xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision dee264c16a6334dcdbea5c186f5ff35f98b1df42)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "ucall_common.h"
11 
12 #include <assert.h>
13 #include <sched.h>
14 #include <sys/mman.h>
15 #include <sys/resource.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 uint32_t guest_random_seed;
24 struct guest_random_state guest_rng;
25 static uint32_t last_guest_seed;
26 
27 static int vcpu_mmap_sz(void);
28 
29 int open_path_or_exit(const char *path, int flags)
30 {
31 	int fd;
32 
33 	fd = open(path, flags);
34 	__TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno));
35 	TEST_ASSERT(fd >= 0, "Failed to open '%s'", path);
36 
37 	return fd;
38 }
39 
40 /*
41  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
42  *
43  * Input Args:
44  *   flags - The flags to pass when opening KVM_DEV_PATH.
45  *
46  * Return:
47  *   The opened file descriptor of /dev/kvm.
48  */
49 static int _open_kvm_dev_path_or_exit(int flags)
50 {
51 	return open_path_or_exit(KVM_DEV_PATH, flags);
52 }
53 
54 int open_kvm_dev_path_or_exit(void)
55 {
56 	return _open_kvm_dev_path_or_exit(O_RDONLY);
57 }
58 
59 static ssize_t get_module_param(const char *module_name, const char *param,
60 				void *buffer, size_t buffer_size)
61 {
62 	const int path_size = 128;
63 	char path[path_size];
64 	ssize_t bytes_read;
65 	int fd, r;
66 
67 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
68 		     module_name, param);
69 	TEST_ASSERT(r < path_size,
70 		    "Failed to construct sysfs path in %d bytes.", path_size);
71 
72 	fd = open_path_or_exit(path, O_RDONLY);
73 
74 	bytes_read = read(fd, buffer, buffer_size);
75 	TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
76 		    path, bytes_read, buffer_size);
77 
78 	r = close(fd);
79 	TEST_ASSERT(!r, "close(%s) failed", path);
80 	return bytes_read;
81 }
82 
83 static int get_module_param_integer(const char *module_name, const char *param)
84 {
85 	/*
86 	 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
87 	 * NUL char, and 1 byte because the kernel sucks and inserts a newline
88 	 * at the end.
89 	 */
90 	char value[16 + 1 + 1];
91 	ssize_t r;
92 
93 	memset(value, '\0', sizeof(value));
94 
95 	r = get_module_param(module_name, param, value, sizeof(value));
96 	TEST_ASSERT(value[r - 1] == '\n',
97 		    "Expected trailing newline, got char '%c'", value[r - 1]);
98 
99 	/*
100 	 * Squash the newline, otherwise atoi_paranoid() will complain about
101 	 * trailing non-NUL characters in the string.
102 	 */
103 	value[r - 1] = '\0';
104 	return atoi_paranoid(value);
105 }
106 
107 static bool get_module_param_bool(const char *module_name, const char *param)
108 {
109 	char value;
110 	ssize_t r;
111 
112 	r = get_module_param(module_name, param, &value, sizeof(value));
113 	TEST_ASSERT_EQ(r, 1);
114 
115 	if (value == 'Y')
116 		return true;
117 	else if (value == 'N')
118 		return false;
119 
120 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
121 }
122 
123 bool get_kvm_param_bool(const char *param)
124 {
125 	return get_module_param_bool("kvm", param);
126 }
127 
128 bool get_kvm_intel_param_bool(const char *param)
129 {
130 	return get_module_param_bool("kvm_intel", param);
131 }
132 
133 bool get_kvm_amd_param_bool(const char *param)
134 {
135 	return get_module_param_bool("kvm_amd", param);
136 }
137 
138 int get_kvm_param_integer(const char *param)
139 {
140 	return get_module_param_integer("kvm", param);
141 }
142 
143 int get_kvm_intel_param_integer(const char *param)
144 {
145 	return get_module_param_integer("kvm_intel", param);
146 }
147 
148 int get_kvm_amd_param_integer(const char *param)
149 {
150 	return get_module_param_integer("kvm_amd", param);
151 }
152 
153 /*
154  * Capability
155  *
156  * Input Args:
157  *   cap - Capability
158  *
159  * Output Args: None
160  *
161  * Return:
162  *   On success, the Value corresponding to the capability (KVM_CAP_*)
163  *   specified by the value of cap.  On failure a TEST_ASSERT failure
164  *   is produced.
165  *
166  * Looks up and returns the value corresponding to the capability
167  * (KVM_CAP_*) given by cap.
168  */
169 unsigned int kvm_check_cap(long cap)
170 {
171 	int ret;
172 	int kvm_fd;
173 
174 	kvm_fd = open_kvm_dev_path_or_exit();
175 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
176 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
177 
178 	close(kvm_fd);
179 
180 	return (unsigned int)ret;
181 }
182 
183 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
184 {
185 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
186 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
187 	else
188 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
189 	vm->dirty_ring_size = ring_size;
190 }
191 
192 static void vm_open(struct kvm_vm *vm)
193 {
194 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
195 
196 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
197 
198 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
199 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
200 
201 	if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
202 		vm->stats.fd = vm_get_stats_fd(vm);
203 	else
204 		vm->stats.fd = -1;
205 }
206 
207 const char *vm_guest_mode_string(uint32_t i)
208 {
209 	static const char * const strings[] = {
210 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
211 		[VM_MODE_P52V48_16K]	= "PA-bits:52,  VA-bits:48, 16K pages",
212 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
213 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
214 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
215 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
216 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
217 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
218 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
219 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
220 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
221 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
222 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
223 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
224 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
225 		[VM_MODE_P47V47_16K]	= "PA-bits:47,  VA-bits:47, 16K pages",
226 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
227 	};
228 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
229 		       "Missing new mode strings?");
230 
231 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
232 
233 	return strings[i];
234 }
235 
236 const struct vm_guest_mode_params vm_guest_mode_params[] = {
237 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
238 	[VM_MODE_P52V48_16K]	= { 52, 48,  0x4000, 14 },
239 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
240 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
241 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
242 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
243 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
244 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
245 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
246 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
247 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
248 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
249 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
250 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
251 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
252 	[VM_MODE_P47V47_16K]	= { 47, 47,  0x4000, 14 },
253 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
254 };
255 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
256 	       "Missing new mode params?");
257 
258 /*
259  * Initializes vm->vpages_valid to match the canonical VA space of the
260  * architecture.
261  *
262  * The default implementation is valid for architectures which split the
263  * range addressed by a single page table into a low and high region
264  * based on the MSB of the VA. On architectures with this behavior
265  * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
266  */
267 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
268 {
269 	sparsebit_set_num(vm->vpages_valid,
270 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
271 	sparsebit_set_num(vm->vpages_valid,
272 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
273 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
274 }
275 
276 struct kvm_vm *____vm_create(struct vm_shape shape)
277 {
278 	struct kvm_vm *vm;
279 
280 	vm = calloc(1, sizeof(*vm));
281 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
282 
283 	INIT_LIST_HEAD(&vm->vcpus);
284 	vm->regions.gpa_tree = RB_ROOT;
285 	vm->regions.hva_tree = RB_ROOT;
286 	hash_init(vm->regions.slot_hash);
287 
288 	vm->mode = shape.mode;
289 	vm->type = shape.type;
290 
291 	vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
292 	vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
293 	vm->page_size = vm_guest_mode_params[vm->mode].page_size;
294 	vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
295 
296 	/* Setup mode specific traits. */
297 	switch (vm->mode) {
298 	case VM_MODE_P52V48_4K:
299 		vm->pgtable_levels = 4;
300 		break;
301 	case VM_MODE_P52V48_64K:
302 		vm->pgtable_levels = 3;
303 		break;
304 	case VM_MODE_P48V48_4K:
305 		vm->pgtable_levels = 4;
306 		break;
307 	case VM_MODE_P48V48_64K:
308 		vm->pgtable_levels = 3;
309 		break;
310 	case VM_MODE_P40V48_4K:
311 	case VM_MODE_P36V48_4K:
312 		vm->pgtable_levels = 4;
313 		break;
314 	case VM_MODE_P40V48_64K:
315 	case VM_MODE_P36V48_64K:
316 		vm->pgtable_levels = 3;
317 		break;
318 	case VM_MODE_P52V48_16K:
319 	case VM_MODE_P48V48_16K:
320 	case VM_MODE_P40V48_16K:
321 	case VM_MODE_P36V48_16K:
322 		vm->pgtable_levels = 4;
323 		break;
324 	case VM_MODE_P47V47_16K:
325 	case VM_MODE_P36V47_16K:
326 		vm->pgtable_levels = 3;
327 		break;
328 	case VM_MODE_PXXV48_4K:
329 #ifdef __x86_64__
330 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
331 		kvm_init_vm_address_properties(vm);
332 		/*
333 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
334 		 * it doesn't take effect unless a CR4.LA57 is set, which it
335 		 * isn't for this mode (48-bit virtual address space).
336 		 */
337 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
338 			    "Linear address width (%d bits) not supported",
339 			    vm->va_bits);
340 		pr_debug("Guest physical address width detected: %d\n",
341 			 vm->pa_bits);
342 		vm->pgtable_levels = 4;
343 		vm->va_bits = 48;
344 #else
345 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
346 #endif
347 		break;
348 	case VM_MODE_P47V64_4K:
349 		vm->pgtable_levels = 5;
350 		break;
351 	case VM_MODE_P44V64_4K:
352 		vm->pgtable_levels = 5;
353 		break;
354 	default:
355 		TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
356 	}
357 
358 #ifdef __aarch64__
359 	TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
360 	if (vm->pa_bits != 40)
361 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
362 #endif
363 
364 	vm_open(vm);
365 
366 	/* Limit to VA-bit canonical virtual addresses. */
367 	vm->vpages_valid = sparsebit_alloc();
368 	vm_vaddr_populate_bitmap(vm);
369 
370 	/* Limit physical addresses to PA-bits. */
371 	vm->max_gfn = vm_compute_max_gfn(vm);
372 
373 	/* Allocate and setup memory for guest. */
374 	vm->vpages_mapped = sparsebit_alloc();
375 
376 	return vm;
377 }
378 
379 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
380 				     uint32_t nr_runnable_vcpus,
381 				     uint64_t extra_mem_pages)
382 {
383 	uint64_t page_size = vm_guest_mode_params[mode].page_size;
384 	uint64_t nr_pages;
385 
386 	TEST_ASSERT(nr_runnable_vcpus,
387 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs");
388 
389 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
390 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
391 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
392 
393 	/*
394 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
395 	 * test code and other per-VM assets that will be loaded into memslot0.
396 	 */
397 	nr_pages = 512;
398 
399 	/* Account for the per-vCPU stacks on behalf of the test. */
400 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
401 
402 	/*
403 	 * Account for the number of pages needed for the page tables.  The
404 	 * maximum page table size for a memory region will be when the
405 	 * smallest page size is used. Considering each page contains x page
406 	 * table descriptors, the total extra size for page tables (for extra
407 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
408 	 * than N/x*2.
409 	 */
410 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
411 
412 	/* Account for the number of pages needed by ucall. */
413 	nr_pages += ucall_nr_pages_required(page_size);
414 
415 	return vm_adjust_num_guest_pages(mode, nr_pages);
416 }
417 
418 void kvm_set_files_rlimit(uint32_t nr_vcpus)
419 {
420 	/*
421 	 * Each vCPU will open two file descriptors: the vCPU itself and the
422 	 * vCPU's binary stats file descriptor.  Add an arbitrary amount of
423 	 * buffer for all other files a test may open.
424 	 */
425 	int nr_fds_wanted = nr_vcpus * 2 + 100;
426 	struct rlimit rl;
427 
428 	/*
429 	 * Check that we're allowed to open nr_fds_wanted file descriptors and
430 	 * try raising the limits if needed.
431 	 */
432 	TEST_ASSERT(!getrlimit(RLIMIT_NOFILE, &rl), "getrlimit() failed!");
433 
434 	if (rl.rlim_cur < nr_fds_wanted) {
435 		rl.rlim_cur = nr_fds_wanted;
436 		if (rl.rlim_max < nr_fds_wanted) {
437 			int old_rlim_max = rl.rlim_max;
438 
439 			rl.rlim_max = nr_fds_wanted;
440 			__TEST_REQUIRE(setrlimit(RLIMIT_NOFILE, &rl) >= 0,
441 				       "RLIMIT_NOFILE hard limit is too low (%d, wanted %d)",
442 				       old_rlim_max, nr_fds_wanted);
443 		} else {
444 			TEST_ASSERT(!setrlimit(RLIMIT_NOFILE, &rl), "setrlimit() failed!");
445 		}
446 	}
447 
448 }
449 
450 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
451 			   uint64_t nr_extra_pages)
452 {
453 	uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
454 						 nr_extra_pages);
455 	struct userspace_mem_region *slot0;
456 	struct kvm_vm *vm;
457 	int i;
458 
459 	kvm_set_files_rlimit(nr_runnable_vcpus);
460 
461 	pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
462 		 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
463 
464 	vm = ____vm_create(shape);
465 
466 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
467 	for (i = 0; i < NR_MEM_REGIONS; i++)
468 		vm->memslots[i] = 0;
469 
470 	kvm_vm_elf_load(vm, program_invocation_name);
471 
472 	/*
473 	 * TODO: Add proper defines to protect the library's memslots, and then
474 	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
475 	 * read-only memslots as MMIO, and creating a read-only memslot for the
476 	 * MMIO region would prevent silently clobbering the MMIO region.
477 	 */
478 	slot0 = memslot2region(vm, 0);
479 	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
480 
481 	if (guest_random_seed != last_guest_seed) {
482 		pr_info("Random seed: 0x%x\n", guest_random_seed);
483 		last_guest_seed = guest_random_seed;
484 	}
485 	guest_rng = new_guest_random_state(guest_random_seed);
486 	sync_global_to_guest(vm, guest_rng);
487 
488 	kvm_arch_vm_post_create(vm);
489 
490 	return vm;
491 }
492 
493 /*
494  * VM Create with customized parameters
495  *
496  * Input Args:
497  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
498  *   nr_vcpus - VCPU count
499  *   extra_mem_pages - Non-slot0 physical memory total size
500  *   guest_code - Guest entry point
501  *   vcpuids - VCPU IDs
502  *
503  * Output Args: None
504  *
505  * Return:
506  *   Pointer to opaque structure that describes the created VM.
507  *
508  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
509  * extra_mem_pages is only used to calculate the maximum page table size,
510  * no real memory allocation for non-slot0 memory in this function.
511  */
512 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
513 				      uint64_t extra_mem_pages,
514 				      void *guest_code, struct kvm_vcpu *vcpus[])
515 {
516 	struct kvm_vm *vm;
517 	int i;
518 
519 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
520 
521 	vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
522 
523 	for (i = 0; i < nr_vcpus; ++i)
524 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
525 
526 	return vm;
527 }
528 
529 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
530 					       struct kvm_vcpu **vcpu,
531 					       uint64_t extra_mem_pages,
532 					       void *guest_code)
533 {
534 	struct kvm_vcpu *vcpus[1];
535 	struct kvm_vm *vm;
536 
537 	vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
538 
539 	*vcpu = vcpus[0];
540 	return vm;
541 }
542 
543 /*
544  * VM Restart
545  *
546  * Input Args:
547  *   vm - VM that has been released before
548  *
549  * Output Args: None
550  *
551  * Reopens the file descriptors associated to the VM and reinstates the
552  * global state, such as the irqchip and the memory regions that are mapped
553  * into the guest.
554  */
555 void kvm_vm_restart(struct kvm_vm *vmp)
556 {
557 	int ctr;
558 	struct userspace_mem_region *region;
559 
560 	vm_open(vmp);
561 	if (vmp->has_irqchip)
562 		vm_create_irqchip(vmp);
563 
564 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
565 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, &region->region);
566 
567 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
568 			    "  rc: %i errno: %i\n"
569 			    "  slot: %u flags: 0x%x\n"
570 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
571 			    ret, errno, region->region.slot,
572 			    region->region.flags,
573 			    region->region.guest_phys_addr,
574 			    region->region.memory_size);
575 	}
576 }
577 
578 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
579 					      uint32_t vcpu_id)
580 {
581 	return __vm_vcpu_add(vm, vcpu_id);
582 }
583 
584 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
585 {
586 	kvm_vm_restart(vm);
587 
588 	return vm_vcpu_recreate(vm, 0);
589 }
590 
591 void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
592 {
593 	cpu_set_t mask;
594 	int r;
595 
596 	CPU_ZERO(&mask);
597 	CPU_SET(pcpu, &mask);
598 	r = sched_setaffinity(0, sizeof(mask), &mask);
599 	TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu);
600 }
601 
602 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
603 {
604 	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
605 
606 	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
607 		    "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
608 	return pcpu;
609 }
610 
611 void kvm_print_vcpu_pinning_help(void)
612 {
613 	const char *name = program_invocation_name;
614 
615 	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
616 	       "     values (target pCPU), one for each vCPU, plus an optional\n"
617 	       "     entry for the main application task (specified via entry\n"
618 	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
619 	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
620 	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
621 	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
622 	       "         %s -v 3 -c 22,23,24,50\n\n"
623 	       "     To leave the application task unpinned, drop the final entry:\n\n"
624 	       "         %s -v 3 -c 22,23,24\n\n"
625 	       "     (default: no pinning)\n", name, name);
626 }
627 
628 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
629 			    int nr_vcpus)
630 {
631 	cpu_set_t allowed_mask;
632 	char *cpu, *cpu_list;
633 	char delim[2] = ",";
634 	int i, r;
635 
636 	cpu_list = strdup(pcpus_string);
637 	TEST_ASSERT(cpu_list, "strdup() allocation failed.");
638 
639 	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
640 	TEST_ASSERT(!r, "sched_getaffinity() failed");
641 
642 	cpu = strtok(cpu_list, delim);
643 
644 	/* 1. Get all pcpus for vcpus. */
645 	for (i = 0; i < nr_vcpus; i++) {
646 		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
647 		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
648 		cpu = strtok(NULL, delim);
649 	}
650 
651 	/* 2. Check if the main worker needs to be pinned. */
652 	if (cpu) {
653 		kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
654 		cpu = strtok(NULL, delim);
655 	}
656 
657 	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
658 	free(cpu_list);
659 }
660 
661 /*
662  * Userspace Memory Region Find
663  *
664  * Input Args:
665  *   vm - Virtual Machine
666  *   start - Starting VM physical address
667  *   end - Ending VM physical address, inclusive.
668  *
669  * Output Args: None
670  *
671  * Return:
672  *   Pointer to overlapping region, NULL if no such region.
673  *
674  * Searches for a region with any physical memory that overlaps with
675  * any portion of the guest physical addresses from start to end
676  * inclusive.  If multiple overlapping regions exist, a pointer to any
677  * of the regions is returned.  Null is returned only when no overlapping
678  * region exists.
679  */
680 static struct userspace_mem_region *
681 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
682 {
683 	struct rb_node *node;
684 
685 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
686 		struct userspace_mem_region *region =
687 			container_of(node, struct userspace_mem_region, gpa_node);
688 		uint64_t existing_start = region->region.guest_phys_addr;
689 		uint64_t existing_end = region->region.guest_phys_addr
690 			+ region->region.memory_size - 1;
691 		if (start <= existing_end && end >= existing_start)
692 			return region;
693 
694 		if (start < existing_start)
695 			node = node->rb_left;
696 		else
697 			node = node->rb_right;
698 	}
699 
700 	return NULL;
701 }
702 
703 static void kvm_stats_release(struct kvm_binary_stats *stats)
704 {
705 	int ret;
706 
707 	if (stats->fd < 0)
708 		return;
709 
710 	if (stats->desc) {
711 		free(stats->desc);
712 		stats->desc = NULL;
713 	}
714 
715 	ret = close(stats->fd);
716 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
717 	stats->fd = -1;
718 }
719 
720 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
721 {
722 
723 }
724 
725 /*
726  * VM VCPU Remove
727  *
728  * Input Args:
729  *   vcpu - VCPU to remove
730  *
731  * Output Args: None
732  *
733  * Return: None, TEST_ASSERT failures for all error conditions
734  *
735  * Removes a vCPU from a VM and frees its resources.
736  */
737 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
738 {
739 	int ret;
740 
741 	if (vcpu->dirty_gfns) {
742 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
743 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
744 		vcpu->dirty_gfns = NULL;
745 	}
746 
747 	ret = munmap(vcpu->run, vcpu_mmap_sz());
748 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
749 
750 	ret = close(vcpu->fd);
751 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
752 
753 	kvm_stats_release(&vcpu->stats);
754 
755 	list_del(&vcpu->list);
756 
757 	vcpu_arch_free(vcpu);
758 	free(vcpu);
759 }
760 
761 void kvm_vm_release(struct kvm_vm *vmp)
762 {
763 	struct kvm_vcpu *vcpu, *tmp;
764 	int ret;
765 
766 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
767 		vm_vcpu_rm(vmp, vcpu);
768 
769 	ret = close(vmp->fd);
770 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
771 
772 	ret = close(vmp->kvm_fd);
773 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
774 
775 	/* Free cached stats metadata and close FD */
776 	kvm_stats_release(&vmp->stats);
777 }
778 
779 static void __vm_mem_region_delete(struct kvm_vm *vm,
780 				   struct userspace_mem_region *region)
781 {
782 	int ret;
783 
784 	rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
785 	rb_erase(&region->hva_node, &vm->regions.hva_tree);
786 	hash_del(&region->slot_node);
787 
788 	sparsebit_free(&region->unused_phy_pages);
789 	sparsebit_free(&region->protected_phy_pages);
790 	ret = munmap(region->mmap_start, region->mmap_size);
791 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
792 	if (region->fd >= 0) {
793 		/* There's an extra map when using shared memory. */
794 		ret = munmap(region->mmap_alias, region->mmap_size);
795 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
796 		close(region->fd);
797 	}
798 	if (region->region.guest_memfd >= 0)
799 		close(region->region.guest_memfd);
800 
801 	free(region);
802 }
803 
804 /*
805  * Destroys and frees the VM pointed to by vmp.
806  */
807 void kvm_vm_free(struct kvm_vm *vmp)
808 {
809 	int ctr;
810 	struct hlist_node *node;
811 	struct userspace_mem_region *region;
812 
813 	if (vmp == NULL)
814 		return;
815 
816 	/* Free userspace_mem_regions. */
817 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
818 		__vm_mem_region_delete(vmp, region);
819 
820 	/* Free sparsebit arrays. */
821 	sparsebit_free(&vmp->vpages_valid);
822 	sparsebit_free(&vmp->vpages_mapped);
823 
824 	kvm_vm_release(vmp);
825 
826 	/* Free the structure describing the VM. */
827 	free(vmp);
828 }
829 
830 int kvm_memfd_alloc(size_t size, bool hugepages)
831 {
832 	int memfd_flags = MFD_CLOEXEC;
833 	int fd, r;
834 
835 	if (hugepages)
836 		memfd_flags |= MFD_HUGETLB;
837 
838 	fd = memfd_create("kvm_selftest", memfd_flags);
839 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
840 
841 	r = ftruncate(fd, size);
842 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
843 
844 	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
845 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
846 
847 	return fd;
848 }
849 
850 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
851 					       struct userspace_mem_region *region)
852 {
853 	struct rb_node **cur, *parent;
854 
855 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
856 		struct userspace_mem_region *cregion;
857 
858 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
859 		parent = *cur;
860 		if (region->region.guest_phys_addr <
861 		    cregion->region.guest_phys_addr)
862 			cur = &(*cur)->rb_left;
863 		else {
864 			TEST_ASSERT(region->region.guest_phys_addr !=
865 				    cregion->region.guest_phys_addr,
866 				    "Duplicate GPA in region tree");
867 
868 			cur = &(*cur)->rb_right;
869 		}
870 	}
871 
872 	rb_link_node(&region->gpa_node, parent, cur);
873 	rb_insert_color(&region->gpa_node, gpa_tree);
874 }
875 
876 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
877 					       struct userspace_mem_region *region)
878 {
879 	struct rb_node **cur, *parent;
880 
881 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
882 		struct userspace_mem_region *cregion;
883 
884 		cregion = container_of(*cur, typeof(*cregion), hva_node);
885 		parent = *cur;
886 		if (region->host_mem < cregion->host_mem)
887 			cur = &(*cur)->rb_left;
888 		else {
889 			TEST_ASSERT(region->host_mem !=
890 				    cregion->host_mem,
891 				    "Duplicate HVA in region tree");
892 
893 			cur = &(*cur)->rb_right;
894 		}
895 	}
896 
897 	rb_link_node(&region->hva_node, parent, cur);
898 	rb_insert_color(&region->hva_node, hva_tree);
899 }
900 
901 
902 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
903 				uint64_t gpa, uint64_t size, void *hva)
904 {
905 	struct kvm_userspace_memory_region region = {
906 		.slot = slot,
907 		.flags = flags,
908 		.guest_phys_addr = gpa,
909 		.memory_size = size,
910 		.userspace_addr = (uintptr_t)hva,
911 	};
912 
913 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
914 }
915 
916 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
917 			       uint64_t gpa, uint64_t size, void *hva)
918 {
919 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
920 
921 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
922 		    errno, strerror(errno));
923 }
924 
925 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2()			\
926 	__TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2),	\
927 		       "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
928 
929 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
930 				 uint64_t gpa, uint64_t size, void *hva,
931 				 uint32_t guest_memfd, uint64_t guest_memfd_offset)
932 {
933 	struct kvm_userspace_memory_region2 region = {
934 		.slot = slot,
935 		.flags = flags,
936 		.guest_phys_addr = gpa,
937 		.memory_size = size,
938 		.userspace_addr = (uintptr_t)hva,
939 		.guest_memfd = guest_memfd,
940 		.guest_memfd_offset = guest_memfd_offset,
941 	};
942 
943 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
944 
945 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, &region);
946 }
947 
948 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
949 				uint64_t gpa, uint64_t size, void *hva,
950 				uint32_t guest_memfd, uint64_t guest_memfd_offset)
951 {
952 	int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
953 					       guest_memfd, guest_memfd_offset);
954 
955 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
956 		    errno, strerror(errno));
957 }
958 
959 
960 /* FIXME: This thing needs to be ripped apart and rewritten. */
961 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
962 		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
963 		uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
964 {
965 	int ret;
966 	struct userspace_mem_region *region;
967 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
968 	size_t mem_size = npages * vm->page_size;
969 	size_t alignment;
970 
971 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
972 
973 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
974 		"Number of guest pages is not compatible with the host. "
975 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
976 
977 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
978 		"address not on a page boundary.\n"
979 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
980 		guest_paddr, vm->page_size);
981 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
982 		<= vm->max_gfn, "Physical range beyond maximum "
983 		"supported physical address,\n"
984 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
985 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
986 		guest_paddr, npages, vm->max_gfn, vm->page_size);
987 
988 	/*
989 	 * Confirm a mem region with an overlapping address doesn't
990 	 * already exist.
991 	 */
992 	region = (struct userspace_mem_region *) userspace_mem_region_find(
993 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
994 	if (region != NULL)
995 		TEST_FAIL("overlapping userspace_mem_region already "
996 			"exists\n"
997 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
998 			"page_size: 0x%x\n"
999 			"  existing guest_paddr: 0x%lx size: 0x%lx",
1000 			guest_paddr, npages, vm->page_size,
1001 			(uint64_t) region->region.guest_phys_addr,
1002 			(uint64_t) region->region.memory_size);
1003 
1004 	/* Confirm no region with the requested slot already exists. */
1005 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1006 			       slot) {
1007 		if (region->region.slot != slot)
1008 			continue;
1009 
1010 		TEST_FAIL("A mem region with the requested slot "
1011 			"already exists.\n"
1012 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
1013 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
1014 			slot, guest_paddr, npages,
1015 			region->region.slot,
1016 			(uint64_t) region->region.guest_phys_addr,
1017 			(uint64_t) region->region.memory_size);
1018 	}
1019 
1020 	/* Allocate and initialize new mem region structure. */
1021 	region = calloc(1, sizeof(*region));
1022 	TEST_ASSERT(region != NULL, "Insufficient Memory");
1023 	region->mmap_size = mem_size;
1024 
1025 #ifdef __s390x__
1026 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
1027 	alignment = 0x100000;
1028 #else
1029 	alignment = 1;
1030 #endif
1031 
1032 	/*
1033 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
1034 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
1035 	 * because mmap will always return an address aligned to the HugeTLB
1036 	 * page size.
1037 	 */
1038 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
1039 		alignment = max(backing_src_pagesz, alignment);
1040 
1041 	TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
1042 
1043 	/* Add enough memory to align up if necessary */
1044 	if (alignment > 1)
1045 		region->mmap_size += alignment;
1046 
1047 	region->fd = -1;
1048 	if (backing_src_is_shared(src_type))
1049 		region->fd = kvm_memfd_alloc(region->mmap_size,
1050 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
1051 
1052 	region->mmap_start = mmap(NULL, region->mmap_size,
1053 				  PROT_READ | PROT_WRITE,
1054 				  vm_mem_backing_src_alias(src_type)->flag,
1055 				  region->fd, 0);
1056 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
1057 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1058 
1059 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1060 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1061 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1062 		    region->mmap_start, backing_src_pagesz);
1063 
1064 	/* Align host address */
1065 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1066 
1067 	/* As needed perform madvise */
1068 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1069 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1070 		ret = madvise(region->host_mem, mem_size,
1071 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1072 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1073 			    region->host_mem, mem_size,
1074 			    vm_mem_backing_src_alias(src_type)->name);
1075 	}
1076 
1077 	region->backing_src_type = src_type;
1078 
1079 	if (flags & KVM_MEM_GUEST_MEMFD) {
1080 		if (guest_memfd < 0) {
1081 			uint32_t guest_memfd_flags = 0;
1082 			TEST_ASSERT(!guest_memfd_offset,
1083 				    "Offset must be zero when creating new guest_memfd");
1084 			guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1085 		} else {
1086 			/*
1087 			 * Install a unique fd for each memslot so that the fd
1088 			 * can be closed when the region is deleted without
1089 			 * needing to track if the fd is owned by the framework
1090 			 * or by the caller.
1091 			 */
1092 			guest_memfd = dup(guest_memfd);
1093 			TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1094 		}
1095 
1096 		region->region.guest_memfd = guest_memfd;
1097 		region->region.guest_memfd_offset = guest_memfd_offset;
1098 	} else {
1099 		region->region.guest_memfd = -1;
1100 	}
1101 
1102 	region->unused_phy_pages = sparsebit_alloc();
1103 	if (vm_arch_has_protected_memory(vm))
1104 		region->protected_phy_pages = sparsebit_alloc();
1105 	sparsebit_set_num(region->unused_phy_pages,
1106 		guest_paddr >> vm->page_shift, npages);
1107 	region->region.slot = slot;
1108 	region->region.flags = flags;
1109 	region->region.guest_phys_addr = guest_paddr;
1110 	region->region.memory_size = npages * vm->page_size;
1111 	region->region.userspace_addr = (uintptr_t) region->host_mem;
1112 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1113 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1114 		"  rc: %i errno: %i\n"
1115 		"  slot: %u flags: 0x%x\n"
1116 		"  guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1117 		ret, errno, slot, flags,
1118 		guest_paddr, (uint64_t) region->region.memory_size,
1119 		region->region.guest_memfd);
1120 
1121 	/* Add to quick lookup data structures */
1122 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1123 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1124 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1125 
1126 	/* If shared memory, create an alias. */
1127 	if (region->fd >= 0) {
1128 		region->mmap_alias = mmap(NULL, region->mmap_size,
1129 					  PROT_READ | PROT_WRITE,
1130 					  vm_mem_backing_src_alias(src_type)->flag,
1131 					  region->fd, 0);
1132 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1133 			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1134 
1135 		/* Align host alias address */
1136 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1137 	}
1138 }
1139 
1140 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1141 				 enum vm_mem_backing_src_type src_type,
1142 				 uint64_t guest_paddr, uint32_t slot,
1143 				 uint64_t npages, uint32_t flags)
1144 {
1145 	vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1146 }
1147 
1148 /*
1149  * Memslot to region
1150  *
1151  * Input Args:
1152  *   vm - Virtual Machine
1153  *   memslot - KVM memory slot ID
1154  *
1155  * Output Args: None
1156  *
1157  * Return:
1158  *   Pointer to memory region structure that describe memory region
1159  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1160  *   on error (e.g. currently no memory region using memslot as a KVM
1161  *   memory slot ID).
1162  */
1163 struct userspace_mem_region *
1164 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1165 {
1166 	struct userspace_mem_region *region;
1167 
1168 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1169 			       memslot)
1170 		if (region->region.slot == memslot)
1171 			return region;
1172 
1173 	fprintf(stderr, "No mem region with the requested slot found,\n"
1174 		"  requested slot: %u\n", memslot);
1175 	fputs("---- vm dump ----\n", stderr);
1176 	vm_dump(stderr, vm, 2);
1177 	TEST_FAIL("Mem region not found");
1178 	return NULL;
1179 }
1180 
1181 /*
1182  * VM Memory Region Flags Set
1183  *
1184  * Input Args:
1185  *   vm - Virtual Machine
1186  *   flags - Starting guest physical address
1187  *
1188  * Output Args: None
1189  *
1190  * Return: None
1191  *
1192  * Sets the flags of the memory region specified by the value of slot,
1193  * to the values given by flags.
1194  */
1195 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1196 {
1197 	int ret;
1198 	struct userspace_mem_region *region;
1199 
1200 	region = memslot2region(vm, slot);
1201 
1202 	region->region.flags = flags;
1203 
1204 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1205 
1206 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1207 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1208 		ret, errno, slot, flags);
1209 }
1210 
1211 /*
1212  * VM Memory Region Move
1213  *
1214  * Input Args:
1215  *   vm - Virtual Machine
1216  *   slot - Slot of the memory region to move
1217  *   new_gpa - Starting guest physical address
1218  *
1219  * Output Args: None
1220  *
1221  * Return: None
1222  *
1223  * Change the gpa of a memory region.
1224  */
1225 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1226 {
1227 	struct userspace_mem_region *region;
1228 	int ret;
1229 
1230 	region = memslot2region(vm, slot);
1231 
1232 	region->region.guest_phys_addr = new_gpa;
1233 
1234 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1235 
1236 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1237 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1238 		    ret, errno, slot, new_gpa);
1239 }
1240 
1241 /*
1242  * VM Memory Region Delete
1243  *
1244  * Input Args:
1245  *   vm - Virtual Machine
1246  *   slot - Slot of the memory region to delete
1247  *
1248  * Output Args: None
1249  *
1250  * Return: None
1251  *
1252  * Delete a memory region.
1253  */
1254 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1255 {
1256 	struct userspace_mem_region *region = memslot2region(vm, slot);
1257 
1258 	region->region.memory_size = 0;
1259 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1260 
1261 	__vm_mem_region_delete(vm, region);
1262 }
1263 
1264 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1265 			    bool punch_hole)
1266 {
1267 	const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1268 	struct userspace_mem_region *region;
1269 	uint64_t end = base + size;
1270 	uint64_t gpa, len;
1271 	off_t fd_offset;
1272 	int ret;
1273 
1274 	for (gpa = base; gpa < end; gpa += len) {
1275 		uint64_t offset;
1276 
1277 		region = userspace_mem_region_find(vm, gpa, gpa);
1278 		TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1279 			    "Private memory region not found for GPA 0x%lx", gpa);
1280 
1281 		offset = gpa - region->region.guest_phys_addr;
1282 		fd_offset = region->region.guest_memfd_offset + offset;
1283 		len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1284 
1285 		ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1286 		TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1287 			    punch_hole ? "punch hole" : "allocate", gpa, len,
1288 			    region->region.guest_memfd, mode, fd_offset);
1289 	}
1290 }
1291 
1292 /* Returns the size of a vCPU's kvm_run structure. */
1293 static int vcpu_mmap_sz(void)
1294 {
1295 	int dev_fd, ret;
1296 
1297 	dev_fd = open_kvm_dev_path_or_exit();
1298 
1299 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1300 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1301 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1302 
1303 	close(dev_fd);
1304 
1305 	return ret;
1306 }
1307 
1308 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1309 {
1310 	struct kvm_vcpu *vcpu;
1311 
1312 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1313 		if (vcpu->id == vcpu_id)
1314 			return true;
1315 	}
1316 
1317 	return false;
1318 }
1319 
1320 /*
1321  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1322  * No additional vCPU setup is done.  Returns the vCPU.
1323  */
1324 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1325 {
1326 	struct kvm_vcpu *vcpu;
1327 
1328 	/* Confirm a vcpu with the specified id doesn't already exist. */
1329 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1330 
1331 	/* Allocate and initialize new vcpu structure. */
1332 	vcpu = calloc(1, sizeof(*vcpu));
1333 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1334 
1335 	vcpu->vm = vm;
1336 	vcpu->id = vcpu_id;
1337 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1338 	TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1339 
1340 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1341 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1342 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1343 	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1344 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1345 	TEST_ASSERT(vcpu->run != MAP_FAILED,
1346 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1347 
1348 	if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
1349 		vcpu->stats.fd = vcpu_get_stats_fd(vcpu);
1350 	else
1351 		vcpu->stats.fd = -1;
1352 
1353 	/* Add to linked-list of VCPUs. */
1354 	list_add(&vcpu->list, &vm->vcpus);
1355 
1356 	return vcpu;
1357 }
1358 
1359 /*
1360  * VM Virtual Address Unused Gap
1361  *
1362  * Input Args:
1363  *   vm - Virtual Machine
1364  *   sz - Size (bytes)
1365  *   vaddr_min - Minimum Virtual Address
1366  *
1367  * Output Args: None
1368  *
1369  * Return:
1370  *   Lowest virtual address at or below vaddr_min, with at least
1371  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1372  *   size sz is available.
1373  *
1374  * Within the VM specified by vm, locates the lowest starting virtual
1375  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1376  * TEST_ASSERT failure occurs for invalid input or no area of at least
1377  * sz unallocated bytes >= vaddr_min is available.
1378  */
1379 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1380 			       vm_vaddr_t vaddr_min)
1381 {
1382 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1383 
1384 	/* Determine lowest permitted virtual page index. */
1385 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1386 	if ((pgidx_start * vm->page_size) < vaddr_min)
1387 		goto no_va_found;
1388 
1389 	/* Loop over section with enough valid virtual page indexes. */
1390 	if (!sparsebit_is_set_num(vm->vpages_valid,
1391 		pgidx_start, pages))
1392 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1393 			pgidx_start, pages);
1394 	do {
1395 		/*
1396 		 * Are there enough unused virtual pages available at
1397 		 * the currently proposed starting virtual page index.
1398 		 * If not, adjust proposed starting index to next
1399 		 * possible.
1400 		 */
1401 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1402 			pgidx_start, pages))
1403 			goto va_found;
1404 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1405 			pgidx_start, pages);
1406 		if (pgidx_start == 0)
1407 			goto no_va_found;
1408 
1409 		/*
1410 		 * If needed, adjust proposed starting virtual address,
1411 		 * to next range of valid virtual addresses.
1412 		 */
1413 		if (!sparsebit_is_set_num(vm->vpages_valid,
1414 			pgidx_start, pages)) {
1415 			pgidx_start = sparsebit_next_set_num(
1416 				vm->vpages_valid, pgidx_start, pages);
1417 			if (pgidx_start == 0)
1418 				goto no_va_found;
1419 		}
1420 	} while (pgidx_start != 0);
1421 
1422 no_va_found:
1423 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1424 
1425 	/* NOT REACHED */
1426 	return -1;
1427 
1428 va_found:
1429 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1430 		pgidx_start, pages),
1431 		"Unexpected, invalid virtual page index range,\n"
1432 		"  pgidx_start: 0x%lx\n"
1433 		"  pages: 0x%lx",
1434 		pgidx_start, pages);
1435 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1436 		pgidx_start, pages),
1437 		"Unexpected, pages already mapped,\n"
1438 		"  pgidx_start: 0x%lx\n"
1439 		"  pages: 0x%lx",
1440 		pgidx_start, pages);
1441 
1442 	return pgidx_start * vm->page_size;
1443 }
1444 
1445 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1446 				     vm_vaddr_t vaddr_min,
1447 				     enum kvm_mem_region_type type,
1448 				     bool protected)
1449 {
1450 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1451 
1452 	virt_pgd_alloc(vm);
1453 	vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1454 						KVM_UTIL_MIN_PFN * vm->page_size,
1455 						vm->memslots[type], protected);
1456 
1457 	/*
1458 	 * Find an unused range of virtual page addresses of at least
1459 	 * pages in length.
1460 	 */
1461 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1462 
1463 	/* Map the virtual pages. */
1464 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1465 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1466 
1467 		virt_pg_map(vm, vaddr, paddr);
1468 
1469 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1470 	}
1471 
1472 	return vaddr_start;
1473 }
1474 
1475 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1476 			    enum kvm_mem_region_type type)
1477 {
1478 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1479 				  vm_arch_has_protected_memory(vm));
1480 }
1481 
1482 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1483 				 vm_vaddr_t vaddr_min,
1484 				 enum kvm_mem_region_type type)
1485 {
1486 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1487 }
1488 
1489 /*
1490  * VM Virtual Address Allocate
1491  *
1492  * Input Args:
1493  *   vm - Virtual Machine
1494  *   sz - Size in bytes
1495  *   vaddr_min - Minimum starting virtual address
1496  *
1497  * Output Args: None
1498  *
1499  * Return:
1500  *   Starting guest virtual address
1501  *
1502  * Allocates at least sz bytes within the virtual address space of the vm
1503  * given by vm.  The allocated bytes are mapped to a virtual address >=
1504  * the address given by vaddr_min.  Note that each allocation uses a
1505  * a unique set of pages, with the minimum real allocation being at least
1506  * a page. The allocated physical space comes from the TEST_DATA memory region.
1507  */
1508 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1509 {
1510 	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1511 }
1512 
1513 /*
1514  * VM Virtual Address Allocate Pages
1515  *
1516  * Input Args:
1517  *   vm - Virtual Machine
1518  *
1519  * Output Args: None
1520  *
1521  * Return:
1522  *   Starting guest virtual address
1523  *
1524  * Allocates at least N system pages worth of bytes within the virtual address
1525  * space of the vm.
1526  */
1527 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1528 {
1529 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1530 }
1531 
1532 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1533 {
1534 	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1535 }
1536 
1537 /*
1538  * VM Virtual Address Allocate Page
1539  *
1540  * Input Args:
1541  *   vm - Virtual Machine
1542  *
1543  * Output Args: None
1544  *
1545  * Return:
1546  *   Starting guest virtual address
1547  *
1548  * Allocates at least one system page worth of bytes within the virtual address
1549  * space of the vm.
1550  */
1551 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1552 {
1553 	return vm_vaddr_alloc_pages(vm, 1);
1554 }
1555 
1556 /*
1557  * Map a range of VM virtual address to the VM's physical address
1558  *
1559  * Input Args:
1560  *   vm - Virtual Machine
1561  *   vaddr - Virtuall address to map
1562  *   paddr - VM Physical Address
1563  *   npages - The number of pages to map
1564  *
1565  * Output Args: None
1566  *
1567  * Return: None
1568  *
1569  * Within the VM given by @vm, creates a virtual translation for
1570  * @npages starting at @vaddr to the page range starting at @paddr.
1571  */
1572 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1573 	      unsigned int npages)
1574 {
1575 	size_t page_size = vm->page_size;
1576 	size_t size = npages * page_size;
1577 
1578 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1579 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1580 
1581 	while (npages--) {
1582 		virt_pg_map(vm, vaddr, paddr);
1583 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1584 
1585 		vaddr += page_size;
1586 		paddr += page_size;
1587 	}
1588 }
1589 
1590 /*
1591  * Address VM Physical to Host Virtual
1592  *
1593  * Input Args:
1594  *   vm - Virtual Machine
1595  *   gpa - VM physical address
1596  *
1597  * Output Args: None
1598  *
1599  * Return:
1600  *   Equivalent host virtual address
1601  *
1602  * Locates the memory region containing the VM physical address given
1603  * by gpa, within the VM given by vm.  When found, the host virtual
1604  * address providing the memory to the vm physical address is returned.
1605  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1606  */
1607 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1608 {
1609 	struct userspace_mem_region *region;
1610 
1611 	gpa = vm_untag_gpa(vm, gpa);
1612 
1613 	region = userspace_mem_region_find(vm, gpa, gpa);
1614 	if (!region) {
1615 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1616 		return NULL;
1617 	}
1618 
1619 	return (void *)((uintptr_t)region->host_mem
1620 		+ (gpa - region->region.guest_phys_addr));
1621 }
1622 
1623 /*
1624  * Address Host Virtual to VM Physical
1625  *
1626  * Input Args:
1627  *   vm - Virtual Machine
1628  *   hva - Host virtual address
1629  *
1630  * Output Args: None
1631  *
1632  * Return:
1633  *   Equivalent VM physical address
1634  *
1635  * Locates the memory region containing the host virtual address given
1636  * by hva, within the VM given by vm.  When found, the equivalent
1637  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1638  * region containing hva exists.
1639  */
1640 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1641 {
1642 	struct rb_node *node;
1643 
1644 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1645 		struct userspace_mem_region *region =
1646 			container_of(node, struct userspace_mem_region, hva_node);
1647 
1648 		if (hva >= region->host_mem) {
1649 			if (hva <= (region->host_mem
1650 				+ region->region.memory_size - 1))
1651 				return (vm_paddr_t)((uintptr_t)
1652 					region->region.guest_phys_addr
1653 					+ (hva - (uintptr_t)region->host_mem));
1654 
1655 			node = node->rb_right;
1656 		} else
1657 			node = node->rb_left;
1658 	}
1659 
1660 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1661 	return -1;
1662 }
1663 
1664 /*
1665  * Address VM physical to Host Virtual *alias*.
1666  *
1667  * Input Args:
1668  *   vm - Virtual Machine
1669  *   gpa - VM physical address
1670  *
1671  * Output Args: None
1672  *
1673  * Return:
1674  *   Equivalent address within the host virtual *alias* area, or NULL
1675  *   (without failing the test) if the guest memory is not shared (so
1676  *   no alias exists).
1677  *
1678  * Create a writable, shared virtual=>physical alias for the specific GPA.
1679  * The primary use case is to allow the host selftest to manipulate guest
1680  * memory without mapping said memory in the guest's address space. And, for
1681  * userfaultfd-based demand paging, to do so without triggering userfaults.
1682  */
1683 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1684 {
1685 	struct userspace_mem_region *region;
1686 	uintptr_t offset;
1687 
1688 	region = userspace_mem_region_find(vm, gpa, gpa);
1689 	if (!region)
1690 		return NULL;
1691 
1692 	if (!region->host_alias)
1693 		return NULL;
1694 
1695 	offset = gpa - region->region.guest_phys_addr;
1696 	return (void *) ((uintptr_t) region->host_alias + offset);
1697 }
1698 
1699 /* Create an interrupt controller chip for the specified VM. */
1700 void vm_create_irqchip(struct kvm_vm *vm)
1701 {
1702 	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1703 
1704 	vm->has_irqchip = true;
1705 }
1706 
1707 int _vcpu_run(struct kvm_vcpu *vcpu)
1708 {
1709 	int rc;
1710 
1711 	do {
1712 		rc = __vcpu_run(vcpu);
1713 	} while (rc == -1 && errno == EINTR);
1714 
1715 	if (!rc)
1716 		assert_on_unhandled_exception(vcpu);
1717 
1718 	return rc;
1719 }
1720 
1721 /*
1722  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1723  * Assert if the KVM returns an error (other than -EINTR).
1724  */
1725 void vcpu_run(struct kvm_vcpu *vcpu)
1726 {
1727 	int ret = _vcpu_run(vcpu);
1728 
1729 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1730 }
1731 
1732 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1733 {
1734 	int ret;
1735 
1736 	vcpu->run->immediate_exit = 1;
1737 	ret = __vcpu_run(vcpu);
1738 	vcpu->run->immediate_exit = 0;
1739 
1740 	TEST_ASSERT(ret == -1 && errno == EINTR,
1741 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1742 		    ret, errno);
1743 }
1744 
1745 /*
1746  * Get the list of guest registers which are supported for
1747  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1748  * it is the caller's responsibility to free the list.
1749  */
1750 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1751 {
1752 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1753 	int ret;
1754 
1755 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1756 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1757 
1758 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1759 	reg_list->n = reg_list_n.n;
1760 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1761 	return reg_list;
1762 }
1763 
1764 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1765 {
1766 	uint32_t page_size = getpagesize();
1767 	uint32_t size = vcpu->vm->dirty_ring_size;
1768 
1769 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1770 
1771 	if (!vcpu->dirty_gfns) {
1772 		void *addr;
1773 
1774 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1775 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1776 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1777 
1778 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1779 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1780 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1781 
1782 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1783 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1784 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1785 
1786 		vcpu->dirty_gfns = addr;
1787 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1788 	}
1789 
1790 	return vcpu->dirty_gfns;
1791 }
1792 
1793 /*
1794  * Device Ioctl
1795  */
1796 
1797 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1798 {
1799 	struct kvm_device_attr attribute = {
1800 		.group = group,
1801 		.attr = attr,
1802 		.flags = 0,
1803 	};
1804 
1805 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1806 }
1807 
1808 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1809 {
1810 	struct kvm_create_device create_dev = {
1811 		.type = type,
1812 		.flags = KVM_CREATE_DEVICE_TEST,
1813 	};
1814 
1815 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1816 }
1817 
1818 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1819 {
1820 	struct kvm_create_device create_dev = {
1821 		.type = type,
1822 		.fd = -1,
1823 		.flags = 0,
1824 	};
1825 	int err;
1826 
1827 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1828 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1829 	return err ? : create_dev.fd;
1830 }
1831 
1832 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1833 {
1834 	struct kvm_device_attr kvmattr = {
1835 		.group = group,
1836 		.attr = attr,
1837 		.flags = 0,
1838 		.addr = (uintptr_t)val,
1839 	};
1840 
1841 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1842 }
1843 
1844 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1845 {
1846 	struct kvm_device_attr kvmattr = {
1847 		.group = group,
1848 		.attr = attr,
1849 		.flags = 0,
1850 		.addr = (uintptr_t)val,
1851 	};
1852 
1853 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1854 }
1855 
1856 /*
1857  * IRQ related functions.
1858  */
1859 
1860 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1861 {
1862 	struct kvm_irq_level irq_level = {
1863 		.irq    = irq,
1864 		.level  = level,
1865 	};
1866 
1867 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1868 }
1869 
1870 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1871 {
1872 	int ret = _kvm_irq_line(vm, irq, level);
1873 
1874 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1875 }
1876 
1877 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1878 {
1879 	struct kvm_irq_routing *routing;
1880 	size_t size;
1881 
1882 	size = sizeof(struct kvm_irq_routing);
1883 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1884 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1885 	routing = calloc(1, size);
1886 	assert(routing);
1887 
1888 	return routing;
1889 }
1890 
1891 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1892 		uint32_t gsi, uint32_t pin)
1893 {
1894 	int i;
1895 
1896 	assert(routing);
1897 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1898 
1899 	i = routing->nr;
1900 	routing->entries[i].gsi = gsi;
1901 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1902 	routing->entries[i].flags = 0;
1903 	routing->entries[i].u.irqchip.irqchip = 0;
1904 	routing->entries[i].u.irqchip.pin = pin;
1905 	routing->nr++;
1906 }
1907 
1908 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1909 {
1910 	int ret;
1911 
1912 	assert(routing);
1913 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1914 	free(routing);
1915 
1916 	return ret;
1917 }
1918 
1919 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1920 {
1921 	int ret;
1922 
1923 	ret = _kvm_gsi_routing_write(vm, routing);
1924 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1925 }
1926 
1927 /*
1928  * VM Dump
1929  *
1930  * Input Args:
1931  *   vm - Virtual Machine
1932  *   indent - Left margin indent amount
1933  *
1934  * Output Args:
1935  *   stream - Output FILE stream
1936  *
1937  * Return: None
1938  *
1939  * Dumps the current state of the VM given by vm, to the FILE stream
1940  * given by stream.
1941  */
1942 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1943 {
1944 	int ctr;
1945 	struct userspace_mem_region *region;
1946 	struct kvm_vcpu *vcpu;
1947 
1948 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1949 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1950 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1951 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1952 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1953 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1954 			"host_virt: %p\n", indent + 2, "",
1955 			(uint64_t) region->region.guest_phys_addr,
1956 			(uint64_t) region->region.memory_size,
1957 			region->host_mem);
1958 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1959 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1960 		if (region->protected_phy_pages) {
1961 			fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1962 			sparsebit_dump(stream, region->protected_phy_pages, 0);
1963 		}
1964 	}
1965 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1966 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1967 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1968 		vm->pgd_created);
1969 	if (vm->pgd_created) {
1970 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1971 			indent + 2, "");
1972 		virt_dump(stream, vm, indent + 4);
1973 	}
1974 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1975 
1976 	list_for_each_entry(vcpu, &vm->vcpus, list)
1977 		vcpu_dump(stream, vcpu, indent + 2);
1978 }
1979 
1980 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1981 
1982 /* Known KVM exit reasons */
1983 static struct exit_reason {
1984 	unsigned int reason;
1985 	const char *name;
1986 } exit_reasons_known[] = {
1987 	KVM_EXIT_STRING(UNKNOWN),
1988 	KVM_EXIT_STRING(EXCEPTION),
1989 	KVM_EXIT_STRING(IO),
1990 	KVM_EXIT_STRING(HYPERCALL),
1991 	KVM_EXIT_STRING(DEBUG),
1992 	KVM_EXIT_STRING(HLT),
1993 	KVM_EXIT_STRING(MMIO),
1994 	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
1995 	KVM_EXIT_STRING(SHUTDOWN),
1996 	KVM_EXIT_STRING(FAIL_ENTRY),
1997 	KVM_EXIT_STRING(INTR),
1998 	KVM_EXIT_STRING(SET_TPR),
1999 	KVM_EXIT_STRING(TPR_ACCESS),
2000 	KVM_EXIT_STRING(S390_SIEIC),
2001 	KVM_EXIT_STRING(S390_RESET),
2002 	KVM_EXIT_STRING(DCR),
2003 	KVM_EXIT_STRING(NMI),
2004 	KVM_EXIT_STRING(INTERNAL_ERROR),
2005 	KVM_EXIT_STRING(OSI),
2006 	KVM_EXIT_STRING(PAPR_HCALL),
2007 	KVM_EXIT_STRING(S390_UCONTROL),
2008 	KVM_EXIT_STRING(WATCHDOG),
2009 	KVM_EXIT_STRING(S390_TSCH),
2010 	KVM_EXIT_STRING(EPR),
2011 	KVM_EXIT_STRING(SYSTEM_EVENT),
2012 	KVM_EXIT_STRING(S390_STSI),
2013 	KVM_EXIT_STRING(IOAPIC_EOI),
2014 	KVM_EXIT_STRING(HYPERV),
2015 	KVM_EXIT_STRING(ARM_NISV),
2016 	KVM_EXIT_STRING(X86_RDMSR),
2017 	KVM_EXIT_STRING(X86_WRMSR),
2018 	KVM_EXIT_STRING(DIRTY_RING_FULL),
2019 	KVM_EXIT_STRING(AP_RESET_HOLD),
2020 	KVM_EXIT_STRING(X86_BUS_LOCK),
2021 	KVM_EXIT_STRING(XEN),
2022 	KVM_EXIT_STRING(RISCV_SBI),
2023 	KVM_EXIT_STRING(RISCV_CSR),
2024 	KVM_EXIT_STRING(NOTIFY),
2025 	KVM_EXIT_STRING(LOONGARCH_IOCSR),
2026 	KVM_EXIT_STRING(MEMORY_FAULT),
2027 };
2028 
2029 /*
2030  * Exit Reason String
2031  *
2032  * Input Args:
2033  *   exit_reason - Exit reason
2034  *
2035  * Output Args: None
2036  *
2037  * Return:
2038  *   Constant string pointer describing the exit reason.
2039  *
2040  * Locates and returns a constant string that describes the KVM exit
2041  * reason given by exit_reason.  If no such string is found, a constant
2042  * string of "Unknown" is returned.
2043  */
2044 const char *exit_reason_str(unsigned int exit_reason)
2045 {
2046 	unsigned int n1;
2047 
2048 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2049 		if (exit_reason == exit_reasons_known[n1].reason)
2050 			return exit_reasons_known[n1].name;
2051 	}
2052 
2053 	return "Unknown";
2054 }
2055 
2056 /*
2057  * Physical Contiguous Page Allocator
2058  *
2059  * Input Args:
2060  *   vm - Virtual Machine
2061  *   num - number of pages
2062  *   paddr_min - Physical address minimum
2063  *   memslot - Memory region to allocate page from
2064  *   protected - True if the pages will be used as protected/private memory
2065  *
2066  * Output Args: None
2067  *
2068  * Return:
2069  *   Starting physical address
2070  *
2071  * Within the VM specified by vm, locates a range of available physical
2072  * pages at or above paddr_min. If found, the pages are marked as in use
2073  * and their base address is returned. A TEST_ASSERT failure occurs if
2074  * not enough pages are available at or above paddr_min.
2075  */
2076 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2077 				vm_paddr_t paddr_min, uint32_t memslot,
2078 				bool protected)
2079 {
2080 	struct userspace_mem_region *region;
2081 	sparsebit_idx_t pg, base;
2082 
2083 	TEST_ASSERT(num > 0, "Must allocate at least one page");
2084 
2085 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2086 		"not divisible by page size.\n"
2087 		"  paddr_min: 0x%lx page_size: 0x%x",
2088 		paddr_min, vm->page_size);
2089 
2090 	region = memslot2region(vm, memslot);
2091 	TEST_ASSERT(!protected || region->protected_phy_pages,
2092 		    "Region doesn't support protected memory");
2093 
2094 	base = pg = paddr_min >> vm->page_shift;
2095 	do {
2096 		for (; pg < base + num; ++pg) {
2097 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2098 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2099 				break;
2100 			}
2101 		}
2102 	} while (pg && pg != base + num);
2103 
2104 	if (pg == 0) {
2105 		fprintf(stderr, "No guest physical page available, "
2106 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2107 			paddr_min, vm->page_size, memslot);
2108 		fputs("---- vm dump ----\n", stderr);
2109 		vm_dump(stderr, vm, 2);
2110 		abort();
2111 	}
2112 
2113 	for (pg = base; pg < base + num; ++pg) {
2114 		sparsebit_clear(region->unused_phy_pages, pg);
2115 		if (protected)
2116 			sparsebit_set(region->protected_phy_pages, pg);
2117 	}
2118 
2119 	return base * vm->page_size;
2120 }
2121 
2122 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2123 			     uint32_t memslot)
2124 {
2125 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2126 }
2127 
2128 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2129 {
2130 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2131 				 vm->memslots[MEM_REGION_PT]);
2132 }
2133 
2134 /*
2135  * Address Guest Virtual to Host Virtual
2136  *
2137  * Input Args:
2138  *   vm - Virtual Machine
2139  *   gva - VM virtual address
2140  *
2141  * Output Args: None
2142  *
2143  * Return:
2144  *   Equivalent host virtual address
2145  */
2146 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2147 {
2148 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2149 }
2150 
2151 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2152 {
2153 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2154 }
2155 
2156 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2157 				      unsigned int page_shift,
2158 				      unsigned int new_page_shift,
2159 				      bool ceil)
2160 {
2161 	unsigned int n = 1 << (new_page_shift - page_shift);
2162 
2163 	if (page_shift >= new_page_shift)
2164 		return num_pages * (1 << (page_shift - new_page_shift));
2165 
2166 	return num_pages / n + !!(ceil && num_pages % n);
2167 }
2168 
2169 static inline int getpageshift(void)
2170 {
2171 	return __builtin_ffs(getpagesize()) - 1;
2172 }
2173 
2174 unsigned int
2175 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2176 {
2177 	return vm_calc_num_pages(num_guest_pages,
2178 				 vm_guest_mode_params[mode].page_shift,
2179 				 getpageshift(), true);
2180 }
2181 
2182 unsigned int
2183 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2184 {
2185 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2186 				 vm_guest_mode_params[mode].page_shift, false);
2187 }
2188 
2189 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2190 {
2191 	unsigned int n;
2192 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2193 	return vm_adjust_num_guest_pages(mode, n);
2194 }
2195 
2196 /*
2197  * Read binary stats descriptors
2198  *
2199  * Input Args:
2200  *   stats_fd - the file descriptor for the binary stats file from which to read
2201  *   header - the binary stats metadata header corresponding to the given FD
2202  *
2203  * Output Args: None
2204  *
2205  * Return:
2206  *   A pointer to a newly allocated series of stat descriptors.
2207  *   Caller is responsible for freeing the returned kvm_stats_desc.
2208  *
2209  * Read the stats descriptors from the binary stats interface.
2210  */
2211 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2212 					      struct kvm_stats_header *header)
2213 {
2214 	struct kvm_stats_desc *stats_desc;
2215 	ssize_t desc_size, total_size, ret;
2216 
2217 	desc_size = get_stats_descriptor_size(header);
2218 	total_size = header->num_desc * desc_size;
2219 
2220 	stats_desc = calloc(header->num_desc, desc_size);
2221 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2222 
2223 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2224 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2225 
2226 	return stats_desc;
2227 }
2228 
2229 /*
2230  * Read stat data for a particular stat
2231  *
2232  * Input Args:
2233  *   stats_fd - the file descriptor for the binary stats file from which to read
2234  *   header - the binary stats metadata header corresponding to the given FD
2235  *   desc - the binary stat metadata for the particular stat to be read
2236  *   max_elements - the maximum number of 8-byte values to read into data
2237  *
2238  * Output Args:
2239  *   data - the buffer into which stat data should be read
2240  *
2241  * Read the data values of a specified stat from the binary stats interface.
2242  */
2243 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2244 		    struct kvm_stats_desc *desc, uint64_t *data,
2245 		    size_t max_elements)
2246 {
2247 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2248 	size_t size = nr_elements * sizeof(*data);
2249 	ssize_t ret;
2250 
2251 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2252 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2253 
2254 	ret = pread(stats_fd, data, size,
2255 		    header->data_offset + desc->offset);
2256 
2257 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2258 		    desc->name, errno, strerror(errno));
2259 	TEST_ASSERT(ret == size,
2260 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2261 		    desc->name, size, ret);
2262 }
2263 
2264 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
2265 		  uint64_t *data, size_t max_elements)
2266 {
2267 	struct kvm_stats_desc *desc;
2268 	size_t size_desc;
2269 	int i;
2270 
2271 	if (!stats->desc) {
2272 		read_stats_header(stats->fd, &stats->header);
2273 		stats->desc = read_stats_descriptors(stats->fd, &stats->header);
2274 	}
2275 
2276 	size_desc = get_stats_descriptor_size(&stats->header);
2277 
2278 	for (i = 0; i < stats->header.num_desc; ++i) {
2279 		desc = (void *)stats->desc + (i * size_desc);
2280 
2281 		if (strcmp(desc->name, name))
2282 			continue;
2283 
2284 		read_stat_data(stats->fd, &stats->header, desc, data, max_elements);
2285 		return;
2286 	}
2287 
2288 	TEST_FAIL("Unable to find stat '%s'", name);
2289 }
2290 
2291 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2292 {
2293 }
2294 
2295 __weak void kvm_selftest_arch_init(void)
2296 {
2297 }
2298 
2299 void __attribute((constructor)) kvm_selftest_init(void)
2300 {
2301 	/* Tell stdout not to buffer its content. */
2302 	setbuf(stdout, NULL);
2303 
2304 	guest_random_seed = last_guest_seed = random();
2305 	pr_info("Random seed: 0x%x\n", guest_random_seed);
2306 
2307 	kvm_selftest_arch_init();
2308 }
2309 
2310 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2311 {
2312 	sparsebit_idx_t pg = 0;
2313 	struct userspace_mem_region *region;
2314 
2315 	if (!vm_arch_has_protected_memory(vm))
2316 		return false;
2317 
2318 	region = userspace_mem_region_find(vm, paddr, paddr);
2319 	TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2320 
2321 	pg = paddr >> vm->page_shift;
2322 	return sparsebit_is_set(region->protected_phy_pages, pg);
2323 }
2324