xref: /linux/sound/sparc/dbri.c (revision 54a8a2220c936a47840c9a3d74910c5a56fae2ed)
1 /*
2  * Driver for DBRI sound chip found on Sparcs.
3  * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
4  *
5  * Based entirely upon drivers/sbus/audio/dbri.c which is:
6  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
7  * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
8  *
9  * This is the lowlevel driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
10  * on Sun SPARCstation 10, 20, LX and Voyager models.
11  *
12  * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
13  *   data time multiplexer with ISDN support (aka T7259)
14  *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
15  *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
16  *   Documentation:
17  *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Tranceiver" from
18  *     Sparc Technology Business (courtesy of Sun Support)
19  *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
20  *     available from the Lucent (formarly AT&T microelectronics) home
21  *     page.
22  *   - http://www.freesoft.org/Linux/DBRI/
23  * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
24  *   Interfaces: CHI, Audio In & Out, 2 bits parallel
25  *   Documentation: from the Crystal Semiconductor home page.
26  *
27  * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
28  * memory and a serial device (long pipes, nr 0-15) or between two serial
29  * devices (short pipes, nr 16-31), or simply send a fixed data to a serial
30  * device (short pipes).
31  * A timeslot defines the bit-offset and nr of bits read from a serial device.
32  * The timeslots are linked to 6 circular lists, one for each direction for
33  * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
34  * (the second one is a monitor/tee pipe, valid only for serial input).
35  *
36  * The mmcodec is connected via the CHI bus and needs the data & some
37  * parameters (volume, balance, output selection) timemultiplexed in 8 byte
38  * chunks. It also has a control mode, which serves for audio format setting.
39  *
40  * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
41  * the same CHI bus, so I thought perhaps it is possible to use the onboard
42  * & the speakerbox codec simultanously, giving 2 (not very independent :-)
43  * audio devices. But the SUN HW group decided against it, at least on my
44  * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
45  * connected.
46  *
47  * I've tried to stick to the following function naming conventions:
48  * snd_*	ALSA stuff
49  * cs4215_*	CS4215 codec specfic stuff
50  * dbri_*	DBRI high-level stuff
51  * other	DBRI low-level stuff
52  */
53 
54 #include <sound/driver.h>
55 #include <linux/interrupt.h>
56 #include <linux/delay.h>
57 
58 #include <sound/core.h>
59 #include <sound/pcm.h>
60 #include <sound/pcm_params.h>
61 #include <sound/info.h>
62 #include <sound/control.h>
63 #include <sound/initval.h>
64 
65 #include <asm/irq.h>
66 #include <asm/io.h>
67 #include <asm/sbus.h>
68 #include <asm/atomic.h>
69 
70 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
71 MODULE_DESCRIPTION("Sun DBRI");
72 MODULE_LICENSE("GPL");
73 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
74 
75 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
76 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
77 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable this card */
78 
79 module_param_array(index, int, NULL, 0444);
80 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
81 module_param_array(id, charp, NULL, 0444);
82 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
83 module_param_array(enable, bool, NULL, 0444);
84 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
85 
86 #define DBRI_DEBUG
87 
88 #define D_INT	(1<<0)
89 #define D_GEN	(1<<1)
90 #define D_CMD	(1<<2)
91 #define D_MM	(1<<3)
92 #define D_USR	(1<<4)
93 #define D_DESC	(1<<5)
94 
95 static int dbri_debug = 0;
96 module_param(dbri_debug, int, 0644);
97 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
98 
99 #ifdef DBRI_DEBUG
100 static char *cmds[] = {
101 	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
102 	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
103 };
104 
105 #define dprintk(a, x...) if(dbri_debug & a) printk(KERN_DEBUG x)
106 
107 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |			\
108 				    (1 << 27) | \
109 				    value)
110 #else
111 #define dprintk(a, x...)
112 
113 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |			\
114 				    (intr << 27) | \
115 				    value)
116 #endif				/* DBRI_DEBUG */
117 
118 /***************************************************************************
119 	CS4215 specific definitions and structures
120 ****************************************************************************/
121 
122 struct cs4215 {
123 	__u8 data[4];		/* Data mode: Time slots 5-8 */
124 	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
125 	__u8 onboard;
126 	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
127 	volatile __u32 status;
128 	volatile __u32 version;
129 	__u8 precision;		/* In bits, either 8 or 16 */
130 	__u8 channels;		/* 1 or 2 */
131 };
132 
133 /*
134  * Control mode first
135  */
136 
137 /* Time Slot 1, Status register */
138 #define CS4215_CLB	(1<<2)	/* Control Latch Bit */
139 #define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
140 				/* 0: line: 2.8V, speaker 8V */
141 #define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
142 #define CS4215_RSRVD_1  (1<<5)
143 
144 /* Time Slot 2, Data Format Register */
145 #define CS4215_DFR_LINEAR16	0
146 #define CS4215_DFR_ULAW		1
147 #define CS4215_DFR_ALAW		2
148 #define CS4215_DFR_LINEAR8	3
149 #define CS4215_DFR_STEREO	(1<<2)
150 static struct {
151 	unsigned short freq;
152 	unsigned char xtal;
153 	unsigned char csval;
154 } CS4215_FREQ[] = {
155 	{  8000, (1 << 4), (0 << 3) },
156 	{ 16000, (1 << 4), (1 << 3) },
157 	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
158 	{ 32000, (1 << 4), (3 << 3) },
159      /* {    NA, (1 << 4), (4 << 3) }, */
160      /* {    NA, (1 << 4), (5 << 3) }, */
161 	{ 48000, (1 << 4), (6 << 3) },
162 	{  9600, (1 << 4), (7 << 3) },
163 	{  5513, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
164 	{ 11025, (2 << 4), (1 << 3) },
165 	{ 18900, (2 << 4), (2 << 3) },
166 	{ 22050, (2 << 4), (3 << 3) },
167 	{ 37800, (2 << 4), (4 << 3) },
168 	{ 44100, (2 << 4), (5 << 3) },
169 	{ 33075, (2 << 4), (6 << 3) },
170 	{  6615, (2 << 4), (7 << 3) },
171 	{ 0, 0, 0}
172 };
173 
174 #define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
175 
176 #define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
177 
178 /* Time Slot 3, Serial Port Control register */
179 #define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
180 #define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
181 #define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
182 #define CS4215_BSEL_128	(1<<2)
183 #define CS4215_BSEL_256	(2<<2)
184 #define CS4215_MCK_MAST (0<<4)	/* Master clock */
185 #define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
186 #define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
187 #define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
188 #define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
189 
190 /* Time Slot 4, Test Register */
191 #define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
192 #define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
193 
194 /* Time Slot 5, Parallel Port Register */
195 /* Read only here and the same as the in data mode */
196 
197 /* Time Slot 6, Reserved  */
198 
199 /* Time Slot 7, Version Register  */
200 #define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
201 
202 /* Time Slot 8, Reserved  */
203 
204 /*
205  * Data mode
206  */
207 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
208 
209 /* Time Slot 5, Output Setting  */
210 #define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
211 #define CS4215_LE	(1<<6)	/* Line Out Enable */
212 #define CS4215_HE	(1<<7)	/* Headphone Enable */
213 
214 /* Time Slot 6, Output Setting  */
215 #define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
216 #define CS4215_SE	(1<<6)	/* Speaker Enable */
217 #define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
218 
219 /* Time Slot 7, Input Setting */
220 #define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
221 #define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
222 #define CS4215_OVR	(1<<5)	/* 1: Overrange condition occurred */
223 #define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
224 #define CS4215_PIO1	(1<<7)
225 
226 /* Time Slot 8, Input Setting */
227 #define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
228 #define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
229 
230 /***************************************************************************
231 		DBRI specific definitions and structures
232 ****************************************************************************/
233 
234 /* DBRI main registers */
235 #define REG0	0x00UL		/* Status and Control */
236 #define REG1	0x04UL		/* Mode and Interrupt */
237 #define REG2	0x08UL		/* Parallel IO */
238 #define REG3	0x0cUL		/* Test */
239 #define REG8	0x20UL		/* Command Queue Pointer */
240 #define REG9	0x24UL		/* Interrupt Queue Pointer */
241 
242 #define DBRI_NO_CMDS	64
243 #define DBRI_NO_INTS	1	/* Note: the value of this define was
244 				 * originally 2.  The ringbuffer to store
245 				 * interrupts in dma is currently broken.
246 				 * This is a temporary fix until the ringbuffer
247 				 * is fixed.
248 				 */
249 #define DBRI_INT_BLK	64
250 #define DBRI_NO_DESCS	64
251 #define DBRI_NO_PIPES	32
252 
253 #define DBRI_MM_ONB	1
254 #define DBRI_MM_SB	2
255 
256 #define DBRI_REC	0
257 #define DBRI_PLAY	1
258 #define DBRI_NO_STREAMS	2
259 
260 /* One transmit/receive descriptor */
261 struct dbri_mem {
262 	volatile __u32 word1;
263 	volatile __u32 ba;	/* Transmit/Receive Buffer Address */
264 	volatile __u32 nda;	/* Next Descriptor Address */
265 	volatile __u32 word4;
266 };
267 
268 /* This structure is in a DMA region where it can accessed by both
269  * the CPU and the DBRI
270  */
271 struct dbri_dma {
272 	volatile s32 cmd[DBRI_NO_CMDS];	/* Place for commands       */
273 	volatile s32 intr[DBRI_NO_INTS * DBRI_INT_BLK];	/* Interrupt field  */
274 	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
275 };
276 
277 #define dbri_dma_off(member, elem)	\
278 	((u32)(unsigned long)		\
279 	 (&(((struct dbri_dma *)0)->member[elem])))
280 
281 enum in_or_out { PIPEinput, PIPEoutput };
282 
283 struct dbri_pipe {
284 	u32 sdp;		/* SDP command word */
285 	enum in_or_out direction;
286 	int nextpipe;		/* Next pipe in linked list */
287 	int prevpipe;
288 	int cycle;		/* Offset of timeslot (bits) */
289 	int length;		/* Length of timeslot (bits) */
290 	int first_desc;		/* Index of first descriptor */
291 	int desc;		/* Index of active descriptor */
292 	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
293 };
294 
295 struct dbri_desc {
296 	int inuse;		/* Boolean flag */
297 	int next;		/* Index of next desc, or -1 */
298 	unsigned int len;
299 };
300 
301 /* Per stream (playback or record) information */
302 typedef struct dbri_streaminfo {
303 	snd_pcm_substream_t *substream;
304 	u32 dvma_buffer;	/* Device view of Alsa DMA buffer */
305 	int left;		/* # of bytes left in DMA buffer  */
306 	int size;		/* Size of DMA buffer             */
307 	size_t offset;		/* offset in user buffer          */
308 	int pipe;		/* Data pipe used                 */
309 	int left_gain;		/* mixer elements                 */
310 	int right_gain;
311 	int balance;
312 } dbri_streaminfo_t;
313 
314 /* This structure holds the information for both chips (DBRI & CS4215) */
315 typedef struct snd_dbri {
316 	snd_card_t *card;	/* ALSA card */
317 	snd_pcm_t *pcm;
318 
319 	int regs_size, irq;	/* Needed for unload */
320 	struct sbus_dev *sdev;	/* SBUS device info */
321 	spinlock_t lock;
322 
323 	volatile struct dbri_dma *dma;	/* Pointer to our DMA block */
324 	u32 dma_dvma;		/* DBRI visible DMA address */
325 
326 	void __iomem *regs;	/* dbri HW regs */
327 	int dbri_version;	/* 'e' and up is OK */
328 	int dbri_irqp;		/* intr queue pointer */
329 	int wait_send;		/* sequence of command buffers send */
330 	int wait_ackd;		/* sequence of command buffers acknowledged */
331 
332 	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
333 	struct dbri_desc descs[DBRI_NO_DESCS];
334 
335 	int chi_in_pipe;
336 	int chi_out_pipe;
337 	int chi_bpf;
338 
339 	struct cs4215 mm;	/* mmcodec special info */
340 				/* per stream (playback/record) info */
341 	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
342 
343 	struct snd_dbri *next;
344 } snd_dbri_t;
345 
346 /* Needed for the ALSA macros to work */
347 #define chip_t snd_dbri_t
348 
349 #define DBRI_MAX_VOLUME		63	/* Output volume */
350 #define DBRI_MAX_GAIN		15	/* Input gain */
351 #define DBRI_RIGHT_BALANCE	255
352 #define DBRI_MID_BALANCE	(DBRI_RIGHT_BALANCE >> 1)
353 
354 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
355 #define D_P		(1<<15)	/* Program command & queue pointer valid */
356 #define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
357 #define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
358 #define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
359 #define D_X		(1<<7)	/* Sanity Timer Disable */
360 #define D_T		(1<<6)	/* Permit activation of the TE interface */
361 #define D_N		(1<<5)	/* Permit activation of the NT interface */
362 #define D_C		(1<<4)	/* Permit activation of the CHI interface */
363 #define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
364 #define D_D		(1<<2)	/* Disable Master Mode */
365 #define D_H		(1<<1)	/* Halt for Analysis */
366 #define D_R		(1<<0)	/* Soft Reset */
367 
368 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
369 #define D_LITTLE_END	(1<<8)	/* Byte Order */
370 #define D_BIG_END	(0<<8)	/* Byte Order */
371 #define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (readonly) */
372 #define D_MLE		(1<<3)	/* Multiple Late Error on SBus (readonly) */
373 #define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (readonly) */
374 #define D_MBE		(1<<1)	/* Burst Error on SBus (readonly) */
375 #define D_IR		(1<<0)	/* Interrupt Indicator (readonly) */
376 
377 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
378 #define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
379 #define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
380 #define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
381 #define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
382 #define D_ENPIO		(0xf0)	/* Enable all the pins */
383 #define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
384 #define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
385 #define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
386 #define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
387 
388 /* DBRI Commands (Page 20) */
389 #define D_WAIT		0x0	/* Stop execution */
390 #define D_PAUSE		0x1	/* Flush long pipes */
391 #define D_JUMP		0x2	/* New command queue */
392 #define D_IIQ		0x3	/* Initialize Interrupt Queue */
393 #define D_REX		0x4	/* Report command execution via interrupt */
394 #define D_SDP		0x5	/* Setup Data Pipe */
395 #define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
396 #define D_DTS		0x7	/* Define Time Slot */
397 #define D_SSP		0x8	/* Set short Data Pipe */
398 #define D_CHI		0x9	/* Set CHI Global Mode */
399 #define D_NT		0xa	/* NT Command */
400 #define D_TE		0xb	/* TE Command */
401 #define D_CDEC		0xc	/* Codec setup */
402 #define D_TEST		0xd	/* No comment */
403 #define D_CDM		0xe	/* CHI Data mode command */
404 
405 /* Special bits for some commands */
406 #define D_PIPE(v)      ((v)<<0)	/* Pipe Nr: 0-15 long, 16-21 short */
407 
408 /* Setup Data Pipe */
409 /* IRM */
410 #define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value rcvd */
411 #define D_SDP_CHANGE	(2<<18)	/* Report any changes */
412 #define D_SDP_EVERY	(3<<18)	/* Report any changes */
413 #define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
414 #define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
415 
416 /* Pipe data MODE */
417 #define D_SDP_MEM	(0<<13)	/* To/from memory */
418 #define D_SDP_HDLC	(2<<13)
419 #define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
420 #define D_SDP_SER	(4<<13)	/* Serial to serial */
421 #define D_SDP_FIXED	(6<<13)	/* Short only */
422 #define D_SDP_MODE(v)	((v)&(7<<13))
423 
424 #define D_SDP_TO_SER	(1<<12)	/* Direction */
425 #define D_SDP_FROM_SER	(0<<12)	/* Direction */
426 #define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
427 #define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
428 #define D_SDP_P		(1<<10)	/* Pointer Valid */
429 #define D_SDP_A		(1<<8)	/* Abort */
430 #define D_SDP_C		(1<<7)	/* Clear */
431 
432 /* Define Time Slot */
433 #define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
434 #define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
435 #define D_DTS_INS	(1<<15)	/* Insert Time Slot */
436 #define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
437 #define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
438 #define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
439 
440 /* Time Slot defines */
441 #define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
442 #define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
443 #define D_TS_DI		(1<<13)	/* Data Invert */
444 #define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
445 #define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
446 #define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
447 #define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
448 #define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
449 #define D_TS_NEXT(v)   ((v)<<0)	/* Pipe Nr: 0-15 long, 16-21 short */
450 
451 /* Concentration Highway Interface Modes */
452 #define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
453 #define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
454 #define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
455 #define D_CHI_OD	(1<<13)	/* Open Drain Enable */
456 #define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
457 #define D_CHI_FD	(1<<11)	/* Frame Drive */
458 #define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
459 
460 /* NT: These are here for completeness */
461 #define D_NT_FBIT	(1<<17)	/* Frame Bit */
462 #define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
463 #define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
464 #define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
465 #define D_NT_ISNT	(1<<13)	/* Configfure interface as NT */
466 #define D_NT_FT		(1<<12)	/* Fixed Timing */
467 #define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
468 #define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
469 #define D_NT_ACT	(1<<9)	/* Activate Interface */
470 #define D_NT_MFE	(1<<8)	/* Multiframe Enable */
471 #define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
472 #define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
473 #define D_NT_FACT	(1<<1)	/* Force Activation */
474 #define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
475 
476 /* Codec Setup */
477 #define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
478 #define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
479 #define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
480 
481 /* Test */
482 #define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
483 #define D_TEST_SIZE(v)	((v)<<11)	/* */
484 #define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
485 #define D_TEST_PROC	0x6	/* MicroProcessor test */
486 #define D_TEST_SER	0x7	/* Serial-Controller test */
487 #define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
488 #define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
489 #define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
490 #define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
491 #define D_TEST_DUMP	0xe	/* ROM Dump */
492 
493 /* CHI Data Mode */
494 #define D_CDM_THI	(1<<8)	/* Transmit Data on CHIDR Pin */
495 #define D_CDM_RHI	(1<<7)	/* Receive Data on CHIDX Pin */
496 #define D_CDM_RCE	(1<<6)	/* Receive on Rising Edge of CHICK */
497 #define D_CDM_XCE	(1<<2)	/* Transmit Data on Rising Edge of CHICK */
498 #define D_CDM_XEN	(1<<1)	/* Transmit Highway Enable */
499 #define D_CDM_REN	(1<<0)	/* Receive Highway Enable */
500 
501 /* The Interrupts */
502 #define D_INTR_BRDY	1	/* Buffer Ready for processing */
503 #define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
504 #define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
505 #define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
506 #define D_INTR_EOL	5	/* End of List */
507 #define D_INTR_CMDI	6	/* Command has bean read */
508 #define D_INTR_XCMP	8	/* Transmission of frame complete */
509 #define D_INTR_SBRI	9	/* BRI status change info */
510 #define D_INTR_FXDT	10	/* Fixed data change */
511 #define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
512 #define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
513 #define D_INTR_DBYT	12	/* Dropped by frame slip */
514 #define D_INTR_RBYT	13	/* Repeated by frame slip */
515 #define D_INTR_LINT	14	/* Lost Interrupt */
516 #define D_INTR_UNDR	15	/* DMA underrun */
517 
518 #define D_INTR_TE	32
519 #define D_INTR_NT	34
520 #define D_INTR_CHI	36
521 #define D_INTR_CMD	38
522 
523 #define D_INTR_GETCHAN(v)	(((v)>>24) & 0x3f)
524 #define D_INTR_GETCODE(v)	(((v)>>20) & 0xf)
525 #define D_INTR_GETCMD(v)	(((v)>>16) & 0xf)
526 #define D_INTR_GETVAL(v)	((v) & 0xffff)
527 #define D_INTR_GETRVAL(v)	((v) & 0xfffff)
528 
529 #define D_P_0		0	/* TE receive anchor */
530 #define D_P_1		1	/* TE transmit anchor */
531 #define D_P_2		2	/* NT transmit anchor */
532 #define D_P_3		3	/* NT receive anchor */
533 #define D_P_4		4	/* CHI send data */
534 #define D_P_5		5	/* CHI receive data */
535 #define D_P_6		6	/* */
536 #define D_P_7		7	/* */
537 #define D_P_8		8	/* */
538 #define D_P_9		9	/* */
539 #define D_P_10		10	/* */
540 #define D_P_11		11	/* */
541 #define D_P_12		12	/* */
542 #define D_P_13		13	/* */
543 #define D_P_14		14	/* */
544 #define D_P_15		15	/* */
545 #define D_P_16		16	/* CHI anchor pipe */
546 #define D_P_17		17	/* CHI send */
547 #define D_P_18		18	/* CHI receive */
548 #define D_P_19		19	/* CHI receive */
549 #define D_P_20		20	/* CHI receive */
550 #define D_P_21		21	/* */
551 #define D_P_22		22	/* */
552 #define D_P_23		23	/* */
553 #define D_P_24		24	/* */
554 #define D_P_25		25	/* */
555 #define D_P_26		26	/* */
556 #define D_P_27		27	/* */
557 #define D_P_28		28	/* */
558 #define D_P_29		29	/* */
559 #define D_P_30		30	/* */
560 #define D_P_31		31	/* */
561 
562 /* Transmit descriptor defines */
563 #define DBRI_TD_F	(1<<31)	/* End of Frame */
564 #define DBRI_TD_D	(1<<30)	/* Do not append CRC */
565 #define DBRI_TD_CNT(v)	((v)<<16)	/* Number of valid bytes in the buffer */
566 #define DBRI_TD_B	(1<<15)	/* Final interrupt */
567 #define DBRI_TD_M	(1<<14)	/* Marker interrupt */
568 #define DBRI_TD_I	(1<<13)	/* Transmit Idle Characters */
569 #define DBRI_TD_FCNT(v)	(v)	/* Flag Count */
570 #define DBRI_TD_UNR	(1<<3)	/* Underrun: transmitter is out of data */
571 #define DBRI_TD_ABT	(1<<2)	/* Abort: frame aborted */
572 #define DBRI_TD_TBC	(1<<0)	/* Transmit buffer Complete */
573 #define DBRI_TD_STATUS(v)       ((v)&0xff)	/* Transmit status */
574 			/* Maximum buffer size per TD: almost 8Kb */
575 #define DBRI_TD_MAXCNT	((1 << 13) - 1)
576 
577 /* Receive descriptor defines */
578 #define DBRI_RD_F	(1<<31)	/* End of Frame */
579 #define DBRI_RD_C	(1<<30)	/* Completed buffer */
580 #define DBRI_RD_B	(1<<15)	/* Final interrupt */
581 #define DBRI_RD_M	(1<<14)	/* Marker interrupt */
582 #define DBRI_RD_BCNT(v)	(v)	/* Buffer size */
583 #define DBRI_RD_CRC	(1<<7)	/* 0: CRC is correct */
584 #define DBRI_RD_BBC	(1<<6)	/* 1: Bad Byte received */
585 #define DBRI_RD_ABT	(1<<5)	/* Abort: frame aborted */
586 #define DBRI_RD_OVRN	(1<<3)	/* Overrun: data lost */
587 #define DBRI_RD_STATUS(v)      ((v)&0xff)	/* Receive status */
588 #define DBRI_RD_CNT(v) (((v)>>16)&0x1fff)	/* Valid bytes in the buffer */
589 
590 /* stream_info[] access */
591 /* Translate the ALSA direction into the array index */
592 #define DBRI_STREAMNO(substream)				\
593 		(substream->stream == 				\
594 		 SNDRV_PCM_STREAM_PLAYBACK? DBRI_PLAY: DBRI_REC)
595 
596 /* Return a pointer to dbri_streaminfo */
597 #define DBRI_STREAM(dbri, substream)	&dbri->stream_info[DBRI_STREAMNO(substream)]
598 
599 static snd_dbri_t *dbri_list = NULL;	/* All DBRI devices */
600 
601 /*
602  * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
603  * So we have to reverse the bits. Note: not all bit lengths are supported
604  */
605 static __u32 reverse_bytes(__u32 b, int len)
606 {
607 	switch (len) {
608 	case 32:
609 		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
610 	case 16:
611 		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
612 	case 8:
613 		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
614 	case 4:
615 		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
616 	case 2:
617 		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
618 	case 1:
619 	case 0:
620 		break;
621 	default:
622 		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
623 	};
624 
625 	return b;
626 }
627 
628 /*
629 ****************************************************************************
630 ************** DBRI initialization and command synchronization *************
631 ****************************************************************************
632 
633 Commands are sent to the DBRI by building a list of them in memory,
634 then writing the address of the first list item to DBRI register 8.
635 The list is terminated with a WAIT command, which generates a
636 CPU interrupt to signal completion.
637 
638 Since the DBRI can run in parallel with the CPU, several means of
639 synchronization present themselves.  The method implemented here is close
640 to the original scheme (Rudolf's), and uses 2 counters (wait_send and
641 wait_ackd) to synchronize the command buffer between the CPU and the DBRI.
642 
643 A more sophisticated scheme might involve a circular command buffer
644 or an array of command buffers.  A routine could fill one with
645 commands and link it onto a list.  When a interrupt signaled
646 completion of the current command buffer, look on the list for
647 the next one.
648 
649 Every time a routine wants to write commands to the DBRI, it must
650 first call dbri_cmdlock() and get an initial pointer into dbri->dma->cmd
651 in return. dbri_cmdlock() will block if the previous commands have not
652 been completed yet. After this the commands can be written to the buffer,
653 and dbri_cmdsend() is called with the final pointer value to send them
654 to the DBRI.
655 
656 */
657 
658 static void dbri_process_interrupt_buffer(snd_dbri_t * dbri);
659 
660 enum dbri_lock_t { NoGetLock, GetLock };
661 #define MAXLOOPS 10
662 
663 static volatile s32 *dbri_cmdlock(snd_dbri_t * dbri, enum dbri_lock_t get)
664 {
665 	int maxloops = MAXLOOPS;
666 
667 #ifndef SMP
668 	if ((get == GetLock) && spin_is_locked(&dbri->lock)) {
669 		printk(KERN_ERR "DBRI: cmdlock called while in spinlock.");
670 	}
671 #endif
672 
673 	/* Delay if previous commands are still being processed */
674 	while ((--maxloops) > 0 && (dbri->wait_send != dbri->wait_ackd)) {
675 		msleep_interruptible(1);
676 		/* If dbri_cmdlock() got called from inside the
677 		 * interrupt handler, this will do the processing.
678 		 */
679 		dbri_process_interrupt_buffer(dbri);
680 	}
681 	if (maxloops == 0) {
682 		printk(KERN_ERR "DBRI: Chip never completed command buffer %d\n",
683 			dbri->wait_send);
684 	} else {
685 		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
686 			MAXLOOPS - maxloops - 1);
687 	}
688 
689 	/*if (get == GetLock) spin_lock(&dbri->lock); */
690 	return &dbri->dma->cmd[0];
691 }
692 
693 static void dbri_cmdsend(snd_dbri_t * dbri, volatile s32 * cmd)
694 {
695 	volatile s32 *ptr;
696 	u32	reg;
697 
698 	for (ptr = &dbri->dma->cmd[0]; ptr < cmd; ptr++) {
699 		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
700 	}
701 
702 	if ((cmd - &dbri->dma->cmd[0]) >= DBRI_NO_CMDS - 1) {
703 		printk(KERN_ERR "DBRI: Command buffer overflow! (bug in driver)\n");
704 		/* Ignore the last part. */
705 		cmd = &dbri->dma->cmd[DBRI_NO_CMDS - 3];
706 	}
707 
708 	dbri->wait_send++;
709 	dbri->wait_send &= 0xffff;	/* restrict it to a 16 bit counter. */
710 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
711 	*(cmd++) = DBRI_CMD(D_WAIT, 1, dbri->wait_send);
712 
713 	/* Set command pointer and signal it is valid. */
714 	sbus_writel(dbri->dma_dvma, dbri->regs + REG8);
715 	reg = sbus_readl(dbri->regs + REG0);
716 	reg |= D_P;
717 	sbus_writel(reg, dbri->regs + REG0);
718 
719 	/*spin_unlock(&dbri->lock); */
720 }
721 
722 /* Lock must be held when calling this */
723 static void dbri_reset(snd_dbri_t * dbri)
724 {
725 	int i;
726 
727 	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
728 		sbus_readl(dbri->regs + REG0),
729 		sbus_readl(dbri->regs + REG2),
730 		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
731 
732 	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
733 	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
734 		udelay(10);
735 }
736 
737 /* Lock must not be held before calling this */
738 static void dbri_initialize(snd_dbri_t * dbri)
739 {
740 	volatile s32 *cmd;
741 	u32 dma_addr, tmp;
742 	unsigned long flags;
743 	int n;
744 
745 	spin_lock_irqsave(&dbri->lock, flags);
746 
747 	dbri_reset(dbri);
748 
749 	cmd = dbri_cmdlock(dbri, NoGetLock);
750 	dprintk(D_GEN, "init: cmd: %p, int: %p\n",
751 		&dbri->dma->cmd[0], &dbri->dma->intr[0]);
752 
753 	/*
754 	 * Initialize the interrupt ringbuffer.
755 	 */
756 	for (n = 0; n < DBRI_NO_INTS - 1; n++) {
757 		dma_addr = dbri->dma_dvma;
758 		dma_addr += dbri_dma_off(intr, ((n + 1) & DBRI_INT_BLK));
759 		dbri->dma->intr[n * DBRI_INT_BLK] = dma_addr;
760 	}
761 	dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
762 	dbri->dma->intr[n * DBRI_INT_BLK] = dma_addr;
763 	dbri->dbri_irqp = 1;
764 
765 	/* Initialize pipes */
766 	for (n = 0; n < DBRI_NO_PIPES; n++)
767 		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
768 
769 	/* A brute approach - DBRI falls back to working burst size by itself
770 	 * On SS20 D_S does not work, so do not try so high. */
771 	tmp = sbus_readl(dbri->regs + REG0);
772 	tmp |= D_G | D_E;
773 	tmp &= ~D_S;
774 	sbus_writel(tmp, dbri->regs + REG0);
775 
776 	/*
777 	 * Set up the interrupt queue
778 	 */
779 	dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
780 	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
781 	*(cmd++) = dma_addr;
782 
783 	dbri_cmdsend(dbri, cmd);
784 	spin_unlock_irqrestore(&dbri->lock, flags);
785 }
786 
787 /*
788 ****************************************************************************
789 ************************** DBRI data pipe management ***********************
790 ****************************************************************************
791 
792 While DBRI control functions use the command and interrupt buffers, the
793 main data path takes the form of data pipes, which can be short (command
794 and interrupt driven), or long (attached to DMA buffers).  These functions
795 provide a rudimentary means of setting up and managing the DBRI's pipes,
796 but the calling functions have to make sure they respect the pipes' linked
797 list ordering, among other things.  The transmit and receive functions
798 here interface closely with the transmit and receive interrupt code.
799 
800 */
801 static int pipe_active(snd_dbri_t * dbri, int pipe)
802 {
803 	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
804 }
805 
806 /* reset_pipe(dbri, pipe)
807  *
808  * Called on an in-use pipe to clear anything being transmitted or received
809  * Lock must be held before calling this.
810  */
811 static void reset_pipe(snd_dbri_t * dbri, int pipe)
812 {
813 	int sdp;
814 	int desc;
815 	volatile int *cmd;
816 
817 	if (pipe < 0 || pipe > 31) {
818 		printk(KERN_ERR "DBRI: reset_pipe called with illegal pipe number\n");
819 		return;
820 	}
821 
822 	sdp = dbri->pipes[pipe].sdp;
823 	if (sdp == 0) {
824 		printk(KERN_ERR "DBRI: reset_pipe called on uninitialized pipe\n");
825 		return;
826 	}
827 
828 	cmd = dbri_cmdlock(dbri, NoGetLock);
829 	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
830 	*(cmd++) = 0;
831 	dbri_cmdsend(dbri, cmd);
832 
833 	desc = dbri->pipes[pipe].first_desc;
834 	while (desc != -1) {
835 		dbri->descs[desc].inuse = 0;
836 		desc = dbri->descs[desc].next;
837 	}
838 
839 	dbri->pipes[pipe].desc = -1;
840 	dbri->pipes[pipe].first_desc = -1;
841 }
842 
843 /* FIXME: direction as an argument? */
844 static void setup_pipe(snd_dbri_t * dbri, int pipe, int sdp)
845 {
846 	if (pipe < 0 || pipe > 31) {
847 		printk(KERN_ERR "DBRI: setup_pipe called with illegal pipe number\n");
848 		return;
849 	}
850 
851 	if ((sdp & 0xf800) != sdp) {
852 		printk(KERN_ERR "DBRI: setup_pipe called with strange SDP value\n");
853 		/* sdp &= 0xf800; */
854 	}
855 
856 	/* If this is a fixed receive pipe, arrange for an interrupt
857 	 * every time its data changes
858 	 */
859 	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
860 		sdp |= D_SDP_CHANGE;
861 
862 	sdp |= D_PIPE(pipe);
863 	dbri->pipes[pipe].sdp = sdp;
864 	dbri->pipes[pipe].desc = -1;
865 	dbri->pipes[pipe].first_desc = -1;
866 	if (sdp & D_SDP_TO_SER)
867 		dbri->pipes[pipe].direction = PIPEoutput;
868 	else
869 		dbri->pipes[pipe].direction = PIPEinput;
870 
871 	reset_pipe(dbri, pipe);
872 }
873 
874 /* FIXME: direction not needed */
875 static void link_time_slot(snd_dbri_t * dbri, int pipe,
876 			   enum in_or_out direction, int basepipe,
877 			   int length, int cycle)
878 {
879 	volatile s32 *cmd;
880 	int val;
881 	int prevpipe;
882 	int nextpipe;
883 
884 	if (pipe < 0 || pipe > 31 || basepipe < 0 || basepipe > 31) {
885 		printk(KERN_ERR
886 		    "DBRI: link_time_slot called with illegal pipe number\n");
887 		return;
888 	}
889 
890 	if (dbri->pipes[pipe].sdp == 0 || dbri->pipes[basepipe].sdp == 0) {
891 		printk(KERN_ERR "DBRI: link_time_slot called on uninitialized pipe\n");
892 		return;
893 	}
894 
895 	/* Deal with CHI special case:
896 	 * "If transmission on edges 0 or 1 is desired, then cycle n
897 	 *  (where n = # of bit times per frame...) must be used."
898 	 *                  - DBRI data sheet, page 11
899 	 */
900 	if (basepipe == 16 && direction == PIPEoutput && cycle == 0)
901 		cycle = dbri->chi_bpf;
902 
903 	if (basepipe == pipe) {
904 		prevpipe = pipe;
905 		nextpipe = pipe;
906 	} else {
907 		/* We're not initializing a new linked list (basepipe != pipe),
908 		 * so run through the linked list and find where this pipe
909 		 * should be sloted in, based on its cycle.  CHI confuses
910 		 * things a bit, since it has a single anchor for both its
911 		 * transmit and receive lists.
912 		 */
913 		if (basepipe == 16) {
914 			if (direction == PIPEinput) {
915 				prevpipe = dbri->chi_in_pipe;
916 			} else {
917 				prevpipe = dbri->chi_out_pipe;
918 			}
919 		} else {
920 			prevpipe = basepipe;
921 		}
922 
923 		nextpipe = dbri->pipes[prevpipe].nextpipe;
924 
925 		while (dbri->pipes[nextpipe].cycle < cycle
926 		       && dbri->pipes[nextpipe].nextpipe != basepipe) {
927 			prevpipe = nextpipe;
928 			nextpipe = dbri->pipes[nextpipe].nextpipe;
929 		}
930 	}
931 
932 	if (prevpipe == 16) {
933 		if (direction == PIPEinput) {
934 			dbri->chi_in_pipe = pipe;
935 		} else {
936 			dbri->chi_out_pipe = pipe;
937 		}
938 	} else {
939 		dbri->pipes[prevpipe].nextpipe = pipe;
940 	}
941 
942 	dbri->pipes[pipe].nextpipe = nextpipe;
943 	dbri->pipes[pipe].cycle = cycle;
944 	dbri->pipes[pipe].length = length;
945 
946 	cmd = dbri_cmdlock(dbri, NoGetLock);
947 
948 	if (direction == PIPEinput) {
949 		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
950 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
951 		*(cmd++) =
952 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
953 		*(cmd++) = 0;
954 	} else {
955 		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
956 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
957 		*(cmd++) = 0;
958 		*(cmd++) =
959 		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
960 	}
961 
962 	dbri_cmdsend(dbri, cmd);
963 }
964 
965 static void unlink_time_slot(snd_dbri_t * dbri, int pipe,
966 			     enum in_or_out direction, int prevpipe,
967 			     int nextpipe)
968 {
969 	volatile s32 *cmd;
970 	int val;
971 
972 	if (pipe < 0 || pipe > 31 || prevpipe < 0 || prevpipe > 31) {
973 		printk(KERN_ERR
974 		    "DBRI: unlink_time_slot called with illegal pipe number\n");
975 		return;
976 	}
977 
978 	cmd = dbri_cmdlock(dbri, NoGetLock);
979 
980 	if (direction == PIPEinput) {
981 		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
982 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
983 		*(cmd++) = D_TS_NEXT(nextpipe);
984 		*(cmd++) = 0;
985 	} else {
986 		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
987 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
988 		*(cmd++) = 0;
989 		*(cmd++) = D_TS_NEXT(nextpipe);
990 	}
991 
992 	dbri_cmdsend(dbri, cmd);
993 }
994 
995 /* xmit_fixed() / recv_fixed()
996  *
997  * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
998  * expected to change much, and which we don't need to buffer.
999  * The DBRI only interrupts us when the data changes (receive pipes),
1000  * or only changes the data when this function is called (transmit pipes).
1001  * Only short pipes (numbers 16-31) can be used in fixed data mode.
1002  *
1003  * These function operate on a 32-bit field, no matter how large
1004  * the actual time slot is.  The interrupt handler takes care of bit
1005  * ordering and alignment.  An 8-bit time slot will always end up
1006  * in the low-order 8 bits, filled either MSB-first or LSB-first,
1007  * depending on the settings passed to setup_pipe()
1008  */
1009 static void xmit_fixed(snd_dbri_t * dbri, int pipe, unsigned int data)
1010 {
1011 	volatile s32 *cmd;
1012 
1013 	if (pipe < 16 || pipe > 31) {
1014 		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1015 		return;
1016 	}
1017 
1018 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1019 		printk(KERN_ERR "DBRI: xmit_fixed: Uninitialized pipe %d\n", pipe);
1020 		return;
1021 	}
1022 
1023 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1024 		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1025 		return;
1026 	}
1027 
1028 	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1029 		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n", pipe);
1030 		return;
1031 	}
1032 
1033 	/* DBRI short pipes always transmit LSB first */
1034 
1035 	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1036 		data = reverse_bytes(data, dbri->pipes[pipe].length);
1037 
1038 	cmd = dbri_cmdlock(dbri, GetLock);
1039 
1040 	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1041 	*(cmd++) = data;
1042 
1043 	dbri_cmdsend(dbri, cmd);
1044 }
1045 
1046 static void recv_fixed(snd_dbri_t * dbri, int pipe, volatile __u32 * ptr)
1047 {
1048 	if (pipe < 16 || pipe > 31) {
1049 		printk(KERN_ERR "DBRI: recv_fixed called with illegal pipe number\n");
1050 		return;
1051 	}
1052 
1053 	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1054 		printk(KERN_ERR "DBRI: recv_fixed called on non-fixed pipe %d\n", pipe);
1055 		return;
1056 	}
1057 
1058 	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1059 		printk(KERN_ERR "DBRI: recv_fixed called on transmit pipe %d\n", pipe);
1060 		return;
1061 	}
1062 
1063 	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1064 }
1065 
1066 /* setup_descs()
1067  *
1068  * Setup transmit/receive data on a "long" pipe - i.e, one associated
1069  * with a DMA buffer.
1070  *
1071  * Only pipe numbers 0-15 can be used in this mode.
1072  *
1073  * This function takes a stream number pointing to a data buffer,
1074  * and work by building chains of descriptors which identify the
1075  * data buffers.  Buffers too large for a single descriptor will
1076  * be spread across multiple descriptors.
1077  */
1078 static int setup_descs(snd_dbri_t * dbri, int streamno, unsigned int period)
1079 {
1080 	dbri_streaminfo_t *info = &dbri->stream_info[streamno];
1081 	__u32 dvma_buffer;
1082 	int desc = 0;
1083 	int len;
1084 	int first_desc = -1;
1085 	int last_desc = -1;
1086 
1087 	if (info->pipe < 0 || info->pipe > 15) {
1088 		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1089 		return -2;
1090 	}
1091 
1092 	if (dbri->pipes[info->pipe].sdp == 0) {
1093 		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1094 		       info->pipe);
1095 		return -2;
1096 	}
1097 
1098 	dvma_buffer = info->dvma_buffer;
1099 	len = info->size;
1100 
1101 	if (streamno == DBRI_PLAY) {
1102 		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1103 			printk(KERN_ERR "DBRI: setup_descs: Called on receive pipe %d\n",
1104 			       info->pipe);
1105 			return -2;
1106 		}
1107 	} else {
1108 		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1109 			printk(KERN_ERR
1110 			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1111 			     info->pipe);
1112 			return -2;
1113 		}
1114 		/* Should be able to queue multiple buffers to receive on a pipe */
1115 		if (pipe_active(dbri, info->pipe)) {
1116 			printk(KERN_ERR "DBRI: recv_on_pipe: Called on active pipe %d\n",
1117 			       info->pipe);
1118 			return -2;
1119 		}
1120 
1121 		/* Make sure buffer size is multiple of four */
1122 		len &= ~3;
1123 	}
1124 
1125 	while (len > 0) {
1126 		int mylen;
1127 
1128 		for (; desc < DBRI_NO_DESCS; desc++) {
1129 			if (!dbri->descs[desc].inuse)
1130 				break;
1131 		}
1132 		if (desc == DBRI_NO_DESCS) {
1133 			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1134 			return -1;
1135 		}
1136 
1137 		if (len > DBRI_TD_MAXCNT) {
1138 			mylen = DBRI_TD_MAXCNT;	/* 8KB - 1 */
1139 		} else {
1140 			mylen = len;
1141 		}
1142 		if (mylen > period) {
1143 			mylen = period;
1144 		}
1145 
1146 		dbri->descs[desc].inuse = 1;
1147 		dbri->descs[desc].next = -1;
1148 		dbri->dma->desc[desc].ba = dvma_buffer;
1149 		dbri->dma->desc[desc].nda = 0;
1150 
1151 		if (streamno == DBRI_PLAY) {
1152 			dbri->descs[desc].len = mylen;
1153 			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1154 			dbri->dma->desc[desc].word4 = 0;
1155 			if (first_desc != -1)
1156 				dbri->dma->desc[desc].word1 |= DBRI_TD_M;
1157 		} else {
1158 			dbri->descs[desc].len = 0;
1159 			dbri->dma->desc[desc].word1 = 0;
1160 			dbri->dma->desc[desc].word4 =
1161 			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1162 		}
1163 
1164 		if (first_desc == -1) {
1165 			first_desc = desc;
1166 		} else {
1167 			dbri->descs[last_desc].next = desc;
1168 			dbri->dma->desc[last_desc].nda =
1169 			    dbri->dma_dvma + dbri_dma_off(desc, desc);
1170 		}
1171 
1172 		last_desc = desc;
1173 		dvma_buffer += mylen;
1174 		len -= mylen;
1175 	}
1176 
1177 	if (first_desc == -1 || last_desc == -1) {
1178 		printk(KERN_ERR "DBRI: setup_descs: Not enough descriptors available\n");
1179 		return -1;
1180 	}
1181 
1182 	dbri->dma->desc[last_desc].word1 &= ~DBRI_TD_M;
1183 	if (streamno == DBRI_PLAY) {
1184 		dbri->dma->desc[last_desc].word1 |=
1185 		    DBRI_TD_I | DBRI_TD_F | DBRI_TD_B;
1186 	}
1187 	dbri->pipes[info->pipe].first_desc = first_desc;
1188 	dbri->pipes[info->pipe].desc = first_desc;
1189 
1190 	for (desc = first_desc; desc != -1; desc = dbri->descs[desc].next) {
1191 		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1192 			desc,
1193 			dbri->dma->desc[desc].word1,
1194 			dbri->dma->desc[desc].ba,
1195 			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1196 	}
1197 	return 0;
1198 }
1199 
1200 /*
1201 ****************************************************************************
1202 ************************** DBRI - CHI interface ****************************
1203 ****************************************************************************
1204 
1205 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1206 multiplexed serial interface which the DBRI can operate in either master
1207 (give clock/frame sync) or slave (take clock/frame sync) mode.
1208 
1209 */
1210 
1211 enum master_or_slave { CHImaster, CHIslave };
1212 
1213 static void reset_chi(snd_dbri_t * dbri, enum master_or_slave master_or_slave,
1214 		      int bits_per_frame)
1215 {
1216 	volatile s32 *cmd;
1217 	int val;
1218 	static int chi_initialized = 0;	/* FIXME: mutex? */
1219 
1220 	if (!chi_initialized) {
1221 
1222 		cmd = dbri_cmdlock(dbri, GetLock);
1223 
1224 		/* Set CHI Anchor: Pipe 16 */
1225 
1226 		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(16) | D_PIPE(16);
1227 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1228 		*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1229 		*(cmd++) = 0;
1230 
1231 		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(16) | D_PIPE(16);
1232 		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1233 		*(cmd++) = 0;
1234 		*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1235 
1236 		dbri->pipes[16].sdp = 1;
1237 		dbri->pipes[16].nextpipe = 16;
1238 		dbri->chi_in_pipe = 16;
1239 		dbri->chi_out_pipe = 16;
1240 
1241 #if 0
1242 		chi_initialized++;
1243 #endif
1244 	} else {
1245 		int pipe;
1246 
1247 		for (pipe = dbri->chi_in_pipe;
1248 		     pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1249 			unlink_time_slot(dbri, pipe, PIPEinput,
1250 					 16, dbri->pipes[pipe].nextpipe);
1251 		}
1252 		for (pipe = dbri->chi_out_pipe;
1253 		     pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1254 			unlink_time_slot(dbri, pipe, PIPEoutput,
1255 					 16, dbri->pipes[pipe].nextpipe);
1256 		}
1257 
1258 		dbri->chi_in_pipe = 16;
1259 		dbri->chi_out_pipe = 16;
1260 
1261 		cmd = dbri_cmdlock(dbri, GetLock);
1262 	}
1263 
1264 	if (master_or_slave == CHIslave) {
1265 		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1266 		 *
1267 		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1268 		 * IR     = give immediate CHI status interrupt
1269 		 * EN     = give CHI status interrupt upon change
1270 		 */
1271 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1272 	} else {
1273 		/* Setup DBRI for CHI Master - generate clock, FS
1274 		 *
1275 		 * BPF                          =  bits per 8 kHz frame
1276 		 * 12.288 MHz / CHICM_divisor   = clock rate
1277 		 * FD  =  1 - drive CHIFS on rising edge of CHICK
1278 		 */
1279 		int clockrate = bits_per_frame * 8;
1280 		int divisor = 12288 / clockrate;
1281 
1282 		if (divisor > 255 || divisor * clockrate != 12288)
1283 			printk(KERN_ERR "DBRI: illegal bits_per_frame in setup_chi\n");
1284 
1285 		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1286 				    | D_CHI_BPF(bits_per_frame));
1287 	}
1288 
1289 	dbri->chi_bpf = bits_per_frame;
1290 
1291 	/* CHI Data Mode
1292 	 *
1293 	 * RCE   =  0 - receive on falling edge of CHICK
1294 	 * XCE   =  1 - transmit on rising edge of CHICK
1295 	 * XEN   =  1 - enable transmitter
1296 	 * REN   =  1 - enable receiver
1297 	 */
1298 
1299 	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1300 	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1301 
1302 	dbri_cmdsend(dbri, cmd);
1303 }
1304 
1305 /*
1306 ****************************************************************************
1307 *********************** CS4215 audio codec management **********************
1308 ****************************************************************************
1309 
1310 In the standard SPARC audio configuration, the CS4215 codec is attached
1311 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1312 
1313 */
1314 static void cs4215_setup_pipes(snd_dbri_t * dbri)
1315 {
1316 	/*
1317 	 * Data mode:
1318 	 * Pipe  4: Send timeslots 1-4 (audio data)
1319 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1320 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1321 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1322 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1323 	 *          not relevant for us (only for doublechecking).
1324 	 *
1325 	 * Control mode:
1326 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1327 	 * Pipe 18: Receive timeslot 1 (clb).
1328 	 * Pipe 19: Receive timeslot 7 (version).
1329 	 */
1330 
1331 	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1332 	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1333 	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1334 	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1335 
1336 	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1337 	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1338 	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1339 }
1340 
1341 static int cs4215_init_data(struct cs4215 *mm)
1342 {
1343 	/*
1344 	 * No action, memory resetting only.
1345 	 *
1346 	 * Data Time Slot 5-8
1347 	 * Speaker,Line and Headphone enable. Gain set to the half.
1348 	 * Input is mike.
1349 	 */
1350 	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1351 	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1352 	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1353 	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1354 
1355 	/*
1356 	 * Control Time Slot 1-4
1357 	 * 0: Default I/O voltage scale
1358 	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1359 	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1360 	 * 3: Tests disabled
1361 	 */
1362 	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1363 	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1364 	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1365 	mm->ctrl[3] = 0;
1366 
1367 	mm->status = 0;
1368 	mm->version = 0xff;
1369 	mm->precision = 8;	/* For ULAW */
1370 	mm->channels = 2;
1371 
1372 	return 0;
1373 }
1374 
1375 static void cs4215_setdata(snd_dbri_t * dbri, int muted)
1376 {
1377 	if (muted) {
1378 		dbri->mm.data[0] |= 63;
1379 		dbri->mm.data[1] |= 63;
1380 		dbri->mm.data[2] &= ~15;
1381 		dbri->mm.data[3] &= ~15;
1382 	} else {
1383 		/* Start by setting the playback attenuation. */
1384 		dbri_streaminfo_t *info = &dbri->stream_info[DBRI_PLAY];
1385 		int left_gain = info->left_gain % 64;
1386 		int right_gain = info->right_gain % 64;
1387 
1388 		if (info->balance < DBRI_MID_BALANCE) {
1389 			right_gain *= info->balance;
1390 			right_gain /= DBRI_MID_BALANCE;
1391 		} else {
1392 			left_gain *= DBRI_RIGHT_BALANCE - info->balance;
1393 			left_gain /= DBRI_MID_BALANCE;
1394 		}
1395 
1396 		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1397 		dbri->mm.data[1] &= ~0x3f;
1398 		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1399 		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1400 
1401 		/* Now set the recording gain. */
1402 		info = &dbri->stream_info[DBRI_REC];
1403 		left_gain = info->left_gain % 16;
1404 		right_gain = info->right_gain % 16;
1405 		dbri->mm.data[2] |= CS4215_LG(left_gain);
1406 		dbri->mm.data[3] |= CS4215_RG(right_gain);
1407 	}
1408 
1409 	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1410 }
1411 
1412 /*
1413  * Set the CS4215 to data mode.
1414  */
1415 static void cs4215_open(snd_dbri_t * dbri)
1416 {
1417 	int data_width;
1418 	u32 tmp;
1419 
1420 	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1421 		dbri->mm.channels, dbri->mm.precision);
1422 
1423 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1424 	 * to make sure this takes.  This avoids clicking noises.
1425 	 */
1426 
1427 	cs4215_setdata(dbri, 1);
1428 	udelay(125);
1429 
1430 	/*
1431 	 * Data mode:
1432 	 * Pipe  4: Send timeslots 1-4 (audio data)
1433 	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1434 	 * Pipe  6: Receive timeslots 1-4 (audio data)
1435 	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1436 	 *          interrupt, and the rest of the data (slot 5 and 8) is
1437 	 *          not relevant for us (only for doublechecking).
1438 	 *
1439 	 * Just like in control mode, the time slots are all offset by eight
1440 	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1441 	 * even if it's the CHI master.  Don't ask me...
1442 	 */
1443 	tmp = sbus_readl(dbri->regs + REG0);
1444 	tmp &= ~(D_C);		/* Disable CHI */
1445 	sbus_writel(tmp, dbri->regs + REG0);
1446 
1447 	/* Switch CS4215 to data mode - set PIO3 to 1 */
1448 	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1449 		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1450 
1451 	reset_chi(dbri, CHIslave, 128);
1452 
1453 	/* Note: this next doesn't work for 8-bit stereo, because the two
1454 	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1455 	 * (See CS4215 datasheet Fig 15)
1456 	 *
1457 	 * DBRI non-contiguous mode would be required to make this work.
1458 	 */
1459 	data_width = dbri->mm.channels * dbri->mm.precision;
1460 
1461 	link_time_slot(dbri, 20, PIPEoutput, 16, 32, dbri->mm.offset + 32);
1462 	link_time_slot(dbri, 4, PIPEoutput, 16, data_width, dbri->mm.offset);
1463 	link_time_slot(dbri, 6, PIPEinput, 16, data_width, dbri->mm.offset);
1464 	link_time_slot(dbri, 21, PIPEinput, 16, 16, dbri->mm.offset + 40);
1465 
1466 	/* FIXME: enable CHI after _setdata? */
1467 	tmp = sbus_readl(dbri->regs + REG0);
1468 	tmp |= D_C;		/* Enable CHI */
1469 	sbus_writel(tmp, dbri->regs + REG0);
1470 
1471 	cs4215_setdata(dbri, 0);
1472 }
1473 
1474 /*
1475  * Send the control information (i.e. audio format)
1476  */
1477 static int cs4215_setctrl(snd_dbri_t * dbri)
1478 {
1479 	int i, val;
1480 	u32 tmp;
1481 
1482 	/* FIXME - let the CPU do something useful during these delays */
1483 
1484 	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1485 	 * to make sure this takes.  This avoids clicking noises.
1486 	 */
1487 	cs4215_setdata(dbri, 1);
1488 	udelay(125);
1489 
1490 	/*
1491 	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1492 	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1493 	 */
1494 	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1495 	sbus_writel(val, dbri->regs + REG2);
1496 	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1497 	udelay(34);
1498 
1499 	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1500 	 * operate as CHI master, supplying clocking and frame synchronization.
1501 	 *
1502 	 * In Data mode, however, the CS4215 must be CHI master to insure
1503 	 * that its data stream is synchronous with its codec.
1504 	 *
1505 	 * The upshot of all this?  We start by putting the DBRI into master
1506 	 * mode, program the CS4215 in Control mode, then switch the CS4215
1507 	 * into Data mode and put the DBRI into slave mode.  Various timing
1508 	 * requirements must be observed along the way.
1509 	 *
1510 	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1511 	 * others?), the addressing of the CS4215's time slots is
1512 	 * offset by eight bits, so we add eight to all the "cycle"
1513 	 * values in the Define Time Slot (DTS) commands.  This is
1514 	 * done in hardware by a TI 248 that delays the DBRI->4215
1515 	 * frame sync signal by eight clock cycles.  Anybody know why?
1516 	 */
1517 	tmp = sbus_readl(dbri->regs + REG0);
1518 	tmp &= ~D_C;		/* Disable CHI */
1519 	sbus_writel(tmp, dbri->regs + REG0);
1520 
1521 	reset_chi(dbri, CHImaster, 128);
1522 
1523 	/*
1524 	 * Control mode:
1525 	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1526 	 * Pipe 18: Receive timeslot 1 (clb).
1527 	 * Pipe 19: Receive timeslot 7 (version).
1528 	 */
1529 
1530 	link_time_slot(dbri, 17, PIPEoutput, 16, 32, dbri->mm.offset);
1531 	link_time_slot(dbri, 18, PIPEinput, 16, 8, dbri->mm.offset);
1532 	link_time_slot(dbri, 19, PIPEinput, 16, 8, dbri->mm.offset + 48);
1533 
1534 	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1535 	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1536 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1537 
1538 	tmp = sbus_readl(dbri->regs + REG0);
1539 	tmp |= D_C;		/* Enable CHI */
1540 	sbus_writel(tmp, dbri->regs + REG0);
1541 
1542 	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i) {
1543 		msleep_interruptible(1);
1544 	}
1545 	if (i == 0) {
1546 		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1547 			dbri->mm.status);
1548 		return -1;
1549 	}
1550 
1551 	/* Disable changes to our copy of the version number, as we are about
1552 	 * to leave control mode.
1553 	 */
1554 	recv_fixed(dbri, 19, NULL);
1555 
1556 	/* Terminate CS4215 control mode - data sheet says
1557 	 * "Set CLB=1 and send two more frames of valid control info"
1558 	 */
1559 	dbri->mm.ctrl[0] |= CS4215_CLB;
1560 	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1561 
1562 	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1563 	udelay(250);
1564 
1565 	cs4215_setdata(dbri, 0);
1566 
1567 	return 0;
1568 }
1569 
1570 /*
1571  * Setup the codec with the sampling rate, audio format and number of
1572  * channels.
1573  * As part of the process we resend the settings for the data
1574  * timeslots as well.
1575  */
1576 static int cs4215_prepare(snd_dbri_t * dbri, unsigned int rate,
1577 			  snd_pcm_format_t format, unsigned int channels)
1578 {
1579 	int freq_idx;
1580 	int ret = 0;
1581 
1582 	/* Lookup index for this rate */
1583 	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1584 		if (CS4215_FREQ[freq_idx].freq == rate)
1585 			break;
1586 	}
1587 	if (CS4215_FREQ[freq_idx].freq != rate) {
1588 		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1589 		return -1;
1590 	}
1591 
1592 	switch (format) {
1593 	case SNDRV_PCM_FORMAT_MU_LAW:
1594 		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1595 		dbri->mm.precision = 8;
1596 		break;
1597 	case SNDRV_PCM_FORMAT_A_LAW:
1598 		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1599 		dbri->mm.precision = 8;
1600 		break;
1601 	case SNDRV_PCM_FORMAT_U8:
1602 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1603 		dbri->mm.precision = 8;
1604 		break;
1605 	case SNDRV_PCM_FORMAT_S16_BE:
1606 		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1607 		dbri->mm.precision = 16;
1608 		break;
1609 	default:
1610 		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1611 		return -1;
1612 	}
1613 
1614 	/* Add rate parameters */
1615 	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1616 	dbri->mm.ctrl[2] = CS4215_XCLK |
1617 	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1618 
1619 	dbri->mm.channels = channels;
1620 	/* Stereo bit: 8 bit stereo not working yet. */
1621 	if ((channels > 1) && (dbri->mm.precision == 16))
1622 		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1623 
1624 	ret = cs4215_setctrl(dbri);
1625 	if (ret == 0)
1626 		cs4215_open(dbri);	/* set codec to data mode */
1627 
1628 	return ret;
1629 }
1630 
1631 /*
1632  *
1633  */
1634 static int cs4215_init(snd_dbri_t * dbri)
1635 {
1636 	u32 reg2 = sbus_readl(dbri->regs + REG2);
1637 	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1638 
1639 	/* Look for the cs4215 chips */
1640 	if (reg2 & D_PIO2) {
1641 		dprintk(D_MM, "Onboard CS4215 detected\n");
1642 		dbri->mm.onboard = 1;
1643 	}
1644 	if (reg2 & D_PIO0) {
1645 		dprintk(D_MM, "Speakerbox detected\n");
1646 		dbri->mm.onboard = 0;
1647 
1648 		if (reg2 & D_PIO2) {
1649 			printk(KERN_INFO "DBRI: Using speakerbox / "
1650 			       "ignoring onboard mmcodec.\n");
1651 			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1652 		}
1653 	}
1654 
1655 	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1656 		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1657 		return -EIO;
1658 	}
1659 
1660 	cs4215_setup_pipes(dbri);
1661 
1662 	cs4215_init_data(&dbri->mm);
1663 
1664 	/* Enable capture of the status & version timeslots. */
1665 	recv_fixed(dbri, 18, &dbri->mm.status);
1666 	recv_fixed(dbri, 19, &dbri->mm.version);
1667 
1668 	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1669 	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1670 		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1671 			dbri->mm.offset);
1672 		return -EIO;
1673 	}
1674 	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1675 
1676 	return 0;
1677 }
1678 
1679 /*
1680 ****************************************************************************
1681 *************************** DBRI interrupt handler *************************
1682 ****************************************************************************
1683 
1684 The DBRI communicates with the CPU mainly via a circular interrupt
1685 buffer.  When an interrupt is signaled, the CPU walks through the
1686 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1687 Complicated interrupts are handled by dedicated functions (which
1688 appear first in this file).  Any pending interrupts can be serviced by
1689 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1690 interrupts are disabled.  This function is used by dbri_cmdlock()
1691 to make sure we're synced up with the chip before each command sequence,
1692 even if we're running cli'ed.
1693 
1694 */
1695 
1696 /* xmit_descs()
1697  *
1698  * Transmit the current TD's for recording/playing, if needed.
1699  * For playback, ALSA has filled the DMA memory with new data (we hope).
1700  */
1701 static void xmit_descs(unsigned long data)
1702 {
1703 	snd_dbri_t *dbri = (snd_dbri_t *) data;
1704 	dbri_streaminfo_t *info;
1705 	volatile s32 *cmd;
1706 	unsigned long flags;
1707 	int first_td;
1708 
1709 	if (dbri == NULL)
1710 		return;		/* Disabled */
1711 
1712 	/* First check the recording stream for buffer overflow */
1713 	info = &dbri->stream_info[DBRI_REC];
1714 	spin_lock_irqsave(&dbri->lock, flags);
1715 
1716 	if ((info->left >= info->size) && (info->pipe >= 0)) {
1717 		first_td = dbri->pipes[info->pipe].first_desc;
1718 
1719 		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1720 
1721 		/* Stream could be closed by the time we run. */
1722 		if (first_td < 0) {
1723 			goto play;
1724 		}
1725 
1726 		cmd = dbri_cmdlock(dbri, NoGetLock);
1727 		*(cmd++) = DBRI_CMD(D_SDP, 0,
1728 				    dbri->pipes[info->pipe].sdp
1729 				    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1730 		*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1731 		dbri_cmdsend(dbri, cmd);
1732 
1733 		/* Reset our admin of the pipe & bytes read. */
1734 		dbri->pipes[info->pipe].desc = first_td;
1735 		info->left = 0;
1736 	}
1737 
1738 play:
1739 	spin_unlock_irqrestore(&dbri->lock, flags);
1740 
1741 	/* Now check the playback stream for buffer underflow */
1742 	info = &dbri->stream_info[DBRI_PLAY];
1743 	spin_lock_irqsave(&dbri->lock, flags);
1744 
1745 	if ((info->left <= 0) && (info->pipe >= 0)) {
1746 		first_td = dbri->pipes[info->pipe].first_desc;
1747 
1748 		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1749 
1750 		/* Stream could be closed by the time we run. */
1751 		if (first_td < 0) {
1752 			spin_unlock_irqrestore(&dbri->lock, flags);
1753 			return;
1754 		}
1755 
1756 		cmd = dbri_cmdlock(dbri, NoGetLock);
1757 		*(cmd++) = DBRI_CMD(D_SDP, 0,
1758 				    dbri->pipes[info->pipe].sdp
1759 				    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1760 		*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1761 		dbri_cmdsend(dbri, cmd);
1762 
1763 		/* Reset our admin of the pipe & bytes written. */
1764 		dbri->pipes[info->pipe].desc = first_td;
1765 		info->left = info->size;
1766 	}
1767 	spin_unlock_irqrestore(&dbri->lock, flags);
1768 }
1769 
1770 DECLARE_TASKLET(xmit_descs_task, xmit_descs, 0);
1771 
1772 /* transmission_complete_intr()
1773  *
1774  * Called by main interrupt handler when DBRI signals transmission complete
1775  * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1776  *
1777  * Walks through the pipe's list of transmit buffer descriptors and marks
1778  * them as available. Stops when the first descriptor is found without
1779  * TBC (Transmit Buffer Complete) set, or we've run through them all.
1780  *
1781  * The DMA buffers are not released, but re-used. Since the transmit buffer
1782  * descriptors are not clobbered, they can be re-submitted as is. This is
1783  * done by the xmit_descs() tasklet above since that could take longer.
1784  */
1785 
1786 static void transmission_complete_intr(snd_dbri_t * dbri, int pipe)
1787 {
1788 	dbri_streaminfo_t *info;
1789 	int td;
1790 	int status;
1791 
1792 	info = &dbri->stream_info[DBRI_PLAY];
1793 
1794 	td = dbri->pipes[pipe].desc;
1795 	while (td >= 0) {
1796 		if (td >= DBRI_NO_DESCS) {
1797 			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1798 			return;
1799 		}
1800 
1801 		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1802 		if (!(status & DBRI_TD_TBC)) {
1803 			break;
1804 		}
1805 
1806 		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1807 
1808 		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1809 		info->offset += dbri->descs[td].len;
1810 		info->left -= dbri->descs[td].len;
1811 
1812 		/* On the last TD, transmit them all again. */
1813 		if (dbri->descs[td].next == -1) {
1814 			if (info->left > 0) {
1815 				printk(KERN_WARNING
1816 				       "%d bytes left after last transfer.\n",
1817 				       info->left);
1818 				info->left = 0;
1819 			}
1820 			tasklet_schedule(&xmit_descs_task);
1821 		}
1822 
1823 		td = dbri->descs[td].next;
1824 		dbri->pipes[pipe].desc = td;
1825 	}
1826 
1827 	/* Notify ALSA */
1828 	if (spin_is_locked(&dbri->lock)) {
1829 		spin_unlock(&dbri->lock);
1830 		snd_pcm_period_elapsed(info->substream);
1831 		spin_lock(&dbri->lock);
1832 	} else
1833 		snd_pcm_period_elapsed(info->substream);
1834 }
1835 
1836 static void reception_complete_intr(snd_dbri_t * dbri, int pipe)
1837 {
1838 	dbri_streaminfo_t *info;
1839 	int rd = dbri->pipes[pipe].desc;
1840 	s32 status;
1841 
1842 	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1843 		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1844 		return;
1845 	}
1846 
1847 	dbri->descs[rd].inuse = 0;
1848 	dbri->pipes[pipe].desc = dbri->descs[rd].next;
1849 	status = dbri->dma->desc[rd].word1;
1850 	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1851 
1852 	info = &dbri->stream_info[DBRI_REC];
1853 	info->offset += DBRI_RD_CNT(status);
1854 	info->left += DBRI_RD_CNT(status);
1855 
1856 	/* FIXME: Check status */
1857 
1858 	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1859 		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1860 
1861 	/* On the last TD, transmit them all again. */
1862 	if (dbri->descs[rd].next == -1) {
1863 		if (info->left > info->size) {
1864 			printk(KERN_WARNING
1865 			       "%d bytes recorded in %d size buffer.\n",
1866 			       info->left, info->size);
1867 		}
1868 		tasklet_schedule(&xmit_descs_task);
1869 	}
1870 
1871 	/* Notify ALSA */
1872 	if (spin_is_locked(&dbri->lock)) {
1873 		spin_unlock(&dbri->lock);
1874 		snd_pcm_period_elapsed(info->substream);
1875 		spin_lock(&dbri->lock);
1876 	} else
1877 		snd_pcm_period_elapsed(info->substream);
1878 }
1879 
1880 static void dbri_process_one_interrupt(snd_dbri_t * dbri, int x)
1881 {
1882 	int val = D_INTR_GETVAL(x);
1883 	int channel = D_INTR_GETCHAN(x);
1884 	int command = D_INTR_GETCMD(x);
1885 	int code = D_INTR_GETCODE(x);
1886 #ifdef DBRI_DEBUG
1887 	int rval = D_INTR_GETRVAL(x);
1888 #endif
1889 
1890 	if (channel == D_INTR_CMD) {
1891 		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1892 			cmds[command], val);
1893 	} else {
1894 		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1895 			channel, code, rval);
1896 	}
1897 
1898 	if (channel == D_INTR_CMD && command == D_WAIT) {
1899 		dbri->wait_ackd = val;
1900 		if (dbri->wait_send != val) {
1901 			printk(KERN_ERR "Processing wait command %d when %d was send.\n",
1902 			       val, dbri->wait_send);
1903 		}
1904 		return;
1905 	}
1906 
1907 	switch (code) {
1908 	case D_INTR_BRDY:
1909 		reception_complete_intr(dbri, channel);
1910 		break;
1911 	case D_INTR_XCMP:
1912 	case D_INTR_MINT:
1913 		transmission_complete_intr(dbri, channel);
1914 		break;
1915 	case D_INTR_UNDR:
1916 		/* UNDR - Transmission underrun
1917 		 * resend SDP command with clear pipe bit (C) set
1918 		 */
1919 		{
1920 			volatile s32 *cmd;
1921 
1922 			int pipe = channel;
1923 			int td = dbri->pipes[pipe].desc;
1924 
1925 			dbri->dma->desc[td].word4 = 0;
1926 			cmd = dbri_cmdlock(dbri, NoGetLock);
1927 			*(cmd++) = DBRI_CMD(D_SDP, 0,
1928 					    dbri->pipes[pipe].sdp
1929 					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1930 			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1931 			dbri_cmdsend(dbri, cmd);
1932 		}
1933 		break;
1934 	case D_INTR_FXDT:
1935 		/* FXDT - Fixed data change */
1936 		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1937 			val = reverse_bytes(val, dbri->pipes[channel].length);
1938 
1939 		if (dbri->pipes[channel].recv_fixed_ptr)
1940 			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1941 		break;
1942 	default:
1943 		if (channel != D_INTR_CMD)
1944 			printk(KERN_WARNING
1945 			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1946 	}
1947 }
1948 
1949 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1950  * buffer until it finds a zero word (indicating nothing more to do
1951  * right now).  Non-zero words require processing and are handed off
1952  * to dbri_process_one_interrupt AFTER advancing the pointer.  This
1953  * order is important since we might recurse back into this function
1954  * and need to make sure the pointer has been advanced first.
1955  */
1956 static void dbri_process_interrupt_buffer(snd_dbri_t * dbri)
1957 {
1958 	s32 x;
1959 
1960 	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1961 		dbri->dma->intr[dbri->dbri_irqp] = 0;
1962 		dbri->dbri_irqp++;
1963 		if (dbri->dbri_irqp == (DBRI_NO_INTS * DBRI_INT_BLK))
1964 			dbri->dbri_irqp = 1;
1965 		else if ((dbri->dbri_irqp & (DBRI_INT_BLK - 1)) == 0)
1966 			dbri->dbri_irqp++;
1967 
1968 		dbri_process_one_interrupt(dbri, x);
1969 	}
1970 }
1971 
1972 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id,
1973 				      struct pt_regs *regs)
1974 {
1975 	snd_dbri_t *dbri = dev_id;
1976 	static int errcnt = 0;
1977 	int x;
1978 
1979 	if (dbri == NULL)
1980 		return IRQ_NONE;
1981 	spin_lock(&dbri->lock);
1982 
1983 	/*
1984 	 * Read it, so the interrupt goes away.
1985 	 */
1986 	x = sbus_readl(dbri->regs + REG1);
1987 
1988 	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1989 		u32 tmp;
1990 
1991 		if (x & D_MRR)
1992 			printk(KERN_ERR
1993 			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1994 			       x);
1995 		if (x & D_MLE)
1996 			printk(KERN_ERR
1997 			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1998 			       x);
1999 		if (x & D_LBG)
2000 			printk(KERN_ERR
2001 			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
2002 		if (x & D_MBE)
2003 			printk(KERN_ERR
2004 			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
2005 
2006 		/* Some of these SBus errors cause the chip's SBus circuitry
2007 		 * to be disabled, so just re-enable and try to keep going.
2008 		 *
2009 		 * The only one I've seen is MRR, which will be triggered
2010 		 * if you let a transmit pipe underrun, then try to CDP it.
2011 		 *
2012 		 * If these things persist, we reset the chip.
2013 		 */
2014 		if ((++errcnt) % 10 == 0) {
2015 			dprintk(D_INT, "Interrupt errors exceeded.\n");
2016 			dbri_reset(dbri);
2017 		} else {
2018 			tmp = sbus_readl(dbri->regs + REG0);
2019 			tmp &= ~(D_D);
2020 			sbus_writel(tmp, dbri->regs + REG0);
2021 		}
2022 	}
2023 
2024 	dbri_process_interrupt_buffer(dbri);
2025 
2026 	/* FIXME: Write 0 into regs to ACK interrupt */
2027 
2028 	spin_unlock(&dbri->lock);
2029 
2030 	return IRQ_HANDLED;
2031 }
2032 
2033 /****************************************************************************
2034 		PCM Interface
2035 ****************************************************************************/
2036 static snd_pcm_hardware_t snd_dbri_pcm_hw = {
2037 	.info			= (SNDRV_PCM_INFO_MMAP |
2038 				   SNDRV_PCM_INFO_INTERLEAVED |
2039 				   SNDRV_PCM_INFO_BLOCK_TRANSFER |
2040 				   SNDRV_PCM_INFO_MMAP_VALID),
2041 	.formats		= SNDRV_PCM_FMTBIT_MU_LAW |
2042 				  SNDRV_PCM_FMTBIT_A_LAW |
2043 				  SNDRV_PCM_FMTBIT_U8 |
2044 				  SNDRV_PCM_FMTBIT_S16_BE,
2045 	.rates			= SNDRV_PCM_RATE_8000_48000,
2046 	.rate_min		= 8000,
2047 	.rate_max		= 48000,
2048 	.channels_min		= 1,
2049 	.channels_max		= 2,
2050 	.buffer_bytes_max	= (64 * 1024),
2051 	.period_bytes_min	= 1,
2052 	.period_bytes_max	= DBRI_TD_MAXCNT,
2053 	.periods_min		= 1,
2054 	.periods_max		= 1024,
2055 };
2056 
2057 static int snd_dbri_open(snd_pcm_substream_t * substream)
2058 {
2059 	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2060 	snd_pcm_runtime_t *runtime = substream->runtime;
2061 	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2062 	unsigned long flags;
2063 
2064 	dprintk(D_USR, "open audio output.\n");
2065 	runtime->hw = snd_dbri_pcm_hw;
2066 
2067 	spin_lock_irqsave(&dbri->lock, flags);
2068 	info->substream = substream;
2069 	info->left = 0;
2070 	info->offset = 0;
2071 	info->dvma_buffer = 0;
2072 	info->pipe = -1;
2073 	spin_unlock_irqrestore(&dbri->lock, flags);
2074 
2075 	cs4215_open(dbri);
2076 
2077 	return 0;
2078 }
2079 
2080 static int snd_dbri_close(snd_pcm_substream_t * substream)
2081 {
2082 	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2083 	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2084 
2085 	dprintk(D_USR, "close audio output.\n");
2086 	info->substream = NULL;
2087 	info->left = 0;
2088 	info->offset = 0;
2089 
2090 	return 0;
2091 }
2092 
2093 static int snd_dbri_hw_params(snd_pcm_substream_t * substream,
2094 			      snd_pcm_hw_params_t * hw_params)
2095 {
2096 	snd_pcm_runtime_t *runtime = substream->runtime;
2097 	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2098 	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2099 	int direction;
2100 	int ret;
2101 
2102 	/* set sampling rate, audio format and number of channels */
2103 	ret = cs4215_prepare(dbri, params_rate(hw_params),
2104 			     params_format(hw_params),
2105 			     params_channels(hw_params));
2106 	if (ret != 0)
2107 		return ret;
2108 
2109 	if ((ret = snd_pcm_lib_malloc_pages(substream,
2110 				params_buffer_bytes(hw_params))) < 0) {
2111 		printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2112 		return ret;
2113 	}
2114 
2115 	/* hw_params can get called multiple times. Only map the DMA once.
2116 	 */
2117 	if (info->dvma_buffer == 0) {
2118 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2119 			direction = SBUS_DMA_TODEVICE;
2120 		else
2121 			direction = SBUS_DMA_FROMDEVICE;
2122 
2123 		info->dvma_buffer = sbus_map_single(dbri->sdev,
2124 					runtime->dma_area,
2125 					params_buffer_bytes(hw_params),
2126 					direction);
2127 	}
2128 
2129 	direction = params_buffer_bytes(hw_params);
2130 	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2131 		direction, info->dvma_buffer);
2132 	return 0;
2133 }
2134 
2135 static int snd_dbri_hw_free(snd_pcm_substream_t * substream)
2136 {
2137 	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2138 	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2139 	int direction;
2140 	dprintk(D_USR, "hw_free.\n");
2141 
2142 	/* hw_free can get called multiple times. Only unmap the DMA once.
2143 	 */
2144 	if (info->dvma_buffer) {
2145 		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2146 			direction = SBUS_DMA_TODEVICE;
2147 		else
2148 			direction = SBUS_DMA_FROMDEVICE;
2149 
2150 		sbus_unmap_single(dbri->sdev, info->dvma_buffer,
2151 				  substream->runtime->buffer_size, direction);
2152 		info->dvma_buffer = 0;
2153 	}
2154 	info->pipe = -1;
2155 
2156 	return snd_pcm_lib_free_pages(substream);
2157 }
2158 
2159 static int snd_dbri_prepare(snd_pcm_substream_t * substream)
2160 {
2161 	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2162 	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2163 	snd_pcm_runtime_t *runtime = substream->runtime;
2164 	int ret;
2165 
2166 	info->size = snd_pcm_lib_buffer_bytes(substream);
2167 	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2168 		info->pipe = 4;	/* Send pipe */
2169 	else {
2170 		info->pipe = 6;	/* Receive pipe */
2171 		info->left = info->size;	/* To trigger submittal */
2172 	}
2173 
2174 	spin_lock_irq(&dbri->lock);
2175 
2176 	/* Setup the all the transmit/receive desciptors to cover the
2177 	 * whole DMA buffer.
2178 	 */
2179 	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2180 			  snd_pcm_lib_period_bytes(substream));
2181 
2182 	runtime->stop_threshold = DBRI_TD_MAXCNT / runtime->channels;
2183 
2184 	spin_unlock_irq(&dbri->lock);
2185 
2186 	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2187 	return ret;
2188 }
2189 
2190 static int snd_dbri_trigger(snd_pcm_substream_t * substream, int cmd)
2191 {
2192 	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2193 	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2194 	int ret = 0;
2195 
2196 	switch (cmd) {
2197 	case SNDRV_PCM_TRIGGER_START:
2198 		dprintk(D_USR, "start audio, period is %d bytes\n",
2199 			(int)snd_pcm_lib_period_bytes(substream));
2200 		/* Enable & schedule the tasklet that re-submits the TDs. */
2201 		xmit_descs_task.data = (unsigned long)dbri;
2202 		tasklet_schedule(&xmit_descs_task);
2203 		break;
2204 	case SNDRV_PCM_TRIGGER_STOP:
2205 		dprintk(D_USR, "stop audio.\n");
2206 		/* Make the tasklet bail out immediately. */
2207 		xmit_descs_task.data = 0;
2208 		reset_pipe(dbri, info->pipe);
2209 		break;
2210 	default:
2211 		ret = -EINVAL;
2212 	}
2213 
2214 	return ret;
2215 }
2216 
2217 static snd_pcm_uframes_t snd_dbri_pointer(snd_pcm_substream_t * substream)
2218 {
2219 	snd_dbri_t *dbri = snd_pcm_substream_chip(substream);
2220 	dbri_streaminfo_t *info = DBRI_STREAM(dbri, substream);
2221 	snd_pcm_uframes_t ret;
2222 
2223 	ret = bytes_to_frames(substream->runtime, info->offset)
2224 		% substream->runtime->buffer_size;
2225 	dprintk(D_USR, "I/O pointer: %ld frames, %d bytes left.\n",
2226 		ret, info->left);
2227 	return ret;
2228 }
2229 
2230 static snd_pcm_ops_t snd_dbri_ops = {
2231 	.open = snd_dbri_open,
2232 	.close = snd_dbri_close,
2233 	.ioctl = snd_pcm_lib_ioctl,
2234 	.hw_params = snd_dbri_hw_params,
2235 	.hw_free = snd_dbri_hw_free,
2236 	.prepare = snd_dbri_prepare,
2237 	.trigger = snd_dbri_trigger,
2238 	.pointer = snd_dbri_pointer,
2239 };
2240 
2241 static int __devinit snd_dbri_pcm(snd_dbri_t * dbri)
2242 {
2243 	snd_pcm_t *pcm;
2244 	int err;
2245 
2246 	if ((err = snd_pcm_new(dbri->card,
2247 			       /* ID */		    "sun_dbri",
2248 			       /* device */	    0,
2249 			       /* playback count */ 1,
2250 			       /* capture count */  1, &pcm)) < 0)
2251 		return err;
2252 	snd_assert(pcm != NULL, return -EINVAL);
2253 
2254 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2255 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2256 
2257 	pcm->private_data = dbri;
2258 	pcm->info_flags = 0;
2259 	strcpy(pcm->name, dbri->card->shortname);
2260 	dbri->pcm = pcm;
2261 
2262 	if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2263 			SNDRV_DMA_TYPE_CONTINUOUS,
2264 			snd_dma_continuous_data(GFP_KERNEL),
2265 			64 * 1024, 64 * 1024)) < 0) {
2266 		return err;
2267 	}
2268 
2269 	return 0;
2270 }
2271 
2272 /*****************************************************************************
2273 			Mixer interface
2274 *****************************************************************************/
2275 
2276 static int snd_cs4215_info_volume(snd_kcontrol_t * kcontrol,
2277 				  snd_ctl_elem_info_t * uinfo)
2278 {
2279 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2280 	uinfo->count = 2;
2281 	uinfo->value.integer.min = 0;
2282 	if (kcontrol->private_value == DBRI_PLAY) {
2283 		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2284 	} else {
2285 		uinfo->value.integer.max = DBRI_MAX_GAIN;
2286 	}
2287 	return 0;
2288 }
2289 
2290 static int snd_cs4215_get_volume(snd_kcontrol_t * kcontrol,
2291 				 snd_ctl_elem_value_t * ucontrol)
2292 {
2293 	snd_dbri_t *dbri = snd_kcontrol_chip(kcontrol);
2294 	dbri_streaminfo_t *info;
2295 	snd_assert(dbri != NULL, return -EINVAL);
2296 	info = &dbri->stream_info[kcontrol->private_value];
2297 	snd_assert(info != NULL, return -EINVAL);
2298 
2299 	ucontrol->value.integer.value[0] = info->left_gain;
2300 	ucontrol->value.integer.value[1] = info->right_gain;
2301 	return 0;
2302 }
2303 
2304 static int snd_cs4215_put_volume(snd_kcontrol_t * kcontrol,
2305 				 snd_ctl_elem_value_t * ucontrol)
2306 {
2307 	snd_dbri_t *dbri = snd_kcontrol_chip(kcontrol);
2308 	dbri_streaminfo_t *info = &dbri->stream_info[kcontrol->private_value];
2309 	unsigned long flags;
2310 	int changed = 0;
2311 
2312 	if (info->left_gain != ucontrol->value.integer.value[0]) {
2313 		info->left_gain = ucontrol->value.integer.value[0];
2314 		changed = 1;
2315 	}
2316 	if (info->right_gain != ucontrol->value.integer.value[1]) {
2317 		info->right_gain = ucontrol->value.integer.value[1];
2318 		changed = 1;
2319 	}
2320 	if (changed == 1) {
2321 		/* First mute outputs, and wait 1/8000 sec (125 us)
2322 		 * to make sure this takes.  This avoids clicking noises.
2323 		 */
2324 		spin_lock_irqsave(&dbri->lock, flags);
2325 
2326 		cs4215_setdata(dbri, 1);
2327 		udelay(125);
2328 		cs4215_setdata(dbri, 0);
2329 
2330 		spin_unlock_irqrestore(&dbri->lock, flags);
2331 	}
2332 	return changed;
2333 }
2334 
2335 static int snd_cs4215_info_single(snd_kcontrol_t * kcontrol,
2336 				  snd_ctl_elem_info_t * uinfo)
2337 {
2338 	int mask = (kcontrol->private_value >> 16) & 0xff;
2339 
2340 	uinfo->type = (mask == 1) ?
2341 	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2342 	uinfo->count = 1;
2343 	uinfo->value.integer.min = 0;
2344 	uinfo->value.integer.max = mask;
2345 	return 0;
2346 }
2347 
2348 static int snd_cs4215_get_single(snd_kcontrol_t * kcontrol,
2349 				 snd_ctl_elem_value_t * ucontrol)
2350 {
2351 	snd_dbri_t *dbri = snd_kcontrol_chip(kcontrol);
2352 	int elem = kcontrol->private_value & 0xff;
2353 	int shift = (kcontrol->private_value >> 8) & 0xff;
2354 	int mask = (kcontrol->private_value >> 16) & 0xff;
2355 	int invert = (kcontrol->private_value >> 24) & 1;
2356 	snd_assert(dbri != NULL, return -EINVAL);
2357 
2358 	if (elem < 4) {
2359 		ucontrol->value.integer.value[0] =
2360 		    (dbri->mm.data[elem] >> shift) & mask;
2361 	} else {
2362 		ucontrol->value.integer.value[0] =
2363 		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2364 	}
2365 
2366 	if (invert == 1) {
2367 		ucontrol->value.integer.value[0] =
2368 		    mask - ucontrol->value.integer.value[0];
2369 	}
2370 	return 0;
2371 }
2372 
2373 static int snd_cs4215_put_single(snd_kcontrol_t * kcontrol,
2374 				 snd_ctl_elem_value_t * ucontrol)
2375 {
2376 	snd_dbri_t *dbri = snd_kcontrol_chip(kcontrol);
2377 	unsigned long flags;
2378 	int elem = kcontrol->private_value & 0xff;
2379 	int shift = (kcontrol->private_value >> 8) & 0xff;
2380 	int mask = (kcontrol->private_value >> 16) & 0xff;
2381 	int invert = (kcontrol->private_value >> 24) & 1;
2382 	int changed = 0;
2383 	unsigned short val;
2384 	snd_assert(dbri != NULL, return -EINVAL);
2385 
2386 	val = (ucontrol->value.integer.value[0] & mask);
2387 	if (invert == 1)
2388 		val = mask - val;
2389 	val <<= shift;
2390 
2391 	if (elem < 4) {
2392 		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2393 				       ~(mask << shift)) | val;
2394 		changed = (val != dbri->mm.data[elem]);
2395 	} else {
2396 		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2397 					   ~(mask << shift)) | val;
2398 		changed = (val != dbri->mm.ctrl[elem - 4]);
2399 	}
2400 
2401 	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2402 		"mixer-value=%ld, mm-value=0x%x\n",
2403 		mask, changed, ucontrol->value.integer.value[0],
2404 		dbri->mm.data[elem & 3]);
2405 
2406 	if (changed) {
2407 		/* First mute outputs, and wait 1/8000 sec (125 us)
2408 		 * to make sure this takes.  This avoids clicking noises.
2409 		 */
2410 		spin_lock_irqsave(&dbri->lock, flags);
2411 
2412 		cs4215_setdata(dbri, 1);
2413 		udelay(125);
2414 		cs4215_setdata(dbri, 0);
2415 
2416 		spin_unlock_irqrestore(&dbri->lock, flags);
2417 	}
2418 	return changed;
2419 }
2420 
2421 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2422    timeslots. Shift is the bit offset in the timeslot, mask defines the
2423    number of bits. invert is a boolean for use with attenuation.
2424  */
2425 #define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2426 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2427   .info = snd_cs4215_info_single, \
2428   .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2429   .private_value = entry | (shift << 8) | (mask << 16) | (invert << 24) },
2430 
2431 static snd_kcontrol_new_t dbri_controls[] __devinitdata = {
2432 	{
2433 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2434 	 .name  = "Playback Volume",
2435 	 .info  = snd_cs4215_info_volume,
2436 	 .get   = snd_cs4215_get_volume,
2437 	 .put   = snd_cs4215_put_volume,
2438 	 .private_value = DBRI_PLAY,
2439 	 },
2440 	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2441 	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2442 	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2443 	{
2444 	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2445 	 .name  = "Capture Volume",
2446 	 .info  = snd_cs4215_info_volume,
2447 	 .get   = snd_cs4215_get_volume,
2448 	 .put   = snd_cs4215_put_volume,
2449 	 .private_value = DBRI_REC,
2450 	 },
2451 	/* FIXME: mic/line switch */
2452 	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2453 	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2454 	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2455 	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2456 };
2457 
2458 #define NUM_CS4215_CONTROLS (sizeof(dbri_controls)/sizeof(snd_kcontrol_new_t))
2459 
2460 static int __init snd_dbri_mixer(snd_dbri_t * dbri)
2461 {
2462 	snd_card_t *card;
2463 	int idx, err;
2464 
2465 	snd_assert(dbri != NULL && dbri->card != NULL, return -EINVAL);
2466 
2467 	card = dbri->card;
2468 	strcpy(card->mixername, card->shortname);
2469 
2470 	for (idx = 0; idx < NUM_CS4215_CONTROLS; idx++) {
2471 		if ((err = snd_ctl_add(card,
2472 				snd_ctl_new1(&dbri_controls[idx], dbri))) < 0)
2473 			return err;
2474 	}
2475 
2476 	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2477 		dbri->stream_info[idx].left_gain = 0;
2478 		dbri->stream_info[idx].right_gain = 0;
2479 		dbri->stream_info[idx].balance = DBRI_MID_BALANCE;
2480 	}
2481 
2482 	return 0;
2483 }
2484 
2485 /****************************************************************************
2486 			/proc interface
2487 ****************************************************************************/
2488 static void dbri_regs_read(snd_info_entry_t * entry, snd_info_buffer_t * buffer)
2489 {
2490 	snd_dbri_t *dbri = entry->private_data;
2491 
2492 	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2493 	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2494 	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2495 	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2496 }
2497 
2498 #ifdef DBRI_DEBUG
2499 static void dbri_debug_read(snd_info_entry_t * entry,
2500 			    snd_info_buffer_t * buffer)
2501 {
2502 	snd_dbri_t *dbri = entry->private_data;
2503 	int pipe;
2504 	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2505 
2506 	for (pipe = 0; pipe < 32; pipe++) {
2507 		if (pipe_active(dbri, pipe)) {
2508 			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2509 			snd_iprintf(buffer,
2510 				    "Pipe %d: %s SDP=0x%x desc=%d, "
2511 				    "len=%d @ %d prev: %d next %d\n",
2512 				    pipe,
2513 				    (pptr->direction ==
2514 				     PIPEinput ? "input" : "output"), pptr->sdp,
2515 				    pptr->desc, pptr->length, pptr->cycle,
2516 				    pptr->prevpipe, pptr->nextpipe);
2517 		}
2518 	}
2519 }
2520 #endif
2521 
2522 void snd_dbri_proc(snd_dbri_t * dbri)
2523 {
2524 	snd_info_entry_t *entry;
2525 	int err;
2526 
2527 	err = snd_card_proc_new(dbri->card, "regs", &entry);
2528 	snd_info_set_text_ops(entry, dbri, 1024, dbri_regs_read);
2529 
2530 #ifdef DBRI_DEBUG
2531 	err = snd_card_proc_new(dbri->card, "debug", &entry);
2532 	snd_info_set_text_ops(entry, dbri, 4096, dbri_debug_read);
2533 	entry->mode = S_IFREG | S_IRUGO;	/* Readable only. */
2534 #endif
2535 }
2536 
2537 /*
2538 ****************************************************************************
2539 **************************** Initialization ********************************
2540 ****************************************************************************
2541 */
2542 static void snd_dbri_free(snd_dbri_t * dbri);
2543 
2544 static int __init snd_dbri_create(snd_card_t * card,
2545 				  struct sbus_dev *sdev,
2546 				  struct linux_prom_irqs *irq, int dev)
2547 {
2548 	snd_dbri_t *dbri = card->private_data;
2549 	int err;
2550 
2551 	spin_lock_init(&dbri->lock);
2552 	dbri->card = card;
2553 	dbri->sdev = sdev;
2554 	dbri->irq = irq->pri;
2555 	dbri->dbri_version = sdev->prom_name[9];
2556 
2557 	dbri->dma = sbus_alloc_consistent(sdev, sizeof(struct dbri_dma),
2558 					  &dbri->dma_dvma);
2559 	memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2560 
2561 	dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2562 		dbri->dma, dbri->dma_dvma);
2563 
2564 	/* Map the registers into memory. */
2565 	dbri->regs_size = sdev->reg_addrs[0].reg_size;
2566 	dbri->regs = sbus_ioremap(&sdev->resource[0], 0,
2567 				  dbri->regs_size, "DBRI Registers");
2568 	if (!dbri->regs) {
2569 		printk(KERN_ERR "DBRI: could not allocate registers\n");
2570 		sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2571 				     (void *)dbri->dma, dbri->dma_dvma);
2572 		return -EIO;
2573 	}
2574 
2575 	err = request_irq(dbri->irq, snd_dbri_interrupt, SA_SHIRQ,
2576 			  "DBRI audio", dbri);
2577 	if (err) {
2578 		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2579 		sbus_iounmap(dbri->regs, dbri->regs_size);
2580 		sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2581 				     (void *)dbri->dma, dbri->dma_dvma);
2582 		return err;
2583 	}
2584 
2585 	/* Do low level initialization of the DBRI and CS4215 chips */
2586 	dbri_initialize(dbri);
2587 	err = cs4215_init(dbri);
2588 	if (err) {
2589 		snd_dbri_free(dbri);
2590 		return err;
2591 	}
2592 
2593 	dbri->next = dbri_list;
2594 	dbri_list = dbri;
2595 
2596 	return 0;
2597 }
2598 
2599 static void snd_dbri_free(snd_dbri_t * dbri)
2600 {
2601 	dprintk(D_GEN, "snd_dbri_free\n");
2602 	dbri_reset(dbri);
2603 
2604 	if (dbri->irq)
2605 		free_irq(dbri->irq, dbri);
2606 
2607 	if (dbri->regs)
2608 		sbus_iounmap(dbri->regs, dbri->regs_size);
2609 
2610 	if (dbri->dma)
2611 		sbus_free_consistent(dbri->sdev, sizeof(struct dbri_dma),
2612 				     (void *)dbri->dma, dbri->dma_dvma);
2613 }
2614 
2615 static int __init dbri_attach(int prom_node, struct sbus_dev *sdev)
2616 {
2617 	snd_dbri_t *dbri;
2618 	struct linux_prom_irqs irq;
2619 	struct resource *rp;
2620 	snd_card_t *card;
2621 	static int dev = 0;
2622 	int err;
2623 
2624 	if (sdev->prom_name[9] < 'e') {
2625 		printk(KERN_ERR "DBRI: unsupported chip version %c found.\n",
2626 		       sdev->prom_name[9]);
2627 		return -EIO;
2628 	}
2629 
2630 	if (dev >= SNDRV_CARDS)
2631 		return -ENODEV;
2632 	if (!enable[dev]) {
2633 		dev++;
2634 		return -ENOENT;
2635 	}
2636 
2637 	err = prom_getproperty(prom_node, "intr", (char *)&irq, sizeof(irq));
2638 	if (err < 0) {
2639 		printk(KERN_ERR "DBRI-%d: Firmware node lacks IRQ property.\n", dev);
2640 		return -ENODEV;
2641 	}
2642 
2643 	card = snd_card_new(index[dev], id[dev], THIS_MODULE,
2644 			    sizeof(snd_dbri_t));
2645 	if (card == NULL)
2646 		return -ENOMEM;
2647 
2648 	strcpy(card->driver, "DBRI");
2649 	strcpy(card->shortname, "Sun DBRI");
2650 	rp = &sdev->resource[0];
2651 	sprintf(card->longname, "%s at 0x%02lx:0x%08lx, irq %s",
2652 		card->shortname,
2653 		rp->flags & 0xffL, rp->start, __irq_itoa(irq.pri));
2654 
2655 	if ((err = snd_dbri_create(card, sdev, &irq, dev)) < 0) {
2656 		snd_card_free(card);
2657 		return err;
2658 	}
2659 
2660 	dbri = (snd_dbri_t *) card->private_data;
2661 	if ((err = snd_dbri_pcm(dbri)) < 0)
2662 		goto _err;
2663 
2664 	if ((err = snd_dbri_mixer(dbri)) < 0)
2665 		goto _err;
2666 
2667 	/* /proc file handling */
2668 	snd_dbri_proc(dbri);
2669 
2670 	if ((err = snd_card_set_generic_dev(card)) < 0)
2671 		goto _err;
2672 
2673 	if ((err = snd_card_register(card)) < 0)
2674 		goto _err;
2675 
2676 	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2677 	       dev, dbri->regs,
2678 	       dbri->irq, dbri->dbri_version, dbri->mm.version);
2679 	dev++;
2680 
2681 	return 0;
2682 
2683  _err:
2684 	snd_dbri_free(dbri);
2685 	snd_card_free(card);
2686 	return err;
2687 }
2688 
2689 /* Probe for the dbri chip and then attach the driver. */
2690 static int __init dbri_init(void)
2691 {
2692 	struct sbus_bus *sbus;
2693 	struct sbus_dev *sdev;
2694 	int found = 0;
2695 
2696 	/* Probe each SBUS for the DBRI chip(s). */
2697 	for_all_sbusdev(sdev, sbus) {
2698 		/*
2699 		 * The version is coded in the last character
2700 		 */
2701 		if (!strncmp(sdev->prom_name, "SUNW,DBRI", 9)) {
2702 			dprintk(D_GEN, "DBRI: Found %s in SBUS slot %d\n",
2703 				sdev->prom_name, sdev->slot);
2704 
2705 			if (dbri_attach(sdev->prom_node, sdev) == 0)
2706 				found++;
2707 		}
2708 	}
2709 
2710 	return (found > 0) ? 0 : -EIO;
2711 }
2712 
2713 static void __exit dbri_exit(void)
2714 {
2715 	snd_dbri_t *this = dbri_list;
2716 
2717 	while (this != NULL) {
2718 		snd_dbri_t *next = this->next;
2719 		snd_card_t *card = this->card;
2720 
2721 		snd_dbri_free(this);
2722 		snd_card_free(card);
2723 		this = next;
2724 	}
2725 	dbri_list = NULL;
2726 }
2727 
2728 module_init(dbri_init);
2729 module_exit(dbri_exit);
2730