xref: /linux/virt/kvm/kvm_main.c (revision 372e2db7210df7c45ead46429aeb1443ba148060)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76 
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81 
82 /* Default resets per-vcpu halt_poll_ns . */
83 unsigned int halt_poll_ns_shrink;
84 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
86 
87 /*
88  * Ordering of locks:
89  *
90  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
91  */
92 
93 DEFINE_SPINLOCK(kvm_lock);
94 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
95 LIST_HEAD(vm_list);
96 
97 static cpumask_var_t cpus_hardware_enabled;
98 static int kvm_usage_count;
99 static atomic_t hardware_enable_failed;
100 
101 struct kmem_cache *kvm_vcpu_cache;
102 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
103 
104 static __read_mostly struct preempt_ops kvm_preempt_ops;
105 
106 struct dentry *kvm_debugfs_dir;
107 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
108 
109 static int kvm_debugfs_num_entries;
110 static const struct file_operations *stat_fops_per_vm[];
111 
112 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
113 			   unsigned long arg);
114 #ifdef CONFIG_KVM_COMPAT
115 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
116 				  unsigned long arg);
117 #endif
118 static int hardware_enable_all(void);
119 static void hardware_disable_all(void);
120 
121 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
122 
123 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
124 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
125 
126 __visible bool kvm_rebooting;
127 EXPORT_SYMBOL_GPL(kvm_rebooting);
128 
129 static bool largepages_enabled = true;
130 
131 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
132 {
133 	if (pfn_valid(pfn))
134 		return PageReserved(pfn_to_page(pfn));
135 
136 	return true;
137 }
138 
139 /*
140  * Switches to specified vcpu, until a matching vcpu_put()
141  */
142 int vcpu_load(struct kvm_vcpu *vcpu)
143 {
144 	int cpu;
145 
146 	if (mutex_lock_killable(&vcpu->mutex))
147 		return -EINTR;
148 	cpu = get_cpu();
149 	preempt_notifier_register(&vcpu->preempt_notifier);
150 	kvm_arch_vcpu_load(vcpu, cpu);
151 	put_cpu();
152 	return 0;
153 }
154 EXPORT_SYMBOL_GPL(vcpu_load);
155 
156 void vcpu_put(struct kvm_vcpu *vcpu)
157 {
158 	preempt_disable();
159 	kvm_arch_vcpu_put(vcpu);
160 	preempt_notifier_unregister(&vcpu->preempt_notifier);
161 	preempt_enable();
162 	mutex_unlock(&vcpu->mutex);
163 }
164 EXPORT_SYMBOL_GPL(vcpu_put);
165 
166 static void ack_flush(void *_completed)
167 {
168 }
169 
170 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
171 {
172 	int i, cpu, me;
173 	cpumask_var_t cpus;
174 	bool called = true;
175 	struct kvm_vcpu *vcpu;
176 
177 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
178 
179 	me = get_cpu();
180 	kvm_for_each_vcpu(i, vcpu, kvm) {
181 		kvm_make_request(req, vcpu);
182 		cpu = vcpu->cpu;
183 
184 		/* Set ->requests bit before we read ->mode. */
185 		smp_mb__after_atomic();
186 
187 		if (cpus != NULL && cpu != -1 && cpu != me &&
188 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
189 			cpumask_set_cpu(cpu, cpus);
190 	}
191 	if (unlikely(cpus == NULL))
192 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
193 	else if (!cpumask_empty(cpus))
194 		smp_call_function_many(cpus, ack_flush, NULL, 1);
195 	else
196 		called = false;
197 	put_cpu();
198 	free_cpumask_var(cpus);
199 	return called;
200 }
201 
202 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
203 void kvm_flush_remote_tlbs(struct kvm *kvm)
204 {
205 	/*
206 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
207 	 * kvm_make_all_cpus_request.
208 	 */
209 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
210 
211 	/*
212 	 * We want to publish modifications to the page tables before reading
213 	 * mode. Pairs with a memory barrier in arch-specific code.
214 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
215 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
216 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
217 	 *
218 	 * There is already an smp_mb__after_atomic() before
219 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
220 	 * barrier here.
221 	 */
222 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
223 		++kvm->stat.remote_tlb_flush;
224 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
225 }
226 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
227 #endif
228 
229 void kvm_reload_remote_mmus(struct kvm *kvm)
230 {
231 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
232 }
233 
234 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
235 {
236 	struct page *page;
237 	int r;
238 
239 	mutex_init(&vcpu->mutex);
240 	vcpu->cpu = -1;
241 	vcpu->kvm = kvm;
242 	vcpu->vcpu_id = id;
243 	vcpu->pid = NULL;
244 	init_swait_queue_head(&vcpu->wq);
245 	kvm_async_pf_vcpu_init(vcpu);
246 
247 	vcpu->pre_pcpu = -1;
248 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
249 
250 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
251 	if (!page) {
252 		r = -ENOMEM;
253 		goto fail;
254 	}
255 	vcpu->run = page_address(page);
256 
257 	kvm_vcpu_set_in_spin_loop(vcpu, false);
258 	kvm_vcpu_set_dy_eligible(vcpu, false);
259 	vcpu->preempted = false;
260 
261 	r = kvm_arch_vcpu_init(vcpu);
262 	if (r < 0)
263 		goto fail_free_run;
264 	return 0;
265 
266 fail_free_run:
267 	free_page((unsigned long)vcpu->run);
268 fail:
269 	return r;
270 }
271 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
272 
273 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
274 {
275 	put_pid(vcpu->pid);
276 	kvm_arch_vcpu_uninit(vcpu);
277 	free_page((unsigned long)vcpu->run);
278 }
279 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
280 
281 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
282 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
283 {
284 	return container_of(mn, struct kvm, mmu_notifier);
285 }
286 
287 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
288 					     struct mm_struct *mm,
289 					     unsigned long address)
290 {
291 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
292 	int need_tlb_flush, idx;
293 
294 	/*
295 	 * When ->invalidate_page runs, the linux pte has been zapped
296 	 * already but the page is still allocated until
297 	 * ->invalidate_page returns. So if we increase the sequence
298 	 * here the kvm page fault will notice if the spte can't be
299 	 * established because the page is going to be freed. If
300 	 * instead the kvm page fault establishes the spte before
301 	 * ->invalidate_page runs, kvm_unmap_hva will release it
302 	 * before returning.
303 	 *
304 	 * The sequence increase only need to be seen at spin_unlock
305 	 * time, and not at spin_lock time.
306 	 *
307 	 * Increasing the sequence after the spin_unlock would be
308 	 * unsafe because the kvm page fault could then establish the
309 	 * pte after kvm_unmap_hva returned, without noticing the page
310 	 * is going to be freed.
311 	 */
312 	idx = srcu_read_lock(&kvm->srcu);
313 	spin_lock(&kvm->mmu_lock);
314 
315 	kvm->mmu_notifier_seq++;
316 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
317 	/* we've to flush the tlb before the pages can be freed */
318 	if (need_tlb_flush)
319 		kvm_flush_remote_tlbs(kvm);
320 
321 	spin_unlock(&kvm->mmu_lock);
322 
323 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
324 
325 	srcu_read_unlock(&kvm->srcu, idx);
326 }
327 
328 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
329 					struct mm_struct *mm,
330 					unsigned long address,
331 					pte_t pte)
332 {
333 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
334 	int idx;
335 
336 	idx = srcu_read_lock(&kvm->srcu);
337 	spin_lock(&kvm->mmu_lock);
338 	kvm->mmu_notifier_seq++;
339 	kvm_set_spte_hva(kvm, address, pte);
340 	spin_unlock(&kvm->mmu_lock);
341 	srcu_read_unlock(&kvm->srcu, idx);
342 }
343 
344 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
345 						    struct mm_struct *mm,
346 						    unsigned long start,
347 						    unsigned long end)
348 {
349 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
350 	int need_tlb_flush = 0, idx;
351 
352 	idx = srcu_read_lock(&kvm->srcu);
353 	spin_lock(&kvm->mmu_lock);
354 	/*
355 	 * The count increase must become visible at unlock time as no
356 	 * spte can be established without taking the mmu_lock and
357 	 * count is also read inside the mmu_lock critical section.
358 	 */
359 	kvm->mmu_notifier_count++;
360 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
361 	need_tlb_flush |= kvm->tlbs_dirty;
362 	/* we've to flush the tlb before the pages can be freed */
363 	if (need_tlb_flush)
364 		kvm_flush_remote_tlbs(kvm);
365 
366 	spin_unlock(&kvm->mmu_lock);
367 	srcu_read_unlock(&kvm->srcu, idx);
368 }
369 
370 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
371 						  struct mm_struct *mm,
372 						  unsigned long start,
373 						  unsigned long end)
374 {
375 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
376 
377 	spin_lock(&kvm->mmu_lock);
378 	/*
379 	 * This sequence increase will notify the kvm page fault that
380 	 * the page that is going to be mapped in the spte could have
381 	 * been freed.
382 	 */
383 	kvm->mmu_notifier_seq++;
384 	smp_wmb();
385 	/*
386 	 * The above sequence increase must be visible before the
387 	 * below count decrease, which is ensured by the smp_wmb above
388 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
389 	 */
390 	kvm->mmu_notifier_count--;
391 	spin_unlock(&kvm->mmu_lock);
392 
393 	BUG_ON(kvm->mmu_notifier_count < 0);
394 }
395 
396 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
397 					      struct mm_struct *mm,
398 					      unsigned long start,
399 					      unsigned long end)
400 {
401 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
402 	int young, idx;
403 
404 	idx = srcu_read_lock(&kvm->srcu);
405 	spin_lock(&kvm->mmu_lock);
406 
407 	young = kvm_age_hva(kvm, start, end);
408 	if (young)
409 		kvm_flush_remote_tlbs(kvm);
410 
411 	spin_unlock(&kvm->mmu_lock);
412 	srcu_read_unlock(&kvm->srcu, idx);
413 
414 	return young;
415 }
416 
417 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
418 					struct mm_struct *mm,
419 					unsigned long start,
420 					unsigned long end)
421 {
422 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
423 	int young, idx;
424 
425 	idx = srcu_read_lock(&kvm->srcu);
426 	spin_lock(&kvm->mmu_lock);
427 	/*
428 	 * Even though we do not flush TLB, this will still adversely
429 	 * affect performance on pre-Haswell Intel EPT, where there is
430 	 * no EPT Access Bit to clear so that we have to tear down EPT
431 	 * tables instead. If we find this unacceptable, we can always
432 	 * add a parameter to kvm_age_hva so that it effectively doesn't
433 	 * do anything on clear_young.
434 	 *
435 	 * Also note that currently we never issue secondary TLB flushes
436 	 * from clear_young, leaving this job up to the regular system
437 	 * cadence. If we find this inaccurate, we might come up with a
438 	 * more sophisticated heuristic later.
439 	 */
440 	young = kvm_age_hva(kvm, start, end);
441 	spin_unlock(&kvm->mmu_lock);
442 	srcu_read_unlock(&kvm->srcu, idx);
443 
444 	return young;
445 }
446 
447 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
448 				       struct mm_struct *mm,
449 				       unsigned long address)
450 {
451 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
452 	int young, idx;
453 
454 	idx = srcu_read_lock(&kvm->srcu);
455 	spin_lock(&kvm->mmu_lock);
456 	young = kvm_test_age_hva(kvm, address);
457 	spin_unlock(&kvm->mmu_lock);
458 	srcu_read_unlock(&kvm->srcu, idx);
459 
460 	return young;
461 }
462 
463 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
464 				     struct mm_struct *mm)
465 {
466 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
467 	int idx;
468 
469 	idx = srcu_read_lock(&kvm->srcu);
470 	kvm_arch_flush_shadow_all(kvm);
471 	srcu_read_unlock(&kvm->srcu, idx);
472 }
473 
474 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
475 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
476 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
477 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
478 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
479 	.clear_young		= kvm_mmu_notifier_clear_young,
480 	.test_young		= kvm_mmu_notifier_test_young,
481 	.change_pte		= kvm_mmu_notifier_change_pte,
482 	.release		= kvm_mmu_notifier_release,
483 };
484 
485 static int kvm_init_mmu_notifier(struct kvm *kvm)
486 {
487 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
488 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
489 }
490 
491 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
492 
493 static int kvm_init_mmu_notifier(struct kvm *kvm)
494 {
495 	return 0;
496 }
497 
498 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
499 
500 static struct kvm_memslots *kvm_alloc_memslots(void)
501 {
502 	int i;
503 	struct kvm_memslots *slots;
504 
505 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
506 	if (!slots)
507 		return NULL;
508 
509 	/*
510 	 * Init kvm generation close to the maximum to easily test the
511 	 * code of handling generation number wrap-around.
512 	 */
513 	slots->generation = -150;
514 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
515 		slots->id_to_index[i] = slots->memslots[i].id = i;
516 
517 	return slots;
518 }
519 
520 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
521 {
522 	if (!memslot->dirty_bitmap)
523 		return;
524 
525 	kvfree(memslot->dirty_bitmap);
526 	memslot->dirty_bitmap = NULL;
527 }
528 
529 /*
530  * Free any memory in @free but not in @dont.
531  */
532 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
533 			      struct kvm_memory_slot *dont)
534 {
535 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
536 		kvm_destroy_dirty_bitmap(free);
537 
538 	kvm_arch_free_memslot(kvm, free, dont);
539 
540 	free->npages = 0;
541 }
542 
543 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
544 {
545 	struct kvm_memory_slot *memslot;
546 
547 	if (!slots)
548 		return;
549 
550 	kvm_for_each_memslot(memslot, slots)
551 		kvm_free_memslot(kvm, memslot, NULL);
552 
553 	kvfree(slots);
554 }
555 
556 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
557 {
558 	int i;
559 
560 	if (!kvm->debugfs_dentry)
561 		return;
562 
563 	debugfs_remove_recursive(kvm->debugfs_dentry);
564 
565 	if (kvm->debugfs_stat_data) {
566 		for (i = 0; i < kvm_debugfs_num_entries; i++)
567 			kfree(kvm->debugfs_stat_data[i]);
568 		kfree(kvm->debugfs_stat_data);
569 	}
570 }
571 
572 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
573 {
574 	char dir_name[ITOA_MAX_LEN * 2];
575 	struct kvm_stat_data *stat_data;
576 	struct kvm_stats_debugfs_item *p;
577 
578 	if (!debugfs_initialized())
579 		return 0;
580 
581 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
582 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
583 						 kvm_debugfs_dir);
584 	if (!kvm->debugfs_dentry)
585 		return -ENOMEM;
586 
587 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
588 					 sizeof(*kvm->debugfs_stat_data),
589 					 GFP_KERNEL);
590 	if (!kvm->debugfs_stat_data)
591 		return -ENOMEM;
592 
593 	for (p = debugfs_entries; p->name; p++) {
594 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
595 		if (!stat_data)
596 			return -ENOMEM;
597 
598 		stat_data->kvm = kvm;
599 		stat_data->offset = p->offset;
600 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
601 		if (!debugfs_create_file(p->name, 0644,
602 					 kvm->debugfs_dentry,
603 					 stat_data,
604 					 stat_fops_per_vm[p->kind]))
605 			return -ENOMEM;
606 	}
607 	return 0;
608 }
609 
610 static struct kvm *kvm_create_vm(unsigned long type)
611 {
612 	int r, i;
613 	struct kvm *kvm = kvm_arch_alloc_vm();
614 
615 	if (!kvm)
616 		return ERR_PTR(-ENOMEM);
617 
618 	spin_lock_init(&kvm->mmu_lock);
619 	atomic_inc(&current->mm->mm_count);
620 	kvm->mm = current->mm;
621 	kvm_eventfd_init(kvm);
622 	mutex_init(&kvm->lock);
623 	mutex_init(&kvm->irq_lock);
624 	mutex_init(&kvm->slots_lock);
625 	atomic_set(&kvm->users_count, 1);
626 	INIT_LIST_HEAD(&kvm->devices);
627 
628 	r = kvm_arch_init_vm(kvm, type);
629 	if (r)
630 		goto out_err_no_disable;
631 
632 	r = hardware_enable_all();
633 	if (r)
634 		goto out_err_no_disable;
635 
636 #ifdef CONFIG_HAVE_KVM_IRQFD
637 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
638 #endif
639 
640 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
641 
642 	r = -ENOMEM;
643 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
644 		kvm->memslots[i] = kvm_alloc_memslots();
645 		if (!kvm->memslots[i])
646 			goto out_err_no_srcu;
647 	}
648 
649 	if (init_srcu_struct(&kvm->srcu))
650 		goto out_err_no_srcu;
651 	if (init_srcu_struct(&kvm->irq_srcu))
652 		goto out_err_no_irq_srcu;
653 	for (i = 0; i < KVM_NR_BUSES; i++) {
654 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
655 					GFP_KERNEL);
656 		if (!kvm->buses[i])
657 			goto out_err;
658 	}
659 
660 	r = kvm_init_mmu_notifier(kvm);
661 	if (r)
662 		goto out_err;
663 
664 	spin_lock(&kvm_lock);
665 	list_add(&kvm->vm_list, &vm_list);
666 	spin_unlock(&kvm_lock);
667 
668 	preempt_notifier_inc();
669 
670 	return kvm;
671 
672 out_err:
673 	cleanup_srcu_struct(&kvm->irq_srcu);
674 out_err_no_irq_srcu:
675 	cleanup_srcu_struct(&kvm->srcu);
676 out_err_no_srcu:
677 	hardware_disable_all();
678 out_err_no_disable:
679 	for (i = 0; i < KVM_NR_BUSES; i++)
680 		kfree(kvm->buses[i]);
681 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
682 		kvm_free_memslots(kvm, kvm->memslots[i]);
683 	kvm_arch_free_vm(kvm);
684 	mmdrop(current->mm);
685 	return ERR_PTR(r);
686 }
687 
688 /*
689  * Avoid using vmalloc for a small buffer.
690  * Should not be used when the size is statically known.
691  */
692 void *kvm_kvzalloc(unsigned long size)
693 {
694 	if (size > PAGE_SIZE)
695 		return vzalloc(size);
696 	else
697 		return kzalloc(size, GFP_KERNEL);
698 }
699 
700 static void kvm_destroy_devices(struct kvm *kvm)
701 {
702 	struct kvm_device *dev, *tmp;
703 
704 	/*
705 	 * We do not need to take the kvm->lock here, because nobody else
706 	 * has a reference to the struct kvm at this point and therefore
707 	 * cannot access the devices list anyhow.
708 	 */
709 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
710 		list_del(&dev->vm_node);
711 		dev->ops->destroy(dev);
712 	}
713 }
714 
715 static void kvm_destroy_vm(struct kvm *kvm)
716 {
717 	int i;
718 	struct mm_struct *mm = kvm->mm;
719 
720 	kvm_destroy_vm_debugfs(kvm);
721 	kvm_arch_sync_events(kvm);
722 	spin_lock(&kvm_lock);
723 	list_del(&kvm->vm_list);
724 	spin_unlock(&kvm_lock);
725 	kvm_free_irq_routing(kvm);
726 	for (i = 0; i < KVM_NR_BUSES; i++)
727 		kvm_io_bus_destroy(kvm->buses[i]);
728 	kvm_coalesced_mmio_free(kvm);
729 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
730 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
731 #else
732 	kvm_arch_flush_shadow_all(kvm);
733 #endif
734 	kvm_arch_destroy_vm(kvm);
735 	kvm_destroy_devices(kvm);
736 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
737 		kvm_free_memslots(kvm, kvm->memslots[i]);
738 	cleanup_srcu_struct(&kvm->irq_srcu);
739 	cleanup_srcu_struct(&kvm->srcu);
740 	kvm_arch_free_vm(kvm);
741 	preempt_notifier_dec();
742 	hardware_disable_all();
743 	mmdrop(mm);
744 }
745 
746 void kvm_get_kvm(struct kvm *kvm)
747 {
748 	atomic_inc(&kvm->users_count);
749 }
750 EXPORT_SYMBOL_GPL(kvm_get_kvm);
751 
752 void kvm_put_kvm(struct kvm *kvm)
753 {
754 	if (atomic_dec_and_test(&kvm->users_count))
755 		kvm_destroy_vm(kvm);
756 }
757 EXPORT_SYMBOL_GPL(kvm_put_kvm);
758 
759 
760 static int kvm_vm_release(struct inode *inode, struct file *filp)
761 {
762 	struct kvm *kvm = filp->private_data;
763 
764 	kvm_irqfd_release(kvm);
765 
766 	kvm_put_kvm(kvm);
767 	return 0;
768 }
769 
770 /*
771  * Allocation size is twice as large as the actual dirty bitmap size.
772  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
773  */
774 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
775 {
776 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
777 
778 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
779 	if (!memslot->dirty_bitmap)
780 		return -ENOMEM;
781 
782 	return 0;
783 }
784 
785 /*
786  * Insert memslot and re-sort memslots based on their GFN,
787  * so binary search could be used to lookup GFN.
788  * Sorting algorithm takes advantage of having initially
789  * sorted array and known changed memslot position.
790  */
791 static void update_memslots(struct kvm_memslots *slots,
792 			    struct kvm_memory_slot *new)
793 {
794 	int id = new->id;
795 	int i = slots->id_to_index[id];
796 	struct kvm_memory_slot *mslots = slots->memslots;
797 
798 	WARN_ON(mslots[i].id != id);
799 	if (!new->npages) {
800 		WARN_ON(!mslots[i].npages);
801 		if (mslots[i].npages)
802 			slots->used_slots--;
803 	} else {
804 		if (!mslots[i].npages)
805 			slots->used_slots++;
806 	}
807 
808 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
809 	       new->base_gfn <= mslots[i + 1].base_gfn) {
810 		if (!mslots[i + 1].npages)
811 			break;
812 		mslots[i] = mslots[i + 1];
813 		slots->id_to_index[mslots[i].id] = i;
814 		i++;
815 	}
816 
817 	/*
818 	 * The ">=" is needed when creating a slot with base_gfn == 0,
819 	 * so that it moves before all those with base_gfn == npages == 0.
820 	 *
821 	 * On the other hand, if new->npages is zero, the above loop has
822 	 * already left i pointing to the beginning of the empty part of
823 	 * mslots, and the ">=" would move the hole backwards in this
824 	 * case---which is wrong.  So skip the loop when deleting a slot.
825 	 */
826 	if (new->npages) {
827 		while (i > 0 &&
828 		       new->base_gfn >= mslots[i - 1].base_gfn) {
829 			mslots[i] = mslots[i - 1];
830 			slots->id_to_index[mslots[i].id] = i;
831 			i--;
832 		}
833 	} else
834 		WARN_ON_ONCE(i != slots->used_slots);
835 
836 	mslots[i] = *new;
837 	slots->id_to_index[mslots[i].id] = i;
838 }
839 
840 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
841 {
842 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
843 
844 #ifdef __KVM_HAVE_READONLY_MEM
845 	valid_flags |= KVM_MEM_READONLY;
846 #endif
847 
848 	if (mem->flags & ~valid_flags)
849 		return -EINVAL;
850 
851 	return 0;
852 }
853 
854 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
855 		int as_id, struct kvm_memslots *slots)
856 {
857 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
858 
859 	/*
860 	 * Set the low bit in the generation, which disables SPTE caching
861 	 * until the end of synchronize_srcu_expedited.
862 	 */
863 	WARN_ON(old_memslots->generation & 1);
864 	slots->generation = old_memslots->generation + 1;
865 
866 	rcu_assign_pointer(kvm->memslots[as_id], slots);
867 	synchronize_srcu_expedited(&kvm->srcu);
868 
869 	/*
870 	 * Increment the new memslot generation a second time. This prevents
871 	 * vm exits that race with memslot updates from caching a memslot
872 	 * generation that will (potentially) be valid forever.
873 	 */
874 	slots->generation++;
875 
876 	kvm_arch_memslots_updated(kvm, slots);
877 
878 	return old_memslots;
879 }
880 
881 /*
882  * Allocate some memory and give it an address in the guest physical address
883  * space.
884  *
885  * Discontiguous memory is allowed, mostly for framebuffers.
886  *
887  * Must be called holding kvm->slots_lock for write.
888  */
889 int __kvm_set_memory_region(struct kvm *kvm,
890 			    const struct kvm_userspace_memory_region *mem)
891 {
892 	int r;
893 	gfn_t base_gfn;
894 	unsigned long npages;
895 	struct kvm_memory_slot *slot;
896 	struct kvm_memory_slot old, new;
897 	struct kvm_memslots *slots = NULL, *old_memslots;
898 	int as_id, id;
899 	enum kvm_mr_change change;
900 
901 	r = check_memory_region_flags(mem);
902 	if (r)
903 		goto out;
904 
905 	r = -EINVAL;
906 	as_id = mem->slot >> 16;
907 	id = (u16)mem->slot;
908 
909 	/* General sanity checks */
910 	if (mem->memory_size & (PAGE_SIZE - 1))
911 		goto out;
912 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
913 		goto out;
914 	/* We can read the guest memory with __xxx_user() later on. */
915 	if ((id < KVM_USER_MEM_SLOTS) &&
916 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
917 	     !access_ok(VERIFY_WRITE,
918 			(void __user *)(unsigned long)mem->userspace_addr,
919 			mem->memory_size)))
920 		goto out;
921 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
922 		goto out;
923 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
924 		goto out;
925 
926 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
927 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
928 	npages = mem->memory_size >> PAGE_SHIFT;
929 
930 	if (npages > KVM_MEM_MAX_NR_PAGES)
931 		goto out;
932 
933 	new = old = *slot;
934 
935 	new.id = id;
936 	new.base_gfn = base_gfn;
937 	new.npages = npages;
938 	new.flags = mem->flags;
939 
940 	if (npages) {
941 		if (!old.npages)
942 			change = KVM_MR_CREATE;
943 		else { /* Modify an existing slot. */
944 			if ((mem->userspace_addr != old.userspace_addr) ||
945 			    (npages != old.npages) ||
946 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
947 				goto out;
948 
949 			if (base_gfn != old.base_gfn)
950 				change = KVM_MR_MOVE;
951 			else if (new.flags != old.flags)
952 				change = KVM_MR_FLAGS_ONLY;
953 			else { /* Nothing to change. */
954 				r = 0;
955 				goto out;
956 			}
957 		}
958 	} else {
959 		if (!old.npages)
960 			goto out;
961 
962 		change = KVM_MR_DELETE;
963 		new.base_gfn = 0;
964 		new.flags = 0;
965 	}
966 
967 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
968 		/* Check for overlaps */
969 		r = -EEXIST;
970 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
971 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
972 			    (slot->id == id))
973 				continue;
974 			if (!((base_gfn + npages <= slot->base_gfn) ||
975 			      (base_gfn >= slot->base_gfn + slot->npages)))
976 				goto out;
977 		}
978 	}
979 
980 	/* Free page dirty bitmap if unneeded */
981 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
982 		new.dirty_bitmap = NULL;
983 
984 	r = -ENOMEM;
985 	if (change == KVM_MR_CREATE) {
986 		new.userspace_addr = mem->userspace_addr;
987 
988 		if (kvm_arch_create_memslot(kvm, &new, npages))
989 			goto out_free;
990 	}
991 
992 	/* Allocate page dirty bitmap if needed */
993 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
994 		if (kvm_create_dirty_bitmap(&new) < 0)
995 			goto out_free;
996 	}
997 
998 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
999 	if (!slots)
1000 		goto out_free;
1001 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1002 
1003 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1004 		slot = id_to_memslot(slots, id);
1005 		slot->flags |= KVM_MEMSLOT_INVALID;
1006 
1007 		old_memslots = install_new_memslots(kvm, as_id, slots);
1008 
1009 		/* slot was deleted or moved, clear iommu mapping */
1010 		kvm_iommu_unmap_pages(kvm, &old);
1011 		/* From this point no new shadow pages pointing to a deleted,
1012 		 * or moved, memslot will be created.
1013 		 *
1014 		 * validation of sp->gfn happens in:
1015 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1016 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1017 		 */
1018 		kvm_arch_flush_shadow_memslot(kvm, slot);
1019 
1020 		/*
1021 		 * We can re-use the old_memslots from above, the only difference
1022 		 * from the currently installed memslots is the invalid flag.  This
1023 		 * will get overwritten by update_memslots anyway.
1024 		 */
1025 		slots = old_memslots;
1026 	}
1027 
1028 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1029 	if (r)
1030 		goto out_slots;
1031 
1032 	/* actual memory is freed via old in kvm_free_memslot below */
1033 	if (change == KVM_MR_DELETE) {
1034 		new.dirty_bitmap = NULL;
1035 		memset(&new.arch, 0, sizeof(new.arch));
1036 	}
1037 
1038 	update_memslots(slots, &new);
1039 	old_memslots = install_new_memslots(kvm, as_id, slots);
1040 
1041 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1042 
1043 	kvm_free_memslot(kvm, &old, &new);
1044 	kvfree(old_memslots);
1045 
1046 	/*
1047 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1048 	 * un-mapped and re-mapped if their base changes.  Since base change
1049 	 * unmapping is handled above with slot deletion, mapping alone is
1050 	 * needed here.  Anything else the iommu might care about for existing
1051 	 * slots (size changes, userspace addr changes and read-only flag
1052 	 * changes) is disallowed above, so any other attribute changes getting
1053 	 * here can be skipped.
1054 	 */
1055 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1056 		r = kvm_iommu_map_pages(kvm, &new);
1057 		return r;
1058 	}
1059 
1060 	return 0;
1061 
1062 out_slots:
1063 	kvfree(slots);
1064 out_free:
1065 	kvm_free_memslot(kvm, &new, &old);
1066 out:
1067 	return r;
1068 }
1069 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1070 
1071 int kvm_set_memory_region(struct kvm *kvm,
1072 			  const struct kvm_userspace_memory_region *mem)
1073 {
1074 	int r;
1075 
1076 	mutex_lock(&kvm->slots_lock);
1077 	r = __kvm_set_memory_region(kvm, mem);
1078 	mutex_unlock(&kvm->slots_lock);
1079 	return r;
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1082 
1083 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1084 					  struct kvm_userspace_memory_region *mem)
1085 {
1086 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1087 		return -EINVAL;
1088 
1089 	return kvm_set_memory_region(kvm, mem);
1090 }
1091 
1092 int kvm_get_dirty_log(struct kvm *kvm,
1093 			struct kvm_dirty_log *log, int *is_dirty)
1094 {
1095 	struct kvm_memslots *slots;
1096 	struct kvm_memory_slot *memslot;
1097 	int r, i, as_id, id;
1098 	unsigned long n;
1099 	unsigned long any = 0;
1100 
1101 	r = -EINVAL;
1102 	as_id = log->slot >> 16;
1103 	id = (u16)log->slot;
1104 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1105 		goto out;
1106 
1107 	slots = __kvm_memslots(kvm, as_id);
1108 	memslot = id_to_memslot(slots, id);
1109 	r = -ENOENT;
1110 	if (!memslot->dirty_bitmap)
1111 		goto out;
1112 
1113 	n = kvm_dirty_bitmap_bytes(memslot);
1114 
1115 	for (i = 0; !any && i < n/sizeof(long); ++i)
1116 		any = memslot->dirty_bitmap[i];
1117 
1118 	r = -EFAULT;
1119 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1120 		goto out;
1121 
1122 	if (any)
1123 		*is_dirty = 1;
1124 
1125 	r = 0;
1126 out:
1127 	return r;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1130 
1131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1132 /**
1133  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1134  *	are dirty write protect them for next write.
1135  * @kvm:	pointer to kvm instance
1136  * @log:	slot id and address to which we copy the log
1137  * @is_dirty:	flag set if any page is dirty
1138  *
1139  * We need to keep it in mind that VCPU threads can write to the bitmap
1140  * concurrently. So, to avoid losing track of dirty pages we keep the
1141  * following order:
1142  *
1143  *    1. Take a snapshot of the bit and clear it if needed.
1144  *    2. Write protect the corresponding page.
1145  *    3. Copy the snapshot to the userspace.
1146  *    4. Upon return caller flushes TLB's if needed.
1147  *
1148  * Between 2 and 4, the guest may write to the page using the remaining TLB
1149  * entry.  This is not a problem because the page is reported dirty using
1150  * the snapshot taken before and step 4 ensures that writes done after
1151  * exiting to userspace will be logged for the next call.
1152  *
1153  */
1154 int kvm_get_dirty_log_protect(struct kvm *kvm,
1155 			struct kvm_dirty_log *log, bool *is_dirty)
1156 {
1157 	struct kvm_memslots *slots;
1158 	struct kvm_memory_slot *memslot;
1159 	int r, i, as_id, id;
1160 	unsigned long n;
1161 	unsigned long *dirty_bitmap;
1162 	unsigned long *dirty_bitmap_buffer;
1163 
1164 	r = -EINVAL;
1165 	as_id = log->slot >> 16;
1166 	id = (u16)log->slot;
1167 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1168 		goto out;
1169 
1170 	slots = __kvm_memslots(kvm, as_id);
1171 	memslot = id_to_memslot(slots, id);
1172 
1173 	dirty_bitmap = memslot->dirty_bitmap;
1174 	r = -ENOENT;
1175 	if (!dirty_bitmap)
1176 		goto out;
1177 
1178 	n = kvm_dirty_bitmap_bytes(memslot);
1179 
1180 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1181 	memset(dirty_bitmap_buffer, 0, n);
1182 
1183 	spin_lock(&kvm->mmu_lock);
1184 	*is_dirty = false;
1185 	for (i = 0; i < n / sizeof(long); i++) {
1186 		unsigned long mask;
1187 		gfn_t offset;
1188 
1189 		if (!dirty_bitmap[i])
1190 			continue;
1191 
1192 		*is_dirty = true;
1193 
1194 		mask = xchg(&dirty_bitmap[i], 0);
1195 		dirty_bitmap_buffer[i] = mask;
1196 
1197 		if (mask) {
1198 			offset = i * BITS_PER_LONG;
1199 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1200 								offset, mask);
1201 		}
1202 	}
1203 
1204 	spin_unlock(&kvm->mmu_lock);
1205 
1206 	r = -EFAULT;
1207 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1208 		goto out;
1209 
1210 	r = 0;
1211 out:
1212 	return r;
1213 }
1214 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1215 #endif
1216 
1217 bool kvm_largepages_enabled(void)
1218 {
1219 	return largepages_enabled;
1220 }
1221 
1222 void kvm_disable_largepages(void)
1223 {
1224 	largepages_enabled = false;
1225 }
1226 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1227 
1228 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1229 {
1230 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1231 }
1232 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1233 
1234 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1235 {
1236 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1237 }
1238 
1239 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1240 {
1241 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1242 
1243 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1244 	      memslot->flags & KVM_MEMSLOT_INVALID)
1245 		return false;
1246 
1247 	return true;
1248 }
1249 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1250 
1251 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1252 {
1253 	struct vm_area_struct *vma;
1254 	unsigned long addr, size;
1255 
1256 	size = PAGE_SIZE;
1257 
1258 	addr = gfn_to_hva(kvm, gfn);
1259 	if (kvm_is_error_hva(addr))
1260 		return PAGE_SIZE;
1261 
1262 	down_read(&current->mm->mmap_sem);
1263 	vma = find_vma(current->mm, addr);
1264 	if (!vma)
1265 		goto out;
1266 
1267 	size = vma_kernel_pagesize(vma);
1268 
1269 out:
1270 	up_read(&current->mm->mmap_sem);
1271 
1272 	return size;
1273 }
1274 
1275 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1276 {
1277 	return slot->flags & KVM_MEM_READONLY;
1278 }
1279 
1280 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1281 				       gfn_t *nr_pages, bool write)
1282 {
1283 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1284 		return KVM_HVA_ERR_BAD;
1285 
1286 	if (memslot_is_readonly(slot) && write)
1287 		return KVM_HVA_ERR_RO_BAD;
1288 
1289 	if (nr_pages)
1290 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1291 
1292 	return __gfn_to_hva_memslot(slot, gfn);
1293 }
1294 
1295 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1296 				     gfn_t *nr_pages)
1297 {
1298 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1299 }
1300 
1301 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1302 					gfn_t gfn)
1303 {
1304 	return gfn_to_hva_many(slot, gfn, NULL);
1305 }
1306 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1307 
1308 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1309 {
1310 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1311 }
1312 EXPORT_SYMBOL_GPL(gfn_to_hva);
1313 
1314 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1315 {
1316 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1317 }
1318 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1319 
1320 /*
1321  * If writable is set to false, the hva returned by this function is only
1322  * allowed to be read.
1323  */
1324 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1325 				      gfn_t gfn, bool *writable)
1326 {
1327 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1328 
1329 	if (!kvm_is_error_hva(hva) && writable)
1330 		*writable = !memslot_is_readonly(slot);
1331 
1332 	return hva;
1333 }
1334 
1335 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1336 {
1337 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1338 
1339 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1340 }
1341 
1342 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1343 {
1344 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1345 
1346 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1347 }
1348 
1349 static int get_user_page_nowait(unsigned long start, int write,
1350 		struct page **page)
1351 {
1352 	int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1353 
1354 	if (write)
1355 		flags |= FOLL_WRITE;
1356 
1357 	return get_user_pages(start, 1, flags, page, NULL);
1358 }
1359 
1360 static inline int check_user_page_hwpoison(unsigned long addr)
1361 {
1362 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1363 
1364 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1365 	return rc == -EHWPOISON;
1366 }
1367 
1368 /*
1369  * The atomic path to get the writable pfn which will be stored in @pfn,
1370  * true indicates success, otherwise false is returned.
1371  */
1372 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1373 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1374 {
1375 	struct page *page[1];
1376 	int npages;
1377 
1378 	if (!(async || atomic))
1379 		return false;
1380 
1381 	/*
1382 	 * Fast pin a writable pfn only if it is a write fault request
1383 	 * or the caller allows to map a writable pfn for a read fault
1384 	 * request.
1385 	 */
1386 	if (!(write_fault || writable))
1387 		return false;
1388 
1389 	npages = __get_user_pages_fast(addr, 1, 1, page);
1390 	if (npages == 1) {
1391 		*pfn = page_to_pfn(page[0]);
1392 
1393 		if (writable)
1394 			*writable = true;
1395 		return true;
1396 	}
1397 
1398 	return false;
1399 }
1400 
1401 /*
1402  * The slow path to get the pfn of the specified host virtual address,
1403  * 1 indicates success, -errno is returned if error is detected.
1404  */
1405 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1406 			   bool *writable, kvm_pfn_t *pfn)
1407 {
1408 	struct page *page[1];
1409 	int npages = 0;
1410 
1411 	might_sleep();
1412 
1413 	if (writable)
1414 		*writable = write_fault;
1415 
1416 	if (async) {
1417 		down_read(&current->mm->mmap_sem);
1418 		npages = get_user_page_nowait(addr, write_fault, page);
1419 		up_read(&current->mm->mmap_sem);
1420 	} else {
1421 		unsigned int flags = FOLL_TOUCH | FOLL_HWPOISON;
1422 
1423 		if (write_fault)
1424 			flags |= FOLL_WRITE;
1425 
1426 		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1427 						   page, flags);
1428 	}
1429 	if (npages != 1)
1430 		return npages;
1431 
1432 	/* map read fault as writable if possible */
1433 	if (unlikely(!write_fault) && writable) {
1434 		struct page *wpage[1];
1435 
1436 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1437 		if (npages == 1) {
1438 			*writable = true;
1439 			put_page(page[0]);
1440 			page[0] = wpage[0];
1441 		}
1442 
1443 		npages = 1;
1444 	}
1445 	*pfn = page_to_pfn(page[0]);
1446 	return npages;
1447 }
1448 
1449 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1450 {
1451 	if (unlikely(!(vma->vm_flags & VM_READ)))
1452 		return false;
1453 
1454 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1455 		return false;
1456 
1457 	return true;
1458 }
1459 
1460 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1461 			       unsigned long addr, bool *async,
1462 			       bool write_fault, kvm_pfn_t *p_pfn)
1463 {
1464 	unsigned long pfn;
1465 	int r;
1466 
1467 	r = follow_pfn(vma, addr, &pfn);
1468 	if (r) {
1469 		/*
1470 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1471 		 * not call the fault handler, so do it here.
1472 		 */
1473 		bool unlocked = false;
1474 		r = fixup_user_fault(current, current->mm, addr,
1475 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1476 				     &unlocked);
1477 		if (unlocked)
1478 			return -EAGAIN;
1479 		if (r)
1480 			return r;
1481 
1482 		r = follow_pfn(vma, addr, &pfn);
1483 		if (r)
1484 			return r;
1485 
1486 	}
1487 
1488 
1489 	/*
1490 	 * Get a reference here because callers of *hva_to_pfn* and
1491 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1492 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1493 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1494 	 * simply do nothing for reserved pfns.
1495 	 *
1496 	 * Whoever called remap_pfn_range is also going to call e.g.
1497 	 * unmap_mapping_range before the underlying pages are freed,
1498 	 * causing a call to our MMU notifier.
1499 	 */
1500 	kvm_get_pfn(pfn);
1501 
1502 	*p_pfn = pfn;
1503 	return 0;
1504 }
1505 
1506 /*
1507  * Pin guest page in memory and return its pfn.
1508  * @addr: host virtual address which maps memory to the guest
1509  * @atomic: whether this function can sleep
1510  * @async: whether this function need to wait IO complete if the
1511  *         host page is not in the memory
1512  * @write_fault: whether we should get a writable host page
1513  * @writable: whether it allows to map a writable host page for !@write_fault
1514  *
1515  * The function will map a writable host page for these two cases:
1516  * 1): @write_fault = true
1517  * 2): @write_fault = false && @writable, @writable will tell the caller
1518  *     whether the mapping is writable.
1519  */
1520 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1521 			bool write_fault, bool *writable)
1522 {
1523 	struct vm_area_struct *vma;
1524 	kvm_pfn_t pfn = 0;
1525 	int npages, r;
1526 
1527 	/* we can do it either atomically or asynchronously, not both */
1528 	BUG_ON(atomic && async);
1529 
1530 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1531 		return pfn;
1532 
1533 	if (atomic)
1534 		return KVM_PFN_ERR_FAULT;
1535 
1536 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1537 	if (npages == 1)
1538 		return pfn;
1539 
1540 	down_read(&current->mm->mmap_sem);
1541 	if (npages == -EHWPOISON ||
1542 	      (!async && check_user_page_hwpoison(addr))) {
1543 		pfn = KVM_PFN_ERR_HWPOISON;
1544 		goto exit;
1545 	}
1546 
1547 retry:
1548 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1549 
1550 	if (vma == NULL)
1551 		pfn = KVM_PFN_ERR_FAULT;
1552 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1553 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1554 		if (r == -EAGAIN)
1555 			goto retry;
1556 		if (r < 0)
1557 			pfn = KVM_PFN_ERR_FAULT;
1558 	} else {
1559 		if (async && vma_is_valid(vma, write_fault))
1560 			*async = true;
1561 		pfn = KVM_PFN_ERR_FAULT;
1562 	}
1563 exit:
1564 	up_read(&current->mm->mmap_sem);
1565 	return pfn;
1566 }
1567 
1568 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1569 			       bool atomic, bool *async, bool write_fault,
1570 			       bool *writable)
1571 {
1572 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1573 
1574 	if (addr == KVM_HVA_ERR_RO_BAD) {
1575 		if (writable)
1576 			*writable = false;
1577 		return KVM_PFN_ERR_RO_FAULT;
1578 	}
1579 
1580 	if (kvm_is_error_hva(addr)) {
1581 		if (writable)
1582 			*writable = false;
1583 		return KVM_PFN_NOSLOT;
1584 	}
1585 
1586 	/* Do not map writable pfn in the readonly memslot. */
1587 	if (writable && memslot_is_readonly(slot)) {
1588 		*writable = false;
1589 		writable = NULL;
1590 	}
1591 
1592 	return hva_to_pfn(addr, atomic, async, write_fault,
1593 			  writable);
1594 }
1595 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1596 
1597 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1598 		      bool *writable)
1599 {
1600 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1601 				    write_fault, writable);
1602 }
1603 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1604 
1605 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1606 {
1607 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1608 }
1609 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1610 
1611 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1612 {
1613 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1614 }
1615 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1616 
1617 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1618 {
1619 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1620 }
1621 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1622 
1623 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1624 {
1625 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1626 }
1627 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1628 
1629 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1630 {
1631 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1632 }
1633 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1634 
1635 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1636 {
1637 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1638 }
1639 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1640 
1641 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1642 			    struct page **pages, int nr_pages)
1643 {
1644 	unsigned long addr;
1645 	gfn_t entry;
1646 
1647 	addr = gfn_to_hva_many(slot, gfn, &entry);
1648 	if (kvm_is_error_hva(addr))
1649 		return -1;
1650 
1651 	if (entry < nr_pages)
1652 		return 0;
1653 
1654 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1655 }
1656 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1657 
1658 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1659 {
1660 	if (is_error_noslot_pfn(pfn))
1661 		return KVM_ERR_PTR_BAD_PAGE;
1662 
1663 	if (kvm_is_reserved_pfn(pfn)) {
1664 		WARN_ON(1);
1665 		return KVM_ERR_PTR_BAD_PAGE;
1666 	}
1667 
1668 	return pfn_to_page(pfn);
1669 }
1670 
1671 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1672 {
1673 	kvm_pfn_t pfn;
1674 
1675 	pfn = gfn_to_pfn(kvm, gfn);
1676 
1677 	return kvm_pfn_to_page(pfn);
1678 }
1679 EXPORT_SYMBOL_GPL(gfn_to_page);
1680 
1681 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1682 {
1683 	kvm_pfn_t pfn;
1684 
1685 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1686 
1687 	return kvm_pfn_to_page(pfn);
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1690 
1691 void kvm_release_page_clean(struct page *page)
1692 {
1693 	WARN_ON(is_error_page(page));
1694 
1695 	kvm_release_pfn_clean(page_to_pfn(page));
1696 }
1697 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1698 
1699 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1700 {
1701 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1702 		put_page(pfn_to_page(pfn));
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1705 
1706 void kvm_release_page_dirty(struct page *page)
1707 {
1708 	WARN_ON(is_error_page(page));
1709 
1710 	kvm_release_pfn_dirty(page_to_pfn(page));
1711 }
1712 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1713 
1714 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1715 {
1716 	kvm_set_pfn_dirty(pfn);
1717 	kvm_release_pfn_clean(pfn);
1718 }
1719 
1720 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1721 {
1722 	if (!kvm_is_reserved_pfn(pfn)) {
1723 		struct page *page = pfn_to_page(pfn);
1724 
1725 		if (!PageReserved(page))
1726 			SetPageDirty(page);
1727 	}
1728 }
1729 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1730 
1731 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1732 {
1733 	if (!kvm_is_reserved_pfn(pfn))
1734 		mark_page_accessed(pfn_to_page(pfn));
1735 }
1736 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1737 
1738 void kvm_get_pfn(kvm_pfn_t pfn)
1739 {
1740 	if (!kvm_is_reserved_pfn(pfn))
1741 		get_page(pfn_to_page(pfn));
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1744 
1745 static int next_segment(unsigned long len, int offset)
1746 {
1747 	if (len > PAGE_SIZE - offset)
1748 		return PAGE_SIZE - offset;
1749 	else
1750 		return len;
1751 }
1752 
1753 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1754 				 void *data, int offset, int len)
1755 {
1756 	int r;
1757 	unsigned long addr;
1758 
1759 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1760 	if (kvm_is_error_hva(addr))
1761 		return -EFAULT;
1762 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1763 	if (r)
1764 		return -EFAULT;
1765 	return 0;
1766 }
1767 
1768 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1769 			int len)
1770 {
1771 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1772 
1773 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1774 }
1775 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1776 
1777 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1778 			     int offset, int len)
1779 {
1780 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1781 
1782 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1783 }
1784 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1785 
1786 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1787 {
1788 	gfn_t gfn = gpa >> PAGE_SHIFT;
1789 	int seg;
1790 	int offset = offset_in_page(gpa);
1791 	int ret;
1792 
1793 	while ((seg = next_segment(len, offset)) != 0) {
1794 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1795 		if (ret < 0)
1796 			return ret;
1797 		offset = 0;
1798 		len -= seg;
1799 		data += seg;
1800 		++gfn;
1801 	}
1802 	return 0;
1803 }
1804 EXPORT_SYMBOL_GPL(kvm_read_guest);
1805 
1806 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1807 {
1808 	gfn_t gfn = gpa >> PAGE_SHIFT;
1809 	int seg;
1810 	int offset = offset_in_page(gpa);
1811 	int ret;
1812 
1813 	while ((seg = next_segment(len, offset)) != 0) {
1814 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1815 		if (ret < 0)
1816 			return ret;
1817 		offset = 0;
1818 		len -= seg;
1819 		data += seg;
1820 		++gfn;
1821 	}
1822 	return 0;
1823 }
1824 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1825 
1826 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1827 			           void *data, int offset, unsigned long len)
1828 {
1829 	int r;
1830 	unsigned long addr;
1831 
1832 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1833 	if (kvm_is_error_hva(addr))
1834 		return -EFAULT;
1835 	pagefault_disable();
1836 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1837 	pagefault_enable();
1838 	if (r)
1839 		return -EFAULT;
1840 	return 0;
1841 }
1842 
1843 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1844 			  unsigned long len)
1845 {
1846 	gfn_t gfn = gpa >> PAGE_SHIFT;
1847 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1848 	int offset = offset_in_page(gpa);
1849 
1850 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1851 }
1852 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1853 
1854 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1855 			       void *data, unsigned long len)
1856 {
1857 	gfn_t gfn = gpa >> PAGE_SHIFT;
1858 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1859 	int offset = offset_in_page(gpa);
1860 
1861 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1862 }
1863 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1864 
1865 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1866 			          const void *data, int offset, int len)
1867 {
1868 	int r;
1869 	unsigned long addr;
1870 
1871 	addr = gfn_to_hva_memslot(memslot, gfn);
1872 	if (kvm_is_error_hva(addr))
1873 		return -EFAULT;
1874 	r = __copy_to_user((void __user *)addr + offset, data, len);
1875 	if (r)
1876 		return -EFAULT;
1877 	mark_page_dirty_in_slot(memslot, gfn);
1878 	return 0;
1879 }
1880 
1881 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1882 			 const void *data, int offset, int len)
1883 {
1884 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1885 
1886 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1887 }
1888 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1889 
1890 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1891 			      const void *data, int offset, int len)
1892 {
1893 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1894 
1895 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1898 
1899 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1900 		    unsigned long len)
1901 {
1902 	gfn_t gfn = gpa >> PAGE_SHIFT;
1903 	int seg;
1904 	int offset = offset_in_page(gpa);
1905 	int ret;
1906 
1907 	while ((seg = next_segment(len, offset)) != 0) {
1908 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1909 		if (ret < 0)
1910 			return ret;
1911 		offset = 0;
1912 		len -= seg;
1913 		data += seg;
1914 		++gfn;
1915 	}
1916 	return 0;
1917 }
1918 EXPORT_SYMBOL_GPL(kvm_write_guest);
1919 
1920 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1921 		         unsigned long len)
1922 {
1923 	gfn_t gfn = gpa >> PAGE_SHIFT;
1924 	int seg;
1925 	int offset = offset_in_page(gpa);
1926 	int ret;
1927 
1928 	while ((seg = next_segment(len, offset)) != 0) {
1929 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1930 		if (ret < 0)
1931 			return ret;
1932 		offset = 0;
1933 		len -= seg;
1934 		data += seg;
1935 		++gfn;
1936 	}
1937 	return 0;
1938 }
1939 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1940 
1941 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1942 			      gpa_t gpa, unsigned long len)
1943 {
1944 	struct kvm_memslots *slots = kvm_memslots(kvm);
1945 	int offset = offset_in_page(gpa);
1946 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1947 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1948 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1949 	gfn_t nr_pages_avail;
1950 
1951 	ghc->gpa = gpa;
1952 	ghc->generation = slots->generation;
1953 	ghc->len = len;
1954 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1955 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1956 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1957 		ghc->hva += offset;
1958 	} else {
1959 		/*
1960 		 * If the requested region crosses two memslots, we still
1961 		 * verify that the entire region is valid here.
1962 		 */
1963 		while (start_gfn <= end_gfn) {
1964 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1965 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1966 						   &nr_pages_avail);
1967 			if (kvm_is_error_hva(ghc->hva))
1968 				return -EFAULT;
1969 			start_gfn += nr_pages_avail;
1970 		}
1971 		/* Use the slow path for cross page reads and writes. */
1972 		ghc->memslot = NULL;
1973 	}
1974 	return 0;
1975 }
1976 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1977 
1978 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1979 			   void *data, int offset, unsigned long len)
1980 {
1981 	struct kvm_memslots *slots = kvm_memslots(kvm);
1982 	int r;
1983 	gpa_t gpa = ghc->gpa + offset;
1984 
1985 	BUG_ON(len + offset > ghc->len);
1986 
1987 	if (slots->generation != ghc->generation)
1988 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1989 
1990 	if (unlikely(!ghc->memslot))
1991 		return kvm_write_guest(kvm, gpa, data, len);
1992 
1993 	if (kvm_is_error_hva(ghc->hva))
1994 		return -EFAULT;
1995 
1996 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1997 	if (r)
1998 		return -EFAULT;
1999 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2000 
2001 	return 0;
2002 }
2003 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2004 
2005 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2006 			   void *data, unsigned long len)
2007 {
2008 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2009 }
2010 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2011 
2012 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2013 			   void *data, unsigned long len)
2014 {
2015 	struct kvm_memslots *slots = kvm_memslots(kvm);
2016 	int r;
2017 
2018 	BUG_ON(len > ghc->len);
2019 
2020 	if (slots->generation != ghc->generation)
2021 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2022 
2023 	if (unlikely(!ghc->memslot))
2024 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2025 
2026 	if (kvm_is_error_hva(ghc->hva))
2027 		return -EFAULT;
2028 
2029 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2030 	if (r)
2031 		return -EFAULT;
2032 
2033 	return 0;
2034 }
2035 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2036 
2037 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2038 {
2039 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2040 
2041 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2042 }
2043 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2044 
2045 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2046 {
2047 	gfn_t gfn = gpa >> PAGE_SHIFT;
2048 	int seg;
2049 	int offset = offset_in_page(gpa);
2050 	int ret;
2051 
2052 	while ((seg = next_segment(len, offset)) != 0) {
2053 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2054 		if (ret < 0)
2055 			return ret;
2056 		offset = 0;
2057 		len -= seg;
2058 		++gfn;
2059 	}
2060 	return 0;
2061 }
2062 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2063 
2064 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2065 				    gfn_t gfn)
2066 {
2067 	if (memslot && memslot->dirty_bitmap) {
2068 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2069 
2070 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2071 	}
2072 }
2073 
2074 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2075 {
2076 	struct kvm_memory_slot *memslot;
2077 
2078 	memslot = gfn_to_memslot(kvm, gfn);
2079 	mark_page_dirty_in_slot(memslot, gfn);
2080 }
2081 EXPORT_SYMBOL_GPL(mark_page_dirty);
2082 
2083 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2084 {
2085 	struct kvm_memory_slot *memslot;
2086 
2087 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2088 	mark_page_dirty_in_slot(memslot, gfn);
2089 }
2090 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2091 
2092 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2093 {
2094 	unsigned int old, val, grow;
2095 
2096 	old = val = vcpu->halt_poll_ns;
2097 	grow = READ_ONCE(halt_poll_ns_grow);
2098 	/* 10us base */
2099 	if (val == 0 && grow)
2100 		val = 10000;
2101 	else
2102 		val *= grow;
2103 
2104 	if (val > halt_poll_ns)
2105 		val = halt_poll_ns;
2106 
2107 	vcpu->halt_poll_ns = val;
2108 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2109 }
2110 
2111 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2112 {
2113 	unsigned int old, val, shrink;
2114 
2115 	old = val = vcpu->halt_poll_ns;
2116 	shrink = READ_ONCE(halt_poll_ns_shrink);
2117 	if (shrink == 0)
2118 		val = 0;
2119 	else
2120 		val /= shrink;
2121 
2122 	vcpu->halt_poll_ns = val;
2123 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2124 }
2125 
2126 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2127 {
2128 	if (kvm_arch_vcpu_runnable(vcpu)) {
2129 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2130 		return -EINTR;
2131 	}
2132 	if (kvm_cpu_has_pending_timer(vcpu))
2133 		return -EINTR;
2134 	if (signal_pending(current))
2135 		return -EINTR;
2136 
2137 	return 0;
2138 }
2139 
2140 /*
2141  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2142  */
2143 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2144 {
2145 	ktime_t start, cur;
2146 	DECLARE_SWAITQUEUE(wait);
2147 	bool waited = false;
2148 	u64 block_ns;
2149 
2150 	start = cur = ktime_get();
2151 	if (vcpu->halt_poll_ns) {
2152 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2153 
2154 		++vcpu->stat.halt_attempted_poll;
2155 		do {
2156 			/*
2157 			 * This sets KVM_REQ_UNHALT if an interrupt
2158 			 * arrives.
2159 			 */
2160 			if (kvm_vcpu_check_block(vcpu) < 0) {
2161 				++vcpu->stat.halt_successful_poll;
2162 				if (!vcpu_valid_wakeup(vcpu))
2163 					++vcpu->stat.halt_poll_invalid;
2164 				goto out;
2165 			}
2166 			cur = ktime_get();
2167 		} while (single_task_running() && ktime_before(cur, stop));
2168 	}
2169 
2170 	kvm_arch_vcpu_blocking(vcpu);
2171 
2172 	for (;;) {
2173 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2174 
2175 		if (kvm_vcpu_check_block(vcpu) < 0)
2176 			break;
2177 
2178 		waited = true;
2179 		schedule();
2180 	}
2181 
2182 	finish_swait(&vcpu->wq, &wait);
2183 	cur = ktime_get();
2184 
2185 	kvm_arch_vcpu_unblocking(vcpu);
2186 out:
2187 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2188 
2189 	if (!vcpu_valid_wakeup(vcpu))
2190 		shrink_halt_poll_ns(vcpu);
2191 	else if (halt_poll_ns) {
2192 		if (block_ns <= vcpu->halt_poll_ns)
2193 			;
2194 		/* we had a long block, shrink polling */
2195 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2196 			shrink_halt_poll_ns(vcpu);
2197 		/* we had a short halt and our poll time is too small */
2198 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2199 			block_ns < halt_poll_ns)
2200 			grow_halt_poll_ns(vcpu);
2201 	} else
2202 		vcpu->halt_poll_ns = 0;
2203 
2204 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2205 	kvm_arch_vcpu_block_finish(vcpu);
2206 }
2207 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2208 
2209 #ifndef CONFIG_S390
2210 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2211 {
2212 	struct swait_queue_head *wqp;
2213 
2214 	wqp = kvm_arch_vcpu_wq(vcpu);
2215 	if (swait_active(wqp)) {
2216 		swake_up(wqp);
2217 		++vcpu->stat.halt_wakeup;
2218 	}
2219 
2220 }
2221 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2222 
2223 /*
2224  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2225  */
2226 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2227 {
2228 	int me;
2229 	int cpu = vcpu->cpu;
2230 
2231 	kvm_vcpu_wake_up(vcpu);
2232 	me = get_cpu();
2233 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2234 		if (kvm_arch_vcpu_should_kick(vcpu))
2235 			smp_send_reschedule(cpu);
2236 	put_cpu();
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2239 #endif /* !CONFIG_S390 */
2240 
2241 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2242 {
2243 	struct pid *pid;
2244 	struct task_struct *task = NULL;
2245 	int ret = 0;
2246 
2247 	rcu_read_lock();
2248 	pid = rcu_dereference(target->pid);
2249 	if (pid)
2250 		task = get_pid_task(pid, PIDTYPE_PID);
2251 	rcu_read_unlock();
2252 	if (!task)
2253 		return ret;
2254 	ret = yield_to(task, 1);
2255 	put_task_struct(task);
2256 
2257 	return ret;
2258 }
2259 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2260 
2261 /*
2262  * Helper that checks whether a VCPU is eligible for directed yield.
2263  * Most eligible candidate to yield is decided by following heuristics:
2264  *
2265  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2266  *  (preempted lock holder), indicated by @in_spin_loop.
2267  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2268  *
2269  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2270  *  chance last time (mostly it has become eligible now since we have probably
2271  *  yielded to lockholder in last iteration. This is done by toggling
2272  *  @dy_eligible each time a VCPU checked for eligibility.)
2273  *
2274  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2275  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2276  *  burning. Giving priority for a potential lock-holder increases lock
2277  *  progress.
2278  *
2279  *  Since algorithm is based on heuristics, accessing another VCPU data without
2280  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2281  *  and continue with next VCPU and so on.
2282  */
2283 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2284 {
2285 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2286 	bool eligible;
2287 
2288 	eligible = !vcpu->spin_loop.in_spin_loop ||
2289 		    vcpu->spin_loop.dy_eligible;
2290 
2291 	if (vcpu->spin_loop.in_spin_loop)
2292 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2293 
2294 	return eligible;
2295 #else
2296 	return true;
2297 #endif
2298 }
2299 
2300 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2301 {
2302 	struct kvm *kvm = me->kvm;
2303 	struct kvm_vcpu *vcpu;
2304 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2305 	int yielded = 0;
2306 	int try = 3;
2307 	int pass;
2308 	int i;
2309 
2310 	kvm_vcpu_set_in_spin_loop(me, true);
2311 	/*
2312 	 * We boost the priority of a VCPU that is runnable but not
2313 	 * currently running, because it got preempted by something
2314 	 * else and called schedule in __vcpu_run.  Hopefully that
2315 	 * VCPU is holding the lock that we need and will release it.
2316 	 * We approximate round-robin by starting at the last boosted VCPU.
2317 	 */
2318 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2319 		kvm_for_each_vcpu(i, vcpu, kvm) {
2320 			if (!pass && i <= last_boosted_vcpu) {
2321 				i = last_boosted_vcpu;
2322 				continue;
2323 			} else if (pass && i > last_boosted_vcpu)
2324 				break;
2325 			if (!ACCESS_ONCE(vcpu->preempted))
2326 				continue;
2327 			if (vcpu == me)
2328 				continue;
2329 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2330 				continue;
2331 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2332 				continue;
2333 
2334 			yielded = kvm_vcpu_yield_to(vcpu);
2335 			if (yielded > 0) {
2336 				kvm->last_boosted_vcpu = i;
2337 				break;
2338 			} else if (yielded < 0) {
2339 				try--;
2340 				if (!try)
2341 					break;
2342 			}
2343 		}
2344 	}
2345 	kvm_vcpu_set_in_spin_loop(me, false);
2346 
2347 	/* Ensure vcpu is not eligible during next spinloop */
2348 	kvm_vcpu_set_dy_eligible(me, false);
2349 }
2350 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2351 
2352 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2353 {
2354 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2355 	struct page *page;
2356 
2357 	if (vmf->pgoff == 0)
2358 		page = virt_to_page(vcpu->run);
2359 #ifdef CONFIG_X86
2360 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2361 		page = virt_to_page(vcpu->arch.pio_data);
2362 #endif
2363 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2364 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2365 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2366 #endif
2367 	else
2368 		return kvm_arch_vcpu_fault(vcpu, vmf);
2369 	get_page(page);
2370 	vmf->page = page;
2371 	return 0;
2372 }
2373 
2374 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2375 	.fault = kvm_vcpu_fault,
2376 };
2377 
2378 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2379 {
2380 	vma->vm_ops = &kvm_vcpu_vm_ops;
2381 	return 0;
2382 }
2383 
2384 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2385 {
2386 	struct kvm_vcpu *vcpu = filp->private_data;
2387 
2388 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2389 	kvm_put_kvm(vcpu->kvm);
2390 	return 0;
2391 }
2392 
2393 static struct file_operations kvm_vcpu_fops = {
2394 	.release        = kvm_vcpu_release,
2395 	.unlocked_ioctl = kvm_vcpu_ioctl,
2396 #ifdef CONFIG_KVM_COMPAT
2397 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2398 #endif
2399 	.mmap           = kvm_vcpu_mmap,
2400 	.llseek		= noop_llseek,
2401 };
2402 
2403 /*
2404  * Allocates an inode for the vcpu.
2405  */
2406 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2407 {
2408 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2409 }
2410 
2411 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2412 {
2413 	char dir_name[ITOA_MAX_LEN * 2];
2414 	int ret;
2415 
2416 	if (!kvm_arch_has_vcpu_debugfs())
2417 		return 0;
2418 
2419 	if (!debugfs_initialized())
2420 		return 0;
2421 
2422 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2423 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2424 								vcpu->kvm->debugfs_dentry);
2425 	if (!vcpu->debugfs_dentry)
2426 		return -ENOMEM;
2427 
2428 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2429 	if (ret < 0) {
2430 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2431 		return ret;
2432 	}
2433 
2434 	return 0;
2435 }
2436 
2437 /*
2438  * Creates some virtual cpus.  Good luck creating more than one.
2439  */
2440 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2441 {
2442 	int r;
2443 	struct kvm_vcpu *vcpu;
2444 
2445 	if (id >= KVM_MAX_VCPU_ID)
2446 		return -EINVAL;
2447 
2448 	mutex_lock(&kvm->lock);
2449 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2450 		mutex_unlock(&kvm->lock);
2451 		return -EINVAL;
2452 	}
2453 
2454 	kvm->created_vcpus++;
2455 	mutex_unlock(&kvm->lock);
2456 
2457 	vcpu = kvm_arch_vcpu_create(kvm, id);
2458 	if (IS_ERR(vcpu)) {
2459 		r = PTR_ERR(vcpu);
2460 		goto vcpu_decrement;
2461 	}
2462 
2463 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2464 
2465 	r = kvm_arch_vcpu_setup(vcpu);
2466 	if (r)
2467 		goto vcpu_destroy;
2468 
2469 	r = kvm_create_vcpu_debugfs(vcpu);
2470 	if (r)
2471 		goto vcpu_destroy;
2472 
2473 	mutex_lock(&kvm->lock);
2474 	if (kvm_get_vcpu_by_id(kvm, id)) {
2475 		r = -EEXIST;
2476 		goto unlock_vcpu_destroy;
2477 	}
2478 
2479 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2480 
2481 	/* Now it's all set up, let userspace reach it */
2482 	kvm_get_kvm(kvm);
2483 	r = create_vcpu_fd(vcpu);
2484 	if (r < 0) {
2485 		kvm_put_kvm(kvm);
2486 		goto unlock_vcpu_destroy;
2487 	}
2488 
2489 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2490 
2491 	/*
2492 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2493 	 * before kvm->online_vcpu's incremented value.
2494 	 */
2495 	smp_wmb();
2496 	atomic_inc(&kvm->online_vcpus);
2497 
2498 	mutex_unlock(&kvm->lock);
2499 	kvm_arch_vcpu_postcreate(vcpu);
2500 	return r;
2501 
2502 unlock_vcpu_destroy:
2503 	mutex_unlock(&kvm->lock);
2504 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2505 vcpu_destroy:
2506 	kvm_arch_vcpu_destroy(vcpu);
2507 vcpu_decrement:
2508 	mutex_lock(&kvm->lock);
2509 	kvm->created_vcpus--;
2510 	mutex_unlock(&kvm->lock);
2511 	return r;
2512 }
2513 
2514 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2515 {
2516 	if (sigset) {
2517 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2518 		vcpu->sigset_active = 1;
2519 		vcpu->sigset = *sigset;
2520 	} else
2521 		vcpu->sigset_active = 0;
2522 	return 0;
2523 }
2524 
2525 static long kvm_vcpu_ioctl(struct file *filp,
2526 			   unsigned int ioctl, unsigned long arg)
2527 {
2528 	struct kvm_vcpu *vcpu = filp->private_data;
2529 	void __user *argp = (void __user *)arg;
2530 	int r;
2531 	struct kvm_fpu *fpu = NULL;
2532 	struct kvm_sregs *kvm_sregs = NULL;
2533 
2534 	if (vcpu->kvm->mm != current->mm)
2535 		return -EIO;
2536 
2537 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2538 		return -EINVAL;
2539 
2540 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2541 	/*
2542 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2543 	 * so vcpu_load() would break it.
2544 	 */
2545 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2546 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2547 #endif
2548 
2549 
2550 	r = vcpu_load(vcpu);
2551 	if (r)
2552 		return r;
2553 	switch (ioctl) {
2554 	case KVM_RUN:
2555 		r = -EINVAL;
2556 		if (arg)
2557 			goto out;
2558 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2559 			/* The thread running this VCPU changed. */
2560 			struct pid *oldpid = vcpu->pid;
2561 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2562 
2563 			rcu_assign_pointer(vcpu->pid, newpid);
2564 			if (oldpid)
2565 				synchronize_rcu();
2566 			put_pid(oldpid);
2567 		}
2568 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2569 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2570 		break;
2571 	case KVM_GET_REGS: {
2572 		struct kvm_regs *kvm_regs;
2573 
2574 		r = -ENOMEM;
2575 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2576 		if (!kvm_regs)
2577 			goto out;
2578 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2579 		if (r)
2580 			goto out_free1;
2581 		r = -EFAULT;
2582 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2583 			goto out_free1;
2584 		r = 0;
2585 out_free1:
2586 		kfree(kvm_regs);
2587 		break;
2588 	}
2589 	case KVM_SET_REGS: {
2590 		struct kvm_regs *kvm_regs;
2591 
2592 		r = -ENOMEM;
2593 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2594 		if (IS_ERR(kvm_regs)) {
2595 			r = PTR_ERR(kvm_regs);
2596 			goto out;
2597 		}
2598 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2599 		kfree(kvm_regs);
2600 		break;
2601 	}
2602 	case KVM_GET_SREGS: {
2603 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2604 		r = -ENOMEM;
2605 		if (!kvm_sregs)
2606 			goto out;
2607 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2608 		if (r)
2609 			goto out;
2610 		r = -EFAULT;
2611 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2612 			goto out;
2613 		r = 0;
2614 		break;
2615 	}
2616 	case KVM_SET_SREGS: {
2617 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2618 		if (IS_ERR(kvm_sregs)) {
2619 			r = PTR_ERR(kvm_sregs);
2620 			kvm_sregs = NULL;
2621 			goto out;
2622 		}
2623 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2624 		break;
2625 	}
2626 	case KVM_GET_MP_STATE: {
2627 		struct kvm_mp_state mp_state;
2628 
2629 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2630 		if (r)
2631 			goto out;
2632 		r = -EFAULT;
2633 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2634 			goto out;
2635 		r = 0;
2636 		break;
2637 	}
2638 	case KVM_SET_MP_STATE: {
2639 		struct kvm_mp_state mp_state;
2640 
2641 		r = -EFAULT;
2642 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2643 			goto out;
2644 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2645 		break;
2646 	}
2647 	case KVM_TRANSLATE: {
2648 		struct kvm_translation tr;
2649 
2650 		r = -EFAULT;
2651 		if (copy_from_user(&tr, argp, sizeof(tr)))
2652 			goto out;
2653 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2654 		if (r)
2655 			goto out;
2656 		r = -EFAULT;
2657 		if (copy_to_user(argp, &tr, sizeof(tr)))
2658 			goto out;
2659 		r = 0;
2660 		break;
2661 	}
2662 	case KVM_SET_GUEST_DEBUG: {
2663 		struct kvm_guest_debug dbg;
2664 
2665 		r = -EFAULT;
2666 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2667 			goto out;
2668 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2669 		break;
2670 	}
2671 	case KVM_SET_SIGNAL_MASK: {
2672 		struct kvm_signal_mask __user *sigmask_arg = argp;
2673 		struct kvm_signal_mask kvm_sigmask;
2674 		sigset_t sigset, *p;
2675 
2676 		p = NULL;
2677 		if (argp) {
2678 			r = -EFAULT;
2679 			if (copy_from_user(&kvm_sigmask, argp,
2680 					   sizeof(kvm_sigmask)))
2681 				goto out;
2682 			r = -EINVAL;
2683 			if (kvm_sigmask.len != sizeof(sigset))
2684 				goto out;
2685 			r = -EFAULT;
2686 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2687 					   sizeof(sigset)))
2688 				goto out;
2689 			p = &sigset;
2690 		}
2691 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2692 		break;
2693 	}
2694 	case KVM_GET_FPU: {
2695 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2696 		r = -ENOMEM;
2697 		if (!fpu)
2698 			goto out;
2699 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2700 		if (r)
2701 			goto out;
2702 		r = -EFAULT;
2703 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2704 			goto out;
2705 		r = 0;
2706 		break;
2707 	}
2708 	case KVM_SET_FPU: {
2709 		fpu = memdup_user(argp, sizeof(*fpu));
2710 		if (IS_ERR(fpu)) {
2711 			r = PTR_ERR(fpu);
2712 			fpu = NULL;
2713 			goto out;
2714 		}
2715 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2716 		break;
2717 	}
2718 	default:
2719 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2720 	}
2721 out:
2722 	vcpu_put(vcpu);
2723 	kfree(fpu);
2724 	kfree(kvm_sregs);
2725 	return r;
2726 }
2727 
2728 #ifdef CONFIG_KVM_COMPAT
2729 static long kvm_vcpu_compat_ioctl(struct file *filp,
2730 				  unsigned int ioctl, unsigned long arg)
2731 {
2732 	struct kvm_vcpu *vcpu = filp->private_data;
2733 	void __user *argp = compat_ptr(arg);
2734 	int r;
2735 
2736 	if (vcpu->kvm->mm != current->mm)
2737 		return -EIO;
2738 
2739 	switch (ioctl) {
2740 	case KVM_SET_SIGNAL_MASK: {
2741 		struct kvm_signal_mask __user *sigmask_arg = argp;
2742 		struct kvm_signal_mask kvm_sigmask;
2743 		compat_sigset_t csigset;
2744 		sigset_t sigset;
2745 
2746 		if (argp) {
2747 			r = -EFAULT;
2748 			if (copy_from_user(&kvm_sigmask, argp,
2749 					   sizeof(kvm_sigmask)))
2750 				goto out;
2751 			r = -EINVAL;
2752 			if (kvm_sigmask.len != sizeof(csigset))
2753 				goto out;
2754 			r = -EFAULT;
2755 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2756 					   sizeof(csigset)))
2757 				goto out;
2758 			sigset_from_compat(&sigset, &csigset);
2759 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2760 		} else
2761 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2762 		break;
2763 	}
2764 	default:
2765 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2766 	}
2767 
2768 out:
2769 	return r;
2770 }
2771 #endif
2772 
2773 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2774 				 int (*accessor)(struct kvm_device *dev,
2775 						 struct kvm_device_attr *attr),
2776 				 unsigned long arg)
2777 {
2778 	struct kvm_device_attr attr;
2779 
2780 	if (!accessor)
2781 		return -EPERM;
2782 
2783 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2784 		return -EFAULT;
2785 
2786 	return accessor(dev, &attr);
2787 }
2788 
2789 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2790 			     unsigned long arg)
2791 {
2792 	struct kvm_device *dev = filp->private_data;
2793 
2794 	switch (ioctl) {
2795 	case KVM_SET_DEVICE_ATTR:
2796 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2797 	case KVM_GET_DEVICE_ATTR:
2798 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2799 	case KVM_HAS_DEVICE_ATTR:
2800 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2801 	default:
2802 		if (dev->ops->ioctl)
2803 			return dev->ops->ioctl(dev, ioctl, arg);
2804 
2805 		return -ENOTTY;
2806 	}
2807 }
2808 
2809 static int kvm_device_release(struct inode *inode, struct file *filp)
2810 {
2811 	struct kvm_device *dev = filp->private_data;
2812 	struct kvm *kvm = dev->kvm;
2813 
2814 	kvm_put_kvm(kvm);
2815 	return 0;
2816 }
2817 
2818 static const struct file_operations kvm_device_fops = {
2819 	.unlocked_ioctl = kvm_device_ioctl,
2820 #ifdef CONFIG_KVM_COMPAT
2821 	.compat_ioctl = kvm_device_ioctl,
2822 #endif
2823 	.release = kvm_device_release,
2824 };
2825 
2826 struct kvm_device *kvm_device_from_filp(struct file *filp)
2827 {
2828 	if (filp->f_op != &kvm_device_fops)
2829 		return NULL;
2830 
2831 	return filp->private_data;
2832 }
2833 
2834 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2835 #ifdef CONFIG_KVM_MPIC
2836 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2837 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2838 #endif
2839 
2840 #ifdef CONFIG_KVM_XICS
2841 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2842 #endif
2843 };
2844 
2845 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2846 {
2847 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2848 		return -ENOSPC;
2849 
2850 	if (kvm_device_ops_table[type] != NULL)
2851 		return -EEXIST;
2852 
2853 	kvm_device_ops_table[type] = ops;
2854 	return 0;
2855 }
2856 
2857 void kvm_unregister_device_ops(u32 type)
2858 {
2859 	if (kvm_device_ops_table[type] != NULL)
2860 		kvm_device_ops_table[type] = NULL;
2861 }
2862 
2863 static int kvm_ioctl_create_device(struct kvm *kvm,
2864 				   struct kvm_create_device *cd)
2865 {
2866 	struct kvm_device_ops *ops = NULL;
2867 	struct kvm_device *dev;
2868 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2869 	int ret;
2870 
2871 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2872 		return -ENODEV;
2873 
2874 	ops = kvm_device_ops_table[cd->type];
2875 	if (ops == NULL)
2876 		return -ENODEV;
2877 
2878 	if (test)
2879 		return 0;
2880 
2881 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2882 	if (!dev)
2883 		return -ENOMEM;
2884 
2885 	dev->ops = ops;
2886 	dev->kvm = kvm;
2887 
2888 	mutex_lock(&kvm->lock);
2889 	ret = ops->create(dev, cd->type);
2890 	if (ret < 0) {
2891 		mutex_unlock(&kvm->lock);
2892 		kfree(dev);
2893 		return ret;
2894 	}
2895 	list_add(&dev->vm_node, &kvm->devices);
2896 	mutex_unlock(&kvm->lock);
2897 
2898 	if (ops->init)
2899 		ops->init(dev);
2900 
2901 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2902 	if (ret < 0) {
2903 		mutex_lock(&kvm->lock);
2904 		list_del(&dev->vm_node);
2905 		mutex_unlock(&kvm->lock);
2906 		ops->destroy(dev);
2907 		return ret;
2908 	}
2909 
2910 	kvm_get_kvm(kvm);
2911 	cd->fd = ret;
2912 	return 0;
2913 }
2914 
2915 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2916 {
2917 	switch (arg) {
2918 	case KVM_CAP_USER_MEMORY:
2919 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2920 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2921 	case KVM_CAP_INTERNAL_ERROR_DATA:
2922 #ifdef CONFIG_HAVE_KVM_MSI
2923 	case KVM_CAP_SIGNAL_MSI:
2924 #endif
2925 #ifdef CONFIG_HAVE_KVM_IRQFD
2926 	case KVM_CAP_IRQFD:
2927 	case KVM_CAP_IRQFD_RESAMPLE:
2928 #endif
2929 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2930 	case KVM_CAP_CHECK_EXTENSION_VM:
2931 		return 1;
2932 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2933 	case KVM_CAP_IRQ_ROUTING:
2934 		return KVM_MAX_IRQ_ROUTES;
2935 #endif
2936 #if KVM_ADDRESS_SPACE_NUM > 1
2937 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2938 		return KVM_ADDRESS_SPACE_NUM;
2939 #endif
2940 	case KVM_CAP_MAX_VCPU_ID:
2941 		return KVM_MAX_VCPU_ID;
2942 	default:
2943 		break;
2944 	}
2945 	return kvm_vm_ioctl_check_extension(kvm, arg);
2946 }
2947 
2948 static long kvm_vm_ioctl(struct file *filp,
2949 			   unsigned int ioctl, unsigned long arg)
2950 {
2951 	struct kvm *kvm = filp->private_data;
2952 	void __user *argp = (void __user *)arg;
2953 	int r;
2954 
2955 	if (kvm->mm != current->mm)
2956 		return -EIO;
2957 	switch (ioctl) {
2958 	case KVM_CREATE_VCPU:
2959 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2960 		break;
2961 	case KVM_SET_USER_MEMORY_REGION: {
2962 		struct kvm_userspace_memory_region kvm_userspace_mem;
2963 
2964 		r = -EFAULT;
2965 		if (copy_from_user(&kvm_userspace_mem, argp,
2966 						sizeof(kvm_userspace_mem)))
2967 			goto out;
2968 
2969 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2970 		break;
2971 	}
2972 	case KVM_GET_DIRTY_LOG: {
2973 		struct kvm_dirty_log log;
2974 
2975 		r = -EFAULT;
2976 		if (copy_from_user(&log, argp, sizeof(log)))
2977 			goto out;
2978 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2979 		break;
2980 	}
2981 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2982 	case KVM_REGISTER_COALESCED_MMIO: {
2983 		struct kvm_coalesced_mmio_zone zone;
2984 
2985 		r = -EFAULT;
2986 		if (copy_from_user(&zone, argp, sizeof(zone)))
2987 			goto out;
2988 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2989 		break;
2990 	}
2991 	case KVM_UNREGISTER_COALESCED_MMIO: {
2992 		struct kvm_coalesced_mmio_zone zone;
2993 
2994 		r = -EFAULT;
2995 		if (copy_from_user(&zone, argp, sizeof(zone)))
2996 			goto out;
2997 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2998 		break;
2999 	}
3000 #endif
3001 	case KVM_IRQFD: {
3002 		struct kvm_irqfd data;
3003 
3004 		r = -EFAULT;
3005 		if (copy_from_user(&data, argp, sizeof(data)))
3006 			goto out;
3007 		r = kvm_irqfd(kvm, &data);
3008 		break;
3009 	}
3010 	case KVM_IOEVENTFD: {
3011 		struct kvm_ioeventfd data;
3012 
3013 		r = -EFAULT;
3014 		if (copy_from_user(&data, argp, sizeof(data)))
3015 			goto out;
3016 		r = kvm_ioeventfd(kvm, &data);
3017 		break;
3018 	}
3019 #ifdef CONFIG_HAVE_KVM_MSI
3020 	case KVM_SIGNAL_MSI: {
3021 		struct kvm_msi msi;
3022 
3023 		r = -EFAULT;
3024 		if (copy_from_user(&msi, argp, sizeof(msi)))
3025 			goto out;
3026 		r = kvm_send_userspace_msi(kvm, &msi);
3027 		break;
3028 	}
3029 #endif
3030 #ifdef __KVM_HAVE_IRQ_LINE
3031 	case KVM_IRQ_LINE_STATUS:
3032 	case KVM_IRQ_LINE: {
3033 		struct kvm_irq_level irq_event;
3034 
3035 		r = -EFAULT;
3036 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3037 			goto out;
3038 
3039 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3040 					ioctl == KVM_IRQ_LINE_STATUS);
3041 		if (r)
3042 			goto out;
3043 
3044 		r = -EFAULT;
3045 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3046 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3047 				goto out;
3048 		}
3049 
3050 		r = 0;
3051 		break;
3052 	}
3053 #endif
3054 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3055 	case KVM_SET_GSI_ROUTING: {
3056 		struct kvm_irq_routing routing;
3057 		struct kvm_irq_routing __user *urouting;
3058 		struct kvm_irq_routing_entry *entries = NULL;
3059 
3060 		r = -EFAULT;
3061 		if (copy_from_user(&routing, argp, sizeof(routing)))
3062 			goto out;
3063 		r = -EINVAL;
3064 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3065 			goto out;
3066 		if (routing.flags)
3067 			goto out;
3068 		if (routing.nr) {
3069 			r = -ENOMEM;
3070 			entries = vmalloc(routing.nr * sizeof(*entries));
3071 			if (!entries)
3072 				goto out;
3073 			r = -EFAULT;
3074 			urouting = argp;
3075 			if (copy_from_user(entries, urouting->entries,
3076 					   routing.nr * sizeof(*entries)))
3077 				goto out_free_irq_routing;
3078 		}
3079 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3080 					routing.flags);
3081 out_free_irq_routing:
3082 		vfree(entries);
3083 		break;
3084 	}
3085 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3086 	case KVM_CREATE_DEVICE: {
3087 		struct kvm_create_device cd;
3088 
3089 		r = -EFAULT;
3090 		if (copy_from_user(&cd, argp, sizeof(cd)))
3091 			goto out;
3092 
3093 		r = kvm_ioctl_create_device(kvm, &cd);
3094 		if (r)
3095 			goto out;
3096 
3097 		r = -EFAULT;
3098 		if (copy_to_user(argp, &cd, sizeof(cd)))
3099 			goto out;
3100 
3101 		r = 0;
3102 		break;
3103 	}
3104 	case KVM_CHECK_EXTENSION:
3105 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3106 		break;
3107 	default:
3108 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3109 	}
3110 out:
3111 	return r;
3112 }
3113 
3114 #ifdef CONFIG_KVM_COMPAT
3115 struct compat_kvm_dirty_log {
3116 	__u32 slot;
3117 	__u32 padding1;
3118 	union {
3119 		compat_uptr_t dirty_bitmap; /* one bit per page */
3120 		__u64 padding2;
3121 	};
3122 };
3123 
3124 static long kvm_vm_compat_ioctl(struct file *filp,
3125 			   unsigned int ioctl, unsigned long arg)
3126 {
3127 	struct kvm *kvm = filp->private_data;
3128 	int r;
3129 
3130 	if (kvm->mm != current->mm)
3131 		return -EIO;
3132 	switch (ioctl) {
3133 	case KVM_GET_DIRTY_LOG: {
3134 		struct compat_kvm_dirty_log compat_log;
3135 		struct kvm_dirty_log log;
3136 
3137 		r = -EFAULT;
3138 		if (copy_from_user(&compat_log, (void __user *)arg,
3139 				   sizeof(compat_log)))
3140 			goto out;
3141 		log.slot	 = compat_log.slot;
3142 		log.padding1	 = compat_log.padding1;
3143 		log.padding2	 = compat_log.padding2;
3144 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3145 
3146 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3147 		break;
3148 	}
3149 	default:
3150 		r = kvm_vm_ioctl(filp, ioctl, arg);
3151 	}
3152 
3153 out:
3154 	return r;
3155 }
3156 #endif
3157 
3158 static struct file_operations kvm_vm_fops = {
3159 	.release        = kvm_vm_release,
3160 	.unlocked_ioctl = kvm_vm_ioctl,
3161 #ifdef CONFIG_KVM_COMPAT
3162 	.compat_ioctl   = kvm_vm_compat_ioctl,
3163 #endif
3164 	.llseek		= noop_llseek,
3165 };
3166 
3167 static int kvm_dev_ioctl_create_vm(unsigned long type)
3168 {
3169 	int r;
3170 	struct kvm *kvm;
3171 	struct file *file;
3172 
3173 	kvm = kvm_create_vm(type);
3174 	if (IS_ERR(kvm))
3175 		return PTR_ERR(kvm);
3176 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3177 	r = kvm_coalesced_mmio_init(kvm);
3178 	if (r < 0) {
3179 		kvm_put_kvm(kvm);
3180 		return r;
3181 	}
3182 #endif
3183 	r = get_unused_fd_flags(O_CLOEXEC);
3184 	if (r < 0) {
3185 		kvm_put_kvm(kvm);
3186 		return r;
3187 	}
3188 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3189 	if (IS_ERR(file)) {
3190 		put_unused_fd(r);
3191 		kvm_put_kvm(kvm);
3192 		return PTR_ERR(file);
3193 	}
3194 
3195 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3196 		put_unused_fd(r);
3197 		fput(file);
3198 		return -ENOMEM;
3199 	}
3200 
3201 	fd_install(r, file);
3202 	return r;
3203 }
3204 
3205 static long kvm_dev_ioctl(struct file *filp,
3206 			  unsigned int ioctl, unsigned long arg)
3207 {
3208 	long r = -EINVAL;
3209 
3210 	switch (ioctl) {
3211 	case KVM_GET_API_VERSION:
3212 		if (arg)
3213 			goto out;
3214 		r = KVM_API_VERSION;
3215 		break;
3216 	case KVM_CREATE_VM:
3217 		r = kvm_dev_ioctl_create_vm(arg);
3218 		break;
3219 	case KVM_CHECK_EXTENSION:
3220 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3221 		break;
3222 	case KVM_GET_VCPU_MMAP_SIZE:
3223 		if (arg)
3224 			goto out;
3225 		r = PAGE_SIZE;     /* struct kvm_run */
3226 #ifdef CONFIG_X86
3227 		r += PAGE_SIZE;    /* pio data page */
3228 #endif
3229 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3230 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3231 #endif
3232 		break;
3233 	case KVM_TRACE_ENABLE:
3234 	case KVM_TRACE_PAUSE:
3235 	case KVM_TRACE_DISABLE:
3236 		r = -EOPNOTSUPP;
3237 		break;
3238 	default:
3239 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3240 	}
3241 out:
3242 	return r;
3243 }
3244 
3245 static struct file_operations kvm_chardev_ops = {
3246 	.unlocked_ioctl = kvm_dev_ioctl,
3247 	.compat_ioctl   = kvm_dev_ioctl,
3248 	.llseek		= noop_llseek,
3249 };
3250 
3251 static struct miscdevice kvm_dev = {
3252 	KVM_MINOR,
3253 	"kvm",
3254 	&kvm_chardev_ops,
3255 };
3256 
3257 static void hardware_enable_nolock(void *junk)
3258 {
3259 	int cpu = raw_smp_processor_id();
3260 	int r;
3261 
3262 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3263 		return;
3264 
3265 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3266 
3267 	r = kvm_arch_hardware_enable();
3268 
3269 	if (r) {
3270 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3271 		atomic_inc(&hardware_enable_failed);
3272 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3273 	}
3274 }
3275 
3276 static int kvm_starting_cpu(unsigned int cpu)
3277 {
3278 	raw_spin_lock(&kvm_count_lock);
3279 	if (kvm_usage_count)
3280 		hardware_enable_nolock(NULL);
3281 	raw_spin_unlock(&kvm_count_lock);
3282 	return 0;
3283 }
3284 
3285 static void hardware_disable_nolock(void *junk)
3286 {
3287 	int cpu = raw_smp_processor_id();
3288 
3289 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3290 		return;
3291 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3292 	kvm_arch_hardware_disable();
3293 }
3294 
3295 static int kvm_dying_cpu(unsigned int cpu)
3296 {
3297 	raw_spin_lock(&kvm_count_lock);
3298 	if (kvm_usage_count)
3299 		hardware_disable_nolock(NULL);
3300 	raw_spin_unlock(&kvm_count_lock);
3301 	return 0;
3302 }
3303 
3304 static void hardware_disable_all_nolock(void)
3305 {
3306 	BUG_ON(!kvm_usage_count);
3307 
3308 	kvm_usage_count--;
3309 	if (!kvm_usage_count)
3310 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3311 }
3312 
3313 static void hardware_disable_all(void)
3314 {
3315 	raw_spin_lock(&kvm_count_lock);
3316 	hardware_disable_all_nolock();
3317 	raw_spin_unlock(&kvm_count_lock);
3318 }
3319 
3320 static int hardware_enable_all(void)
3321 {
3322 	int r = 0;
3323 
3324 	raw_spin_lock(&kvm_count_lock);
3325 
3326 	kvm_usage_count++;
3327 	if (kvm_usage_count == 1) {
3328 		atomic_set(&hardware_enable_failed, 0);
3329 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3330 
3331 		if (atomic_read(&hardware_enable_failed)) {
3332 			hardware_disable_all_nolock();
3333 			r = -EBUSY;
3334 		}
3335 	}
3336 
3337 	raw_spin_unlock(&kvm_count_lock);
3338 
3339 	return r;
3340 }
3341 
3342 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3343 		      void *v)
3344 {
3345 	/*
3346 	 * Some (well, at least mine) BIOSes hang on reboot if
3347 	 * in vmx root mode.
3348 	 *
3349 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3350 	 */
3351 	pr_info("kvm: exiting hardware virtualization\n");
3352 	kvm_rebooting = true;
3353 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3354 	return NOTIFY_OK;
3355 }
3356 
3357 static struct notifier_block kvm_reboot_notifier = {
3358 	.notifier_call = kvm_reboot,
3359 	.priority = 0,
3360 };
3361 
3362 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3363 {
3364 	int i;
3365 
3366 	for (i = 0; i < bus->dev_count; i++) {
3367 		struct kvm_io_device *pos = bus->range[i].dev;
3368 
3369 		kvm_iodevice_destructor(pos);
3370 	}
3371 	kfree(bus);
3372 }
3373 
3374 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3375 				 const struct kvm_io_range *r2)
3376 {
3377 	gpa_t addr1 = r1->addr;
3378 	gpa_t addr2 = r2->addr;
3379 
3380 	if (addr1 < addr2)
3381 		return -1;
3382 
3383 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3384 	 * accept any overlapping write.  Any order is acceptable for
3385 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3386 	 * we process all of them.
3387 	 */
3388 	if (r2->len) {
3389 		addr1 += r1->len;
3390 		addr2 += r2->len;
3391 	}
3392 
3393 	if (addr1 > addr2)
3394 		return 1;
3395 
3396 	return 0;
3397 }
3398 
3399 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3400 {
3401 	return kvm_io_bus_cmp(p1, p2);
3402 }
3403 
3404 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3405 			  gpa_t addr, int len)
3406 {
3407 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3408 		.addr = addr,
3409 		.len = len,
3410 		.dev = dev,
3411 	};
3412 
3413 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3414 		kvm_io_bus_sort_cmp, NULL);
3415 
3416 	return 0;
3417 }
3418 
3419 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3420 			     gpa_t addr, int len)
3421 {
3422 	struct kvm_io_range *range, key;
3423 	int off;
3424 
3425 	key = (struct kvm_io_range) {
3426 		.addr = addr,
3427 		.len = len,
3428 	};
3429 
3430 	range = bsearch(&key, bus->range, bus->dev_count,
3431 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3432 	if (range == NULL)
3433 		return -ENOENT;
3434 
3435 	off = range - bus->range;
3436 
3437 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3438 		off--;
3439 
3440 	return off;
3441 }
3442 
3443 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3444 			      struct kvm_io_range *range, const void *val)
3445 {
3446 	int idx;
3447 
3448 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3449 	if (idx < 0)
3450 		return -EOPNOTSUPP;
3451 
3452 	while (idx < bus->dev_count &&
3453 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3454 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3455 					range->len, val))
3456 			return idx;
3457 		idx++;
3458 	}
3459 
3460 	return -EOPNOTSUPP;
3461 }
3462 
3463 /* kvm_io_bus_write - called under kvm->slots_lock */
3464 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3465 		     int len, const void *val)
3466 {
3467 	struct kvm_io_bus *bus;
3468 	struct kvm_io_range range;
3469 	int r;
3470 
3471 	range = (struct kvm_io_range) {
3472 		.addr = addr,
3473 		.len = len,
3474 	};
3475 
3476 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3477 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3478 	return r < 0 ? r : 0;
3479 }
3480 
3481 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3482 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3483 			    gpa_t addr, int len, const void *val, long cookie)
3484 {
3485 	struct kvm_io_bus *bus;
3486 	struct kvm_io_range range;
3487 
3488 	range = (struct kvm_io_range) {
3489 		.addr = addr,
3490 		.len = len,
3491 	};
3492 
3493 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3494 
3495 	/* First try the device referenced by cookie. */
3496 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3497 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3498 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3499 					val))
3500 			return cookie;
3501 
3502 	/*
3503 	 * cookie contained garbage; fall back to search and return the
3504 	 * correct cookie value.
3505 	 */
3506 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3507 }
3508 
3509 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3510 			     struct kvm_io_range *range, void *val)
3511 {
3512 	int idx;
3513 
3514 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3515 	if (idx < 0)
3516 		return -EOPNOTSUPP;
3517 
3518 	while (idx < bus->dev_count &&
3519 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3520 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3521 				       range->len, val))
3522 			return idx;
3523 		idx++;
3524 	}
3525 
3526 	return -EOPNOTSUPP;
3527 }
3528 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3529 
3530 /* kvm_io_bus_read - called under kvm->slots_lock */
3531 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3532 		    int len, void *val)
3533 {
3534 	struct kvm_io_bus *bus;
3535 	struct kvm_io_range range;
3536 	int r;
3537 
3538 	range = (struct kvm_io_range) {
3539 		.addr = addr,
3540 		.len = len,
3541 	};
3542 
3543 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3544 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3545 	return r < 0 ? r : 0;
3546 }
3547 
3548 
3549 /* Caller must hold slots_lock. */
3550 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3551 			    int len, struct kvm_io_device *dev)
3552 {
3553 	struct kvm_io_bus *new_bus, *bus;
3554 
3555 	bus = kvm->buses[bus_idx];
3556 	/* exclude ioeventfd which is limited by maximum fd */
3557 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3558 		return -ENOSPC;
3559 
3560 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3561 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3562 	if (!new_bus)
3563 		return -ENOMEM;
3564 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3565 	       sizeof(struct kvm_io_range)));
3566 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3567 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3568 	synchronize_srcu_expedited(&kvm->srcu);
3569 	kfree(bus);
3570 
3571 	return 0;
3572 }
3573 
3574 /* Caller must hold slots_lock. */
3575 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3576 			      struct kvm_io_device *dev)
3577 {
3578 	int i, r;
3579 	struct kvm_io_bus *new_bus, *bus;
3580 
3581 	bus = kvm->buses[bus_idx];
3582 	r = -ENOENT;
3583 	for (i = 0; i < bus->dev_count; i++)
3584 		if (bus->range[i].dev == dev) {
3585 			r = 0;
3586 			break;
3587 		}
3588 
3589 	if (r)
3590 		return r;
3591 
3592 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3593 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3594 	if (!new_bus)
3595 		return -ENOMEM;
3596 
3597 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3598 	new_bus->dev_count--;
3599 	memcpy(new_bus->range + i, bus->range + i + 1,
3600 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3601 
3602 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3603 	synchronize_srcu_expedited(&kvm->srcu);
3604 	kfree(bus);
3605 	return r;
3606 }
3607 
3608 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3609 					 gpa_t addr)
3610 {
3611 	struct kvm_io_bus *bus;
3612 	int dev_idx, srcu_idx;
3613 	struct kvm_io_device *iodev = NULL;
3614 
3615 	srcu_idx = srcu_read_lock(&kvm->srcu);
3616 
3617 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3618 
3619 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3620 	if (dev_idx < 0)
3621 		goto out_unlock;
3622 
3623 	iodev = bus->range[dev_idx].dev;
3624 
3625 out_unlock:
3626 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3627 
3628 	return iodev;
3629 }
3630 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3631 
3632 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3633 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3634 			   const char *fmt)
3635 {
3636 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3637 					  inode->i_private;
3638 
3639 	/* The debugfs files are a reference to the kvm struct which
3640 	 * is still valid when kvm_destroy_vm is called.
3641 	 * To avoid the race between open and the removal of the debugfs
3642 	 * directory we test against the users count.
3643 	 */
3644 	if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3645 		return -ENOENT;
3646 
3647 	if (simple_attr_open(inode, file, get, set, fmt)) {
3648 		kvm_put_kvm(stat_data->kvm);
3649 		return -ENOMEM;
3650 	}
3651 
3652 	return 0;
3653 }
3654 
3655 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3656 {
3657 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3658 					  inode->i_private;
3659 
3660 	simple_attr_release(inode, file);
3661 	kvm_put_kvm(stat_data->kvm);
3662 
3663 	return 0;
3664 }
3665 
3666 static int vm_stat_get_per_vm(void *data, u64 *val)
3667 {
3668 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3669 
3670 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3671 
3672 	return 0;
3673 }
3674 
3675 static int vm_stat_clear_per_vm(void *data, u64 val)
3676 {
3677 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3678 
3679 	if (val)
3680 		return -EINVAL;
3681 
3682 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3683 
3684 	return 0;
3685 }
3686 
3687 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3688 {
3689 	__simple_attr_check_format("%llu\n", 0ull);
3690 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3691 				vm_stat_clear_per_vm, "%llu\n");
3692 }
3693 
3694 static const struct file_operations vm_stat_get_per_vm_fops = {
3695 	.owner   = THIS_MODULE,
3696 	.open    = vm_stat_get_per_vm_open,
3697 	.release = kvm_debugfs_release,
3698 	.read    = simple_attr_read,
3699 	.write   = simple_attr_write,
3700 	.llseek  = generic_file_llseek,
3701 };
3702 
3703 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3704 {
3705 	int i;
3706 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3707 	struct kvm_vcpu *vcpu;
3708 
3709 	*val = 0;
3710 
3711 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3712 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3713 
3714 	return 0;
3715 }
3716 
3717 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3718 {
3719 	int i;
3720 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3721 	struct kvm_vcpu *vcpu;
3722 
3723 	if (val)
3724 		return -EINVAL;
3725 
3726 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3727 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3728 
3729 	return 0;
3730 }
3731 
3732 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3733 {
3734 	__simple_attr_check_format("%llu\n", 0ull);
3735 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3736 				 vcpu_stat_clear_per_vm, "%llu\n");
3737 }
3738 
3739 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3740 	.owner   = THIS_MODULE,
3741 	.open    = vcpu_stat_get_per_vm_open,
3742 	.release = kvm_debugfs_release,
3743 	.read    = simple_attr_read,
3744 	.write   = simple_attr_write,
3745 	.llseek  = generic_file_llseek,
3746 };
3747 
3748 static const struct file_operations *stat_fops_per_vm[] = {
3749 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3750 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3751 };
3752 
3753 static int vm_stat_get(void *_offset, u64 *val)
3754 {
3755 	unsigned offset = (long)_offset;
3756 	struct kvm *kvm;
3757 	struct kvm_stat_data stat_tmp = {.offset = offset};
3758 	u64 tmp_val;
3759 
3760 	*val = 0;
3761 	spin_lock(&kvm_lock);
3762 	list_for_each_entry(kvm, &vm_list, vm_list) {
3763 		stat_tmp.kvm = kvm;
3764 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3765 		*val += tmp_val;
3766 	}
3767 	spin_unlock(&kvm_lock);
3768 	return 0;
3769 }
3770 
3771 static int vm_stat_clear(void *_offset, u64 val)
3772 {
3773 	unsigned offset = (long)_offset;
3774 	struct kvm *kvm;
3775 	struct kvm_stat_data stat_tmp = {.offset = offset};
3776 
3777 	if (val)
3778 		return -EINVAL;
3779 
3780 	spin_lock(&kvm_lock);
3781 	list_for_each_entry(kvm, &vm_list, vm_list) {
3782 		stat_tmp.kvm = kvm;
3783 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3784 	}
3785 	spin_unlock(&kvm_lock);
3786 
3787 	return 0;
3788 }
3789 
3790 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3791 
3792 static int vcpu_stat_get(void *_offset, u64 *val)
3793 {
3794 	unsigned offset = (long)_offset;
3795 	struct kvm *kvm;
3796 	struct kvm_stat_data stat_tmp = {.offset = offset};
3797 	u64 tmp_val;
3798 
3799 	*val = 0;
3800 	spin_lock(&kvm_lock);
3801 	list_for_each_entry(kvm, &vm_list, vm_list) {
3802 		stat_tmp.kvm = kvm;
3803 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3804 		*val += tmp_val;
3805 	}
3806 	spin_unlock(&kvm_lock);
3807 	return 0;
3808 }
3809 
3810 static int vcpu_stat_clear(void *_offset, u64 val)
3811 {
3812 	unsigned offset = (long)_offset;
3813 	struct kvm *kvm;
3814 	struct kvm_stat_data stat_tmp = {.offset = offset};
3815 
3816 	if (val)
3817 		return -EINVAL;
3818 
3819 	spin_lock(&kvm_lock);
3820 	list_for_each_entry(kvm, &vm_list, vm_list) {
3821 		stat_tmp.kvm = kvm;
3822 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3823 	}
3824 	spin_unlock(&kvm_lock);
3825 
3826 	return 0;
3827 }
3828 
3829 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3830 			"%llu\n");
3831 
3832 static const struct file_operations *stat_fops[] = {
3833 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3834 	[KVM_STAT_VM]   = &vm_stat_fops,
3835 };
3836 
3837 static int kvm_init_debug(void)
3838 {
3839 	int r = -EEXIST;
3840 	struct kvm_stats_debugfs_item *p;
3841 
3842 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3843 	if (kvm_debugfs_dir == NULL)
3844 		goto out;
3845 
3846 	kvm_debugfs_num_entries = 0;
3847 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3848 		if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3849 					 (void *)(long)p->offset,
3850 					 stat_fops[p->kind]))
3851 			goto out_dir;
3852 	}
3853 
3854 	return 0;
3855 
3856 out_dir:
3857 	debugfs_remove_recursive(kvm_debugfs_dir);
3858 out:
3859 	return r;
3860 }
3861 
3862 static int kvm_suspend(void)
3863 {
3864 	if (kvm_usage_count)
3865 		hardware_disable_nolock(NULL);
3866 	return 0;
3867 }
3868 
3869 static void kvm_resume(void)
3870 {
3871 	if (kvm_usage_count) {
3872 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3873 		hardware_enable_nolock(NULL);
3874 	}
3875 }
3876 
3877 static struct syscore_ops kvm_syscore_ops = {
3878 	.suspend = kvm_suspend,
3879 	.resume = kvm_resume,
3880 };
3881 
3882 static inline
3883 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3884 {
3885 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3886 }
3887 
3888 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3889 {
3890 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3891 
3892 	if (vcpu->preempted)
3893 		vcpu->preempted = false;
3894 
3895 	kvm_arch_sched_in(vcpu, cpu);
3896 
3897 	kvm_arch_vcpu_load(vcpu, cpu);
3898 }
3899 
3900 static void kvm_sched_out(struct preempt_notifier *pn,
3901 			  struct task_struct *next)
3902 {
3903 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3904 
3905 	if (current->state == TASK_RUNNING)
3906 		vcpu->preempted = true;
3907 	kvm_arch_vcpu_put(vcpu);
3908 }
3909 
3910 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3911 		  struct module *module)
3912 {
3913 	int r;
3914 	int cpu;
3915 
3916 	r = kvm_arch_init(opaque);
3917 	if (r)
3918 		goto out_fail;
3919 
3920 	/*
3921 	 * kvm_arch_init makes sure there's at most one caller
3922 	 * for architectures that support multiple implementations,
3923 	 * like intel and amd on x86.
3924 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3925 	 * conflicts in case kvm is already setup for another implementation.
3926 	 */
3927 	r = kvm_irqfd_init();
3928 	if (r)
3929 		goto out_irqfd;
3930 
3931 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3932 		r = -ENOMEM;
3933 		goto out_free_0;
3934 	}
3935 
3936 	r = kvm_arch_hardware_setup();
3937 	if (r < 0)
3938 		goto out_free_0a;
3939 
3940 	for_each_online_cpu(cpu) {
3941 		smp_call_function_single(cpu,
3942 				kvm_arch_check_processor_compat,
3943 				&r, 1);
3944 		if (r < 0)
3945 			goto out_free_1;
3946 	}
3947 
3948 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3949 				      kvm_starting_cpu, kvm_dying_cpu);
3950 	if (r)
3951 		goto out_free_2;
3952 	register_reboot_notifier(&kvm_reboot_notifier);
3953 
3954 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3955 	if (!vcpu_align)
3956 		vcpu_align = __alignof__(struct kvm_vcpu);
3957 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3958 					   0, NULL);
3959 	if (!kvm_vcpu_cache) {
3960 		r = -ENOMEM;
3961 		goto out_free_3;
3962 	}
3963 
3964 	r = kvm_async_pf_init();
3965 	if (r)
3966 		goto out_free;
3967 
3968 	kvm_chardev_ops.owner = module;
3969 	kvm_vm_fops.owner = module;
3970 	kvm_vcpu_fops.owner = module;
3971 
3972 	r = misc_register(&kvm_dev);
3973 	if (r) {
3974 		pr_err("kvm: misc device register failed\n");
3975 		goto out_unreg;
3976 	}
3977 
3978 	register_syscore_ops(&kvm_syscore_ops);
3979 
3980 	kvm_preempt_ops.sched_in = kvm_sched_in;
3981 	kvm_preempt_ops.sched_out = kvm_sched_out;
3982 
3983 	r = kvm_init_debug();
3984 	if (r) {
3985 		pr_err("kvm: create debugfs files failed\n");
3986 		goto out_undebugfs;
3987 	}
3988 
3989 	r = kvm_vfio_ops_init();
3990 	WARN_ON(r);
3991 
3992 	return 0;
3993 
3994 out_undebugfs:
3995 	unregister_syscore_ops(&kvm_syscore_ops);
3996 	misc_deregister(&kvm_dev);
3997 out_unreg:
3998 	kvm_async_pf_deinit();
3999 out_free:
4000 	kmem_cache_destroy(kvm_vcpu_cache);
4001 out_free_3:
4002 	unregister_reboot_notifier(&kvm_reboot_notifier);
4003 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4004 out_free_2:
4005 out_free_1:
4006 	kvm_arch_hardware_unsetup();
4007 out_free_0a:
4008 	free_cpumask_var(cpus_hardware_enabled);
4009 out_free_0:
4010 	kvm_irqfd_exit();
4011 out_irqfd:
4012 	kvm_arch_exit();
4013 out_fail:
4014 	return r;
4015 }
4016 EXPORT_SYMBOL_GPL(kvm_init);
4017 
4018 void kvm_exit(void)
4019 {
4020 	debugfs_remove_recursive(kvm_debugfs_dir);
4021 	misc_deregister(&kvm_dev);
4022 	kmem_cache_destroy(kvm_vcpu_cache);
4023 	kvm_async_pf_deinit();
4024 	unregister_syscore_ops(&kvm_syscore_ops);
4025 	unregister_reboot_notifier(&kvm_reboot_notifier);
4026 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4027 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4028 	kvm_arch_hardware_unsetup();
4029 	kvm_arch_exit();
4030 	kvm_irqfd_exit();
4031 	free_cpumask_var(cpus_hardware_enabled);
4032 	kvm_vfio_ops_exit();
4033 }
4034 EXPORT_SYMBOL_GPL(kvm_exit);
4035