 vcpu_stat_clear_per_vm, "%llu\n"); 3737 } 3738 3739 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3740 .owner = THIS_MODULE, 3741 .open = vcpu_stat_get_per_vm_open, 3742 .release = kvm_debugfs_release, 3743 .read = simple_attr_read, 3744 .write = simple_attr_write, 3745 .llseek = generic_file_llseek, 3746 }; 3747 3748 static const struct file_operations *stat_fops_per_vm[] = { 3749 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3750 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3751 }; 3752 3753 static int vm_stat_get(void *_offset, u64 *val) 3754 { 3755 unsigned offset = (long)_offset; 3756 struct kvm *kvm; 3757 struct kvm_stat_data stat_tmp = {.offset = offset}; 3758 u64 tmp_val; 3759 3760 *val = 0; 3761 spin_lock(&kvm_lock); 3762 list_for_each_entry(kvm, &vm_list, vm_list) { 3763 stat_tmp.kvm = kvm; 3764 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3765 *val += tmp_val; 3766 } 3767 spin_unlock(&kvm_lock); 3768 return 0; 3769 } 3770 3771 static int vm_stat_clear(void *_offset, u64 val) 3772 { 3773 unsigned offset = (long)_offset; 3774 struct kvm *kvm; 3775 struct kvm_stat_data stat_tmp = {.offset = offset}; 3776 3777 if (val) 3778 return -EINVAL; 3779 3780 spin_lock(&kvm_lock); 3781 list_for_each_entry(kvm, &vm_list, vm_list) { 3782 stat_tmp.kvm = kvm; 3783 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3784 } 3785 spin_unlock(&kvm_lock); 3786 3787 return 0; 3788 } 3789 3790 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3791 3792 static int vcpu_stat_get(void *_offset, u64 *val) 3793 { 3794 unsigned offset = (long)_offset; 3795 struct kvm *kvm; 3796 struct kvm_stat_data stat_tmp = {.offset = offset}; 3797 u64 tmp_val; 3798 3799 *val = 0; 3800 spin_lock(&kvm_lock); 3801 list_for_each_entry(kvm, &vm_list, vm_list) { 3802 stat_tmp.kvm = kvm; 3803 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3804 *val += tmp_val; 3805 } 3806 spin_unlock(&kvm_lock); 3807 return 0; 3808 } 3809 3810 static int vcpu_stat_clear(void *_offset, u64 val) 3811 { 3812 unsigned offset = (long)_offset; 3813 struct kvm *kvm; 3814 struct kvm_stat_data stat_tmp = {.offset = offset}; 3815 3816 if (val) 3817 return -EINVAL; 3818 3819 spin_lock(&kvm_lock); 3820 list_for_each_entry(kvm, &vm_list, vm_list) { 3821 stat_tmp.kvm = kvm; 3822 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 3823 } 3824 spin_unlock(&kvm_lock); 3825 3826 return 0; 3827 } 3828 3829 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 3830 "%llu\n"); 3831 3832 static const struct file_operations *stat_fops[] = { 3833 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3834 [KVM_STAT_VM] = &vm_stat_fops, 3835 }; 3836 3837 static int kvm_init_debug(void) 3838 { 3839 int r = -EEXIST; 3840 struct kvm_stats_debugfs_item *p; 3841 3842 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3843 if (kvm_debugfs_dir == NULL) 3844 goto out; 3845 3846 kvm_debugfs_num_entries = 0; 3847 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3848 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 3849 (void *)(long)p->offset, 3850 stat_fops[p->kind])) 3851 goto out_dir; 3852 } 3853 3854 return 0; 3855 3856 out_dir: 3857 debugfs_remove_recursive(kvm_debugfs_dir); 3858 out: 3859 return r; 3860 } 3861 3862 static int kvm_suspend(void) 3863 { 3864 if (kvm_usage_count) 3865 hardware_disable_nolock(NULL); 3866 return 0; 3867 } 3868 3869 static void kvm_resume(void) 3870 { 3871 if (kvm_usage_count) { 3872 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3873 hardware_enable_nolock(NULL); 3874 } 3875 } 3876 3877 static struct syscore_ops kvm_syscore_ops = { 3878 .suspend = kvm_suspend, 3879 .resume = kvm_resume, 3880 }; 3881 3882 static inline 3883 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3884 { 3885 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3886 } 3887 3888 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3889 { 3890 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3891 3892 if (vcpu->preempted) 3893 vcpu->preempted = false; 3894 3895 kvm_arch_sched_in(vcpu, cpu); 3896 3897 kvm_arch_vcpu_load(vcpu, cpu); 3898 } 3899 3900 static void kvm_sched_out(struct preempt_notifier *pn, 3901 struct task_struct *next) 3902 { 3903 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3904 3905 if (current->state == TASK_RUNNING) 3906 vcpu->preempted = true; 3907 kvm_arch_vcpu_put(vcpu); 3908 } 3909 3910 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3911 struct module *module) 3912 { 3913 int r; 3914 int cpu; 3915 3916 r = kvm_arch_init(opaque); 3917 if (r) 3918 goto out_fail; 3919 3920 /* 3921 * kvm_arch_init makes sure there's at most one caller 3922 * for architectures that support multiple implementations, 3923 * like intel and amd on x86. 3924 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3925 * conflicts in case kvm is already setup for another implementation. 3926 */ 3927 r = kvm_irqfd_init(); 3928 if (r) 3929 goto out_irqfd; 3930 3931 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3932 r = -ENOMEM; 3933 goto out_free_0; 3934 } 3935 3936 r = kvm_arch_hardware_setup(); 3937 if (r < 0) 3938 goto out_free_0a; 3939 3940 for_each_online_cpu(cpu) { 3941 smp_call_function_single(cpu, 3942 kvm_arch_check_processor_compat, 3943 &r, 1); 3944 if (r < 0) 3945 goto out_free_1; 3946 } 3947 3948 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING", 3949 kvm_starting_cpu, kvm_dying_cpu); 3950 if (r) 3951 goto out_free_2; 3952 register_reboot_notifier(&kvm_reboot_notifier); 3953 3954 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3955 if (!vcpu_align) 3956 vcpu_align = __alignof__(struct kvm_vcpu); 3957 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3958 0, NULL); 3959 if (!kvm_vcpu_cache) { 3960 r = -ENOMEM; 3961 goto out_free_3; 3962 } 3963 3964 r = kvm_async_pf_init(); 3965 if (r) 3966 goto out_free; 3967 3968 kvm_chardev_ops.owner = module; 3969 kvm_vm_fops.owner = module; 3970 kvm_vcpu_fops.owner = module; 3971 3972 r = misc_register(&kvm_dev); 3973 if (r) { 3974 pr_err("kvm: misc device register failed\n"); 3975 goto out_unreg; 3976 } 3977 3978 register_syscore_ops(&kvm_syscore_ops); 3979 3980 kvm_preempt_ops.sched_in = kvm_sched_in; 3981 kvm_preempt_ops.sched_out = kvm_sched_out; 3982 3983 r = kvm_init_debug(); 3984 if (r) { 3985 pr_err("kvm: create debugfs files failed\n"); 3986 goto out_undebugfs; 3987 } 3988 3989 r = kvm_vfio_ops_init(); 3990 WARN_ON(r); 3991 3992 return 0; 3993 3994 out_undebugfs: 3995 unregister_syscore_ops(&kvm_syscore_ops); 3996 misc_deregister(&kvm_dev); 3997 out_unreg: 3998 kvm_async_pf_deinit(); 3999 out_free: 4000 kmem_cache_destroy(kvm_vcpu_cache); 4001 out_free_3: 4002 unregister_reboot_notifier(&kvm_reboot_notifier); 4003 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4004 out_free_2: 4005 out_free_1: 4006 kvm_arch_hardware_unsetup(); 4007 out_free_0a: 4008 free_cpumask_var(cpus_hardware_enabled); 4009 out_free_0: 4010 kvm_irqfd_exit(); 4011 out_irqfd: 4012 kvm_arch_exit(); 4013 out_fail: 4014 return r; 4015 } 4016 EXPORT_SYMBOL_GPL(kvm_init); 4017 4018 void kvm_exit(void) 4019 { 4020 debugfs_remove_recursive(kvm_debugfs_dir); 4021 misc_deregister(&kvm_dev); 4022 kmem_cache_destroy(kvm_vcpu_cache); 4023 kvm_async_pf_deinit(); 4024 unregister_syscore_ops(&kvm_syscore_ops); 4025 unregister_reboot_notifier(&kvm_reboot_notifier); 4026 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4027 on_each_cpu(hardware_disable_nolock, NULL, 1); 4028 kvm_arch_hardware_unsetup(); 4029 kvm_arch_exit(); 4030 kvm_irqfd_exit(); 4031 free_cpumask_var(cpus_hardware_enabled); 4032 kvm_vfio_ops_exit(); 4033 } 4034 EXPORT_SYMBOL_GPL(kvm_exit); 4035